
SEKE2009

Proceedings of the
Twenty-First International
Conference on
Software Engineering &
Knowledge Engineering

Boston, Massachusetts
July 1-3, 2009

PROCEEDINGS

SEKE 2009
The 21st International Conference on

Software Engineering &
Knowledge Engineering

Sponsored by
Knowledge Systems Institute Graduate School, USA

Technical Program
July 1-3, 2009

Hyatt Harborside Hotel, Boston, Massachusetts, USA

Organized by
Knowledge Systems Institute Graduate School

Copyright © 2009 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN 1-891706-24-1 (paper)

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:office@ksi.edu
http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

ii

Foreword

On behalf of the Program Committee Co-Chairs, who are listed below, and the Program Committee of the
2009 International Conference on Software Engineering and Knowledge Engineering (SEKE-2009), it is an
honor to welcome you to SEKE-2009 in Boston, MA. It has been my pleasure as Program Committee Chair
to help organize this year’s impressive scientific and technical program and the technical proceedings. The
proceedings contain the papers selected for presentation at SEKE-2009. I hope these proceedings will serve
as a valuable reference for the research community.

The International Conference on Software Engineering and Knowledge Engineering has entered its 21st
year. For the past twenty years, the Conference on Software Engineering and Knowledge Engineering has
provided a unique, centralized, forum for academic and industrial researchers and practitioners to discuss
the application of either software engineering methods in knowledge engineering or knowledge-based
techniques in software engineering. As our profession has been and still is evolving rapidly, SEKE has
always been eager to capture new aspects in Software Engineering and Knowledge Engineering as well as
to discuss consolidated special topics in depth in order to produce sustainable value for its attendees.
Current trends are reflected in special sessions on topics like, e.g., SOA and SOA-based software-
engineering, interoperability and the semantic web, without losing sight of still unsolved problems in more
established fields like, e.g., software process models, requirements, agents and multi-agent systems, to
name only a few. Preference is given to papers that emphasize the transference of methods between both
engineering disciplines; however, outstanding papers on software engineering or knowledge engineering
alone can also be found.

The SEKE-2009 Program Committee selected papers for publication in the proceedings and presentation at
the Conference based upon a rigorous review process of the full papers. We received an overwhelming 226
submissions from many countries. The acceptance rate for full papers is 38% and for short papers is 23%.
This year, authors from thirty-six countries including: Argentina, Australia, Austria, Bahrain, Brazil,
Canada, China, Egypt, France, Germany, India, Iran, Iraq, Ireland, Italy, Japan, Jordan, Malta, Mexico,
Myanmar, Netherlands, Pakistan, Peru, Romania, Saudi Arabia, Singapore, South Korea, Spain, Sweden,
Switzerland, Taiwan, Tunisia, Turkey, United Kingdom, United States and Vietnam will present papers at
the conference.

I appreciate having had the opportunity to serve as the Program Chair for this Conference, and am very
grateful for the outstanding efforts provided by the Program Committee Co-Chairs, Dr. Jerry Gao (San Jose
State University, USA) and Dr. Du Zhang (California State University, USA). The Program Committee
members, the special session organizers and reviewers provided excellent support in promptly reviewing
the manuscripts. I want to extend my sincere and deepest thanks to Dr. Daniel Beimborn and Dr. Masoud
Sadjadi as the Publicity Co-Chairs, to Dr. Jose' Carlos Maldonado as the South America Liaison and, last
but by no means least, to Dr. Taghi Khoshgoftaar for his help and counsel in numerous issues around
organizing the conference program. My appreciation also goes to the keynote speakers for sharing their
insights and experiences with the conference attendees. I am grateful to the authors and sessions chairs for
their time and efforts to make SEKE-2009 a successful event. As always, Dr. S. K. Chang of the
Knowledge Systems Institute, USA, provided excellent guidance throughout the effort. We all owe a
special debt of gratitude to the efforts of Mr. Daniel Li, of the Knowledge Systems Institute. Without his
help, the whole organization process would not have been possible in the narrow time frame if at all.

Finally, I truly hope that you will enjoy the technical program of SEKE-2009 as well as the social events
and use this outstanding event to talk to old and new friends. Around the conference, we encourage you to
explore and enjoy the attractions our host city, Boston, has to offer.

Guido Wirtz
SEKE-2009 Program Chair

iii

The 21st International Conference on
Software Engineering & Knowledge Engineering

(SEKE 2009)

July 1-3, 2009
Hyatt Harborside Hotel, Boston, Massachusetts, USA

Conference Organization

Steering Committee Chair
Shi-Kuo Chang, University of Pittsburgh, USA

Steering Committee
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

Conference Chair
Taghi M. Khoshgoftaar, Florida Atlantic University, USA

Program Chair
Guido Wirtz, Bamberg University, Germany

Program Co-Chairs
Jerry Gao, San Jose State University, USA

Du Zhang, California State University, USA

iv

Program Committee
Alain Abran, Universite du Quebec,Canada

Silvia Teresita Acuna, Universidad Autnoma De Madrid, Spain
Taiseera Albalushi, Sultan Qaboos University, Oman
Edward B. Allen, Mississippi State University, USA

Doo-Hwan Bae, Computer Science Dept. KAIST, Korea
Ebrahim Bagheri, University of New Brunswick, Canada

Rami Bahsoon, University of Birmingham, UK
Xiaoying Bai, Tsinghua University, China

Maria Teresa Baldassarre, University of Bari, Italy
Purushotham Bangalore, University of Alabama at Birmingham, USA

Muhammad Ali Barbar, Lero Irish, Italy
Emese Bari, eBay, USA

Daniel Beimborn, Bamberg University, Germany
Nicolas Belloir, University of Pau et des Pays de l'Adour , France

Alessandro Bianchi, University of Bari, Italy
Jim Bieman, Colorado State University, USA

Danilo Caivano, University of Bari, Italy
Gerardo Canfora, University of Sannio, Italy

Joao W. Cangussu, University of Texas at Dallas, USA
Giovanni Cantone, University of Rome Tor Vergata, Italy

Jeffrey C. Carver, University of Alabama, USA
Garcia-Castro, Technical University of Madrid, Spain

Jaelson Castro, Universidade Federal de Pernambuco, Brazil
Christine W. Chan, University of Regina, Canada

Keith C.C. Chan, The Hong Kong Polytechnic University, Hong Kong
W.K. Chan, City University of Hong Kong, Hong Kong
Kuang-Nan Chang, Eastern Kentucky University, USA

Ned Chapin, InfoSci Inc., USA
Shu-Ching Chen, Florida International University, USA

Yinong Chen, Arizona State University, USA
Yoonsik Cheon, University of Texas at El Paso, USA

Peter J. Clarke, Florida International University, USA
Nelly Condori F., Universidad Politecnica de Valencia, Spain

Panos Constantopoulos, Athens University of Economics, Greece
Dan Cooke, Texas Tech University, USA

Kendra Cooper, University of Texas at Dallas, USA
Maria Francesca Costabile, University of Bari, Italy

Karl Cox, UNSW / Enterprise Analysts Pty Ltd, Australia
Juan J. Cuadrado-Gallego, University of Alcala, Spain

Alfredo Cuzzocrea, University of Calabria, Italy
Deepak Dhungana, Johannes Kepler University, Austria

Jin Song Dong, National University of Singapore, Singapore
Jing Dong, University of Texas at Dallas, USA

Dirk Draheim, University of Innsbruck, Austria
Philippe Dugerdil, HEG-University of Applied Sciences, Switzerland

Reiner Dumke, University of Magdeburh, Germany
Schahram Dustdar, University of Technology Vienna, Austria
Christof Ebert, Vector Consulting Services GmbH, Germany

Raimund K. Ege, Northern Illinois University, USA

v

Faezeh Ensan, University of New Brunswick, Canada
Onyeka Ezenwoye, South Dakota State University, USA

Davide Falessi, Universita degli Studi di Roma Tor Vergata, Italy
Behrouz Homayoun Far, University of Calgary, Canada
Robert Feldt, Blekinge Institute of Technology, Sweden

Eduardo B. Fernandez, Florida Atlantic University, USA
Renata Fortes, University of Sao Paulo, Brazil

Jerry Gao, San Jose State University, USA
Kehan Gao, Eastern Connecticut State University, USA

Alessandro Garcia, Lancaster University, UK
Felix Garcia, University of Castilla-La Mancha, Spain

Holger Giese, Hasso Plattner Institut, Germany
Itana Gimenes, UEM/PR/Brazil, Brazil

Swapna Gokhale, University of Connecticut, USA
Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Des Greer, Queens University Belfast, UK
Eric Gregoire, Universite dArtois, France

Mark Harman, Kings College London, UK
Xudong He, Florida International University, USA

Rattikorn Hewett, Texas Tech University, USA
Mei Hsing, Fu Jen Catholic University, Taiwan

Shihong Huang, Florida Atlantic University, USA
Byung-Yeon Hwang, The Catholic University of Korea, Korea

Ali Idri, ENSIAS, Rabat, Morocco
Peter In, Korea University, Korea

Clinton Jeffery, University of Idaho, USA
Natalia Juristo, Madrid Technological University, Spain

Audris Kalnins, University of Latvia, Latvia
Taghi Khoshgoftaar, Florida Atlantic University, USA

Sascha Konrad, Siemens Corporate Research, USA
Gunes Koru, University of Maryland, Balt Cty, USA

Nicholas A. Kraft, University of Alabama, USA
Vinay Kulkarni, Tata Research, India

Gi-Hwon Kwon, College of Natural Sciences, Korea
Mark Last, Ben-Gurion University of the Negev, Israel
Konstantin Laufer, Loyola University Chicago, USA

Jeff Lei, University of Texas at Arlington, USA
Tao Li, Florida International University, USA

Shih-Hsi Liu, California State University at Fresno, USA
Xiaodong Liu, Napier University, UK

Yan (Jenny) Liu, National ICT, Australia
Yi Liu, Georgia college and State University, USA

Hakim Lounis, University of Quebec, CA
Zhongyu (Joan) Lu, The University of Huddersfield, UK

Heiko Ludwig, IBM TJ Watson Research Center, Almaden, San Jose, USA
Michael R. Lyu, Chinese University of Hong Kong, Hong Kong

Jose Carlos Maldonado, University of Sao Paulo, Brazil
Antonio Mana, University of Malaga, Spain

Emilia Mendes, University of Auckland, New Zealand
Harald Meyer, HPI Potsdam, Germany

Rym Mili, University of Texas at Dallas, USA

vi

James Miller, University of Alberta, Canada
Ana M. Moreno, Techincal University of Madrid, Spain
Henry Muccini, Univerita degli Studi de L Aquila, Italy

Martin Neil, MQueen Mary (U. of London), UK
Allen Nikora, Jet Propulsion Laboratory, USA

Elisabetta Di Nitto, Politechnico de Milano, Italy
Mehmet Orgun, Macquarie University, Australia

Eric Pardede, La Trobe University, Australia
Witold Pedrycz, University of Alberta, Canada

Jun Peng, Chongqing University of Science and technology, China
Massimiliano Di Penta, University of Sannio, Italy

Antonio Piccinno, University of Bari, Italy
Alfonso Pierantonio, University of L.Aquila , Italy

Damith C. Rajapakse, National Univ. of Singapore, Singapore
Rajeev Raje, Indiana University Purdue University, Indianapolis, USA

Sanjay Ranka, University of Florida, USA
Marek Refomat, University of Alberta, Canada
Marek Reformat, University of Alberta, Canada
Robert Reynolds, Wayne State University, USA

Daniel Rodriguez, The University of Alcala, Spain
Ignacio Garcia Rodriguez, Universidad de Castilla-La Mancha, Spain

Guenther Ruhe, University of Calgary, Canada
Samira Sadaoui, University of Regina, Canada

Masoud Sadjadi, Florida International University, USA
Eng. Sattar B. Sadkhan, University of Babylon, Iraq
Ramon Sagarna, The University of Birmingham, UK

Ahmed Salem, California State University at Sacramento State, USA
S. Alessandro Sarcia, Universita degli Studi di Roma Tor Vergata, Italy

Kamran Sartipi, McMaster University, Canada
Peter Sawyer, University of Lancaster, UK

Douglas Schmidt, Vanderbilt University, USA
Naeem Seliya, University of Michigan at Dearborn, USA

Tony Shan, IBM, USA
Rajan Shankaran, Macquarie University, Australia
Yidong Shen, Chinese Academy of Science, China

Michael Shin, Texas Tech University, USA
George Spanoudakis, City University, UK

Arndt von Staa, PUC-Rio, Brazil
Rajesh Subramanyan, Siemens Corporate Research, Inc. USA

Jeff Tian, Southern Methodist University, USA
Scott Tilley, Florida Institute of Technology, USA

Mark Trakhtenbrot, Holon Institute of Technology, Israel
Laurence Tratt, Bournemouth University, UK

Peter Troger, Blekinge Institute of Technology, Sweden
Jeffrey Tsai, University of Illinois, USA

Tse-Ming Tsai, Institute for Information Industry, Taiwan
T.H. Tse, University of Hong Kong, Hong Kong
Antonio Vallecillo, University of Malaga, Spain

Michael VanHilst, Florida Atlantic University, USA
Sira Vegas, Universidad Politecnica de Madrid, Spain

Silvia Regina Vergilio, UFPR, Brazil

vii

Huanjing Wang, Western Kentucky University, USA
Christiane Gresse von Wangenheim, Universidate do Vale do Itaja, Brazil

Tim Weitzel, Bamberg University, Germany
Victor Winter, University of Nebraska at Omaha, USA

Guido Wirtz, Bamberg University, Germany
Eric Wong, University of Texas at Dallas, USA

Franz Wotawa, Technische Universitaet Graz, Austria
Haiping Xu, University of Massachusetts Dartmouth, USA
Chi-Lu Yang, Institute for Information Industry, Taiwan

Hongji Yang, De Montfort University, UK
Ren-Dar Yang, Institute for Information Industry, Taiwan

Huiqun Yu, East China University of Science and Technology, China
Du Zhang, California State University Sacramento, USA

Jing Zhang, Motorola Research, USA
Min-Ling Zhang, Hohai University, China

Zhinan Zhou, Samsung, USA
Hong Zhu, Oxford Brookes University, UK

Xingquan Zhu, Florida Atlantic University, USA
Eugenio Zimeo, University of Sannio, Italy

Andrea Zisman, City University, UK

PUBLICITY CO-CHAIRS
Daniel Beimborn, Bamberg University, Germany

S. Masoud Sadjadi, Florida International University, USA

South America Liasion
Jose Carlos Maldonado, University of Sao Paulo, Brazil

Industry Advisory Committee

Yi Deng, Dean, School of Computer Science, Florida International University, USA
J. S. Ke, Senior Fellow, Institute for Information Industry, Taiwan
A. J. Rhem, Senior Partner, A. J. Rhem and Associates Inc., USA

Proceedings Cover Design

Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Conference Secretariat

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Omasan Etuwewe, Knowledge Systems Institute Graduate School, USA

Chen-Cheang Huang, Knowledge Systems Institute Graduate School, USA
Daniel Li, Knowledge Systems Institute Graduate School, USA

viii

Table of Contents

Foreword ………………………………………………………………………..…… iii

Conference Organization ………………………………………………………… iv

Wireless Computing, Networking and Sensing

Dr. H. T. Kung ...……………………………………………………………………...... 1

Virtual Spaces: From the Past to the Future

Dr. Shi-Kuo Chang …………………………………………………………………...... 2

Software Engineering of Autonomic Grid Computing Systems and Applications

Web Services Reliability Patterns (S)
Ingrid Buckley, Eduardo B. Fernandez, Gustavo Rossi, S. Masoud Sadjadi ………….. 4

Consistency in Self-Reconfiguration of Self-Healing Systems
Michael E. Shin, Kiran Gopala Reddy Sunanda ……………………………………….. 10

Task Decomposition for Adaptive Data Staging in Workflows for Distributed
Environments (S)
Onyeka Ezenwoye, Balaji Viswanathan, S. Masoud Sadjadi, Liana Fong, Gargi
Dasgupta, Selim Kalayci …………………………………………………………………. 16

Requirements

Constructing FODA Feature Diagrams with a GUI-based Tool (S)
Shin Nakajima …………………………………………………………………………. 20

ix

Towards a Classification of Requirements Relationships
Ruhaya Ab Aziz, Didar Zowghi, Tom McBride …………………………………………. 26

Towards the Selection of the Most Suitable Elicitation Technique Through a Defined
Requirements Elicitation Process (S)
Marcelo Werneck Barbosa, Glivia Angelica Rodrigues Barbosa ………………………. 33

A Requirement Traceability Refinement Method Based on Relevance Feedback
Lingjun Kong, Juan Li, Yin Li, Ye Yang, Qing Wang …………………………………. 37

Applying Transformation Rules to Improve i* Models (S)
Marcia Lucena, Carla Silva, Emanuel Santos, Fernanda Alencar, Jaelson Castro …... 43

Nested NL Representation for OO Analysis and Design (S)
Magda G. Ilieva, Olga Ormandjieva …………………………………………………….. 49

Specification of Data Requirements from Task Descriptions
Jose Luis de la Vara, Juan Sanchez …………………………………………………….. 55

From Organizational Models to Software Requirements
Alicia Martinez, Oscar Pastor, John Mylopoulos, Hugo Estrada ……………………… 61

Systematic Review of Requirements Reuse
Flavia Braga de Azambuja, Ricardo Melo Bastos, Ana Paula Terra Bacelo ………….. 67

Reprioritizing the Requirements in Agile Software Development: Towards a Conceptual
Model from Clients' Perspective
Zornitza Racheva, Maya Daneva ……….……………………………………………….. 73

Data Mining and Features

A Novel Hybrid Search Algorithm for Feature Selection
Pengpeng Lin, Huanjing Wang, Taghi M. Khoshgoftaar ……………………………… 81

Improving Text Document Clustering by Exploiting Open Web Directory
Gaurav Ruhela, P.Krishna Reddy ……………………………………………………….. 87

x

Automated Nursing Knowledge Management Using Indexing (S)
Shihong Huang, Sucharita Chinchanikar, Abhijit Pandya, Sam Hsu, Marilyn Parker 93

Applications

Classifying Web Robots by K-means Clustering
Derek Doran, Swapna S. Gokhale ………………………………………………………. 97

Systematic Risk Assessment and Cost Estimation for Software Problems
Jerry Gao, Maulik Shah, Mihir Shah, Devarshi Vyas, Pushkala Pattabhiraman,
Kamini Dandapani, Emese Bari ………………………………………………………… 103

Improving Negotiations through Fuzzy Cognitive Maps
Sergio Assis Rodrigues, Tiago Santos da Silva, Jano Moreira de Souza ………………. 110

Software Engineering with Computational Intelligence and Machine Learning

Value-Based Software Quality Modeling
Naeem Seliya, Taghi M. Khoshgoftaar …………………………………………………. 116

Predicting Maintainability expressed as Change Impact: A Machine-learning-based
Approach
H. Lounis, M.K. Abdi, H. Sahraoui ……………………………………………………... 122

Program File Bug Fix Effort Estimation Using Machine Learning Methods for OSS (S)
Syed Nadeem Ahsan, Javed Ferzund, Franz Wotawa ………………………………….. 129

Software Architecture and Evolution

An Architecture-based Evolution Management Method for Software Product Line
Xin Peng, Liwei Shen, Wenyun Zhao …………………………………………………… 135

Towards Design and Architectural Evaluation of Product Variants: A Case Study on an
Open Source Software System
Muhammad Irfan Ullah, Guenther Ruhe, Vahid Garousi ……………………………... 141

xi

Decision Support System Environment for Software Architecture Style Selection
(DESAS v1.0) (S)
Shahrouz Moaven, Hamed Ahmadi, Jafar Habibi, Ali Kamandi ……………………… 147

Towards Architecture-centric Collaborative Software Development (S)
Yanchun Sun, Hui Song, Wenpin Jiao ………………………………………………..... 152

Agents and Multi-Agent Systems

Analysis of Agent Oriented Software Engineering Methodologies for Social Causal
Models
Michele Atkinson, Sheryl Duggins ……………………………………………………… 157

Realization of Semantic Search Using Concept Learning and Document Annotation
Agents
Behrouz H. Far, Cheng Zhong, Zilan Yang, Mohsen Afsharchi ………………………. 164

Agent-based Simulation Model for the Evolution Process of Open Source Software
Taemin Seo, Heesang Lee ……………………………………………………………….. 170

Towards Merging Goal Models of Networked Software
Zaiwen Feng, Keqing He, Rong Peng, Jian Wang, Yutao Ma …………………………. 178

Comparison of Some Single-agent and Multi-agent Information Filtering Systems on a
Benchmark Text Data Set (S)
Snehasis Mukhopadhyay, Shengquan Peng, Rajeev Raje, Mathew Palakal, Javed
Mostafa …………………………………………………………………………………… 185

Towards Adaptable BDI Agent: A Formal Aspect-oriented Modeling Approach (S)
Lily Chang, Xudong He ………………………………………………………………….. 189

A Multi-agent Debugging Extension Architecture (S)
Ziad Al-Sharif, Clinton Jeffery ………………………………………………………….. 194

A Recognition-primed Architecture for Human-centric Multi-agent Systems
Xiaocong Fan ……………………………………………………………………………. 200

xii

Using Knowledge Objects to Exchange Knowledge in a MAS Platform
Ana Paula Lemke, Marcelo Blois ……………………………………………………….. 206

JAAF: A Framework to Implement Self-adaptive Agents
Baldoino F. dos S. Neto, Andrew D. da Costa, Manoel T. de A. Netto, Viviane T. da
Silva, Carlos J. P. de Lucena ……………………………………………………………. 212

An Agent-based Centralized e-Marketplace in a Virtual Environment (S)
Ingo Seidel, Markus Gartner, Josef Froschauer, Helmut Berger, Dieter Merkl ……… 218

Interoperability and Semantic Web Technologies

Semantic Service Matchmaking in the ATM Domain Considering Infrastructure
Capability Constraints (S)
Thomas Moser, Richard Mordinyi, Wikan Danar Sunindyo, Stefan Biffl …………….. 222

Ontology Mapping Representations: A Pragmatic Evaluation (S)
Hendrik Thomas, Declan O'Sullivan, Rob Brennan …………………………………… 228

Bridging Semantic Gaps Between Stakeholders in the Production Automation Domain
with Ontology Areas
Stefan Biffl, Wikan Danar Sunindyo, Thomas Moser ………………………………….. 233

LD2SD: Linked Data Driven Software Development
Aftab Iqbal, Oana Ureche, Michael Hausenblas, Giovanni Tummarello ……………... 240

Improving Searchability of a Music Digital Library with Semantic Web Technologies
Paloma de Juan, Carlos A. Iglesias ……………………………………………………... 246

A Guideline Engine For Knowledge Management in Clinical Decision Support Systems
(CDSSs)
Michele Ceccarelli, Alessandro De Stasio, Antonio Donatiello, Dante Vitale …………. 252

Ontology-based Semantic Annotations of Medical Articles (S)
Jihen Majdoubi, Mohamed Tmar, Faiez Gargouri ……………………………………... 258

xiii

Reverse Engineering

Automating Business Intelligence Recovery from a Web-based System
Jian Kang, Jianzhi Li, Jianchu Huang, Yingchun Tian, Hongji Yang ………………... 262

Automatic Class Matching to Compare Extracted Class Diagrams: Approach and Case
Study (S)
Yan Liang, Nicholas A. Kraft, Randy K. Smith …………………………………………. 268

SOA-based software engineering

Modeling and Verification of Automatic Multi-business Transactions
Min Yuan, Zhiqiu Huang, Jian Zhao, Xiang Li ……………………………………….. 274

An Adaptive Management Framework for Service Brokers in Service-oriented
Architecture
W.T. Tsai, Tszyan Chow, Yinong Chen, Xiao Wei ……………………………………… 280

Requirements Discovery Based on RGPS Using Evolutionary Algorithm (S)
Tao Peng, Bing Li, Weifeng Pan, Zaiwen Feng ………………………………………... 286

Mediation Based Variability Modeling for Service Oriented Software Product Lines (S)
Mohammad Abu-Matar …………………………………………………………………. 291

Software Engineering Education

Pedagogy-oriented Software Modeling and Simulation of Component-based Physical
Systems
Dan Tappan ……………………………………………………………………………… 295

An Academia-Industry Collaborative Teaching and Learning Model for Software
Engineering Education (S)
Huilin Ye ………………………………………………………………………………..... 301

xiv

Software Testing and Automation

Data Flow Analysis and Testing for Web Service Compositions Based on WS-BPEL
Chien-Hung Liu, Shu-Ling Chen ……………………………………………………….. 306

Knowledge-based Software Test Generation
Valeh H. Nasser, Weichang Du, Dawn MacIsaac ……………………………………… 312

Some Experiments on Test Case Tracebaility (S)
Macario Polo, Beatriz Perez, Pedro Reales ……………………………………………... 318

Service Oriented Architecture

Business Modeling for Service Engineering: Toward an integrated Procedure Model
Gregor Scheithauer, Stefan Augustin, Guido Wirtz ……………………………………. 322

A Systematic SOA-based Architecture Process
Jose Jorge Lima Dias Junior, Eduardo Santana de Almeida, Silvio Romero de Lemos
Meira ……………………………………………………………………………………... 328

Research and Implementation of Service-oriented Architecture Supporting Location-
based Services on Sensor Networks (S)
Bin-Yi Liao, Wen-Shyang Huang, Jeng-Shyang Pan, Hong-Chi Wu, Yuh-Ming
Cheng, Jen-Kuin Lee, Bo-Sian Wang, E-Liang Chen, Mong-Fong Horng …………… 334

Service Creation and Composition for Realization On Service-oriented Architecture
Chi-Lu Yang, Yeim-Kuan Chang, Chih-Ping Chu ……………………………………... 338

An Extendible Translation of BPEL to a Machine-verifiable Model
John C. Sloan, Taghi M. Khoshgoftaar, Augusto Varas ………………………………. 344

Generating Test Cases of Composite Services Based on OWL-S and EH-CPN
Bixin Li, Ju Cai, Dong Qiu, Shunhui Ji, Yuting Jiang ………………………………… 350

xv

User Perceived Response-time Optimization Method for Composite Web Services
Junfeng Zhao, Yasha Wang, Bing Xie ………………………………………………….. 356

Dynamic Service Composition for Virtual UPnP Device Creation
Sheng-Tzong Cheng, Chih-Lun Chou, Jiashing Shih, Mingzoo Wu ………………….. 364

Using Service-oriented Architectures for Socio-Cultural Analysis
David Garlan, Kathleen M. Carley, Bradley Schmerl, Michael Bigrigg, Orieta Celiku . 370

Languages and Program Understanding

A Conceptual Model for Comprehension of Object-oriented Interactive Systems (S)
Izuru Kume, Etsuya Shibayama ………………………………………………………… 376

Arabic Lisp (S)
Hanan Elazhary ……………………………………………...…………………………... 382

The Use of Reading Technique and Visualization for Program Understanding
Daniel Porto, Manoel Mendonca, Sandra Fabbri ……………………………………… 386

Language Support for Event-based Debugging
Ziad Al-Sharif, Clinton Jeffery ……………………………………………...................... 392

Pie Tree Visualization
Mireille Samia, Michael Leuschel ……………………………………………................. 400

Formal Verification of Scalable NonZero Indicators
Shao Jie Zhang, Yang Liu, Jun Sun, Jin Song Dong, Wei Chen, Yanhong A. Liu … 406

Software Quality

Detecting Defects with an Interactive Code Review Tool Based on Visualisation and
Machine Learning
Stefan Axelsson, Dejan Baca, Robert Feldt, Darius Sidlauskas, Denis Kacan ………... 412

xvi

Dynamic Test Profiles in Adaptive Random Testing: A Case Study (S)
Huai Liu, Fei-Ching Kuo, Tsong Yueh Chen …………………………………………... 418

A Novel Method of Mutation Clustering Based on Domain Analysis (S)
Changbin Ji, Zhenyu Chen, Baowen Xu, Zhihong Zhao ………………………………. 422

Using a Mining Frequency Patterns Model to Automate Passive Testing of Real-time
Systems
Cesar Andres, Mercedes G. Merayo, Manuel Nunez …………………………………… 426

DeLLIS: A Data Mining Process for Fault Localization (S)
Peggy Cellier, Mireille Ducasse, Sebastien Ferre, Olivier Ridoux ……………………... 432

Extending AOP to Support Broad Runtime Monitoring Needs (S)
Amjad Nusayr, Jonathan Cook ……………………………………………...................... 438

Clustering of Defect Reports Using Graph Partitioning Algorithms (S)
Vasile Rus, Xiaofei Nan, Sajjan Shiva, Yixin Chen …………………………………….. 442

Documenting Quality Attributes of Software Components (S)
Wenhui Zhu, Yanchun Sun, Gang Huang, Hong Mei …………………………………. 446

Taming Inconsistency in Value-based Software Development
Du Zhang ………………………………………………………………………………… 450

WSTester: Testing Web Service for Behavior Conformance (S)
Bixin Li, Lili Yang, Shunhui Ji, Dong Qiu, Xufang Gong …………………………….. 456

Robustness Verification Challenges in Automotive Telematics Software (S)
Ali Shahrokni, Robert Feldt, Fredrik Petterson, Anders Back ………………………… 460

Smart Environments and Applications

A 2D-barcode Based Mobile Advertising Solution
Jerry Zeyu Gao, Hema Veeraragavathatham, Shailashree Savanur, Jinchun Xia …… 466

xvii

Long-term Prediction of Wireless Network Traffic
Zhiwei Xu, Zhou Zhou, Weibiao Wu ……………………………………………............. 473

Software Architecture and Applications

Resource Allocation for a Modular Software System
Lance Fiondella, Swapna S. Gokhale ……………………………………………............ 480

Enhancing Property Specification Tools With Validation Techniques
Salamah Salamah, Matthew Del Buono, Eric Baily, Sarah Printy, Derek Ferris,
Laurel Christian ……………………………………………...………………………….. 487

Software Process and Process Models

Supporting Good Decision Making at Early Stage of Software Design
Hung-Fu Chang, Stephen C-Y. Lu ……………………………………………................ 493

A Language for Modeling Software Development Life Cycles (S)
Ernest Cachia, Mark Micallef ……………………………………………........................ 499

Weaving Process Patterns into Software Process Models (S)
Xiao-yang He, Ya-sha Wang, Jin-gang Guo, Wu Zhou, Jia-kuan Ma ………………… 505

Assessing Workflow Ability of ERP and WfM Systems (S)
Lerina Aversano, Roberto Intonti, Maria Tortorella …………………………………… 509

Mining Objective Process Metrics from Repository Data
Michael VanHilst, Shihong Huang ……………………………………………............... 514

Collaborative Development of System Architecture - a Tool for Coping with
Inconsistency (S)
Peter Henderson, Matthew J. Henderson ……………………………………………...... 520

BITS: Issue Tracking and Project Management Tool in Healthcare Software
Development (S)
Ayse Tosun, Ayse Bener, Ekrem Kocaguneli …………………………………………… 526

xviii

Security and Privacy

Privacy-preserving Clustering of Data Streams
Ching-Ming Chao, Chih-Chin Shen ……………………………………………............. 530

FiGD: An Open Source Intellectual Property Violation Detector (S)
Carson Brown, David Barrera, Dwight Deugo …………………………………………. 536

Integrating Privacy Requirements into Security Requirements Engineering
Saeed Abu-Nimeh, Seiya Miyazaki, Nancy R. Mead …………………………………… 542

iPass: An Integrated Framework for Educating, Monitoring and Enforcing Password
Policies for Online Services (S)
Dhananjay Kulkarni, Diana Ciric, Fernanda Zulkarnain ……………………………... 548

Ontologies and their Applications

Improving Natural Language Specifications with Ontologies
Sven J. Korner, Torben Brumm……………………………………………...................... 552

A Knowledge-based Retrieval Model
Fabio Silva, Rosario Girardi, Lucas Drumond …………………………………………. 558

TRIple Content-based OnTology (TRICOt) for XML Dissemination (S)
Mirella M. Moro, Deise de Brum Saccol, Renata de Matos Galante …………………. 564

An Ontology-based Approach to Portable Embedded System Development
Feng Chen, Hong Zhou, Jianzhi Li, Ruimin Liu, Hongji Yang, Han Li, He Guo,
Yuxin Wang …………………………………………….. 569

An Integrated Ontology Framework for Health Information Exchange
S. Demurjian, R. Saripalle, S. Berhe ……………………………………………............. 575

xix

HCI and Smart Environments

Modeling User Interpersonal Stances in Affective Dialogues with an ECA
Nicole Novielli, Enrica Gentile ……………………………………………...................... 581

Capturing Users' Preferences and Intentions in a Semantic Search System (S)
Caio Stein D'Agostini, Renato Fileto ……………………………………………............. 587

Toward Developing Knowledge Representation in Emergency Medical Assistance
through a Ontology-based Semantic Cache Model (S)
Heloise Manica, Cristiano C. da Rocha, Jose Leomar Todesco, M. A. R. Dantas,
Michael A. Bauer …………………………………………….. 592

Specification of a Component-based Domotic System to Support User-defined Scenarios
Fady Hamoui, Marianne Huchard, Christelle Urtado, Sylvain Vauttier ……………… 597

Towards Mobility Support in Smart Environments (S)
Daniel Retkowitz, Ibrahim Armac, Manfred Nagl ……………………………………… 603

A Graph Transformation-based Approach to Task Allocation in Wireless Sensor Actor
Networks (S)
Hossein Momeni, Vahid Rafe, Mohsen Sharifi, Adel T. Rahmani …………………….. 609

Software Measurement

Another New Criterion to Improve the Interaction Diagrams Quality
Lilia Grati, Mohamed Tmar, Faiez Gargouri …………………………………………... 613

Software Project Effort Estimation Non Lineal Mathematical Models
Pablo R. Soria, Borja Martin, Marian Fernandez de Sevilla, Maria J. Dominguez-
Alda, Miguel A. Herranz ……………………………………………................................ 619

Software Estimation: Universal Models or Multiple Models? (S)
Alain Abran, Juan Jose Cuadrado Gallego …………………………………………….. 625

xx

An Empirical Study of the Feedback of the In-process Measurement in a Japanese
Consortium-type Software Project (S)
Yoshiki Mitani, Tomoko Matsumura, Katsuro Inoue, Mike Barker, Akito Monden,
Ken-ichi Matsumoto ……………………………………………....................................... 631

Prest: An Intelligent Software Metrics Extraction, Analysis and Defect Prediction Tool
Ekrem Kocaguneli, Ayse Tosun, Ayse Bener, Burak Turhan, Bora Caglayan ………... 637

Accelerated Risk Management using Statistical Triggers
Rose Williams, Krishna Ratakonda ……………………………………………............... 643

Process Management and Outsourcing

A Layered Approach for Planning Releases under Uncertain Capacities
Jim McElroy, Guenther Ruhe ……………………………………………........................ 649

PP-HAS: A Task Priority Based Preemptive Human Resource Scheduling Method
Lizi Xie, Qing Wang, Junchao Xiao, Yongji Wang, Ye Yang …………………………... 655

A Real Execution of a Software Process Improvement: An Opportunity to Execute a
Combination of Approaches (S)
Adriano Bessa Albuquerque, Ana Regina Rocha ………………………………………. 661

Establish Decision Making Process for Selecting Outsourcing Company
Akihiro Hayshi ……………………………………………...……………………………. 666

From Strategy to Solution: A Lightweight Semi-prescriptive Approach for Software
Development Lifecycle with Outsourcing Support (S)
Nelio Alves, Sergio Paim, Alexandre Cardoso, Edgard Lamounier …………………… 672

Databases and Data Modeling

A Model Driven Method for Data Warehouse
Leopoldo Zepeda, Elizabeth Cecena, Jorge Rivas, Javier Cano, Nelly Condory,
Matilde Celma ……………………………………………... 676

xxi

Analyzing the Software Development Process with SyQL and Lagrein
Mirco Bianco, Alberto Sillitti, Giancarlo Succi ………………………………………… 682

Performance Analysis of a Deductive Database with a Semantic Web Reasoning Engine:
ConceptBase and Racer
Simone A. Ludwig, Craig Thompson, Kristofor Amundson ……………………………. 688

Object Specification Language for Graph Based Conceptual level Multidimensional
Data Model (S)
Anirban Sarkar, Sankhayan Choudhury, Nabendu Chaki, Swapan Bhattacharya …… 694

A Framework for Trajectory Data Preprocessing for Data Mining (S)
Luis Otavio Alvares, Gabriel Oliveira, Carlos A. Heuser, Vania Bogorny …………….. 698

Multimedia Software Engineering

A Payload Optimization Technique for Multimedia Visual Cryptographye
Moussa H. Abdallah, Rola I. Al-Khalid, Randa A. Al-Dallah …………………………. 703

Knowledge Management Framework for Conference Video-recording Retrieval
Maria Sokhn, Elena Mugellini, Omar Abou Khaled …………………………………… 709

Software Engineering and Aspects

Separating The Scattered Concerns: A Graph Based Model
Dipankar Majumdar, Swapan Bhattacharya …………………………………………… 715

Early Analysis of Modularity in Software Product Lines
Jose M. Conejero, Juan Hernandez, Elena Jurado, Pedro J. Clemente, Roberto
Rodriguez ……………………………………………...…………………………………. 721

Model-Driven Software Engineering

MD-JPA Profile: A Model Driven Language for Java Persistence
Alexandre Torres, Renata Galante, Marcelo S. Pimenta ………………………………. 727

xxii

A Pragmatic UML-based Meta Model for Object-oriented Code Generation
Tobias Haubold, Georg Beier, Wolfgang Golubski …………………………………….. 733

An Ontology-based Model Driven Approach for a Music Learning System
Yingchun Tian, Feng Chen and Hongji Yang, Leigh Landy …………………………... 739

Reviewer's Index ………………………………………………………………………… 745

Author's Index …………………………………………………………………………... 748

Note: (S) means short paper.

xxiii

�

Keynote I:
Wireless Computing, Networking and Sensing

H. T. Kung
Harvard School of Engineering and Applied Sciences

Cambridge, MA

Abstract
In the next decade we will begin to face very large sensor-generated datasets on the order
of zettabytes or even yottabytes. While the bulk of the processing and storage must be
distributed near the sensors, centralized control and applications could still be needed.
Moreover, for flexibility in sensor deployments, communications over wireless networks
will be essential in spite of their modest bandwidths. This talk will discuss fundamental
challenges and recent research progress at Harvard in these areas.

About Dr. H. T. Kung
H. T. Kung received his B.S. from National Tsing Hua University (Taiwan), and Ph.D.
from Carnegie Mellon University. He is currently William H. Gates Professor of
Computer Science and Electrical Engineering at Harvard University. Prior to joining
Harvard in 1992, he taught at Carnegie Mellon for about eighteen years. Dr. Kung has
pursued a variety of research interests, including complexity theory, database systems,
VLSI design, parallel computing, computer architectures, computer networks, network
security, wireless communications, and networking of unmanned aerial vehicles. He
maintains a strong linkage with industry and has served as a consultant and board
member to numerous organizations. Dr. Kung's professional honors include Member of
the National Academy of Engineering in USA and Member of the Academia Sinica in
Taiwan.

1

Keynote II:
Virtual Spaces: From the Past to the Future

Shi-Kuo Chang

Abstract
Space can be seen in many different ways. When an architect and a computer scientist look
at space they see very different things and yet sometimes they make surprisingly similar
discoveries. As a computer scientist with strong research interests in visual languages I
learned many things from the theory and practice of architecture. This lecture on virtual
spaces is motivated by a desire to share these findings. We begin by discussing the origins
of architectural pleasure and how the space of a dwelling can be divided into refuge and
prospect according to Grant Hildebrand. This decomposition of space leads us naturally to
consider spatial relations and patterns. On the pragmatic side we illustrate patterns by the
works of Frank Lloyd Wright. On the theoretical side we consider Christopher Alexander's
theory of patterns and its relationship to the theory of visual languages and software
engineering. After a discussion of William Mitchell's e-topia as an example of the V-topia,
the virtual cities of the past, the present and the future are surveyed.

About Dr. Laura Haas
Dr. Chang received the B.S.E.E. degree from National Taiwan University in 1965. He
received the M.S. and Ph.D. degrees from the University of California, Berkeley, in 1967
and 1969, respectively. He was a research scientist at IBM Watson Research Center from
1969 to 1975. From 1975 to 1982 he was Associate Professor and then Professor at the
Department of Information Engineering, University of Illinois at Chicago. From 1982 to
1986 he was Professor and Chairman of the Department of Electrical and Computer
Engineering, Illinois Institute of Technology. From 1986 to 1991 he was Professor and
Chairman of the Department of Computer Science, University of Pittsburgh. He is currently
Professor and Director of the Center for Parallel, Distributed and Intelligent Systems,
University of Pittsburgh. Dr. Chang is a Fellow of IEEE. He published over 230 papers and
16 scientific books. He is the founder and co-editor-in-chief of the international journal,
Visual Languages and Computing, published by Academic Press, the editor-in-chief of the
international journal, Software Engineering & Knowledge Engineering, published by World
Scientific Press, and the co-editor-in-chief of the international journal on Distance
Education Technologies. Dr. Chang pioneered the development of Chinese language
computers, and was the first to develop a picture grammar for Chinese ideographs, and
invented the phonetic phrase Chinese input method.

Dr. Chang's literary activities include the writing of over thirty novels, collections of short
stories and essays. He is widely regarded as an acclaimed novelist in Taiwan. His novel, The
Chess King, was translated into English and German, made into a stage musical, then a TV
mini-series and a movie. It was adopted as textbook for foreign students studying Chinese at
the Stanford Center (Inter-University Program for Chinese Language Studies administered
by Stanford University), Taipei, Taiwan. In 1992, Chess King was adopted as
supplementary reading for high school students in Hong Kong. The short story, "Banana
Boat", was included in a textbook for advanced study of Chinese edited by Neal Robbins

2

and published by Yale University Press. University of Illinois adopted "The Amateur
Cameraman" in course materials for studying Chinese. Dr. Chang is also regarded as the
father of science fiction in Taiwan. Some of Dr. Chang's SciFi short stories have been
translated into English, such as "City of the Bronze Statue" , "Love Bridge" , and
"Returning" . His SciFi novel, The City Trilogy, was published by Columbia University
Press in May 2003.

3

Web Services Reliability Patterns

Ingrid Buckley1, Eduardo B. Fernandez1, Gustavo Rossi2 and Masoud Sadjadi3

1 Florida Atlantic University, Boca Raton, Fl, 33431, USA, {ibuckley,ed}@cse.fau.edu
2 Universidad Nacional de La Plata, Argentina, La Plata, gustavo@lifia.info.unlp.edu.ar

3 Florida International University, Miami, Fl, 33199, USA, sadjadi@cs.fiu.edu

Abstract

Due to the widespread use of web services by

enterprises, the need to ensure their reliability has
become crucial. There are several standards that intend
to govern how web services are designed and
implemented, including protocols to which they must
adhere. These standards include the WS-Reliability and
WS-Reliable Messaging standards that define rules for
reliable messaging. We present here patterns for these
standards which define how to achieve reliable messaging
between entities. We compare their features and use.

Keywords: Web Services, Reliability, Patterns.

1. Introduction

Web services have become the most popular means used
by enterprises to offer services to their customers and to
interoperate with business partners. These services are
accessed through messages. Since messaging is crucial to
the enterprise in terms of the services and transactions that
are exchanged between businesses and customers, it has
become essential to ensure reliable messaging. Reliable
messaging, as used in this context, is the act of sending a
message without duplication, ensuring guaranteed delivery
as well as message ordering and message state disposition
[Oas04, Oas07]. The implications of a failure in this
respect can have a damaging impact on businesses that
rely on the availability and reliability of the services
offered to customers.

In general, standards defined by committees are rather
complex and their descriptions are given in uniform detail,
which together with their length, make understanding of
the standards rather difficult. In particular, web services
standards are expressed using XML, are relatively
complex and lengthy, between 57 and 120 pages. By
expressing these standards as patterns, including precise
UML models, we attempt to make them more
understandable and easier to compare to other standards
with similar objectives.

The WS-Reliability and WS-Reliable Messaging
Standards are defined by OASIS and the former has
borrowed from the ebXML Message Service Specification

2.0 technology. WS-Reliability is a SOAP-based (SOAP
1.1 and SOAP 1.2 Part 1) specification that fulfills
reliable messaging requirements critical to some
applications of Web Services [W3c07]. The WS-
Reliability standard utilizes quality of service (QOS)
contracts, and uses conditions attached to the invocation
of a set of operations; namely deliver, submit, respond and
notify [Oas04]. To perform reliable delivery it uses the
concept of Reliable Message Processor (RMP). The WS-
Reliable Messaging standard provides guaranteed
delivery, message ordering and duplicate elimination
[Oas07]. To support interoperable web services, a SOAP
binding is defined within this specification. However the
protocol depends upon other web services specifications
for identification of service endpoint addresses and
policies [Oas07]. It is also possible to consider reliability
at the higher levels, for example [Dob06].

The rest of this paper is organized as follows. Section 2
presents the WS-Reliability pattern, and section 3 presents
the WS-Reliable Messaging pattern. Section 4 compares
these two standards. We end with some conclusions in
Section 5. We show only parts of the patterns for lack of
space. A more complete report is available from the first
author [Buc08].

2. WS-Reliability

2.1 Intent
WS-Reliability ensures that a notification is always sent in
response to a failure, it also provides guaranteed message
delivery, message ordering, and duplicate elimination
whenever messages are sent from one entity to another.

2.2 Context
Institutions, business-to-business (B2B) applications, and
critical infrastructure systems that need to send and
receive messages in real-time.

2.3 ProblemSome applications need reliable messaging in
order to fulfill their business operations effectively and
successfully. Many people communicate via the internet,
thus creating heavy network traffic. Many companies offer
services to consumers across the internet, which gives rise
to bandwidth and availability problems. Enterprises are
concerned about how to achieve reliable messaging given

4

some of the factors mentioned previously; more
specifically, to ensure that messages are delivered with
acknowledgment of receipt, in the order sent, and without
duplication. How do we ensure that messages that are sent
are delivered, acknowledged, sent in order, and without
duplication? The solution to this problem is affected by
the following forces:

� Dissimilar internet connection speed used by both
sides (receiving and sending parties) can affect
how quickly messages are sent and received.

� Network traffic affects the time it takes a message
to reach a recipient; this may increase the delay
time for the messages and may change their order.

� The receiving or sending party may become
unavailable and some or all messages may not get
sent or received.

� Unordered and delayed messages can lead to
problems for online transactions especially in
banking systems and critical infrastructures.

� The response time to messages contributes to
delay; when messages get lost or arrive to a
recipient unordered, the recipient may take more
time to respond, thus increasing the delay time.

2.4 Solution
Use a protocol with acknowledgement of delivery or
failure, message ordering, and duplicate message
elimination. This is achieved by first having an
enforceable contract between the sending and receiving
parties, and the use of sending and receiving reliable
message processors (RMPs) that send, deliver order and
eliminate duplicate messages.

The WS-Reliability standard utilizes four primary
conceptual units as illustrated in Figure1. The Producer
creates and submits messages to the Sending RMP. The
Consumer receives messages delivered by the Receiving
RMP and sends an acknowledgement. The Sending RMP
submits messages to and receives acknowledgements from
the Receiving RMP. The Receiving RMP is responsible
for delivering messages to the consumer and receiving and
sending notification from the consumer to the Sending
RMP. A QoS Contract binds the agreement made between
the consumer and producer. A protocol contract binds the
Sending and Receiving RMP.

Structure
A contract (Figure 2) defines the quality of service
expected between the sending and receiving RMP as well
as the terms of the relationship between the Producer and
the Consumer. The contract includes a specification of
the expected quality of service (QoS), which determines
the quality of messaging service to the communicating
parties, and the Features which define the operations and
rules which are expected. The Reliable Messaging
Processor (RMP) [Oas04] handle messages that are sent
between a producer and a consumer and perform

messaging as outlined in the contract in the form of
requirements such as guaranteed delivery, duplicate
message elimination, and message ordering. The
implementation of the RMP is not specified by the
standard, and can be implemented in many different ways
(see implementation).

Figure 1: Structure and dataflow of the components
involved in the WS-Reliability Standard [Oas04]

Processes may have two ProcessRoles, the Producer role
creates messages and sends them to the Sending RMP.
The Consumer role consumes messages that have been
processed by the Receiving RMP. A Message can be a
Group Message or an Individual Message with varying
attributes depending on the type of message. The SOAP
MessageExchangePattern (MEPs) defines different
modes of response which can be sent from the Consumer
to the Receiving RMP in response to a previously
received message. The SOAP MEPs used is defined in
SOAP 1.2 [W3c07].

Dynamics
Use cases Send a message and Establish an agreement are
not shown for lack of space.

2.5 Consequences
The WS-Reliability pattern presents the following
advantages:

� Messages sent between end points can be
controlled by means of the RMP that ensures
delivery with acknowledgment, ordering, and
duplicate elimination of messages within the
limits imposed by the network.

� Enterprises are able to obtain a higher degree of
reliability for network communication because
the sender and receiver confirm reception by an
acknowledgment each time they communicate
via a message.

� Quality of service defined by contracts can be
maintained between businesses thus increasing
reliability and supporting the accountability of
business partners. Policies can be attached to the
contracts that govern the modus operandi agreed
by all communicating parties.

5

Figure 2: Class Diagram for the WS-Reliability pattern

The RMP sends an acknowledgment if the consumer
becomes unavailable during the transmission of a reliable
message.

The pattern also has some possible liabilities:

� The message and its response are passed between
several components and not directly to the
recipient or producer of the message. This
process increases the time it takes the message to
be delivered to the recipient and the time it takes
to send the corresponding notification back to the
producer of the message.

� The WS-Reliability pattern increases the
complexity in the system.

3. WS-Reliable Messaging

3.1 Intent
WS-Reliable Messaging ensures guaranteed receipt in
response to each message sent; it also provides, message
state disposition, ordered delivery, and duplicate
elimination whenever messages are sent between
endpoints.

3.2 Context
Institutions, B2B applications, and critical infrastructure
systems that need to send and receive messages in real-
time.

3.3 Problem

Many errors can interrupt communication, messages can
get lost, duplicated, or reordered; the host system may
experience failures and lose volatile state and messages
may also experience state loss during transmission.

Some applications need to have reliable messaging in
order to fulfill their business operations effectively and
successfully; therefore, lost, unordered and duplicate
messages can have a negative affect on successful
business operations. How do we ensure ordered delivery,
guaranteed receipt, duplicate elimination and state
disposition of messages? The solution to this problem is
affected by the following forces:

� The receiving or sending host may become
unavailable and some or all messages may not
get sent or received.

� Messages may get lost during transmission.
� Unordered and delayed messages can lead to

problems for online transactions especially in
banking systems and critical infrastructures.

� The response time to messages contributes to
delay in sending a receipt; when messages get
lost or arrive to a recipient out of order, it may
take more time to respond, thus increasing the
response time.

� Dissimilar internet connection speed used by
both sides (receiving and sending parties) can

6

affect how quickly messages are sent and
received.

� Network traffic affects the time it takes a
message to reach a recipient; this may increase
the delay time for the messages and may change
their order.

3.4 Solution
Use a protocol that performs guaranteed receipt, ordered
delivery, state disposition, and duplicate elimination of
messages. This is achieved by first having an agreement
which includes a policy exchange, endpoint resolution and
establishment of trust between end points.

The WS-Reliable Messaging standard utilizes four
primary conceptual units as illustrated in Figure 3.

Figure 3: Structure and dataflow of the components

involved in the WS-Reliable Messaging Standard [Oas07]

The application source creates and sends messages to the
RM Source. The RM Source transmits messages to the
RM Destination. The RM Destination receives messages
transmitted from the RM source and sends a
corresponding receipt of acknowledgement; the message
is then delivered to the application destination/receiver.

Structure
An Agreement enforces policy exchange, end point
resolution, and trust establishment between the
Application Source and the Application Destination.
The Application Source creates and sends messages to
the RM source (Figure 4). A Message consists of content
and information about where it is supposed to be
delivered. The RM Source transforms a message into a
Reliable Message by adding new properties to the
message. A Sequence (created by the RM destination at
the request of the RM Source) acts like an envelope in
which a Reliable message is placed before it is
transmitted. The RM Source accepts messages and
acknowledgements from the Application Source and RM
Destination respectively, and transmits reliable messages
to the RM destination. The RM Destination receives
messages sent from the RM Source, sends a

corresponding acknowledgement of receipt to the RM
Source, and delivers the reliable message to the
destination application. The Application Destination
receives reliable messages from the RM Destination.

Dynamics
Use cases Send a message and Establish an agreement
describe dynamic aspects but are not shown for lack of
space.

3.5 Consequences
The WS- Reliable Messaging pattern presents the
following advantages:

� Enterprises are able to obtain a higher degree of
reliability for network communication because
endpoints create and terminate message
sequences. In addition a receipt of
acknowledgement is sent every time a message is
sent and retransmission of messages is done for
messages that were not received.

� Quality of service defined by agreements can be
maintained between businesses, thus increasing
reliability and supporting the accountability of
business partners.

� The WS-Policy standard is used to govern
policies that can be attached to the agreements
that govern the operations agreed to by
communicating endpoints, therefore leveraging
the use of other web service standards.

� WS-Addressing is utilized to achieve endpoint
referencing. This specifies the endpoint reference
to where the receipt of acknowledgement is to be
sent in response to a message. In this way
messages cannot be intercepted easily because
the destination is known prior to their
transmission.

� Terminate message sequence requests are sent to
the RM destination to notify when no more
messages will be sent using a given sequence.
Therefore the system resources attached to a
sequence can be freed and used to conduct other
operations.

The pattern also has some possible liabilities:

� Introduces a high time overhead with the
retransmission of messages and acknowledge-
ments. The RM Source will retransmit messages
for which no receipt of acknowledgments was
received. This could result in high volume
requests flooding the RM Destination depending
on the retransmission and back-off interval set.

� There is a high demand on the resources used to
track the state of each message transmitted as
required by the RM Source.

7

Figure 4: Class Diagram for the WS-Reliable Messaging pattern.

4. Comparing the WS-Reliability and WS-
Reliable Messaging Patterns

WS-Reliability and WS-Reliable Messaging specifications
offer the same basic service, which is sending messages in
a reliable manner. However, the two protocols utilize
different means of performing this service. WS-Reliability
has a binding to HTTP whereas WS-Reliable Messaging
is transport independent allowing it to be implemented
using different network technologies. In order to support
interoperable web services, a SOAP binding is defined
within both patterns. The specifications mandate that an
agreement be made before communication can be done
between endpoints. However the WS-Reliable Messaging
explicitly states that endpoint referencing, establishment
of trust and policy exchange are to be included in the
agreement. Endpoint reference explicitly states the
address where a reliable message should be sent.
Establishment of trust is achieved with an enforced
agreement and policy exchange facilitates the updating of
quality of service terms and conditions. WS-Reliability
does not explicitly dictate the terms of the contract.

WS-Reliability engages the producer and consumer of a
message in the entire cycle of sending a reliable message;
due to the fact that WS-Reliability ensures that a

guaranteed acknowledgement be sent to the producer of a
reliable message. The producer specifies the mode of
response that is required from the consumer and waits
until an acknowledgement is received, this
acknowledgement ends the cycle. In contrast, WS-
Reliable Messaging ensures guaranteed receipt; the RM
Source and Destination components control the execution
of a reliable message between each other. Once the initial
message is obtained, a guaranteed receipt is sent between
these two components, not directly to the initial sender. In
other words, WS-Reliable Messaging does not require that
the sender listens for a guaranteed receipt, this is dealt
with by the RM Source.

Additionally WS-Reliable Messaging must use a sequence
to transmit all messages (individual and series), while in
WS-Reliability the Sending RMP and Receiving RMP
send messages either individually or in groups. Another
contrast between the two specifications is that WS-
Reliable Messaging mandates that all sequences be ended
when no further messages will be sent using that
sequence. This allows resources that are attached to each
sequence to be reclaimed. WS-Reliability uses a
GroupExpiryTime to terminate group messages and an
ExpiryTime to terminate an individual message.

8

Another difference between the two specifications is that
WS-Reliability uses SOAP message exchange patterns,
which specify the mode of response to be used by the
recipient of a reliable message. The message exchange
patterns used are poll, respond and callback. However,
WS-Reliable Messaging does not explicitly ask for a
particular response mode from the recipient of a reliable
message. In fact WS-Reliable Messaging does not require
a response from the recipient of a reliable message,
because the RM Destination sends a receipt of
acknowledgement to the RM Source directly. Additionally
WS-Reliable Messaging allows a receipt of
acknowledgment to be sent with or without using the
SOAP body.

In summary, WS-Reliability will only send an
acknowledgement when a reliable message is delivered to
the recipient; this supports real time communication using
messaging. However WS-Reliable Messaging sends a
receipt of acknowledgment once the RM destination
receives a reliable message, which can be done before,
after or simultaneously to delivering the reliable message
to its destination. In the case of group messages WS-
Reliable Messaging can hold messages at the RM
Destination until all messages are received and send them
all at once to the recipient. Therefore the concept of
guaranteed acknowledgment and guaranteed receipt is
different between the two specifications.

WS-Reliable Messaging is dependent on WS-Policy and
WS-Addressing for policy and identification of endpoints
respectively. WS-Reliability and WS-Reliable Messaging
do not explicitly state how to achieve ordering and
duplicate elimination of messages. Instead, they state that
both features can be implemented in different ways. WS-
Reliable Messaging includes message state disposition,
the RM Source tracks each reliable message until a receipt
is received from the RM Destination. WS-Reliability uses
a message number to keep track of each message sent.

WS-Reliability requires a contract while WS-Reliability
requires an agreement before communication can begin
between endpoints. The patterns are similar in this regard
however, the agreement includes establishment of trust,
policy exchange and endpoint resolution. The structure of
the key components in the WS-Reliability and WS-
Reliable Message patterns are similar, see Figure 2 and 4.
However the WS-Reliability pattern uses the Sending and
Receiving RMP to provide acknowledgement, ordering,
duplicate elimination, and guaranteed delivery of
messages, while, the WS-Reliable Messaging pattern uses
the RM Source and RM Destination to provide similar
functions.

5. Conclusions

WS-Reliability and WS-Reliable Messaging are two
standards intended to specify the reliable delivery of

message between web services. We have provided
patterns for these standards. The original standards are
verbose and complex; we hope to have clarified their
structure and behavior. Since both standards apply to the
same problem we provided a comparison of their features.

Future work will include the development of further
patterns so as to provide the designer with a catalog of
patterns that can be used when developing web-services-
based systems.

Acknowledgements
This work was supported in part by IBM, the National
Science Foundation (grant OISE-0730065), and DoD’s
DISA through Pragmatics, Inc.

References
[Buc08] I. Buckley and E.B Fernandez, “Web Services
Reliability Patterns”, Department of Computer Science
and Engineering, Florida Atlantic University, 2007.

[Dob06] G. Dobson, “Using WS-BPEL to implement
software fault-tolerance for Web Services”, Proc. 32nd
EUROMICRO Conference on software, 2006.

[Gam94]�E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley,�Boston,�Mass., 1994.

[Oas04] OASIS, “Web Services Reliable Messaging TC
WS-Reliability 1.1”, http://docs.oasis-open.org/wsrm/ws-
reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf, 2004.

[Oas07] OASIS, “Web Services Reliable Messaging (WS-
Reliable Messaging) Version1.1”, http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-
e1.pdf, 2007.

[W3c07] W3C, “SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition)”
http://www.w3.org/TR/soap12-part1/, 2007

9

Consistency in Self-Reconfiguration of Self-Healing Systems

 Michael E. Shin Kiran Gopala Reddy Sunanda
 Dept. of Computer Science Dept. of Computer Science
 Texas Tech University Texas Tech University
 Lubbock, TX 79409-3104 Lubbock, TX 79409-3104
 Michael.Shin@ttu.edu kiran.gs@ttu.edu

Abstract

This paper describes the consistency in the self-
reconfiguration of component-based self-healing systems
against anomalous objects in the components. A self-
healing component is structured into different types of
objects. When a self-healing component meets some
faults, it self-reconfigures objects by isolating anomalous
objects from healthy objects within the component. The
self-reconfiguration may cause a component to be
inconsistent due to anomalous objects. This paper
describes an approach to establishing consistency at
runtime in the self-reconfiguration of component-based
self-healing systems. Self-healing components remains
consistently in the self-reconfiguration by rolling back an
inconsistent state to a consistent state. For this, objects in
self-healing components are designed to support the
consistency of self-reconfiguration.

1. Introduction

The critical software systems need to have the
capability that makes the systems reliable. One of the
approaches to making the systems more reliable is the
self-healing mechanism [Dashofy02, Garlan03, IBM03,
Koopman03, Shin05], which involves detection,
reconfiguration, and repair of faults or unanticipated
events that may lead the systems to a failure. A system
having the self-healing mechanism detects faulty objects
autonomously, self-reconfiguring the system against the
faults detected, and repairing the faults at runtime so that
the system continues to provides its services.

The self-reconfiguration of a self-healing component
against a faulty object may cause the system to be
inconsistent due to incompletely processing the service
requests within the component. When an object in a self-
healing component does not finish processing a service
request from other objects, the self-healing component
should be rolled back to a consistent state. Without this
rollback step, the unfinished service request can make the
component fall into an inconsistent state.

Several approaches have been suggested to resolve the
consistency in the reconfiguration of systems. These
approaches [Kramer90, Feiler98, Almeida01, Palma02,

Gomaa04, Rasche05] mainly focus on the consistency in
the reconfiguration for evolution or change of systems.
However, less attention has been paid to the consistency
of self-reconfiguration in the self-healing systems.

This paper describes an approach to maintaining self-
healing components consistently in the self-
reconfiguration for self-healing systems when some
objects in the components have faults or come across
unanticipated events. In this paper, a consistent self-
reconfiguration approach is developed based on the
reconfiguration mechanism [Shin06] for component-
based self-healing systems. The self-reconfiguration
approach suggested in [Shin06] does not deal with
consistency of self-reconfiguration.

2. Self-Reconfiguration of Self-healing
Components

A self-healing component is able to autonomously

detect, reconfigures, and repair anomalies on itself as well
as provides functional services to other components. A
self-healing component [Shin05, Shin06] is structured
into both the service layer and healing layer in which the
service layer is separated from the healing layer. Fig. 1
depicts the self-healing component architecture. The
service layer of a self-healing component provides
functional services to other components, notifying the
status of messages passing between objects in that layer
to the healing layer. The healing layer detects anomalies
in the service layer using the notification messages from
the service layer, and reconfigures and repairs the
detected anomalies.

The service layer of each self-healing component is
composed of objects such as tasks (active or concurrent
objects), passive objects accessed by tasks, and
connectors between tasks. A task depicted using a thick
outline for the object box in Fig. 1 has its own thread of
control, initiating actions that affect other tasks and
passive objects [Gomaa00]. Unlike a task, a passive
object (e.g., an entity object) has no thread of control;
thus it cannot initiate any task. Since a passive object
does not have its own thread, it performs its operations
using the thread of the task that invoked the object. A
passive object invoked by a task can call other passive

10

objects using the thread of the task as well. Tasks in a
component can communicate with each other through
connectors. On behalf of tasks that have threads, a
connector between tasks synchronizes the message
communication between the tasks. Passive objects
accessed by tasks and connectors between tasks, which do
not have their threads, are depicted using thin outlines for
the object boxes in Fig. 1.

The healing layer of each self-healing component (Fig.
1) is structured into Component Monitor, Reconfiguration
Manager, Repair Manager, and Self-Healing Controller,
which are responsible for detection, reconfiguration, and
repair of anomalous objects in the service layer.

Healing Layer

Service Layer

Notification

Detect
Reconfigure
Repair

«controller»

Self-Healing
Controller

«monitor»

Component
Monitor

«manager»

Reconfiguration
Manager

taskObject
«task»

connectorObject

«connector»
passiveObject

«passive object»

Self-Healing Component

«manager»
Repair

Manager

Fig. 1 Self-Healing Component Architecture

A self-healing system is reconfigured at the two levels
- component level and connector level between
components. The reconfiguration of anomalous objects in
a component is performed by the Reconfiguration
Manager in the healing layer of the component (Fig. 1).
The Reconfiguration Manager in the healing layer of a
component generates a reconfiguration plan against
anomalous objects on the basis of the current
configuration of the component. Using the plan, the
Reconfiguration Manager blocks objects associated with
the anomalous objects and, if needed, notifies the
anomalies of objects to neighboring components affected
from the reconfiguration of the paralyzed component. In
response to this notification, the Reconfiguration
Managers of the neighboring components also generate
their reconfiguration plans and undertake the plans to
reduce impact from the paralyzed component.

An anomalous task in the service layer of a self-
healing component is self-reconfigured by blocking the
incoming connectors to the task and outgoing connectors
from it. The Reconfiguration Manager in the healing
layer sends a message to the incoming connectors so that
the task cannot read a service request message in the
queues or buffers in the incoming connectors. Similarly,

the Reconfiguration Manager sends a message to the
outgoing connectors so that the anomalous task cannot
add messages to the queues or buffers in the outgoing
connectors. The messages from the Reconfiguration
Manager makes the connectors isolate the anomalous
task.

An anomalous passive object accessed by tasks is self-
reconfigured by preventing the tasks from invoking
operations of the passive object. Anomalies in a passive
object accessed by tasks are detected when a task invokes
an operation of the passive object. After the passive
object notifies the invocation of an operation to the
Component Monitor (Fig. 1), the operation may not be
performed successfully so that the passive object cannot
send the Component Monitor the next notification
message showing the complete finish of the operation.

For isolating the anomalous passive object, the task
invoked the anomalous operation of the passive object
needs to be blocked and the thread of the task should be
interrupted to terminate immediately. The
Reconfiguration Manager creates a new thread for the
task, but the thread cannot access the anomalous object
because the thread checks the status of the passive object
before invoking an operation provided by the passive
object. The task blocked cannot call the operation again
until the anomalous operation or the entire passive object
is self-healed.

An anomalous connector between tasks is self-
reconfigured by blocking the sender task and receiver
task accessing the connector. The sender task is blocked
immediately when it invokes the anomalous send()
operation of a connector to send a message to the receiver
task. The receiver task may not be blocked immediately
depending on the type of connectors such as a message
queue connector (queue size is n), message buffer
connector (buffer size is 1), and message buffer and
response connector (both message buffer and response
buffer sizes are one respectively). In the case of a
message queue connector, the receiver task should be
blocked after processing all the messages in the queue of
the connector. This is to prevent messages already stored
in the queue from being lost. In the other cases, the
receiver task needs to be blocked immediately because
there is no message in buffers. On the other hand, a
sender task and a receiver task should be blocked
immediately when a receiver task calls an anomalous
operation in a connector. This is because new messages
delivered by a sender task cannot be read by a receiver
task any more.

3. Consistent Self-Reconfiguration

The self-healing components can be consistently self-
reconfigured using the checkpoint and rollback pattern

11

[Hanmer07]. A checkpoint is either a rollback point or a
synchronization point. Objects in a self-healing
component store a service request message at a
checkpoint until the message is completely processed. If a
rollback occurs, the message still exists in objects and can
be restored again. On the other hand, some operations in
objects are confirmed to commit the operations finally at
a checkpoint as a synchronization point if a message is
completely processed. Otherwise, the operations are
aborted.

A connector between tasks in the service layer of self-
healing component has checkpoints for consistent self-
reconfiguration of self-healing components. A task sends
a message to another via a connector in which the
message is saved temporarily at a variable in a connector
between the tasks. When a task has processed a message
completely, it notifies connectors. With the confirmation
message from a task, the connector saves the message
stored temporarily in a variable to a queue or buffer
permanently so that the message is delivered to the
receiving task. Similarly, when a task receives a message
from a connector, the message is saved temporarily at a
variable until the message is completely processed.

A passive object accessed by tasks in the service layer
of self-healing component provides a checkpoint to
maintain consistency in self-reconfiguration of self-
healing components. When a write() operation in a
passive object is invoked by a task, the write() operation
is processed and saves the processed result temporarily at
a variable. When the passive object receives a
confirmation message from a task, it processes the write()
operation permanently.

Figure 2 depicts a scenario that a task processes a
service request message using the UML collaboration
diagram [Booch05, Rumbaugh04]. When the Task1
(Figure 2) reads a Message1 from a queue of the
Connector1, the message is temporarily saved in a
variable in the Connector1. The Task1 may need to read
the Data1 and write the Data2 in the PassiveObject so as
to process a service request Message1. In this case, the
write() operation in the PassiveObject is performed and
the result is stored temporarily in a variable. Then the
Task1 may send a Message2 to another task through the
Connector2 in which the message is temporarily stored in
a variable. When the Task1 finishes processing the
Message1 completely, it sends confirmation messages to
the Connector1, PassiveObject, and Connector2. With
these confirmation messages, the Message1 stored
temporarily in a variable of the Connector1 is cleared
permanently; the write() operation of the PassiveObject is
committed permanently; and the Message2 temporarily
stored in the Connector2 is added to the queue
permanently.

Task 1Connector1
«connector» «task»

Connector2
«connector»

PassiveObject
«entity»

A1: receive (out Message1)

A2: read (out Data1)
A3: write (in Data2)

A4: send (in Message2)

Fig. 2 Scenario of handling a service request message

When a fault is found in an object of a self-healing
component, the state of objects that participate in
processing a service request message not completed due
to the fault is rolled back to the state just before the
message is processed. The rollback of state is
accomplished by clearing or returning the message stored
temporarily in a variable to a queue in a connector. This is
because loss of the message may cause inconsistency of a
component in the self-reconfiguration. In case where a
passive object accessed by tasks is involved in the
processing of the message, it clears the message stored in
a temporary variable for a write() operation.

The Component Monitor (Fig. 1) detects some faults
in the objects associated with processing a service request
message. The Component Monitor notifies the detection
of a fault in an object to the Reconfiguration Manager in
the healing layer (Fig. 1), which reconfigures the objects
consistently. For this, the Reconfiguration Manager in the
healing layer communicates with connectors, passive
objects and tasks in the service layer that are related to the
fault.

3.1 Consistent self-reconfiguration of anomalous
connector between tasks

A connector between tasks provides send() and
receive() operations so that the message sender task sends
a message to the message receiver task synchronously or
asynchronously. The send() operation is invoked by the
message sender task to store a message in a queue or
buffer in a connector. The receive() operation is called by
the message receiver task to read a message from a queue
or buffer in the connector.

In case where the send() operation in a connector is
anomalous, the Reconfiguration Manager clears the
message that might be stored temporarily in a variable of
the connector, making other objects participating in the
processing of the message roll back to a consistent state.

12

Consider the scenario where the send() operation in the
Connector2 is anomalous in Fig. 2 (that is, A4 will not
finish successfully) after the message sequence A1
through A3 has completed. Although the send() operation
is anomalous, the Message2 might be stored temporarily
in a variable in the Connector2. The message should be
cleared by the Reconfiguration Manager. The work done
by the Task1 also needs to be undone by the
Reconfiguration Manager so that the objects associated
with the Task1 should roll back to the consistent state. In
Fig. 2, the message not successfully processed by the
Task1 is back to the queue in the Connector1. The
PassiveObject clears the results stored temporarily after
performing the write() operation.

When the receive() operation in a connector is
anomalous, a message might be stored to a temporary
variable during the partial processing of the anomalous
receive() operation. The message should be restored by
the Reconfiguration Manager to the queue or buffer so
that it is processed again after the anomaly is repaired.
For instance, the Message1 may need to be restored to the
queue if the receive() operation provided by the
Connector1 (Fig. 2) is anomalous when it is called by the
Task1. Similar to the case of anomalous the send()
operation, other objects, if any, participating in the
processing of the message should be rolled back by the
Reconfiguration Manager to the consistent state.

3.2 Consistent Self-reconfiguration of Anomalous
Passive Object

The Reconfiguration Manager needs to reconfigure
objects participating in the processing of an unfinished
service request message due to anomaly of either a read()
or write() operation in a passive object accessed by tasks.
A write() operation in a passive object accessed by tasks
may meet some fault just after it stores the partial result
temporarily to some variable. This partial result should be
cleared by the Reconfiguration Manager. In addition, the
work done in related objects just before the anomaly
should be rolled back to the consistent state by the
Reconfiguration Manager.

Suppose the write() operation of PassiveObject is
anomalous in the mid of processing the Message1 by the
Task1 in Fig. 2. The write() operation will not finish
successfully. The Reconfiguration Manager makes the
PassiveObject clear the partial result that might be stored
in a temporary variable, having the Connector1 restore
the Message1 to the queue or buffer. Similarly, in case of
anomalous read(), the Reconfiguration Manager makes
the Connector1 restore the Message1 to the queue or
buffer.

3.3 Consistent Self-reconfiguration of Anomalous
Task

When a task comes to be anomalous, the
Reconfiguration Manager makes the state of related
objects roll back to a consistent state. Suppose the Task1
in Figure 2 becomes anomalous when the Task1 is
processing just after writing the Data2 in the
PassiveObject. The Component Monitor detects some
fault in the Task1 and the Reconfiguration Manager starts
the consistent reconfiguration. The Connector1 and
PassiveObject will receive the messages about the
anomaly of Task1 from the Reconfiguration Manager.
The messages indicate that the Connector1 and
PassiveObject need to undo all the changes and activities
done until the detection of anomaly. The receive()
operation performed in the Connector1 by the Task1 must
be undone by moving the Message1 stored temporarily in
a variable to the queue in the Connector1. The Message1
stored in the temporary variable must also be cleared in
the Connector1. The write() operation carried out by the
Task1 in the PassiveObject must be undone by clearing
the processed result stored temporarily in a variable.

4. Design of connectors and passive objects

Connectors and passive objects accessed by tasks are
designed to support the consistent self-reconfiguration
approach described in section 3.

4.1 Consistent Message Queue Connector

The message queue connector for consistent self-
reconfiguration (MessageQueueSHWithConsistency class
in Figure 3) is designed by specializing it from the
message queue connector [Shin06] that does not support
the consistency in the self-reconfiguration mechanism
(MessageQueueSH class in Figure 3). The message queue
connector for consistent self-reconfiguration provides
additional attributes and operations to maintain
consistency of the connector.

<<connector>>
MessageQueueSH

- messageQueue : Queue
- maxCount : Integer
- messageCount : Integer := 0
- sendStatus : {Blocked, Unblocked} := Unblocked
- receiveStatus : {Blocked, Unblocked} :=Unblocked

+ send (in message)
+ receive (out message)
+ blockSend()
+ unblockSend()
+ blockReceive()
+ unblockReceive()
+ initialize()

<<connector>>
MessageQueueSHwithConsistency

- numberOfTask : Integer
- tempSendMessageArray[numberOfTask] : Array
- tempReceiveMessage : Message
- processingTicket : Integer = 0
- ticketToBeIssued : Integer = 0

+ send (in message)
+ receive (out message)
+ confirmSend (in taskIndex)
+ confirmReceive()
+ cancelSend()
+ cancelReceive()

Fig. 3 Message Queue Connector with Consistency

13

The attributes used in the design of message queue
connector for consistent self-reconfiguration
(MessageQueueConnectorWithConsistency in Figure 3)
are described as below:
� The numberOfTask is a variable used to keep track

of the number of tasks storing messages in the
message queue.

� The tempSendMessageArrary is an array that
temporarily holds messages being stored in the
queue.

� The tempReceiveMessage is a variable that
temporarily holds a message until it is processed
successfully. Otherwise, the value of this variable is
restored to the queue.

� The processingTicket and ticketToBeIssued are
variables used to handle multiple tasks that send
messages to a receiver task through a shared
connector.

The MessageQueueConnectorWithConsistency class in
Figure 3 has the following operations additionally:
� The send() operation is modified to store a message

in the tempSendMessageArrary temporarily.
� The receive() operation is redefined to store a

message in a tempReceiveMessage variable when the
receiver task read a message from the queue.

� The confirmSend() operation is used to add a
message stored temporarily in the
tempSendMessageArrary to the messgeQueue
permanently.

� The confirmReceive() operation clears the value
stored in the tempReceiveMessage variable.

� The cancelSend() operation is called by the
Reconfiguration Manager to clear a message in the
tempSendMessageArray when the system fails to
process a message.

� The cancelReceive() operation is called by the
Reconfiguration Manager to restore a message stored
in the tempReceiveMessage to the queue when the
system fails to process a message.

4.2 Passive Object with Consistent Self-
reconfiguration

It is assumed that passive objects accessed by tasks have
read and write operations. The write operation performed
in the passive objects must be tracked to maintain
consistency of self-reconfiguration when the system fails
to process a message. The passive object will have the
following special operations confirmWrite() and
cancelWrite() to establish the consistency. Figure 4
depicts a passive object (class) for consistent self-
reconfiguration (PassiveObjectSHwithConsistency class)

that is specialized from a passive object (class) for non-
consistent self-reconfiguration.
� The write() operation stores the result to the

tempWriteData variable temporarily after processing
the write() operation in the PassiveObjectSH.

� The confirmWrite() operation writes the value stored
temporarily in the tempWriteData to the writeData
variable permanently.

� The cancelWrite() operation cancels the write()
operation by clearing the value stored in the
tempWriteData variable.

<<passiveObject>>
PassiveObjectSH

- ReadData: DataType
- WriteData : DataType

+ read (out: Data1)
+ write (in: Data2)

<<passiveObject>>
PassiveObjectSHwithConsistency

- tempWriteData : DataType;

+ write(in Data2)
+ confirmWrite()
+ cancelWrite()

Fig. 4 PassiveObjectSHWithConsistency Class Diagram

5. Discussion

The consistent self-reconfiguration approach described
in this paper has been applied to the self-healing elevator
system with multiple elevators, which is structured with
the Elevator Control, Scheduler, and Floor components.
The components in the elevator system communicate with
each other through consistent message queue connectors
designed in section 4.1. The consistent self-
reconfiguration approach was implemented on the self-
reconfigurable elevator system that was developed in our
previous research without considering the consistency of
self-reconfiguration. Our approach was tested by inserting
faults to each object type such as a connector, task, or
passive object.

Although our approach provides the consistent self-
reconfiguration, it may have some weaknesses. Addition
of a message to and retrieval of a message from a
message queue connector may be delayed until a task
handles the message successfully. In a passive object
supporting the consistency of self-reconfiguration, some
information may not be updated on time. The execution
of a write() operation may be delayed until a task finishes
its activity successfully. In addition, write() operations in
all passive objects should be modified to support the
consistent self-reconfiguration. For each write() operation

14

in a passive object, a pair of operations, confirmWrite()
and cancelWrite(), should be defined additionally.

6. Conclusions

This paper has described an approach to maintaining
self-healing components consistently in the self-
reconfiguration for self-healing component-based systems
against some faults in objects constituting the
components. Self-healing components remains
consistently in the self-reconfiguration by rolling back an
inconsistent state to a consistent state. For this, objects in
components are designed to have additional functionality
to support the consistency in the self-reconfiguration. The
consistent self-reconfiguration approach has been applied
to the elevator system.

This paper has further research. The approach
proposed in this paper should be validated more by
applying to other application systems. The consistent self-
reconfiguration approach can be revised based on the
experience from other applications. Another direction for
further research is to develop different type of connectors
supporting consistent self-reconfiguration. This paper
focused on asynchronous connector, but not included
synchronous connectors such as a message buffer
connector.

References

[Almeida01] Almeida, J. P. A., Wegdam M., P. F. Luís,
and M. V. Sinceren, “An approach to dynamic
reconfiguration of distributed systems based on object-
middleware,” Proceedings of 19th Brazilian Symposium
on Computer Networks, 2001.

[Booch05] Booch, G., J. Rumbaugh, and I. Jacobson,
“The Unified Modeling Language User Guide”, Second
Edition, Addison Wesley, Reading MA, 2005.

[Dashofy02] Dashofy, E. M., A. V. D. Hoek, and R. N.
Taylor, “Towards Architecture-based Self-Healing
Systems,” Workshop on Self-healing systems,
Proceedings of the first workshop on Self-healing
systems, Charleston, SC, November18-19, 2002.

[Feiler98] Feiler, P. and J. Li, “Consistency in Dynamic
Reconfiguration“, Fourth International Conference on
Configurable Distributed Systems, Annapolis, MA, USA,
May 1998.

[Garlan03] Garlan, D. S. Cheng, and B. Schmerl,
“Increasing System Dependability through Architecture-
based Self-repair,” in Architecting Dependable Systems.
R. de Lemos, C. Gacek, A. Romanovsky (Eds), Springer-
Verlag, 2003.

[Gomaa00] Gomaa, H., “Designing Concurrent,
Distributed, and Real-Time Applications with UML”,
Addison-Wesley, 2000.

[Gomaa04] Gomaa, H. and M. Hussein, “Software
Reconfiguration Patterns for Dynamic Evolution of
Software Architectures”, Proc. Fourth Working
IEEE/IFIP Conference on Software Architecture, Oslo,
Norway, June, 2004.

[Hanmer07] Hanmer, R., “Patterns for Fault Tolerant
Software,” Wiley, 2007.

[IBM03] IBM, “An architectural blueprint for autonomic
computing,” IBM and autonomic computing, April 2003.

[Koopman03] Koopman, P., “Elements of the Self-
Healing System Problem Space,” Workshop on Software
Architectures for Dependable Systems (WADS2003),
ICSE’03 International Conference on Software
Engineering, Portland, Oregon, May 3-11, 2003.

[Kramer90] Kramer, J. and J. Magee, “The Evolving
Philosophers Problem: Dynamic Change Management,”
IEEE TSE 16, 11, November 1990.

[Palma02] Palma, N. D., P. Laumay and L. Bellissard,
“Ensuring Dynamic Reconfiguration Consistency”,
SIRAC project, 2002.

[Rasche05] Rasche, A. and A. Polze, “Dynamic
Reconfiguration of Component-based Real-time
Software”, 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, January 2005.

[Rumbaugh04] Rumbaugh, J., G. Booch, and I. Jacobson,
“The Unified Modeling Language Reference Manual,”
Second Edition, Addison Wesley, Reading MA, 2004.

[Shin05] Shin, M. E., “Self-Healing Component in
Robust Software Architecture for Concurrent and
Distributed Systems,” Science of Computer
Programming, Vol. 57, No. 1, 2005.

[Shin06] Shin, M. E. and J. H. An, “Self-Reconfiguration
in Self-Healing Systems,” 3rd IEEE Workshop on
Engineering of Autonomic and Autonomous Systems
(EASe 2006), Columbia, MD, USA, 25-27 April 2006.

15

Task Decomposition for Adaptive Data Staging in
Workflows for Distributed Environments

Onyeka Ezenwoye1, Balaji Viswanathan4, S. Masoud Sadjadi2, Liana Fong3, Gargi Dasgupta4, and Selim Kalayci2

1 South Dakota State University, Brookings, SD, USA, onyeka.ezenwoye@sdstate.edu
2 Florida International University, Miami, FL, USA, sadjadi,skala001@cs.fiu.edu

3 IBM Watson Research Center, Hawthorne, NY, USA, llfong@us.ibm.com
4 IBM India Research Lab, New Delhi, India, bviswana,gdasgupt@in.ibm.com

Abstract—Scientific workflows are often composed by scientists
that are not particularly familiar with performance and fault-
tolerance issues of the underlying layer. The inherent nature
of the infrastructure and environment for scientific workflow
applications means that the movement of data comes with relia-
bility challenges. Improving the reliablility scientific workflows in
distributed environments, calls for the decoupling of data staging
and computation activities, and each aspect needs to be addressed
separately

In this paper, we present an approach to managing scientific
workflows that specifically provides constructs for reliable data
staging. In our framework, data staging tasks are automatically
separated from computation tasks in the definition of the work-
flow. High-level policies can be provided that allow for dynamic
adaptation of the workflow to occur. Our approach permits
the separate specification of the functional and non-functional
requirements of the application and is dynamic enough to allow
for the alteration of the workflow at runtime for optimization.

Keywords: Data Staging, Scientific Workflow, Distributed

Systems.

I. INTRODUCTION

In a distributed computing system, components may re-

side in different physical locations. These components are

often encapsulated as self-containted and internet-accessible

software components or applications. Distributed applications

are exposed as reusable components that can be dynamically

discovered and integrated to create new applications. These

new applications form aggregate (or composite) services. In

this composite model, the composite application is an aggre-

gation of tasks that are performed/executed by the integrated

distributed applications, as illustrated in Figure 1.

Task

Workflow

TaskTask

Fig. 1. Workflows aggregate tasks that get executed on the distributed
computers

In the research community, these distributed applications

and the ability to aggregate them is allowing scientist to create

complex scientific applications. To facilitate this integration

are computing infrastructures such as the Grid [6] that al-

low for the harnessing of resources available on disparate

distributed computing environments to create a parallel in-

frastructure that allows for applications to be processed in

a distributed manner. These applications, which are geared

towards scientific discovery tend to be compute and data inten-

sive, requiring large amounts of data to be moved around the

system. Since moving the application close to the data is not

always practical due to insufficient computational resources at

the storage site [8], data needs to be moved to the applications

that need them and in some cases cleanup operations need to

occur after application execution. The inherent nature of the

infrastructure and environment for these applications means

that the migration of data comes with certain challenges.

The successful execution of applications is dependent of the

availability of necessary data. For instance, workflow mapping

techniques may produce workflows that are unable to execute

due to the lack of the disk space necessary for the successful

execution [10], requiring that data movement be scheduled and

monitored. In fact, the mangement of data is essential through

the entire lifecycle of the workflow from creation to execution,

and result management [4]

Scientific workflows are often composed by scientists and

as such are not particularly tuned for performance and fault-

tolerance [3] This is becaue workflow languages permit the

abstraction of language semantics at a level that is easy for

domain specialist to use, thus focus is often placed on the

functional aspects of the workflow. Also, since the eventual

execution resources are not known during composition, opti-

mizing the runtime of the overall workflow becomes a big

issue [3] Allthough data is a key component in scientific

workflow, a lot of emphasis is not placed on providing fault

tolerance for tasks related to their data requirements. Data

staging tasks are often embedded in computation-related tasks

and relaibility efforts are then focused on the computation

tasks even though data access presents the main bottleneck

for data-intensive applications [8]

Improving the reliablility of data placement in distributed

environments, calls for the decoupling of data movement and

computation activities, each aspect needs to be addressed sep-

arately [9] Infrastructure for distributed scientific applications

needs to consider data movement as part of the end-to-end

16

performance of the system and care must be taken to make sure

they complete successfully and without any need for human

intervention [8]

In this paper, we present an approach to managing scientific

workflows that specifically provides constructs for reliable data

staging. In our framework, data staging tasks are automatically

separated from computational tasks in the definition of the

workflow. High-level policies are provided that allow for

dynamic adaptation to occur. Recovery actions are applied

separately for either data or computation-related tasks, for

failures that could arise from software, network or storage

system. Our approach permits the separate specification of the

functional and non-functional requirements of the application

and is dynamic enough to allow for the alteration of the

workflow at runtime for optimization.

The rest of this paper is is structured as follows. In section II

presents the architecture of our adaptive workflow manager

that decomposed data staging and computation. Section III

contains some related work. Finally, some concluding remarks

are provided in Section IV.

II. WORKFLOWS IN GRID ENVIRONMENTS

In this section we present a brief overview of the overall

architecture of our workflow management system for grid en-

vironments. As part of the Latin American Grid (LA Grid) [2],

we have developed a distributed architecture that is comprised

of two main middleware components: the workflow manager

and the meta-scheduler. The LA Grid model is an end-to-end,

layered architecture that is comprised of five main layers (see

Figure 2): the Application Layer, which models the business

logic of the a complex application in a workflow; the Workflow

Management Layer, which enacts the business logic of the

workflow and is responsible for maintaining concurrency and

sequencing among tasks (or jobs) in the workflow; the Meta-

Scheduling Layer, which is responsible for resource selection

and job execution control; the Local Resource Management

Layer, which is responsible for scheduling and executing

individual jobs on the local resources; and the Resource Layer,

which is comprised of the actual computing, storage, and

networking resources.

To express the workflows themselves, we chose the Web

Services Business Process Execution Language (BPEL) [5],

which has emerged as the standard workflow language for

orchestrating service-based applications. Several production-

level software provide core BPEL engines. These engines are

virtual machines that interpret and execute BPEL grammar.

The grammar models the business logic of the workflow as a

directed-graph, where the nodes represent tasks and the edges

represent inter-task dependencies, data flow or flow control.

Currently, the BPEL specification does not contain the

necessary semantics or support for defining jobs. Grid jobs

require the richness and flexibility for specifying varied re-

source requirements and system environments. The Open Grid

Forum job scheduling working group recommends the use of

Job Submission Definition Language (JSDL) [1], for capturing

a job’s resource and environment requirements as well as

WorkflowApplication Layer

Workflow
f

Meta-

Scheduler

Workflow

Management

Layer

Meta-Scheduling

Layer

Workflow

Engine

Local

Scheduler

Local

Scheduler

Local Resource

Management

Layer

Resource Layer
L l L l

Resource

Policies

Resource Layer
Local

Resources

Local

Resources

Fig. 2. A layered architecture for workflow execution in grid environments

data dependencies. In absence of unified modeling support,

BPEL and JSDL are used to provide the combined modeling

semantics for the workflow. This way individual workflow

tasks are represented as JSDL jobs, embedded with BPEL

constructs. This provides the necessary environment based on

standardized technologies.

A. Data Staging

Many Grid jobs require input data, and in the absence of a

shared file system, these datasets need to be staged in at the site

of execution. Usually the data stage-in needs to be completed

before the job can begin execution. In workflows, the data

requirement could be an input to the system or produced by

the execution of a preceding job. In the latter case, a data-

dependency is created in the flow between the producer and the

consumer jobs of the data. Thus a typical data staging pattern

in worklows comprises of a data stage-in from either producer

jobs or from defined inputs, followed by a job submission

pattern. In some cases, a data stage-out is specified to perform

data cleanup operations after execution. There may be several

such data staging activities, which could occur sequentially or

in parallel.

Once the data staging of all dependencies are satisfied, a

job can be submitted for execution. Typically, data staging

activities are embedded with the specification of the compu-

tation task in the JSDL document, as illustrated in Figure 3

This complex JSDL is then submitted as one job submission

request by the workflow. Within this framework, it becomes

difficult to isolate the source of failures. For instance, faults

generated by data stage-in can get propagated to job execution.

B. Decoupling Data Staging

In this section, we present our approach to providing an

adaptive workflow execution. Our approach takes into consid-

eration the need to provide adaptive data staging as part of

the end-to-end performance of the workflow, by automatically

decoupling the specification of data staging and computation.

17

Task

Data stage-in

J b ti

W kfl

Job

submission

Job

submission Data stage-out

Job execution

Workflow

Fig. 3. A job submission task with embedded data staging activities.

Not decoupling data staging and computation affects capability

of system to provide fault-tolerance and adapt to environment

and user preferences. Data staging jobs and computational jobs

need to be differentiated from each other within the system.

Figure 4 illustrates the architecture of our adaptive workflow

manager.

Automatic

Adapter

Workflow

Engine

Workflow

Composer

Workflow

Patterns

Workflow

BPEL+JSDL

Adapted Workflow

BPEL+JSDL

Recovery

Policies

Transparent

Proxy

Resubmit Migrate

Pattern & Policy Editor

Modeling Time Deployment Time Run Time

Alt. meta

scheduler

meta

scheduler

Legend

Data & Control Flow

Transparent Data & Control Flow

Knowledge

Base

ode g e ep oy e e u e

Fig. 4. The architecture of our adaptive workflow manager

In the left side of Figure 4, a domain expert will use the

Workflow Composer to specify the business logic of the ap-

plication using BPEL+JSDL. The domain expert should only

be concerned about the business logic of the application and

not about handling faults and exceptions. The job descriptions

(in JSDL) are treated as XML complex types, which in turn

are used as the parameters to some Invoke constructs in

BPEL. It is within this JSDL definitions that data staging and

computation tasks are encapsulated. During deployment time,

the resulting workflow is passed to the Automatic Adapter,

which automatically generates a functionally equivalent work-

flow. It is during this adaptation phase that the complex

JSDL definitions that data staging and computation tasks are

decomposed in primitive JSDL definition. Separate definitions

and invocations are defined in the workflow for data stage-in,

computation, and data stage-out. The invocation messages are

extended with context information so that correlations can be

made between the decomposed tasks. The context information

is also needed for the Proxy to monitor the interaction between

the workflow manager and the meta-schedulers.

The automatic adapter has an algorithm that identifies

the known workflow patterns (e.g. job submission and data

staging) within the workflow. The most updated workflow

patterns are stored in the Knowledge Base. New workflow

patterns can be added to the knowledge base using the Pattern

and Policy Editor. The generated workflow, called adapted

workflow, would not include constructs to handle faults at

run time. Instead workflow behavior is modified at run time

through the Transparent Proxy. At run time, the workflow will

be executed by the Workflow Engine. The workflow engine can

be any standard BPEL engine, as we did not extend BPEL in

our work. During the automatic adaptation of the workflow,

all the calls originally targeted for the local Meta-scheduler

are redirected to the Transparent Proxy [7]. Therefore, the

Transparent Proxy will intercept all the calls to the Meta-

scheduler.

The Proxy will appear as a Meta-scheduler to the workflow

process, and as a workflow process to the Meta-scheduler;

hence, the name transparent. Its main responsibility includes

submission of the jobs to the local Meta-scheduler and notify-

ing the workflow process of the job status when it receives job

status updates from the Meta-scheduler. In addition, it imple-

ments a pattern-matching algorithm that monitors the behavior

of the intercepted calls and provides fault-tolerant behavior

when faults occur. The algorithm is based on the Recovery

Policies, the context information embedded in the adapted

workflow, the Workflow Patterns, and their corresponding

Fault-Tolerant Patterns. For example, following the recovery

policies governing the current faulty situation, the Transparent

Proxy may resubmit the job (data staging or computation)

to the same Meta-scheduler or migrate it to another Meta-

scheduler.

: Workflow : TransparentProxy : Meta-Scheduler

1: data stage-in + context

2: wait

3: data stage-in

4: get status

5: resume

6 j b i6: job execution + context

7: wait

8: job execution

9: get status

10: resume10: resume

Fig. 5. Sequence diagram showing the interaction between the workflow
engine, transparent proxy and meta-scheduler

Figure 5 shows the interaction between the workflow engine,

transparent proxy and meta-scheduler. Some messages have

been simplified or removed for the purpose of brevity. As

depicted in the diagram, data stage-in and job execution

submission are decomposed and separated (data stage-out is

not shown). Data Stage-in jobs are submitted first to the proxy

with some context information that it needs to correlate related

job execution and data stage-out submissions. The workflow

18

is made to wait while the proxy attempts to execute the data

stage-in task. The proxy will apply recovery actions (such as

retry or migrate) based on specified high-level policies. Upon

successful data staging, the workflow is allowed to proceed

and further tasks can be submitted.

III. RELATED WORK

The work by Chervenak [3] is concerned with data place-

ment policies that distribute data in ways that are advantageous

for application execution, for instance, by placing data sets

so that they may be staged into or out of computations

efficiently or by replicating them for improved performance

and reliability. Their work centers on prestaging data using

the Data Replication Service versus using the native data

stage-in mechanisms of the Pegasus workflow management

system. A policy-driven data placement service is responsible

for replicating and distributing data items in conformance with

policies or preferences. This work differs from our because

it applies data management techniques at the local resource

management layer (see Figure 4), while our work focuses on

the workflow management layer.

Kosar [8] presents a data placement subsystem that allows

for data for distributed computing systems to be queued,

scheduled, monitored, managed, and checkpointed. Their

framework includes a specialized scheduler for data place-

ment, a high level planner aware of data placement jobs, a

resource broker/policy enforcer and optimization tools. Data

placement jobs are represented in a different way than compu-

tational jobs in the job specification language so that the high

level planners can differentiate these two classes of jobs. The

system can perform reliable data placement, and recover from

failures without any human intervention. This work does is

not dynamic since it requires that the workflow definition be

modified and redeployed in order for any adaptation to occur.

In comparison, our approach is automatic and includes context

information for better fault tolerance. Also by focusing on the

workflow management layer, we assume no control over data

and job scheduling.

Ranganathan’s [9] framework allows for data movement

operations may be tightly bound to job scheduling decisions or,

performed by a decoupled , asynchronous process on the basis

of observed data access patterns and load. A scheduling frame-

work within which a wide variety of scheduling algorithms

can be used. They assume a multi-user and multi-site model.

At each site, there are 3 components: an External scheduler;

a local scheduler; and a Dataset scheduler. This work differs

from ours because it considers data management issues at the

local resource management layer, while our work focuses on

the workflow management layer.

Singh [10] focuses on optimizing disk usage and scheduling

large-scale scientific workflows onto distributed resources.

Their approach is minimize the amount of space a workflow

requires during execution by removing data files at runtime

when they are no longer needed. To achieve this, workflows

are restructured to reduce the overall data footprint of the

workflow. Their algorithms adds a cleanup job (data stage-out)

for a data file when that file is no longer required by other

tasks in the workflow. Similar to our approach, their workflow

adaptation algorithm is applied after the executable workflow

has been created but before the workflow is executed. How-

ever, the issue of fault-tolerance is not addressed and no data

cleanup if a compute task fails.

IV. CONCLUSION

In this paper, we present an approach to managing scientific

workflows that specifically provides constructs for reliable data

staging. In our framework, data staging tasks are automatically

separated from computational tasks in the definition of the

workflow. High-level policies can be provided that allow for

dynamic adaptation of the workflow to occur. Recovery actions

are applied separately for either data or computation-related

tasks, for failures that could arise from software, network or

storage system. Our approach permits the separate specifica-

tion of the functional and non-functional requirements of the

application and is dynamic enough to allow for the alteration

of the workflow at runtime for optimization.

Acknowledgement: This work was supported in part by

IBM, the National Science Foundation (grants OISE-0730065,

OCI-0636031, HRD-0833093, and IIP-0829576). Opinions

expressed in this material are those of the author(s) and not

the NSF and IBM.

REFERENCES

[1] A. Anjomshoaa, A. Anjomshoaa, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva. Job Submission Description
Language(JSDL) Version 1.0, November 2005.

[2] R. Badia, G. Dasgupta, O. Ezenwoye, L. Fong, H. Ho, Y. Liu,
S. Luis, A. Praino, J.-P. Prost, A. Radwan, S. M. Sadjadi, S. Shivaji,
B. Viswanathan, P. Welsh, and A. Younis. Innovative grid technologies
applied to bioinformatics and hurricane mitigation. In High Performance
Computing and Grids in Action. IOC Press, 2007.

[3] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi,
G. Mehta, and K. Vahi. Data placement for scientific applications in
distributed environments. IEEE/ACM International Workshop on Grid
Computing, 2007.

[4] E. Deelman and A. Chervenak. Data management challenges of data-
intensive scientific workflows. In Proceedings of the Eighth IEEE Inter-
national Symposium on Cluster Computing and the Grid, Washington,
DC, USA, 2008. IEEE Computer Society.

[5] O. Ezenwoye and S. M. Sadjadi. Composing aggregate web services
in BPEL. In Proceedings of The 44th ACM Southeast Conference,
Melbourne, Florida, March 2006.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid:
Enabling scalable virtual organizations. Lecture Notes in Computer
Science, 2001.

[7] S. Kalayci, O. Ezenwoye, B. Viswanathan, G. Dasgupta, S. M. Sadjadi,
and L. Fong. Design and implementation of a fault tolerant job flow
manager using job flow patterns and recovery policies. In Proceedings
of the 6th International Conference on Service Oriented Computing,
Sydney, Australia, December 2008. Springer Berlin.

[8] T. Kosar and M. Livny. A framework for reliable and efficient data
placement in distributed computing systems. Journal of Parallel and
Distributed Computing, 2005.

[9] K. Ranganathan and I. Foster. Decoupling computation and data
scheduling in distributed data-intensive applications. In International
Symposium on High-Performance Distributed Computing, Los Alamitos,
CA, USA, 2002. IEEE Computer Society.

[10] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E. Deelman, H. Zhao,
R. Sakellariou, K. Blackburn, D. Brown, S. Fairhurst, D. Meyers,
B. Berriman, J. Good, and D. Katz. Optimizing workflow data footprint.
Scientific Programming, 15(4):249–268, 2007.

19

Constructing FODA Feature Diagrams with a GUI-based Tool

Shin NAKAJIMA
National Institute of Informatics

Tokyo, Japan
nkjm@nii.ac.jp

Abstract

Although Feature Diagram proposed by K. Kang et al is
intuitive and easy to understand, two issues manifest them-
selves when drawing diagrams of non-trivial size; support-
ing construction, and checking consistency. FD-Checker
provides a GUI solution to the two issues. The tool is im-
plemented by customizing iDot. The checking method fol-
lows the idea of representing a feature diagram in terms of
propositional logic formula. The formal analysis is a prob-
lem of satisfiability checking, which can be performed auto-
matically with Alloy.

1. Introduction

Feature-Oriented Domain Analysis (FODA), proposed
by K. Kang et al in 1990 [9], is a method used in Soft-
ware Product Line Engineering (SPLE) [4][15]. It focuses
on identifying and classifying features of product family at
the early stage of system development.

FODA employs Feature Diagram as its concrete model-
ing notation [9]. It is basically an acyclic AND-OR graph;
some of the nodes are common features and the others are
variabilities. The common features are included in all the
software products considered, while the variabilities are im-
plemented only in some of the products. Namely, a prod-
uct consists of all the common features and may have some
variabilities. Since SPLE concerns about a product family
as a whole, but not about an individual product, identifying
variabilities is the most important activity in FODA.

Since it is diagram-based, feature diagram is intuitive
and easy to understand. We, however, are faced with two
issues when drawing feature diagrams of non-trivial size.

(1) Supporting construction,
(2) Checking consistency.

In order to address the first issue, a GUI-based editor would
be needed, which helps users draw large feature diagrams in

a simple way. As for the second, certain formal semantics
are to define for the feature diagram, which becomes a basis
for checking consistency of drawn diagrams.

This paper presents FD-Checker, which is a GUI-based
editor and is, at the same time, a GUI front-end for an auto-
mated checker. FD-Checker is implemented by customizing
iDot [1] in order to readily include fancy displaying func-
tions, such as interactive resizing or fish-eye view. The for-
mal analysis method follows the idea of representing a fea-
ture diagram in terms of propositional logic formula, and
then the analysis is a problem of satisfiability checking. Our
method employs Alloy [7] as the engine for the automatic
analysis. FD-Checker provides a GUI solution to the above
two issues.

The paper is structured as follows. Section 2 introduces
FODA feature diagram. Section 3 presents FD-Checker, its
tool architecture and discusses how FD-Checker supports
users to construct feature diagrams. Section 4 describes our
approach to formalizing the feature diagram and using Al-
loy tool for the analysis. Section 5 compares related work
and Section 6 concludes the paper.

2. FODA Feature Diagrams

We first introduce graphic representation of feature dia-
grams and their informal meanings. Although a lot of vari-
ations have been proposed, the diagrams here are adapted
from the one in [5], which is also used in other literatures
[6][16] and thus can be considered as a minimum stan-
dard. The diagram components are grouped into six primi-
tive types as in Figure 1, which provides means to represent
the logical relationships among features essentially to form
a tree. Two composition rules in Figure 2 can add further
logical constraints between features already existing.

A simple example [6] is shown in Figure 3. The rootMo-
bile Phone feature has three direct sub-features. Ear-
phone is optional, while eitherMP3 or Camera or both are
mandatory. A side composition rule, depicted as a dotted
line, illustrates that Earphone and MP3 are mutually de-
pendent, which means that both are selected or neither. The

20

A0

B0

A0

B1 B2

A0

B1 B2

A0

B0

A0

B1 B2

A0

B1 B2

(a) Mandatory (b) Alternative (c) Or

(d) Optional (e) Optional Alternative (f) Optional Or

Figure 1. Six Primitives

B2 D1

B2 D1

(a) Mutual Dependency

(b) Mutual Exclusion

Figure 2. Two Composition Rules

feature diagram shows that MobilePhone feature is com-
mon to all the system in the product line of interest, and that
the other three are considered as the variabilities. A partic-
ular product may have Camera as well as MobilePhone
feature.

3. FD-Checker

FD-Checker is a GUI-based editor and also provides
GUI front-end for the back-end automated analysis tool. We
have decided to customize iDot tool [1] for the implemen-
tation. The dot language of Graphviz, which iDot accepts,
is designed to represent many types of directed graphs. By
introducing some of new attributes, we can represent the
feature diagram in the dot format. Then, we readily make
use of fancy display methods such as fish-eye view, interac-
tive resizing, and folding/unfolding of sub-graphs that iDot
provides. These methods are generally usable for display-
ing large graph structures. For example, the fish-eye view
shows the point of interest in detail and the overview of the
graph in the same window by distorting the graphical im-
age.

Figure 4 shows the tool architecture of FD-Checker. In
addition to the basic framework provided by iDot, it adds
three new sub-components, GUI Editor, PO Genera-
tor and Extractor. Dot File contains logical rela-

Mobile Phone

Earphone MP3 Camera

Figure 3. A Simple Example taken from [6]

GUI Editor

PO Generator Extractor

Alloy File XML File

Dot File

Alloy4

FDChecker

Figure 4. Tool Architecture

tionships for a feature diagram. For example, the feature
diagram in Figure 3 is described as below.

digraph {
...
33 [label="Mobile Phone",orEdgeGroup="e37,e38",

must];
34 [label="Camera"];
35 [label="MP3"];
36 [label="Earphone"];
33 -> 34 [name="e37",optionType="mandatory"];
33 -> 35 [name="e38",optionType="mandatory"];
33 -> 36 [name="e39",optionType="optional"];
35 -> 36 [name="e40",mutualType="dependency",

startArrow,endArrow];
}

GUI Editor provides some standard look-and-feel
style editing commands. Figure 5 is a screen snapshot taken
when two features, MP3 and Camera, are linked to Mo-
bile Phone as Mandatory Or sub-features.

FD-Checker encourages a bottom-up style construction

Figure 5. Editing

21

(a) before (b) after

Figure 6. Introducing New Sub-tree

of feature diagrams with the Fusion command. One may
first find a certain feature and dwell on whether it is elabo-
rated into variabilities; the feature is appropriate to separate
variabilities from common features. The resultant features
may form a small sub-tree isolated from the main diagram.
Since the sub-tree is its part, the root of the sub-tree is fused
into a place holder in the main.

The example in Figure 6 refers to a family of mobile
phones, and the product series may vary in its display size
depending on what other features are included. The small
sub-tree in the left figure shows that Display feature is
a variability expanded into three variabilities. LCD has,
as its sub-features, 3.3VGA, 3VGA, and 2.8QVGA, to be
Mandatory-Alternative. The main feature diagram with the
root MobilePhoneSH refers to a place holder Display
Mandatory feature. LCD is inserted at the location of Dis-
play by using Fusion command.

Since we construct feature diagrams incrementally and
interactively, it is not clear during the construction process
whether the diagram as a whole is consistent or not. An
automatic consistency checking is inevitable. The details
will be discussed in Section 4.

PO Generator, standing for Proof Obligation Gener-
ator, and Extractor together provide the interface to the
back-end analysis engine Alloy. PO Generator trans-
lates the dot format into Alloy source fragments (see Sec-
tion 4.2). Extractor is responsible for extracting the
configuration information from Alloy analysis result in an
XML file and generates a new temporal dot format data
for graphical displaying. An example is shown in Figure
7, which is a part of the original diagram in Figure 3; Cam-
era is not included here.

4. Automated Analysis

This section describes our approach to formalizing the
feature diagram and using Alloy [7] for the automatic anal-
ysis. The discussion is based on our previous work [14].

Figure 7. Resultant Configuration

(a) Mandatory A0⇔ B0
(b) Alternative (A0⇔ B1⊕ B2) ∧ ¬(B1 ∧ B2)
(c) Or A0⇔ B1 ∨ B2
(d) Optional A0⇐ B0
(e) Optional Alternative (A0⇐ B1⊕ B2) ∧ ¬(B1 ∧ B2)
(f) Optional Or A0⇐ B1 ∨ B2

Table 1. Encoding in Propositional Logic (1)

4.1. Encodings in Propositional Logic

Firstly, we present formal definitions for the feature dia-
gram. In particular, the method here follows the idea of rep-
resenting a feature diagram in terms of propositional logic
formula. Then the formal analysis is a problem of satisfia-
bility checking.

The encoding method is based on the following observa-
tion. Each primitive type (Figure 1) specifies how the sub-
feature(s) are included when a super feature A0 is selected.
A propositional variable such as A0 is introduced for each
feature and understood so that its true value means that the
feature A0 is selected1. The logical constraint relationship
posed with each primitive type is represented by a propo-
sitional logic formula. Composition rule can add further
constraint conditions on features. It provides means to put
logical conditions on selected features other than the primi-
tive type rules.

Table 1 and Table 2 summarize their propositional logic
interpretation. Each corresponds to the diagrammatic nota-
tion in Figure 1 or Figure 2. A complete feature diagram
is just a potentially large propositional formula conjoining
all the formulas, each corresponding to a primitive type or
a composition rule.

Among the formula presented, we here explain the case
for Table 1 (a) Mandatory.

(a) Mutual Dependency B2⇔ D1
(b) Mutual Exclusion ¬ (B2 ∧ D1)

Table 2. Encoding in Propositional Logic (2)

1Its false value stands for discarding the corresponding feature.

22

The feature B0 is always included when the fea-
ture A0 is selected. At the same time, when the
feature B0 is known to be included, its super fea-
ture A0 is also chosen.

The notion of super/sub feature is not explicitly encoded
since we focus on the relationship concerning to whether
one feature is to be selected or not when another is selected.
The graph structure view is handled with the GUI editor
parts of FD-Checker (see Section 3).

Further, we define a well-formed feature diagram to have
the following properties.

(W1) Every feature diagram has only one root feature.
(W2) No feature becomes one of its own super-features.
(W3) No feature is an island.

A feature diagram can potentially represent many sets of
consistent features. Each consistent set of features, denot-
ing a particular system requirement, is called Configuration
[10]. A configuration can be defined in a rigorous and com-
pact manner thanks to the propositional encodings.

Given a set of propositional formula Γ, and let each
γ ∈ Γ represent a fragment of a feature diagram in proposi-
tional logic, a model m is a truth value assignment for the
set of propositional variables to make Γ valid. Γ, here, is
understood as a shorthand notation for a formula obtained
by conjoining all γ’s. Further, Γ should be augmented with
ρ which stands for the fact that the top root feature proposi-
tional variable is always true (see (W1)).

m |= Γ ∧ ρ

As the features constituting a configuration have their cor-
responding propositional variables to be true, a configura-
tion c can be obtained from the model m by selecting true
propositions only. Configuration is defined to consist of all
the features, that correspond to propositions appearing pos-
itively in the model m of a propositional formula Γ ∧ ρ.

Since a feature diagram as a whole is basically a con-
junction of propositional logic formulas, its configuration
may be null when the conjunction is unsatisfiable. Such
feature diagrams are non-sense in that they do not represent
the requirements of any meaningful systems. It is necessary
to check whether a given feature diagram is consistent.

Consistency checking is a problem of ensuring that at
least one model exists satisfying the relationships. It can be
done by finding a model of Γ ∧ ρ.

In addition to the consistency checking, it is sometimes
necessary to ensure that there exist configurations to include
a particular set of specified features. In other words, the
specified features are those that are required a priori. Vali-
dation checking is to ensure that such combinations are pos-
sible as configurations, which can be done in the same man-
ner as the consistency checking. The logical formula is aug-
mented to include a formula representing that some of the

features are specified a priori. Namely, the model relation
turns out to be

m |= Γ ∧ ρ ∧ Ψ

whereΨ denotes a set of propositions, each of which stands
for the fact that a given feature propositional variable is al-
ways true. Further Ψ may have negative literals that means
to take false values, in which case the features correspond-
ing to the specified false propositional variables are not
included.

4.2. Analysis with Alloy

The basic method of checking feature diagrams is a prob-
lem of checking satisfiability or finding models of a propo-
sitional logic formula. The method can readily be realized
with an existing tool Alloy [7].

Alloy is an automatic analysis tool for first-order rela-
tional logic formula, developed by D. Jackson at MIT. Al-
loy compiles a given source description into a propositional
logic formula, and uses an external SAT solver to check sat-
isfiability by searching for its model. Alloy uses a bounded
search method to achieve decidability for analyzing formula
in first-order relational logic.

The bottom-line of the method is just to translate the
logical constraints shown in Table 1 and Table 2 into the
equivalent Alloy source fragments. Naive encodings, how-
ever, sometimes result in under-constraint specifications,
for which Alloy returns the analysis results that are not in-
tuitive. The encoding method here adds stronger constraint
conditions than the naive approach, in that selected features
are to be linked to their super feature. In other words, the
super-sub feature relationships are explicitly encoded. Al-
though some of the informations are redundant, the descrip-
tion is neither under-constraint nor over-constraint in view
of the analysis with Alloy.

The details of the encoding are explained in order.
Firstly, a feature is defined as an abstract signature Fea-
ture. It has two fields up and select; up refers to its
super feature being of its type Feature, and select is a
marker to show whether the feature is selected.

abstract sig Feature
{ up : Feature, select : Selected }

fact Suppress { all f : Feature |
(f.select = No) => no(f.up) }

fact NoCycle { no f : Feature | f in f.ˆup }

In Alloy, a signature represents a set of atoms. An ab-
stract sig, however, is not considered to have atoms. It
represents a classification of elements being further refined
by concrete signatures. Each concrete signature refers to a
feature appearing in the feature diagram.

23

Two global constraints are imposed onFeature. Sup-
press specifies that a feature not selected in the config-
urations has no super feature, which is effective to avoid
under-constraint situations. NoCycle corresponds to the
rule (W2).

The above Feature and the two global constraints con-
stitute the basic description framework. Each concrete fea-
ture is defined as a singleton (one) signature extending
Feature. A newly defined one becomes a subset of its
parent abstract Feature. For example, below shows a
fragment; MobilePhone is the root and Camera is an-
other feature. A root feature is special in that it has no super
(no up).

one sig MobilePhone extends Feature {}{ no up }
one sig Camera extends Feature {}

Secondly, each primitive type or composition rule is trans-
lated into a global constraint fact. During the analysis,
the specified conditions are always respected and the model
finding is performed while satisfying all of them. Below
shows fact descriptions for a template of Mandatory (Ta-
ble 1 (a)).

fact {
(A0.select = Yes)

=> (B0.select = Yes) and (B0.up = A0)
else (B0.select = No)

}

A Mandatory type specifies that both A0 and B0 are se-
lected or neither. Further, A0 becomes the super feature of
B0 when they are selected. This informal statement is en-
coded into the above fact formula, using an Alloy syntax
of _=>_else_ for if then else , and and for a logical-
and ∧.

Since the above formula looks awkward, we may use
syntactic macros2 to improve the readability.

fact { Require(A0) => Choose(B0, A0)
else Ignore(B0) }

The composition rules (Table 2) are similarly translated
into fact formulas. Since the rules are meant to put fur-
ther constraints on features, they do not access the up field
and thus Choose is never used. For example, a mutually-
dependent rule in Table 2(b) is represented as below.

fact { Require(B2) <=> Require(D1) }

All the instantiated fact and the user-defined signatures
together with the basic framework declarations constitute
an Alloy description of a given feature diagram.

Thirdly, consistency checking is conducted by using Al-
loy run command where the condition is so specified that
the root feature is always selected (see (W1)). Note that

2A good old cpp macro processor is used.

run command here is not accompanied with search scope
parameters. In the proposed encoding, each feature is de-
clared as a singleton (one sig) and the number of atoms
in a set to search for the model is known.

run { Require(MobilePhone) }

Validation checking can be done similarly, but run com-
mand may have further elements. For example, the com-
mand below is used for a check whether a configuration,
containing both MobilePhone and MP3 features, exists.
In the command, Require(MobilePhone) and Re-
quire(MP3) correspond to ρ and Ψ respectively.

run { Require(MobilePhone) and Require(MP3) }

The run command may have Ignore(MP3) instead of
Require(MP3) when the user’s intension is to deselect
MP3 from the resultant configuration.

Last, as shown in Figure 4, FD-Checker and Alloy ex-
change information via files. PO Generator generates
an Alloy source file of the feature diagram in the editor
buffer. Alloy initiates its analysis by reading the file and
produces its output in an XML file. Extractor then reads
the XML file and displays the obtained configuration. A
solution instance in Figure 7 shows that three features Mo-
bilePhone, Earphone, and MP3 are selected and form
a small tree. It also shows that Camera feature is not se-
lected in this particular configuration.

5. Related Work

Since FODA is getting widely used, formal definitions
of feature diagrams have been studied. A graphical presen-
tation of the feature diagram has its origin in K. Kang et al
[9]. While some variations have been proposed, the nota-
tion in [5] is often used in the literature [6][16]. This paper
also adapts the same notation.

The idea of connecting propositional logic formulas to
feature diagrams is due to M. Mannion [13]. J. Sun et al [16]
have taken a similar approach to defining formal semantics
of the feature diagram, and shown how to use Z/EVES and
Alloy for reasoning about the properties. D. Batory [2] has
followed the idea of M. Mannion to have a logic-based rep-
resentation of the feature diagram. He employed LTMS
(Logic-Truth Maintenance Systems) as a back-end engine
to search for valid configurations. The search is basically
the same as model-finding. D. Benavides et al [3] trans-
form an invalid feature diagram into a CSP (Constraint Sat-
isfaction Problem) in linear integer arithmetics, and solve
the problem with CLP (Constraint Logic Programming) ap-
proach. Their approach can deal with diagrams more ex-
pressive than what is discussed in this paper. R. Gheyi et
al [6] have employed Alloy to define formal semantics of

24

the feature diagram. M. Janota and J. Kiniry [8] adapt a
higher-order logic prover PVS for the interactive analysis.
W. Zhang et al [17] uses a model-checker SMV for the au-
tomated analysis of feature diagrams.

The motivation of the formalization, either using an auto-
mated analysis tool or not, is to reason about the properties
of feature diagram. Especially, the work [6][16] have fo-
cused on discussing re-factorings of feature diagrams. And
thus the encoding is more like a deep embedding, in which
the semantics of primitive types and composition rules are
explicitly formalized in the host specification language or
logic.

The encoding in this paper is, instead, a shallow embed-
ding, in which a component appearing in a given feature
diagram is translated directly into a language element of Al-
loy. Because of the shallow embedding, our method cannot
reason about the properties of diagrams in general. It, how-
ever, is suitable for the efficient analysis of given feature
diagrams to check both consistency and validation. The di-
agram can be represented by the formula shorter than the
case of deep encoding methods. Further, in our method,
run command is not accompanied with search scope pa-
rameters, which simplifies the situation. Alloy usually re-
quires the parameters to achieve the bounded search, and
the choice is a kind of an art since it affects the analysis
results.

The efficiency of the analysis is satisfactory. A medium
size feature diagram consisting of 33 features can be an-
alyzed in 4 seconds by Alloy4 on WindowsXP. It reduces
to 0.18 seconds if we omit NoCycle check. The property
(W2) may be ensured at the time of constructing feature di-
agrams, and thus can sometimes be omitted.

As mentioned above, some work presents methods of us-
ing automated analysis with Alloy [6] [16] or SMV [17].
However, they have not develop further tools like FD-
Checker to address the issues on supporting the construction
of feature diagram. ASADAL [11] is an integrated environ-
ment for SPLE-based software development. It provides
supports for the FODA-style domain analysis, but does not
put emphasis on the formal checking of feature diagrams.

6. Conclusion

We have implemented a concept demo tool FD-Checker,
which is a GUI-based tool for constructing FODA feature
diagrams. The tool is implemented by customizing iDot [1]
so that we can readily use fancy displaying functions, such
as interactive resizing or fish-eye view. The formal analysis
method in the paper follows the idea of representing a fea-
ture diagram in propositional logic formula, and the analy-
sis is just a problem of satisfiability checking. The method
employs Alloy [7] as the engine for the automatic analysis.

Our hypothesis is that a bottom-up approach for identify-
ing variabilities is better than a top-down approach with the
decomposition of the root feature [14]. The disadvantage
of the top-down approach has also been recognized in [12].
However, it is only through experience to reach a definitive
answer. We will plan to use FD-Checker for accumulat-
ing further experience on how engineers in industry conduct
their work of constructing good feature diagrams.

References

[1] iDOT/prefuse Web Site. http://prefuse.org.
[2] D. Batory. Feature Models, Grammars, and Propositional For-

mulas. In Proc. SPLC 2005, pages 7–20, 2005.
[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated

Reasoning on Feature Models. In Proc. CAiSE’05, pages
491–503, 2005.

[4] P. Clements and L. Northrop. Software Product Lines.
Addison-Wesley 2002.

[5] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison Wesley 2000.

[6] R. Gheyi, T. Massoni, and P. Borba. A Theory for Feature
Models in Alloy. In Proc. First Alloy Workshop at FSE, 2006.

[7] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press 2006.

[8] M. Janota and J. Kiniry. Reasoning about Feature Models in
Higher-Order Logic. In Proc. 11th SPLC, pages 13–22, 2007.

[9] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-
son. Feature-Oriented Domain Analysis Feasibility Study.
CMU/SEI-90-TR-21, 1990.

[10] K. Kang, J. Lee, and P. Donohoe. Feature-Oriented Product
Line Engineering. IEEE Software, vol.9, no.4, pages 58–65,
2002.

[11] K. Kim, H. Kim, M, Ahn, M. Seo, Y. Chang, and K.C. Kang.
ASADAL: A Tool System for Co-Development of Software
and Test Environment based on Product Line Engineering. In
Proc. ICSE’06, pages 783–786, 2006.

[12] K. Lee, K. Kang, and J. Lee. Concepts and Guidelines of
Feature Modeling for Product Line Software Engineering. In
Proc. ICSR-7, pages 62–77, 2002.

[13] M. Mannion. Using First-Order Logic for Product Line
Model Validation. In Proc. SPLC2, pages 176–187, 2002.

[14] S. Nakajima and N. Ubayashi. Lightweight Formal Analysis
of FODA Feature Diagrams. In Proc. RISE 2007, pages 3–18,
2007.

[15] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering. Springer 2005.

[16] J. Sun, H. Zhang, Y. Li, and H. Wang. Formal Semantics and
Verification for Feature Modeling. In Proc. ICECCS 2005,
pages 303–312, 2005.

[17] W. Zhang, H. Zhao, and H. Mei. A Propositional Logic-
Based Method for Verification of Feature Models. In Proc.
ICFEM 2004, pages 115–130, 2004.

25

Towards a Classification of Requirements Relationships

Ruhaya Ab Aziz, Didar Zowghi, Tom McBride
Faculty of Engineering and Information Technology, University of Technology, Sydney,

Australia
{raaziz, didar,mcbride}@it.uts.edu.au

Abstract

Requirements are related to and affect each other in
many different ways. Developing a comprehensive
knowledge of these relationships is an important part
of understanding requirements. This paper proposes a
classification of requirements relationships from
several perspectives such as Feature Oriented, Aspect
Oriented and Goal Oriented Approaches. We compare
and contrast these relationship classifications and
provide examples of each to increase our
understanding of this complex phenomenon. This
paper aims at integrating requirements relationship
classifications from major bodies of work in
requirements engineering and to improve awareness
on the role they play in software testing practices.

1. Introduction

Requirements may be categorized in many different
ways, for example as functional requirements, non-
functional requirements, business requirements or user
requirements. During software development, these
types of requirements are related to one another in
several ways. For instance, there may be complex
functional relationships between requirements.

A software system may evolve when the
environment or stakeholders’ requirements change, or
for a number of other reasons. Given the potentially
complex relationships among requirements, these
changes may cause challenging problems in change
management for software developers and stakeholders
alike. Requirements engineers have to choose the right
requirements management techniques very carefully in
order to address these challenges. The relationships
between requirements should be studied thoroughly
when change impacts are being analyzed and before
any changes are implemented.

The study of requirements relationships is not new,
but there has been little detailed research into the
nature of requirements relationships [1]. Carlshamre et

al conducted a survey on requirements relationships in
software product release planning in five different
companies [2]. The study reports that only 20% of the
requirements are singular, which mean most of the
requirements, are related to other requirements. Several
researchers consider hierarchical relationships between
requirements [3-5]. For example, Robertson and
Robertson [5] propose non-subjective hierarchy in
grouping requirements. Using this approach,
requirements specification is organized in a hierarchy
where the work context is at the highest level while
atomic requirement is at the lowest. It seems that
hierarchical relationship is perhaps one of the most
common ways to classify requirements relationships.

Research on requirements relationships has
extended beyond hierarchical relationships in recent
years. Feature Oriented approaches [6-9], Goal
Oriented approaches [10-12] and Aspect Oriented
approaches [13, 14] have also been investigated. In
addition, Robinson et al introduced Requirement
Interaction Management (RIM) to deal with conflicts in
requirements relationships [15]. However, identifying
and managing requirements relationships are still being
reported as a problem [16] while studies that explore
common characteristics in requirements relationships
such as those covered in [1] are still limited.

In this paper we will develop a classification of
requirements relationships. We also give examples of
each relationship type to help improve our
understanding of the nature of these complex
relationships. Understanding and documenting these
complex relationships are important as they lead to a
more effective management of requirements during
software development. Thus, this classification aims at
summarizing the current literature on classification of
requirements relationships by proposing answers to the
following questions:

1. What types of requirements relationships are
proposed in the literature?

2. What is the nature of these relationships
between requirements?

26

3. How can we utilize the knowledge of these
relationships in software development
especially for software testing practices?

This paper is organized as following: Section 2
provides an overview of the related research in
requirements relationships. Section 3 discusses
classification of Requirements relationships. Section 4
provides some discussions on the use of requirements
relationships classification in practice. Future research
is then discussed in the conclusion section.

2. Related Research

Dahlstedt and Persson [1] provide an excellent
introduction on requirements interdependencies and
construct a fundamental model of interdependency
classifications from their literature survey and several
interviews. In contrast, Carlshamre et al [2] create the
interdependency classifications as a part of an in-depth
study on requirement interdependency characteristics
and applications in software product release planning.
Davis [17] discusses the relationships classification and
their application in requirements triage from his years
of experience conducting research into requirements
engineering in industry and academia. Studies in the
Feature Oriented approach discuss the classification of
requirement dependency using a feature as a set of
tightly related requirements [6-9]. Also, the Goal
Oriented approach uses the concept of requirement
relationships to represent the relationship between
Goals and Sub-goals; Goals and Agents; and several
different Goals [10-12]. Finally, the relationships
between requirements are represented in Crosscutting
Concerns in Aspect Oriented approach [13, 14].

3. Classification of Requirements
Relationships

Classification is an effective technique for improving
our understanding about phenomena of interest. The
fact that most requirements are not independent but
related to each other is well known and has been
illustrated by previous studies (e.g. [1, 2, 17]). The
classifications developed in these studies vary and
sometimes overlap which may be because the
classifications come from different perspectives. We
compare and contrast these perspectives and also
acknowledge the existing relationships discussed in
object oriented method and relational database. In
object oriented method, objects and classes and their
relationships represent a static view of a system [18].
This means that relationships between objects and
classes are static and can directly be implemented in

programming (i.e. object oriented programming). In
contrast, requirements need to be modeled with a focus
on what the users need to do with the system and the
functionality it must contain, and not concerned with
how it will be constructed.
 Our preliminary classification of requirements
relationships aims to integrate and combine previously
developed classifications from diverse perspectives.
Our proposal of five requirements relationship types is
developed by conducting detailed thematic analysis
over several related studies from various perspectives.
Using thematic coding, requirements relationships can
thus be classified into a number of broad categories:
Structural, Implementation, Temporal, Causality, and
Necessity. These categories are described in the
following sections.

3.1. Structural
Structural relationships are relevant where the

relationships can be organized and characterized by
their structure. Some studies address this relationship
as Hierarchy [4] and others as Static [7]. There are
three classes of Structural relationships: refinement, is-
a, and aggregation:
• Refinement - In this relationship, a higher level

requirement is refined or elaborated by a number
of detailed requirements. For instance, as
illustrated in Figure 1 for a course registration
system, requirement 1 is refined by requirements 2
and 3. In Feature Oriented, there is one
relationship which fall into this category:
Characterization [8] which is similar to Refined to
introduced by Dahlstedt and Persson [1] and
Cover[17]

Requirement 1: The system shall enable students to register
for courses in two conditions

Requirement 2: The system shall enable the registration for
current semester

Requirement 3: The system shall enable the registration for
registered student only

�������	
����������������	
����������������	
����������������	
���
���

• ‘Is a’ - Is-a (inheritance) hierarchy is used to
define how a parent requirement has various links
to a number of child requirements and vice versa..
This is similar to subtype hierarchy introduce in
relational database [19]. Two relationships can be
classified under this classification: Specialization
[7, 8] and Generalization [7, 9]. For example, as
illustrated in Figure 2 requirement 1 is satisfied
when requirement 2 or 3 are satisfied and vice
versa.

Requirement 1: The system shall enable student to pay
registration fee

27

Requirement 2: The system shall enable student to pay
registration fee using cash card

Requirement 3: The system shall enable student to pay
registration fee using credit card

��������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��

• Aggregation – In this category, complex
requirements are broken down into their
components, identifying simpler requirements
which describe whole-part hierarchy. There are a
few relationship types in the literature that can be
classified in this category. In Feature Oriented,
there are two dependency relationship which fall
into this category: Composition [9] and
Decomposition [7, 8] which are similar to And
refinement in Goal Oriented [11] and Subset
introduced in [17]. According to Figure 3, the
functions of requirements 1.1 and 1.2 can be
satisfied by requirement 1 but not vice versa.

Requirement 1: The system shall enable student register for
courses by providing several services

Requirement 1.1: The system shall provides a list of all courses
offering

Requirement 1.2: The system shall provides a module to enable
student to modify or delete course selection

�������
����������������������!������������������
����������������������!������������������
����������������������!������������������
����������������������!�����������
��

3.2. Implementation
Implementation relationships are concerned with

the implementation of an application / system /
software project. A decision to implement a set of
requirements may affect the implementation of
another set of requirements in various ways:
• Value related - A decision to choose a

requirement for implementation may affect the
value to the customer of implementing another
requirement positively or negatively. For instance,
in Figure 4 a decision of implementing
requirement 1 may typically decrease the value of
a reference book that a student has to buy from a
book shop. This kind of relationship has been
introduced by many researchers (e.g. [1, 2, 6,
17]). Buhne et al [6] classify the relationship as
Hints and Hinders to show how the
implementation of one requirement influences the
value of another requirement positively and
negatively. Similarly, Increased /Decreased
value dependency is proposed in [1], Cvalue in
[2] and Value dependency in [17].

• Cost related - A decision to choose a requirement
for implementation may affect the cost and effort
of implementing another requirement. For
example, requirement 2 in Figure 4 will be
satisfied without using much effort and cost if we
have met requirement 3. This kind of relationship

has been addressed by several researchers such as
Icost in [2], Increased/ Decreased Cost in [1] and
Effort in [17].

• Conflict - A decision to choose a requirement for
implementation gives a negative influence to
another requirement where both requirements
cannot concurrently exist for implementation. It
also means that the increasing satisfaction for one
requirement can decreases the satisfaction of
another. For example, requirement 4 in Figure 4 is
in conflict with requirement 5 and both of them
cannot be implemented at the same time. It is
interesting to see that various perspectives have
addressed this kind of relationship but by using
another name. In Features Oriented, Excluded
dependency [9] and Exclusive dependency [6] are
relatively similar to Disabling [14] which was
introduce in Aspect Oriented and that of Conflict
With relationship in [1]

• Similar - A requirement is similar to or overlaps
with one or more requirements in terms of the
expression used and the idea of how the
requirements will be implemented. This
relationship also means that only one requirement
needs to be implemented at the same time. This
relationship is addressed as Similar_to [1], Or [2]
and also Or_refinement in Goal Oriented
approach [11]
Requirement 1: All reference books shall be provided online.
Requirement 2: The system shall provide list of students who

have registered for a course
Requirement 3: The system shall provide list of students

registered for all courses
Requirement 4: The system shall enable professor to select

one or more courses offering to teach
Requirement 5: Only dean has the authorization to select

professor to teach the courses offering.
�������"
�����������#��������������������"
�����������#��������������������"
�����������#��������������������"
�����������#�������������

��
3.3. Temporal

Temporal relationship is concerned with actions in a
specified temporal order. This kind of relationship
will also capture the various ways that requirements
are related in real time applications. There are a
number of situations that can describe this category:
• A requirement should be implemented

immediately before or after another. This
relationship typically represents a pre condition
and/or post condition. In Figure 5, Requirement 2
has to be implemented before Requirement 3.
This kind of relationship is introduced as serial
dependency [7] in Feature Oriented, Enabling
[14] in Aspect oriented and Temporal in [2]. In
Goal Oriented, And/Or operationalization link
[11] are introduced to relate goal with the pre,

28

post and trigger condition in an operation which
also can fall into this category. In addition, it is
arguable that, Requires relationship described in
[1] and Effort relationship covered in [17] could
be considered similar to and can be classified as
temporal relationship

• Two or more requirement should be implemented
and satisfied at the same time. For example in
Figure 5, Requirement 1 and 2 must be satisfied
before requirement 3 is implemented and
satisfied. This relationship is addressed in Feature
Oriented as Collateral [7]. On the other hand in
Aspect Oriented, Pure interleaving is proposed
by Brito and Moreira that is equivalent [14].

• Two or more requirement should be synchronized
sometime during their active period. It also means
that two or more requirements should be
implemented, satisfied and interact with each
other at the same time. For example, a
requirement saying “play a CD movie” for a
DVD player only can function correctly if at the
same time a television is functioned and there are
connection between both electrical appliances.
This kind of relationship is introduced as
synergetic in [7] and Full synchronization in [14].

Requirement 1: A person shall registered as student
Requirement 2: The system shall enable student to login
Requirement 3: The system shall enable student register for
one or more courses

�������$
��������������������������$
��������������������������$
��������������������������$
�������������������
��

3.4. Causality
Causality relationship is concerned with the cause,

effects and consequences of the changing requirements.
This relationship describes the change and impacts of
one set of requirements have on another set of
requirements and capture the history or version of a
specific set of requirements. Furthermore, the
characteristics relationships perhaps can be categorized
under temporal relationship but we prefer to put it
separately to specifically address the evolution of
requirements as they change.

For example, in Figure 6, requirement 1 is related
to requirement 2, 3 and 4 where requirement 1 is the
initial requirement to be implemented; requirement 2 is
a consequence of implementing requirement 1; but
requirement 2 has changed to requirement 3 where
requirement 4 is the effect of the changing process. In
another aspect, Requirement 4 is the impact of
implementing requirement 3. This relationship is
addressed by Dahlstedt and Persson [1] where they
name this relationship as Change_ to. Lee and Zhao [7]
address the same category but by providing a detail
discussion of the type of changes such as state change,

behavioral change and many others. In addition, in
Feature Oriented approach, this type of relationship is
referred to as Impacts [9]and influences [8].

Requirement 1: The system shall enable student to fill in the
registration form.

Requirement 2: The system shall generate the registration slip.
Requirement 3: The system shall generate the registration slip

only after authorization from registrar.
Requirement 4: The system shall not generate the registration

slip without authorization from registrar.
�������%
�����������&��������������%
�����������&��������������%
�����������&��������������%
�����������&�������

��
3.5. Necessity

Necessity relationship is concerned with the fact
that a specific set of requirements needs another set of
requirements to be satisfied. Specific set of
requirements might be dependent and constrain others
in a specific situation or environment. This relationship
is also concerned with some situation where a
requirement is a pre-condition or pre-requisite for
another requirement.
• The implementation of a set of requirements
might be dependant on another set of requirements to
function and accomplish a task. This kind of
relationship is addressed by many researchers as
requires, necessity or usage [1, 2, 6, 9, 11, 14, 17].
For example in Figure 7, requirement 1 could require
requirement 2 to function. Requirement 3 and 4 are
an example of how two requirements related to and
need each other in accomplishing a particular task.
This kind of relationship is represented by
bidirectional relationship proposed as And in [2] and
bidirectional necessity in [17]. In addition, Task/Goal
and Resource dependency in [13] which represent
how an actor dependent on another actor to achieve a
goal and accomplish task can be categorized into this
classification.
• A set of requirements is constrained by the
capability of implementing another set of
requirements. For example in Figure 7, Requirement
2, if not satisfied typically can cause Requirement 1
and 3 not to be satisfied and implemented. This
relationship is addressed by several researchers [7, 8,
13]. Softgoal which can represent non-functional
requirements (e.g. performance requirements) as
proposed in [10, 12] can typically constrain the
implementation of other requirements.

Requirement 1: The system shall enable student to register for
courses online

Requirement 2: Network connection is facilitated and
functioned correctly

Requirement 3: The system shall provide the forum and email
services for all students.

Requirement 4: The system shall bill students per minute
when they use the forum and email services.

29

�������'
�����������(����������������������������'
�����������(����������������������������'
�����������(����������������������������'
�����������(���������������������
������������������������

4. Requirements Relationships in Software
Testing Practices

Testing is one way of ensuring that all requirements
of the system have been met. Many studies show that
‘delayed testing’ leads to stressful and costly test and
maintenance phases [20]. Thus, it is important to do
validation and verification (testing) from the initial
phases, specifically from requirements phase. This
significant interrelationship between testing and
requirements provides the possibility of performing
testing activities at the early stages of software
development. Requirements based testing has been
addressed by previous researches (e.g. [21]) but it is
rare to find work specifically addressing requirements
relationships in the context of testing or test cases.
Some researchers relate requirements and testing
activities in the context of traceability (e.g.[22]) but not
at the right level of granularity.

As testing will involve much effort and resources,
there are studies that discuss the reduction and
minimization of test suite or test cases. Most of the
studies focus on the minimal test suite or test cases
selection for regression testing [23, 24]. Some
investigate the use of requirements relationships but
only based on control and data dependency between
requirements or components to reduce test suite for
testing (e.g. [25]). In addition, Chen et al [26] propose
an approach of test suite reduction based on
requirements relation contraction by identifying and
removing the redundant requirements using graph
theory. However, Chen et al just focus on the
redundancy between requirements and not explicitly
discuss the types of requirements relations that may
exist [26]. Chittimali and Harrold indicate that they
have discovered situations in which test cases were
used for multiple requirements [27].

There are related tools introduced in practice (e.g.
Requisite Pro, DOORS). Most of the tools facilitate the
traceability between requirements and test cases but not
articulate the linkage process between different types of
requirements. Other tools such as Quality Centre
focuses on test management where the tools can link
test cases, into the related requirements, test plan and
test suite [28]. Tools such as DOORS and Caliber RM
are requirements management tools where we can link
different type of artifacts to requirements but need to
combine several tools to facilitate the process for
requirements management linkage to testing [29, 30].

4.1. Structural Relationships and Testing
Structural relationship which addresses parent-child

relationship and how a group of requirements can be
organized in structures is crucial for testing activities.
• As the first subtype of structural relationships,
Refinement may help tester by telling which part of
the hierarchy need to be tested first. The existence of
this relationship requires the validation and
verification activities be initiated with the parent as
the abstract requirement. The validation activities
then require the detailed requirements to be tested to
distinguish and verify that the abstract requirement
has been satisfied. For example, as illustrated in
Figure 1, Requirement 2 and Requirement 3 need to
be tested to ensure the operation of Requirements 1
has been correctly and completely accomplished. In
order to test requirements with refinement
relationship, tester has to traverse along the entire
path in the hierarchy to ensure that all the related
requirements have been validated. The refinement
relationship knowledge that has been identified can
contribute to the completeness of the coverage.
Consequently, the knowledge can also be used as the
basis for developing the test plan. As requirements
can be traced to the related test cases, knowing the
number of each requirement to be validated in
sequence may provide information for organizing the
test plan.
• ‘Is-a’ relationship demonstrates how child
requirements inherit the characteristics of their parent
requirement. This relationship knowledge may help
tester in the reduction of test cases as the parent and
child requirements might be grouped together in one
test case. Moreover, the testing for a component
related to the parent requirements can subsume the
component testing related to the child requirements.
For instance in Figure 2, if a payment using cash card
has been made which means requirement 2 has been
satisfied, it also means requirement 1 has been
satisfied. If one of the requirements 1, 2 or 3 has been
satisfied, we can consider that all the requirements
have been satisfied. This relationship if identified and
managed may help tester to minimize test cases where
we can use the same test cases for all classes of
requirements 1, 2 and 3.
• Finally, Aggregation or whole part relationship if
identified may help tester to recognize which part of
the system as the children or sub-module need other
part and the main module as the whole to be tested
together. The validation and verification activities of
the children need a reference to the parent to be valid.
This is important to ensure that the functionality of
the group of requirements can be validated

30

accurately. For instance in Figure 3, the combination
of requirements 1.1 and 1.2 depends on requirement
1 as a whole to complete the registration process.
Thus, we need the whole and its parts to validate the
completeness of the process. This relationship is
important especially to the component based software
development and may also be used to ensure the
completeness of the coverage for testing.

4.2. Necessity Relationships and Testing
Necessity relationship will help the tester by

indicating which requirements need or constrained
other requirements in order to be fully satisfied. This
information may help the tester to determine which part
of the system related to the requirement needs other
requirements as the pre-requisite to ensure the
functionality. The pre-requisite requirements should be
validated before the related requirements. As test cases
can be traced back to related requirements, necessity
relationships may also tell the order of the related test
cases. Hence, necessity relationship is also important
for the completeness of the testing coverage and for the
accuracy of the test plan.

4.3 Temporal relationship and testing
Temporal relationship is concerned with actions in

a specified temporal order. One instance of temporal
relationship allows coordination of the requirements
during sequential implementation. This relationship
may inform the tester of how to validate the
requirements according to the temporal manner of pre
and post condition.

4.4 Causality relationship and testing
This relationship is introduced to address the

condition of changing requirements. Causality
relationship if identified will provide information of
which set of requirements has changed to another set of
requirements and the effects of the changes. When a
requirement has changed to another, the knowledge
may help tester to identify which related test cases are
obsolete and can be removed from the test suite. The
change information and causality relationships may
reveal several test cases that are no longer needed to be
validated. Thus, causality relationship is important to
be considered in testing particularly for the coverage
and minimization of the test suite.

4.5 Implementation Relationships and Testing
There is an instance of implementation relationship

which is similar relationship that is significant in
testing. This relationship will help tester by telling
which requirements are similar. If several requirements

are similar to one another, only one of them needs to be
implemented and tested. Hence, we may use or reuse
the same test cases which can result in minimization of
test case creation.

5. Conclusions

Requirements relationships knowledge describes
how requirements are related to one another in many
different ways. In this paper, we presented a
preliminary classification of requirements relationships
providing examples of each type. We have also
compared and contrasted these relationships from
major bodies of work to illustrate similarities and
differences between them. An important issue to be
addressed then is how software developers could use
this classification in an effective manner in practice.
Thus, in the second part of this paper, we addressed the
use of requirements relationships in testing practices.
We discussed how the classification of requirements
relationships can be utilized to help testing activities.

 We intend to extend our study to develop a
comprehensive catalogue of requirements relationships
not just from literature but by conducting field studies
from practice. This is important, as there maybe related
tacit knowledge about requirements relationships which
can only be discovered from a closer look at practice.
Then, we intend to formalize the classification and use
the classification to improve software testing practices.

6. References

[1] A. G. Dahlstedt and A. Persson, "Requirements
Interdependencies: State of The Art and Future
Challenges," in Engineering and Managing Software
Requirements, A. Aurum and C. Wohlin, Eds.
Germany: Springer-Verlag Berlin Heidelberg, 2005,
pp. 95-116.
[2] P. Carlshamre, K. Sandahl, M. Lindvall, B.
Regnell, and J. Natt Och Dag, "An Industrial survey of
requirements interdependencies in software product
release planning," in Proceedings of Fifth IEEE
international symposium on Requirements
Engineering, Toronto, Canada, 2001, pp. 84-91.
[3] A. M. Davis, "The Art of Requirements Triage,"
IEEE Computer, pp. 42-49, March 2003.
[4] J. Kuusela and J. Savolainen, "Requirements
Engineering for Product Families," in Proceeding 22nd
international conference on Software engineering,
Limerick, Ireland, 2000, pp. 61-69.
[5] S. Robertson and J. Robertson, Mastering the
Requirements Process second edition. Boston: Addison
Wesley, 2006.

31

[6] S. Buhne, Halmans, G. & Pohl, K., "Modeling
Dependencies between variation points in use case
diagrams," Proceedings of the 9th international
workshop on Requirement Engineering-foundation for
software quality REFSQ'03, pp. 59-70, 2003.
[7] Y. Lee and W. Zhao, "A Feature Oriented
Approach to Manage Domain Requirements
Dependencies in software Product Lines," Proceedings
of the First Multi-Symposiums on Computer and
Computational Sciences IMSCCS'06, 2006.
[8] W. Zhang, Mei, H. & Zhao, H., "A feature-oriented
Approach to Modeling Requirements Dependencies,"
Proceedings of the 2005 13th international Conference
on Requirement Engineering RE'05, 2005.
[9] H. L. Ye, H., "Approach to modeling feature
variability and dependencies in software product lines,"
IEE Proceedings online, vol. 152, pp. 101-109, June
2005 2005.
[10] J. Clealand-Huang, R. Settimi, O. B. Khadra, E.
Berezhanskaya, and S. Christina, "Goal-centric
traceability for managing non-functional requirements,"
in 27th International Conference on Software
Engineering (ICSE 2005), St. Louis, Missouri, USA,
2005, pp. 362-371.
[11] A. V. Lamsweerde, "Goal Oriented Requirements
Engineering: A Guided Tour," in Proceedings RE'01,
5th international Symposium on Requirement
Engineering Toronto, Canada, 2001, pp. 249-263.
[12] E. Yu, "Towards Modelling and Reasoning
Support for Early-Phase Requirements Engineering
"in Proceedings of the Third IEEE International
Symposium on Requirements Engineering,Anapolis,
USA, 1997, pp. 226-235.
[13] J. Araujo, E. Baniassad, P. Clements, A. Moreira,
A. Rashid, and B. Tekinerdogan, "Early Aspects: The
Current Landscape," Lancaster University, Technical
Report COMP-001-2005, February 2005 2005.
[14] I. S. Brito and A. Moreira, "Advanced Separation
of Concerns for Requirements Engineering," Journal of
Software Engineering and Databases vol. 8, 2003.
[15] W. N. Robinson, S. D. Pawlowski, and V. Volkov,
"Requirements Interaction Management," ACM
Computing Surveys, vol. 35, pp. 132-190, June 2003
2003.
[16] L. Karlsson, A. Dahlstedt, B. Regnell, J. N. o.
Dag, and A. Perrson, "Requirements Engineering
challenges in market driven software development-An
interview study with practitioners," Information and
Software Technology, vol. 49, pp. 588-604, 2007.
[17] A. M. Davis, Just Enough Requirements
Management : Where Software Development Meets
Marketing. New York: Dorset House Publishing, 2005.

[18] G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling Language User Guide. USA:
Addison-Wesley, 1999.
[19] P. Gray, Logic, Algebra and Databases. London:
Ellis Horwood Limited, 1984.
[20] C. Denger and T. Olsson, "Quality Assurance in
Requirements Engineering," in Engineering and
Managing Software Requirements, A. Aurum and C.
Wohlin, Eds. Germany: Springer-Verlag Berlin
Heidelberg, 2005, pp. 163-185.
[21] C. Nebut, F. Fleurey, Y. L. Traon, and J. Jezequel,
"Automatic Test Generation: A Use Case Driven
Approach," IEEE Transactions on Software
Engineering, vol. 32, pp. 140-155, March 2006.
[22] M. Lormans and A. V. Deursen, "Reconstructing
Requirements Coverage Views from Design and Test
using Traceability Recovery via LSI," in In
proceedings of TEFSE'05, International Workshop on
Traceability in Emerging Forms of Software
Engineering, Long Beach, California, USA, 2005, pp.
37-42.
[23] J. Zheng, "In regression testing selection when
source code is not available," in ASE'05, Long Beach,
Claifornia, USA, 2005, pp. 452-455.
[24] G. Rothermel and M. J. Harrold, "Analyzing
Regression Test selection Techniques," IEEE
Transactions on Software Engineering, vol. 22, pp.
529-551, 1996.
[25] S. Jungmayr, "Identfying Test-Critical
Dependencies," in Proceedings of the International
Conference on Software Maintenance (ICSM'02),
2002.
[26] Z. Chen, B. Xu, X. Zhang, and C. Nie, "A Novel
approach for Test Suite Reduction Based on
Requirement Relation Contraction," in SAC'08
Fortaleza, Ceara, Brazil, ACM, 2008.
[27] P. K. Chittimalli and M. J. Harrold, "Regression
Test Selection on System Requirements," in ISEC'08
Hyderabad, India: ACM, 2008.
[28] I. Checkpoint_Technology, "Hp Quality Center,"
in Hp Test Director for quality Centre. vol. 2008
Florida: hp Mercury Certified Training Partner, 2008.
[29] T. Jones, "Technology audit," in Requirements
Management Solutions: Telelogic: Butler Group, 2007,
pp. 1-10.
[30] Borland, "Borland CarliberRM:Enterprise
Software Requirements Management System ". vol.
2008 USA: Borland, 2008.

32

Towards the selection of the most suitable elicitation technique through a defined
requirements elicitation process

Marcelo Werneck Barbosa1, Glívia Angélica Rodrigues Barbosa1,2

1Instituto de Informática – Pontifícia Universidade Católica de Minas Gerais (PUC Minas) – Belo
Horizonte – MG – Brasil

2Newcom Brasil – Belo Horizonte – MG - Brasil
{mwerneck}@pucminas.br,{glivia.barbosa}@newcombrasil.com.br

Abstract

In an attempt to ensure that the relevant system
requirements are correctly and completely elicited, a set
of techniques can be applied aiming at helping analysts
and users identify and define these requirements.
However, the elicitation is not simply the application of a
technique but also the cooperation among analysts and
clients. This paper presents a requirements elicitation
process that focuses on aiding analysts selecting the best
elicitation technique to be used in a particular project.
The mechanism used to select the most suitable
elicitation technique has also been confronted with
recent studies in this field.

1. Introduction

One critical step in Requirements Engineering is
elicitation, a complex phase of requirements definition
since it is the foundation to all upcoming phases [2]. It
demands an iterative process, which may be executed
collaboratively and it involves the use of techniques [5].

Elicitation techniques contribute to software
development, but essential problems related to eliciting
requirements are a challenge that is yet to be overcome.

Selecting and applying an elicitation technique is not a
trivial task, however, narrowing the elicitation phase to
the use of techniques only does not guarantee that
identified requirements fulfill clients’ needs [2].

It has been observed, however, that the way these
techniques have been applied has not yet solved the
problems in elicitation. Requirements elicitation is
generally performed using an elicitation methodology or
a series of techniques. Several techniques exist, all with
the common goal to assist analysts in understanding
users´ needs. Although some analysts think that just one
technique is applicable to all situations, however, one
technique cannot possibly be sufficient for all conditions
[6]. Information is still captured, in most cases, using
interviews only, although there is clear evidence that
traditional interviews are not always the best option [3].
Despite the critical need for eliciting the right

requirements, little research has been focused on
identifying the most adequate elicitation techniques [4].

Considering requirements elicitation a critical phase,
this work proposes a requirements elicitation process
focused on selecting the most suitable elicitation
technique based on project’s characteristics. This process
provides more interaction among analysts and users and
also aids in selecting the technique to be used to yield
requirements closer to user’s needs. The use of a defined
process has shown several benefits, however, the
selection of a technique demands further research. Since
technique selection is a tricky subject, the mechanism
used to select the most suitable elicitation technique in
the process has also been confronted with recent studies
in this field. It has been observed that more research is
needed even considering that a vast study on the
literature has recently been presented [3] and [4].

This work is organized as follows. Section 2 describes
related work. Section 3 describes the elicitation process
proposed while Section 4 presents the results achieved.
Section 5 concludes the paper and presents possibilities
of future work.

2. Related work

In [2], an analysis is performed in order to compare
and present differences and similarities among elicitation
techniques. The authors proposed a set of parameters to
assess and classify some of the studied techniques.

Another study related to the subject was described in
[1]. The authors present some parameters related to
projects and techniques that must be analyzed when
selecting the elicitation technique.

In [5], a requirements elicitation collaborative process
is described. The authors present a process and a
supporting tool. Through a case study, it has been
concluded that the collaborative process improved the
communication among stakeholders. No analysis of
technique selection has been performed.

The work [4] presents some recommendations in
which elicitation techniques are useful. They are based
on a systematic review with several empirical studies.

33

In [3], framework is presented to support developer
decision-making on which the best elicitation techniques
for the project at hand are. The framework identifies
which elicitation techniques respond better to certain
project features. A set of project attributes influencing
technique effectiveness was determined. Finally, all
information gathered was compiled in a framework that
matches elicitation techniques to project attributes.

This work stands out since it defines a detailed
requirements elicitation process with support to better
selecting the elicitation technique as well as providing
greater integration among stakeholders. The mechanism
used to select the most suitable elicitation technique has
also been confronted with recent studies [3] and [4].

3. The Requirements Elicitation Process

The requirements elicitation process proposed
comprises five activities, described as follows:

1. The first activity, “Identifying the context of the
project”, is aimed at contextualizing the requirements
analyst on the project being developed. In a meeting with
the project manager, the analyst obtains information
related to project scope, assumptions, constraints and the
client domain before having contact with users. At the
end of this activity, a glossary is elaborated with the main
definitions identified.

2. The second activity, “Performing initial project
presentation” comprises performing a meeting with all
stakeholders to highlight the importance of user
collaboration in the elicitation. The analyst also collects
information on roles and responsibilities in the
elicitation. A Responsibility Matrix is elaborated.

3. The following activity, “Selecting the
requirements elicitation technique”, focuses on aiding
the Analyst choosing the most suitable elicitation
technique according to the project’s characteristics, the
organization and the project team.

The process does not restrict the number of techniques
to be chosen from. However, in the experiments, five
were considered. These techniques are a subset of the
techniques analyzed in [1] and [2]. Techniques that could
be easily applied in the organizations in which the
experiments were executed were selected: Brainstorming,
Interview, JAD, Questionnaires and Prototypes.

The techniques are selected according to some
parameters. Each technique received a score for each
parameter, indicating to which degree the technique is
successful in achieving what is being evaluated. The
score given was based on [1] and [2].

In order to support the elicitation technique selection,
a decision matrix is used. It consists of weighting
possible solutions (the techniques) against parameters.

Each technique is assigned a score to each parameter
according to [1] and [2]. Each technique has been

assigned classifications from “Low” to “High” for each
parameter. Each classification was mapped to a value
from 1 to 3. Since the goal is to assign the highest score
to the most suitable technique, values were assigned
depending on the main goal – minimize or maximize the
effect of the parameter. In this way:
• Parameters (characteristics) that should be

maximized, like quality, were assigned scores from 1
to 3, corresponding from “Low” to “High”.

• Parameters that should be minimized, like time, were
assigned scores from 1 to 3, representing values
from “High” to “Low”.

The analyst defines which parameters should be
prioritized based on projects’ characteristics. This
prioritization is performed by assigning a degree from 0
to 5, indicating how important that parameter is in the
project. For example, when analyzing “quality”, the
analyst should ask herself to what degree the project
demands a technique focused on the quality of the
elicited requirements. Other parameters analyzed were
related to cost, validation, training needs, etc ...

By summing up the outcome of the multiplication of
the score assigned to the technique and the weight the
analyst has given to that parameter, a final value is
achieved. The technique that has achieved the highest
value is possibly the most suitable.

4. The activity “Applying the requirements
elicitation technique” aims at applying the selected
technique to elicit the project’s requirements. As a result,
a document called “Elicited Requirements” is elaborated.

5. The last activity is “Elaborating the requirements
list”. The requirements lists should contain a description
of the requirements and acceptance criteria for each one.
The Requirements list is inspected through a verification
process not included in this elicitation process.

4. Experiments and Results Achieved

In order to validate the process proposed, it has been
performed in 4 projects in 3 different companies. For
each project, the elicitation was carried out twice: one
using the process and other using the company’s process
or no defined process if the company did not have any.

In order to compare both elicitations’ results, data on
time, cost, quality and context were collected. Quality
and context were measured based on a verification
checklist filled in by the client. This checklist comprises
verification items that analyze if the elicited requirements
are complete, precise, consistent and clear.

This checklist is a sheet in which elicited requirements
are placed in lines while verification items are placed in
columns. In the intersection of each cell, the client
registers her analysis: if the requirement is compliant,
partially compliant, not compliant or if she does not
know how to assess the requirement. In order to easily

34

assess the verification process, each possible
classification received a numeric value. Compliant items
scored 1; partially compliant items scored 0.5 while not
compliant items scored 0.

The selection of the most suitable technique is
performed based on the degree of each parameter being
assessed. In order to evaluate if the selected technique
really fulfilled the needs of the analyst, each verification
item in the checklist was associated with one parameter
(quality, context, …) being analyzed. This relationship
indicates that if the verification item is completely
compliant, the corresponding parameter will be
optimized.

Since each elicitation (with and without the process)
may identify a different number of requirements, results
analysis is performed based on the total number of
unique requirements identified in both elicitations. This
number has been called “Requirements Universe”.

A different analyst conducted each elicitation. The
analysts chosen for each execution had similar skills,
education, background and experience with elicitation.

The results achieved with these experiments are
displayed in Table 1. It can be observed that in all cases
the elicited requirements through the proposed elicitation
process presented a higher level of quality, according to
the client’s verification. This result is related to the fact
that the requirements analyst better explores the context
of the system and the business domain of the client.

Although in some case studies, the same elicitation
technique was used in both executions (with and without
the process), the elicited requirements using the process
were assessed by the client as having a higher degree of
quality and a better context understanding.

It can also be observed in Table 1 that in some case
studies, elicitation took longer when using the process.
This small difference, however, is seen as investment to
better elicit requirements. In these projects, according to
the parameters defined by the analyst, time was not a
constraint. Moreover, requirements elicited with the
process were better evaluated by the client.

Table 1. Summarized Results

Collected Data
and Parameters

Evaluated

Case Study 1
Ticket Reservation

Case Study 2
E-commerce

Case Study 3
Bug Tracking

Case Study 4
Shop Management

 Requirements
Universe

21 23 24 35

 With
process

Without
process

With
process

Without
process

With
process

Without
process

With
process

Without
process

Technique Prototype Interview Interview Interview Interview Interview Brainstorming Interview
Time (hours) 6 8 2,5 2 2,5 1 3,5 1
of Elicited

Requirements
21 6 23 15 24 11 35 11

Percentage
(Universe)*

100% 29% 100% 65% 100% 46% 100% 31%

Quality** 98% 100% 100% 74% 98% 75% 95% 51%
Weighted

Quality ***
98% 29% 100% 48% 98% 34% 95% 16%

Context **** 100% 50% 100% 50% 100% 25% 100% 25%
* Represents the number of elicited requirements identified in each elicitation in relation to the number of total

requirements identified by the client in both executions of the case study (with and without the process)
** Represents the conformity degree of the elicited requirements for each elicitation in relation to the items in the

verification checklist related to the quality parameter (according to the verification carried out by the client)
*** Represents the conformity degree of the elicited requirements for each elicitation in relation to the items in the

verification checklist related to quality (based on the verification done by the client) weighted by Requirements Universe.
**** Represents the conformity degree of the elicited requirements for each elicitation in relation to the items in the

verification checklist related to the context parameter (according to the verification carried out by the client)

4.1. Validating the selection of the elicitation
technique

It has been observed with the reported results and
the application of the selection technique that
differences among elicitation techniques could be better
explored and highlighted in the decision matrix. The
works this process has been based on ([1] and [2])
define parameters with the same value (weight) for

several techniques. If higher ranges had been used,
differences could have been deeply explored.

Aiming at validating if this process has correctly
chosen the most suitable techniques, these results were
confronted to findings of recent published work ([3]
and [4]). These papers have thoroughly analyzed
several elicitation techniques against more parameters.
This analysis has been conducted through a deep
review of the literature on elicitation techniques.

35

In [3], a framework that aids the selection of the best
elicitation technique was proposed. Information found
in the literature about when and where it is appropriate
to use each elicitation technique was analyzed. A set of
project attributes influencing technique effectiveness
was determined. Finally, all information gathered was
compiled in a framework that matches elicitation
techniques to project attributes. The different technique
adequacy levels were classified into adequate,
indifferent or having a low adequacy level.

The decision matrix used in our experiments was
updated to consider exactly the same criteria and values
defined in [3]. The same analysts who conducted each
experiment described previously filled in the updated
decision matrix for the same projects. The goal of this
comparison was to analyze if the framework would

point out different techniques and if these could be
considered more suitable to each scenario.

Surprisingly, Questionnaire was selected in all four
executions considering the updated Decision Matrix,
even in projects in which few informants were
available. Questionnaires are usually used to collect
information from several users at the same time [7].

Analyzing the framework proposed [3], it is possible
to see that the Questionnaire technique has been
classified as adequate for the vast majority of attribute
values analyzed (86.36%). This suggests that no other
technique would probably be selected in most cases.

Requirements have not been re-elicited using
Questionnaire to verify if there could be even better
results. It is planned as future work. Table 2 displays
the techniques selected by the new process executions.

Table 2. Process Selection Technique X Framework Selection Technique

 Case Study 1
Ticket Reservation

Case Study 2
E-commerce

Case Study 3
Bug Tracking

Case Study 4
Shop Management

 With
process

Without
process

With
process

Without
process

With
process

Without
process

With
process

Without
process

Technique (This
Process)

Prototype Interview Interview Interview Interview Interview Brainstorming Interview

Technique
(Framework [3])

Questionnaire Questionnaire Questionnaire Questionnaire

5. Conclusions and future work

In this work, a collaborative process that supports
analysts on selecting the most suitable elicitation
technique, based on project attributes was proposed.

The requirements elicited through the proposed
process presented better and improved characteristics
compared to the ones obtained through other
methodologies. This is due to the prioritization of
parameters relevant to the project while selecting the
technique as well as allowing stakeholders and analysts
to have better collaboration and interaction.

In the cases in which the proposed process was
executed, the techniques suggested fulfilled the criteria
established by analysts and the elicited requirements
were successfully verified by clients. This suggests that
the thorough understanding of the project context, the
establishment of criteria to select the elicitation
technique and the collaboration among stakeholders
contribute to an elicitation closer to the real needs.

The case studies have not comprised requirements
development. Also, analysts’ profile in each elicitation
may influence the outcome, so extra care has been
taken to choose analysts with very close characteristics.

The results of the process have been confronted with
a recently published framework [3]. Even though such
work consists of a vast review of the literature on
elicitation techniques, its use might need to be adjusted
by the execution of different experimental studies.

6. References

[1] Batista, E. A; Carvalho, A. M. B. R. (2003) “Uma
Taxonomia Facetada para Técnicas de Elicitação de
Requisitos”. Workshop em Engenharia de Requisitos 2003.

[2] Belgamo, A. e Martins, L. E. G (2000). “Estudo
Comparativo sobre as Técnicas de Elicitação de Requisitos do
Software”. In: XX Congresso Brasileiro da Sociedade
Brasileira de Computação (SBC), Curitiba – Paraná.

[3] Carrizo, D.; Dieste, O. e Juristo, N. (2008) “Study of
Elicitation Techniques Adequacy”. In Workshop on
Engenharia de Requisitos (WER 2008), Barcelona, Espanha.

[4] Dieste, O.; Lopez, M. e Ramos, F. (2008) “Updating
Systematic Review about Selection of Software Requirements
Elicitation Techniques”. In Workshop on Engenharia de
Requisitos (WER 2008), Barcelona, Espanha.

[5] Freitas, D. P.; Borges, M. R. S; Araújo, R. M. (2007)
“Colaboração e Negociação na Elicitação de Requisitos” In:
X Workshop Iberoamericano de Ingeniería de Requisitos y
Ambientes de Software (IDEAS 07), Isla de Margarita

[6] Hickey, A. M. e Davis, A. M. (2002) “Requirements
Elicitation and Elicitation Technique Selection: A Model for
Two Knowledge-Intensive Software Development
Processes”. In: Proceedings of Hawaii International
Conference on System Sciences

[7] Lauesen, S. (2002) “Software Requirements Styles and
Techniques”. Elicitation. England: A Personal Education
Limited, 2002. Cap.8 p.331-372.

36

A Requirement Traceability Refinement Method Based on Relevance
Feedback

Lingjun Kong1,2, Juan Li1, Yin Li1,2, Ye Yang1, Qing Wang1

1 Laboratory for Internet Software Technologies, Institute of Software
2Graduate University of Chinese Academy of Sciences
{konglingjun, lijuan, liyin, ye, wq}@itechs.iscas.ac.cn

Abstract
In this paper, we conduct a study of using relevance
feedback-based Information Retrieval (IR) methods to
refine Requirement Traceability (RT) from requirement
to code. We compare two representative feedback
methods: Mixture Model (MM) in language model and
Standard Rochio method (SR) in vector-space model.
In order to assure the fairness of comparison, we also
make modification for both of the methods. Initial
experiment results on a real project data set show that
1) few iterations of feedback result in significant
increases both in precision and recall; 2) feedback
methods in language model are generally more stable
than methods in vector-space model in improving
precision, but the latter is more effective and can get
better precision; 3) negative feedback information
plays an important role in refining requirement
traceability.

1. Introduction

Despite the existence and increasing adoption of
Computer-Aided Software Engineering (CASE) tools,
there are still many software projects in which no
Requirement Traceability (RT) exists. One possible
reason is that RT is generated manually in most of
existing tools assisting software development, such as
DOORS [18]. This often leads to problems that RT is
hard to maintain, error-prone and overrunning cost [1-
4]. To alleviate these problems, Dynamic Requirement
Traceability (DRT) adopts Information Retrieval (IR)
technologies to help analyst automate RT [1-5]. The
practice in DRT has shown that it is a better way to
establish and maintain RT. However, DRT suffers
from the precision problem [4].

Many methods have been proposed to deal with
precision problem of RT, such as Latent Semantic
Indexing (LSI) [14], key-phrases, simple thesaurus [2]
and so on. In IR, relevance feedback, as an important

research topic for well over decades, has been an
effective technique to improve the performance of the
retrieval [12]. The main process of feedback can be
described as: first do an initial retrieval and next
update the query based on user’s evaluation on the
retrieved documents, and then do retrieval again with
the new query which will hopefully have better
retrieval performance [7, 9]. The evaluation mainly
consists of user’s effort to verify the retrieved
documents relevant (positive feedback information) or
irrelevant (negative feedback information) to user’s
query. Generally, there are many different relevance
feedback methods in IR and Standard Rochio method
(SR) in vector-space model [16] and Mixture Model
(MM) in language model [7] are two representative
feedback methods. The idea of SR is to update a query
with both relevant and irrelevant documents. While
MM only uses the relevant documents to update the
query. Taking RT establishment as an IR problem, it is
natural to use analyst's feedback to refine RT. Hayes
has used SR to process analyst’s feedback [3]. The
experiment result of Hayes has shown that relevance
feedback method has a good performance in improving
precision of RT [3].

We conduct a further study of using relevance
feedback-based IR methods to refine RT from
requirement to code in this paper. Vector-space model
is a common model in generating RT. We adopt a new
retrieval model: language model to build traceability.
This IR model is not used to generate RT in the work
prior to ours. We use MM and SR to incorporate
analyst’s feedback respectively. We also compare both
of feedback methods. In order to make a fair
comparison, we have made modification for MM
feedback method. Since MM naturally does not
support negative feedback but SR does, extension has
been made to make MM can integrate negative
feedback which is called extended Mixture Model
(eMM) in this paper. Experiments are conducted on a

37

real project data set to evaluate the effectiveness of
feedback-based IR methods for RT.

The rest of this paper is organized as follows. In
section 2, we review the related work. In section 3, we
propose a RT establishment and refinement method.
Experiment is analyzed and discussed in section 4. We
conclude this paper and discuss our future work in
section 5.

2. Related work

There are two areas of related work: first is IR
methods adopted in this paper and second is methods
proposed to refine RT.

1) Two IR models: Language Model (LM) [6, 7]
and Vector Space Model (VSM) [9-11] are used to
generate the requirement traces from requirement to
code. The relative simplicity and effectiveness of LM,
together with the fact that it leverages statistical
methods that have been developed in many areas,
make it an attractive way to develop new text retrieval
methodology [7]. This is a major reason why we use
LM in this paper. VSM is a commonly used model in
generating RT [1-5].

2) Many methods have been proposed to deal with
precision problem of RT. Andrian [13] adopted Latent
Semantic Indexing (LSI) to compute the similarity
scores between code and system documentation.
Considering the work products’ characteristics, J. C.
Huang et al. introduced strategies for incorporating
supporting information into a probabilistic retrieval
algorithm to improve the performance of RT [4].
Hayes proposed several enhancement methods, TF-
IDF (term frequency–inverse document frequency) +
key-phrases and TF-IDF+Thesaurus with relevance
feedback, to refine the requirement tracing [2, 3].

Our work is similar to Hayes’ work in using
analyst’s feedback [3]. The major difference is that we
adopt the new retrieval model: LM and we adopt many
new LM based technologies such as relevance
feedback model to improve the precision of RT.
Moreover, the comparisons of feedback’s performance
between LM and VSM are reported in our paper.

3. Requirement traceability establishment
and refinement method

In order to evaluate the effectiveness of analyst
feedback-based IR methods for RT, we propose a RT
establishment and refinement method to build traces
from requirement to code automatically and adopt
analyst’s feedback to improve the precision.

Requirement
Documents

Code

?

Preprocessing

Document
Analyzer

Code Parser

Relevance
Feedback
Methods

Similarity
Computation

(Ranking)

Information
Retrieval Models

Traceability
Matrix

Relevance
Feedback

Document
Indexer

Analyst

Code Indexer

Figure 1. Requirement traceability establishment and
refinement method

As shown in Figure 1, the establishment and
refinement method can be divided into three steps: 1)
preprocess requirements and code data, 2) establish the
initial requirement traces using IR models and 3)
incorporate analyst’s feedback to refine traceability.
The rest of this section describes these 3 steps in detail.

3.1 Data preprocessing

The main purpose of this phase is to preprocess the
documents and code data, including text parsing,
information extracting and indexing and so on. The
inputs are requirement documents and code. The
outputs are indexed texts.

(1) Preprocess requirement documentation
Requirement in this paper represents the software

requirement which is described in a common tree
structured word document. Every node in the tree is a
requirement record. We use Document Analyzer to
parse and split requirement documentation into many
subdocuments with different granularity (set by
analyst). Every output subdocument contains a
requirement record.

(2) Preprocess code
Code Parser is used to traverse and parse all code

files as well as extract information of classes, such as
class name, method name and attribute name. Each
output file contains extracted information of one class.

(3) Index documents
After preprocessing requirement and code, we

index the outputs of Document Analyzer and Code
Parser respectively using Document Indexer and Code
Indexer. Both of Indexers are built based on Lucene
[14], including text parsing, tokenizing and indexing.

3.2 Establishment of initial requirement traces

The initial requirement traces indicate initial
retrieval results prior to any analyst’s feedback.
Establishing initial requirement traces is a retrieval
process of computing the relevance or similarity
between requirements and code which is mainly dealt

38

with by Similarity Computation (SC). The process is
similar to search the internet using, for example,
Google. The requirement and code are expressed as
query and document respectively [5]. We adopt KL-
Divergence [7] method to compute the similarity in
LM. This method is one of the most effective retrieval
models in LM. In order to avoid the sparse data
problem [6], we have chosen the Jelinek-Mercer
smoothing method which outperforms others for long
queries (the query is generally long in generating
traces) [8]. As to VSM, we use a famous metric TF-
IDF to compute the weight of the index term and use
the cosine similarity [9] between the requirement and
code to measure the similarity [9-11]. More detail
about similarity computation can be seen in [14]. The
candidate traces are ranked by the similarity value in
descending order and top N (set by analyst) traces are
represented to the analyst which is shown as
“Traceability Matrix” in Figure 1.

3.3 Refinement of Requirement traceability

As presented before, two representative methods:
MM in LM and SR in VSM are used to improve the
precision. We also make modifications for both of
them so as to do solid and fair comparisons. Table 1
lists 4 feedback methods.

Table 1. Feedback methods

IR
Models

Feedback
Methods Simple Description

SR Standard Rochio method in
VSMVSM

nSR modification of SR (omitting
negative feedback in SR)

MM Mixture Model in LM
LM eMM extension of MM (adding

negative feedback to MM)

(1) SR and nSR
The SR method refers to:

| | | |
j r j n

j j
d D d Dr n

q q d d
D D
� ��

� � � �

� 	
 �� �
where q� , q denote new query and original query.

rD , nD represent relevant document (positive
feedback information) and non-relevant document
(negative feedback information) respectively.

, ,� � � are constant weights. In this paper,
, ,� � � are set to 1.0, 0.75 and 0.25 respectively

which is considered to have a good performance [10].
When � is equal to 0, SR method omits negative

feedback information. We call this nSR (no negative
feedback information in SR) in this paper.

(2) MM and eMM
MM is a classic feedback method in LM which is

presented in detail in [7].
In order to incorporate the negative feedback

information, we make a simple extension to MM:

r nq q� � � � 	
 � � �
where q� , q denote new query and original query.

r , n indicate probabilistic models generating
relevant and non-relevant feedback documents. Both
probabilistic models are generated with
MM. , ,� � � are constant weights and assigned to 1.0,
0.5 and 0.5 in this paper. This preference performs best
in our experiment. We call the extended Mixture
Model eMM.

This extension has the similar idea with
“SingleQuery” method introduced in [17]. And this
method is considered to be a feasible and effective way
to incorporate the negative feedback information [17].

In section 4.3, we would compare and analyze the
performance of SR and eMM in improving precision.
SR and nSR, MM and eMM are compared respectively
to show the importance of negative feedback in
refining RT.

4. Experiment and Evaluation

4.1 Objective and subject of experiments

Table 2. Project context

Project Characteristics Description
Project type Web based application
Development process Iterative
Development tool Java/applet/struts/jsp/ajax,

mysql, tomcat4
Team size 5 members
Developer skill Experience
Project duration 30 weeks
Project scale 43 use cases, 70 KLOC,

468 classes
Logical module number 7
Deployment package pmreq.jar, pmapplet.jar,

pmwss.jar

Objective of Experiments: In order to assess the
effectiveness of feedback method, experiments are
conducted on a real project data set and the objectives
of our experiment are to answer the following 3
questions:

(1) Is relevant feedback method effective to refine
RT?

39

(2) If feedback method’s performance varies with
the increase of number of iterations of feedback?

(3) Is there any performance difference between
eMM and SR?

Subject of Experiments: We chose a real project
which was developing a requirement management
system in a Chinese software company. This system
aims to provide seamless connection between
requirement and development, which incorporates with
another in-house software project management product.
The project context is listed in Table 2. Requirements
of the project are described in Chinese in a MS Word
document.

4.2 Steps of experiments

The experiments were conducted in the following
steps:

(1) Establish correct traces. We invited experts to
build traces between requirements and code which are
used to do feedback methods’ performance evaluation.
Moreover, we evaluated the performance of feedback
methods by comparing result of experiment using
feedback methods with the correct traces built by
experts.

(2) Preprocess requirement documentation and code.
We first translated the Chinese requirement document
into English manually. Secondly, the requirement
document was split into 43 subdocuments. Every
subdocument contained a requirement. Code was split
into 468 class files. Generally, class name is a
combination of several words (or abbreviation of
word). Thirdly, we split class name into several words
according to coding standards. It’s the same with
attribute name and method name.

(3) Establish the initial traces using LM and VSM
respectively.

(4) Incorporate analyst’s feedback. We used 4
feedback methods to improve the precision of traces
respectively. The feedback was performed by a
feedback simulator (similar to Hayes in [3]), i.e., the

feedback provided by the simulator was always correct
[3]. We simulated 8 iterations of feedback on 4
different numbers of top documents by this way.
Moreover, after each feedback, we first applied the
feedback methods to reformulate query and next did
retrieval again with the reformulated query, then
recorded the output for further evaluation, and finally
presented the results to analyst. This process continued
until 8 iterations had been completed or all true links
had been found.

4.3 Results analysis and evaluation

In order to answer the three questions proposed in
section 4.1, we analyzed the experiment results. We
use recall and precision [5] as metrics to evaluate result.
Recall measures the number of correct traces retrieved
over the total number of correct traces, and precision
measures the number of correct traces retrieved over
the total number of retrieved traces.

Table 3 shows the experiment results. The first
column shows the percentage of documents retained
for each query (percent of top documents in the ranked
list). We simulate the analyst’s feedback on these
retained documents. The third column is initial
retrieved results with LM and VSM. The table also
shows the precision and recall with different numbers
of iterations of feedback. The last column is the rate of
growth of precision and recall using feedback.

Question 1: Is relevant feedback method
effective to refine RT?

According to the last column of Table 3, we got that
in comparison with the initial evaluation, the average
increase in recall of eMM for all thresholds was over
18%, it was 12.8% for precision. For SR, recall
increased by 14.5% on average and precision increased
by 10.7%.

As shown in Table 3, both feedback methods
allowed us to find over 80% of all correct traces with a
precision of 37% (see values in bold). Both of the
feedback methods perform best when threshold is 0.15.

Table 3. Experiment results

Evaluation with 8 Iterations of Feedback (avg. Prec./Recall)Thresho
ld

IR
methods

Initial
Evaluation

(avg.
Prec./Recall) 1st 2nd 3rd 6th 7th 8th

% delta in
Prec./Recall

(all are
increase)

LM (eMM) 46.7/33.2 59/42 62.4/44.4 65.2/46.4 67/47.8 66.7/47.5 67.7/48 21/14.8 0.05 VSM (SR) 50/35.6 57.6/41 60.9/43.3 63.8/45.4 70.4/50.1 68/48.5 70/49.8 20/14.2
LM (eMM) 36.2/51.5 41.7/59.3 45.4/64.7 45.7/65 49.5/70.5 49.7/70.8 49.7/70.8 13.5/19.3 0.1 VSM (SR) 39.8/56.6 45.7/65 46.4/66.1 48.6/69.1 52.3/74.6 52.3/74.6 51.9/73.9 12.1/17.3
LM (eMM) 27.6/58.9 31.1/66.4 33.7/71.9 35.2/75.2 37.3/79.7 37.6/80.3 37.6/80.3 10/21.4 0.15 VSM (SR) 32.1/68.5 35.1/74.9 36.7/78.3 36.9/78.9 38.2/81.7 37.9/81 38.2/81.7 6.1/13.2
LM (eMM) 23.2/66.1 26.4/75.2 27.9/79.7 28.8/82 30/85.4 30/85.4 30/85.4 6.8/19.3 0.2 VSM (SR) 25.8/73.6 27.7/78.9 29/82.7 29.2/83 30.1/86 29.5/84 30.1/86 4.3/12.4

40

According to the evaluation standard introduced by
Hayes in [3] (see Table 4), we can see that the result
achieved “Good” combinations of precision and recall.

Table 4. Standards from Hayes

Measure Acceptable Good Perfect
Recall 60%~69% 70%~79% 80%~100%

Precision 20%~29% 30%~49% 50%~100%

Question 2: If feedback method’s performance
varies with the increase of number of iterations of
feedback?

Figure 2 shows the performance of eMM with the
increase number of iterations of feedback. Every line
corresponds to a threshold in Table 3. There are 9
points in every line. Point 0 presents initial retrieval
result and points 1 through 8 correspond to 8 iterations
of feedback.

Figure 2. Performance of LM(eMM) with the increase
number of iterations of feedback

As shown in Figure 2, first 2 iterations of feedback
bring great precision improvement, while iterations
from 3 to 8 have small growth. SR has the similar
results (see Table 3). That is to say, few iterations of
feedback result in significant increases both in
precision and recall. This is a good result for analysts
to use feedback to refine RT in real project. Because in
practice, analysts may not be willing to spend time to
improve the precision of traces by providing many
iterations of feedback.

Question 3: Is there any performance difference
between eMM and SR?

As shown in table 3, we could always get the
highest precision and recall in the last feedback using
eMM. However, the highest recall was not always
found in the last feedback with SR. For example, for
SR (threshold equals to 0.1), iteration 7 had a recall of
74.6% (it dropped to 73.9% in the last feedback). So
eMM is more robust than SR in improving precision.
However, we could get better precision with SR. For

example, for every threshold (except 0.05) and every
feedback, SR had better precision and recall than eMM.

In the experiment, we also found that the negative
feedback played a rather important role in adopting
feedback to refine RT.

Figure 3 shows the average precision improvement
in project data set using 4 feedback methods. As
presented previously, eMM is extended to add negative
feedback information to MM, while nSR is a
transformation of SR by omitting the negative
feedback information. Every point in the line of the
Figure 3 corresponds to a threshold (see Table 3).

Figure 3. Precision growth comparison using 4 different
feedback methods

As shown in Figure 3, without negative feedback
information, performance of MM was considerably
worse than eMM. For example, for all thresholds, the
average precision growth using eMM was 5% higher
than using MM and recall exceeded 7%. A similar
observation was made for SR and nSR.

The possible explanation for this result is that the
retrieval performance of IR methods is not very well,
i.e. many traces retrieved in the top of the ranked list
are irrelevant ones. Recalling earlier presentation, the
class name, attribute name and method name are
combinations of several words (or abbreviation of
word). In fact, the abbreviation is more common. For
example, a class named “ReqSearchMgrImpl” is a java
class used to do operation to requirement in the project,
such as deleting a requirement, getting requirement’s
state and type. In our experiment, the name would be
split into 4 words: “req”, “search”, “mgr” and “impl”.
“req”, “mgr” and “impl” are the abbreviation of
“requirement”, “management” and “implementation”
respectively. Obviously, those abbreviations would not
appear in the requirement documents which make the
word in requirement documents fails to match the split
words in class name. Therefore many irrelevant traces
(negative feedback information) would appear in the
top of the ranked list. It would be less effective if we
do not use this negative information.

41

The finding that negative feedback is important for
RT has an inspiration for building requirement traces
in practice: it is rather meaningful for analyst to
present irrelevant trace information to the system.

4.4 Threats to validity

Two major threats to validity of our method are:
1) Ideal simulation. In this paper, we have

simulated the ideal analyst feedback, i.e., the feedback
provided by the simulator was always correct.
However, the analysts may not be able to make a black
or white judgment whether a trace is relevant or
irrelevant in practice. At the same time, the judgment
is a process of subjective evaluation and analysts may
have different opinion on whether one trace is relevant
or not. This may affects the performance of feedback.

2) Data size. It is insufficient to prove the efficiency
of a method just with a data set. Currently, feedback
method was applied in just one project. The precision
of establishing requirement traces and performance of
feedback may be different in other experiments.

5. Conclusions and future work

In this paper we studied the effect of relevance
feedback processing on the success of IR methods for
RT. We found out taking into account limited user
feedback results in significant increases in both
precision and recall. We modified feedback methods in
both language model (MM and eMM) and vector-
space model (SR and nSR) and mainly compared the
performance of SR and eMM. The initial experiment
results show that the feedback methods allow us to
achieve a good precision and recall. eMM feedback
method is generally more stable than SR, but SR can
get better precision. By comparing performance of
MM and eMM, nSR and SR respectively, we find that
negative feedback information plays an important role
in improving RT. This founding gives inspiration to
analyst in practice. In the future, we will conduct more
experiments to verify these findings. And study of the
work of analysts in RT is also need to be done.

Acknowledgements. This work is supported by the
National Natural Science Foundation of China under
grant No.90718042, No.60803023; the National Basic
Research Program (973 program) under grant
No.2007CB310802; the National Hi-Tech Research
and Development Plan of China under Grant No.
2007AA010303

6. References

[1] J.H. Hayes, A. Dekhtyar et al., “Helping Analysts Trace
Requirements: An Objective Look”, IEEE International
Requirements Engineering Conference, Sept. 2004, pp. 249-
261.
[2] J.H. Hayes et al., “Improving Requirements Tracing via
Information Retrieval”, IEEE International Requirements
Engineering Conference, Sept. 2003, pp.138-150.
[3] J.H. Hayes et al., “Advancing Candidate Link Generation
for Requirements Tracing: The Study of Methods”, IEEE
Transactions on Software Engineering, v.32 n.1, 2006, pp.4-
19.
[4] J. Cleland-Huang et al., “Utilizing Supporting Evidence
to Improve Dynamic Requirements Traceability”, IEEE
International Conference on Requirements Engineering, Sept.
2005, pp.135-144.
[5] G. Antoniol et al., “Recovering Traceability Links
between Code and Documentation”, IEEE Transactions on
Software Engineering, Oct. 2002, pp. 970-983.
[6] Fei Song, W. Bruce Croft, “A General Language Model
for Information Retrieval”, International ACM SIGIR
conference on Research and development in information
retrieval, Aug, 1999, pp. 279-280.
[7] Chengxiang Zhai, John Lafferty, “Model based Feedback
in the Language Modeling Approach to Information
Retrieval”, Int. Conf. on Information and knowledge
management, October, Atlanta, Georgia, USA 2001.
[8] A. Figueroa, “Smoothing Methods for LM in IR”,
www.lsv.unis_aarland.de/Seminar/LMIR_WS0506/LM4IR_s
lides/Alejandro_Figuera_Smoothing_Methods_for_LM_in_I
R.ppt.
[9] S.K.M. Wong et al., “Generalized Vector Space Model In
Information Retrieval”, International ACM SIGIR
conference on Research and Development in Information
Retrieval, 1985, pp.18-25.
[10] G. Salton and C. Buckley: Term-Weighting Approaches
in Automatic Text Retrieval. Information Processing and
Management, 1988, pp. 513-523.
[11] C.T.YU et al., “A Statistical Model for Relevance
Feedback in Information Retrieval”, Journal of the ACM
(JACM), 1976, pp.273-286.
[12] G. Salton, Chris Buckley, “Improving Retrieval
Performance by Relevance Feedback”, Journal of the
American Society for Information Science, 1990, pp.288-297.
[13] Andrian Marcus et al., “Recovering Documentation-to-
Source-Code Traceability Links using Latent Semantic
Indexing”, Int. Conf. on Software Engineering, 2003.
[14] Gospodnetic O ,Hatcher E, Lucene in Action, Maning
Publication, 2006.
[15] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.
[16] J. J. Rocchio: Relevance feedback in information
retrieval. In The SMART Retrieval System:Experiments in
Automatic Document Processing, 1971, pp.313-323.
[17] Xuanhui Wang et al., “A study of methods for negative
relevance feedback”, SIGIR'08, July. 2008.
[18] Telelogic DOORS, http://www.telelogic.com

42

Applying Transformation Rules to Improve i* Models�

Márcia Lucena1,2, Carla Silva2, Emanuel Santos2, Fernanda Alencar3, Jaelson Castro2
1Departamento de Informática, Universidade Federal do Rio Grande do Norte, Brasil

2Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
3Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Brasil

{mjnrl, ctlls, ebs, jbc}@cin.ufpe.br, fmra@ufpe.br

Abstract

Requirements engineering (RE) is considered a key
activity in almost all software engineering process. i*
is a goal-oriented approach widely adopted in the RE,
as it offers a modeling language that describes the
system and its environment in terms of actors and
dependencies among them. Often i* models become
cluttered both for small and large software systems,
compromising their evolution and understandability. In
this paper we propose to use model transformation
rules and a systematic process to increase modularity
and, therefore, comprehensibility and scalability of i*
models. To evaluate our approach, we use metrics to
assess the complexity of i* models before and after
applying our approach in an e-commerce case study. �

1. Introduction

The i* framework [1] is a goal-oriented
requirements engineering approach widely used in
academy and industry [6]. It captures the social and
intentional relationships in the system organizational
environment as well as some quality attributes and
functionalities of system. This framework has a rich
ontology that contains many constructors to create its
models. However, as the complexity of the problem at
hand grows, the i* models may become cluttered,
decreasing its understandability and scalability.

To reduce complexity of the models and improve
comprehensibility of software artifacts, we can use
decomposition mechanisms that divide software into
meaningful and manageable pieces, by using the divide
and conquer principle. Although i* incorporates a
decomposition mechanism based on strategic actors, it
has not been properly explored to reduce the models
complexity. This mechanism could be used to

��This work was supported by CNPq and CAPES research grants and
BIT initiative.

decompose the actor representing the system into sub-
actors that are easier to understand and manage.

In this work we propose a systematic way to handle
the complexity of i* models. We advocate the
decomposition of actors by the use of model
transformation rules. A transformation rule is a central
concept of many model transformation approaches [2],
since it usually describes the logic behind the
transformation itself. The proposed transformation
rules will produce i* models semantically equivalent to
the original models, but simpler and easier to
understand. After applying them, the i* actors become
simpler and the i* models become easier to grasp. The
evaluation of i* models complexity can be performed
by the use of adapted Mccabe’s [3] and Halstead’s [4]
metrics.

This paper is organized as follows. Section 2
overviews the i* framework and motivates our work by
using an e-commerce example. Section 3 presents our
approach to reduce i* models complexity. Section 4
illustrates the use of our approach and presents a brief
evaluation of this exercise. Section 5 summarizes our
work and points out open issues.

2. Motivation

i* models describe both the system and its
environment in terms of a set of actors linked by
dependencies among them. There are two different
abstraction levels in i*: the Strategic Dependency (SD)
Model and Strategic Rationale (SR) Model.

In order to illustrate i* models, let us consider the
Medi@ system case study presented in [5]. Medi@ is a
front-store on Internet to sell and ship different kinds
of media items. Figure 1 shows a fragment of the SR
model for the Medi@ actor, presenting the expanded
view of this actor. The highlighted (a, b, c) parts
present in Figure 1 will be discussed in sections 3 and
4.

43

In SD model, an actor can depend upon another one
to satisfy a goal, execute a task, provide a resource, or
satisfy a softgoal. Softgoals are usually associated to
non-functional requirements, while goals, tasks and
resources are associated to system functionalities [6].

Figure 1. The Medi@ SR Model

The SR model is used to (i) describe the interests
and motivations of the participants in the process, (ii)
enable the assessment of possible alternatives in the
definition of a process, and (iii) detail the existing
reasons behind the dependencies among the actors. To
support the analysis of opportunities and vulnerabilities
for different actors, SR models include intentional
elements such as goals, tasks, resources and softgoals,
as well as three new types of relationships: means-end,
task-decomposition and contribution link.

A task-decomposition link is a relationship between
a task and its parts, which describe how to perform this
task. In Figure 1, the Medi@ actor specifies a root task
Manage Internet Shop that is firstly refined, through
task-decomposition links, into intentional elements.
These elements are further refined by using task-
decomposition, means-end or contribution links, to
discover the Medi@ system requirements.

A means-end link indicates a relationship between
an “end” and a “means”, wherein a “means” is an
alternative and usually an “end” is a goal to be
achieved [1]. Considering the Media@ actor (Figure
1), there is a means-end link from Choose Available
Item task (“means”) to Item Selection goal (“end”).

The contribution link describes a contribution of a
“means” (task or softgoal) to the achievement of an
“end” (softgoal). This link provides a qualitative
reasoning using a multi-valued evaluation scheme to
represent the contribution (e.g., Help, Hurt, Make) [7].
In Figure 1, the Update GUI task contributes positively
(Help) to the satisfaction of the Available softgoal.

Using all these constructs to analyze, discover and
specify the system requirements, contributes to
produce i* models loaded with information that
captures characteristics of both the system
organizational environment and the software system
itself. Thus, the more detailed i* models are, the more
complex they become, mainly due to the refinement of
the system actor. This complexity can be reduced by
using decomposition mechanisms that divide complex
actors into meaningful and manageable sub-actors.

3. An Approach to Reduce Complexity

To reduce the complexity of the i* models, we
propose a process composed of three principal
activities: (i) Evaluation of i* Models; (ii) Analysis of
System Actor; (iii) Application of the Model
Transformation Rules. To perform these activities, it is
required to use, respectively: (a) metrics to assess the
complexity degree of the initial i* models, (b)
conditions to guide the system actor’s decomposition,
and (c) model transformation rules to generate simpler
i* models. At the end of this process the metrics of the
item (a) are used to assess the complexity level of the
resulting i* models. This process is semi-automatic,
since decisions are likely to be taken by the
requirements engineer.

3.1 Evaluation of i* Models

We start the process by evaluating i* models using
the Mccabe’s metrics for cyclomatic complexity [3]
and Halstead’s metrics for volume [4]. The cyclomatic
complexity measures the number of independent paths
in directed graphs, such as i* models. Since this metric
does not consider size as a parameter, we also adopted
the volume metric. This metric measures the amount of
information contained in a model in terms of the total
number of links and elements, and the number of
distinct links and elements. This assessment helps to
the development team decide if the i* model is
complex and if it is necessary to follow to next activity.
After the assessment, if the development team judges
the i* model as too complex, according to the resulting
of the metrics and their experience in other projects,
the second activity of the process can be performed.

3.2 Analysis of System Actors

The decomposition criteria used in this approach is
based on the separation and modularization of elements
that are not strongly related to the application domain
and, therefore, can be easily reused in different
domains. For example, in the i* model presented in
Figure 1, that captures the Medi@ system requirements

44

and their relationships with the stakeholders, the
requirement engineer can identify those elements that
are uniquely related to the application domain (e-
commerce) and those that are not. For example, the
sub-graphs highlighted as regions ‘a’, ‘b’ and ‘c’ of
Figure 1, are independent from the e-commerce
application domain and, therefore, they can be moved
from the main system actor (Medi@) to another (new)
system actor. After doing this, the resulting model will
present more system actors and these actors become
dependent on each other. Besides, the contextual
information present in this resulting model must be
semantically equivalent to the original model.

At the end of this activity, the actors representing
the system modularize fewer internal elements,
becoming less complex and easier to understand and
maintain. Furthermore, this approach also aims at
promoting reuse of system actors. Since the new
system actors are independent from the application
domain, they may be present in the specification of
system requirements of another domain. Thus,
separating the independent elements in other actors can
improve reusability and maintainability of system
specification at the requirements level. In fact, the
example presented in Figure 1, illustrates that the
elements related to statistics production functionality
(highlighted sub-graph ‘a’) could be used as part of a
system from a different application domain. The same
rationale could be applied to the other two sub-graphs
highlighted in Figure 1 (sub-graph ‘b’ and ‘c’).

To assist the requirements engineer in decomposing
the system actor, we have formulated the following
(pre) conditions: (C1) Find internal elements in the
system actor that are independent from the application
domain; (C2) Check if these elements can be moved
from the original model to another actor without
interfering with the behavior and comprehensibility of
actor’s internal details; (C3) Check if these elements
could be reused in different application domains.

3.3 Application of the Transformation Rules

In this activity a suitable model transformation rule
must be chosen based on the type of relationship
between the elements to be moved and the elements
that will remain in the original system actor. These
transformation rules are applied to elements of type
goals, softgoals and tasks, because they can be further
refined. Since some elements are selected in previous
activity, the elements that will be treated first are those
have less impact on the actor. In this case, we are
considering that the elements closer to the leafs have
less impact when they are moved to another actor.

The proposed transformation rules aim at delegating
internal elements from the system actor to other actors.
This delegation must ensure that the new actors and the
original actor establish a dependency relationship.

Table 1: TR to move sub-elements
TR1 - Move a sub-element in a task-decomposition

Original Model

Target Model

Pre-condition: A root task of a graph is decomposed into sub-
elements (tasks or goals) that are also root of sub-graphs, but do
not share any sub-element through task-decomposition or means-
end links.
Effects: The sub-graph that is independent from application
domain (e.g. the sub-graph whose root element is the Task 2) is
moved from the original actor to a new actor. This new actor has
the same name of the root of the transferred sub-graph. This root
will be replicated as a dependency relationship of same type
relating the original actor, as the depender, and the new actor, as
the dependee. Besides, all the existent external dependencies with
this transferred sub-graph will be transferred to the new actor.

As shown in Table 1, the transformation rule is
structured to show information such as (i) the name of
the rule; (ii) a figure to illustrate the context in which
the original model can match before applying the rule;
(iii) a figure to illustrate the resulting model after
applying the rule; (iv) a description of the pre-
conditions for the rule to be applied, and (v) a
description about the effects produced by the rule.

TR1 shows a transformation rule that moves a sub-
element present in a task-decomposition to another
actor (Table 1). This transformation rule was defined
based on a property found in the i* framework and
related to the actor’s boundary. This property states
that the semantics of an outgoing dependency link
from a task is equivalent to the semantics of a task-
decomposition link, that is, the outgoing dependency
behaves as sub-component of that task inside the
depender actor [1]. Also, in this transformation, all the
intentional elements present in dependencies entering
in the new actor are replicated inside that actor, as
occurs in the extended version of i* used in Tropos [8].

TR2 shows a situation (Table 2, original model)
where the sub-graph to be moved has the root as a

45

“means” in a means-end relationship. In this case, this
sub-graph is moved to a new actor, the root element is
replicated both inside the original actor and as a
dependency from the element inside the original actor
to the root of the sub-graph moved to the new actor.

Table 2: TR to move alternatives
TR2 - Move “means” sub-graph in a means-end link

Original Model

Target Model

Pre-condition: A root goal of a graph is an “end” in one or more
means-end relationships and at least one of its “means” is a sub-
graph (alternative) that does not share any element (through task-
decomposition or means-end links) with other sub-graphs
(independent sub-graph).
Effects: Each independent sub-graph (alternative) will be moved
to a new actor with the same name of the sub-graph’s root. The
roots of the transferred sub-graphs must be replicated inside the
original actor to keep the original mean-end relationship. From
each of these replicated elements, a new dependency of the same
type and name must be created from the original actor to the root
of the sub-graph moved to the new actor.

After applying rules TR1 and TR2, it can occur that
the resulting model is not in conformity with the i*
notation suggested by the Istar Guide [7]. For example,
a contribution link in the original model can result in a
crossing relationship from an actor to another (see
Table 3, original model). In this case, we need to use a
corrective rule, such as TR3. TR3 suggests replicating
the softgoal involved in the contribution relationship
both inside the original actor, and as a softgoal
dependency outgoing from the new actor to the
original actor. This rule was defined to preserve the
information about contribution links and maintain the
information about contribution links and coherence of
i* models as it is proposed in [9].

TR4 (see Table 4) is applied when the sub-graph to
be moved out has a sub-element shared (Task 3 in the
Original Model presented in Table 4) with other sub-
graphs. One of the previous rules, TR1 or TR2, is

applied to move a sub-graph (in this case, the sub-
graph with Goal 1 as root) to another actor.

Table 3: TR to move a contribution link
TR3 - Contribution link crossing actor’s boundary

Original Model

Target Model

Pre-condition: There are elements such as task, goal or softgoal
contributing to the achievement of softgoals that are out of the
actor’s boundary.
Effects: A softgoal element, with the same name, must be created
inside the actor from where the contribution link outgoes, to keep
the contribution link inside that actor. A softgoal dependency, with
the same name, must be created from the new softgoal to the other
softgoal, with the same name, inside of the other actor.

At this point, TR4 suggests a priority policy to
choose with which sub-graph the shared element (Task
3) will stay: (i) check the types of the roots in the sub-
graphs sharing the element. The sub-graph whose root
type has the higher priority will keep the shared
element. The priority for root element type is goal,
softgoal and task, in this order; (ii) if all sub-graphs’
roots are of the same type, check the position of the
roots in the sub-graphs sharing the element. The sub-
graph’s root that is closer to the root of the overall
graph will keep the shared element; (iii) if all sub-
graphs’ roots have the same type and are in the same
level in relation to the overall graph’s root, then the
shared element stays with the sub-graph(s) that will
remain in the original actor.

4. Running Example

After the requirements engineer has decided to apply
the approach to reduce the complexity of the Medi@
SR model (Figure 1), he can identify some elements
that could be moved to other actors. For instance,
considering the conditions C1 and C2 presented in the
section 3.2, the Produce Statistics, Adaptation, and
Database Querying tasks were identified. The Produce
Statistics and Adaptation tasks represent issues that are
not strictly related to the e-commerce application
domain. Therefore, it can be moved from the original
actor without interfering in its understanding and

46

original purpose. Similarly, the Database Querying
task related to Item Searching Handled goal, by a
means-end link, can be moved from Medi@ because it
can be reused in other domains.

Table 4. TR to move shared elements
TR4 - Move a shared sub-element

Original Model

Target Model

Pre-condition: There is an element (Task 3) that is shared by
different sub-graphs (through task-decomposition, contribution or
means-end link) and at least one of these sub-graphs is moved to a
new actor (rules TR1 or TR2).
Effects: The shared element will remain in the sub-graph whose
root element has the highest priority. The relationships with the
remaining elements will be replaced by dependencies, as stated by
the rules TR1, TR2 and TR3.

To select the suitable transformation rules to these
identified elements, we need to observe the type of
relationship that these elements have with the
remaining elements. For instance, TR1 should be
applied to Produce Statistics task that is a sub-element
of Internet Shopping Managed task, in a task-
decomposition relationship. Afterwards, TR3 is
applied to replace contribution links crossing actors’
boundaries by softgoal dependencies, aiming at
maintaining the coherence with i* notation.

For the sub-graph in which Database Querying task
is the root, TR2 is applied to move sub-elements that
are alternatives (Database Querying task) to achieve
goals (Item Searching Handled). Afterwards, TR4 is
applied to move shared elements (Item Selection and
Item Transaction goals are also sub-elements of
Catalogue Consulting task). Figure 2 shows the
resulting model after applying the proposed process.

After modularizing the Medi@ actor (Figure 2), we
evaluate the original and the resulting models in
relation to the metrics presented in section 3.1. The
Cyclomatic Complexity metric has shown that the
complexity of i* models was reduced in approximately
57%. This result indicates that the approach promoted
a reduction of complexity in i* models for the Medi@

system. Indeed, part of the main graph inside the
system actor was modularized by other actors,
reducing the number of graph ramifications inside only
one actor. This strategy increases the total number of
elements and links in the model, since 3 new actors and
5 new dependencies have been added. As result, after
applying the Volume metric, it was observed that the
global volume of the resulting i* model increased from
362.11 to 523.05 (44.45%). This global increment of
volume does not compromise the benefits of our
approach, since the new model consists of a set of new
actors that now divides part of the complexity initially
concentrated in a single system actor. In fact, the
volume of Medi@ actor decreased from 362.11 to
175.69 (51.48%), meaning that the remaining volume
was transferred to the other actors, namely Adaptation,
Database Query and Produce Statistics. Their
respective volumes are 95.18, 69.19 and 36.00. In
comparison to the initial volume of Medi@ actor, the
volumes of the four actors present in the new model
are smaller than 50% of that initial volume. This means
that the model complexity was reduced by delegating
responsibilities of a complex actor to other actors, thus
helping a requirements engineer to better manage and
maintain i* models, since they can focus on different
and simpler parts of the problem each time.

5. Related Work

In [10] a systematic method to deal with scalability
issues of i* models is presented. The method
reformulates the i* framework to provide the concept
of view - a projection over a model according to some
criteria. Views were used as a way to divide one
baseline model into self-contained segments in order to
increase understandability of i* models. Each view is
associated with a formally defined selection rule to
allow automating the projection of a specific view.

In [11] the authors use the principles of Aspect-
Oriented Software Development [12] to simplify i*
models. Their approach identifies, modularizes and
composes crosscutting concerns in i* models. They
extended the i* modeling language by adding aspect-
oriented abstractions. Their aim was reducing the
graphical complexity of i* models.

In [13] was conducted an exploratory study to
identify the impact of applying a catalogue of patterns
to modify i* models. New concepts, that are part of a
catalogue of patterns, were added to modify the model.

Although they had gains in other model attributes,
no reduction of models complexity was observed. Our
approach also proposes using iterative modifications in
i* models.

47

Figure 2. Resulting Strategic Rationale Model

However, it does not require the addition of new
concepts because it uses mechanisms of delegation and
transformation rules to divide the system actor in new
actors. To select the elements to be delegated, we use a
semi-automatic process.

Tropos [5] relies on i* models in several stages of
software lifecycle and uses the relationship is-part-of
to decompose system actors. But, different from our
approach, no systematic way was proposed for its use.

6. Conclusions

A process to handle the complexity of i* models
was presented in this paper. This process proposes to
balance the responsibilities of a system actor,
delegating them to other (new) system actors. A semi-
automatic process can guide the evaluation of i*
models’ complexity, the use of (pre) conditions to
choose which part of the system actor can be delegated
to another (system) actor and the selection among a set
of transformation rules to modify i* models. These
rules create new actors, move parts of a system actor to
these new actors, and ensure that the resulting model is
semantically equivalent to the original model.

Currently we are carrying out experiments with
metrics to assess separation of concerns. Besides,
qualitative experiments will be used to evaluate what is
the optimal size of SD models. With these values, we
can determine when an actor is considered complex
according its size. Other future work includes
formalizing these transformation rules in a
transformation language based on Eclipse framework
and designing architecture from simpler i* models.

7. References

[1] Yu, E., “Modeling Strategic Relationships for Process
Reengineering”, Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada, 1995.

[2] K. Czarnecki, S. Helsen, “Classification of Model
Transformation Approaches”, 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven
Architecture, Anaheim, CA, USA, 2003.

[3] T. McCabe, “A Complexity Measure”, IEEE Trans. of
Software Engineering, 2(4), 1976, pp. 308-320.

[4] Halstead, M. H. “Elements of Software Science
(Operating and programming systems series)”, Elsevier
Science Inc., New York, NY, USA, 1977.

[5] J. Castro, et al., “Towards Requirements-Driven
Information Systems Engineering: The Tropos Project”,
Information Systems Journal, 27(6), 2002, pp. 365-389.

[6] E. Yu, J. Castro, A. Perini, “Strategic Actors Modeling
with i*”, Tutorial Notes, 16th Intl. Conf. on Requirements
Engineering, IEEE Computer Society, Spain, 2008,pp.01-60.

[7] Grau, G. et al., 2008. i* Wiki Home, In http://istar.rwth-
aachen.de/tiki-index.php?page�ref�id=53, 02/04/09.

[8] P. Bresciani et al., “Tropos: An Agent-Oriented Software
Development Methodology”, Journal of Autonomous Agents
and Multi-Agent Systems, 8(3), 2004, pp. 203-236.

[9] Horkoff, J., Using i* modeling for evaluation, Master
thesis, Department of Computer Science, University of
Toronto, Canada, 2007.

[10] You, Z., “Using Meta-Model-Driven Views to Address
Scalability in i* Models”, Master thesis, Department of
Computer Science, University of Toronto, Canada, 2004.

[11] F. Alencar, et al., “Integration of Aspects with i*
Models”, Agent-Oriented Information Systems IV, LNCS,
Vol. 4898, Springer-Verlag, 2008, pp. 183-201.

[12] A. Rashid, et al., “Modularisation and Composition of
Aspectual Requirements”, 2nd Intl. Conf. Aspect-Oriented
Software Development, ACM Press, 2003, pp. 11-20.

[13] M. Strohmaier et al., “Can Patterns Improve i*
Modeling? Two Exploratory Studies”, REFSQ'08, LNCS,
Vol. 5025, Springer-Verlag, France, 2008, pp. 153-167.

48

NESTED NL REPRESENTATION FOR OO ANALYSIS AND DESIGN

Magda G. Ilieva, Olga Ormandjieva
Department of Computer Science and Software Engineering

Concordia University, Montreal, Canada
magda_i@yahoo.com, ormandj@cse.concordia.ca

ABSTRACT

This article proposes a methodology for building software
engineering (SE) models from unrestricted natural language (NL).
The method is based on a nested representation of NL, which is a
superior structural technique to other known object-oriented (OO)
techniques, like the noun-object, verb-method, and modifier-
property analogies. The novelty of our approach is that it shows
the importance of the structure of concepts represented through
language, and not through their grammar or organization.

KEY WORDS
Knowledge representation, Nested representation of text, Concept
structure approach to NLP, NLP approach to SE

1. INTRODUCTION
As the complexity of software systems has grown, so have
the challenges facing software analysis, design, and
programming. These new demands have given rise to new
applications, theories, and technologies. Many of them
focus on the analysis of NL description of requirement
specifications, mainly because there have been shown to be
analogies between OO concepts and NL. For this reason,
the focus of computer linguists has turned to SE, and their
work has led to satisfying results: the continuous creation
of theories and tools which translate, partially or
completely in a semi- or fully automatic way, the NL
description of a software system under consideration into a
formal or semiformal representation. Moreover, the work of
these linguists has been stimulated and facilitated by the
use case-driven development and the Unified Modeling
Language (UML), some features of which place it between
informal NL description and its formal SE model:
� Some of the questions posed during the process of

building a Use Case model, like How will the application
be used? or, more precisely, What are its functional
requirements? are similar to linguistic (NLP) questions,
like Which are the actors? and What do they do? Various
developments based on NLP technology consider this
UML model [6].

� A linguistic analogy can also be found for an activity
diagram or a sequence message chart. The questions:
What is the activity? To where is the activity directed?
What is the object of the action and how is it changed
thereafter? What is the consequence of the activities over
time? What are the conditions leading to their execution?
are posed in an NLP approach to model creation, as
described in [1,2,3].

� The most important question for an OO class diagram is:
How are classes found? Linguistic analysis is a very

popular method among those available to answer this
question, and is, in fact, represented in all guidelines for
finding classes [4,5]. We offer here one possible answer
to the question of how to obtain an OO class model from
NL requirements automatically.

The paper is organized as follows: Section 2 outlines the
contributions of this research. The methodology is
explained in section 3, and an illustration of a case study is
presented in section 4. The conclusions and future work
directions are outlined in section 5.

2. OUR CONTRIBUTION
Our work and research in the field of the NLP approach to
SE modeling cover the following topics related to the next
generation of graphical models: the OO class Diagram [7],
Use Case Paths [10], the Hybrid Activity Diagram [8], and
the Domain Model [11]. We have developed and published
methodologies for the creation of these UML and similar
models, which are based on three basic formalisms for NL
representation – tabular [7], graphical [9], and nested [11].
In the three cases, we use the relation as a main notion for
the analysis and a building element in the creation of the SE
model. We structure the relations in NL on different levels.
In NL, and also in the tabular and graphic representation of
NL, the main relation is the predicate (verb phrase)
between the subject and the object (noun phrases). No
matter how complex the sentence, i.e. how many predicates
it contains, each predicate is placed in a separate row in the
table, and the Su(bject) and Ob(ject) linked to it are placed
on its left-hand and right-hand side respectively (see
Table2). Some Su or Ob cells can remain empty. For
example, in many cases, the passive verb and imperative
sentences (see case study) have no Su. However, this does
not change the fact that a predicate relation exists anyway.
The Su and Ob are identified by understanding the context,
which is why they have not been explicitly indicated. On
their own, Su and Ob can also be represented as relations
between concepts, which we call structures of concepts or
structural relations: prepositional, noun-noun modifier,
adjective-noun modifier, enumerative. As with the relations
in a simple sentence, high-level relations exist between
predicative relations (two or more simple sentences
combined into one complex sentence). The type of complex
relation is defined by the type of conjunction between
them. Examples of complex predicate relations are: IF-
THEN sentences, relative sentences, and simple sentences
connected by a conjunction. Fig. 1 shows a generalized
scheme of NL relational structures.

49

Fig. 1. Generalized scheme of NL relational structures

3. METHODOLOGY
For the Domain Model (Ontology): Working on the
structural relations, as well as the operations on the
structures, we arrived at the nester representation (NR) of
concepts, which is suitable for the creation of a domain
model (DM) or ontology [11]. Topics for consideration in
this type of representation are only those structural relations
in NL that reflect possession. To the group of noun-noun
and adjective-noun modifiers (has-a and is-a relations), we
can add prepositional phrases with prepositions for location
and possession: of, in, into, etc. We will explain the nested
representation shortly using examples, but for now: the
term NL requirements document means that the document
consists of requirements expressed in NL. The nested
representation will be styled document(requirements(NL)).
The phrase ambiguity in NL and TLG means that NL and
TLG (Two-Level Grammar) has an ambiguity and will be
represented as (NL,TLG)ambiguity, which, using the
mathematical operation of removing brackets, can be
represented as NL(ambiguity),TLG(ambiguity). Brackets
and the comma are the only operations that we use in a
nested representation. Grouping operations can be applied
on nested structures, and, when all the structures are
grouped together, we obtain a hierarchical structure of the
DM/Ontology of the problem domain, extracted from the
text description. The grouping operations are based on the
matching principle. Two nested structures are matched
when their heads are equal. Then, a new structure will
emerge from a merging (grouping) of the two structures
which will have a common head and body containing the
merged bodies of the grouped structures. The pseudocode
of the algorithm for merging nested structures can be found
below and an online demonstration of it can be tested at the
following address: www.nlping.com/nestedStr/prophp.php.
function merge (Hi(Bi),Hj(Bj)) {
if (H=match(Hi,Hj))
 newStr=H(merge(Bi,Bj))
else{ if (H=match(Hi,Bj))
 newStr=Hj(merge(Hi(Bi),Bj))
 else (H=match(Hj,Bi))
 newStr=Hi(merge(Hj(Bj),Bi))}
return newStr;}
function match(Hi(Bi),Hj(Bj)) {
if (Hi=Hj) return true ; else return false;}
An example explaining the above algorithm follows.

 Vehicle (authorized, nonAuthorized) (1)
 Vehicle (authorized (driver)) (2)

Result: Vehicle(authorized(driver), nonAuthorized)
Structures (1) and (2) have the same head, Vehicle, and the
bodies B1 = authorized, nonAuthorized and B2 =
authorized (driver). In the step1 of the recursion, the
common head Vehicle is defined and B1, B2 are passed for
new matching. This time, the match function finds 2
structures (one from each body) with the same head:
authorized and authorized(driver). The two bodies, [empty]
and driver, merge and are added to the common head,
which is authorized. The result, authorized(driver), is
added to the remaining part of the body (nonAuthorized in
this case), which is attached to the head defined in step1.
Extended Nested Representation: While brackets and the
comma are operators that are sufficient to represent the
DM/Ontology models, where the relation ‘contain’ is basic,
these operators are not sufficient for the solution of other
problems, such as those from the mathematical domain. We
consider the language of mathematics as a subset of NL
with the following specificity: mathematical problems
contain concepts which are arranged in relations like:
before, after, between, from-to, less than, smaller than,
equal to, etc. In NL, there are words which have procedural
mathematical equivalents, like difference and sum. For
these specific relations and procedural words, we will use
their mathematical indications. The basic nested
representation of text broadened with operators typical for
the NL of a given problem domain is called Extended
Nested Representation (ENR). We now show the
applicability of the ENR of text for OO analysis and design
on an example from mathematical problem domain [12].

4. CASE STUDY
The text is taken from “an informal but precise English
description” and presents a problem defined in the
following manner: Write a function subprogram that, given
two dates in the same year, returns the number of days
between the two dates.
The definition of the problem serves only to inform the
reader and has not been analyzed, either in the source or in
our solution. The aim of the author of the source is to
obtain an ADA program from an NL text description,
through a guided analysis by a human being. Our aim is to
obtain an automated semiformal OO programming code
through an algorithm and the ENR. The text is the
following:
 1. If two given dates are in the same month, the number of
days between them is the difference between their days of
the month.
2. If the two given dates are in the different months, the
following is done:
(a) Determine the number of days from the earlier date to

the end of its month. Keep track of that number in a
counter called the “Day_counter”.

(b) For each month, starting from the first month after
the earlier date and ending with the last month before
the later date, add the number of days in that month
to the Day_counter.

50

(c) Add the day of the month of the later date to the
Day_counter. Return that final sum as the number of
days between the two dates.

The solution consists of 4 parts. The first two parts involve
NL analysis and design, and the next two SE analysis and
design.

4.1. CASE STUDY NL ANALYSIS
This part of the solution goes through the following
processing steps:
1) The first step is to define the operators for ENR
According to our understanding of the character of NL, it
consists of structures. Prepositions are a very important part
of the creation of these structures. They connect the
concepts to the structures, and that is why we consider them
as operators. In the following table, we have generalized
the preposition-operators that are found in this case study.

Table1

�perators NL equivalent Example ENR
possession of,in,into,has_a,is_a A in B B(A)
enumeration keyword/orthography two days d1,d2
bounded content from-to, between,

starting-ending
from1 to2 1--2

precede-follow before-after 2 after 1 2>1
condition-consequence if-then If A then B A=>B
assignment operation add to, subtract from add A to B B+=A
equality equal,named,called,as A is called x x=A

The interpretation of the operators from-to, starting-ending,
and between is similar, in that they define the content
between two positions. While from-to defines the starting
and ending points, between uses a plural noun as an
argument, which means that there can be more than two
points. The mathematical equivalent of these two operators,
‘between(A,B)’ and ‘from A to B’, is: i) >= A and <=B, if
we consider one value between two boundary values; or ii)
�--�, if we consider more than one value. The operators
after and before also have a similar meaning. After �
defines a value following position A and has the
mathematical equivalent >A, while before � defines a value
before position A and has the mathematical equivalent <A.
2) The next process is structuring and normalizing the text
First, we represent the text in tabular form. Then, we
normalize it through processing, which makes it suitable for
formal representation; for example, finding the references,
removing repetitions, checking for inconsistencies, etc.
3) Finally, on the prepared in that way structured text, we
apply ENR
Since the tabular representation, normalization, and the
nested representation are linked, we will address them
consecutively for the different parts of the text, which
contains 5 paragraphs.
Point 1: The following table displays the structured
representation of the text from the first paragraph.
 Table2
Con Subject Pr Object Con
If the two given dates are in the same month ,
 the number of days

between them
is the difference between

their days of the month
.

In order to address the reference issue, we use the
principles of correspondence and proximity, and the
template for singular/plural consistency. For example, we
define them and their as referring to dates.
The first sentence contains an IF-THEN operator, with the
following structures in each part:
(1.1) The IF part contains the operator are in, which links
two structures: enumerative, two given dates, and adjective-
noun modifier, the same month. The sense of the operator is
in is the same as that of has and the interpretation of the
phrase is: (the same month) HAS (two given dates). The
nested representation will be:
month_same(dates1,dates2) (1.1)
(1.2) The THEN part contains the operator is, which links
two structures:
� The first structure, (the number of days) between dates,

actually represents two structures, one containing the
operator of, and the other containing the operator
between. The operator of means that the concept on its
right-hand side contains the one on the left-hand side,
and the number of days means that the days has a number
and will be represented as days(number). The operator
between(dates) can be represented as date1--date2. The
nested representation of whole group is: (date1--
date2)days(number) (1.2a)

� The second structure, the difference between (dates days
of the month), consists of the simple concept the
difference and the operator between, which has the
complex structure of as an argument: (dates days) of (the
month), the representation of which will be
month(dates(days)). Applying the operator between on
the structure defined in this way, we obtain:

(month(date1(days)--month(date2(days)))difference (1.2b)
Combining the different parts of the IF-THEN operator, we
obtain:

IF month_same(date1,date2)
THEN(dates1--dates2)(days(number))=
(month(date1(days))--month(date2(days)))(difference)

Point 2: This paragraph is also an IF-THEN operator, with
the following parts:
The IF part is: (the two given dates) are in (the different
months). As with the arguments regarding the sense of are
in from point1, this phrase can be represented as:
IF month_ different (date1,date2). (2.1)
The THEN part: the following is done is a verb phrase
done, after which there is an enumerative structure
prompted by the key word following and the orthography
semicolon and three numbered points. From this phrase, we
only keep the verb, and, for the entire IF-THEN sentence,
we obtain:

IF month_ different (date1, date2) THEN do
Case (a): The following table shows the structure and the
nested representation.
Pr Ob NR of Ob
1 Determine the number of days days(number)
 from the earlier date date_earlier
 to the end of its month date_earlier(month(end))

51

2 Keep track of that number
in a counter

counter(
days(number(track)))

 call “Day_counter”

When we combine the parts from the ‘NR of Ob’ column,
we obtain: (2.1 a)

Determine{(date_earlier(month(end))--date_earlier)days(number)}
Keep { counter (day (number (track))= “Day_counter” } ;

Braces separate the verb/action from the concept structures.
Case (b) is presented in the next table. The nested
representation can be seen in the column ‘NR of Ob’.
Pr Ob con NR of Ob
1 For each month Foreach(month
 startingfrom the first month month_first
 after the earlier date and >date_earlier
 ending with the last month month_ last
 before the later date , <date_later
 add the number of days in that

month
month(days (number))

 to Day_counter “Day_counter”

We replace the ENR operators (starting-ending, add-to)
according to notation from Table 1, and, combining the
different parts from the ‘NR of Ob’ column, we obtain:
Foreach((month_first >date_earlier)--
 (month_last<date_later)month)

Day_counter += month(days(number)) ;
Case (c) is structured in the next table.
Pr Ob NR of Ob
1 Add the day of the month of the

later date
date_later(month(day))

 to day counter Day_counter
2 Return that final sum sum_final
 as the numbers of days days(number)
 between the two dates date2--date1

After replacement of the operators (add-to, as) and
connecting the different parts from the ‘NR of Ob’column,
we obtain:

Day_counter += date_ later(month (day)) ;
return{ sum_final= (date2--date1) days(number) } ;

What we need to do now is collect all the formulas
(depicted in the solid table) and obtain the result of the
analytical phase:
1 IF month_same (date1,date2)
2 THEN (date1--date2)(days(number))=

 (month(date1(days))--month(date2(days))) difference
3 IF month_ different (date1, date2)
4 THEN do
5 (a) Determine {(date_earlier (month (end)) --date_earlier)

 days (number) } ;
6 Keep {counter (day (number (track))) = “Day_counter”} ;
7 (b) Foreach (((month_first>date_earlier) --

 (month_last<date_later))month)
8 Day_counter += month(days (number)) ;
9 (c) Day_counter += date_ later(month (day)) ;
10 return{ sum_final= (date1--date2) days(number) } ;

 Listing 1

4.2. CASE STUDY NL DESIGN
Here, we are looking for analogies and similarities between
the NL nested representation and the programming
language.
On line 1 of Listing 1, we have defined the function
month_same with two arguments, date1 and date2. The
goal of this function is to verify whether or not the two
dates fit in a single month and to return the result from that
verification.
On line 2, an equality is defined. If we replace the left
bracket with a dot, as in the OO style of programming,
which means that method or property of the object, and we
remove the corresponding right bracket, we will obtain:
(date1--date2).days.number=
(month.date1.days--month.date2.days).difference (2.2)
The judgment on which we are basing this change is the
following: in a complex concept structure, the concepts are
separated and structured through brackets, which means
that the outer concept, from the left-hand side (parent),
contains the inner concept, i.e. the one on its right-hand
side (child). For example, month(date2(days)) means that
month has date2, which has days. The possession in OO-
programming is written with a dot. We will also use it, and
obtain the following: month.date2.days, which means that
the object month with the method date2, and date2 with the
method/property days. With the notation defined in this
way, let us consider equality (2.2). We have two
expressions which are linked with the equals sign. We
assume that this is not an algebraic equality, and most
probably means that the left-hand side is a statement and
the right-hand side is a formal expression, or
implementation of that statement. This is why we can
introduce a variable (Result1) for the definition of the left-
hand side, or keep the corresponding NL expression
unchanged, for example: numberOfDaysBetweenDates.
There is an additional point concerning the interpretation in
(2.2). The method difference is applied at the same time as
the operator between over the same expression. Since they
have a similar semantic meaning, one of them is redundant.
We have two options: i) remove the method difference and
obtain Result1= (month.date1.days -- month.date2.days); or
ii) remove the operation between (--), so that the operands
become parameters of the method difference, and obtain
Result1=difference(month.date1.days, month.date2.days).
On line3, the function month_different is defined with two
arguments, date1 and date2. This function must check
whether or not the two dates fall into different months, and
return the result. The functions on line 1 and line 3,
month_same and month_different respectively, are
antonyms, and so have contrary meanings. One function
can replace both, returning a result which is true in one of
the cases, for example month_same, and false in case of
month_different. We obtain the following code after the
replacement:
1 IF month_same (date1,date2)
2 THEN Result1=(month.date1.days--month.date2.days) ;
3-4 ELSE DO

52

Line5: Determine {(date_earlier (month (end)) -- date_earlier)
days(number)}. After replacing the NL operators with
software operators, we obtain:
Determine{(date_earlier.month.end--date_earlier).days.number}.
We apply the method days.number to the two parts of the
operator “--”, which is equivalent to removing the brackets.
We do this because it is logical, and because from
mathematics we know that a method applied over the result
of one operation is the same as applying the method over
the operands, and after that performing the operation. We
obtain the following expression: Determine{
date_earlier.month.end.days.number--date_earlier.days.number}
Line6:Keep{counter(day(number(track)))=‘Day_counter’}.
Over this code, we replace the left bracket with a dot and
remove the corresponding right bracket. Then, on the left-
hand side of the equation we have an expression, and on the
right-hand side a named concept. The rules in programming
and mathematics usually place these two entities in reverse
order, the left-hand side containing the concept (in the role
of a variable) and the right-hand side containing the
expression that gives the variable a value.
Keep {“Day_counter” = counter . day . number . track }
Lines 7-8: We perform the same processing as we did on
line 6, replacing the left bracket with a dot, removing the
corresponding right bracket, and removing the bracket
around the operation ‘--‘. The sign ‘+=’ on line 8 replaces
the phrase ‘add to’, according to the ENR definition in
Table 1. Our result is:
Foreach (month_first . month > date_earlier . month) --
 month_last . month < date_later . month))
Day_counter += month . days . number ;
Line 9: Similar processing to that on line 8, which gives the
result: Day_counter += date_ later . month . day ;
Line 10: return{ sum_final= (date1--date2) days(number)}.
We remove the brackets, which means that we apply the
method days.number over to dates. We obtain:
return{sum_final=date1.days.number--date2.days.number}.
Let us now put all the rows together to see the end result:
1 IF month_same (date1,date2)
2 THEN Result1 = (month .date1.days--month . date2 .days)

3-4ELSE DO

5 (a) Determine { date_earlier . month . end . days . number--
 date_earlier . days . number};

6 Keep {“Day_counter” = counter . day . number . track };

7 (b) Foreach (month_first . month > date_earlier . month) --
 month_last . month < date_later . month))

8 Day_counter += month .days. number ;
9 (c) Day_counter += date_ later . month . day ;

10 return{ sum_final = date1.days.number--date2.days.number};
 Listing 2

4.3. CASE STUDY SE ANALYSIS
In the SE analysis phase, we have to define the structure of
a software program, and, since we are using the OO
approach, we have to define what the objects are, as well as
their methods and properties. A nested representation of the
requirements gives us hierarchies of the main concepts.
This hierarchy is obtained automatically in a natural way
only through examining the NL structures, and it
corresponds to the hierarchy taught according to the

principles of the OO approach. The following basic
consequences can be seen in our example:
month � date � days; month � days � number
date � month � days; date � days � number
A concept consequence is important because it defines the
object and its methods and properties. From the defined
order of the concepts, month�date and date�month, arises
the question of whether date is an object having the
property month or vice-versa. We have strictly adhered to
the algorithm here, and any ‘contradictions’ come from the
NL itself. Here are two phrases:
i)…the dates are in various months…� means that a month
consists of dates, i.e. month(date)
ii)…from the earlier date to the end of its month… � its
refers to date, i.e. its month � date’s month, i.e. date is an
owner of month, i.e. date(month).
From the NL description, we can deduce that there are two
objects: month and date. It seems that these objects also
exist in the computer solutions. For example,
month(1.1.2009) should turn into January. By contrast,
date(January) should become 1 jan, 2 jan, …, 31 jan. They
all satisfy the condition of being dates in January, i.e. these
are all the dates in the month referred to. In other words,
this is the number of days in the month.
This specific case, in which the consequence of the NL
nested concepts gives rise to doubts as to the object-
methods relation, does not compromise the applicability of
the proposed algorithm, and different automated solutions
can be proposed to resolve the contradiction. Among them
are: i) previous experience, patterns; ii) a search of the
Internet for code examples; and iii) the creation of
statistical models for objects with a contradictory structure.
A simple Google inquiry with the key words ‘date object’
and ‘month object’ returns 8 times more results than ‘date
object’ alone.

4.4. CASE STUDY SE DESIGN
At this stage, we have to define what programming must
do. To achieve this, we use the results from the previous
phases (listing 2).
1) Object date with the methods month, days. On the next
level, month is divided with two methods – days and end.
All the leaf nodes of the date structure are of the type
number.

2) There are five functions to be implemented from the
listing:
function monthSame(date1,date2)
 { if (date1.month == date2.month) return true;
 else return false; }
function dateEarlier(date1,date2)
 { if (date1< date2) return date1;
 else return date2; }
function dateLater(date1,date2)
 { if (date1>date2) return date1;
 else return date2; }
function month_first (date)
 { return date.month; }

53

function month_last (date)
 { return date.month; }
3) The foreach construct is defined on line 7 of Listing2.
Like the loop controls from the programming languages, it
defines: iterator, initial condition, and final condition. In
our case, month_first.month plays the role of iterator. From
an OO perspective, the expression is read: method month of
the object month_first. We presume that this is a tautology
and leaves only month. The initial and final conditions are
date_earlier.month and date_later.month respectively. With
arguments defined in this way, we can rewrite lines 7-8
directly into the for control structure, which is widely used
in every programming language:

for (month= date_earlier.month+1; month< date_later.month;
 month++) { Day_counter = month .days. number }

4) The procedures/functions determine, keep, add, return
have precise programming language equivalents, which is
why we leave them unchanged.

5. CONCLUSIONS AND FUTURE WORK
Evaluation: In order to evaluate the effectiveness of our
approach, we compare our solutions to a single example,
obtained through various technologies. This is the result of
comparing the solution in the cited source [12] and the
solution presented here:

Russell Abbott solution Our solution
8 transformation phases/12 pp 4 phases/6 pages
Human-guided process Automated
NLP and SE processes are
carried out in parallel; they
influence each other.

Separates process results.
NLP phase is independent of
implementation.

Contains words/concepts that
are not present in the text.

Contains only words/concepts
from the text.

Keeps the NL operators for
parent-child relations

NL operators are replaced
with OO dot notation.

Below is a short description of another example from [13]
solved with our approach.
Tagging with the syntax categories of the words helps us
structure the text into a table:

1 Write a program
 to generate 1000 random numbers between 0 and

99 inclusive .
2 You should count how many of times each number
 is generated and
 write out these counts to the screen .

Applying the ENR to the text, we obtain:
write{program
 {generate{Numbers(random(1000 (0- -99(inclusive)))) }};
 shoud{ count{eachNumber(times(howMany(generated))},
 writeOut{counts=screen} };

What remains is to apply SE analysis and design skills, as
well as write down the functions that have to be
implemented. In the source, the solution looks like this:

for($i = 0; $i < 10000; $i++) { //comment }
foreach $count (@counts) { //comment }

//comment repeats the content of the text. The main effort in
the approach cited in [13] is to reveal the relation between
language key phrases and programming key words. Our

aim is to find a universal representation of NL, which in
this project is a nested and extended nested representation
based on the structural relations between the concepts. We
consider NL to be built from structures, and in this way we
link the syntax and the semantics.
Summary: We used the ‘toy example’ to demonstrate how
the nested/operator representation of NL can serve for the
translation of an NL description into a semiformal OO
representation. Many authors correctly observe the OO
character of the language, but, instead of tracking this
object orientation, they take it outside language and try to
explain it with grammatical terminology, such as common
noun, proper noun, verb, attribute, etc. The structuring that
is typical for the OO approach comes from the structured
nature of things in the real world, which is reflected in NL.
To build the SE model from unrestricted NL, we use the
structure of the concepts in the text, rather than the
grammatical structure of phrases.
Our future work is concerned with the automatic extraction
of domain models from the NL description. Such models
will help analysts with the tedious work of developing
domain models for complex software systems.

REFERENCES

1. Burg, J. F. M., van de Riet, R. P.: Analyzing Informal

Requirements Specifications: A First Step towards Conceptual
Modeling, Proc. of the 2nd Int. Workshop on Applications of
Natural Language to Information Systems, Amsterdam, 1996.

2. Fliedl, G., Kop, Ch., Mayerthaler, W., Mayr, H. C., Winkler,
Ch.: The NIBA workflow: From textual requirements
specifications to UML-schemata In: ICSSEA, Paris, 2002.

3. Kop, Ch., Mayr, H. C.: Mapping Functional Requirements:
From Natural Language to Conceptual Schemata, In Proc. of
the 6th Int. Conf. SEA, Cambridge, USA, 2002.

4. Lee, B.-S., Bryant, B.R.: Automated conversion from
requirements documentation to an object-oriented formal
specification language. In Proceedings of SAC(ACM), Madrid,
Spain, 2002.

5. Moreno, A.: Object-Oriented Analysis from Textual
Specifications, In Proc. of 9th International Conference on
Software Engineering and Knowledge Engineering (SEKE’97).

6. Araújo, J., Moreira, A., Brito, I., Rashid, A.: Aspect-Oriented
Requirements with UML. Workshop on Aspect-oriented
Modeling with UML, UML 2002, Dresden, Germany

7. Ilieva, M., Ormandjieva, O.: Automatic Transition of Natural
Language Software Requirements Specification into Formal
Representation, NLDB 2005.

8. Ilieva, M., Ormandjieva, O.: Models Derived from
Automatically Analyzed Textual User Requirements. Proc. of
SERA’06

9. Ilieva, M.: Graphical Notation for Natural Language and
Knowledge Representation. In Proc. of 19th SEKE, 2007.

10. Ilieva, M.: Use Case Paths Model Revealing Through Natural
Language Requirements Analysis, Proceedings of ICAI, 2007.

11. Ilieva, M, Ormandjieva, O.: NLP and FCA Technology for
Automatic Building of DM, Proceedings of SEA, 2007.

12. Abbott, R.: Program design by informal English descriptions,
Communications of the ACM Volume 26/11 1983, pp. 882-
894.

13. Mihalcea, R., Liu, H, Lieberman, H.: NLP for NLP, CICLing
2006, LNCS 3878, pp. 319-330, 2006.

54

���������	�
��
���	������������	����
��	����������	�
���
�

�������	��
�����������
��������������
�������	��
������������������	���	�����	������	�����������

������	�	�����������	����������
����������������� !""������������#���

$%	���������%����&�'()#���*�#�*���
�

�
���	���	�

�
+&��� 	�����#��� ��� ���������� �,����� ���� ���

�����'��������	������	�������&���##�������	�����
�� ��������� ���� �&�� ��-��������� ���������� #������*��
.&�����	���������'���������	�����&���/�����	��,�
��0�����	��	�� ��	�/�������#���������	���������/��
����	���	�������*�.&�� ���������� ��-��������� ������
�����������,�������&�&�����/������	���	��&������
�,#�� ��� ��-��������� ����� ��##���� /������� #���������
��	� ���� /�� �����	� ����� �&��*� 1����&������� �&��
/�&������� #���#������ ��� ��� ���������� �,����� �&���
���������� ��-��������� #���	�� ����� /��
���#�������	���&���	����#���#�����*�2��&�	������	�
���������� ��-�������������� /�� �#����	����	�������
���&��#����,���������,�������#��#���,��������	��#���,�
�&��� ���� ��������,� ��� �&��� �&�� ��-��������� ����
���#����� ��	� ���������*� .&�� #�#��� #�������� ���
�##����&� �&��� #���	��� 	�����	� ���&�	��������
��	����� ��� �#���,� �&�� 	���� ��-��������� ��� ���
���������� �,����� ����� ���������� ��-��������*�
3����� ���������� ��-��������� ���� �����	� �����
/������� #������� 	������� ��	� ���� �&��� �#����	� ��
�&�� �������� ���0�	����#����*�1�4���	������-���������
���� �#����	� /,� ������ ��� �&�� ���������� ������ �&���
�&�� ���������� �,�������	� ��� ������ �4�&�����	�����
�&�� �4������� ��� �&�� ���0� 	����#����*�
����������
�����������#����	�����&��/���������213���������/,�
��������������������	�����*�
�
����
����
���� ����	�������� �����	����� ����	��������
	�������	��������������
����	��	����	�������	�����������
�
�����	�
��	�
��
�

��
������
	� ������������	���	���
���	��	��������	���
���� ���� ����	�������� �� 	����	� � !"#$� �������� ��� ��
��������� �������� ��� ���� ���
� ��� �� ��	���	�����
��
��	� ���������
�%���������������	�������	����������
!&�$���������� ��	���	�������'�����	
������������
 �
�
!�� �� ()*(+*(),*$��-��	���������������
��	� � 	����������
����� ��� ���� �� ��	���	����� ��
��	� .'���
� "#�

��������������
�	�����������'������	
���
������������&��

�%����������&��������� ��	���	���������
����� ����
�
�/������ ������	����� ���������� 	�%��%	� � ��������
����	���	�������
0���	�������	������������������'��	�����
�������� ��
���� (1*�� ��
� "#� ����������� ���� ���	��

�%��������� �����
�
	����� ����� ���
	�	����� ����� (2*��
3	�����
���	��
�����������
������������������ 	�� ����"#�
��������������
������������������� �����������������
���!'�����$�����	� ������ ��	���	����

&�� �����	���� 	��
������� �����	����	��� 	�� ���� �����
������� ������ ��� ��������� ������� ��	����� ��� �����
�/������	���� (24*�� 5�� �� �������� ���� �����	�����
����	�������� ��� ��� &�� �������� ����	%�� ����� ��� ����
������	���
��	� �����"#�����������
�����'������	
���
�
���� ��	�� ����� ��� ����	�������� 6��������� �������� ����
'��	����� ���������� ��� ��� �� ��	���	���� ��
� '��	�����
��������
	� ����� !-78$� ���� '�� ���
� ���� ���	��
��	�	���	���� 9���%���� �����	����� ����	�������� ���� ����
����	�	���� ��� ����������� ����	��� �� �������� 6���
'���%	����� ��������	%�� ��� ��� &�� ����� 	�� ���%	
�
� '��
�����	����� ����	�������������'�������������
��	�����

���� ��������	%���-���� �����	����� ����	�������� !��	���
	�
	����� ����� ���� ������� ������
�$� ��
�
����
����	�������� !��	��� 	�
	����� ����� ���� ������� ������
�����$������'��������	��������������

����	�	���	�����������	�������
�
��������	��������	��
�����������������
��	�����������"#����������(2:*��
6���� ���%	
��
	�������� ������� ��������	%���� ����� �����
����������� ����� ������ ())*�� ��
� ������ �/	��� ��%�����
�����	����� ��
� ������� ���� ���	�� ����	�	���	���� (24*��
9���%���� ���'����� ���� ��	��� ����� ����	��	� � '����
������ ��� ������� ����	��������� 6���� ���� ��������
����	�	�
� ������������ ��
� 	�������������� ��
�
	�����	������� '������� ���� ����	�	���	���� ���
���� ��
�
�����	����� ����	�������� ���� ������� 	�� ����� ���� ����
��������� ���� �
� (2,*(22*(2;*�� 6���������� ������ ���
����	� � ������� ��������� ��� ��������� ��	�	�� ��
� ����	���
��������������������

6�	�� ������ ��������� ��� ��������� ����� ���%	
���

���	��
������
��� 	���� �	
����� ���� ���� ����	�	���	���
��� ����
���� ����	�������� ��� ��� &�� ����� �����	�����
����	���������6��� ������������������������<�2$���������

55

��������������������	�������
����������	���'�������
���
�
���� �
� '�� ��� &�� ��� ���� '��	�� ��� 	��� �����	�����
����	�������=� ��
��)$� ��� 	��� ����� ���� ����	�	���	��� ���
�����	����� ��
�
���� ����	�������� ��� ����� �������'�����

����	'�
��'�%��
��������	����

6��� ��������� ����� 	�� ��������
� 	�� ���� ������� ��� ��
�����'����	%�� ���>���� �	��� ���� ���������
�%���������
�������� ?5"#� 6������� 	��� !����<00��������.
�����$����
�	�� 	�� �����/����	���������	
���"#����������
(4*(:*(+*� !�������
� ��� ��� '��	����� �������.'���
�
������������������$������������������'��	������������.
������
� �� ��	���	����� ��
���	� �� ������� ��������
������	���'��	����������������� 	����	� �!����	
���
����
	����%�����$�� ��
� ����	�	���	��� ��� �����	�����
����	���������?5"#������@@.A����
�(2+*����	���	����
�����
��� �� ���� �������	�� ��������� ������	��� '���
�
���
���.�������
� ����������� ��
��	� �� 6����������
�/���
	� � ���� '��	����� �������.'���
� ��������� �	���
����	�	���	������
���� ����	�������� 	�� ������	��� 	����
���
��� ��������� 	��� ����� 	�� 	�� ���� ���������
�%���������
������������������������

����	�	���	��� ���
���� ����	�������� ����� �����	�����
����	��������	������	�
�����������������3	����������	�����
����	��������������	�	��
������-78����
����������	�	�
�
	�� ���� ����� ��� �����
����	��	���� 	�� �� ��/����� ����������
B�/���
���� ����	������������ ����	�	�
�'����������� ����
	�������	��� ������ ����� ���� &�� ��
� 	��� ������ �	���
�/���� ��
��	� ������/����	���������������
����	��	�����
&�������	�����������������	�	�
���� ����'��	�������-B3�
 �������'��������	� ���������� �	
��	�������
����������
	����
�
�	��������/����������������������
����	��	�����

6���������������������	���� ��	��
�����������<�����	���
)��������������%��%	������������������=�����	����;���
�
4�
����	'����������	�	���	�����������
����	��	������
����
	�������	��� ������� �������	%���=� ����	��� :� ��%	����
������
� ����=� �	������� ����	��� C� �/���	��� ����
�������	������
��������������
�
�������
����
��������
�

5���������������������
����	��� ���	���	���������������

�%��������� �������� ��� ?5"#� 6������� 	���� 	�� ����
'���� ���������� ��� �/���
� ���� '��	����� �������.'���
�
�����������������	���

�������
��������	���������

3��� ���� '��	����� �������.'���
� ����������
����
����	��������
��	��� ���� ���� �	����� ��� 	�������	��� �����
���������
����	��	����������&���	������
���������'��	�����
������ ���� ��������� ��������
�� 6����� �	����� �	��� '��
���������������&����
�	���������	����/���� ���6����������
��� �
%������ ���� ���� ����	�	���	��� ��� ���� 	�������	���
������ '������� ��� &�� ��
� 	��� ����� ��� ����	���
����
����	��������� ?������������ ���
���� ����	�������� �	���
'�� ������
� 	�� ���� ���� �	����� ��� 	�������	��� ����� ����

���������� ���� �����/����	������ ���� �����
����	��	�������
��� &������ ����	�	�
�� ��
�����	�������'�������
������
�
�����	����� ����	�������� �	��� �/	��� 	�� ���� ���� �	����� ���
	�������	��� ����� ���� ����	�	�
� ���� ���
� ��� 	����� ���
�������������������
����	��	���

6��� ��������� ����� 	�� ��������
� 	�� ��	�� ������
�

�����������	������������	�	���	������
�	������	�������
���� ���	%	�	��� !3	 ���� 2$<� ����	�	���	��� ��� �����

����	��	���� ��
� ����	�	���	��� ��� 	�������	��� �������
B������������ ������ ���	%	�	��� ����
� '�� �� ��
�
� ��� ��
��	���� ���	%	��� !����	�	���	��� ��� �����
����	��	���� ��
�
	�������	��� �����$�� 3	����� �����
����	��	���� ����
����	�	�
� ����� ��.'�� -78�� ����� �� ���� �	��	� � ��� ��
��/�������������������/���	��
�	��(:*��B�/���	�������	���
������ ���� ����	�	�
� ����� ���� �������� ��� ���� ��/�����
�����������������'��	�������-B3� �������'��������	� �
��������� �	
��	�����
�

�

Figure 1. Approach for requirements elicitation
and specification of information systems

�
&�� ��������� ������ �/���
	� � ���� '��	����� �������.

'���
� ���������� ���� "#� �������� ��� ��� &�� ���� ���
�� ��	���	�������������������	�������������!3	 ����2$<�
�	� �� ���!� ���"�	�
��#��
�#�� <� ���� �������� 	�� ���
��
������
� ���� ����	���	���
���	�� '�� ��
��	� � ����
�������� �� ��	���	����� ��%	�������� ��
� ��� �'��	�� ����
-78����������� ��	���	���
�	� �� ��� ���	��� ����
��� ���#����<� ���� �������� 	�� ���
��
������
���
�������������������� �������
�
�����	���
������������������'��	������������������������ ��	���	���
�	� ��$��%���������	�����������	�
�<�������������	�����
����	������������	���������	��������������	����
���������
�������� ����'��	������������������
��������	�������
����
����	�������� ����� ���������� ���� �	����� ��� 	�������	���
����� �	��� '�� ���������� ���� ���� �/����	��� ��� ����
�����	���������	���������

56

6�	�������������������������	�
���� ���������'��	�����
�������.'���
� ���������� @� ��	���	�������
��	� � ��
�
������� �������� ������	�� ���� ���� ��� 	��� ������� 8���	���
�'�����������������
�	��(4*���
�(+*��

5� %���� ���	�	%�� ��	��� ��� �����'����	� ��	��� ?5"#�
6������� 	��� 	�� ����� 	�� '���� �� ��� �� ���
	� � ��������
!����<00������	%���%�����$�� ��� ������ �� ��	���	���� ���
��	������������%��'�������
�����%���������������������
6����� �� ��	���	���� ���� �����0��
	��� �	��
�� 5�� ���
�/����������/���	����������������������.�.������������
!����<00������������.�
��	�����$�	�����
��B������������
���������������������
��	�������/���	��
���
�>���������
�������	�������	���	�����
���

3	 ����)� ������ ���� '��	����� �������� D���� ������E�
��
����
� 	�� -7AB� (2C*�� �	���� ���� �/������ 	��
����	 ��������
�� ���� '��	����� �������� 	�� ���� �/���	��
�
	�� �����
���	���B������������	�������'����	���
����������
���� -78� ����� ���� ��������� ����� ���� ����	����
�/����	���� ��� -7AB<� ��'���� !��� ���������� ����
�������	��� ��%��� ��� ����� �'>����$� ��
� ��������	%��
������ !��� ���������� ���� ����� ����� ���� ����� �'>����� ����
�/�����
� ��������	%���$�� 8���	��� �'���� ������ ���������
����'������
�	��(:*��
�
$�����������	�
��
��	����������	�
���
�

6��� �����	����� ����	�������� ��� ��� &�� ���� ��	�	��
�
����� ���� ��.'��-78����� ����� ��	���	�����
�����	�	�
�
'����������� �����
����	��	���� 	������/����� �������������
�/���	��
�	��(:*���

6�/����� ���������� 	����
�� ���� ������	� �
	�������	��<� ���� ����� ��� ���� �����
����	��	��=� ����
��'������ ��
� ���� '��	����� �������� ����� ���� ��������
=�
���� ����� �������	'��� ���� 	��� �/����	��=� ���� ��	 �����
������
	�	���� ��
� �������
	�	���� ��� ���� �����

����	��	��=� ���� 	����� ��
� �������
���	�� ���	�	��� ��
�
���	�� ������=� ���� '��	����� ������ ����� ������� ���� �����

����	��	��=� ��
� ���� ������� ����� 	�����	��� ��
� �������
�������	'	�	���!����'�������
����	��	����������	�������	���
'������� �� ����� ��
� ���� &�$� ��
� ���	�� ��������	%��� ��
�

�/����	�����F�	
��	��������	����� ��/����� �������������'��
����
�	��(:*��

3	 ����;� ����������/��������� �����
����	��	��� �����
���� '���� ����	�	�
� ����� ���� -78� ������ 	�� 3	 ����)��
6���
���	�� ���	��� D?�������E� �������� 	�� 	����� ��
�
����������?��������!2$���
�?��������!)$�'������������
���������
	�������������������

�
Task Description: CAR RENTAL

Business Process: Car Rental Role: Office Employee
Subtasks: Choose a car, Check whether a customer is new or not,
Record customer data, Search for customer data, Fill contract,
Choose Extras, Take deposit, Print contract details
Triggers: -
Preconditions: -
Postconditions: -

 Input Output
Domain Entity State Domain Entity State

Car Ready Rental Contract Open
Customer (1) - Customer (2) -
Extra Ready Car Rented
- - Extra Rented
Business Rules
• The insurance of a car must be valid during the rental period

User intention System responsibility
Normal

2. Select a car

4. Select a customer
5. Introduce rental contract
 information

1. Show cars

3. Show customers

6. Store information
7. Show contract details
8. Print contract details

Alternatives
4.a.1. Introduce customer data

4.a.2. Store customer data (�5)

Extensions

5.a.2. Select extras

5.a.1. Show extras

5.b.1. Introduce deposit amount

Figure 3. Example of task description
�
&�����������	�
��
�����
���	�
���#
���
�

������� ��������� ����	��� ���� �	����� ��� 	�������	���
��������&����
�	�����������/���� �����������/����	������
	��� �����
����	��	���� '�� ������ ��� 	�������	��� �������

�
��
���
��
�	

�
�
��
��

�
���
��

�

��
��
��

�
��
�

��
��

�

Figure 2. Business process “car rental” of a rent-a-car company

57

6���� ���� ����	�	�
� ��� ���� '��	�� ��� ����-B3� �������
������	��3	 ����4��
�

<Information flow> ::= <Input flow> |
 <Output flow> | <Input flow> <Output flow>

<Input flow> ::= � <Data expression>

<Output flow> ::= � <Data expression>

<Data expression> ::= <Domain entity> |
 <Domain entity> / <Attribute> / |
 <Data expression> + <Data expression> |
 (<Data expression> ‘|’ <Data expression>) |
 <Lower limit>{ <Data expression> }<Upper limit> |
 [<Data expression>]

<Attribute> ::= <Attribute name> |
 <Attribute> + <Attribute> |
 (<Attribute> ‘|’ <Attribute>) | [<Attribute>]

<Domain entity> ::= <String>

<Attribute> ::= <String>

<String> ::= <Character> | <Character><String>

<Character> ::= <Letter> | <Digit> | _ |

<Lower limit> ::= <Digit> | <Digit><Digit>

<Upper limit> ::= <Digit> | <Digit><Digit>| n

<Letter> ::= A | a | B | b | C | c | D | d …

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 4. BNF Grammar for the specification of
information flows

�
&�������	�������������'������	
���
�������	��	���	���

���
���� �/�����	���� (24*�� 	����
�����/�����	���� ����� ����
�/���� �
� '������� ��� &�� ��
� 	��� ������
��	� � ����
�/����	�����������
����	��	�����6�����	���
%���� ������

���� �/�����	���� ��
�� ������ ��� 	�������	��� ������ ����
����� ���� %���� ��������� ����	��� ��
� ����� ���� �������
�����������
���������
�������������
���
������
��

&�������	��� ������������������
�'�� ���� 	���� ������
��������� (2,*�� ��
� ��%����� ��	��	����� ���� ����� ����
��������
�	��(C*��9���%����������������
���������%	
��
�����������-B3� ��������
�������/���	������������	���
��� 	�������	��� ������ 	��
���	��� ��
�
�� ���� ���%	
��

���	��
� �	
����� ���� ���� ����	�	���	��� ��� 	�������	���
������� &�� �

	�	���� ���� ���� ��� ����	��	� � 	�������	���
������ ��� ���� 	���� ������ ��������� 	��
	�������� ����� ����
�������������������������	����������
��

&�������	��� ������ ���� ��� �'������� �����������	��� ���
����������	���	���'����������&����
��������6��������
���� ���
���	��
� ���� ���� �/������� ���������
	� ��������
����� 	��������� ������������ 3������������ ��� ��	��� �����
��������
���� ���� ���� �����	��.��	����
� ��� '�� �
�������
��������	������������	�	���	�����

6���	����������������	�������	�����������������������
���� �	����� ��� 	�������	��� ����� �� ����� ���� ���
������	��������!	����
����	�$����&��������/����	� ���
�����
����	��	���� 6��� ������� ����� ���������� ���� ����
�	��������	�������	�����������&���������������	��������
��������������/����	� ��������
����	��	����

&��	�������	��������������	����������������������	������
���� 	�������
�������� ������������ 	�������	����������
�
���� ������	��� ��� ���� 	����� ��
� ������� ��� �� �����

����	��	��� ����
	��������� 6��� 	����� ��� �� �����

����	��	��� 	�� ����
���	�� ���	�	��� ����� �/	��� ��
� ����
���
�����������
�'��	�����'��������������������������	��
����
���	�����	�	������������ �������
�������� �
�������
�����/����	������	�����'�������

6������'��������������������	�����	�������	��������
��
����	��������	������<��

• G�H������	������	��������	�������	���������&��
• G�H��������������	��������	�������	�����������&��
• G0�0H���������'����	��
• GIH������� �� ��	���
• G!��J��$H��������������	%��
• GK�LH�����������	�	���
• G(�*H���������	���
• G�H������	�
�����	��������'�����������	�	����
&�� 	��������	��� ����� ���� 	�������	������������ ���� �����

����	��	���� ��� ��� &�� ������ ������� ��������� ���
����������� ��
� ����	�������� ����	��� ���� �	����� ���
	�������	��������
��	�������
��������	���������������&���
6����� �	����� ��� 	�������	��� �	��� '�� ������ ����� ����
���������� ���� ���� �/����	��� ��� ���� �����
����	��	�����
��
� ����� ���� ���� �������� ��� ���� '��	����� ����������� &��
�

	�	���� ����	����� ����	��	� � ���� 	�������	��� ������
����� �� -B3� ������� ������� ���� �������	��� ��� ����

��	%��	���������������	��������
	� �������'������	'����
������ ���������������������
����	'�
�	��(C*���

5���������	���	��	����
�
�	��������/�����������������
�����
����	��	�����������	������	�� 	�������	�������������
����	�	���	���� ���
���� ��
� �����	����� ����	�������� ����
	��� ����
������	�	���	������	�������	���������	������	�
�
�������������
���	�����	�	���������������
����	�������
�
���������������
����	��	������
������	���	�������	������

6��� �	
��	���� �������	��� ���� 	�������	�������������
�����
����	��	��� ���� ��������
� 	�� ���� ������	� �
��'����	���� B	��� �	
��	���� ��%�� '����
��	��
�� ��
�
��������� �����
�	�����������������

&���� '���#����� �
�� 	��� ���������	�
��
��
���
���	�
���#
���
�

3��� ����� �����
����	��	��� ��� ��� &��� ��� 	�������	���
�����	������	�	�
�'��������	� ������� �	
��	���<�
�
'�(�)�	������	�
��
�������������#
���

F2�2$�5��	�����������������'������	�	�
�	���������/	���
��������	����������� 	�����	��� 	����	��� ������������� ���
����������� ������/	��	� ��	��������	�������	���	������
�������!
���	�����	�	��$�����������	����
���������	�����
���	�������	���!
���	�����	�	�����
0������	������	'����$��

F2�)$� 5�� ������� ����� ���� ��� '�� ����	�	�
� 	�� ����
������� ���� ��� ������� ��� ������ �'���� �/	��	� � �	����� ���
	�������	������ ������
���� ���� �����
����	��	���!
���	��
���	�	�����
����	������	'����$��

58

G2) Determination of pieces of information
(Normal)

���� Car + Customer (1) + Rental Contract / contract number +
 current date + current time + office + return date + return office /

���� Rental Contract / contract number + current date + current time +
 office + return date + return office + rental cost + extras cost +
 VAT + deposit + total cost / + Car / model + plate number / +
 Customer (1) / name + surname + ID number /
�

(Alternative ‘a’)

���� Customer (2) / number + name + surname + ID number +
 address + city + telephone number + credit card type +
 credit card number + credit card expiration date /

���� Customer (2) / name + surname + ID number /
�

(Extension ‘a’)

���� 0{ Extra }n

���� 0{ Extra / name / }n

(Extension ‘b’)

���� Rental Contract / deposit /
�

G3) Weaving
Task Description: CAR RENTAL

Information flow

���� Car + (Customer (1) | Customer (2) / number + name + surname +
 ID number + address + city + telephone number + credit card type
 + credit card number + credit card expiration date /) +
 Rental Contract / contract number + current date + current time +
 office + return date + return office + [deposit] / + [1{ Extra }n]

���� Rental Contract / contract number + current date + current time +
 office + return date + return office + rental cost + extras cost +
 VAT + deposit + total cost / + Car / model + plate number / +
 (Customer (1) / name + surname + ID number / | Customer (2)
 / name + surname + ID number /) + [1{ Extra / name / }n]

Figure 5. Example of specification of
information flows

�
'�(�)�	������	�
��
���������
�����
���	�
���
�������
��	����	�
��

F)�2$�3��������	�������	������������
�'������	�
�����
!�������� ��������	%��� ��
� �/����	���$�� ����
���	��
���	�	��� ����� ���� ���������� 	�� 	��� ����!�$� ��%�� ��� '��

�����	��
�� &�� ������ 	������� �������
���	�����	��� 	����
��������������������� �� ���
��

F)�)$� 3��� �����
���	�� ���	��� ����� �������� 	�� ���
	����� ������ ���� �	����� ��� 	�������	��� ����� ����������
����	'����� ��� ����
���	�� ���	�	��� !�'��	��
� �����
��������
���� ��
� �� ��	���	�����
���������	��$� ��
�
����� �� ����� ����� 	����
���� 	�� ���� ������� ��%�� ��� '��
����	�	�
�'��������������'����	����

F)�;$� 3��� �����
���	�� ���	��� ����� �������� 	�� ���
������� ������ ���� �	����� ��� 	�������	��� ����� ����������
����	'�������� ����
���	�����	�����
� ����� ����������
� ���
����������������/����	���������������
����	��	�����%�����
'������	�	�
�'��������������'����	�����

F)�4$�3��������
�����/�����	��������������	������'���
��������	�	�����������'������	�	�
��
�
'$(�*����� �
���������
�����
���	�
��

F;�2$� 6��� �	����� ��� 	�������	��� ��� �������
	�������	��� ����� ����
� ���� '�� �/���� �
� '������� ����

���������
��������	�������������	%�������/�����
���
�����
�	����� ��� ���� ��������	%�� ��%�� ��� '�� ���%�
�� 6���
���%	� �	������	�
�����'������	��	� ���������	%���	������
����!�$�������������
����	��	������

F;�)$�6����	��������	�������	�������/����	������%��
���'�����%�
�	�����������������	��������	�������	����6���
���%	� � 	�� ����	�
� ���� '�� ����	��	� � ���	���� 	�� ����
����!�$��
�

3	 ���� :� ������ ���� �������� ��� �����	� � ����
 �	
��	���� ��� ���� �����
����	��	��� ��� 3	 ���� ;�� 6���
������ ��� ����
���	�� ���	�	��� ���� ��
���	��
� 	�� ����
���������
� ��������	���	�����������	����������� �	
��	����
!F2$� 	�� ���� ������ '������� 	��� ������� 	�� ����� ���
��
������
�!'�������	������������
��������������������
����	�	�
$��
�
+��%�#�	���
���
�

6��� ����� ������� �����	��� 	�� ���� "#� �����������
�����
���� �	��� �����	����� ��
�
���� ����	�������� 	�� ���
��
��� �������� ����� ����� ������ ��� >�	����� �	��� ������
6���� ���� '���
� ��� ������	���� ����� ��� �	� �	��	��
��������� (M*�� ���������
	� ����� (2)*�� ���	%	��� ������
(2;*� ��� ����	������� �	
��	���� (22*��6����������������
���� �����	��.��	����
�� ��� �����
�� ���� ��������� ��������
���� ����	���	���
���	��� ��
� �����
�� ���� ���%	
��
 �	
�������������	����������	�	���	����&���

	�	���� �����
���� ����� ������/� ����� ���� ��������� ����� ���� '����
��������
�'����������������	���������������������
����
�����
���������������������/	'��������	�������	����������

5��� ���� �� ��	���	����� ��
��	� .'���
� "#�
����������� ����� ��
��� '��	����� ����������
���� �	���
�����	����� ��
�
���� ����	�������� !�� �� #N8� ()*� ��
�
5"&�� (),*$�� 9���%���� ����� ����� ����	��� �	
����� ����
����	�������� ��	�	���	��� ��
� ����	�	���	��� ��
� ����
���������� ��� ����	������� ��
� ������������� '�������

���� ��
� �����	����� ����	��������� ����� �����������
���������
������
��	� ������-78��!�� ��(21*$��'�������
��
���� ����� ���� �'��	��
����� 	������������
� �	
�����
���� �������	��� 	�� ���� ���%	
�
��O���� �������
��	���
����'��	������������.'���
����������������������������

�������/���	���������	����%��'��	����������������

3	������� ��%����� ������ ��%�� ��������
 �
� ����
	������������
�'����	��������
���.�������
���������	%��
�������
��	� �'��	����������������6�����

�����	������
��������
���.'���
����������
��	 ���������������	� �
���������� (2M*��
�����	������
���� �����������	��� ()2*��
��
�
�������.
�	%��� ��������� �������� ();*�� 6�����
�����������
����	���������������������������	%�����
����
����� ����� �� ������ ������� ����� ����� �� ��������	%�� ���
	�������	����������	������&�����
�
�������� ��
�-78��
�������������������	����������	�	���	����

59

,��-
��#���
��������	�����
���
�

@� ��	���	����� ��
� '��	����� ����������
��	� � ��� ��
������ ���� ��
������
	� � ���� ����	���	���
���	�� ����
������	��� ���� &��
�%���������� -78�� ��
� �����	�����
����	�����������������>������������&������	�	���	����'���
������� ��������� ����� ���� �	�	�� ���	�� ������ ��� �����
�������6��������� ����� ����������� �������� ����� ���
����
����	��������	�������������

6�	��������������������
���������������������%	
���

���	��
� �����
��� 	���� �	
����� ��� ����� �������
��������� ����	��� ����
���� ����	�������� ��� ��� &���@����
���� �����	����� ����	�������� ��� ���� &�� ��%�� '����
����	�	�
� 	�� ���� ����� ��� �����
����	��	����
����
����	�������� ���� ����	�	�
� '�� ������ ��� 	�������	���
������'��������������������
�	���������������/����	� �
���� �����
����	��	�����5�-B3� ������� ��
� �	
��	����
��%�� '���� ��������
� ��� ����	����� ����	��� ����
	�������	��� ������ ��
� ��� ����� ������������� ���
����
����	�������� ��
� ����	������� �	��� �����	�����
����	�������� ���� '�� ������
�� &�� �

	�	���� ����
����	�	���	�������
������
������	���������	����������%��
'���� 	��� ����
�� 6��� ��/����� ��������� ���� ����
����	�	���	��� ��� �����
����	��	���� ���� '���� �/���
�
�
�	�������������	����������	������	��	�������	����������

5�� ������� ������ ���� ��������� ����� '�� ����	�
� 	��
��������>�����	����
���������������%�������	����
���������
	����%��������	 ��� '����
��� &�� 	�� 	��������� ����� ����
������������� 	�����
� 	�� ��� �����>�������
� 	�����>�����
	�� ��	��� �� �� ���� ������� �/	����� &�� �

	�	���� ����

�%�������������������������	��������
�������	�	���������
���� ��� ���� ���� ��������� ��
� ��� ��������� ����
����	�	���	������	�������	������������
��������	��������
����������	���������������.�����	���������	����������
�
 �	
��	������������
��	%��	�������������������	�����
���
!�����	��������$����@@.A����
����������������
�
.������
�#� ���	��
�

6�	������� ���� '����
�%�����
��	��� ���� �������� ���
���� ����	��� F�%�������� ��
��� ���� ���>���� �#�5A@�
6&B),,+.C)M14���
�������� ����37��57),,C.,);)4��
��
���.�	�����
�'��3#8#"��
�
/��%����������
�
(2* &�� 5��/��
���� &�� -	
���� ��
� F�� "� �%�� DO�������� ���
"���	�������� #� 	����	� � ���� -��	����� 7������� ��������
!"#-7�P,;$�� @'>���	%��� ��
� A��	%��	��E�� ?5&�#P,;�
O����������N�� ������0��
����5����	��
()* ��� -�'������ 5�� 7�������� ��
� ��� ��	����� D#N8� �����
F�	
�E��),,2������<00����
�%������0Q>�0��
R����R �	
�������
(;* ��� ?�������	��� ��
� ��� �������
�� ��������� ���� �����
5

	���.O�������"��
	� ��2111�

(4* �����
�����������
�������������D&����%	� �"���	��������
5�����	�� ����� �� -��	����� 7������� A�
���	� <� 5�
7���	�	���	%��5�������E��-&��),,M��&���'������5����	��
(:* �����
�� ��� ���� ��
� ��� ��������� D-7AB.'���
�
����	�	���	��� ��� 6���� 8����	��	���<� 5�������� ��
� ��������
������E��"#3�SH,1��5�����
����B��������
���
(C* �����
�� ��� ����� ��� ����� D5� "���	�������� #� 	����	� �
5������������8����A�
���	� ����7������.5�����&�������	���
�������E��-&��),,1��7�������7����
�
(+* �����
�� ��� ����� ��� ��������� ��
� T�� 7������� D-��	�����
7������� A�
���	� � ��
� 7������� 5�����	�� ���� "���	��������
5�����	�� ��� &�������	��� �������E�� ?5	�#H,M�� A�������	����
3������
(M* &�� 8U���� ��� ��������� ��
� 5�� A������� D?����������
A�
���	� � -���
� ��� 6����������	��� �	� �	��	�� 7�������E��
#"),,:��N�� ��������5����	��
(1* A�� 8������ O�� %���
��� 5������ ��
� 5�� ���� 9�����
���
�������56�����
���������� �,������� O	����� ?�	���������
),,:�
(2,* A�9��3��������?�A����O���������
�A�"���-�� ����D&����
?����<� &��� ���	� �����?����� ��
�8���	��A�
���E��"#H,M��
-�������������	��
(22* A��F�	���� D5��	 ����	 ���5�������� ���?���	����������
������	�����
�?�����A�
���E��&?"#P,,��������'�� ����5�
(2)* #�� &��������T�� 7������� ��
�"��O	��	� ��� D"���	��������
#� 	����	� .-���
� ?���������� A�
���	� E�� 7�-���������
8���������+!)$��C2.+)��),,)�
(2;* F�� NV������� 9�O�� �	/�� ��
�A��O	������ D?����	� � ����
?���� ��
� ?����� A�
���� ��� �� A����� ���� ��	
��	��� ��
�
��	�	���	��� ��� "���	�������� ����	�	���	���E��7�-���������
8���������C!2$��;.2+��),,2�
(24* ��� ��������� ��������� 7�-��������9� ��,���� ��	�
.��&�-�����5

	���.O����������
����),,)�
(2:* -�� B���	'��� ��
� ��� #�����'������ D"���	��������
�� 	����	� <������
���E��&?�#H,,���	���	����&�����
�
(2C* @AF�� -��	����� 7������� A�
��	� � B����	��� !-7AB$�
����	�	���	���%2�)��),,1������<00����'������ �
(2+* @�� 7������ ��
� ��?��A��	������	��5:�����6��&��������
��������������	� ����9�	
��'�� ��),,+�
(2M* 9�5�� "�	>����� ��� �	����� ��
� O�A�7�� %���
��� 5������
D7��
���.-���
�O��������8��	 �E��;���������������������

�����������,������),!2$��))1.)C)��),,;�
(21* 5�� "�
�	 ����� #�� 3�����
��.A�
	���� ��
� A�� 7	���	�	��
D?&A����7&A�6����������	��<�5�"���	��E��?@B3#B&��),,+��
-�	>	� ��?�	���
(),* 5�O�� �������� 6��� 5� 2������� �������� ��	����� !;�
�
�
	�	��$�����	� ����9�	
��'�� ��),,,�
()2* ��W�������� �����X�������
���3��B�������� D3�������	� �
���� 8���.3���� 7�������	%�� ���� -��	����� 7�������
A��� �����E��
���������� �,������ 7������&� 2+!4$�� ;+4.
;12��),,C�
())* N�� �	��� ��
� ��� ����� D5��� ���� ����� ��
� ������
	� ����
�������������� 	�� ����	�������� ������	�YE�� 7�-���������
8���������1!4$��))1.);+��),,4�
();* ���O�� � ��
�5��N������D5�3��������� ����8�������.
8�	%���O���������������E��-7A�),,:��B������3������

60

From organizational models to software requirements
Alicia Martinez 1,4

1Technical Institute of
Zacatepec, Mexico.

alimartin@dsic.upv.es

Oscar Pastor 2
2Valencia University of

Technology, Spain.
opastor@dsic.upv.es

John Mylopoulos3

3University of Trento,
Italy. jm@dit.unitn.it

Hugo Estrada4

4CENIDET. Mexico.
hestrada@dsic.upv.es

ABSTRACT
The early requirements phase, which is focused on the
analysis of the business environment where a system will
operate, is one of the current research priority areas for
several research groups around the world. The late
requirements phase, on the other hand, is focused on
analyzing the expected functionality of the system-to-be.
Late requirements analysis has been studied for years and
is well understood. However, these requirements phases
have generally been developed in isolation and we lack
techniques that derive late requirements from early ones.
The objective of this paper is to provide systematic
guidelines to generate the requirements specification of the
system-to-be from the relevant information of an
organizational model. This work has been made in the
context of OO-Method, a software production process that
automatically generates complete systems from late
requirements specifications.
Keywords
Organizational requirements, software requirements.

1. INTRODUCTION
In recent years, many research efforts have been made to
define software development processes to generate
systems from software requirements. These approaches
solve many of the issues associated with developing
organizational software systems. However, they don’t
ensure that the system-to-be fits well its organizational
environment.

Accordingly, many researchers working in the area agree
that system requirements should be derived from an
organizational model. McDermind [1] indicates that when
the functional specification of the software system is the
focal point of the requirements analysis, requirements
engineers tend to establish the scope of the software
system before having a clear understanding of user real
needs. In this context, any attempt to generate a prototype
of the information system will be reduced by the
incapacity to assure beforehand the real usefulness of the
system in the context of its organizational environment.
There are several research works that highlight the
importance of using organizational models as a starting
point in the development of information systems.

However, there is currently no an industrial software
development environment that offers a methodological
approach that is based on an organizational model for the
generation of prototypes of information systems. The lack
of traceability methods has affected the practical
application of organizational model techniques in
integrated software production process environments.
Thus, we argue that the determination of a methodological
approach to use the elements of an organizational model to
obtain the expected functionality of the information system
is a basic requirement to assure its usefulness in practice.
In this paper, we present a method to generate information
system requirements from an organizational model
represented in the Tropos Framework.
There are some works [2][3][4] that offer solutions to
translate early requirements into software specifications
(requirements and conceptual models respectively). One
difference with our work is that we propose an
intermediate model to reduce the abstraction level of the
organizational model. The use of the proposed method in
the context of an industrial project is also a difference with
the other research works in the area.
The software requirements specification generated
corresponds to a specific requirements approach RETO
[5], which is the requirements method and tool associated
to OO-Method. OO-Method is the CASE Tool that is
being extended with an organizational modeling stage.
The paper is structured as follows: Section 2 presents the
foundations of the research work. Section 3 presents the
overview of the proposal. Section 4 presents the method to
extend the organizational model with concerned objects.
Section 5 presents the generation of software requirements
and finally, Section 6 presents the conclusions.

2. FOUNDATIONS
This section presents the methodologies used in this
research work: The Tropos Framework and the OO-
Method CASE tool. Both approaches are combined to
obtain a requirements model of information systems.

2.1 The Tropos Methodology
Tropos [6] proposes a software development methodology
and a development framework which are based on
concepts used to model early requirements. They are
based on the premise that in order to build software that

61

operates within a dynamic environment, it is necessary to
analyze and explicitly model that environment in terms of
actors, their goals and dependencies on other actors.
To support modeling and analysis during the early
requirements, Tropos adopts the concepts offered by i*
[7], a modeling framework defined in terms of concepts
such as actors and social dependencies among actors,
including goal, softgoal, task and resource dependencies.
In Tropos we have the following key concepts: a) Actor:
An actor is an active entity that carries out actions to
achieve goals by exercising its know-how. b) Dependency:
A dependency describes an intentional relationship
between two actors: the depender and the dependee that
wait for a dependum. There are four types of
dependencies: goal, resource, plan and softgoal
dependencies. By using these elements, it is possible to
define the Tropos models: a) The Actor Model shows the
dependencies that exist between the organizational actors
to achieve their goals, carry out tasks and provide or
request resources, b) The Goal Model represents the tasks
that have to be carried out by the actors to achieve the
goals which are expected of them. This model considers
means-end and decomposition links.
The Tropos and i* Frameworks have been used in several
application areas, including requirements engineering,
agent-based software generation, security modeling,
business process reengineering etc. However, in Tropos
methodology, there are still no methods to use the
organizational models to produce object-oriented
information systems in an automatic way within an
industrial software production context.

2.2 OO-Method CASE Tool
The research work presented in this paper has been made
in the context of the OO-Method project. OO-Method is
an industrial, model-transformation method that relies on a
CASE tool [8] to automatically generate complete
information systems from software requirements models.
The OO-Method can be viewed as a method where the
focus is place on properly capturing system requirements
in order to manage the complete software production
process. The conceptual model, which is semi-
automatically generated from a software requirement
model, specifies the problem to be solved (problem
space). Then, an abstract execution model is provided to
guide the implementation of these requirements in a
specific software development environment (solution
space).
The implementation of the corresponding set of mappings
between conceptual constructs and software
representations constitutes the core of a Conceptual Model
Compiler. The final software product is functionally
equivalent to the requirements specification.
However, at the present time OO-Method does not have
mechanisms to ensure that we are capturing the correct

requirements for the system-to-be. To do this, we need to
include an organizational modeling stage as first phase of
the OO-Method software production process.

3. OVERVIEW OF THE PROPOSAL
It is important to point out that one of the main objectives
of this paper is to define a systematic approach to generate
late requirements specifications that correctly fit the
objectives of the organizational actors. To do that, the
proposed method starts with the definition of an
organizational model that represents the relevant actors
and their goals (Fig. 1). Following, a goal analysis process
is carried out in order to identify the relevant plans that
fulfill the organizational goals (process 1). As result of this
process, the relevant plans to be automated are identified.
In process 2 we use a pattern language to generate a new
organizational model where the software system is
represented within its operational environment besides its
functions and relevant characteristics. Transformational
rules between models are used to ensure the traceability
that is needed in the model-transformation approach of
OO-Method. These initial processes of the proposed
method were previously analyzed in [9].

��������	�
���
�������

�������	
	�����	
���
��	
�	��

����������	�
��
��
�����
��	��

��	�����������	�

����������	�
��
��
�����
��	��

��	�����������	�

����
������
��	�
���
���

��	��	����
�	����
� �	����	
�

�����
��������
���������	��

�����	�	�
����
����

�����
��������
���������	��

�����	�	�
����
����

InputInput ProcessProcess DeliverablesDeliverables
LegendLegend

InputInput ProcessProcessProcessProcess DeliverablesDeliverablesDeliverablesDeliverables
LegendLegend

�����!	������

�������	�
����

����

����������	�
��
��
�����
��	��

���������	��
����

�������������	��

����"����
�����
���#

��������	 ��������

��������� ���������
����������	�
�
��
�����
��	���

�
��������
�$��	�

���

���������
����������	�
�
��
�����
��	���

�
��������
�$��	�

���

Fig. 1. Overview of the proposed method
In this paper, the analysis begins by understanding the
organizational context, where the software system actor
(SSA) has been inserted in the organizational model. Thus,
the process 3 consists in to extend the organizational
model with relevant objects, which we called concerned
objects. The result of these stages is the input for the
generation process of the requirements model which is
explained as a contribution of this paper (process 4). All
these previous phases were developed using extensions to
Tropos.
The evaluation of the methodological approach proposed
in this paper has been done using several industrial cases
studies [10]. In this paper we present the Car Rental
Management project, which concerns modeling the basic
process for a real car rental enterprise in Alicante, Spain.

4. EXTENDING THE ORGANIZATIONAL MODEL
WITH CONCERNED OBJECTS
This section describes the process to extend the
organizational model to identify the relevant information
in the definition of the system-to-be.

62

4.1 The Concerned Object Model
In order to reduce the abstraction level of the
organizational model, a concerned object model has been
proposed (as an intermediate model between the early and
late requirements models) in order to represent all the
relevant information to be considered in the definition of
the system-to-be.
A concern expresses a specific interest in some topic
pertaining to a particular system of interest (or other
subject matter) [11]. It is important to point out that
concerns do not exist until someone is concerned about
them. For example, in our proposed method, a business
plan does not constitute a concern until an analyst has
some reason to be interested in a plan as a candidate for
functionalities in the system-to-be.
We use the concept of concerned object to represent an
entity of interest in the process of defining the system-to-
be. Therefore, the concerned objects extend the
organizational model to facilitate the generation of
software requirements. A concerned object represents a
resource that is used within the organizational process, or
an abstract entity that will be used in the system-to-be. The
concerned objects sources are plans, resources and goals.
Fig. 2 shows an example of a concerned object with its set
of attributes.

Customer
dataSSA Clerk

Customer

Name Passport
number Address City Home

phone

Concerned
Object

AttributesLicense Birthday

Fig. 2. Primitives of the concerned object model

4.2 Rules for identifying concerned objects
A reduced version of the rules to create the concerned
object model is presented below.
Rule 1: A resource dependency between the SSA
(software system actor) and another organizational actor
can be extended with one or several concerned objects.
Rule 2: The attributes of the resource will be the attributes
of the created concerned object.
Rule 3: A plan executed in the organizational context can
be extended with one or more concerned objects.

Rule 3.1 When a plan uses or modifies a resource, the
plan must be extended with a concerned object that
represents the resource.
Rule 3.2 If a plan uses or modifies a resource that has
not yet been identified as a concerned object, then the
plan must be extended using this resource to create a
concerned object.
Rule 3.3 When a plan does not use or modify any
resource, then the plan does not need to be extended
with a concerned object.

Rule 3.4 A composite plan1 needs to be extended with
the concerned objects that include its children nodes.
For example, Fig. 3 shows the structure of a composite
plan and its associated subplans, where the concerned
objects identified in the subplans are used to define the
concerned objects of the composite plan.

% &

%

&'
�������

�$��	

���
�
��	�
�
(����

General Plan

Fig. 3. Example for extending a composite plan
Rule 4: The characteristics of the resources used in the
execution of a plan must be used in the identification of
the associated attributes of the concerned object identified.
Rule 5. A hardgoal is a candidate to be extended with
concerned objects if the goal is involved in a means-end
link where the children nodes are plans that are associated
with concerned objects.

The concerned object model will be the basis for the
generation of the requirements model for the system-to-be.

5. LINKING LATE REQUIREMENTS WITH THE
OO-METHOD REQUIREMENTS MODEL
This section describes our method to generate a
requirements model from organizational models
represented in the Tropos Framework.
The analysis performed in previous steps (business goals
analysis, extension of the organizational model with the
software system actor and extension of the organizational
model with the concerned objects) are the basis to obtain
the appropriate information to generate the requirements
model. The process to discover the use case model is
carried out by doing the following: a) Defining functional
groups, b) Discovering default use cases, c) Discovering
use cases though the analysis of the SSA, d) Discovering
use case actors, e) Discovering relationships between use
cases, and f) Building scenarios for use cases.

5.1 Defining functional groups
A functional group describes the different subsystems that
an information system can be divided into. Each functional
group makes reference to an element that is manipulated
(through user’s interactions) by the software system.
In our approach, the source model to obtain the functional
groups is the actor diagram that has been extended with
the concerned objects. In this model, the dependencies that
associate an organizational actor and the SSA will
generate the functional groups. To do this, Rule 1 and
Rule 2 need to be applied.

1 Those elements whose execution is carried out by
decomposing them into other sub-elements.

63

Rule 1. Each concerned object identified in a resource or
plan dependency between an organizational actor and the
SSA must be mapped to a functional group.
Rule 2. The name of the functional group is composed of
the name of the concerned object and the word
“Management”. Fig. 4 illustrates an example of the
creation of a functional group from an actor dependency.

���������
����������

'���� '��	
���
)��
 **%

+���	�
����
��
��

'��	
��

Fig. 4. Customer Management functional group

5.2 Discovering use cases by default for each
functional group

Along the development of case studies for this research
work we found that a set of basic use cases must be
defined in each functional group to manage the analyzed
informational resource (create, delete and modify
elements). These default use cases must be inserted in
each functional group to ensure the correct management of
the analyzed requirements.
Rule 3. Default use cases Create, Delete and Modify must
be created for each functional group elicited in the
previous steps. These use cases allow us to ensure the
appropriate management of each functional group. The
functional groups for the running example are: Create
Customers, Delete Customers and Modify Customers.

5.3 Discovering use cases though the analysis of the
SSA

The next step consists of determining the use cases from
the organizational model that was extended with the
inclusion of the software system actor. Therefore, an
analysis of the internal element of the SSA must be carried
out to determine its relevance in defining use cases. The
rules associated with this step are the following:
Rule 4. Each plan within the SSA that is directly involved
in a dependency relationship will be a candidate to be a
use case in the requirements model. For example, Fig. 5
shows the plan Obtain Customer info, which is involved in
a dependency relationship between the SSA and the Clerk
actor. Therefore, it can be considered as a candidate to be
a use case.

��	����
���	
������

%��� ���
���	
��

*������	���
���	
������

Analyze the
Customer info

'���� '��	
���
)��

��	��������
���
���

��������������������

'������	����������

��������	
���

**%

��������������������

Fig. 5. Example of a use case generated from an
internal plan.

Rule 5. Each plan within the SSA that is not involved in a
dependency relationship could be a candidate to be a part
of another use case in the requirements model
Rule 6. If the plan or goal (which has generated a use
case) is linked to a dependency relationship, then it is
necessary to determine if this use case must be contained
in the functional group created from the dependency
relationship.
Before allocating the use case in the functional group, it is
necessary to analyze if the candidate use case corresponds
to the semantics of some use case created by default in the
functional group (Create, Destroy or Modify). If so, the
candidate use case must substitute the use case created by
default.

5.4 Discovering use case actors
Actors are parties outside the system that interact with the
system [12]. In this proposal, the identification of actors is
carried out by analyzing organizational actors and the
roles or agents in the business, which have some kind of
interaction with the SSA. Rule7 defines the actor
generation process.
Rule 7. The organizational actors with a dependency
relationship with the SSA will be candidates to be actors
of the requirements model.
Rule 8. Plans without a direct association to dependency
relationships do not generate actors.
Fig. 6 shows an example of the application of Rule 7 to
discover an actor of a use case. The plan Obtain Customer
info has generated a use case with the same name as the
plan. The dependency relationship associated to the plan is
analyzed to determine the actor that participates in the
dependency (Clerk). As a result of applying Rule 7, this
organizational actor is translated into the actor that
activates the use case Obtain Customer info.

��	����
���	
������

%��� ���
���	
��

*������	���
���	
������

%��� ���	���
'��	
������

'���� '��	
���
)��

**%

'��	
�� ��	��������
���
���

��������
����������

�������������������

����

Fig. 6. Example for discovering an actor of a use case

5.1 Discovering relationships between use cases
The fourth step of the process to generate the use case
model consists in discovering the relationships between
use cases. The UML standard supports three major
relationships among use cases: include, extend and
generalization; they can be summarized as follows [12]:
Rule 7. An «include» relationship must be created
between use cases when the composite plan in a

64

composition plan relationship has generated a use case and
its associated subplans have also generated use cases
(applying Rule 5). Therefore, an «include» relationship
between these use cases must be created, where the use
cases generated from subplans are included in the use case
generated from the composite plan.
Fig. 7 illustrates a partial view of the Car Rental
Management case study. In this example, the application
of Rule 4 to the composite plan Obtain Customer info
generates a use case. A use case was also generated for the
child node Obtain personal info through the application of
Rule 5. Therefore, an «include» relationship between
these use cases is created.

��	����
���	
������
 '����'��	
���

)��
�������������������

��	��������
���
���

��������������������

,)������-
**%

Fig. 7 Example of the «include» relationship in the Car
Rental Management case study

Rule 8. An «extend» relationship must be placed between
two use cases when a plan need to be monitored by a
special (monitoring) plan. Thus, this plan generates a use
case and the monitoring plan also generates a use case.
Rule 9. The Tropos framework includes modeling
primitives to represent agents, roles and positions. In our
proposal, the concept of role is used to generate the
generalization relationships.

5.2 Guidelines to obtain use case scenarios from
organizational models

In this proposal, the process to build scenarios begins by
selecting one of the elicited use cases. Then, the plan
which was the source for that use case must be analyzed in
order to obtain the use case scenario. In this case, the
resource relationships associated to the plan that generates
a use case are also a correct source for the generation of
use case scenarios. The following rule helps in the
construction of use case scenarios.
Rule 11. The resource relationships permit the functional
groups to be determined; they also help to deduce the
steps of the scenario. For example, Fig. 8 shows the
resource dependency Customer info, where the SSA
depends of the Clerk actor for obtaining the Customer
information (i.e., Name, Passport-Number, etc). In this
way, some steps for the Create Customer use case can be
deduced. For example, (1) the system requests the
Customer information; (2) the clerk introduces the
Customer information, etc.

��	����
���	
������

%��� ���
���	
��

*������	���
���	
������

%��� ���	���
'��	
������

'���� '��	
���
)��

'��	
��
��������������

��	��������
���
���

��� .����
�	�
����� %������ '�	 .�
��

�/
� (������ &��	��� **%

Fig. 8. Resource relationship to obtain some steps for
the create customer case study

The following guidelines were developed to help the
analyst in the process of obtaining use case scenarios from
organizational models.
Use case name: The use case name in the template of the
scenarios will be the same as the use case elicited using
Rule 3, Rule 4, Rule 5, and Rule 6, where the use cases
were determined.
Use case actors: The actor (s) of the use cases will be
those actors that interact with the SSA through
dependency relationships which were source of use cases
(Rule7 and 8).
Use case pre-Conditions: The preconditions for the use
case will be the same as the precondition of the plan which
generates the use case.
Use case purpose: The explanation about the purpose of
the use case must be written by software engineers based
on the goals that operationalize the plans used to generate
the use case model. These goals represent the rationalities
behind the plans of the SSA.
Use case relationships: The relationships include and
extend must be specified according to the relationships
generated among internal plans in the SSA (Rule 8, Rule 8
and Rule 9).
Use case basic course of action: This information will be
obtained by analyzing the elements associated to the plans
that were the source of the generated use case. In the case
of Tropos decomposition, it implies that the fulfillment of
the child nodes implies the fulfillment of the parent node.
Therefore, we can argue that these internal refinement
structures will be the basis to define the actions associated
with a use case. It is important to point out that one of the
aspects that can not be obtained of the Tropos model is the
temporally ordered actions that define the flow of the use
case. This is because Tropos is not well-equipped to
represent the execution order or the business plans.
Therefore, we need the analyst intervention to order the
actions involved in the use case.
At this point, it is important to identify those resources or
plans where the actors that are associated to the SSA play
the role of dependee in the dependency relationship (i.e.,
the system waits for actions or resources of the
organizational actor) because the actions associated to this

65

dependency must be used to indicate the user intervention
(column actor communications in the scenario template
[5]). On the other hand, those resources or plans where the
actors that are associated to the SSA play the role of
depender in the dependency relationship (i.e., the
organizational actors wait for actions or resources of the
system) must be analyzed to specify the system
responsibilities (column system response in the scenario
template). Rule 11 must be used to specify this situation.
An example of the use case model generated by applying
our proposed rules to the running example is shown in Fig.
9, where the use cases of the Customer Management,
Reservations Management, and Cars Management
functional groups are shown.

���
����������

�������������������

�����������
����������

����������������
����

��������������

 �������������

������������������������

������������������

 �����������������

0��
 ���
'
���

1������ '����

,)������-���������������

���������

 ��������

��������
����������

������������
�������������

!����"���������������
�������

,0!	���-

Fig. 9 Use Cases of the case study

6. CONCLUSIONS
We have proposed a set of guidelines that establish a
correspondence between the modeling elements of an
organizational model and those of a requirements model
for the system-to-be. The guidelines help the analyst to
define the system functionalities from the business plans.
To do this, several steps must be fulfilled to generate an
organizational model that integrates the software system as
an explicit actor in the model. Several steps have been
previously defined to reduce the abstraction level of a
“pure” organizational model based on a pattern language.
As a result of these previous analyses, an organizational
model that includes the software system actor (SSA) is
created. The organizational model that is extended with
the SSA is the basis to generate the requirements for the
system-to-be.
The use of an intermediate model (organizational model
with the SSA) is one of the differences of the proposed
method with current research works in the area, where the
software requirements are directly generated from
organizational functionalities.
It is important to point out that the generation of the
requirements model is a simple process based on model
transformation rules. This transformation is possible
because the level of the intermediate model is closer to the
requirements model. In this sense, the intermediate model
represents the expected functionalities of the system-to-be.
This is also the kind of information that is represented in a

UML requirements model. Thus, we consider that both
models represent the same information but represented in
a completely different manner, one using UML and the
other using an extension of the Tropos Framework.

REREFENCES
[1] McDermid J., Software Engineer’s Reference Book.

Butterworth-Heinemann Ltd. USA. 1991.
[2] Santander F.A.V., Castro J., Deriving use cases from

Organizational Modeling. In proceedings of the 10th

International Conference on Requirements Engineering, pp.
32-39. University of Essen, Germany, 2002.

[3] Castro J., Mylopoulos J., Integrating Organizational
Requirements and Object Oriented Modeling. In
proceedings of the 5th International Symposium on
Requirements Engineering. pp. 146-153. Toronto, Canada.
2001.

[4] Ortín M. J., García M. J., Moros B., Nicolás J. El modelo
de Negocios como base del Modelo de Requisitos:
utilizando UML. Jornadas de Ingeniería de Requisitos
Aplicada, Sevilla, Spain, June, 2001.

[5] Insfran E. A Requirements Engineering Approach for
Object-Oriented Conceptual Modeling, PhD Thesis,
Department of Information Systems and Computation,
Valencia University of Technology, Spain. 2003.

[6] Castro J., Kolp M., Mylopoulos J. Towards Requirements-
Driven Information Systems Engineering: The Tropos
Project. Information Systems 27(2): 365-389, Elsevier
2002.

[7] Yu E., Modelling Strategic Relationships for Process
Reengineering, PhD Thesis, University of Toronto,
Toronto, Canada, 1995.

[8] Pastor O., Gómez J., Infrán E., and Pelechano V. The OO-
Method approach for information systems modeling: from
object-oriented conceptual modeling to automated
programming. Information Systems, 26(7): 507-534,
Elsevier. 2001.

[9] Martinez A., Pastor O., Mylopoulos J., Giorgini P., From
Early Requirements to Late Requirements: A goal-based
approach, in proceedings of the Eight International Bi-
Conference Workshop on Agent-Oriented Information
System (AOIS-2006), Luxembourg, Luxembourg, June,
2006.

[10] Martinez A. Conceptual Schemas Generation from
Organizational models in an Automatic Software
Production Process. PhD. Thesis, Valencia University of
Technology, Valencia, Spain, 2008.

[11] Hilliard R. Aspects, Concerns, Subjects, Views…*. In
proceedings of the First Workshop on Multi-dimensional
Separation of Concerns in Object-oriented Systems at
OOPSLA. Denver, USA.1999.

[12] UML Specification. V1.3 Alpha R5, March 1999. Obtained
from http://www.rational.com/uml/index.jtmpl.

[13] OMG´s Issue Reporting Procedure. Unified Modeling
Language: Superstructure, version 2.1.1. February 2007.
Obtanied from: http://www.omg.org/docs/formal/07-02-
03.pdf.

66

Systematic Review of Requirements Reuse

Flávia Braga de Azambuja Ricardo Melo Bastos, Ana Paula Terra Bacelo

Universidade Federal de Pelotas (UFPel) Pontifı́cia Universidade Católica do
Instituto de Fı́sica e Matemática Rio Grande do Sul (PUC-RS)

Pelotas, RS, Brazil Faculdade de Informática
azambuja@ufpel.edu.br Porto Alegre, RS, Brazil

{bastos, ana.bacelo@pucrs.br}

Abstract

Requirements Engineering is a field of study in software
engineering that has been highlighted as a necessary task
for an effective development process. Requirements reuse
may be a new alternative to make engineering requirements
tasks more systematic. This paper presents the results of
a systematic review about the state of the art in require-
ments reuse. Systematic review is a research methodology
that uses systematic methods to identify, select, and crit-
ically evaluate scientific studies in a specific field of re-
search. The results of this work show that there is a large
diversity of techniques and strategies for modeling of re-
quirements. This diversity raises difficulties for the process
of reuse in a systematic way requiring research efforts in
this subject.

1. Introduction

In the last decades, many techniques have been devel-

oped to support software reuse based on the premise that

systems related to a same application domain presents sim-

ilarities and as a consequence offer potential of reuse. Mar-

ket demands related to time-to-market and quality of prod-

ucts, as well as the great diversity of platforms and existing

languages, underlies the establishment of reuse practices as

a way to reduce development time and decrease costs. Most

researches in software reuse consider only reuse of source

code and software components. However, some researches

has considered the reuse in the others phases of the life cycle

in a systematic manner. Based on these premises, a study

was carried out to determine the state of the art of Require-

ments Reuse in order to identify the main gaps and chal-

lenges of research in this field. To reach this goal a method-

ology of systematic review was adopted. Systematic review

is a research practice, often used in the medical field, which

has been recently applied to the software engineering field.

This methodology was adapted to software engineering by

[12] and [4], in which the authors specify specific guide-

lines. This process helps to establish scientific rigor which

is necessary to define the state of the art and to produce

more reliable results. This paper is organized as follows:

Section 2 starts with an overview of requirements engineer-

ing and requirements reuse to establish a background in this

field. Section 3 presents the Systematic Review research

methodology applied in this work. Section 4 describes the

plan of systematic review and in section 5 and 6 the results

and discussions of the systematic review are presented. Fi-

nally, in section 7 the findings and suggestions for future

works are described.

2. Requirements Reuse

Requirements reuse is related to the concept of software

reuse. Although it was established many years ago by [17],

it has only been recently recognized as a common practice

within the process of development. Reuse can be found

not only in requirements phase, but also in all phases of

software development life cycle (e.g components, artifacts,

pre-existing knowledge). The requirements reuse is con-

sidered very incipient in practice requiring efforts to define

requirements models and methods in order to improve its

applicability by software industry. Systematic reuse needs

operational support to its execution. In [15] the author high-

lighted the necessity of establishing an efficient form of rep-

resenting and storing the specifications to allow compari-

son, adaptation, and management of the reusable elements,

which can be reused during the whole development process.

Currently, there is a large amount of modeling techniques

67

for requirements. Nevertheless, it is necessary to identify

which approaches or processes are being applied, so as to

establish a norm/standard that will ensure the reusability of

the requirements when applied in all phases of the life cycle.

The study of state of the art helps us to analyze how reuse

of requirements has being proposed and applied. Consider-

ing the researches in Requirements Engineering field, [27]

proposed a classification that establishes two research di-

mensions: researches addressed to problems and researches

addressed to solutions. Although this approach was defined

some time ago, it can be considered very current since many

research projects still work on the investigation of solutions

for these problems indicated by [27]. Inside the first di-

mension there are three classifications addressing Require-

ments Engineering problems: 1. The first classification ex-

plains the problems related to goals investigation, functions

and obstacles of systems engineering which are done dur-

ing the requirements and analysis tasks; 2. The second one

includes the problems of behavioral specification of the sys-

tem. This classification addresses problems related to infor-

mation synthesis and the choice among alternatives to cre-

ate a precise and minimal software specification. 3. In the

third one, the problems are classified to establish how to

reuse the requirements in other phases of the software de-

velopment process. In [21] a classification that considers

the main fields of research in Requirements Engineering is

proposed. The author pointed out some research subjects

that have not been solved yet. These subjects are similar

to problems presented by [27]. Considering the problems

highlighted by [21], the authors discussed the need to es-

tablish efficient methods of requirements model reuse. Con-

cerning the works of [27] defined some concepts referring

to the five types of tasks of Requirements Engineering and

their main challenges. Once again, the problem of reuse was

identified amongst the research fields and it should be inves-

tigated by this research area. Besides the tasks presented

above, [1] proposed nine research hot spots, out of which

six emerged from the future needs of software. They have

been established due to the increase in scalability, security

and dependence between the software and its environment.

The other three hot spots have focused on the extension and

maturity of the existing technologies for the improvement of

Requirements Engineering methodologies and for the reuse

of requirements. Thus, it is vital to find solutions for reuse

field. The reuse of requirements brings more agility during

their specifications since they are based on previous projects

of similar products. However, in a practical context, one of

the remained problems is how to identify real situations of

Requirements Reuse. This is largely due to fact that part of

reuse has been done by programmers in an informal manner.

In some cases, experience helps the developers to reuse (e.g.

source code, patterns, frameworks) because there are a lot of

features in common among many applications in the same

domain [19]. Although this informal reuse shows evidence

of advantages of Requirements Reuse models, it does not

provide a standard form to systematically reuse the require-

ments. With the objective of determining the state of the art

in Requirements Reuse and establishing the main gaps and

challenges of the research in this field, the methodology of

systematic review was applied as described in section 3.

3. Systematic Review in Software Engineering

Systematic Review is a research methodology that uses

systematic methods to identify, select, and critically eval-

uate scientific studies in a specific field of research. It is

a planned review to answer a specific question that can or

not include statistic methods. Statistic methods used in the

analysis and synthesis of the selected studies are called meta

analysis [11]. In this work, the meta-analysis stage was not

adopted since it is a qualitative diagnosis of studies of the

field being researched. Differently of other fields of study,

Software Engineering has some specificities that make it

more difficult to obtain evidence through systematic review

[4]. However, the use of systematic review methodology

can be very useful to delimitate new researches. The sys-

tematic review, give a scientific rigor to a literature review

process and, as a consequence, minimize the slants that can

happen during a conventional literature review. The guide-

lines to lead the process of systematic review established by

[12] and [4] were adapted to reflect the specific problems

of research in Software Engineering. These guidelines are

composed by three stages: planning of the review; conduct-

ing the review; and reporting the review.

4. Systematic Review Plan

The first stage in a systematic review begins with the

definition of the research question. In this work we have

adopted the term Question Focus (QF) as a way to represent

the research question. The QF is essential to determine the

structure of the review. If the QF is not well defined, it could

substantially compromise the result of the research. To de-

termine the QF some complementary issues were used. The

subsections 4.1 and 4.2 summarize the sequence of steps

that were established by [12] and [4]. In the section 5 the

third stage is represented through de results analysis.

4.1. Research Scope

Considering the general scope of the research, the goal

is to find solutions for the following questions: (Qx):

• Q1: Which are the existent approaches and solutions

related to requirements?

68

• Q2: How is Requirements Engineering prepared for

systematic reuse?

• Q3: Which are the methodologies applied during

the process of Requirements Engineering that support

reuse?

These questions were used to delimitate the scope that will

effectively be answered by the process of systematic review

established in this work, through the analysis and synthesis

of the selected studies. Based on the pre-identified ques-

tions, the QF was defined as follows:

• QF : “Which are the methodologies, strategies or ad-

vices being used in Requirements Engineering that

support reuse?”

All the steps of the systematic review (i.e. project develop-

ment, identification and selection of studies, data extraction,

quality evaluation, analysis, presentation, and interpretation

of the results) were guided by the QF , which was also used

as a way of judgment of the systematic review relevance.

4.2. Systematic Review Details and Protocols

This systematic review uses the following search en-

gines: IEEE Xplorer digital library, ACM digital library,

Springer Link and Science Direct. The criteria to make

the decision about the selected search engine were: 1.
the database allow search engines based on key words

and Boolean expressions; and 2. the availability of arti-

cles through Internet. The selection of papers occurred in

2 months. The population defined for the study includes

articles published in journals and conferences on the field

of study since 2004 until now and that were written in En-

glish language. The period was delimited due to the need of

establishing in this study the state of the art in research on

Requirements Reuse. The key words used to do the search

of articles are: “requirements reuse”, “requirements engi-

neering”, “reuse” and “systematic reuse”. These key words

were combined through Boolean operators and filters, as

presented in Table 1. Considering the articles obtained by

the filters, it is only considered those that refer to the fol-

lowing fields: computer science, software engineering, in-

formation systems, requirements engineering, product line;

and artificial intelligence. The sources were exclusively ac-

cessed on the web, so manual search was not considered in

the context of this work.

ID Search String

S1
“((requirements reuse)) <and>
(pyr >= 2004 <and> pyr <= 2008)”

S2

(’requirements engineering’ <and>
reuse)) <and> (pyr >= 2004

<and> pyr <= 2008)

S3

(’requirements engineering’ <and>
’requirements reuse’)) <and>
(pyr >= 2004 <and> pyr <= 2008)

S4

(’requirements engineering’ <and>
’systematic reuse’)) <and>
(pyr >= 2004 <and> pyr <= 2008)

Table 1: Search Strings.

The 102 articles selected were resulting of the string S1.

The string selects articles from journals and conference

published since 2004 which deal with Requirements Reuse.

It is important to emphasize that the S1 string was chosen

for includes a larger number of works that deal the subject,

providing more useful results.

5. Results

The 102 articles were preliminary selected for a future

analysis. Hence, this selection was based on the following

criteria: description of the approaches, methods, strategies

and tools to solve the problem of research related to require-

ments reuse. After this selection, 84 articles were discarded.

The selected articles were classified according to the criteria

adapted from [1], [26] and [22]. The analysis of the papers

consists specially of contributions in reuse field. The au-

thors proposed to group the studies in three categories of

solution technologies: a) Methodologies, Strategies or Ad-

vice; b) Kinds of Solution and c) Application.

The categories are presented bellow:

a) Methodologies, strategies or advice: this category iden-

tifies the methodologies, strategies or advice adopted

in the selected studies focusing on reuse;

b) Kinds of Solution: this category indicates the kind of so-

lution adopted by each study with the focus on reuse.

In addition, the studies of this category were classi-

fied according [26] to:

• Problem investigation: investigates the current

situation;

• Solution design: proposes an improvement to

the current situation;

• Solution validation: investigates the proposed

solution properties;

• Solution selection: shows the improvement

among the proposals from the literature;

69

• Solution implementation: realizes the solution;

• Implementation evaluation: investigates the

new situation, for example, when is investigated

the practice of Requirements Engineering in an

organization, where this organization has re-

cently introduced a new way of doing Require-

ments Engineering.

c) Application: in this category the studies were organized

as proposed by [22]:

• Survey: focuses on obtaining the same kinds of

data from a large group of people (or events), in

a standardized and a systematic way;

• Design and creation: focuses on developing

new products or artifacts;

• Experiment: focuses on investigating cause

and effect relationships, testing hypothesis and

seeking to validate a casual link or not between

a factor and an observed outcome;

• Case study: focuses on an instance of the thing

that is to be investigated;

• Action research - focuses on research in a real

situation;

• Literature Review - focuses on synthesizing re-

sults into a summary of what is and is not

known; on identifying areas of controversy in

the literature; and on formulating questions

which need further research.

The classification of the studies based on these criteria is

presented in Table 2, and the discussion in section 6.

6. Discussion

The correct elicitation, comprehension, and representa-

tion of the requirements are critical steps in the develop-

ment of systems with focus on reuse. This is a highly cog-

nitive activity and its success or failure depends on the skills

and previous experiences of the involved requirements en-

gineering team. The current methods and tools still do

not give the expected support to this activity. One way to

make it more systematic is facilitating reuse through the

pre-existing requirements artifacts (e.g. models, specifica-

tions and so on). Product line has been considered as one of

the most used strategy to obtain requirements through the

reuse. The products are part of a product family and the

dependencies among them have been planned since the be-

ginning. There are some works that present issues related to

both, Requirements Reuse and Product Line [5],[6],[7] [8],

[20] and [13]. Software product lines may guide compre-

hensively the construction of all artifacts produced during

the system development for reuse. These classical prod-

uct line approaches provide mechanisms to handle require-

ments for reuse [13]. The main challenges for Requirements

Engineering in product lines include effective strategies and

techniques for the analysis of domains as well as the doc-

umentation of requirements. In [1] the author highlighted

some techniques and strategies that have been applied in

this field using feature models, multi-agent feature trees,

pattern modeling, and problem frames. Feature models are

commonly used to model the characteristics of the domain,

but in [1] the authors discuss that features reproduce them-

selves too fast when used to model instantiations of a spe-

cific domain. We also observe that features modeling activ-

ity is more related to requirements elicitation activity then

requirements specification ones. However, it is important

to have good specification of these features to be more con-

sistent and to support the creation of other domain artifacts

and the creation of product from features models. Multia-

gent feature trees appear as a new promise for solutions, but

have not been investigated enough. Another form of reuse

is through modeling of patterns in which usable structure

models are codified. Some works as [10], [20] suggest the

codification of patterns to improve accuracy and complete-

ness of the requirements. As a consequence, it can reduce

the time to produce a specification due to the fact that the re-

quirements are already known from other existent projects.

So, a pattern is considered an abstraction that requires few

adaptations in a project related to the same domain or prod-

uct family. Reusable requirements could be composed by

standard fields, such as the context of the problem, conse-

quences, properties, among others [18]. However, this in-

formation is still not enough to facilitate the effective use

of patterns or reusable artifacts. The adequate adaptation

and instantiation of a pattern, so as to adjust the desired

context, is still considered an art. Problem frames are dis-

cussed by [25] and it may be considered as abstract patterns

of context diagrams for common classes of software prob-

lems and can also be reusable [1]. Considering the reuse of

requirements models, [24] propose the reusability of UML

artifacts through an artifact library. They present a proposal

of reuse with focus on sequence diagrams. In addition, [23]

propose models based on wikis to tackle reuse in software

projects. Some approaches [18], [16], [9], [2] and [14] try

to establish guidelines and metrics as a way of planning the

management of the requirements for application of a sys-

tematic reuse plan. In [28] the authors propose ontology as

a method of elicitation and analysis of requirements. The

ontology can be used to obtain the knowledge of the do-

main and gives semantic to the requirements through se-

mantics functions and inference rules. In [3] the author

designed a tool to streamline the process of specifying a

software system by automating processes. The author as-

sures that the tool can help to reduce errors for the orga-

70

nization of requirements modeling and that includes reuse

functionalities. As an answer to the QF established in this

work, several approaches have been applied as a means of

establishing methods and making systematic reuse of soft-

ware requirements possible. The main approaches that are

being used for repositories management as well as for doc-

umentation and standardization of requirements are: pat-

terns; feature models; problem frames; natural-language;

wikis and ontologies. Although these approaches search

for ways of establishing systematic reuse of requirements,

there is still the need for requirements integration, project

and code. This will make reuse feasible during the whole

development process. For this, it is initially necessary to

identify how to model these assets adequately for this goal

in RE field.

Source Methodologies, Strategies or Advices Kind of Solution Application

[20]
Metamodeling variability to enable requirements reuse Solution Design Action

in product line Research

[1] Research directions in requirements engineering Problem Investigation Literature Review

[2] Adopting a Standard Process to requirements elicitation Solution Implementation Action Research

[3]
Tool for the organization of requirements modeling in Solution Design and

requirements specification Implementation Creation

[5] Agent-based distributed software systems in product line Solution Implementation Experiment

[6]
Criteria for Comparing Requirements Variability Solution Selection Survey

Modeling Notations for Product Lines

[7] Requirements derivation from the Product Line Solution Design Action Research

[8]
Management natural-language requirements Implementation Evaluation Case Study

specifications in a software product line context

[16]
Metrics to evaluate requirements reuse in Analysis Solution validation Action

Phase of Domain Framework Development Research

[9]
How to provide reusable requirements to introduce Problem Investigation Literature

knowledge reuse in requirements engineering Review

[10]
Use patterns to requirements elicitation, specification Solution design Case Study

and validation

[13] Product-line-oriented approach to reusing requirements Solution design Case Study

[14]
Reuse, standardization, and transformation of Solution Design

requirements to storage of reusable elements Implementation Creation

[18] Reengineering to management system requirements Solution Selection Action Research

[23] Using wikis to tackle reuse in Software Projects Implementation Evaluation Case Study

[24] Reuse UML artifacts in requirements engineering Solution Implementation Survey

[25] Architecture-based problem frames in product line Solution design Case study

[28]
Towards a Multiple Ontology Framework for Solution selection Design

Requirements Elicitation and Reuse Creation

Table 2: Studies classification.

7. Conclusions and Future Works

The Systematic review process done in this work has

contributed significantly for the identification of gaps in re-

quirements reuse research. The current state of the art in

Requirements Reuse shows that there is a large diversity

of techniques and strategies for modeling of requirements.

This diversity raises difficulties for the process of reuse in

a systematic way. The simple fact of storing requirements

in repositories does not guarantee their reuse. To make sys-

tematic reuse feasible, it is also necessary that the opera-

tional support directed to its execution be adequate. More-

over, an efficient way to represent and store specifications

should be established, allowing their comparison, adapta-

tion, and management as reusable elements. We should al-

ways keep in mind the goal of reuse during the whole de-

velopment process. Hence, the main problems related to

Requirements Reuse which may be considered as research

hotspots and future works are:

• The diversity of techniques and the lack of modeling

pattern and storing of the specificities aimed at reuse;

• The requirements reuse is still carried out in a non-

systematic way;

• The feature models do not represent the related re-

quirements thoroughly;

71

• The Variability modeling techniques need to be more

focused in strategies for reuse of requirements;

• An efficient process for comparing and adapting the

reusable requirements is still lacking at the stage of

software development with reuse;

• The means of integrating requirements with other ar-

tifacts of software development are needed, so as to

make systematic reuse possible during the whole de-

velopmental process;

In conclusion, we can see that requirements engineering is

still not ready to reuse. Thus, it is necessary to present fea-

sible alternatives to establish a systematic way for reuse of

requirements. The next step of this research is to choice one

or more of these hotspots to be the focus of our work.

References

[1] B. H. C. Cheng and J. M. Atlee. Research directions in re-

quirements engineering. In FOSE ’07: 2007 Future of Soft-
ware Engineering, pages 285–303, Washington, DC, USA,

2007. IEEE Computer Society.
[2] M. Daneva. Erp requirements engineering practice: Lessons

learned. IEEE Softw., 21(2):26–33, 2004.
[3] S. Dascalu, E. Fritzinger, N. Debnath, and O. Akinwale.

Storm: Software tool for the organization of requirements

modeling. Electro/information Technology, 2006 IEEE In-
ternational Conference on, pages 250–255, May 2006.

[4] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali, T. U.

Conte, and G. H. Travassos. Scientific research ontology

to support systematic review in software engineering. Adv.
Eng. Inform., 21(2):133–151, 2007.

[5] J. Dehlinger and R. R. Lutz. A product-line requirements

approach to safe reuse in multi-agent systems. SIGSOFT
Softw. Eng. Notes, 30(4):1–7, 2005.

[6] O. Djebbi and C. Salinesi. Criteria for comparing require-

ments variability modeling notations for product lines. Com-
parative Evaluation in Requirements Engineering, 2006.
CERE ’06. Fourth International Workshop on, pages 20–35,

Sept. 2006.
[7] O. Djebbi, C. Salinesi, and D. Diaz. Deriving product line

requirements: the red-pl guidance approach. In APSEC ’07:
Proceedings of the 14th Asia-Pacific Software Engineering
Conference, pages 494–501, Washington, DC, USA, 2007.

IEEE Computer Society.
[8] M. Eriksson, J. Brstler, and K. Borg. Managing require-

ments specifications for product lines - an approach and

industry case study. Journal of Systems and Software,

82(3):435 – 447, 2009.
[9] A. Gregoriades, J.-E. Shih, and A. Sutcliffe. Human-centred

requirements engineering. Requirements Engineering Con-
ference, 2004. Proceedings. 12th IEEE International, pages

154–163, Sept. 2004.
[10] L. Hagge and K. Lappe. Patterns for the re process. In RE

’04: Proceedings of the Requirements Engineering Confer-
ence, 12th IEEE International, pages 90–99, Washington,

DC, USA, 2004. IEEE Computer Society.

[11] J. P. Higgins and S. Green, editors. Cochrane Handbook for
Systematic Reviews of Interventions Version 5.0.1 [updated
September 2008]. The Cochrane Collaboration, 2008.

[12] B. Kitchenham. Procedures for performing systematic re-

views. Technical report, Keele University and NICTA, 2004.
[13] R. T. Kolagari and M.-O. Reiser. Reusing requirements: The

need for extended variability models. In FSEN, pages 129–

143, 2007.
[14] M. A. Laguna, O. López, and Y. Crespo. Reuse, standard-

ization, and transformation of requirements. In ICSR, pages

329–338, 2004.
[15] O. López, M. A. Laguna, and F. J. G. Peñalvo. A metamodel

for requirements reuse. In JISBD, pages 427–428, 2002.
[16] S. N. Matos and C. T. Fernandes. Measuring reuse during

the analysis phase of domain framework development. In

ICSEA ’07: Proceedings of the International Conference on
Software Engineering Advances, page 7, Washington, DC,

USA, 2007. IEEE Computer Society.
[17] M. D. McIlroy. Software engineering: Report on a confer-

ence sponsored by the nato science committee. In NATO
Software Engineering Conference, pages 138–155, 1968.

[18] L. Melikhova, A. Elcock, A. Dovzhikov, G. Bulatov, and

D. Vavilov. Reengineering for system requirements reuse:

Methodology and use-case. Consumer Electronics, 2007.
ISCE 2007. IEEE International Symposium on, pages 1–4,

June 2007.
[19] H. J. H. Mohamed Shehata, Armin Eberlein. Requirements

reuse and feature interaction management. In 15tr Inter-
national Conference Software and Systems Engineering and
their Applications, Paris, 2002. ICSSEA.

[20] B. Moros, C. Vicente-Chicote, and A. Toval. Remm-studio

+: Modeling variability to enable requirements reuse. In ER
’08: Proceedings of the 27th International Conference on
Conceptual Modeling, pages 530–531, Berlin, Heidelberg,

2008. Springer-Verlag.
[21] B. Nuseibeh and S. M. Easterbrook. Requirements engineer-

ing: a roadmap. In ICSE - Future of SE Track, pages 35–46,

2000.
[22] B. J. Oates. Researching Information Systems and Comput-

ing. Sage Publications Ltd., 2006.
[23] J. Rech, C. Bogner, and V. Haas. Using wikis to tackle reuse

in software projects. IEEE Software, 24(6):99–104, 2007.
[24] W. N. Robinson and H. G. Woo. Finding reusable uml se-

quence diagrams automatically. IEEE Software, 21(5):60–

67, 2004.
[25] C. Wang, Q. Depei, and L. Chuda. Architecture-based prob-

lem frames constructing for software reuse. In IWAAPF
’06: Proceedings of the 2006 international workshop on Ad-
vances and applications of problem frames, pages 19–24,

New York, NY, USA, 2006. ACM.
[26] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. Require-

ments engineering paper classification and evaluation crite-

ria: a proposal and a discussion. Requir. Eng., 11(1):102–

107, 2005.
[27] P. Zave. Classification of research efforts in requirements

engineering. ACM Comput. Surv., 29(4):315–321, 1997.
[28] L. Zong-yong, W. Zhi-xue, Y. Ying-ying, W. Yue, and

L. Ying. Towards a multiple ontology framework for re-

quirements elicitation and reuse. In COMPSAC ’07: Pro-
ceedings of the 31st Annual International Computer Soft-
ware and Applications Conference, pages 189–195, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

72

Reprioritizing the Requirements in Agile Software Development: towards a
Conceptual Model from Clients’ Perspective

Zornitza Racheva, Maya Daneva

University of Twente, Netherlands, {z.racheva, m.daneva}@utwente.nl

Abstract. Continuous and client-centric requirements
reprioritization forms the very core of today’s agile
approaches. In this paper, we report on results of a
grounded theory study on agile requirements
prioritization methods. The outcome is a conceptual
model for understanding the inter-iteration prioritization
process from client’s perspective. The latter is derived
from the authors’ experiences and by using empirical
data, published earlier by other authors.

Keywords: agile development, requirements
prioritization, inter-iteration decision-making process,
grounded theory.

Introduction
Continuous requirements reprioritization from

client’s perspective forms the key of today’s agile
approaches. A recent empirical study [7] indicates that,
with respect to requirements (re)prioritization, agile RE
differs from ‘traditional RE’ in two ways: (i)
(re)prioritization happens at inter-iteration time, which
means the project team anticipates and plans as many
reprioritization sessions as the number of project
iterations, and (ii) (re)prioritization is based mostly on
business value, that is, the highest priority features (i.e.
requirements in agile terminology) get implemented early
so that most business value gets realized. These two
aspects of agile RE pose at least two challenges: (i)
continuous reprioritization more often than not (especially
when practiced without caution) leads to project
instability, and (ii) clients, by and large, relate the concept
of business value to features that meet their functional
requirements, so non-functional requirements (such as
scalability or security) that might initially appear
secondary to clients, turn out critical for the operational
success of the product. For example, redesigning the
architecture of the software product at a late stage would
add up to an over-expensive or a delayed project. In a
context of a supplier network, these challenges may well
aggravate further, as product managers make
commitments based on process and product assumptions
which are different from the ones of the development
team. Yet, these assumptions might be essential to
product success.

Our paper is a first attempt to respond to these two
challenges. It proposes a conceptual model of the agile
prioritization process from client’s perspective. We

obtained it by applying a grounded theory approach. We
make the note that we do not provide a new prioritization
technique. Instead, we (i) redefine our view of
requirements and their (re)prioritization by treating them
from a clients’ perspective, and (ii) we propose a model
that reflects this specific focus and represents an unified
approach to discussing the prioritization effort
independently from the particular method that is used.

Our motivation for creating this model originates on
the premise that the practices of continuous requirements
reprioritization, with strong client participation, are a
relatively recent phenomenon and because of this are only
partially understood. As agile literature indicates, never
before in the software engineering history, the client has
been that actively involved in the requirements
reprioritization as he/she is in agile. When the client is
expected to actively participate in the process by
performing, among other task, the key task of prioritizing
requirements, he or she must be aware of the facets of
his/her role and thus would profit from a decision-support
vehicle available at his/her disposal. We think that a
conceptual model can help the client in multiple ways: (i)
to navigate trough the agile process of delivering business
value; (ii) to make explicit the tacit assumptions, used in
different requirements prioritization methods; (iii) to
identify the possible peaces and sources of information
that might be of importance for the outcome of the
prioritization and, consequently, for the project; (iv) to
make the process more objective in the sense that having
such a vehicle will allow also less experienced users to
participate in the prioritization process and, they could do
it with the confidence that they deliver a quality work.

The paper is structured as follows: Section 2 provides
a discussion on the role of clients in agile RE and
formulates our research question. Section 3 presents the
Grounded Theory research method and Section 4 – its
application and results. Section 5 evaluates our results and
discusses the possible threats to their validity. Section 6
concludes the paper.

Client-driven Requirements Prioritization
and Reprioritization

The agile manifesto [26] deems the client’s role
critical in making decisions about “what to build”. In the
minimalist philosophy of XP – a prominent agile
approach, the following is recommended for the client’s
role [5]: (1) The client is an integral part of the team and

73

should be on-site with the team. (2) The client writes user
stories and then discusses each requirement directly with
the programmers. (3) The client is responsible for all
business decisions including prioritizing user story
development. (4) The small 2-3 week iterations allow the
user to evolve their requirements based on concrete
working software. (5) The client regularly tests the
software to confirm it works as expected.

Our focus in this paper is on item 3 of the above list,
namely supporting the client when making prioritization
decisions. Therefore, in this and the next sections, we re-
focus the discussion on the role of clients’ requirements
prioritization (RP) in agile software development.

Clearly, RP is a part of any project, independently
from the developing method. Yet, the purpose and the
place of this activity are essentially different when we
distinguish between ‘traditional’ and agile development.
In a ‘traditional’ (e.g. gated or waterfall-style life cycle),
it is about which requirements (i) to implement earlier
than others, or (ii) to include in an earlier release. The
premise is that the whole functionality can not be
implemented in the same time, but it will eventually be
implemented. So it is a project-management activity from
the developers’ side. When asked about priorities in a
‘traditional’ project, the client tends to qualify the
majority of the requirements as high priority.

In contrast to ‘traditional’ development, agile projects
rest on the understanding, that the whole functionality
will not be implemented and delivered at once with the
first release, and part of it will be eventually not
implemented. The problem, then, is: (i) how to decide on
what to implement in each (next) iteration, and (ii) which
requirements will deliver the maximum value to the
clients as early as possible. One of the biggest assets of an
agile approach is that business value is delivered to the
client throughout the project, and the return on investment
is generated much earlier. Thus any changes in the
requirements can be taken into consideration and
implemented into the product at an early stage. This
highlights the paramount importance of the RP activities.

The changes in the list with requirements for an
iteration might occur for different reasons – new market
or company realities or better knowledge about the value
certain features deliver. This requires a dynamic
prioritization process as well. This view is supported by
Harris and Cohn [19], who use tactics to minimize costs
and maximize benefits through strategic learning and
provide guidelines on how to optimize business value.
They prove the necessity of adopting a dynamic approach
to agile prioritization, in order to take into consideration
the important aspect of learning in an agile project. Their
focus is particularly on incorporating learning and cost of
change in the decision-making process.

Last, while in a traditional project the prioritization is
usually performed once and before the implementation
phase, in agile context it is an ongoing process, performed

in the beginning of each iteration, or even during the
iteration; this reflects the dynamics of the project’s
backlog. The differences between the two settings are
summarized in Table 1.

Table 1. Comparison of traditional and agile RP

Aspects of
the RP
process

Traditional
(waterfall)

development

Agile

Goals/Purpose
of the RP

Project
management-
vehicle

- Vehicle to ensure that
delivered business value is
maximized at each
iteration;
- Scope definition vehicle
at iteration level

When is RP
performed

Typically once,
after the analysis
phase and before
implementation

Before each iteration, at
planning phase, or during
iteration

Who is
responsible for
RP

Developer, with
participation of
project manager
and other
stakeholders.

Client is the key driver for
choosing, being supported
by Scrum Master (or Agile
Project Manager)
regarding the assessment
of the technical feasibility
of a schedule.

Building on the above discussion, we came up with the
following research question (RQ): “What are the key
topics to consider when prioritizing the requirements
from client’s perspective in agile projects?”

The Grounded Theory Approach

The term grounded theory [8] refers to a set of
systematic guidelines for data gathering, coding,
synthesizing, categorizing, and integrating concepts to
conduct a theoretical analysis of an empirical problem.
The name grounded theory points out to its fundamental
premise that a researcher can and should develop theory
from rigorous analyses of empirical data. As a qualitative
research method, GT is distinctive in (i) that it is
inductive in nature, which means that we as researchers
have no preconceived ideas to prove or disprove data, (ii)
that collection and analysis proceed simultaneously and
each informs the other, and (iii) that constant comparative
techniques treat possible disagreements between the
emerging theory and newly collected information. A GT
exercise of a studied topic starts with concrete data and
ends with rendering them in an explanatory theory. From
the very beginning, the researcher analyzes the data and
identifies analytic leads and tentative categories to
develop through further data collection. It is essential to
note that, in this process, whenever the emerging theory
disagrees with newly collected information from
experiences or from literature, the researcher should not
assume that the theory is wrong. Instead, the researcher
seeks to extend the theory so that it makes sense of both

74

the data from the study and the data from the literature,
because the key concern throughout a GT process is the
fit of the theory to the data and its ability to make sense of
actual experience.

Research methodologists [8,17,31] suggest that a
theory derived from data is more likely to resemble
what’s happening in reality, than a theory which is
derived by putting together a set of concepts based on
experience and solely through assumptions about how
things in real life would work. As GT studies rest on the
data, they are thought to enhance researchers’
understanding of a situation and provide a meaningful
starting point for further action. The philosophical
foundation of GT and how it affects the researcher’s
choices in carrying out his/her work have been discussed
in [8] and are beyond the scope of this paper. Here, we
focus on the application of the GT process [8] and the
results we obtained.

The Application of Grounded Theory

For the purpose of our research, we used the GT

guidelines by Kathy Charmaz [8]. We executed a research
process which included the following steps: (1)
identification and review of data sources from published
literature, (2) initial and focused coding, (3) clustering
and memo-writing, (4) conceptual modelling, and (5)
theoretical sampling of empirical data, using the concepts
and categories from our resulting conceptual model. The
goal of steps 1-3 is the discovery of as many relevant
categories as possible, along with their properties and
dimensions. Step 4 is about the visual representation of
the categories and their relationships, and Step 5 is about
‘saturating the categories’. Categories are considered
‘saturated’ when collecting fresh data no longer brings
new theoretical insights nor reveals new properties of the
categories in the conceptual model [8].

We traversed the steps 1-5 multiple times, as
methodologists recommend [8], because: “Constant
interplay between proposing and checking […] is what
makes our theory grounded!” [31]. That means, the
analysis of the data collected in one step helps to check
the interpretations from the previous step. In the sub-
sections below, we indicate the execution of the steps
along with the results we obtained from our application of
GT.

4.1. The sources

In this study, the data used and constantly compared
to the emerging theory is literature on agile requirements
prioritization available via scientific digital libraries and
prominent agile practitioners’ journals. We did a semi-
systematic literature search using the five bibliographic
databases: IEEExplore, ACM Digital Library, Google
Scholar, InterScience and Citeseer. We complemented

them with the following periodicals: the Agile Journal [1],
and the platforms, dedicated to software development and
agile methods: DrDobb’s [13] and InfoQ [20]. The key
words we used for our search were: agile, requirements,
backlog, prioritization, inter-iteration, decision-making,
business value, risk, cost, features. We traced the
references in the identified papers to get access to other
relevant sources. To determine whether to include or not
these sources to our GT research, for each one, we
reviewed the abstracts and the conclusions and we
checked this information against the following five
quality criteria for inclusion in the review: (1) the paper is
on a agile RP, (2) the paper is credible, i.e. the method
described is meaningful and intuitive to follow; (3)
relevance for practice: the RP method potentially offers
support for practical requirements prioritization, (4) the
paper adequately describes the context, in which the
method is expected to be applicable; ‘adequately’ means
that the reader can replicate the use of the RPM in his/her
own context; and (5) original paper: for each method, we
searched at least its original publication; if an original
paper is difficult to access, or is outside the RE field, we
included another description from an RE author. The
publications were written in English only and included
both qualitative and quantitative research, from scientists
and practitioners. We carried out the quality check by
using these criteria, which yielded 42 papers eligible for
inclusion and review in the GT process. These papers
refer to 15 RP methods and one technique, as indicated in
Table 2.

Table 2. The RP approaches published in the sources

used for the GT

RP method References
Round-the-group prioritization [6]
Ping Pong Balls [30]
$100 allocation (cumulative voting) [22]
Multi-voting system [32]
MoSCoW [16]
Pair-wise analysis [18] [21]
Weighted criteria analysis [18]
Analytic Hierarchy Process (AHP). [29]
Dot voting [18]
Binary Search Tree (BST) [2]
Ranking based on product definition [15]
Planning Game [5] [21]
Quality functional deployment QFD [11][18]
Wiegers’ matrix approach [33]
Mathematical programming techniques for
release planning

[23]

Technique of bucketing requirements [25]

75

4.2. The Conceptual model

The multiple iterations of coding, constant comparing
of information from literature, and conceptual modelling
in our GT process delivered two models, Model A, which
is presented in Fig 1 and Model B, which is presented in
Fig 2. Model A describes the agile RP process, while
Model B elaborates on the conceptual categories related
to making the RP decisions. We make the note that Model
B (on Fig 2) is not meant as a refinement of Model A (on
Fig 1). Instead, the purpose of Model B is to explicate and
bring insights into the decision-making step, which is the
core of the RP process.

Furthermore, both models take the perspective of the
client, unlike RP authors [4] who adopt the perspective of
the development team. We must note that the models take
a ‘big-picture’ view to make explicit those pieces of
information, necessary for the prioritization process.

To create these models we used the initial and
focused coding practices described in [8]. This meant first
to name the segments of data, and then to use the most
frequent initial codes to “sort, synthesize, integrate and
organize large amounts of data” [8]. We make the note
that to us, the focused coding meant iteratively making
decisions about those initial codes which the two authors
deemed to make the most analytic sense to categorize the
data, as Kathy Charmaz says, “incisively and
completely”. We complemented our coding with
diagramming, which enabled us to visualize the
connections among the conceptual categories and to see
more clearly the relative strength or weakness of the
relationships between the concepts. Our intensive
diagramming activity was motivated by Adele Clarke [9]
who contends that conceptual mapping preserves
empirical realities and complexities. We drew diagrams
and wrote notes, then reviewed them and dissected them
meaningfully, while keeping the relations between the
parts (that are dominant concepts, themes, and issues)
intact. We followed this process, as it is meant to help the
researcher to reduce and analyze data and direct
him/her toward trends, themes, and patterns. Due to space

limitation, we do not provide a mapping between the
literature sources we used to as input to build the model
and the parts of the model derived from each source. We,
however, plan to publish this in a separate paper in near
future. Below, we describe the two models in more detail.

4.2.1. Model A

This model presents a generic prioritization process
in terms of its inputs and outputs, as it is visible from the
client’s standpoint. We deliberately used concepts which
make clear how the status of requirements changes – from
‘Initial’ to ‘Prioritized’, to “Spint”, to ‘Implemented’. The
input is the Initial Project Backlog, that is the total
number of requirements upon the start of the project.
Before the very first agile iteration, the client runs a RP
technique, which produces Prioritized Project Backlog.
This is an ordered list of the requirements (originally
written in the Initial Project Backlog) according to their
priorities. In agile settings, only a small portion of the
upper part of this ordered list goes for implementation in
the first iteration. (Iterations are called sprint in the jargon
of Scrum - the most popular agile project management
approach.) This small portion of prioritized requirements
forms the so-called Sprint Backlog. Once the iteration is
completed, the status of those requirements which are
already implemented in the software product, changes to
Implemented requirements. Those requirements which
could not be implemented by the developer team are fed
back into the project backlog and are subject to
reprioritization before the new iteration starts. At that
inter-iteration time, the client might decide to request a
change to the requirements and this leads to a new
reprioritization as well (this is the arrow from Sprint
backlog to Prioritized project backlog). The client
reprioritizes the project backlog, so that she/he knows the
next portion of requirements which will go to the next
Sprint Backlog. The relationship between the concepts
Prioritized Project Backlog and Sprint Backlog - from the
view point of the clients in agile projects, is elucidated in
Model B (see Fig 2).

Fig. 1. Model A: the prioritization process from clients’ perspective.

76

Fig. 2. Model B: topics to consider when making prioritization decisions

4.2.2. Model B

This model is to help clients ‘zoom-in’ and see the
aspects important for RP at inter-iteration time. As in
Model A, in Model B we take a holistic perspective of
RP. In contrast to Model A, Model B can be seen as a
generic framework for describing the client’s decision-
making situation while prioritizing the requirements. As
per Alenjung and Person [3], a decision-making situation
is “a contextual whole of related aspects that concerns a
decision-maker”, that is – in our case, the client in an
agile project. For example, one can use the conceptual
categories of the framework (that is, Model B) to depict a
specific client’s RP situation in a specific agile project, in
a specific organization and, thus, take into account the
topics important to be considered by the client when
prioritizing requirements at inter-iteration time.

Furthermore, Model B shows the complexity of the
decision-making from client’s perspective in agile RP.
We observe, that the client, when prioritizing the Project
backlog, explicitly or implicitly relies on tacit knowledge
to estimate the Business value of each item (in the Project
backlog). The estimation is qualitative (as it was already
found in our previously published study on business value
in agile [27]). Yet, the agile clients make a conscious
effort to connect business value to “something that
delivers profit to the organization paying for the software
in the form of an increase in revenue, an avoidance of
costs, or an improvement in service” [24].

The client assesses the Business Value of the
requirements in the project backlog based on his/her
current knowledge and Learning Experiences within the
agile project as well as any changes (see the box External

changes in Fig 2) occurring in the business environment
of the organization. An example for an external change
can be a merger between the client’s organization and
another organization. Both the client’s continuous
learning throughout the project and the dynamic
environment in which the client organization operates can
make - from one iteration to another, some requirements
more valuable than others. (It is possible that External
changes can even render some requirements irrelevant).

Model B suggests that there are four aspects which
the client considers when making his/her decision on
requirements priorities: Business Value, Risk, Size
Measurement/Effort Estimation, and Project-level
Constraints. These four aspects are important to the way
and the possibilities for a client to execute the decision-
making step. We make the note that the agile RP literature
sources converge on that the Business value is the
dominating RP criterion. We also observed that some RP
methods used the notion of ‘importance’, or relative
importance of a feature, compared to other requirements,
instead of ‘value’. Still, when reading about the
application of the RP method, we understand that
estimations of ‘value’, is the implicit prerequisite for
these prioritization methods. In addition to Business
Value, the client considers Risk due to development
instability. Accommodating highly-volatile requirements,
which in turn, means accommodating instabilities in the
development process is an inherent aspect of the agile
development process. As a matter of fact, the strong focus
on business value and on continuous reprioritization of
the requirements is the key to successfully coping with
instability and volatile requirements.

77

Next, the client considers Estimated Effort based on
functional size when making decisions on priorities for
the next iteration. Size is based on the user stories and
can, for example, be expressed in story points [10].

Another aspect which can be a consideration during
the decision-making is a Project-level Constraint. This
can include, e.g. budget constraints, fixed market-driven
deadline or human resource constraint.

Last, the Prioritized Project Backlog is the ordered
list of requirements which the developer team should act
upon in the next iteration.

We make the note that Model B fits the contextual
whole of those related aspects which concern the client
when using any of the 15 RP techniques covered in the
literature sources for our GT study (see Table 2). This
means that a client could use Model B to reason about his
requirements prioritization context when using any of
these techniques. Clearly, not all of the elements in Model
B are necessarily present in each prioritization effort – i.e.
some of them are optional depending on the project’s
context or on the method used. For example, Risk (due to
instability and highly volatile requirements) is usually a
serious consideration in the later project iterations, for
example when a large portion of the budget has already
been consumed, or when a critical delivery deadline is
approaching.

4.3. Theoretical sampling and saturating the concepts

This section briefly discusses the purpose of our

theoretical sampling and how we carried it out. As per
methodologists [8, 12, 17, 31], theoretical sampling
means a quick and focused collection of pinpointed data
once the researcher has a first set of conceptual categories
to direct his/her theoretical sampling. In our study, we
tentatively conceptualized relevant ideas which hinted to
areas to probe with more information. We selectively
looked for people and online forums on agile software
development to shed light into what could be the
boundaries of our conceptual categories. To get access to
people, we used our own professional networks and agile-
focused workshop venues (for example, the agile
workshop co-located with the International Conference on
Software Engineering in 2008 in Leipzig, where the
authors presented the very first draft of the conceptual
model in Fig 2). Specifically, we involved three
practitioners from companies, when we were trying to
figure out (i) how clients define, estimate and use size in
agile RP context, (ii) how clients define business value,
and (iii) how clients (or product owners) manage sprint
backlogs in the context of agile projects in supplier
networks. These practitioners (Luigi Buglione from large
IT-solution providing company, Thijs Munsterman from a
mid-sized agile software development company, and
Erlend Engum from a small agile developing company,
who helped out in understanding (i), (ii) and (iii)

respectively) brought insights into the variation in the
meanings of our conceptual categories (Size
Measurement, Business Value, and Risk). Checking our
concepts against the empirical realities of the practitioners
was instrumental to understand how, when, and why the
meanings of our categories vary.

Similarly to this, our screening of published
experiences in prominent agile blogs (for example [28])
and forums (for example [14]) contributed to the
identification of those categories which we overlooked
(for example Project-level Constraints and Learning
Experience), or under-analysed (for example Risk).

We stopped our theoretical sampling process when
we noticed that further acquisition of data from real
project experiences did not bring new ideas nor opened up
new ways to think of the properties of our conceptual
categories. In GT, this state is called ‘saturation’ of the
resulting conceptual model [8]. We however,
acknowledge that this judgement about the point at which
we stop the theoretical sampling might be subjective.
Therefore, in the immediate future, we are planning case
studies on real projects with companies in which we will
use Model B as our framework to describe the contextual
whole of the related aspects that concern the client when
prioritizing the requirements at inter-iteration time.

Evaluation of the GT results

Research methodologists [12, 17, 31] emphasize that
when a researcher builds up a theory by using a
qualitative approach as the GT, it makes more sense for
the researcher to assess its resulting theory in terms of
explanatory power than in terms of generalizability. As a
conceptual model based on GT is always context-
dependent (and this is reflected in the categories),
methodologists do not propose that the GT findings are
generalizable beyond the defined boundary of the study.
To study explanatory power, we considered Glaser’s three
key criteria for evaluating the emerging theory: adequacy,
fitness (or relevance) and modifiability. Adequacy is to be
assured by applying the set of techniques and analytical
procedures in the GT, for example, adhering as closely as
possible to the GT principles and processes, coding the
data independently by each researcher before re-coding
them in joint work discussions (in order to ensure the
highest possible degree of inter-coder reliability),
consulting literature to evaluate similarities and
dissimilarities of the resulting theory to extend literature
and to check for any category, property or property value
that might have been overlooked. We made conscious
effort to keep these GT principles, however, we must be
clear on a validity concern arising from the fact that most
of the time the two authors worked away from each other
at two different locations and could not do much joint re-
coding.

78

The relevance of the results to researchers is to be
judged regarding how it fits the situation, that is, whether
it helps individuals familiar with the phenomenon (in this
study, requirement prioritization) - either as researchers or
as ‘lay observers’ - to make sense of their experience and
to manage the situation better. To make sure we preserve
the meaning of the clients in agile projects, we made the
conscious choice to search and include the so-called ‘in-
vivo’ codes, as recommended by Kathy Charmaz [8].
These are special terms from the world of the individuals
involved in the studied context, which are assumed that
everyone “knows and shares” them, which flag
condensed but essential meaning, and which reflect
assumptions that frame some actions. In our case,
examples of in-vivo codes, associated to clients in agile
software development, were “backlog” (meaning those
requirements in an agile project, which are subjected to
the implementation – for the whole project, as well as for
immediate future iteration, ‘project backlog’ and ‘sprint
backlog’ respectively) and “sprint” (meaning an
individual agile iteration in a project). We looked into the
implicit meaning behind these terms and this in fact was
what brought us to Model A on Fig 1. Another measure
we took in order to keep our conceptual modelling effort
in sync with real experiences was our consistent
engagement in diagramming activity, details on which
were presented in section 4.2.1. Beyond these two steps
(using in-vivo codes and diagramming), in our immediate
future research, we plan to demonstrate the fit of the
framework by using it in case studies.

Furthermore, modifiability of an emerging theory is
concerned with the possibility to update it and extend it in
the future. We made a conscious effort to maintain a
balance between keeping the concepts abstract enough -
so that the theory can serve as a general explanation, and
making sure the concepts do not get too abstract as to lose
their sensitizing characteristics. In our view, we should
keep our framework open as it makes more sense to invite
other researchers to use it and test it, only after this, to
strive for all-inclusive and general results. We do think
that if industrial uptake of agile software development
practices increases and more knowledge on the client’s
role and the client-develop interaction modes becomes
available, our framework will need some refinement and
extension so that it’s kept useful.

Last, we point out like other qualitative research
approached, the GT approach implies the risk that the
researchers assume that the conceptual categories are
saturated, when they might not be. Following Charmaz
[8], we remained open at all times to any new literature
source and whenever we felt we were getting stuck, we
stepped back and re-coded the earlier collected
information and looked for new leads. We also looked at
many cases of agile RP, while carrying out the theoretical
sampling and this increased our understanding of the
empirical world and helped us discern variations in the

conceptual categories we use to describe the agile RP
from client’s perspective.

Conclusions
The contribution of this work is a conceptual framework
which is a grounded theory explicating the requirements
reprioritization in agile software development. This
conceptual model fills a gap in the current agile software
engineering and agile requirements engineering literature
which lacks comprehensive studies on agile prioritization.
Our conceptual model is a first proposal only. However,
we think that it opens up for other researchers to explore
the area and to accumulate support for – or a challenge to,
the proposed theory. Our immediate future step is to carry
out case study research in agile companies in the
Netherlands.

Acknowledgement

This research has been funded by the Netherlands
Research Foundation (NWO) under the QUADREAD
project and under CARES project. The authors would like
to thank the practitioners Luigi Buglione, Thijs
Munsterman, Erlend Engum, the colleagues Roel
Wieringa, Klaas Sikkel, Klaas van den Berg, Siv Hilde
Houmb, and the participants of the APSO workshop at
ICSE 2008 for sharing ideas on the topic of agile
requirements prioritization. We also thank the anonymous
SEKE reviewers whose comments and suggestions
brought us to an improved version of this paper.

References
[1] Agile Journal http://www.agilejournal.com/
[2] Ahl, V. "An Experimental Comparison of Five

Prioritization Methods." Master's Thesis, School of
Engineering, Blekinge Institute of Technology, Ronneby,
Sweden, 2005.

[3] Alenljung, B, A. Person, Portraying the practice of
decision-making in requirements Engineeribng: a Case
Study of large Scale Bespoke Development, Requirements
Engineering journal, 2008, 13, pp. 257-279.

[4] Augustine, S., Managing Agile Projects, Prentice-Hall,
2005.

[5] Beck, K. eXtreme Programming Explained: Embrace
Change, Addison Wesley, 2000.

[6] Berteig, M., Methods of Prioritization, March 20, 2006 in
Agile Advice Online Practitioners Forum,
http://www.agileadvice.com/archives/2006/03/methods_of
_prio.html

[7] Cao, L, Ramesh B., Agile Requirements Engineering
Practices: An Empirical Study, IEEE Software, Jan/Feb,
2008 pp. 60-67.

[8] Charmaz, K. Constructing Grounded Theory: a Practical
Guide through Qualitative Research, Thousand Oaks CA,
Sage, 2007.

[9] Clarke, A. Situational Analysis: Grounded Theory after the
Postmodern Turn, Thousand Oaks, CA, Sage, 2005.

79

[10] Cohn, M "Agile estimating and planning", Prentice Hall,20
[11] Crow, K.,: “Customer-focused Development with QFD”,

URL: http://www.npd-solutions.com/qfd.html
[12] Dey, I. Grounding Grounded Theory, San Diego

Academic Press, 1999.
[13] Dr Dobb’s portal http://www.ddj.com/
[14] Forum, Agile Journal,

http://www.agilejournal.com/forums
[15] Fraser, J., Setting Priorities, April 23, 2002, URL:

http://www.adaptivepath.com/ideas/essays/archives/0000
18.php

[16] Getting Started With Use Case Modeling, An Oracle
White Paper, May 2007
http://www.oracle.com/technology/products/jdev/collater
al/papers/10g/gswUseCaseModeling.pdf

[17] Glaser B. G., Basics of grounded theory
analysis:emergence vs forcing, Mill Valley, Ca.:
Sociology Press,1992.

[18] Gottesdiener, E., At a Glance: Other Prioritization
Methods, EBG Consulting, Inc. www.ebgconsulting.com

[19] Harris, R. S., M. Cohn: Incorporating Learning and
Expected Cost of Change in Prioritizing Features on
Agile Projects. XP 2006: pp. 175-180

[20] InfoQ software development community
http://www.infoq.com/agile

[21] Karlsson, L., Thelin, T., Regnell. B., Berander, P.,
Wohlin, C., Pair-wise comparisons versus planning game
partitioning--experiments on requirements prioritisation
techniques, Empirical Software Engineering, 12(11),
2007

[22] Leffingwell, D., Widrig, D., Managing Software
Requirements, 2nd ed. Boston, MA: Addison-Wesley,
2003

[23] Li, C., Akker, J.M. van den, Brinkkemper, S. & Diepen,
G. (2007). Intergrated Requirement Selection and
Scheduling for the Release Planning of a Software
Product. In Proc. of REFSQ '07, Spingre LNCS, pp. 93-
108.

[24] Patton ,Jeff. Ambiguous Business Value Harms Software
Products, IEEE Software, 25(1) , January/February 2008.

[25] Patton, J., Finding the forest in the trees, Conference on
Object Oriented Programming Systems Languages and
Applications, 2005, San Diego, CA, USA, pp: 266 – 274.

[26] Principles behind the Agile Manifesto, 2001, URL:
http://agilemanifesto.org/principles.html

[27] Racheva, Z., M. Daneva, K. Sikkel, Value Creation by
Agile Projects: Methodology or Mystery? to appear in the
Proceedings of PROFES 2009 Conference, June 15-17,
Oulu, Finnland, Lecture Notes of Computer Science

[28] Rally Dev Agile Blog http://www.rallydev.com/agileblog
[29] Saaty, T.L., The Analytic Hierarchy Process, McGraw-

Hill, New York, 1980.
[30] Schwaber K., Agile Project Management with SCRUM,

Microsoft Press, 2004.
[31] Strauss, A.L., J.M. Corbin, Basics of qualitative research

- grounded theory procedures and techniques, 6th print,
Sage, Newbury Park, USA, 1991.

[32] Tabaka, J., Collaboration Explained: Facilitation Skills
for Software Project Leaders. Addison Wesley 2006.

[33] Wiegers, K., "First Things First: Prioritizing
Requirements," Software Development, 7(9) 1999.

80

A Novel Hybrid Search Algorithm for Feature Selection

Pengpeng Lin1, Huanjing Wang1 and Taghi M. Khoshgoftaar2

1 Department of Mathematics and Computer Science, Western Kentucky University, USA
2 Department of Computer Science and Engineering, Florida Atlantic University, USA

Abstract
Data mining is the exploration and analysis of large
datasets for discovering hidden knowledge and patterns.
The various techniques from the field of data mining have
been successfully applied to a variety of domains. An
important area of data mining and machine learning is
feature selection. The goal of feature selection is to find a
minimum set of features (attributes) such that the reduced
dataset characterizes the data similarly as the original
dataset without significantly reducing the accuracy of the
classifier. We propose a new feature selection algorithm
called Automatic Hybrid Search (AHS) that generates
consistent feature subsets and is a hybrid of the filter and
the wrapper models. Our experiments have shown that
AHS performed well at feature selection with a relatively
lower runtime cost, a smaller size of the selected feature
subset, and a lower error rate than the more traditional
approaches such as exhaustive search, heuristic search, and
probabilistic search. The findings suggest that AHS is
more sensitive to the number of features than to the
number of instances in the dataset.

1. INTRODUCTION
Data as the target for data mining has increased
dimensionally in number of instances (i.e., size) and the
number of features in a dataset. Data mining is the
exploration and analysis of large datasets for discovering
hidden knowledge and patterns. Various techniques from
the field of data mining and machine learning have been
successfully applied for deriving new information in a
variety of domains [9]. The primary process of data mining
is three-fold: data preprocessing, learning, and post-
processing [2]. Among these, the first step is an essential
preparation for the latter two. In this paper, we focus our
attention on the data preprocessing phase.

Data preprocessing is an important step in the data mining
process because of the need for high-quality data. Data
quality is a multi-faceted issue for data mining, because
poor data quality is often a problem in practical
applications of data mining, and it affects the success of
the data mining objectives, such as prediction,
classification, clustering, association rules, description,
and estimation.

Data preprocessing includes data cleansing, data
integration, data transformation, and data reduction. In
practice, it has been found that data preprocessing takes
approximately 80% of the total data mining effort [11].
Real world data may be incomplete, noisy and inconsistent.
Data cleansing works toward identifying inaccuracies and
noise in data, and attempts to correct them. Data
integration is the process of combining data residing at
different sources and providing the user with a unified
view of these data [10]. The goal of data transformation is
to transform data into forms that are appropriate for
mining. Data reduction obtains a reduced representation of
the dataset that is relatively smaller than the original
dataset, such that similar results can be obtained with
reduced dataset as with the original dataset. Data reduction
includes:

• Feature selection which involves keeping only useful
features and removing irrelevant and noisy
information, at the same time improving efficiency
without significantly reducing accuracy of the
classifier,

• Reducing the number of attributes’ values by
grouping them into intervals or grouping values in
clusters, and

• Reducing the number of records (instances) in the
dataset.

This paper focuses on feature selection, also called
attribute selection, variable selection, or variable and
feature selection [2]. A dataset for data mining may
contain a large number of features, many of which may be
irrelevant or noisy to the learning task. The goal of feature
selection is to find a minimum set of features such that the
reduced dataset describes the data as close as possible to
original dataset without significantly reducing the accuracy
of the subsequent classifier.

In order to select a subset of relevant features, an
evaluation criterion must be implemented. The evaluation
criterion is used to measure the goodness of the selected
features. There are many searching strategies have been
designed with various evaluation criteria. Feature selection
algorithms designed with different evaluation criterion
broadly fall into three categories: the filter model, the
wrapper model, and the hybrid model [5]. The filter model

81

evaluates the feature subsets based on the general
characteristics of data without involving any algorithm.
The wrapper model requires an evaluation criterion with a
predetermined learning algorithm. The hybrid model is a
combination of filter model and wrapper model, and thus
exploits advantage from both models.

We review an evaluation criterion called consistency
measure. Using this measure, feature selection is
formalized as: finding the smallest set of features that can
distinguish classes as compared with the full (non-reduced)
set [1]. Three existing search algorithms are examined and
implemented. One new algorithm, named Automatic
Hybrid Search (AHS), is proposed based on them. A
consistency-based feature selection framework 1 is
developed using Java for comparison purposes.

The remainder of the paper is organized as follows. We
review the relevant literature on the consistency measure
and existing search algorithms in Section 2. Section 3 then
describes the proposed search algorithm. We discuss our
experimental results in Section 4. Finally, at the end we
conclude our paper in Section 5, and provide suggestions
for future work.

2. RELATED LITERATURE
The problem of feature selection is to find a minimum
subset of features according to the given evaluation
criterion. By evaluating each selected subset, we can
reduce the number of possible combinations; thus, simplify
the classifier. Many existing evaluation criteria are
accurate only for discrete data. The preprocessing step is
needed to discretize data before applying these evaluation
criteria. We use datasets that have already been discretized.

Dash and Liu [12] suggest a feature selection process
consisting of four parts: feature generation, feature
evaluation, stopping criterion, and testing. Feature
generation uses a certain searching strategy to produce the
candidate feature subset. Each selected subset is then
evaluated by a criterion for its merit and compared with
the previous best result. If the new selected subset has
better merit than the previous best result, then the previous
best subset is replaced with the new subset. This process of
feature generation and evaluation is repeated until a
stopping criterion is met. Finally, the testing procedure
tests the selected feature subset. In general, a search
algorithm and an evaluation function are needed for the
feature selection process.

In the remainder of this section, Section 2.1 provides a
review of an evaluation criterion called consistency
measure, while Section 2.2 summarizes a review of
existing search algorithms that use the consistency

1 Visit http://www.wku.edu/~huanjing.wang/SEKE for the tool of

consistency based feature selection framework.

measure.

2.1 Evaluation Criterion
An evaluation criterion is used to select the most relevant
features, and thus, eliminating irrelevancy and redundancy.
As described by Kohavi and John [4], feature relevance can
be classified into three categories: strongly relevant,
weakly relevant, and irrelevant. If a feature is strongly
relevant, it indicates that the feature belongs to the optimal
feature subset, and removing it will affect class distribution.
Weakly relevant features are not always needed to obtain
the optimal feature subset. Irrelevant features should not be
considered and should be removed. There are a variety of
evaluation criteria that can be used for controlling feature
selection. We focus on a popular evaluation criterion called
consistency measure [1].

The consistency measure is used to find a minimum feature
subset that can consistently yield a classifier as if using the
full feature set. Consistency rate [1] is defined by the
inconsistency rate where two instances are considered
inconsistent if having the same feature values but different
class labels. To compute inconsistency rate [1], the
inconsistency count is first computed. Assume that the
target feature has j different class labels: C1, C2, …, Cj.
For a feature subset S with M number of instances, there
are h patterns, P1, P2… Ph. A pattern Pi (1<=i<=h) appears
in N instances out of which N1 number of instances are
labeled C1, N2 number of instances are labeled C2, and so
on. If N1 is the largest among the j classes, the
inconsistency count INCi = N – N1 for pattern Pi. In total,
there are h inconsistency counts and the inconsistency rate
is the sum of all the inconsistency counts over all patterns
divided by total number of instances. The inconsistency
rate INCR can be expressed as follows:

MINCINCR
h

i
i /

1
�

=

= (1)

where INCR is the inconsistency rate, INCi is the
inconsistency count for pattern Pi, h is the number of
patterns, and M is the total number of instances.

In earlier works such as [1], inconsistency rate is applied
into the search algorithms. A threshold � is usually defined
at the beginning. For each feature subset S selected by
search algorithm, the inconsistency rate INCR is calculated.
If INCR <= �, then S is considered to be consistent. The
original threshold � is updated. The process is repeated
until a stopping criterion is reached.

We use the consistency rate for algorithmic purposes.
Consistency rate is similar to inconsistency rate except that
consistency count, CC, is computed. Instead of subtracting
N1 from N to get INCi for pattern Pi, we consider N1 as the
consistency count. Thus, the consistency rate can be
expressed as follows:

82

MCCCR
h

i
i /

1
�

=

= (2)

where CR is consistency rate, CCi is consistency count for
pattern Pi, h is the number of patterns, and M is the total
number of instances.

From the definitions of inconsistency rate and consistency
rate, we can draw the following equation:

INCRCR −=1 (3)

Consistency rate has the monotonic property. An
evaluation criterion is monotonic if for a dataset D and a
measure CR, there exists feature subsets Si and Sj where Si
⊂ Sj, then CR(Si,D)<=CR(Sj,D) – a proof for this can be
found in [1]. Consistency rate is also applied differently in
feature selection. At the beginning, we consider the full
feature set as the optimal feature set and calculate the
consistency rate �. According to the monotonic property,
no feature subset that has size less than full feature set can
have consistency rate greater than �. For each generated
feature subset, if the corresponding consistency rate is
equal to � and the size of the feature subset is smaller, the
previous best feature subset is replaced. This process
continues until it hits a stopping criterion.

2.2 Search Algorithms
Search strategies are very important, since a good search
strategy can not only reduce the computational cost but
also improve the accuracy. The searching process usually
focuses on three aspects: where to start, how to produce the
next candidate subset, and when to stop. Based on these
three aspects, the searching strategies include exhaustive
search, heuristic search, probabilistic search, etc [3].

2.2.1 Exhaustive Search (ES)
Exhaustive search uses the algorithm to generate every
possible combination of feature subset and compute the
respective consistency rates. A threshold is set up at the
beginning according to the consistency rate calculated for
the first selected feature subset which is also set up as best
feature subset. As the algorithm proceeds, the current best
subset may be replaced by one with same or higher
consistency rate and that the new set is smaller. The
exhaustive search can start with either a set with one
feature and continue by adding features into set or with a
full feature set and then remove features from the set.

It is obvious that exhaustive search is time consuming and
computationally expensive as it calculates every
combination and that many of them may be redundant.
The efficiency deteriorates fast with the size of the search
space. For example, if a testing dataset has n features, the

number of combinations is �
=

n

i

i
nC

1

which implies that there

will be �
=

n

i

i
nC

1

times of calculations for determining

consistency rate. The cost for exhaustive search is O(2n),
where n is the number of features in original data set. In
conclusion, the exhaustive search is inefficient and costly
for a large number of features. An example for the
exhaustive search is Focus [1], which is implemented in
this paper for comparison purposes.

2.2.2 Heuristic Search (HS)
There are two fundamental goals for computing algorithms:
finding a way to use less amount of running time and
producing an optimal solution. A heuristic algorithm is
used when there is no known way to find an optimal
solution in which case the goal of the heuristic is to
develop a simple process with provable better running time
and good solution. Since exhaustive search algorithms take
significant amount of unnecessary time and
computationally costly, heuristic algorithm is a good
alternative to complete quickly and return a decent result.

There are many heuristic search techniques in practice
such as Best-First search [14], A* search [14], Iterative
Deepening A* search [14], SetCover [6], etc. The original
idea for SetCover is that two instances with different class
labels are said to be “covered” when there exists at least
one feature which has different values for the two instances
[6]. In other words, two instances with two different class
labels are considered to be consistent if two instances have
at least one distinctive feature value between them.
SetCover is implemented in this paper for comparison
purposes.

2.2.3 Probabilistic Search (PS)
As mentioned earlier, a traditional feature selection
process consists of four parts: feature generation, feature
evaluation, stopping criterion and testing. The common
goal of feature selection is to find the smallest feature
subset with the highest merit based on an evaluation
criterion. The search algorithm stops searching when such
a feature subset is found. In probabilistic search, stopping
criterion can be defined otherwise. Some probabilistic
search techniques combine with the heuristic search
algorithm to identify the most useless feature during each
iteration and thus generate a better candidate subset by
eliminating the useless feature. The probabilistic searches
are often given a number as a parameter to specify how
many times the search is going to run. Each iteration (run)
generates a new subset randomly from the remaining
features which trimmed off the most useless one during the
previous iteration. As the time of the next iteration, the
accuracy is achieved at a high computational time.

Other probabilistic search algorithms employ two stopping
criteria combining generation time and when the best
subset is found. Such combination guarantees accuracy and

83

the search is stopped not solely based on running times but
also the result – therefore avoiding unnecessary lavish
expenditure. As the probabilistic search proceeds, the
feature subsets are randomly generated with equal
probability, once a consistent feature subset is selected that
satisfies the threshold the search will stop regardless of the
specified running time. In other cases where data may have
large number of features and instances, if the general
purpose is to find a result with a certain amount of
tolerance, setting the running time as the main stopping
criterion is the most reasonable method. LVF is a
probabilistic search algorithm [8] that is implemented in
this paper for comparison purposes.

3. PROPOSED SEARCH ALGORITHM
The above feature selection algorithms generate one and
only one consistent feature subset. They fall into the
category of filter model. We present a new feature selection
algorithm called Automatic Hybrid Search (AHS) that will
generate at least one consistent feature subset and is a
hybrid of the filter model and the wrapper model. A
classifier will be used to decide a final feature subset if
several consistent feature subsets exists. AHS relies on the
monotonic property of consistency rate. This property gives
us the following facts:

(1) The full feature set has the highest consistency rate δ.
In other words, the consistency rate of any feature
subset is less than or equal to δ;

(2) The superset of a consistent feature subset is also
consistent;

(3) If CR(Si, D) ≤ CR(Sj, D), then CR(Si∩f, D)≤CR(Sj∩f,
D) where f is a feature not in Si and Sj.

The proposed AHS algorithm uses the above facts and
works as follows: the consistency rate of full feature set is
computed first and is used as the stopping criterion.
Starting from the size one consisting of any feature,
consistent feature subsets that have local highest
consistency rate are selected. These selected feature subsets
will be used to generate supersets. Repeat the process until
feature subsets that have the same consistency rate with δ
or the full feature set is reached. If more than one feature
subsets are generated, a classifier (we use C4.5 [7]) will be
used to decide which feature subset is selected based on
classification error rate. C4.5 is an algorithm for inducing
classification rules in the form of a decision tree from a
given dataset.

Below we provide the Automatic Hybrid Search (AHS)
algorithm, where the conCal(S,D) function calculates the
consistency rate of a given feature set S for a given dataset
D and the combinationSet(list, length) function generates
every possible combinations according to the list and
length passed as parameters.

Algorithm: Automatic Hybrid Search Algorithm.
Step 1:
Input:

D, dataset;
S, full feature set of D.

Output:
L, consistent feature subsets.

(1) L = S;
(2) � = conCal(S, D);
(3) T = all subset S' in S where |S'| = 1;
(4) max = -�;
(5) While the size of any set in T < |S| {
(6) tempSet = φ ;

(7) for each set T' in T {
(8) tempCal = conCal(T', D) ;
(9) if (max < tempCal) then {
(10) max = tempCal;
(11) tempSet = φ ;

(12) add T' to tempSet;
(13) }
(14) if (max = tempCal) then
(15) add T' to tempSet;
(16) }
(17) if (max � �) then {
(18) L = tempSet;
(19) return L;
(20) }
(21) else if |tempSet| = |T| then {
(22) T = combinationSet(T, size + 1) ;
(23) }
(24) else {
(25) for any set tempSet' in tempSet
(26) append tempSet' with f where f is any

feature in S, not in tempSet';
(27) T = tempSet;
(28) }
(29) }
(30) return L;
Step 2:
Input:

L, consistent feature subsets from step 1.
Output:

T, selected feature subset.
(1) min = �;
(2) T = φ ;

(3) for each feature subset L' in L {
(4) calculate error rate r using C4.5 with L';
(5) if (r < min) then {
(6) min = r;
(7) T = L';
(8) }
(9) }
(10) return T;

84

4. EXPERIMENTAL RESULTS
To compare the performance of AHS to the other feature
selection algorithms, we used the Credit Approval dataset
[13] and SPECT Heart dataset [13]. The Credit Approval
dataset contains credit card application data – the instances
that have missing values have been removed. The SPECT
Heart dataset describes diagnosing of cardiac Single Proton
Emission Computed Tomography (SPECT) images. Each
patient is classified into two categories: normal and
abnormal. The datasets are shown in Table 1.

Table 1: Experimental datasets

Name
Number of
instances

Number of
features

Credit
Approval

673 15

SPECT
Heart

80 22

The four algorithms were first compared by examining
their empirical runtime. Ten runs were done for each
feature selection method. Table 2 shows the average run-
time over ten trials. We can see the run-time of HS, PS and
AHS are much smaller than ES. The runtime for AHS is
longer than HS and PS when the original feature set is
larger since AHS is a hybrid algorithm and involved
learning and selecting feature subset. The execution time is
relatively small for all tested algorithms. However, the
savings in execution cost of HS, PS and AHS will have
significant implications for large scale datasets with tens or
hundreds of thousands of features and when the attribute
value of a feature is diverse.

Table 2: Average Run-time comparisons (in
milliseconds)

Dataset Feature
Selection
Methods

Credit
Approval

SPECT
Heart

ES 13761219 27110657
HS 2043 1109
PS 4931 226
AHS 4234 24562

A tool to run the feature selection algorithms is developed
in Java. Figure 1 shows the AHS result for the SPECT
Heart dataset, and where 11 features are selected using
AHS. Figure 2 shows the HS result for the SPECT Heart
dataset, and where 15 features are selected using HS.

Table 3 shows the number of features selected through
each algorithm for different dataset. The result for AHS is
same as ES for all dataset. The feature subset selected by
AHS is close to the optimal solution.

Figure 1: AHS result for SPECT Heart dataset

Figure 2: HS result for SPECT Heart dataset

Table 3: The Size of Consistent feature subset

Dataset Feature
Selection
Methods

Credit
Approval

SPECT
Heart

ES 3 11
HS 3 15
PS 4 15
AHS 3 11

In order to evaluate how our algorithm of feature selection
affects classification, we employed the well known
classification algorithm C4.5 [7] on the SPECT Heart
dataset. The training dataset has 60 instances and test
dataset has 20 instances. We used C4.5 as an induction
algorithm to evaluate the error rate on selected features for

85

each feature selection method. Nodes in a C4.5 decision
tree correspond to features and the leaves of the tree
correspond to classes. The branches in a decision tree
correspond to their association rule. Table 4 shows the
error rate of the decision tree for each feature selection
method. As seen in the experimental results, AHS
performed same with HS and PS, but provided a smaller
size of feature subset.

Table 4: Results for the C4.5 Algorithm
Method Error rate

ES 21.25%

HS 18.75%

PS 18.75%

AHS 18.75%

5. CONCLUSIONS
In this paper, we have reviewed the framework for
consistency based feature selection and explained the basic
concepts of different feature selection model, i.e., filter,
wrapper, and hybrid model. We provided a brief review on
an evaluation criterion, the consistency rate measurement.
We examined its properties such as monotonic property.
Three typical search algorithms, exhaustive, heuristic, and
probabilistic search are investigated in this paper. A hybrid
search algorithm, called Automatic Hybrid Search (AHS)
is proposed.

Instead of stopping on finding only one result, AHS is able
to find several consistent feature subsets with the same
consistency rate. C4.5 is integrated into the algorithm in
order to further ensure that the result is more accurate with
a slight trade off of computational time. AHS has been
evaluated on the Credit Approval and SPECT Heart
datasets. The experiments have shown that AHS performed
well at feature selection with relative less runtime cost,
yielding a smaller size of selected feature subset, and
provided similar or lower error rates than the more
traditional approaches such as ES, HS and PS. The
findings suggest that AHS is more sensitive to the number
of features than to the number of instances in the dataset.

Future work will focus on experimental analysis on more
datasets with larger feature spaces. It would be interesting
to explore the measures that can allow several related data

mining techniques to work together and facilitate handling
different types of data.

6. REFERENCES
[1] M. Dash and H. Liu, “Consistency-based search in feature

selection”, Artificial Intelligence, Vol. 151, Nos. 1-2, p.
151-176, 2003.

[2] H. Wang, A. Parrish, R. Smith, and S. Vrbsky, “Variable
selection and ranking for analyzing automobile traffic
accident data”, Proceedings of 20th Annual ACM Symposium
on Applied Computing, 2005.

[3] H. Liu and L. Yu, “Toward integrating feature selection
algorithms for classification and clustering”, IEEE
Transactions on Knowledge and Data Engineering,
Vol. 17, Issue 4, p. 491 – 502, 2005.

[4] R. Kohavi and G. John, “The wrapper approach”, Feature
Selection for Knowledge Discovery and Data Mining, pp.
33–50, Kluwer Academic Publishers, New York (1998).

[5] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection”, Journal of Machine Learning Research,
3:1157-1182, 2003.

[6] A. Oliveira and A. Vincentelli, “Constructive induction
using a non-greedy strategy for feature selection”,
Proceedings of Ninth International Conference on Machine
Learning, p. 355-360, 1992.

[7] J. R. Quinlan, C4.5: programs for machine learning, Los
Altos, California: Morgan Kaufmann, 1993.

[8] H. Liu and R. Setiono, “Feature selection and classification
– A probabilistic wrapper approach”, Proceedings of Ninth
International Conference on Industrial and Engineering
Applications of AI and ES, p. 419-424, 1996.

[9] M. Berry and G. Linoff, Data Mining Techniques for
Marketing, Sales, and Customer Support, John Wiley &
Sons, 1997.

[10] M. Lenzerini, “Data Integration: A Theoretical Perspective”,
PODS 2002: 233-246.

[11] S. Zhang, C. Zhang, and Q. Yang, “Data preparation for
data mining”, Applied Artificial Intelligence, 17:375–381,
2003.

[12] M. Dash and H. Liu, “Feature selection for classification,”
Intelligent Data Analysis, 1, 131-156 (1997).

[13] UCI Repository of Machine Learning Databases,
http://archive.ics.uci.edu/ml/.

[14] B. Coppin, Artificial Intelligence Illuminated, Jones and
Bartlett, 2004.

86

Improving Text Document Clustering by Exploiting
Open Web Directory

Gaurav Ruhela and P.Krishna Reddy
Center for Data Engineering

International Institute of Information Technology (IIIT-H)
Hyderabad, India

ruhela gaurav@research.iiit.ac.in and pkreddy@mail.iiit.ac.in

Abstract—The process of term extraction and weighting affects
the performance of information retrieval, search engines and text
mining systems. A text document is abstracted as a vector of
terms, and the weight for each term is usually given by using
popular TF-IDF method. In the TF-IDF method, the weight
of a term is a function of its frequency in the document and
in overall document collection. The similarity computation by
cosine similarity method is influenced by common terms (and their
weight) between two document vectors and ignores the semantic
relation between terms. We can use the generalization property
of hierarchical knowledge repositories to establish that the terms
correspond to specific instances of some generalized term. These
generalized terms can be used to enrich the document vector,
by enriching and weighting we intend to obtain better similarity
values between two documents. In this paper, we have proposed an
improved term extraction and weighting method by exploiting the
contextual/semantic relationship between terms using knowledge
repositories such as open web directories. The experiment results
show that the proposed approach improves clustering performance
over other term extraction and weighting approaches.

I. INTRODUCTION

The vector space model [1] abstracts a document as a vector
which consists of terms (features). Similarity computation
between documents in an effective manner is an important
aspect for text document clustering. Similarity between two
documents depends on highly weighted common terms. So,
selection of appropriate terms and computing their weight is
a crucial issue as it influences the clustering performance.

Term weight represents the importance of the term for a
given document. Terms that do not describe document’s con-
tent often intend to induce noise and degrade the performance
of the system. The goal of term identification and weighting
scheme is to effectively distinguish informative terms from the
non-informative ones, and to assign more weight to the infor-
mative terms. The TF-IDF [2] and other weighting methods
consider syntactic similarity and ignore semantic aspects. For
example, consider two documents, one with word “BMW”
and other with “Jaguar”. The cosine similarity method with
existing weighting method gives similarity value between two
documents as zero. It can be noted that even though these two
documents are different, they are semantically related as both
are related to car models. So, identifying similarity between
two documents requires investigation of efficient approaches
to identify semantic relationship between the documents.

In this paper, we intend to improve clustering performance

by enriching and weighting feature vector. We have proposed
an improved term extraction and weighting method by ex-
ploiting the semantic relationship between the terms using
knowledge repositories such as open web directories. We have
exploited the notion that any two terms are related if they
have been used in the same context. Based on this notion,
for any two terms, if we extract corresponding related terms
and include them in document vector, the similarity between
two vectors will improve, which further improves the cluster
quality.

The contribution of this paper is twofold. First, we propose
a framework that performs feature generation (using open web
directory) and enriches the feature vector with new, more
informative and discriminative features. Second, we propose a
weighting scheme to weigh generalized terms in topic paths,
which assigns more weight to the terms representing the
context of the document.

The rest of this paper is organized as follows. In Section
II we review related work. In Section III, we explain the
proposed term extraction and weighting scheme. We discuss
experiment results in Section IV and conclude in section V.

II. RELATED WORK

Current state of the art term weighting schemes can be
categorized into three classes supervised, unsupervised and
context based weighting schemes.

Supervised term weighting schemes are based on the dis-
tribution of word in different categories. Machine learning
techniques and probabilistic approaches are used to enhance
learning from available knowledge [3][4]. Efficiency of these
models depends on the quality of the sample sets used for
training.

Unsupervised term weighting schemes do not use informa-
tion on membership of training documents. Simplest model
in this category is the boolean model based on set theory.
Weight of a term ti of document �dx, w ∈ {0,1}, is given on
the basis of absence or presence of a term. TF-IDF [2] and its
various variants assign non binary weight to terms according to
their importance for a particular document. Several weighting
schemes like LTU [5] and INQUERY [6] are introduced which
take use of document length as well. However the importance
of capturing context is not considered.

87

Regarding context based approach, word sense disambigua-
tion is an active topic of research which focuses on finding
the correct sense in which the word has been used [7][8][9].
To capture the context of the document, there have been
efforts to augment features from resources like “Yahoo Web
Directories”, “Wikipedia”, “Wordnet” etc. Work that uses
web directories to gain information about the context of the
document is discussed in [10], [11][12]. Yahoo categories
in [11] were used as knowledge source to classify the web
pages into Yahoo categories. In [12], intentions in dialogues of
instant messaging applications are captured, which are used for
advertising. Question answering system [13] uses predictive
annotation in which a token is added into the query to identify
potential answers to questions in text.

In [14], an approach is proposed to enrich document vector
with conceptual terms using Wordnet [15]. After enriching the
terms, all conceptual terms are considered to be at same gen-
eralization level and TF-IDF weighting scheme was suggested
to assign weights to both document terms and the terms added
from Wordnet. Several thresholds are used to put a limit on
the number of words to be added.

In this paper we made an effort to develop an unsupervised
term weighting scheme that neither require any tagging of
text nor any kind of training process, and test the clustering
efficiency with different term-weighted vector representations.
The proposed approach differs from previous approaches in
many aspects; we introduce a term extraction method using
topic paths of open web directory. We assign weights to doc-
ument terms and conceptual terms differently. We introduce
various factors which should be considered while assigning
weight to conceptual terms. These factors are described in
further sections.

III. PROPOSED TERM WEIGHTING SCHEME

We first explain the basic idea and then we discuss the
proposed approach to enrich and weight the document vector.

A. Basic Idea

Cosine similarity between two document vectors �d1 and �d2

is computed as follows, Sim(�d1, �d2) = �d1.�d2

|d1||d2|
, where,

‘.’ indicates the vector dot product and |d| is the length
of document vector �dd. Cosine similarity with traditional
term identification and term weighting fails to find similarity
between two documents that share a topic, but have different
terminology. If we use a knowledge resource such as open
web directory in which, a given term relates to a context, and
the context, in turn, relates to a collection of terms, then we
can extract related terms for each term in the document. In a
simple generalization hierarchy of web directory, a term at a
higher level is a generalized concept for all the terms under this
node e.g. sport is a generalized concept for football, cricket,
baseball etc. By adding related terms to the feature vector, two
different terms which have the same context may get the same
related generalized terms. As a result, there is an opportunity
to increase similarity between two documents.

Using hierarchical categories of web directories, it is possi-
ble to add additional features to the document vector without
their literal occurrence in the document. This enriched feature
vector has document terms along with the generalized categor-
ical terms which represent the context of the document. This
would increase the similarity between two documents even if
they did not had common vocabulary, but were semantically
related.

Example: Consider two document vectors, one document
vector contains the term “BMW” and other document vector
contains the term “Jaguar”. If we calculate cosine similarity
of these two documents, the similarity value returned would
be ‘0’ even though both documents contain information about
cars. By exploiting the hierarchical knowledge resource such
as open web directories, it is possible to improve the perfor-
mance of similarity computation. When a term is queried in an
open web directory such as DMOZ1, it returns several topic
paths and respective count value. The topic paths obtained
for the terms “BMW” and “Jaguar” are listed in Table I and
Table II respectively. In Table I, first topic path for “BMW”
has “Makes and Models” as its immediate generalized term
followed by “Autos” and then “Recreation”. If generalized
terms of “BMW” and “Jaguar” are included in the correspond-
ing document vectors then “Makes and Models”, “Autos” and
“Recreation” will be common to both document vectors. As a
result, the cosine similarity between these two documents will
be greater than ‘0’.

So, there is opportunity to improve the performance of
similarity computation by exploiting hierarchical knowledge
resources like open web directory.

B. Description of Proposed Approach
We explain the proposed approach after explaining the

relevant terminology.
• Document Term (DTermi): Given a document we extract

‘n’ (n > 0) terms to form initial document vector. We call
each term as document term (DTerm). The ‘ith’ term in
the document vector is denoted by DTermi (1 ≤ i ≤ n).

• Topic Path (TPathij): When web directory is queried
with a Dtermi, it returns ‘p’ topic paths. Each topic path
contains a sequence of terms. The first term is a DTermi

itself and rest terms are generalization of preceding term.
TPathij is the jth (1 ≤ j ≤ p) topic path of Dtermi.
Formally, TPathij is defined as follows:

TPathij :=< xk : xk−1 : · · ·x0, count > (1)

Here, x0 is DTermi, xk is a immediate generalization
of xk−1, ‘k’ is the level in the topic path and count
is the number of related web pages which falls under
the respective topic path. Table I and Table II shows
five topic paths related to words “BMW” and “Jaguar”
respectively.

• Generalized term (GTermijk): Given a topic path,
the terms other than DTerm are called generalized

1http://www.dmoz.org/

88

TABLE I
TOPIC PATHS AND COUNT FOR TERM BMW

Link no. Categorical Link Count
1 Recreation: Autos: Makes and Models: BMW 91
2 Recreation: Motorcycles: Makes and Models: BMW 90
3 World: Deutsch: Freizeit: Auto: Marken: BMW 69
4 Business: Automotive: Motorcycles: Makes and Models: Retailers: BMW 29
5 Home: Consumer Information: Automobiles: Purchasing: By Make: BMW 11

TABLE II
TOPIC PATHS AND COUNT FOR TERM JAGUAR

Link no. Categorical Link Count
1 Recreation: Autos: Makes and Models: Jaguar 67
2 Games: Video Games: Console Platforms: Atari: Jaguar 34
3 Shopping: Vehicles: Parts and Accessories: Makes and Models: European: British: Jaguar 28
4 Kids and Teens: School Time: Science: Living Things: Animals: Mammals: Jaguar 9
5 Sports: Football: American: NFL: Jacksonville Jaguars: Jaguar 4

terms. GTermijk is a generalized term occurring in the
TPathij for k �= 0, where ‘k’ is the level number.

• WDTermi and WGTermijk: The weights of DTermi

and GTermijk are denoted by WDTermi and
WGTermijk respectively.

Relation between DTermi and its topic paths is depicted in
Fig 1. Here, a term points to its immediate generalized term.

GTermi11

GTermi12 GTermi22

GTermi21

DTermi

GTermi32

GTermi31

Level 2

Level 1

Level 0

TPathi1 TPathi2 TPathi3

Fig. 1. Relation between DTermi and its topic paths

For each document, proposed approach follows the fol-
lowing steps: (i) Generation of DTerms for document, (ii)
Determining weight for the terms in topic path, and (iii)
Formation of enriched document vector. Details of these steps
are as follows:

1) Generation of DTerms for document: Let ‘D’ be the
total number of documents in dataset. Feature vector of each
document dd (1 ≤ d ≤ D) in ‘n’ dimensional term space is
�dd = (t1, t2 · · · tn). In more general form document �dd is a
vector of weights. Wd = (w1d, w2d · · ·wnd) , where wid (1 ≤
i ≤ n), is weight of term ti of document �dd. High frequency
words (Stop-words) such as ‘i’, “the”, “am”, “and” etc, are
removed using a stop-word list. Then the terms are reduced to
their basic stem by applying a stemming algorithm. As of now
low frequency terms are kept, but later we conduct experiments
by removing low frequency terms from the document vector.

2) Determining weight for the terms in topic path: Extract
TPaths for every DTerm of the document. Each TPathij

consists of one DTerm and sequence of GTerms. Assign
weight for DTerm as well as GTerm using the following

methods.
• Assigning weight to document terms (DTermi)

We can use any weighting scheme to weigh DTerms.
Here, we use TF-IDF, effects of weighting with TF, LTU
and INQUERY are also shown in experiment section.
Same weights (WDTerm) will be used to weigh GTerms
in next sub-section.

• Assigning weight to generalized terms (GTermijk)
GTerms that are overlapping for several terms should
receive higher weights than the GTerms that appear in iso-
lation from the others. But, if only frequency criterion is
considered, terms at the high level will get more weight,
being generalized term of many terms their frequency
will be high. So, along with the addition of generalized
terms, their weighting is also important.
The weight of a generalized term is a function of three
factors namely (i) GTerms of important terms are impor-
tant, (ii) Importance of topic path, and (iii) Less weight
to more generalized terms.
The weight of GTermijk of DTermi in jth topic path
and kth level can be formalized as

WGTermijk = WDTermi ∗ impj ∗ exp−k (2)

We elaborate these three factors one by one.
– GTerms of important terms are important

WGTermijk is proportional to WDTermi because
high weight indicates the importance of a term for
the document. In other words, terms with high weight
represents the document in a more informative man-
ner. So, the generalized terms of high weighted
DTerms also become important. Thus the weight
of generalized terms should be proportional to the
weight of DTerms.

– Importance of topic path (impj)
For a Dtermi, several topic paths are obtained
because of polysemy nature of term. The importance
of a term for different topic paths might differ. The
importance of a term towards ‘jth’ topic path is
captured by the probability of a term to occur in

89

that topic path, i.e. impj =
count(j)∑

p

m=1
(count(m))

. High
impj shows that a term is used mo re frequently in
‘jth’ topic path and thus more related to it. Thus the
GTerms occurring in this topic path are important.

– Less weight to more generalized terms (exp−k)
GTerms closer to DTerm represents the document
relatively more precisely than the other more gener-
alized terms in the topic path. So, GTerms which are
close to the DTerm in topic path should get relatively
more weight than the GTerms which are farther away
in the topic path. We use a decreasing function (ex-
ponential) to assign less weight with the increase in
level of topic path. For Example: Consider topic path
1 of DTerm “BMW” in Table I, “BMW” is at level
‘0’, “Makes and Models”, “Auto” and “Recreation”
are at level ‘1’, ‘2’ and ‘3’ respectively. “Makes
and Models” is immediate generalized term and thus
defines “BMW” better than the other generalized
terms like “Auto” or “Recreation”. Thus more weight
should be given to “Makes and Models”.

TABLE III
GENERATION AND WEIGHTING OF EDtermSeti

Input: DTermi

Output: EDtermSeti, Weighted and Enriched-term Set for DTermi

1: WDTermi = tf(DTermi) ∗ idf(DTermi)

2: EDtermSeti = {DTermi, WDTermi}

3: TPathList = {}

4: TPathList = AddTopicPaths(DTermi) //Add topic paths of DTermi

5: foreach TPathij in TPathList

6: foreach GTermijk

7: impj =
count(j)∑

p

m=1
(count(m))

8: WGTermijk = WDTermi ∗ impj ∗ exp−k

9: EDtermSeti = EDtermSeti ∪ {GTermijk , WGTermijk}

10: end
11: end

In this step, by giving each DTermi of the document
(along-with its weight) as input, the pairs of GTerms along-
with their weights are obtained. We define this collection of
DTermi and its GTerms from all topic paths as enriched term
set (EDtermSeti). Algorithm for EDtermSeti generation
and weighing its terms is given in Table III. Formally,

EDtermSeti := {DTermi ∪ GTermijk} ∀j, k (3)

3) Formation of enriched document vector (�d′d): For every
term of every EDtermSet, if a term from EDtermSet is not
present in �d′d, then the term along with weight is added to
the �d′d to represent this term. If the term exists in �d′d then the
weight of this term is added to its instance in �d′d (algorithm
in Table IV). Formally,

�d′d := ∪{EDtermSeti} ∀i, i ∈ n (4)

TABLE IV
FORMATION OF ENRICHED DOCUMENT VECTOR �d′

d

Input: ‘n’ Enriched-term Sets (EDtermSets)
Output: Enriched and Weighted Document Vector �d′

d
.

1: d′
d

= {}

2: foreach EDtermSeti, i ∈ n

3: foreach termt in EDtermSeti

4: if (AlreadyExists(termt)) //Check in d′
d

5: IncrementWeight(termt) //Weight added to instance in d′
d

6: else
7: d′

d
= d′

d
∪ {termt, W termt} //Add term and its weight to d′

d

8: end
9: end

To put more insight into the formation of enriched doc-
ument vector, we pictorially show enriched document with
two DTerms, DTermx and DTermy (Fig. 2). DTerms along-
with their topic paths are merged to form enriched doc-
ument. For term DTermx; three topic paths are obtained
TPathx1 :=< Ax13 : Ax12 : Ax11 : DTermx >,
TPathx2 :=< Bx22 : Bx21 : DTermx >, TPathx3 :=<

Cx33 : Cx32 : Cx31 : DTermx >. While term DTermy has
two topic paths TPathy1 :=< By12 : By11 : DTermy >,
TPathy2 :=< Cy23 : Cy22 : Cy21 : DTermy >.

Ax13

Ax11

Ax12

Cx33

Bx22

Bx21

Ax13

Ax11

Ax12
Bx22
By12

Bx21
By11

DTermx

Cy22

Cy21

DTermyDTermx

Cx31

Cx32
By12

By11

Cy22

Cy21

DTermy

Cx32

Cx31

Cx33
Cy23 Cy23

Fig. 2. Document after merging all topic paths for all DTerms

Suppose, Bx21 and By11, Bx22 and By12 are same terms,
thus, after merging kept in same node of enriched document.
Weight of these terms is the summation of their weight from
both topic paths.

Factors which affect the weight of node having term
Bx21 are: (i) importance of paths DTermx → Bx21 and
DTermy → By11, (ii) weight of DTermx and DTermy,
(iii) distance of Bx21, By11 from DTermx and DTermy

respectively. So, final weight of a GTerm will be summation of
exponentially decreased weight from all the DTerms occurring
in the document, whose topic path this GTerm appears in.

IV. EXPERIMENTS

We conducted experiments on WebData2 dataset consisting
of 314 web documents already classified into 10 categories. To
measure the effectiveness of different weighting schemes, we
cluster the documents with Bi-Secting-KMeans [16], a variant
of KMeans. Several runs of Bi-Secting-KMeans are used to
register the average purity value. Cosine similarity is used as

2http://pami.uwaterloo.ca/h̃ammouda/webdata/

90

proximity measure. For evaluation of cluster quality we use
the following purity measure.

Let the given test clusters be C = {C1, C2 · · ·C10}
and clusters obtained by several approaches be C′ =
{C′1, C

′
2 · · ·C

′
10} Each resulting cluster C′i from a partitioning

C′ of the overall document set D is treated as if it were the
result of a query.

The precision of a cluster C′i ∈ C′ for a given category
Cj ∈ C is given by Precision(C′i, Cj) =

|C′

i∩Cj|
|C′

i
| .

The overall value of purity is computed by taking the
weighted average of maximal precision values:

Purity(C′, C) =
∑

C′

i∈C′

|C′i|

|D|
max
Cj∈C

Precision(C′i, Cj) (5)

TABLE V
TERM WEIGHTING SCHEMA. tf MEANS TERM FREQUENCY, D IS THE

TOTAL NUMBER OF DOCUMENTS IN COLLECTION, df IS THE DOCUMENT
FREQUENCY, dl IS THE DOCUMENT LENGTH, avg dl IS THE AVERAGE

DOCUMENT LENGTH FOR A COLLECTION.

Name Term Weight Schema

TF tf

TF-IDF tf ∗ log(D
df

)

LTU
(log(tf) + 1) ∗ log(

D

df
)

0.8 + 0.2
dl

avg dl

INQUERY tf

tf + 0.5 + 1.5
dl

avg dl

log(
D + 0.5

df
)

log(D + 1)

We have conducted experiments with three type of feature
vectors:
• Only document vector (ODV): In this experimental set-

ting, vectors of original documents (�dd) are used for
document-document similarity, that is, similarities are
calculated without adding GTerms. Feature vector is then
weighted with the weighting schemes in Table V.

• Enriched document vector with common weighting (ED-
VCW): Here, GTerms are added to the document vector
�dd. Enriched document vector is concatenation of docu-
ment terms and all generalized terms , �d′d = { �dd, �Gd}.
Same weighting scheme is used to weight both �dd and
�Gd, for instance, if TF-IDF is used to weight �dd, TF-IDF

will be used to weight �Gd too.
• Enriched document vector and proposed weighting (ED-

VPW): Enriched document vector, �d′d = { �dd, �Gd}. What
differs from EDVCW is the way to assign weight to
�Gd. We consider each weighting scheme mentioned in

Table V for DTerms and use proposed approach to assign
weights to GTerms.

A. Experiment without pruning terms
In this experiment we have not used any threshold to remove

non-informative words. In Table VI and Fig 3, we can see that
EDVPW outperforms other feature vector representations for
all the weighting schemes. INQUERY being the exception got
less purity than ODV by a small margin.

TABLE VI
AVERAGE PURITY VALUES WITHOUT PRUNING TERMS

Feature Vector TF TF-IDF LTU INQUERY
ODV 0.7053 0.7580 0.6920 0.6565
EDVCW 0.5231 0.6883 0.6121 0.6367
EDVPW 0.7480 0.7730 0.7282 0.6503

TF TF−IDF LTU INQUERY
0.4

0.5

0.6

0.7

0.8

0.9

1

Weighting Scheme

A
ve

ra
ge

 P
ur

ity

ODV
EDVCW
EDVPW

Fig. 3. Average Purity values without Pruning Terms

It can be observed that, surprisingly, the clustering per-
formance did not improve with the addition of generalized
terms and weighing them with the same weighting scheme
used for DTerms (EDVCW vector). On the other hand it got
degraded. With the addition of highly generalized terms (which
tend to be super concept of several terms) without appropriate
weights, discriminating power between two documents got
crippled. As a result, proximity computation between two
documents is effected, thus the quality of clusters.

B. Experiment with pruning terms
In this experiment, we have used a simple pruning method

by removing terms which have less than certain term frequency
and carried out two experiments. One is by selecting the
document terms having term frequency greater than 6 and then
adding generalized terms for each document term (Fig 4) and
Table VII. Similarly, we have carried out another experiment
by selecting the terms having frequency greater than 31 (Fig
5) and Table VIII.

The experiments conducted by pruning terms showed better
results over without pruning approach. Low frequency terms
do not represent the document, so the addition of their gen-
eralization terms adds noise to the document vector. Due to
this noise, similarity values and thus the purity values were
compromised.

91

TABLE VII
AVERAGE PURITY VALUES AFTER REMOVING TERMS WITH

FREQUENCY<6

Feature Vector TF TF-IDF LTU INQUERY
ODV 0.7169 0.7460 0.6908 0.6417
EDVCW 0.5188 0.6755 0.6139 0.5883
EDVPW 0.7379 0.7952 0.715 0.674

TABLE VIII
AVERAGE PURITY VALUES AFTER REMOVING TERMS WITH

FREQUENCY<31

Feature Vector TF TF-IDF LTU INQUERY
ODV 0.7190 0.7343 0.6919 0.6908
EDVCW 0.5128 0.6513 0.5904 0.6114
EDVPW 0.7393 0.7681 0.7332 0.7168

It can be observed that proposed approach improves per-
formance of other weighting schemes. From the results, we
can conclude that, each document vector should be prepared
as follows: (i) Enrich document with GTerms, and (ii) Follow
TF-IDF (TF, LTU, INQUERY) to weigh DTerms and proposed
approach to weigh GTerms.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a context based unsu-
pervised term extraction and weighting scheme. We have
exploited the notion that any two terms are related if they have
been used in the same context. In the proposed approach, a
given document is enriched with generalized terms using open
web directory. We have proposed a term weighting scheme
to give appropriate weights to both document terms and
generalized terms. One of the factors to weigh GTerms is the
importance of the topic paths. So, GTerms with high weight
in enriched document vector represents the context of overall
document, thus disambiguating the context of terms. The
performance results show that the proposed weighting scheme
gives better clustering performance over existing weighting
schemes. As part of future work, we are planning to conduct
detailed experiments by considering other types of datasets. In
addition, we are planning to conduct experiments by applying
dimension reduction techniques like latent semantic analysis.

ACKNOWLEDGMENT

The work was carried out while the authors are working
in eSagu project at IIIT, Hyderabad, India. The authors are
thankful to Media Lab Asia for its support.

REFERENCES

[1] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of Research and Development, vol. 2, no. 2, 1958.

[2] G. Salton and C. Buckley, “Term weighting approaches in automatic
text retrieval,” Ithaca, NY, USA, Tech. Rep., 1987.

[3] H. Xu and C. Li, “A novel term weighting scheme for automated text
categorization,” in ISDA ’07: Proceedings of the Seventh International
Conference on Intelligent Systems Design and Applications. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 759–764.

[4] M. Lan, C. L. Tan, and H. B. Low, “Proposing a new term weighting
scheme for text categorization,” Boston, 2006, pp. 763–768.

[5] C. Buckley, “New retrieval approaches using smart: Trec 4,” 1996, pp.
25–48.

TF TF−IDF LTU INQUERY
0.4

0.5

0.6

0.7

0.8

0.9

1

Weighting Scheme

A
ve

ra
ge

 P
ur

ity

ODV
EDVCW
EDVPW

Fig. 4. Average Purity values after removing terms with frequency< 6

TF TF−IDF LTU INQUERY
0.4

0.5

0.6

0.7

0.8

0.9

1

Weighting Scheme

A
ve

ra
ge

 P
ur

ity

ODV
EDVCW
EDVPW

Fig. 5. Average Purity values after removing terms with frequency< 31

[6] A. U. Kini, “On the effect of inquiry term-weighting scheme on
approved by: Query-sensitive similarity measures,” 2005.

[7] E. Agirre and G. Rigau, “Word sense disambiguation using conceptual
density,” in In Proceedings of the 16th International Conference on
Computational Linguistics, 1996, pp. 16–22.

[8] Y. Karov and S. Edelman, “Similarity-based word sense disambigua-
tion,” Comput. Linguist., vol. 24, no. 1, pp. 41–59, 1998.

[9] E. Gabrilovich and S. Markovitch, “Harnessing the expertise of 70,000
human editors: Knowledge-based feature generation for text categoriza-
tion,” J. Mach. Learn. Res., vol. 8, pp. 2297–2345, 2007.

[10] Y. Labrou and T. Finin, “Yahoo! as an ontology: using yahoo! categories
to describe documents,” in In Proceedings of the 8 th International
Conference On Information Knowledge Management (CIKM), 1999, pp.
180–187.

[11] Mladenic and Dunja, “Turning yahoo to automatic web-page classifier,”
in European Conference on Artificial Intelligence, 1998, pp. 473–474.

[12] H.-C. Huang, M.-S. Lin, and H.-H. Chen, “Analysis of intention in
dialogues using category trees and its application to advertisement
recommendation,” in Proceedings of the Third International Joint Con-
ference on Natural Language Processing, Hyderabad, Andhra Pradesh,
India, 2008, pp. 625–630.

[13] J. Prager, E. Brown, A. Coden, and D. Radev, “Question-answering by
predictive annotation,” in SIGIR ’00: Proceedings of the 23rd annual
international ACM SIGIR conference on Research and development in
information retrieval. New York, NY, USA: ACM, 2000, pp. 184–191.

[14] A. Hotho, S. Staab, and G. Stumme, “Wordnet improves text document
clustering,” in In Proc. of the SIGIR 2003 Semantic Web Workshop,
2003, pp. 541–544.

[15] G. A. Miller, “Wordnet: a lexical database for english,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[16] S. M. Savaresi and D. L. Boley, “On the performance of bisecting
k-means and pddp,” in Proceedings of the First SIAM International
Conference on Data Mining (ICDM-2001), 2001, pp. 1–14.

92

AUTOMATED NURSING KNOWLEDGE MANAGEMENT USING INDEXING
� Shihong Huang, �Sucharita Chinchanikar, �Abhijit Pandya, �Sam Hsu, �Marilyn Parker

�Department of Computer Science & Engineering
�Christine E. Lynn College of Nursing

Florida Atlantic University
Boca Raton, FL U.S.A.

(Shihong, schincha, pandya, samh, mparker)@fau.edu

Abstract

Properly and efficiently capturing and managing nursing
knowledge is essential to advocating health promotion
and illness prevention. This paper proposes a document-
indexing framework for automating classification of
nursing knowledge based on nursing theory and practice
model. The documents defining the numerous categories
in nursing care model are structured with the help of
expert nurse practitioners and professionals. These
documents are indexed and used as a benchmark for the
process of automatic mapping of each expression in the
assessment form of a patient to the corresponding
category in the nursing theory model. As an illustration of
the proposed methodology, a prototype application is
developed using the Latent Semantic Indexing (LSI)
technique. The prototype application is tested in a nursing
practice environment to validate the accuracy of the
proposed algorithm. The simulation results are also
compared with an application using Lucene indexing
technique that internally uses modified vector space
model for indexing.

Keywords: knowledge management, LSI, natural
language processing, classification, indexing, nursing
care.

1. Introduction

Nursing is considered as an altruistic profession and the
care given by a nurse to the patient is implied as holistic
healthcare. A nurse considers the physical, emotional,
social, economic, and spiritual needs of the patient. As a
result, the care provided by the nurse provides an
effective healing alternative that complements that
provided by medical doctors. But despite of this
tremendous contribution of nurses to the quality of the
healthcare, the work done by a nurse remains concealed.
So in order to identify and analyze nurses’ interventions
in improving quality of healthcare, a standardized nursing
language is introduced to describe the care that is
provided by nurses [2]. These standards are backed up by
the various nursing theories. Nursing documentation
provides the basis for nurses to communicate with each
other and with the rest of healthcare communities. The

data collected by the nurse in assessment period is
referred to as nursing knowledge, as it represents the
knowledge of the nurse about the patient. With the help of
this nursing knowledge and the pre-existing nursing
theories, the nurse structures a holistic care plan for the
patient. This care plan helps the nurse to provide the
patient with the best care needed and help in his speedy
recovery. To efficiently and properly capture and manage
the nursing knowledge, automated or semi-automated
analysis and classification of nursing knowledge are
needed. One of the benefits of this automated process of
nursing knowledge is to integrate nurses’ contribution and
nursing caring aspects into the electronic medical records
(EMR).

The next section discusses some of the fundamental
aspects of nursing knowledge management and
representative methodologies for classifying and indexing
information. Section 3 presents the research goals and the
approach to automate the management and classification
of nursing knowledge based on nursing theories. Section
4 illustrates the approach by presenting a prototype
software system and testing it in a nursing environment.
The simulation results and analysis are presented. Finally,
Section 5 summarizes the research and outlines future
work.

2. Background and Related Work

Nursing knowledge is often captured in natural language
and in textual format. Proper capturing and managing this
knowledge is essential for nurses to provide a proper
diagnosis and treatment plan. This section presents the
background of some general approaches to nursing
knowledge management, and describes representative
methodologies for natural language classification.

2.1. General Approach to Nursing Knowledge
Management

One of the methods used to capture and analyze the
nursing knowledge is use of printed-paper forms. These
forms outline categories of the nursing theory models
along with the series of check boxes and empty spaces
where nurse can manually enter the expressions from the
assessment data and map it to the respective category.

93

This method is both time consuming as well as error
prone as it depends largely on an individual who analyzes
the data. The same data when analyzed by multiple nurses
will produce inconsistent results. Also storing of this data
in paper form is associated with all kind of storage issues.
Some computer aided software engineering tools are
available to semi-automate this process of analyzing the
nursing knowledge data.

2.2. Existing CASE Tool Support

Atlas/ti is a software tool used for the qualitative analysis
of large bodies of textual, graphical and audio/video data.
It has multiple functions to administer, extract, compare
and aggregate the meaningful data from a collection of
data [9]. In order to use Atlas/ti to classify nursing
knowledge, the text file containing the patients
assessment data is linked to the project in Atlas/ti called
Hermeneutic Unit (HU). Then each expression in the file
is analyzed by a nurse practitioner to map it to a related
category from the nursing theory model. The data can
then be queried, sorted or represented in a diagram.

This approach addresses the storage issues by storing the
data electronically and time consumption issues to some
extent as once mapped; the data can then be queried,
sorted or analyzed using multiple electronic tools. But one
major concern using this software for such purpose is
preserving the consistency of the data. In order to achieve
the required consistency, this category assignment needs
to be automated.

2.3. Related Methodologies Used for Information
Retrieval

Among the several information retrieval technologies
available today, the following technologies are
predominantly used for qualitative data analysis.

2.3.1. Semantic Web Approach

Semantic Web is a framework that makes it possible to
store the data in machine understandable format.
Semantic web uses URI (Uniform Resource Identifier) to
uniquely identify each resource. To make the most use of
data, the documents are described using XML (eXtensible
Markup Language). XML is the official recommendation
of W3C (World Wide Web Consortium) that allows the
use of self-descriptive tags to describe the data [10]. This
technology needs the documents to be in XML format. As
the nursing knowledge is written in plain natural language
text, we need to seek a technology that can process the
data in the form of natural language text.

2.3.2. Naïve Bayes Text Classification

Bayesian network is a graphical representation that
considers probabilistic relationship for variables of
interest [11]. Bayesian network classifier obtains network
structure and conditional probability table by learning

training data set, and then implements the classification
by using Bayesian theorem to compute posterior
probability [12].

This technology is widely used for qualitative analyses of
data but its accuracy depends on the amount of data used
as a reference to classify. As the amount of reference data
increases, the classification is more accurate.

2.3.3. Latent Semantic Indexing

Latent Semantic Indexing (LSI) uses statistically derived
conceptual indices to match the query and retrieve the
information from a set of documents. A truncated
Singular Vector Decomposition (SVD) is calculated to
predict the structure of word usage in the document. This
technique could be used on natural text and can provide
accurate results even with the small amount of reference
data available. Hence we will exploit this technique to
automate the classification of the nursing knowledge.

3. A Framework of Nursing Knowledge
Management

This section presents a framework that automatically
classifies the nursing data that is in the textual assessment
form and mapping it to the corresponding category in the
nursing knowledge model based on nursing theories. The
architecture of this framework is based on the canonical
activities of reverse engineering [22]. The overall process
can be divided into three logical steps: Data gathering,
knowledge management and information exploration [22].
The following sections describe these three steps in detail.

3.1. Data Gathering

Gathering data from the patient is the first and most
essential step. The raw data gathered is the narrative
written in natural language by nurse. This data is collected
by nurse during the patient’s assessment period. We call
this data as nursing knowledge as it represents the nurse’s
interpretation of the patient’s condition, his history and
his concerns. This data is crucial for nurses to understand
the patient’s needs and concerns [13].

3.2. Knowledge Management

The nursing model is comprised of number of categories.
In order to classify the nursing knowledge into these
categories, we need to collect all the information
pertaining to each category into a separate benchmark
document. The information could be a thorough definition
of the category, all the terms that best describe the
category along with the example expressions. These
benchmark documents are then indexed using Latent
Semantic Indexing technique that assigns indices based
on the semantics of the document. As the nursing
knowledge is expressed in natural text, different terms
could be used to express the same concept (synonyms).

94

Hence by using LSI technique we can ensure the correct
classification the data even if the exact matching term is
not present in the benchmark document. The documents
are then ranked with respect to each sentence in the
source document. The documents that are semantically
close to the source sentence in the source document are
ranked higher. So each sentence in the source document
gets mapped to the category represented by the highest
ranked benchmark document.

3.3. Information Exploration

Information exploration is essential for the nurse to make
the efficient use of the structured data. The tree structure
representing the structured layout of the nursing
knowledge will be presented to the nurse. This makes it
easier for her to navigate through the data. Also as the
nursing knowledge is sorted and grouped into the
different categories in the nursing model, it will facilitate
the clear understanding and quick planning.

4. Case Study

To validate the proposed framework, the automated
classification of nursing knowledge is simulated using
Latent Semantic Indexing technique. The benchmark
model used in the case study is “Parker/Barry community
nurse practice model” [2]. The following sections
describe the case study and discuss the simulation results
and analysis.

4.1. Data Collection

Parker/Barry Community Nurse Practice Model is
comprised of 4 main concepts: Caring, Wholeness,
Connections and Respect. These concepts are also known
as the nursing instrumental values. The benchmark
documents are arranged such that each document
represents a category in Parker/Barry community nurse
practice model. Each document is well structured to
contain a thorough definition of the category and example
expressions for the respective category. These documents
will serve as the benchmark to classify the nursing
knowledge. This collection of document will then act as a
benchmark to help the further automation.

4.2. Knowledge Management Using LSI

This part is the crux of the automation, as it comprises the
logic to automate the classification. The creation of the
term document matrix includes the following steps. First,
stop words are eliminated from the benchmark
documents. This process will purge all the words that do
not carry any information. Then the stemming algorithm
is applied to the document to obtain a list of non-repeating
unique terms in the collection of document [16],
designated as the universal terms. Weight of each term is
calculated by iterating through the universal terms and the

term-document matrix is prepared. Once the term
document matrix is created, it is decomposed into three
different matrices using singular vector decomposition
(SVD) method [21].

To prepare the query matrix Q, a query vector q is
generated by matching the concerned query expression
that is the nursing knowledge, to the list of universal
terms. If the term is present in the query expression, we
will set the corresponding element in query vector
otherwise we reset the element.

By calculating the cosine similarity between the two
vectors, one can find the benchmark document that is
most similar to the query expression.

After calculating the cosine similarities between the query
matrix and each document matrix, we will have j different
ranks for j benchmark documents against each query
expression. This process is known as ranking of
documents. The document with the highest rank is most
similar to the query expression. So the query expression is
assigned to the category represented by that benchmark
document.

4.3. Simulation Results and Analysis

To compare the results, another application is developed
that will use Lucene to index the benchmark documents.
Lucene uses a modified vector space model for its search
and not Latent Semantic Indexing [17] [18] [19]. The
results of Lucene-based application are compared to the
application that uses LSI. Figure 1 shows the comparison
of results for classification of 20 expressions belonging to
‘Respect’ category. As shown in the figure, 19
expressions were classified correctly using LSI technique
as opposed to 16 expressions using Lucene indexing
technique. The sentence that was misclassified to belong
to the caring category is: “My nurse asked about my daily
needs I am vegetarian so I need special meals.” This

Figure 1: Comparison of results for classification of 20

95

sentence could belong to both caring as well as respect
category. So it could be mapped to both the categories.
This feature of mapping an expression to multiple
categories is not implemented in this application and
could be added in the future.

The results for 20 expressions of caring category were
also compared. For both the applications 16 expressions
out of 20 were classified correctly. Hence the average
accuracy for application using LSI and Lucene indexing
techniques comes up to be 87.5% and 80% respectively.

5. Summary and Future Work

The nursing knowledge captured during the interaction
between nurses and patients, further with patients’
families, is an invaluable part of providing a care plan and
monitoring recovery progress. This paper proposes a
framework that automatically manages nursing
knowledge and maps nursing practice to the caring
categories according to nursing theory. To illustrate the
validation of the framework, a case study in a nursing
practice environment is presented, and the classification
results are analyzed and compared with alternative
approach. The result comparison shows that the LSI
strategy gives 87.5% accurate results compared to the
Lucene indexing technique that gives 80% accuracy. Both
indexing methods maintain 100% consistency in the
results.

To further automate the process of preparing the care plan
for the patients, this application can be extended to allow
a nurse to enter the action plan related to each classified
expression to generate and save the care plan for the
patient. This application can even be used to monitor the
progress of a patient throughout his treatment. Some
special categories could be defined to track the concerns
of the patient. Then the application could be modified to
generate a graph showing the recovery progress of the
patient based on his past and present concerns. Often
times, in addition to the medicines prescribed, the care
provided by the nurses can help in the speedy recovery of
the patient. The analyses of the care plan specified by the
nurse on particular visit of the patient and the related
graph of patient’s recovery progress will further help
nurses to understand the factors that helped the patient in
his speedy recovery.

6. References

[1] Swan, B.A., Lang , N.M., and McGinley, A.M.: "Access
to quality care: Links between evidence, nursing language,
and informatics", NURSING ECONOMICS, November-
December 2004, 22, (6), pp. 5

[2] Parker, M.E., Nursing Theories and Nursing Practice vol.
2: Philadelphia F.A. Davis Company, 2005.

[3] Meleis, A.I., Theoretical nursing; Development and
progress. Philadelphia: Lippincott Williams & Wilkins,
1997.

[4] Dorothy, M.C.: "Perspectives of pure science", Nursing
Research, 1968, 17, (6), pp. 497 - 501

[5] Dickoff, J., James, P., and Wiedenbach, E.: "Theory in a
practice discipline: Part I. Practice oriented theory",
Nursing Research, 1968, 17, (5), pp. 415 - 434

[6] Chinn, P.L., and Kramer, M.K., Integrated Knowledge
Development in Nursing. St Louis: Mosby, 2004.

[7] Gray J. & Forsstorm, S.: "Generating theory for practice:
the reflective technique", in Gray J. & Pratt, R. (Ed.):
Towards a discipline of nursing (Melbourne: Churchill
Liningstone, 1991)

[8] Delaune, S.C., and Ladner, P.K., Fundamentals of Nursing:
Standards and Practices. Albany, NY: Thomsom Delmar
Learning, 2002.

[9] http://www.atlasti.com/aboutUs.html, accessed on Sept
2008

[10] Palmer, S.B.: "The Semantic Web: An Introduction", 2001
[11] Chengiun Liu; Wechsler, H.: "A unified Bayesian

framework for face recognition". Proc. IEEE Signal
Processing Society 1998 International Conference on
Image Processing1998 pp. Pages

[12] Tang;, B.C.Q.L.Z.: "A Clustering Based Bayesian
Network Classifier". Proc. IEEE International
Conferenceon Fuzzy Systems and Knowledge Discovery
(FSKD 2007)Aug 2007 pp. Pages

[13] Foltz, P.: "Using Latent Semantic Indexing for
Information Filtering", in Editor (Ed.): Using Latent
Semantic Indexing for Information Filtering (1990, edn.),
pp. 40-47

[14] Mitra, V., Wang, C.-J., and Banerjee, S.: "A Neuro-SVM
Model for Text Classification using Latent Semantic
Indexing", in Editor (Ed.): A Neuro-SVM Model for Text
Classification using Latent Semantic Indexing (2005, edn.),
pp. 564-569

[15] Sun, J.-T., Chen, Z., Zeng, H.-J., Lu, Y.-C., Shi, C.-Y.,
and Ma, W.-Y.: "Supervised Latent Semantic Indexing
For Document Categorization", in Editor (Ed.): Supervised
Latent Semantic Indexing For Document Categorization
(2004, edn.), pp.

[16] http://en.wikipedia.org/wiki/Stemming, accessed Oct 2008
[17] http://lucene.apache.org/java/docs/, accessed Oct 2008
[18] http://en.wikipedia.org/wiki/Lucene, accessed Oct 2008
[19] Erik, H., and Otis, G., Lucene in Action (In Action series):

Manning Publications Co., 2004.
[20] Brian, T.B., Garrison, W.C., and Richard, K.B.: "Latent

semantic indexing is an optimal special case of
multidimensional scaling". Proc. Proceedings of the 15th
annual international ACM SIGIR conference on Research
and development in information retrieval, Copenhagen,
Denmark1992

[21] http://www.miislita.com/information-retrieval-
tutorial/svd-lsi-tutorial-1-understanding.html, accessed
Oct 2008

[22] Tilley, Scott. "The Canonical Activities of Reverse
Engineering” Annuals of Software Engineering, Volume 9,
Number 1-4, Springer Netherlands, 2000.

96

Classifying Web Robots by K-means Clustering

Derek Doran and Swapna S. Gokhale

Dept. of Computer Science and Engineering

Univ. of Connecticut, Storrs, CT 06269

{derek.doran,ssg}@engr.uconn.edu

Abstract

Sophisticated Web robots, sporting a variety of func-
tionality and unique traffic characteristics, constitute
a significant percentage of request and bandwidth vol-
ume serviced by a Web server. To adequately prepare
Web servers for this continuous rise in Web robots, it
is necessary to gain deeper insights into their traffic
properties. In this paper, we propose to classify Web
robots according to their workload characteristics, us-
ing K-means clustering as the underlying partitioning
technique. We demonstrate how our approach can al-
low an examination of Web robot traffic from new per-
spectives by applying it to classify Web robots extracted
from a year-long server log collected from the Univ. of
Connecticut School of Engineering domain.

1. Introduction and Motivation

It has been traditionally believed that the traffic
seen by Web servers is from human visitors, which ex-
hibits known and well-studied properties [8, 13]. Re-
cent studies, however, suggest that an increasing pro-
portion of Web server traffic can be attributed to Web
robots. Generally, Web robots are autonomous agents
that visit a Web site with the purpose of indexing avail-
able resources and their location on the Web for search
engines [2]. With the evolution of Web 2.0 technolo-
gies and the transition towards a semantic Web where
autonomous agents visit Web servers on behalf of hu-
mans [1], the sophistication of Web robots is expected
to rise, and this will inevitably lead to an increase in
the volume and intensity of their traffic. Our recent re-
sults from the analysis of robot traffic on Web servers
at the University of Connecticut (UConn) School of
Engineering (SoE) between February 2007 and Jan-
uary 2008, when compared to the results from a study
conducted during the 2001-2002 period, confirms this
increasing trend. In our study, 18.49% of all requests

were from robots and these contributed to about 7.85%
bandwidth consumption, while in the earlier study traf-
fic from major search engine robots1 represented 8.51%
of all requests served which contributed to about 0.65%
of all bytes transferred [3].
With an unmistakable trend in increasing robot traf-

fic, Web servers must be adequately prepared to handle
such traffic. A critical first step towards such prepa-
ration is to gain a deeper understanding of this traffic.
Specific efforts to understand robot traffic are essen-
tial for two reasons. First, due to the fundamental
differences in the way humans and robots crawl Web
sites, our understanding of human traffic patterns does
not automatically transcend to the crawling behavior of
Web robots. Second, modern Web robots sport a wide
variety of functionality that dictate their traffic prop-
erties including the request and bandwidth volume [4].
The most recent study analyzing robot traffic [3] offers
limited insights because it: (i) focuses only on traffic
from search engine crawlers; (ii) was performed before
the advent of Web technologies that encourage upload
of new information by Web users (due to which the
robot traffic was less demanding); and (iii) was from
an era where advanced robots with specialized func-
tionality were not prevalent.
To understand modern Web robot traffic, composed

of robots with varying functionality, design, and vis-
iting intentions, it is first necessary to partition these
robots into meaningful groups to highlight their com-
monalities and to identify their differences. Such clas-
sification should consider the behavior of Web robots
from many perspectives, including their intended func-
tion, workload characteristics, and the types of re-
sources they request. While our earlier research fo-
cused on the functional classification of Web robots [4],
the objective of this paper is to improve our under-
standing of robot traffic by classifying these robots ac-
cording to the workload characteristics they exhibit on

1Search engine robots were the most dominant type of robots
that crawled the Web during the 2001-2002 period.

97

a server. We demonstrate the feasibility of using K-
means clustering for this purpose, by applying it to
robots extracted from UConn SoE server access logs.
We conclude with a discussion of the new perspectives
that such cluster-based classification of robot traffic
provides.
The layout of the paper is as follows: Section 2 pro-

vides an overview of K-means clustering. Section 3 de-
scribes the data along with preliminary analysis. Sec-
tion 4 applies the K-means clustering to the robot data
and discusses the results. Section 5 introduces related
work. Section 6 concludes the paper with directions for
future research.

2. Overview of K-means Clustering

In this section, we present an overview of the K-
means clustering technique in the context of the robot
partitioning problem. It is a common algorithm that
has been used to analyze and partition data in many
different domains [6, 14, 5]. We choose K-means clus-
tering to partition Web robots because of its recent
success in analyzing Web server requests [8, 9].
To cluster Web robots, it is necessary to define an

appropriate distance metric between data points. The
selected metric must factor in the likely correlation be-
tween observations used to characterize robot traffic;
for example the volume of http requests and number
of bytes transferred may be correlated [8]. Further-
more, it should also consider that the observations may
be measured across different scales; for example inter-
arrival times between requests may be measured in sec-
onds, and the average number of requests sent per ses-
sion, could be measured as a count. We use the Ma-
halanobis distance, which incorporates both of these
considerations [8] to cluster robots. Let an observation
of n features be recorded in an n × 1 column vector.
Then the Mahalanobis distance between two observa-
tion vectors �x and �y is defined as:

d(�x, �y) =
√
(�x − �y)TΣ−1(�x − �y)

where Σ is the covariance matrix for all observations
and the superscript T denotes the transpose.
K-means clustering requires that the number of clus-

ters k be selected before clustering commences. Each
application of the algorithm is guaranteed to have k

clusters, so different values of k will lead to a unique
clustering result. Thus, the value of k governs the qual-
ity of clustering, making its selection crucial. Because
our objective is to partition Web robots so that all the
robots in a group will display similar crawling charac-
teristics, we consider two important criteria in select-

ing the value of k. The first criterion is concerned with
minimizing distance within clusters (intra-cluster dis-
tance) while maximizing the distance between clusters
(inter-cluster distance). Intra-cluster distance is de-
fined as the distance from a vector to the centroid of the
cluster to which it is assigned, while inter-cluster dis-
tance is defined as the distance from a vector to another
one that does not belong to its cluster. Intuitively, the
best clustering will be one that maximizes the inter-
cluster distance and minimizes the intra-cluster dis-
tance. We measure the first criterion using the sil-
houette coefficient [12] metric, defined as follows: let
Ĉ = {C1, C2, ...Ck} be the result of a clustering, fully
partitioning a set of data points D. Define the distance
of a data point d ∈ D to some cluster Ci ∈ Ĉ as

dist(d, Ci) =

∑
di∈Ci

dm(d, di)
|Ci|

where dm is the distance function between points. Let

α(d) = dist(d, C∗i), d ∈ C∗i

be the distance from d to its assigned cluster C∗i (i.e.
measuring intra-cluster distance) and

β(d) = minCi∈Ĉ,Ci �=C∗

i

dist(d, Ci)

be the distance from d to the nearest cluster d is not
assigned to (i.e. measuring inter-cluster distance). The
silhouette of d is defined as:

φ(d) =
β(d)− α(d)

max(β(d), α(d))
.

φ(d) will approach −1 as the inter-cluster distance
decreases and intra-cluster distance increases, and will
approach 1 in the mirroring case. Thus, the closer φ(d)
is to 1, the better the cluster assignment for d is. The
silhouette coefficient of a clustering is simply the aver-
age value of the measure for each data point d:

SC
Ĉ
=

∑
d∈D φ(d)
|D|

.

Previous studies suggest that values of SC
Ĉ
greater

than 0.7 achieve superior separation between clusters,
while maintaining data points close to their assigned
cluster centroid [7]. Values between 0.5 and 0.7 are
also acceptable, indicating that the data points are suf-
ficiently close to their cluster centroid while still main-
taining separation between other clusters.
The second criteria is the degree to which robots are

evenly distributed into k clusters. An even distribution
will provide precise insights into the traffic character-
istics of robots by clear differentiation. In contrast,

98

lumping a majority robots into few clusters will lead
to general conclusions without any distinctive insights.
To measure our second criterion we consider the size
of each cluster. In a desirable distribution of robots
into clusters, the variance in the size of the clusters
must be low, signifying that the robots are not overly
concentrated into a single cluster.
We examined both the measures because a high

value of SC
Ĉ
does not imply that the cluster size vari-

ance will low. A superior choice for k, for example, may
be one where its value of SCĉ is within an acceptable
range and its cluster size variance is smallest. Once
the data are partitioned into k clusters, each cluster
is given a unique label Ca,b,..., where each subscript
is assigned an integer value according to the rank of
the cluster’s centroid position in nondecreasing order
for each respective traffic feature. This cluster labeling
allows the scheme to be easily expandable to consider
any number of data features.

3. Data Description

The data comprised of 169 robots extracted from a
year-long access log from the UConn SoE Web server
over the period February 2007 to January 2008. We ex-
tracted these robots using a custom log analyzer writ-
ten in Java that compares the user-agent field from
each HTTP request against a database of regular ex-
pressions representing well-known Web robots. For
each robot we then extracted three metrics: (i) vol-
ume of HTTP requests sent, (ii) volume of bandwidth
consumed, and (iii) average size of resources requested.
We analyzed the three metrics in a pairwise fashion

over the entire set of robots to explore the correlations
between them. Figures 1 through Figure 3 show the re-
sults of the pairwise analyses of these metrics. In each
figure, the top plot includes all data points, while the
bottom one focuses in on the most concentrated region
to offer a better sense of the data distribution. The
top plot of Figure 3 shows a positive linear relation-
ship between bandwidth consumed and volume of http
requests, with the correlation coefficient measured at
0.804. This observation matches with previous results
suggesting a strong linear correlation between request
volume and bandwidth consumption for all server traf-
fic [8]. On the contrary, the average size of requested
resources exhibits no observable relationship with both
the request volume and bandwidth consumption (Fig-
ures 1 and 2), with correlations of 0.035 and −0.004
respectively. These observations thus dispute the be-
lief that a robot, which on average requests very large
resources, will also consume a considerable bandwidth
or will send a large number of http requests.

The top plots in all the figures indicate that some
robots place disproportionate strain on the Web server.
Although it is common to filter such outliers before ap-
plying clustering, we chose to include them because it
is important to understand the traffic from these robots
that disproportionately consume server resources from
the point of view of server preparation. Furthermore,
our limited sample of 169 robots would be pared down
further by excluding these outliers.

Figure 1. Http request volume vs avg. re-
quested resource size

Figure 2. Bandwidth vs avg. requested re-
source size

99

Figure 3. Http request volume vs. bandwidth

4. Results and Discussion

We performed K-means clustering with the three
metrics for each of the 169 robots. We chose these
three metrics to illustrate the feasibility of using clus-
tering to partition Web robots; in practice any number
of additional traffic metrics could be used to generate
a higher-dimensional clustering. The clustering algo-
rithm was implemented in MATLAB, and verified us-
ing several manually-generated test sets that contained
clear groupings of the data points. In this section, we
first discuss our analysis to select the appropriate num-
ber of clusters. Subsequently, we comment on the qual-
ity and characteristics of the clusters and the important
insights they provide into robot traffic.

4.1 Parameter Configuration

To select an appropriate number of clusters that
maximizes the silhouette coefficient and minimizes the
variance in cluster size, we performed K-means cluster-
ing with randomly selected initial centroids for k rang-
ing from 2 to 12. We limited the maximum number of
clusters to 12 due to the small number of robots.
Figure 4 charts the value of SC

Ĉ
as a function of

k. While k = 2, 3, and 4 show very high values of
SC

Ĉ
, using so few clusters would offer little insights

since this would not appropriately classify the outliers
across any metric into its own group. A noticeable
dip in the measure is seen when k = 5, followed by
a steady increase until another peak at k = 7 where
SC

Ĉ
= 0.7038. For 7 ≤ k ≤ 11, the levels of the

silhouette coefficient indicate a good tradeoff between
inter and intra-cluster distances.

Figure 4. Silhouette coefficients for each k-
clustering

Figure 5 charts the variance in cluster size for the
same range of k. When k = 12 the variance in size of
each cluster is smallest, however, the respective value of
SC

Ĉ
drops significantly. For 7 ≤ k ≤ 11, the variance

in cluster size is small and does not drop significantly
as k increases. Recognizing a peak in the value of SC

Ĉ

and relatively low variance for k = 10, we choose to
partition these robots into 10 clusters.

Figure 5. Variance of size of each cluster for
each k-clustering

4.2 Cluster Characteristics

Table 1 show the average values of each metric
or the coordinates of the centroid for each cluster.
The clusters are assigned a label Ca,b,c where a, b

100

and c represent the cluster rank based on request
volume, bandwidth consumption, and average size of
requested resource respectively. Figure 6 presents a
three-dimensional plot of the positions of cluster cen-
troids, with a log scale for request volume and band-
width, and a linear scale for the average requested re-
source size. The figure shows that the centroids are po-
sitioned along the request volume and bandwidth axis
according to the positive linear correlation observed
between these metrics. The centroid positions along
the average requested resource size axis, however, are
concentrated because robots tend to request very small
resources on average [3]. This is especially true for this
academic Web server, which is likely to host a large
collection of small files.

Figure 6. Centroid positions for each cluster

Table 1 also defines size and the boundaries for each
cluster across the three metrics. The table reveals that
over 63% robots fall into cluster C2,1,1, whose label sug-
gests that this group of robots request a relatively small
volume of http requests, consume little bandwidth and
request the smallest resources on average. The mem-
bership of this cluster is significantly high due to the
presence of outliers, which are forced into their own
cluster (for example, C4,7,10 and C1,3,9). Because these
outliers cannot be ignored, we can accommodate them
by refining very large partitions through repeating the
clustering only over robots in these partitions. This will
produce a hierarchical structure of clusters where the
highest-level ones deliver a broad classification of Web
robots while lower-level clusters refine a broad class
into a series of more specific ones. For example, Ta-
ble 1 suggests that robots in C2,1,1 exert low demands
on the server. Furthermore, this large C2,1,1 cluster
also contains robots that do not retrieve any resources.
Thus, it may be desirable to partition this cluster fur-

ther to isolate such “no-demand” robots into their own
class. Such refinement of clusters can classify robots at
any desired level of granularity.
Since robots in this cluster consume relatively fewer

resources, they most likely reflect traffic that does not
impose significant strain on the server. The difference
in the bounds along each metric is also small, which
also indicates that robots in this cluster are heavily
concentrated. By comparison, clusters of high-demand
robots such as C7,8,7, C9,9,5, and C10,10,4 are very wide
and have few members. The few robots in this cluster
show extraordinary characteristics, and hence, should
be examined more closely to determine if their purpose
is in the best interests of the Web server. If the inves-
tigation reveals that these robots are from commercial
services that provide no benefit to UConn SoE for ex-
ample, they should be blocked from access.

5. Related Research

A number of efforts have studied the traffic char-
acteristics of Web robots with an eye towards detect-
ing such robots. Stassopoulou et. al. [10] employ
a detection framework based on a Bayesian network,
while Tan et. al. [11] perform detection based on the
navigational patterns of Web robots. Through a more
extensive study of robot traffic, focusing on crawlers
that belong to five well-known search engines, Dika-
iakos et al. [3] gain insights into their crawler behavior
as a means for separating human users from robots in
access logs.
The above efforts consider aggregate properties of

robot traffic. In contrast, the research described in this
paper applies data clustering to classify Web robots
to gain a more detailed understanding of their spe-
cific traffic patterns. This exercise is necessary because
modern sophisticated Web robots exhibit a wide vari-
ety of functionality and visiting intentions, leading to
a significant disparity in their crawling behaviors and
demands [4]. A detailed study can form the basis of
a scheme to detect and block ill-behaved robots. It
can also lead to analytical models of robot workloads,
which could be used to assess server performance.

6. Conclusions and Future Research

This paper presented a classification scheme for Web
robots according to their workload characteristics. The
scheme utilizes a clustering technique that is extensible
to consider any number of traffic metrics. Furthermore,
it is iterative so that robots can be classified to any
level of granularity. We illustrated the cluster-based

101

Req. Volume Bytes Transferred (MB) Avg. Req. Size (MB) size
min max avg min max avg min max avg

C9,9,5 2.27e05 2.94e05 2.6052e05 32190 46930 39560 0.14166 0.15973 .1507 2
C5,4,6 2 15559 2102.5 0.3005 2042.5 335.86 0.08820 0.28305 .1545 22
C3,2,8 1 5329 634.64 0.34461 1793.7 233.95 0.30705 0.70805 .4474 11
C2,1,1 1 4351 339.82 0 99.69 5.9129 0 0.07244 0.0137 107
C10,10,4 8.20e05 1.05e06 9.3356e05 1533.7 1.70e05 85977 0.00187 0.16276 0.0823 2
C7,8,7 20395 62538 42766 4340.5 14239 8681.2 0.17126 0.24273 0.2059 5
C6,5,3 8347 32351 17853 0.38642 2460.5 818.82 4.27e-05 0.09144 0.0360 12
C4,7,10 717 717 717 3466.2 3466.2 3466.2 4.8343 4.8343 4.8343 1
C8,6,2 38723 70218 58294 181.9 4928.1 1956.2 0.00306 0.07018 0.0323 5
C1,3,9 126 402 264 131.28 523.35 327.32 1.0419 1.3019 1.1719 2

Table 1. Statistics of Robot Clusters

classification using robots extracted from recent server
access logs from the UConn SoE. We then discussed the
new perspectives that these classifications provide into
robot traffic. Our future research is concerned with
applying clustering using several sophisticated traffic
metrics. We also propose to investigate the impact of
different clustering algorithms on robot classification.

References

[1] Tim Berners-Lee, James Hendler, and Ora Lassila.
“The Semantic Web”. Scientific American, May
2001.

[2] Sergey Brin and Lawrence Page. “The anatomy
of a large-scale hypertextual Web search engine”.
Computer Networks and ISDN Systems, 30(1–
7):107–117, 1998.

[3] Marios D. Dikaiakos, Athena Stassopoulou, and
Loizos Papageorgiou. “An investigation of Web
crawler behavior: characterization and metrics”.
Computer Communications, 28(8):880–897, 2005.

[4] D. Doran and S. Gokhale. “Discovering New
Trends in Web Robot Traffic Through Functional
Classification”. In Proc. IEEE International Sym-
posium on Network Computing and Applications,
pages 275–278, Cambridge, MA, 2008.

[5] A. P. Gasch and M. B. Eisen. Exploring the
conditional coregulation of yeast gene expression
through fuzzy k-means clustering. Genome Biol,
3(11), October 2002.

[6] Xiaofeng He, Hongyuan Zha, Chris H.Q. Ding,
and Horst D. Simon. Web document clustering
using hyperlink structures. Computational Statis-
tics & Data Analysis, 41(1):19 – 45, 2002.

[7] L. Kaufman and P.J. Rousseeuw. “Finding Groups
in Data: An Introduction to Cluster Analysis”.
Wiley, 1990.

[8] Fengbin Li, Katerina Goseva-Popstojanova, and
Arun Ross. “Discovering Web Workload Charac-
teristics through Cluster Analysis”. In Proc. IEEE
International Symposium on Network Computing
and Applications, 2007.

[9] F. Robinson, A. Apon, D. Brewer, L. Dowdy,
D. Hoffman, and B. Lu. “Initial Starting Point
Analysis for K-Means Clustering: A Case Study”.
In Proc. of ALAR 2006 Conference on Applied Re-
search in Information Technology, 2006.

[10] A. Stassopoulou and M. D. Dikaiakos. “Crawler
detection: A Bayesian approach”. In Proc. Int’l
Conference on Internet Surveillance and Protec-
tion (ICISP’06), pages 16–21, 2006.

[11] Pang-Ning Tan and Vipin Kumar. “Discovery of
Web robot sessions based on their navigational
patterns”. Data Mining and Knowledge Discov-
ery, 6(1):9–35, 2002.

[12] Ping-Ning Tan, Michael Steinbach, and Vipin Ku-
mar. “Introduction to Data Mining”. Addison-
Wesley, 2006.

[13] Jeffrey Xu Yu, Yuming Ou, Chengqi Zhang, and
Shichao Zhang. “Identifying Interesting Cus-
tomers through Web LogClassification”. IEEE In-
telligent Systems, 20(3):55–59, 2005.

[14] Di Zhong and Hongjiang Zhang. Clustering meth-
ods for video browsing and annotation. Technical
report, In SPIE Conference on Storage and Re-
trieval for Image and Video Databases, 1997.

102

Systematic Risk Assessment and Cost Estimation for Software Problems

Jerry Gao, Maulik Shah, Mihir Shah, Devarshi Vyas, Pushkala Pattabhiraman Kamini Dandapani and Emese Bari
San Jose State University, Email: jerrygao@email.sjsu.edu eBay Inc

ABSTRACT
A software product lifecycle consists of a number of phases,
including project planning, analysis, design, implementation and
maintenance. It is vital to identify and assess the risks and costs
of software bugs (or problems) to reduce the related project
costs and risks. However, in the real world, engineers lack of
systematic methods to estimate and predict the risks and costs
caused by software problems (bugs). This paper presents a
systematic risk assessment method and tool to estimate the
possibility of occurrence of risks posed by the impact of
software problems (or bugs). Meanwhile, this paper also
provides a systematic way and tool to help engineers to estimate
the costs associated with the existing software problems (or
bugs). The presented methods can be useful for project
managers to make decisions in project budgeting by concerning
processes, project risks, and costs. Moreover, some application
examples and case study results are reported for bug risk
analysis and cost assessment in a real industry project.

KEYWORDS
Software Risk Assessment, Software Risk Analysis, Bug Cost
Estimation, Problem Risk Analysis, and Problem Cost
Estimation.

1. Introduction
Today, software product development becomes very
complicated due to the increasing complexity and scale of
today’s software systems. The success of a software project
depends on many factors. One of them is how to deal with
software problems (or bugs) during a project life-cycle and how
to assess their related project risks and costs in the software
development process. This has a great impact on software
product quality during a product development cycle.

However, there have not been enough research efforts made to
help engineers and managers to predict the probability of risks
and to assess the project cost of problems (or bugs). In the real
world, a software product team always encounters the following
questions:
1) What is the estimated cost associated with a problem’s (or

bug’s) lifecycle?
2) What are the cost implications of not fixing a problem?
3) What is the possibility that a project development phase

might encounter risks?
4) How can probability of risks in a particular phase of project

be estimated?
5) Why should a risk be addressed?

This paper presents a systematic approach to addressing these
issues. It discusses one approach for bug-based project cost
estimation, and reports a method for project risk assessment
concerning software bugs. The proposed bug-impact cost
estimation method estimates the possible cost of not fixing a

product problem (or bug). Using this method, engineers are able
to prioritize the bug fixing sequence. Meanwhile, the paper also
discusses a project risk assessment method for problems in a
product’s life cycle. Both techniques use the collected problem
information in a bug tracking and management system in an
organization. The main contribution of this paper is its formal
systematic approaches supporting bug-impact cost assessment
and risk assessment. Moreover, the paper discusses two
prototyping tools based on these methods, and some case study
from a real industry project is reported.

This paper is structured as follows. The next section discusses
the background and related work in project risk assessment and
bug cost estimation. Section 3 presents a systematic method to
estimate the cost impact of a bug. Section 4 provides a
systematic approach to assessing the probability of risks for a
project release. Section 5 presents case studies and the results of
employing these techniques in a software product organization,
eBay, Inc. Finally, the concluding remarks and future work are
included in Section 5.

2. Background and Related Work
2.1. Software Bug Analysis and Management
With the increasing complexity of today’s software systems and
the short and tighten project development schedules, risk
analysis becomes a very important task for engineers in a
software development lifecycle. As indicated in [6], one type of
risk analysis has something to with the problems occurred in a
project development process. To effectively assess and evaluate
the problems (bugs) related costs and bug-based risk, engineers
need a systematic approach and tool.

Bug Discovery

Bug Submission

Bug Verification Bug Fixing

Code Building

Bug Closed

Bug Verification Bug Fixing

Additional
InformationNo Build

Required

Further Resolution

Bug Discovery

Bug Submission

Bug Verification Bug Fixing

Code Building

Bug Closed

Bug Verification Bug Fixing

Additional
InformationNo Build

Required

Further Resolution

Figure 1 A Bug Processing Workflow

What is a software problem’s lifecycle? This refers to the time
period from discovery of defect (Status: Open) to confirmation
of the defect removal (Status: Closed) constitute the bug
lifecycle.

During a software development process, various software bugs
(or problems) will be uncovered for a software product. For any

103

software project team, a software bug (or problem) processing
lifecycle will be defined to support bug tracking and analysis.
Lots work has been done to support the review of the bug state
lifecycle from the post-release perspective to elucidate the
various stages in the bug lifecycle. The work presented in [10] is
a typical example. Figure 1 shows a typical bug processing
workflow and related lifecycle. The non-compliance with the
requirement specifications discovered by the client or third party
is reported to the software product team. This non-compliance is
called a bug and is logged into a bug tracking system with its
status as “Open”. In practice, the development team is
responsible for the resolution of the bug. Upon resolving the
bug, development team changes the status of the bug to “Fixed”.
This “Bug-Fix” is tested again and if the same bug reappears,
the status of the bug is reset to “Open”. If the bug resolution is
confirmed by verification then the status of the bug is changed
to “Closed”. Various software product bugs (or problems) can
be classified based on their priorities (Fatal, Serious, Minor and
Cosmetic) and related service level agreements. The work
presented in this paper uses this process workflow as our basis.
Today, as more and more software projects are developed
globally. A software bug lifecycle usually spans across different
software product development teams. The major questions these
teams face with respect to defects (problems) are as follows:
� How to communicate the defect to the development team?
� How to track the lifecycle of the defect?
� How to assign priorities to the defect?
� How to represent the severity of the defect?
� Which defect should be fixed first?
� Can the defect been foreseen before?

There are two perspectives of looking at the questions above [1].
One would be pre-release approach, wherein the emphasis is on
the processes involved in defect handling. In this approach, the
defect is captured within the organization. The other perspective
involves post-release approach. Here the focus shifts from the
defect handling processes to the quality paradigms adopted for
that product [2]. With software products making inroads into all
possible industries, any compromise to the software product
quality is not acceptable. Hence, it is vital to fully understand
the defect tracking process and the defect lifecycle.

2.2. Related Work
Based on our recent literature survey, we found some related
works that have contributed to defect tracking and processing.
One such well defined defect tracking and cost estimation
approach has been put forth by Bala Subramaniam [3] at ISSRe
Systems, Inc., in New York. According to him, a well-defined
bug tracking and processing workflow is required for Rapid
Application Development (RAD) to ensure the compliance of
the clients’ requirements at all times. Hence the defect
prevention costs, defect appraisal costs, internal and external
costs are to be estimated in parallel to RAD model. The Mozilla
Foundation has proposed an open source software system to
replace in-house bug reporting system by plugging in a
comprehensive database management system. This system tracks
the bug lifecycle and creates a highly efficient communication
and bug handling environment. The salient features of this
software system are light weight implementation, quick data

operations and effective ticket tracking system for different
priority bugs [3].

In the recent years, there is a growing awareness about potential
risks and the alternate solutions to mitigate the effects of risks.
Robert W. Ferguson in [4] proposed a normalized risk approach
for industry projects. His approach provides clear visibility of
the risks to the management. The following risk implication
chart shows the different project risk scores for different project
releases. Different risk scores are compared and measured at
threshold points and appropriate risk mitigation steps are taken.
This approach has been tested on multiple projects but not on
cross functional locations like out-sourcing centers.

Figure 2 Project risk score [4]

In [9], the paper explores the various factors that impact the cost
of not resolving a bug and the factors that induce risks in the
completion of a project phase (release). This paper presents an
examination into the economics of software quality assurance.
An analysis of the software life-cycle is performed to determine
where in the cycle the application of quality assurance
techniques would be most beneficial. The number and types of
errors occurring at various phases of the software life-cycle are
estimated. In [6], the authors focus on the software development
process and propose a framework for the assessment and
management of risk associated with this process. The proposed
framework is grounded on a holistic concept termed hierarchical
holographic modeling, where more than one perspective or
vision of the risk associated with software development is
analyzed.

Unlike the existing work, this paper provides a comprehensive
approach to calculate the probability of risks and cost impact of
bug resolution. The proposed approach is very useful for multi-
tier organizations across different functional locations where
risks and bugs overlap various tiers and different locations in an
organization. Any open bug or potential risk will have immense
quality and financial impact in a multi-tier organization.
Moreover, this paper reports our implemented prototyping tools
for eBay. They provide a systematic way for engineers to
unravel the possibilities of project risks and costs of bugs.

In 2007, as a collaborative master project, a group of students at
San Jose State University built a bug cost assessment and risk
analysis tool for eBay Inc. based on this integrated approach. In

104

the rest of the sections, we report our cost assessment and risk
analysis solution and some case study.

3. Bug Cost Estimation
This section presents a systematic method to estimate the cost of
bugs, including its impact costs. This method provides a very
simple yet powerful technique to calculate the cost of a bug in a
product during a software lifecycle. There are many factors that
contribute to the cost of a bug. This section first explains our
approach and a tool to support bug cost estimation. Next, we
present a case study of applying this tool in a real project in
eBay.

3.1 Bug Cost Estimation Tool
This section presents a bug cost estimation tool that is
implemented as a prototype for eBay Inc. to help engineers to
perform cost estimation for bugs in a product release. As shown
in Figure 3, the system comprises of four modules:
� Cost assessment user interface – This supports online

interactions for engineers to perform bug cost assessment
and analysis.

� Communication cost analyzer – This computes the
communication costs relating to bug analysis and
resolution for a product release.

� Resource cost analyzer – This analyzes the bug-related
resource costs for a bug in a product release.

� Impact cost analyzer – This analyzes the bug impact costs
of a bug for a product release during a software
development cycle.

� Bug information access interface - This supports bug
information access between the bug tracking tool in the
organization and the bug cost estimation tool.

The rest of the section explains the details of these functional
components and their supporting method.
Communication Cost Analyzer
This component focuses on the cost incurred due to the process
of communication in the lifecycle of a bug (B). This cost is
directly reflected when the bug is reported by the customers or
third party vendors. The expense incurred due to any email or
telephonic communications in the context of the bug discovery
are the focus this subsystem. With the knowledge of the number
of complaints or emails received and the cost of each complaint,
we derived the following equation for communication cost
analyzer.

Communication Cost B = (N
c
* C

c)
Where Nc is number of complaints for the bug, and Cc is the cost
of complaints.

Resource Cost Analyzer
The Resource Cost Analyzer component focuses on the resource
costs incurred due to the bug (B). This subsystem interfaces
(through the System Interface) with the existing bug tracking
tool or bug database. In a typical bug lifecycle, a resource is
assigned to a bug as soon as it is detected and logged into the
tracking system. Once the bug is resolved by the Software
product team, it is verified and then “CLOSED” else it is again
reassigned to a resource. Thus, a bug always has at least one
owner in all the stages of its lifecycle until it is “CLOSED”. The
resource cost analyzer tracks the resources assigned throughout

bug lifecycle and the number of hours spent by the assigned
resources on the bug.

Figure 3 The Bug Cost Assessment Tool
We derived the following equation for computing the resource
costs:

Resource Cost B = ∑(Pi * Di) (i =1,...,n)

Where Pi is the wage (per hour) of the resource working on the
bug, Di is the total number of hours spent on the bug by an
allocated resource. With the Resource Cost Analyzer, engineers
can easily compute the resource costs on working on a selected
bug on a product line involving different engineering teams.

Impact Cost Analyzer
Since each bug is assigned its severity. The bug severity is one
of the most crucial attributes of a bug. It represents the impact a
bug on the related product. A bug with a higher severity usually
has a greater damage and impact to the quality of the product.
Every organization usually has a Service Level Agreement
(SLA) with its clients. This SLA Agreement defines the
maximum time that could be taken to fix a bug based on its
severity. Based on the SLA, different priorities are defined for
the bugs of a product release. Bugs with higher severities have
to be resolved immediately and hence are assigned higher
priorities. Thus, the cost impact of a high-priority bug would be
greater than that of a low-priority bug. Different levels of bug
priorities can be pre-defined as Table 1 below.

Table 1 Bug Priorities and Severities

Based on the SLA and the priority and average age of a bug (B),
we derived the following equation to compute the impact cost
incurred due to the violation of a SLA.

Impact Cost B = ((Ab - SLA) * Wp * Cp)

Where, Ab is the average bug age within the functional domain.
It represents the average time taken to resolve bugs of similar
priorities and severity in a particular functional domain in an
organization. SLA refers to the Service Level Agreement which

Bug Priority Severity

P1 Fatal

P2 Serious

P3 Minor

P4 Cosmetic

Communication
Cost Analyzer

Resource
Cost Analyzer

Impact Cost
Analyzer

Bug Database

Cost Assessment
Results

Cost Assessment
Interface

Bug Information
Access Interface

Bug Tracking

Tool

105

indicates the maximum time frame for bug resolution based on a
bug’s priority. Wp is the weight of bug priority, and Cp is the
cost of the related priority. Clearly, the higher is the priority, the
larger is the weight associated with the priority.

The Impact Cost Analyzer in the tool can be used to assist
engineers to compute the impact cost based on the severity of
each selected bug in a bug database, which created, tracked, and
managed by the existing bug tracking tool.

Bug Cost Estimator
The Bug Cost Estimator in the tool assists engineers to estimate
the total cost of the bug due to factors like communication,
resources, bug priorities, and SLA. To predict the total cost
incurred for a bug (B) in a product release, we come out the
following equation based on the previous computations.

Total Cost of bug B
= Impact Cost B + Resource Cost B + Communication Cost B

The cost, thus calculated is the cost that an organization would
incur if a bug (B) is not resolved. In an environment with
numerous bugs with similar severities, calculating the total cost
using this formula is a resourceful approach to prioritize bugs.
Also, in reality, all risks cannot be resolved effectively; this bug
cost estimation technique presents the cost of permitting risks to
manifest as bug. Based on the cost estimate of the bug, the risks
can be prioritized and resolved. This enables the team to align
the resources, time and effort around the cost impact of bug
resolution.

3.2 A Case Study for Bug Cost Estimation
This case study focuses on the post-release perspective of
defects. In the post release scenario, the bugs are found after the
completion of a phase. More often, the bugs are discovered by a
third-party client or customer. The organizations sign a Service
Level Agreement with its customers indicating the maximum
time frame for bug resolution and cost impact of non-resolution
of bugs within that timeframe. Hence it becomes all the more
important to resolve bugs (dependant or independent) within its
SLA to avoid its ramifications on cost, resources’ effort and
time. The expense incurred due to the violation of the Service
Level Agreement largely depends on the severity and the
priority of the bug. It is vital to track the bug life cycle (using
eBay’s bug tracking tool), understand the attributes of the bug
and present a resolution on time. In the scope of this paper, an
issue with PayPal, one of eBay’s main functional domains is
used for the implementation of the Bug Cost Estimation method.
The following section uses various attributes of a bug- Bug
BUGDB00522926 to estimate the cost (in dollars) the bug
mathematically.
Scenario Analysis for Bug BUGDB00522926
After an auction ends on the eBay website (www.ebay.com), the
buyers are allowed to checkout using their PayPal account.
Checking out completes the whole process of winning an
auction in eBay. Ideally, upon clicking the “Pay Now” button in
the eBay website, the user should be able to access his PayPal
account. But in reality, upon clicking the “Pay Now” button in
the eBay site, the system generates the following error message;

System Temporarily Unavailable. We are unable to locate the
information you are requesting. Please try again later." This non-
conformance with the requirement specification is logged in as a
bug with the bug id, BUGDB00522926. This bug completely
sabotages the whole process of winning a bid on the eBay
website and hence is critical in nature. This bug spreads across
two functional domains eBay marketplace website
(www.ebay.com) as well as PayPal. In a scenario with several
such bugs detected, an estimate of the cost of the bug resolution
would help to align the process, resources and time in a cost
effective way. We developed a tool called Bug Cost Estimator to
enable the application of our technique in eBay Inc.
Bug Cost Estimation uses the bug information present in the bug
database and bug tracking tool. eBay’s bug tracking tool and the
bug database include the following details about a bug
(BUGDB00522926). Let’s use B to represent this bug. We used
the implemented tool to assess the possible cost relating to this
bug (B) using the proposed solution.

Communication Cost for BUGDB00522926
This module computes the expense incurred by virtue of any
communication concerning BUGDB00522926. The primary
mode of communication for this bug was via emails and the
details of the communications could be obtained from the bug
tracker. We found that the actual number of email exchanged to
be 455 (Nc) and an email complaint costs the organization $5
(Cc). Applying these data to our communication cost analyzer
formula, we calculated the actual cost due to communication.
Communication Cost B = (Nc* Cc) = 455 * 5 = $2275

Resource Cost for BUGDB00522926
It presents the expense incurred by virtue of the resources
working on the bug, BUGDB00522926. Computation of
resource cost involves details such as the timestamps for the
people working on the bug as well as their hourly wages. From
the bug database and bug tracking tool, we inferred the number
of resources (here, 3 resources) and the number of hours (here, 5
hours, 6.33 hours and 0.5 hours respectively) they spent on the
bug. Based on salary standards, $40 per hour is assumed as the
resource wage/hour.
Using the resource cost analyzer formula, wage per hour (Pi)
and number of hours(Di) the resource works on the bug, the cost
(in dollars) incurred due to the resources can be calculated as
follows:

Resource Cost B = (∑ Pi * Di); (i =1...n)
= (40 * 5) + (40 * 6.33) + (40 * 0.5) = $473.20

Impact Cost Analyzer
Using impact cost analyzer, we compute the expense incurred
due to the violation of SLA. The bug tracking tool provides
details such as bug priority (for the BUGDB00522926, priority
= P1) and the weight (Wp) of the bug (here, weight of the bug
BUGDB00522926 is 4). The bug database is used to obtain the
information such as statistical average of age (Ab) of bugs with
similar priority and bug-stage state. The average age of bugs
similar to BUGDB00522926, is found to be 72 days. Further,
the Service Level Agreement shows that permissible timeframe
(SLA) for the resolution of a bug with priority P1 is 22 days.

106

Finally the total assumed cost of production (Cp) for this bug is
obtained from the database to be $1000.
By applying all these data to the formula give below, we can
calculate the impact of not resolving the bug within the agreed
timeframe.

Impact Cost B = ((Ab-SLA) * Wp * Cp)
= ((72-22) * 4 * 1000) = $200000

Using the computations presented above, the total cost of a bug
can be computed as the summation of the three computational
results.
Total Cost of a bug B
= Impact Cost B + Resource Cost B + Communication Cost B
= $2275 + $473.20 + 200000

Thus, the estimated cost of a bug amounts to $202,748.20. This
calculation of the cost of a bug is useful in scenario with
multiple bugs with similar priorities and is also used in the post-
resolution analysis of the bugs.

4. Project Risk Assessment
Every project process and project release has some project risks
which usually refer to a certain degree of uncertainty to achieve
the success of a project. These uncertainty factors cause project
risks in the completion of the project phases. If these risks are
not addressed promptly, it might jeopardize the successful
delivery of a project release [7]. Hence, it is essential and
important to foresee project risks before the completion (or
release) of a project phase. This section presents a systematic
approach and tool based on mathematical formula to estimate
the possibility of risks arising from known actions in a project
release. This provided approach numerically quantifies the
probability of risks associated with the project phases with a
Risk Score. In addition, this section also presents our
application example and case study result of using the
implemented risk assessment tool.

4.1. The Risk Assessment Tool
As shown in Figure 4, we built a risk assessment tool as a
prototype for eBay Inc. to help engineers to perform bug-based
risk analysis for a given product release. This risk assessment
tool has five components:
� A risk analysis tool interface – This provides a simple

graphic user interface to support the interactions with
engineers to access different functional components.

� The activity scheduler - This allows engineers to schedule a
risk analysis tasks for various bugs stored in a bug tracking
tool.

� The bug database access interface – This enables the tool to
retrieves bug information from a given bug tracking tool to
support the other functional components.

� Risk assessment component – This module allows
engineers to perform bug-based risk analysis in a
systematic approach.

� Risk migration component – This module keeps and
migrate the stored risk analysis results and the related
history to support different product release as references for
future risk analysis.

The detailed methods supporting these components are
described in the following.

Figure 4. The Risk Assessment Tool
Activity Scheduler
The Activity Scheduler identifies the tasks, the sub-tasks and the
sequence of tasks in a project phase. It identifies and monitors
the schedule (start and end dates) of the project phase and uses
the project progression information (in percentage). It also
defines main task and subsequent tasks accordingly. All these
information could either be obtained from the project database
or directly from users using the user interface. Based on all of
the information, the tool supports engineers to perform risk
analysis functions provided in this tool for associated tasks in a
project phase (or release).

Figure 5 Risk Assessment- Decision Tree
Resource Manager
This component identifies all the resources (engineers or
managers) who would involve in a selected project phase (or
release). It is important to estimate not only the project schedule
but also the engineering resources for the project. Similar to the
bug cost assessment tool in the previous section, the costs of
engineering resources are also obtained or shared in this tool.

Risk Assessment
This component assesses the risks based on three factors;
namely, users’ responses to the project related questions,
historical risk analysis data from the repository, and a risk
assessment algorithm. The bug related responses are processed
using a decision tree algorithm. An example of risk assessment
question list is given in Table 3. “P” stands for the probability of
the occurrence, and “I” stands for its related impact. To simplify

Risk Analysis Tool Interface

Activity
Scheduler

Resource
Manager

Risk Assessment
Risk Mitigation

Bug Database

Bug
Tracking

Tool

Request
Response

Risk Analysis
Results

Risk
Analysis

BUG DB
Access

Interface

Risk Analysis
Database

A

C

FD

B

E

Yes with

P = 60%I= 100
Low with

P = 50

I = 60

Med with

P = 25%

I = 0-33
I = 34 -67

High with

P = 25%

No with

P = 40%

I = 0

P stands for Probability of Occurrence
I stands for Impact on the release

107

the processes, we defined these questions for engineers to come
out the responses in four ways: (a) Yes/No, (b) True/False, c) a
quantitative data in a defined date range. We used the decision-
based risk algorithm in [5] to translate the user responses into a
risk assessment decision tree. A typical example is shown in
Figure 5. Each response becomes a node in the decision tree.
Every node is then associated with a probability of occurrence
and its impact on the system [5]. A higher probability of an
occurrence of a risk indicates that there is a greater chance of
encountering the risk in reality. And hence it must be addressed
at the earliest. Risks with greater impact indicate that even a
single occurrence of the risk will have detrimental effects on the
system, as pointed out in [8]. The probability of risk occurrence
and impact of the risk on a product release are obtained from the
historical data in the risk analysis data repository. Thus,
applying the decision tree algorithm and computing the
probability and impact of the risk on a product release, we
derived the following equation.

Risk = Probability * Impact
Where, Probability is obtained based on the historical data, and
Impact is categorized in the range from 1-3.

Table 3 Risk Assessment Questions for Engineers
Question Answer P I

1 Categorize the release size compared to the
other trains of the year

Small 30 30

2 Is this an end of quarter release? No 15 0

3 Does the release have many big and complex
projects or projects with hard dates (committed
to the business or legal deadlines)?

Yes 50 70

4 What is the experience of release conductor? High 30 20

5 Is the release adding new pools and/or new
hardware?

No 95 0

6 Are all ROP's completed and approved? Yes 95 0

7 Percent of projects that completed Dev To QA
Handoff

Low 80 75

8 What is the level of confidence that
development has completed work in time and
all projects have Dev to QA successful?

Low 80 80

9 Is the overall bug finding ratio going down? Yes 50 18

Table 2. Risk Types
Impact Level Risk Impact type

1 Low

2 Medium

3 High

The formula derived above presents the risk associated with
every potential risk causing tasks (activities) in a project phase
(or release). A project phase (or release) will comprise of many
such tasks. Hence, the Cumulative Risk (CR) in a project release
is the summation of the risks of all tasks in that phase. Using the
risk information for every activity in the project phase (or
release), we derived the mathematical formula for computing the
Risk Score of a project phase (or release).

Risk Score (%)
= Cumulative Risk/Maximum Release Score * 100

Where, Cumulative Risk is the summation of the risks of the
tasks for a product release (or a project phase). The Maximum

Phase Score is the summation of impacts of all the nodes of the
decision tree, i.e., maximum impact of all the tasks in a release.

Risk Mitigation
Whenever a risk score is generated, it can be saved in a risk
analysis database for future use. These scores are used by the
Risk Mitigation component to evaluate the alternate plans to
mitigate the risks posed in a project phase (or release). The risk
score is calculated for each alternative plan. A plan with the
least risk score should be selected. This technique practically
translates the plans and ideas into quantitative numbers that
clearly indicate the percentage of risks in a product lifecycle.

Risk Analysis Report
This module allows engineers to generate and present a risk
analysis report as risk scores in a graphic format for different
project phases (or releases). Using this function, engineers can
easily identify the stability of a project release. The risk scores
are usually high in the early stages of a project phase (or
release). Risk scores are definitely a quick and effective
indicator of the health of the project phase (or a release).

4.2 A Case Study for Risk Assessment
It is important to monitor the progress of the project from its
inception to release. In a multi-tier organization (like eBay Inc.)
with multiple functional domains, engineering teams work
across various geographical locations. Since projects are often
bound by time and resource constraint, hence projects may run
into lot of risks threatening the successful completion of the
project [11]. Often these risks are acknowledged only when they
turn into a defect or bug. Here, we report a case study on a
project’s releases following eBay’s bi-weekly release schedule.
We look into a new feature released once every two weeks. Its
bi-weekly release schedule involves different QA tasks in a
development process, including feature testing, code merging
and regression testing. To manage the processes effectively, the
features are developed by different teams and in different stages.
These stages are called Release Seats. Upon developing the
feature, every team makes a release. All such releases are
collected, merged and tested in a Quality Assurance process in
eBay Inc. They involved different teams working across
locations, and hence a bi-weekly schedule requires a great deal
of insight to avoid issues. In order to handle such short releases
effectively, the teams should be equipped with the knowledge
about the risks in the release process. Due to the limited scope
of this paper, the release schedule strictly begins with the feature
testing. The rest of this section presents the application of the
Risk Assessment tool and its method onto the release process to
quantify risks in its release process.

Scenario Analysis of Bi-weekly Release
As the first step in a Bi-weekly release phase, the feature
development done in the pools are merged in order to be tested
in QA environment. The bi-weekly release schedule is logged in
an eBay’s Project Monitoring tool. It is important to know the
schedule of other tasks involved in the releases, such as feature
testing, code merging and regression testing. A release
conductor or QA manager can use the provided tool to
understand the risks associated with each project phase. In his
case study, we only examined the project (e575) and its related

108

risks. The implemented risk assessment tool is used here to
assist engineers to analyze and track the associated quality risks
associated for each project phase (including internal and
external releases).

Application of Risk Assessment
The Risk Assessment tool estimates the degree of risks (Risk
Score) associated with a project release. This tool uses project
schedule information, engineers’ responses to project related
questions in Table 3, These are pre-configured in the tool. They
can be grouped into two categories, namely General Questions
and Feature Phase Questions. The impact of the current release
on all major phases can be concluded from the user’s responses
to the General Questions. The responses to the Feature Phase
Questions provide the specific information for the current
release. All these responses are translated into the nodes of a
decision tree as shown in Figure 5. The probability of
occurrence and impact of occurrence of the each of these nodes
are obtained from the statistical data in the risk analysis
database. The probability of occurrence of an event in that
sequence is indicated by the probability of the node links and
the impact of its occurrence is indicated as the impact of the tree
nodes. The decision tree can be interpreted into the following
table, where P stands for probability of occurrence of a risk
posed by the issue in the question.
As discussed in Section 4.1, the risk posed by each of these
issues can be calculated by applying probability and impact
information in Table 3 below.

Risk = Probability * Impact
The total risk posed by all the issues in a phase is obtained by
summation of risks of the issues in that phase.
Cumulative Risk =
 (0.3 × 30) + (0.15 × 0) + (0.5 × 70) + (0.3 × 20) + (0.95 × 0) +
(0.95 × 0) + (0.80 × 75) + (0.8 × 80) + 0.5 × 18) = 39
The maximum phase score is calculated by adding the maximum
impacts of all the nodes of the decision tree. Applying these data
to the formula we derived before, we can calculate the final risk
score as follows.
Risk Score = (Cumulative Risk) / (Maximum Phase Score)

= (39/400) = 9 %
As shown in Figure 6, we computed the risk scores for different
phases of the release e575. By analyzing the risk score
information, we observed that the risk increases during the early
phases and after certain phases, the risk score stabilizes. The
Risk Assessor tool saves the Risk Score to the database
automatically. We performed 41 iterations of risk assessment on
e575 and the results of the same are presented below.
In Figure 6, X legend represents the iteration number and Y
represents the risk score for the corresponding iteration. It can
be noted the risk score of e575 falls between the range of 25-49,
with 25 being lowest and 49 being the highest. This graph is
also useful to determine the health of the release phase.

5. Conclusion Remarks
This paper presents one systematic approach and tool to estimate
bug-related project costs and impacts during a product life-
cycle. In addition, the paper provides a systematic solution as a

tool to help engineers and managers to find out the project risks
relating to bugs for a product release. Moreover, some
application examples and case study results are reported. Using
the presented tools, engineers and managers can easily perform
bug cost estimation and risk analysis for a project release.

0

10

20

30

40

50

0 10 20 30 40

ITERATION

RI
SK

 S
CO

RE

A

B

Figure 6 Risk Assessor Graph For Release Phase
The major advantages of these methods are summarized below:
� Eliminates any speculation regarding to the financial

impact of bugs and risks.
� Support bug cost estimation and related risk analysis as an

effective project and defect management activities.
� Uses the bug information that are tracked and stored by an

existing project management and defect management tool.
� Perform bug-related project cost estimation and risk

analysis in a systematic and quantitative approach.
� Enables the managers and engineers to make educated

decisions based on the cost impact of bugs and risks for
each product release in a product development cycle.

6. References
[1] William.T. Ward (1991), “Calculating the real cost of
software defects”, Hewlett Packard Journal, Oct 1991.
[2] Rex Black, “Investing in Software Testing: The Cost of
Software Quality”, 2000. Retrieved from http://
www.stickyminds.com.
[3] B. Subramaniam, “Effective Software Defect Tracking -
Reducing Project Costs and Enhancing Quality”, Crosstalk,
April 1999.
[4] R. W. Ferguson, “A Project Risk Metric”, Crosstalk April,
2004.
[5] P. Robichux, “Essential Guide to Risk Management”,
Retrieved from http://www.neverfailgroup.com.
[6] C. Chittister and Y. Y. Haimes, “Risk Associated with
Software Development: A Holistic Framework for Assessment
and Management. Systems, Man and Cybernetics”, IEEE
Transactions, Vol. 23(3):710-723, 1993.
[7] Glyn A. Holton, "Defining Risk",Financial Analysts Journal,
60 (6), 2004.
[8] D. Verndon and G. McGraw, "Risk Analysis in Software
Design” ,IEEE Security & Privacy, Vol. 2, No. 5, 2004.
[9] M. Davis, “The economics of quality”. Proceedings of
AFIPS Joint Computer Conference, June 7-10, 1976.
[10] M. Fischer, M. Pinzger and G. Harald, "Populating a
Release History Database from Version Control and Bug
Tracking Systems”, pp. 23-32, Distributed Systems Group,
Vienna University of Technology, Austria, 2003.
[11] Pertmaster, “Benefit of Project Risk Assessment”,
Published on 11/1/2006.

109

Improving Negotiations through Fuzzy Cognitive Maps

Sergio Assis Rodrigues1, Tiago Santos da Silva2, Jano Moreira de Souza1, 2

1COPPE/UFRJ - Computer Science Department, Graduate School of Engineering , Federal

University of Rio de Janeiro, Brazil, +55 21 2562-8785, 2562-8676 (fax)
2DCC-IM/UFRJ - Computer Science Department, Mathematics Institute, Federal University of Rio de

Janeiro, Brazil, +55 21 2562-8696, 2562-8676 (fax)
sergio@cos.ufrj.br, tiagoss2005@dcc.ufrj.br, jano@cos.ufrj.br

Abstract

In a decision-making process, a systematic method to
manage and measure negotiation aspects provides crucial
information to negotiators and has emerged as a key
factor to determine agreements’ success or failure.
Accordingly, this work aims at presenting a negotiation
support system which provides functionalities to create
negotiation models through settlements’ historical
information. These models are interpreted as Fuzzy
Cognitive Maps (FCM) and the software tests as the
convergence of each model. Thus, the system intends to
facilitate decision-markers to predict future negotiations
behavior and, consequently, improve the chances of an
agreement. Besides, this work examines a case study
through the lenses of FCM to illustrate real negotiations
outcomes and expected value quantifications. The
proposal is to compare a model map developed from old
negotiations with the results obtained through FCM
simulations. As a result, from the use of these mechanisms,
negotiators could better visualize alternative ways to
improve the chances of successful agreements.

1. Introduction

Negotiations and conflict resolution can be responsible
for influencing relationship maintenance and leading
institutions towards success or failure. In general, the goal
is to reach the planned agreements; however, in decision-
making processes, negotiation is directly related to
preparation stage and risk assessment. Therefore, the
correct management of these uncertain conditions allows
one to lead a negotiation in a structured and pro-active
way, introducing strategies that may prevent, control and
mitigate possible risks that can lead to negotiation failure.

Some specific elements are more discussed in software
negotiations, such as scope, time, costs, requisite changes,
relationship, interests, administrative issues, contract
clauses, power of influence and resources [1][2].

Nevertheless, the challenge is to know how to predict
uncertain events and attempt to quantify key negotiation
elements in order to prioritize the preponderant ones and,
consequently, avoid future problems.

Therefore, initiatives without adequate preparation can
unexpectedly lead a promising business to
disappointments, specially, among inexperienced
professionals, who have natural difficulties to deal with the
volume of information to be understood during
negotiations. People’s cognitive abilities are limited in the
simultaneous processing of a high amount of information
[3]. As a result, it is the negotiator’s responsibility to
determine what the most important information to be used
on negotiation table is.

In addition, an imperative task for decision-makers is to
find a way to predict the deal, although even experienced
negotiations can make mistakes in their predictions.
Hence, methods to simulate arrangements from initial
variables, in which it is possible to manage some aspects
over others, represent excellent tools to support deals.

This article attempts to show an approach to test
negotiation models in order to improve preparation’s stage
and also predict deals’ variables. Fuzzy Cognitive Maps
(FCM) [4][5] are utilized taking into consideration basic
negotiation elements to enhance the agreement process.

2. Literature Background

In this section, the background description of
negotiation methods and FCM are introduced. This work
uses these concepts during the proposal system and case
study.

2.1. Negotiation Process

Overall, negotiation is an activity that requires training,
practice, coaching, strategy, and preparation. It allows the

110

execution of agreements that are mutually acceptable for
counterparts, even though different conflicts may occur
and external help may be needed [6]. Negotiations can be
divided into 4 phases: preparation, value creation, value
division and execution [7][8].

Preparation is the most important stage once it provides
enough information to facilitate the agreement, defines the
issue to be resolved and clearly situates counterparts’
interests [9]. Besides, in the preparation step, negotiation
should define the ZOPA (Zone of Possible Agreement), or
simply zone of potential agreements, which involves the
counterparts’ satisfaction range [10][11] and concerns the
negotiators’ expected values. In this zone, some elements
can be considered to measure the negotiation’s expected
value, such as financial values, level of counterpart’s
relationship, the spending time to reach an agreement, the
power of influence and negotiators’ strategic interests [2].

In the Value Creation step, it is important to continue
exploring the counterpart’s interests and generating
alternatives that extend mutual gains [12]. At this stage, it
is important to avoid criticism and encourage the use of
neutrality both to facilitate the relationships and to enable
the creation without prior commitments. The Value
Division is a step to propose brainstorms on contingent
options and to project future agreements. At this stage,
neutrality is used to suggest possible ways of distribution
and discuss standards and criteria for distributing the
generated value [12][13].

Finally, the Execution must establish arrangements to keep
track or check adopted decisions and facilitate the
commitments maintenance. At this stage, incentives and
organizational controls must be aligned and it is essential
to work continuously to improve relationships as well as
neutrality to resolve disagreements [7][8].

Among these 4 phases, the Preparation step is the most
important once it gathers enough information to facilitate
the agreement, to define the problem to be solved and to
identify clearly the counterparties’ interests. Great
negotiators have already said that this step is the key to
success in negotiations [14][15][16]. Furthermore, it is
important to highlight that there are similarities in the best
practices used by the major negotiators [17], so it is
possible to imagine negotiation models, based on the best
practices in specific negotiation scenarios, which supports
inexperienced negotiations to become great negotiators.

2.2. Fuzzy Cognitive Maps

A Fuzzy Cognitive Map (FCM) is a diagram consisting of
nodes and arrows. The nodes represent various qualitative

concepts, while the arrows denote the links between the
concepts. Each concept is characterized by a numeric
activation value denoting a qualitative measure of the
concepts’ presence in the conceptual domain. Thus, a high
numerical value indicates that the concept is strongly
present while a negative or zero value reveals that the
concept is not currently active or relevant to the conceptual
domain. When a strong positive correlation exists between
the current state of a concept and that of another concept in
a preceding time-period, it is said that the former
positively influences the latter. This relationship is
indicated by a positively weighted arrow directed from the
causing to the influenced concept. By contrast, when a
strong negative correlation exists, it reveals the existence
of a negative causal relationship indicated by an arrow
charged with a negative weight.

Additional fuzzification to FCMs was introduced via
Certainty Neuron Fuzzy Cognitive Maps (CNFCM)
[4][18][19], which allow for various activation levels of
each concept between the two extreme cases, i.e. activation
or not. The updating function of a CNFCM is the
following:

() t
ii

t
i

t
i

ft
i AdASA −=

+1

(1)

�
≠

=

=

n

ij
j

ji
t
j

t
i wAS

1

(2)

In this function, Ai is the activation level of concept Ci at
some time (t+1) or (t), equation (2) is the sum of the
weighted influences that concept Ci receives at time step t
from all other concepts, di is a decay factor [19], and (3) is
a modified version of the function used for the aggregation
of certainty factors [4].

�
�
�
�
�

�

�
�
�
�
�

�

�

−+

≤<<

++=++

≥≥

−+=−+

=

otherwiseSASA
t
i

t
i

t
i

t
i

S
t
iA

t
iS

t
iA

t
iif

A
t
iS

t
iS

t
iA

t
iA

t
iS

t
iA

t
i

S
t
iA

t
iif

A
t
iS

t
iS

t
iA

t
iA

t
iS

t
iA

t
i

S
t
iA

t
if m

)),,min(1()(

1|||,|,0,0

,)1(

0,0

,)1(

),(

(3)

3. The Negotiation Environment

The environment used in this work endeavors to support
the negotiation decision making process aiming at
facilitating the negotiator’s knowledge acquisition through
a group of suggestive synthetic interfaces and reports,
which were developed through several innovative
technologies, as shown in Figure 1.

111

Figure 1: The Negotiation Support System

The Knowledge Management module concerns several
preparation interfaces, which manage the negotiation
knowledge through a tutorial guide. In the preparation
step, the negotiator is invited to fill in some forms to keep
the negotiation’s data up-to-date. These forms work as a
checklist, guiding the negotiation based on key elements,
such as interests, options, power, concessions, context,
relationship, criterion, cognition, compliance and time.

The Risk Management module attempts to evaluate the
negotiation risks through risk management methodologies.
There are several options to try to capture the negotiator’s
perception about the risk influence. For instance, interfaces
to measure risks of negotiation’s price and time provide
qualitative and quantitative views, while relationship’s and
interest’s interfaces allow only qualitative measurements.
After risk identification step, it is possible to calculate the
expected value of each risk and, then, a negotiation’s
weighted average is estimated. This estimation is used as a
component of knowledge management in the negotiation;
thus, the information stored in this module is another input
to manage the whole negotiation knowledge.

Both management modules (Knowledge and Risk) use
Text Mining techniques to show possibilities to share and
reuse the knowledge collected. Besides, from the
information stored in such modules, it is possible to
enhance negotiator’s knowledge acquisition through a
group of suggestive synthetic reports, which were
developed through Visualization Methods.

Based on the stored records and through visualization
methods, experienced negotiators may design negotiation
models to store this information and also to help future
similar deals. In this context, FCM interfaces make
available tools to develop negotiation maps as well as to
view fuzzification graphics and statistics, as depicted in
Figure 2.

Figure 2: Interface to Create Negotiation Maps

Figure 2 shows an example of negotiation modeling and
fuzzification tests to ensure that model converges as
expected. From this tool, fuzzy analyses were conducted
on real contract negotiations of software development, as
explained in the following sections.

4. Modeling the Experiment

From the use of historical negotiations – in this case, with
the same client, this work obtained associations among the
negotiation elements through real negotiations
experiments. Figure 3 shows the connections among the
employed elements.

Figure 3: Negotiation Elements Map

In such experience, negotiations carried out during
software contract negotiations were analyzed. The real
names were changed to guarantee the confidentiality of the

112

parties involved. Copp is an IT group which researches
and develops software. Copp employs around 150
professionals (managers, developers and research staff),
including the authors of this article. In this case study,
Copp was the Service Supplier. The Client of this
negotiation was BPetrol institution, a global oil exploration
and production company, operating especially in Brazil.

Software developments to a specific client and a variety of
actors were the main criteria to choose this case study.
What is more, all negotiations had at least 3 rounds. This
parameter was set to avoid distortion in statistical results.
As a comparison inputs, the case study presents six distinct
negotiation elements: contract’s price, wait time to reach
an agreement, supplier’s interests, counterparts’
relationship, the negotiation’s expected value and the
power of influence, as better described in Table 1.

Table 1: Concept elements of the FCM proposed model

Element Description
Price • Represents the value of the proposal in the

supplier point of view. In this case, the
more expensive, the better.

• Price directly influences supplier’s
interests and expected value but can
increase the negotiation period of time and
also reduce the level of relationship among
counterparts.

Time • Reflects how long the negotiation delays.
For a supplier, the faster, the bettermeans
high values (positive) reflect fast
negotiations while low values (negative)
indicate slow negotiations.

Interests • Represents supplier’s strategic concerns,
i.e., the premeditated goals.

• Generally, several interests implies in high
costs (and, consequently, high prices) and
elevated expected value. On the other
hand, supplier’s interests may influence
negatively the negotiation time.

Relationship • Level of good rapport and communication
between counterparts. In general, this
element influences in better prices and also
increases the chances of raise interests,
and, consequently, affects positively the
negotiation expected value.

Expected
Value

• Represents how interesting the deal is from
the supplier’s perspective, considering key
negotiation elements, strategic situations,
valuable contexts and the agreement
obligations.

• From the seller’s point of view, high
prices, several supported interests and good
relationship increases the expected value
while the delay to reach an agreement
(time element) decreases the expected
value.

Power • Represents power aspects which can
influence the negotiation, such as power of
authority, power of information, expert
power or even personal persuasive power.

• This element influences time, price and
relationship. Besides, the power
implication is constant once it does not
change through other variables, it means,
its impact value does not decrease during
the fuzzification.

Experienced negotiators, supported through historical
values of client’s negotiations, defined the association
between the concept elements as well as the degree of
influence among these factors, as illustrated in Table 2.
The underlying weights and the values of the activation
levels of the participating concepts are illustrated in a six-
scale scheme showed in Table 3.

Table 2: Influences between concepts in the FCM
negotiation model expressed as numerical weight values
(column is the source)

 Pr Ti In Re EV Po
Price -0,3 0,8 -0,1 0,7 0
Time -0,2 0,2 0,1 0,3 0

Interests 0,5 -0,1 0 0,3 0
Relationship 0,3 0,4 0,4 0,2 0

Expected Value 0 0 0 0 0
Power 0,5 1 0 -0,1 0

Table 3: Linguistic terms and their respective values

very bad bad regular good excellent
-1 to -0.5 -0.51 to 0 0.01 to 0.4 0.41 to 0.7 0.71 to 1

5. Experimental Results

This section presents three scenarios which were used to
investigate the efficacy of the model illustrated in Figure 3.
The first and third scenarios represent the extreme cases of
the worst and best circumstances in terms of parameter
values that hinder or promote successful conclusion of the
negotiation. The second case lies somewhere in between.
Each negotiation case is characterized by initial activation
levels for the participating concepts that reflect, to a high
extent, what the case stands for, i.e. in favor or against the
deal. The values of the fuzzy range are denoted by the
linguistic value as follows:

Negotiation 1: The worst agreement
� Price � bad (-0.4)
� Time � regular (0.1)
� Interests � regular (0.2)
� Relationship � bad (-0.4)
� Expected Value � bad (-0.4)
� Power � bad (-0.1)

113

Figure 4: Stabilization graph of the Negotiation 1 in
equilibrium after 65 iterations

Negotiation 2: A medium agreement
� Price � good (0.6)
� Time � bad (-0.4)
� Interests � good (0.7)
� Relationship � regular (0.1)
� Expected Value � good (0.6)
� Power � regular (0.1)

Figure 5: Stabilization graph of the Negotiation 2 in
equilibrium after 44 iterations

Negotiation 3: The best agreement
� Price � excellent (0.8)
� Time � good (0.7)
� Interests � good (0.7)
� Relationship � regular (0.2)
� Expected Value � excellent (0.8)
� Power � excellent (0.8)

Figure 6: Stabilization graph of the Negotiation 3 in
equilibrium after 34 iterations

Each involved case study executed the enough number of
map iterations until it reaches in a final immutable
situation, characterized by equilibrium. For each respective
iteration, the new activation level value for each concept
was calculated using equations (1) to (4), as previously
explained. The final values of the activation levels are
listed in Table 4, while Figures 4, 5 and 6 present
graphical representation of each negotiation equilibrium
state.

Table 4: Final activation levels of the concepts in the FCM
negotiation model

 Negot. 1 Negot. 2 Negot. 3
Price -0.596 0.639 0.755
Time 0.679 -0.640 0.671
Interests -0.493 0.539 0.772
Relationship 0.418 -0.434 -0.326
Expected Value -0.608 0.648 0.833
Power -0.100 0.100 0.800

Analyzing the results of Table 4 and the Figures 4, 5 and
6, it is possible to notice that the model behaved as
expected. More specifically, in the worst and best scenario
cases the expected value of the negotiation concept
stabilizes at -0.608 and 0.833, which suggests that the final
outcome will eventually be negative and positive,
respectively. The rest of the concepts also behaved as
expected.

In Negotiation 1, both price and expected value are driven
to even more negative values than originally started, while
it is interesting to note that Interest becomes negative,
which indicates that senior management stops
participating in "lost" cases and devotes their time to other
more beneficiary projects. Additionally, Relationship
becomes positive indicating that trust and good
communication may not be hampered in cases in which the
negotiation ended without a consensus due to infeasible
development that result from unsatisfactory time and price
projections.

In Negotiation 2, it is possible to verify that almost all
values keep established, mainly, Price and Expected Value.
To maintain these important aspects, the Relationship was
negatively affected. Besides, Figure 5 shows a little
decrease in the Interests and also in the Time to get the
agreement, which means negotiators were at the
negotiation table longer than expected.

Reversed result is observed for the Negotiation 3 (best
case) which justifies the correctness of the model in
capturing properly the dynamics behind such promising
negotiation scenery. In such case, an external aspect – the
supplier’s Power of influence – was determinant to

114

maintain established price, time, interests and,
consequently, the expected value. It is possible to notice a
decrease in relationship level, which is comprehensive
once all other factors push this level down.

6. Conclusions

This work aimed at addressing a strategy to facilitate
the negotiation preparation through models applied to
fuzzy cognitive maps approach. In the course of this paper,
key negotiation elements were identified as well as the
correlation weight among them. From this association,
fuzzification inferences were applied to verify models
convergence and, consequently, the reliability of the
involved negotiation expected values.

The work also examined the importance of evaluating this
approach through real negotiation experiments. Three
hypothetical scenarios were executed taking into
consideration key negotiation concepts. The results showed
that the method is promising as the model reacts as
expected.

Furthermore, fuzzification simulations are advantageous
once they may be very dynamic, flexible and pragmatist,
capturing the scenery, especially considering these main
elements in classic negotiations. Using an intuitive
interface, the negotiator may improve the coefficient of
certainty in relation to the impact of each element change,
and then, prioritize the preponderant ones. The regular use
of this approach can make negotiations more objective due
to better-defined criteria.

Conclusively, for future work, the innovative tool proposed
may be further examined to involve other supplementary
elements to the software, which may also be included in
the assessment model of Certainty Neuron Fuzzy Cognitive
Maps (CNFCM), and make inferences in different
negotiation areas to examine the methods generalization to
other backgrounds. Moreover, the expectation is that the
tool can automatically suggest adjustments in likelihood
and impact parameters as well as present a list of
successful reactions.

7. References

[1] PMBOK. “Project Management Body of Knowledge”,
2004 Edition. Project Management Institute,
http://www.pmi.org, 2004.

[2] Rodrigues, S. A. et al. “A Case Study for a Complex
Negotiation Analysis on Software Development Projects”.
In: GDN 2008 Group Decision and Negotiation Meeting,
Coimbra, 2008.

[3] Miller, G. "The Magical Number Seven, Plus or Minus
Two: Some Limits on our Capac-ity for Processing
Information". Psychological Review, Vol.63, No. 2, 1956.

[4] Kosko, B., “Fuzzy Thinking. The New Science of
Fuzzy Logic”, London: Harper Collins, 1994.

[5] Papatheocharous, F. et al. "Qualitative Software Cost
Estimation Using Fuzzy Cognitive Maps", AISEW -
Artificial Intelligence Techniques in Software Engineering
Workshop at 18th European Conference on Artificial
Intelligence, Patras, Greece, 2008.

[6] Fisher, R. et al, “Das Harvard Konzept”, 2nd edition.
Campus Verlag, Frankfurt, 2002.

[7] Duzert, Y. org. “Manual de negociações complexas”.
Rio de Janeiro: Editora FGV, 2007.

[8] Susskind, L., and Cruikshank, J., “Breaking the
Impasse”: Consensual Approaches to Resolving Public
Disputes. Basic Book, New York, USA, 1987.

[9] Fisher, R., Ury, W. “Getting To Yes”: Negotiating an
Agreement Without Giving In. Boston, Century Business,
1991.

[10] Harvard. Negotiation, “The Harvard Business
Essentials Series” (Paperback), USA: Harvard Business
School Publishing Corporation, 2003.

[11] Raiffa, H. et al. “Negotiation Analysis: the Science
and Art of Collaborative Decision Making”. Harvard
University Press, Cambridge, England, 2002.

[12] Bazerman, M. H., “Judgment in Managerial Decision
Making”. 5th ed. New York: Wiley, 2002.

[13] Rawls, J. “A theory of justice. Harvard” University
Press, Cambridge, England, 1971.

[14] Adams, C. R. and Hicks, R. D. "Preparation For
Trial". The Harrison Company, 300 p, 2001.

[15] Tardy, T. "The Brahimi Report: Four Years On".
Proceedings of a Workshop held at the GCSP, 2004.

[16] Kennedy, G. "Essential Negotiation", The Economist
Newspaper Ltd., 240 p, 2004.

[17] Lewicki, R. et al. "Negotiation". McGraw-Hill,
Boston, 3rd edition. 202 p, 1999.

[18] Tsadiras, A.K.and Margaritis, K.G. “Cognitive
Mapping and the Certainty Neuron Fuzzy Cognitive
Maps”, Information Sciences, Vol. 101, 109-130, 1997.

[19] Tsadiras, A.K. and Margaritis, K.G. “The MYCIN
Certainly Factor Handling Function as Uninorm Operator
and its Use as Threshold Function in Artificial Neurons”,
Fuzzy Set and Systems, Vol. 93, 263-274, 1998.

115

Value-Based Software Quality Modeling

Naeem Seliya
Computer and Information Science

University of Michigan – Dearborn

4901 Evergreen Rd., Dearborn, MI 48128

Email: nseliya@umich.edu

Taghi M. Khoshgoftaar
Computer Science and Engineering

Florida Atlantic University

777 Glades Rd., Boca Raton, FL 33431

Email: taghi@cse.fau.edu

Abstract—This study is unique in incorporating cost-sensitive learning
techniques during the model-training process of building software quality
estimation models, such as predicting program modules as fault-prone
or not-fault-prone. Such models are usually built from knowledge of past
projects and then evaluated using prediction error rates or performance
metrics derived from the four basic metrics: true positive rate, false
positive rate, true negative rate, and false negative rate. To date, most
studies have evaluated the cost aspects of software quality models using
the expected cost of misclassification after model training. In this study
we investigate the strategy of using a cost-sensitive learning technique,
MetaCost, during the training process of C4.5 and Naive Bayes classi-
fication models. Software practitioners can use this approach to obtain
a direct insight into the cost-based performance of the trained software
quality model. A large case study of four software measurement datasets,
two classification algorithms, one cost-sensitive learning technique, and a
wide range of cost ratio values reveals the empirically-validated benefits of
using cost-sensitive learning as a useful technique during defect prediction
modeling.
Keywords: fault prediction; cost-sensitive learning; software measure-

ments; classification models.

I. INTRODUCTION

Software quality prediction models have been extensively investi-

gated toward improving the quality and reliability of software-based

systems [5], [7], [11], [13]. Software measurement and defect data

from past projects or releases are used as base knowledge to build

prediction models that estimate the software quality of the under-

development project. This allows the testing and inspection team to

focus their efforts on low-quality areas thus maximizing the benefits

gained from resources expended on additional testing and inspections.

Building software quality models involves utilizing the knowl-

edge base available from the data mining and machine learning

communities. For example, binary classification models are often

used for predicting the quality of program modules as either fault-

prone (fp) or not-fault-prone (nfp). One can find various techniques

that have been empirically validated for building useful software

prediction models, such as decision trees, logistic regression, case-

based reasoning, etc [5], [7], [11]. Once such models are built,

their predictive performance is evaluated with respect to various

performance metrics, such as misclassification error rates, overall

accuracy, F-Measure, Recall, Precision, etc.

A two-group (positive or fault-prone and negative or not-fault-

prone) classification problem has a confusion matrix consisting of

four cells, i.e., true positive, true negative, false positive, and false

negative. If the positive class represents fp modules and the negative

class represents nfp modules, then a false positive indicates an error

in which an nfp program module is incorrectly classified as fp. A

false negative indicates an error in which an fp program module is

incorrectly classified as nfp. A false negative is the more serious error

type as it represents a lost opportunity to detect an actual fp module.

Whereas a false positive leads to wasted resources due to inspection

of an already good quality program module.

Clearly, the cost of misclassifying an fp program module is

different than the cost of misclassifying an nfp program module.

This brings about the natural question of how do we incorporate

this issue during the task of building and evaluating software quality

prediction models. Analysts have attempted to use the total cost of

misclassification (as explained in the next section) as a performance

metric that would provide insight into the penalties (of misclassifi-

cations) associated with a given software quality model. However,

such strategies are considered only after the model training has been

completed.

In this study, we investigate using cost-sensitive learning tech-

niques during the actual process of training a software quality

model. To our knowledge, this is the first study to combine cost-

sensitive learning techniques with a given classification algorithm for

training software quality prediction models. Compared to accuracy

measurements, such as error rates, ROC curve, F-Measure, etc., a

software practitioner is more interested in the cost associated with

a given software quality estimation model. This study provides a

solution to the practitioner in terms of building software quality

models at a specific misclassification cost.

We take an empirical approach to presenting and validating our

work. The large-scale case study involves software measurement data

obtained from four high-assurance software systems; two indepen-

dent classification algorithms, namely C4.5 decision tree and Naive

Bayes [14]; and a cost-sensitive learning technique, namely Meta-

Cost [2]. While several other classifiers and cost-sensitive learning

techniques were investigated, those results cannot be presented due

to paper-size limitations.

The remainder of this paper is structured as follows: Section II

discusses some of the most relevant related works in the context of

this study; Section III summarizes the MetaCost cost-sensitive learn-

ing technique, the performance metrics used to evaluate the different

software quality models, and the two classification algorithms used;

Section IV details the software measurement datasets, experimental

settings, and the results obtained; and Section V concludes this

paper with a summary of our empirical investigation and provides

suggestions for future work.

II. RELATED WORK

In this section we limit our discussion to some of the related

literature that focuses on incorporating misclassification costs during

software quality modeling. In the case of classification models, the

expected cost of misclassification (ECM and its variations – see

Equation 2 in Section III-C) is commonly used to evaluate the cost-

based performance of a given classifier [8], [11], [12]. In some cases,

the total cost of misclassification is normalized with respect to the

number of instances (program modules) in the dataset.

In the context of software quality modeling, we have previously

investigated ECM for evaluating software quality models [11], [12].

116

While a logical approach to evaluating the cost aspects of a fault

prediction model, ECM is not incorporated during the model-training

process – this strategy is followed by most existing related literature.

A software quality model’s misclassification cost is only computed

after it is trained (i.e., during the model evaluation process) and

applied to a target dataset. This study is unique in incorporating cost-

sensitive learning during the training process of building a software

quality model.

We have also used evolutionary techniques to train models that

are optimized for multiple objectives, including expected cost of

misclassification [10]. The black-box and non-traditional nature of

evolutionary techniques tend to limit their appeal to software quality

practitioners. In addition, with ECM as the performance evaluation

metric, one would have to evolve software quality models for different

misclassification costs. The problem of relatively slow training times

and the tedious task of optimizing evolutionary parameters makes ge-

netic programming and genetic algorithms less attractive to analysts.

In a relatively recent study, Drummond and Holte introduced

cost curves as a visual representation of the performance of binary

classifiers across all class distributions and misclassification costs [4].

It is stated that ROC (receiver operating characteristic) curves and

cost curves are very closely related, i.e. there is a bidirectional

point/line duality between them. This implies that a point in ROC

space is represented by a line in cost space and a line in ROC space

is represented by a point in cost space, and vice versa. We note that

cost curves are determined only after the model-training process of

building a binary classifier is completed.

Jiang et al. [8] apply the cost curves proposed by Drummond and

Holte [4] in the context of fault prediction modeling. Based on a

study of multiple software measurement datasets, they recommend

adopting cost curves as one of the standard methods for evaluating

fault prediction models. However, as stated previously, cost curves

are not incorporated into the actual training process of building a

classifier. More specifically, cost curves are used as a performance

metric during model evaluation. In contrast to using cost curves for

performance evaluation, we investigate using cost-sensitive learning

techniques during the model-training process of building a software

quality model. The software quality analyst is more interested in what

factors are considered during the model-training process. Since cost

curves are very closely related to ROC curves [4], they would tend to

suffer from the same limitations that ROC curves suffer in the context

of its practical appeal and usage to the software quality analyst.

III. MODELING METHODOLOGY

A. Classification Algorithms

The two classification algorithms used in our study to build

software quality models are C4.5 decision tree and Naive Bayes. We

use the WEKA [16] data mining tool to conduct our empirical studies

with these two learners. These two classification algorithms were

selected based on their common use both in the software engineering

and machine learning communities.

C4.5 is the benchmark decision tree learning algorithm proposed

by Quinlan [14]. C4.5 is among the most commonly used learning

algorithms in data mining research. The decision tree is built using

an entropy-based splitting criterion stemming from information the-

ory. C4.5 improves Quinlan’s older ID3 decision tree algorithm by

adding support for tree pruning and dealing with missing values and

numeric attributes (software metrics). The WEKA version of C4.5 is

called J48 [16], and we use its default parameters for C4.5 in our

experiments.

Naive Bayes [16] (NB) is a quick and simple classifier that utilizes

the Bayes rule of conditional probability. It is “naive” in that it

assumes that all predictor variables are independent. Although this

assumption rarely holds true in real-world data, Naive Bayes has been

shown to often perform well even in the presence of strong attribute

dependencies [3]. We use the default parameters for Naive Bayes in

our experiments.

In the context of this study, we have conducted similar empirical

studies with several other classification algorithms. However, those

results are not presented due to relative similarity of conclusions.

B. Cost-Sensitive Learning with MetaCost

Various techniques exist for incorporating cost-based learning

during classification modeling, and MetaCost is one such technique.

Proposed by Domingos [2] for making any error based classifier

cost sensitive, MetaCost is based on Bayes optimal prediction. More

specifically, if for a given example (instance) x, we know the

probability of each class j, i.e., P (j|x), the Bayes optimal prediction

for x is the class i that minimizes the conditional risk, R(i|x) (see

Equation 1), which is the expected cost of predicting that x belongs

to class i. The Bayes optimal prediction is certain to achieve the

lowest possible overall cost over all possible examples x, weighted by

their probabilities P (x). C(i, j) and P (j|x) together with Equation 1

imply a partition of the instance space X into j regions, such that

class j is the optimal (i.e., lowest cost) prediction in region j [2].

R(i|x) =
∑

j

P (j|x)C(i, j) (1)

MetaCost modifies the labels of training data instances so that their

labels represents their “optimal classes.” This is achieved by learning

multiple classifiers, and using the result of each classifier as a vote

in determining the probability that an instance belongs to a specific

class. Bagging [1] is used to build an ensemble of learners. Samples

(program modules) are taken, with replacement, from the training

dataset, creating a new training dataset of the same size. This is

repeated m times (we use m = 10) with m models being trained using

the resampled datasets. The probability that an instance (program

module) belongs to a class is based on the fraction of votes it

received, or an unweighted average of the probability estimates of

the m models. Based on the estimated probability and the cost ratio,

new class labels are assigned. The newly labeled training dataset

is then used by the given classification algorithm to produce a

cost-sensitive software quality prediction model. The algorithm for

MetaCost proposed by Domingos [2] is provided in Table I.

C. Performance Metrics

In this study, the performance of the two classifiers is evaluated

primarily by comparing their per-example-cost (PEC), which is the

total cost of misclassification divided by the number of instances in

the dataset. The total cost of misclassification (TC) is given by,

TC = #fpos × C(1, 0) + #fneg × C(0, 1) (2)

where, #fpos is the number of nfp modules predicted as fp, #fneg
is the number of fp modules predicted as nfp, C(1, 0) is the cost of

classifying an nfp module as fp, and C(0, 1) is the cost of classifying

an fp module as nfp. Since the exact costs of misclassifications are

unknown during modeling and analysis, different values for the cost

ratio, i.e.
C(0,1)
C(1,0)

, are used depending on the characteristics of the

software system.

In addition to the cost aspects of the various software quality

models, we also present their F-Measure (F-Meas) values. This

117

TABLE I
METACOST ALGORITHM

Inputs:
S is the training dataset
L is a classification algorithm
C is a cost matrix
m is the number of resamples to generate
n is the number of examples in each resample
p is True iff L produces class probabilities
q is True iff all resamples are to be used for each example

Procedure MetaCost (S, L, C, m, n, p, q)
For i = 1 to m

Let Si be a resample of S with n examples
Let Mi = Model produced by applying L to Si

For each example x in S
For each class j

Let P (j|x) = 1∑
i
1

∑
i
P (j|x, Mi)

Where
If p then P (j|x, Mi) is produced by Mi

Else P (j|x, Mi) = 1 for the class predicted
by Mi for x, and 0 for all others

If q then i ranges over all Mi

Else i ranges over all Mi such that x � Si

Let x’s class = argmini

∑
j

P (j|x)C(i, j)

Let M = Model produced by applying L to S

Return M

performance measurement is based on two information retrieval

metrics, Recall (or effectiveness) and Precision (or efficiency), where

Recall is the true positive rate and Precision is the ratio of the number

of true positives to the sum of the number of true positives and the

number of false positives. When Recall and Precision are given equal

importance, the F-measure is computed as 2×Recall×Precision
Recall+Precision

.

IV. EMPIRICAL CASE STUDY

A. Software Measurement Data

The four software measurement datasets used in our case study are

high-assurance systems from different application domains. These

datasets were selected based on different values for dataset size

and the relative proportion of fp modules. Typically, a function,

subroutine, or method is considered as a program module for these

systems [9], [11], [15]. The use of specific software metrics was

governed primarily based on their availability for analysis purposes.

The CCCS-8 project is a large military command, control, and

communication system implemented in Ada. The dataset consists of

282 modules, of which 27 (9.57%) are fp and 255 are nfp. A program

module in CCCS-8 is characterized by eight software product metrics,

including Halstead’s and McCabe’s complexity metrics [6]. The

reader is referred to a prior work, Khoshgoftaar and Allen [9], for

additional details on the software metrics used for this system.

The KC2 project, written in C++, is the science data processing unit

of a storage management system used for receiving and processing

ground data for missions. This data (and PC1) is available through

the NASA Metrics Data Program. The 13 software product metrics

characterize 520 program modules, of which 106 (20.38%) are fp
and 414 are nfp [15]. The software metrics include Halstead’s and

McCabe’s complexity metrics and statement (i.e. lines of code)

metrics.

The PC1 project is flight software for an earth orbiting satellite that

is no longer operational. The software measurement dataset contains

1107 modules characterized by 13 product metrics, the same as those

for KC2. There are respectively 76 (6.87%) fp and 1031 nfp program

modules [15].

The SP4 project data contains software metrics and defect data

for a release of a large-scale telecommunications system written in

Protel [11]. The 42 software metrics characterize different attributes

of an SP4 program module, and include both product and process

metrics. There are a total of 3978 modules in SP4, of which 92

(2.31%) are fp and 3886 are nfp. The reader is referred to a prior

work, Khoshgoftaar and Seliya [11], for additional details on the

software metrics used for this system.

B. Experimental Settings

The C4.5 and Naive Bayes learners were built with (MetaCost),

and without (referred to as None), cost-sensitive learning for each

of the four software measurement datasets. The two classifiers were

used with their default settings in WEKA [16].

When MetaCost is used during software quality modeling, the cost

ratios used include 10, 15, 20, 25, 30, 40, and 50. Generally speaking,

for high-assurance systems such as those of our case study, a cost

ratio of 25 is considered appropriate. In order to provide the analyst

with a better insight into cost-sensitive software quality modeling,

we consider a wide range of cost ratio values. One may consider a

different set of cost ratio values depending on their appropriateness

to the software project under consideration.

In our study, a classifier is built using 10 fold cross validation, and

this process is repeated 10 times (i.e. 10 runs) to avoid any bias due to

a lucky/unlucky split when obtaining the 10 folds for cross validation.

The empirical results shown in the next section represent the classifier

performance averages across the 10 runs. Thus, with four datasets,

two learners, two cost-sensitive learning techniques (MetaCost and

None), five cost ratios, 10 cross validation folds, and 10 runs, a

total of 8000 models/cost-ratio combinations were constructed and

evaluated.

C. Results and Analysis

The modeling results for the two learners when built without

any cost-sensitive learning are summarized in Table II. The results

obtained after building the classifiers in conjunction with MetaCost

at different cost ratios are summarized in Table III for C4.5 and

Table IV for Naive Bayes (NB). These tables show the four types of

error rates and the F-Measure value.

According to Table II, the Naive Bayes learners generally provided

better or similar F-Measure values than the C4.5 learners. When C4.5

is applied with MetaCost, the F-Measure values tend to decrease with

an increase in the cost ratio. However, when Naive Bayes is applied

with MetaCost, the F-Measure values tend to either remain steady or

decrease slightly with an increase in the cost ratio. For both learners,

an increase in the cost ratio brings about (as expected) an increase

in both the true positive rate and the false positive rate. While we

present the F-Measure values for completeness sake, our focus in this

paper is on comparing the different learners based on their cost of

misclassifications.

Since we emphasize a cost-sensitive learning approach to train

a software quality model, the total cost of misclassification values

for the two learners at different cost ratios are shown in Tables V

and VI. The tables show the TC values for the two learners built

118

without MetaCost and with MetaCost. In the case of C4.5, learning

with MetaCost clearly lowers (for all cost ratios and all datasets)

the TC values as compared to learning without MetaCost. This is

also generally true for NB, except for PC1 and SP4 at the respective

cost ratios of 40 and 50. For these four cases, NB without MetaCost

provides slightly better (lower) TC values. This may be indicative

of the fact that C4.5 benefits more with MetaCost than NB, an

observation that is discussed in the remainder of this section.

The per-example-cost, or PEC, of the software quality models

built with, and without, cost-sensitive learning are plotted against the

different cost ratios in Figures 1 through 4. In the case of CCCS-8, the

smallest of the four datasets investigated, there is a clear advantage in

using MetaCost during learning over None (i.e., not using any cost-

sensitive learning). The improvement in PEC (from no-cost-sensitive

learning to cost-sensitive learning) increases with the increase in the

cost ratio. When comparing how MetaCost aids C4.5 and NB, adding

MetaCost to NB provides a relatively lower improvement in PEC

(over NB without MetaCost) as compared to C4.5 with MetaCost.

Among the four learners, NB with MetaCost provides the lowest

PEC values in absolute terms, followed by C4.5 with MetaCost, NB

without MetaCost, and C4.5 without MetaCost.

For the second smallest of the four datasets, i.e. KC2, the C4.5

and NB learners without MetaCost demonstrate relatively similar

performance across most of the cost ratios, with C4.5 edging out NB

at high cost ratios. Among the four learners, C4.5 with MetaCost is

clearly by-far the best model, followed by NB with MetaCost, C4.5

without MetaCost, and NB without MetaCost – the latter two provide

relatively similar performances. An interesting observation here is

that adding MetaCost to C4.5 provides a more dramatic improvement

(over C4.5 without MetaCost) as compared to adding MetaCost to

NB (over NB without MetaCost). This observation was also noted

with the CCCS-8 dataset. Once again, for both learners the reduction

(from no-cost-sensitive learning to cost-sensitive learning) in PEC

values is greater for larger cost ratios.

In the case of PC1, NB barely shows any improvement with Meta-

Cost over the different cost ratios. In contrast, C4.5 with MetaCost

once again shows a dramatic reduction in the PEC values over C4.5

without MetaCost. Among the four models, C4.5 with MetaCost is

once again (also for KC2) clearly the best model, followed by NB

with MetaCost, NB without MetaCost, and C4.5 without MetaCost.

The latter three models provide relatively similar performances.

For the largest of the four datasets, i.e. SP4, the improvement

obtained from using MetaCost with C4.5 is not as dramatic as the

CCCS-8, KC2, and PC1 datasets. However, that improvement is still

slightly better than when NB is used with MetaCost. In absolute

terms, among the four models the best model is NB with MetaCost,

very closely followed by NB without MetaCost, C4.5 with MetaCost,

and C4.5 without MetaCost. Among the four datasets, this is the

only time when C4.5 with MetaCost is not better than NB without

MetaCost. The unique observations made for SP4 is likely due to

its extremely low proportion of fp modules (2.31%) compared to the

other datasets.

One of the general conclusion from our study is that while Naive

Bayes generally provided better or similar F-Measure values than

C4.5, the latter benefits much more from adding cost-sensitive learn-

ing during the training process of a software quality estimation model.

In addition, while various characteristics of software measurement

datasets can influence the outcome of prediction models, we have

observed that the improvement gained with cost-sensitive models

is affected by the relative proportion of fp modules in the training

data. More specifically, in our study, the improvement from no-cost-

TABLE II
RESULTS WITHOUT METACOST

Data TPR TNR FPR FNR F-Measure

C4.5 Learner

CCCS-8 0.5617 0.9624 0.0376 0.4383 0.5533
KC2 0.4491 0.9163 0.0837 0.5509 0.4893
PC1 0.2375 0.9887 0.0113 0.7625 0.3273
SP4 0.0888 0.9932 0.0068 0.9112 0.1221

Naive Bayes Learner

CCCS-8 0.7350 0.9553 0.0447 0.2650 0.6795
KC2 0.4220 0.9421 0.0579 0.5780 0.5008
PC1 0.3011 0.9327 0.0673 0.6989 0.2650
SP4 0.4744 0.8811 0.1189 0.5256 0.1465

TABLE III
C4.5 RESULTS WITH METACOST

Cost Ratio TPR TNR FPR FNR F-Measure

CCCS-8 Dataset

10 0.7917 0.9239 0.0761 0.2083 0.6386
15 0.7817 0.9208 0.0792 0.2183 0.6174
20 0.7800 0.9161 0.0839 0.2200 0.6057
25 0.7900 0.9161 0.0839 0.2100 0.6112
30 0.7967 0.9078 0.0922 0.2033 0.5988
40 0.8217 0.8914 0.1086 0.1783 0.5815
50 0.8450 0.8722 0.1278 0.1550 0.5661

KC2 Dataset

10 0.7883 0.7618 0.2382 0.2117 0.5801
15 0.8238 0.7391 0.2609 0.1762 0.5808
20 0.8630 0.5797 0.4203 0.1370 0.5190
25 0.9183 0.2339 0.7661 0.0817 0.3924
30 0.9727 0.0646 0.9354 0.0273 0.3502
40 0.9964 0.0090 0.9910 0.0036 0.3402
50 1.0000 0.0000 1.0000 0.0000 0.3386

PC1 Dataset

10 0.5188 0.9087 0.0913 0.4812 0.3779
15 0.5927 0.8836 0.1164 0.4073 0.3764
20 0.6975 0.8285 0.1715 0.3025 0.3487
25 0.7600 0.7698 0.2302 0.2400 0.3138
30 0.8150 0.7339 0.2661 0.1850 0.3023
40 0.8575 0.6779 0.3221 0.1425 0.2829
50 0.8941 0.6230 0.3770 0.1059 0.2689

SP4 Dataset

10 0.2490 0.9738 0.0262 0.7510 0.2074
15 0.2604 0.9726 0.0274 0.7396 0.2146
20 0.2601 0.9724 0.0276 0.7399 0.2110
25 0.2592 0.9722 0.0278 0.7408 0.2109
30 0.2668 0.9694 0.0306 0.7332 0.2073
40 0.2933 0.9620 0.0380 0.7067 0.2027
50 0.3297 0.9499 0.0501 0.6703 0.1919

sensitive learning to cost-sensitive learning tended to decrease with a

decrease in the proportion of fp modules in the dataset. To a software

practitioner the value of this study is the much-needed emphasis

on cost-sensitive learning during the model building process of a

software quality estimation model.

V. CONCLUSION

This study presented a practical insight into the use of cost-

sensitive learning techniques during the process of building and

evaluating software quality prediction models. Instead of evaluat-

ing such models based on error rates and other related metrics,

119

TABLE IV
NAIVE BAYES RESULTS WITH METACOST

Cost Ratio TPR TNR FPR FNR F-Measure

CCCS-8 Dataset

10 0.8817 0.8836 0.1164 0.1183 0.5970
15 0.8817 0.8758 0.1242 0.1183 0.5857
20 0.8817 0.8730 0.1270 0.1183 0.5810
25 0.8817 0.8718 0.1282 0.1183 0.5792
30 0.8817 0.8699 0.1301 0.1183 0.5761
40 0.8850 0.8683 0.1317 0.1150 0.5744
50 0.8900 0.8655 0.1345 0.1100 0.5717

KC2 Dataset

10 0.5779 0.9000 0.1000 0.4221 0.5833
15 0.5919 0.8979 0.1021 0.4081 0.5908
20 0.5985 0.8969 0.1031 0.4015 0.5946
25 0.6014 0.8954 0.1046 0.3986 0.5950
30 0.6071 0.8950 0.1050 0.3929 0.5985
40 0.6089 0.8935 0.1065 0.3911 0.5981
50 0.6108 0.8928 0.1072 0.3892 0.5985

PC1 Dataset

10 0.3670 0.8641 0.1359 0.6330 0.2279
15 0.3720 0.8608 0.1392 0.6280 0.2276
20 0.3761 0.8588 0.1412 0.6239 0.2276
25 0.3761 0.8558 0.1442 0.6239 0.2250
30 0.3761 0.8546 0.1454 0.6239 0.2241
40 0.3827 0.8518 0.1482 0.6173 0.2244
50 0.3839 0.8509 0.1491 0.6161 0.2243

SP4 Dataset

10 0.6257 0.8136 0.1864 0.3743 0.1317
15 0.6312 0.8107 0.1893 0.3688 0.1310
20 0.6344 0.8084 0.1916 0.3656 0.1304
25 0.6377 0.8066 0.1934 0.3623 0.1300
30 0.6388 0.8057 0.1943 0.3612 0.1297
40 0.6431 0.8037 0.1963 0.3569 0.1293
50 0.6452 0.8020 0.1980 0.3548 0.1288

TABLE V
TOTAL COST WITH C4.5

Cost Ratio CCCS-8 KC1 PC1 SP4

No Cost-Sensitive Learning

10 12.86 61.77 58.97 86.56
15 18.81 90.92 87.87 128.51
20 24.76 120.07 116.77 170.46
25 30.71 149.22 145.67 212.41
30 36.66 178.37 174.57 254.36
40 48.56 236.67 232.37 338.26
50 60.46 294.97 290.17 422.16

Cost-Sensitive Learning with MetaCost

10 7.44 32.26 46.01 79.27
15 10.57 38.85 58.35 112.64
20 13.54 46.41 63.48 146.74
25 15.64 53.20 69.48 181.07
30 17.95 47.43 69.43 214.11
40 21.17 42.63 76.41 274.77
50 23.76 41.40 78.87 327.96

TABLE VI
TOTAL COST WITH NAIVE BAYES

Cost Ratio CCCS-8 KC1 PC1 SP4

No Cost-Sensitive Learning

10 8.14 63.60 60.04 94.61
15 11.64 94.20 86.59 118.81
20 15.14 124.80 113.14 143.01
25 18.64 155.40 139.69 167.21
30 22.14 186.00 166.24 191.41
40 29.14 247.20 219.34 239.81
50 36.14 308.40 272.44 288.21

Cost-Sensitive Learning with MetaCost

10 5.97 48.74 62.11 106.94
15 7.67 68.88 85.90 124.57
20 9.24 89.07 109.36 141.86
25 10.77 109.58 133.37 158.64
30 12.32 128.85 157.19 175.40
40 14.96 169.61 202.88 207.89
50 17.43 209.94 249.37 240.43

0.00

0.05

0.10

0.15

0.20

0.25

10 15 20 25 30 40 50

Cost Ratio

P
E

C

C4.5 - None

C4.5 - Metacost

NB - None

NB - Metacost

Fig. 1. CCCS-8 Dataset: None vs. MetaCost

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10 15 20 25 30 40 50

Cost Ratio

P
E

C

C4.5 - None

C4.5 - Metacost

NB - None

NB - Metacost

Fig. 2. KC2 Dataset: None vs. MetaCost

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

10 15 20 25 30 40 50

Cost Ratio

P
E

C

C4.5 - None

C4.5 - Metacost

NB - None

NB - Metacost

Fig. 3. PC1 Dataset: None vs. MetaCost

120

0.00

0.02

0.04

0.06

0.08

0.10

0.12

10 15 20 25 30 40 50

Cost Ratio

P
E

C

C4.5 - None

C4.5 - Metacost

NB - None

NB - Metacost

Fig. 4. SP4 Dataset: None vs. MetaCost

misclassification costs are considered during the training process,

thus providing the analyst a better insight into which models are

better suited at the preferred cost ratio. Associating a total cost of

misclassification to the trained software quality estimation model,

provides the software practitioner with a practical value that is more

useful in software engineering project development.

The empirical case study involved building 8000 software quality

estimation models reflecting the four software measurement datasets,

two classification algorithms, two cost-sensitive learning strategies,

and five cost ratio values. The case study dataset were all high-

assurance software systems, and were of different sizes with each

having a relatively different proportion of fp modules compared to

the size of the dataset. The dataset sizes ranged from 282 program

modules to 3978 program modules, while the proportion of fp
modules ranged from 2.31% to 20.38% of the total number of

modules in a given dataset.

The results from our experimentation clearly demonstrate the

benefits of including a cost-sensitive learning technique during the

model-training process. Within the scope of our case study, it was

found that, compared to Naive Bayes, C4.5 benefited more greatly

when incorporated with the MetaCost cost-sensitive learning tech-

nique. In addition, the relative proportion of fp modules in a given

software measurement dataset seemed to affect the improvements

gained from incorporating cost-sensitive learning during the model-

training process.

Some directions for future work related to this study include:

investigating other cost-sensitive learning techniques and comparing

their performance with that of MetaCost; and providing further

empirical validation to the conclusions of this paper by analyzing

other software measurement datasets, possibly from other application

domains and with different proportions of fp program modules in the

dataset.

ACKNOWLEDGMENT

We thank the various members of the Empirical Software En-

gineering Laboratory and the Data Mining and Machine Learning

Laboratory at Florida Atlantic University for their assistance with

experimentation and manuscript reviews.

REFERENCES

[1] L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140,
1996.

[2] P. Domingos. Metacost: A general method for making classifiers cost-
sensitive. In Proceedings of Knowledge Discovery and Data Mining,
pages 155–164, 1999.

[3] P. Domingos and M. Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine Learning, 29(2–3):103–130,
1997.

[4] C. Drummond and R. C. Holte. Cost curves: An improved method for
visualizing classifier performance. Machine Learning, 65(1):95–130,
2006.

[5] K. E. Emam, S. Benlarbi, N. Goel, and S. N. Rai. Comparing case-based
reasoning classifiers for predicting high-risk software componenets.
Journal of Systems and Software, 55(3):301–320, 2001. Elsevier Science
Publishing.

[6] N. E. Fenton and S. L. Pfleeger. Software metrics: A rigorous and
practical approach. 1997.

[7] L. Guo, B. Cukic, and H. Singh. Predicting fault prone modules
by the dempster-shafer belief networks. In Proceedings of the 18th
International Conference on Automated Software Engineering, pages
249–252, Montreal, Quebec, Canada, October 2003. IEEE Computer
Society.

[8] Y. Jiang, B. Cukic, and T. Menzies. Cost curve evaluation of fault
prediction models. In Proceedings of the 19th International Sympo-
sium on Software Reliability Engineering, pages 197–206, Seattle, WA,
November 2008. IEEE Computer Society.

[9] T. M. Khoshgoftaar and E. B. Allen. Logistic regression modeling of
software quality. International Journal of Reliability, Quality and Safety
Engineering, 6(4):303–317, December 1999.

[10] T. M. Khoshgoftaar, Y. Liu, and N. Seliya. A multi-objective module-
order model for software quality enhancement. IEEE Transactions on
Evolutionary Computation, 8(6):593–608, December 2004.

[11] T. M. Khoshgoftaar and N. Seliya. Comparative assessment of software
quality classification techniques: An empirical case study. Empirical
Software Engineering Journal, 9(3):229–257, 2004.

[12] T. M. Khoshgoftaar, N. Seliya, and A. Herzberg. Resource-oriented
software quality classification models. Journal of Systems and Software,
76(2):111–126, 2005.

[13] M. C. Ohlsson and P. Runeson. Experience from replicating empirical
studies on prediction models. In Proceedings: 8th International Software
Metrics Symposium, pages 217–226, Ottawa, Ontario, Canada, June
2002. IEEE Computer Society.

[14] J. R. Quinlan. C4.5: Programs For Machine Learning. Morgan
Kaufmann, San Mateo, California, 1993.

[15] N. Seliya and T. M. Khoshgoftaar. Software quality analysis of unlabeled
program modules with semi-supervised clustering. IEEE Transactions
on Systems, Man, and Cybernetics, 37(2):201–211, March 2007.

[16] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, California, 2nd
edition, 2005.

121

������	�
����
	��
�����	������������������
��������	��
������
������
�
����������������

��	
������	����	�������	��	����������

�	������#\#�	�^`���\�����#�	���#�����	��	����#�	�	�������
���#	������#	�����	���������#	�#��#�����#�	�������	��	���	����	�����

����������\����\���
��	������#\#�	�^`���\�����#	#�	�#	�#��#���#	��������#��#�

���#�����	�#	��������
��	����	����	�#��#�����#�	�������	��	���	����	�����

�����\����	���������������\���#�����

���	���	
�������	
���������������
���
��������������������
� �

���������������������������
��������
�������������� �
��
	�� � �	������� �� � ����
�� � �� � ���� � ���� � ����
������������ � ��
 � ��������������� � ���������������!�
���������� � � � ���
��� � ���������������� � �"������
 � �� �
����!� � ������� � �� � �#����������
 � ������������ �$����
������
������������������������"�����
� ������������� �
��	
����	��� �
������	����%�	����!+���
�����!����������<
��������
���
�	������
�
�������������������������������!������������= �
��������������	�����������	���������>�������������� �
� � �����Y� � ��
 � ���
��� � ����!�� � [������ � �������� � ����
�"��	��
�����������������
�����������
����	�����������
����������	����!������!
���
������������!��������� �
\�����
	��
��
���������������!����
���������������
!��
����
����������	���

���!�����	 ����!��������� ��	����!�����������������!� �
�����
!������
��
����

"<��
	���>�	��

 �#	��¡	����#	�	����¢��#	#¡�##��¡	��	��	������#	��¡�	

������£	����¢��#	�	��\#	��	�	���¡#��	 �	����	�����¡�	����	
����#� 	 \#����#\#� 	 ���#� 	 � 	 \#����� 	 ������ 	 �# 	��# 	 ��	
����#�#�	���¡#�	��	��#	����¢��#	�#�#���\#�	���#	�£��#�	¢���	
��¤#����#�	���	����¢��#	������£	��#������	�£	�#���¡	���\	
���� 	 #¥�#��#�#�� 	 ` 	 ����� 	 ����¢��# 	 \#����� 	 ������# 	 �	
����������#	��������	��	������	��#	����¢��#	�#�#���\#�	
�� 	 ��# 	 ��# 	 ����¢��# 	�������� 	������£� 	 �#£ 	��# 	 ���� 	 �	
�������	�����#	��	����\����	���	�#������\���¡�	�	���¡#	
�\�#� 	 �� 	 ��¤#������#�#� 	 ¦��§ 	 \#����#� 	 ���# 	 �##	

������#�	�	��#	���#�����#�	�	����������	#\������	���	�##	
¡��#	��	��#	\#����#\#� 	��	�#��¡	���#������ 	�	���#� 	��	
�#�� 	 ���#�� 	 ������£ 	 #���£ 	 � 	 ����¡ 	 ��# 	 �#�#���\#�	
����#��� 	���� 	\#����#� 	 ��# 	 ��\#� 	�� 	 �������¡ 	¢�£� 	��	
���#���¡	 ��#	������£ 	�� 	����¢��#� 	���� 	�	���#��\#� 	��	
�#��¡ 	������£ 	 �� 	��¤#����#� 	�� 	 ��# 	\#����#\#� 	�� 	�#	
����\��#��	¨��	��¢	��	¢#	��¢	¢���	\#����#�	�������£	
������# 	 �\������ 	������£ 	���#���© 	�� 	 �� 	 �� 	 ����#� 	�£	 ��#	
`��ª`¬�	��#�������	�������	¦�®¯�§�	��#���	\#�����	��#	
#��#�����£	�#�����	¢�#	��#£	��#	�#���#�	��	#¥�#���	������£	
��������#��	#�¡��	\�����������£�	�#��������£�	��������£�	#���

 ����¡� 	 ������� 	 �����#�� 	 \�����������£ 	 ��� 	 �##	
#¥��#��#� 	 �� 	 ��# 	 ���������£ 	 �� 	 ����#�� 	 ������ 	 �� 	 �����£	
��\��#���	���������##���	\����������	�\�����	#���	 ���	
����	#¥��#����	��	\�����������£	��	����	¢����	��#�#���	��	
�	��#	��#�#�	����£�	�£��#\�	\����������	��	�	���������	����	
����	���	�	�\����	�	�£��#\�	�#��\�¡	°�±�	���¡#	#��#���	
\���	�#	�����#�#�²	�	�\���	���¡#	��	���#	�����#����#	
��	�#¥�#��#�	#��#���	�	��#	�£��#\�	³�#	\��������£	��	
��#����#�£	��#�� 	 �� 	 ��\��� 	 ��# 	#��#��� 	 �#����¡ 	 �� 	���¡#��	
´#�#���#�#��� 	 ���¡# 	 �\����� 	 ��# 	 �����# 	 �� 	 ��������� 	 ��	
������#�² 	 �#��¡#�� 	 �� 	\�����#�� 	##� 	\#�����\� 	 ��	
���£µ#	���¡#�	��	��	��¢	��¢	��#£	��#	�����¡��#�	�	
��#	¢���#	�£��#\�	

 �#	����\��#	\��������	��	���	¢���	��	��	�\����#	��#	
\���#��# 	 �� 	 �� 	 �£��#\�� 	 �� 	 �� 	 ��#��## 	 \��#	
��#��������£	�	���¡#	�\����	���£����	¨£	��#���£�¡	��#	
���#����	�\����	��	�	\�����������	�#	�#���#�	��#	����	��	
�#�� 	 ¢��� 	 #¥�#���# 	 �� 	 ���#�������# 	 ���¡#��	
���#��#��£�	¢#	��£	��	¡��#	\��#	#¥��������	�	�#��	��	
�#�������#	�������	���	���¡#	�\����	��	���	#��������	 �	
�#��� 	 ���� 	 ��¤#����#� 	 ¢# 	 #¥����# 	 �#�#��� 	 ��#�����¡ 	 ��	
���#��\#�	\��#��	������#�	�£	����������	`�#���¡#�#	¦�`§�	

`	����	���#��	�#����	�	��#�#��	�������	¢����	�#���#�	��	
����#�#�	#¥��#�����	��	\�����������£�	��	��#��������£	��	

122

���¡#	�\�����	 �#	�£����#���	���#��¡	���¡#	�\����	��	
��#	����#�	�	�#����	��	�#����		���#��	��#	������¡	��	
�#���¡	��	��#������#	\��#���	�����¢�¡	�������	�����#�

#���¡	¦�
§	��������#��	���#��#��	¢#	���������#	��¢	��	
��# 	 ��#�# 	 \��#�� 	 �� 	 ��#���� 	 ���¡# 	 �\���� 	 ��� 	 ��	
������������ 	 	 ¶����£� 	 ��# 	 �#����� 	 ��# 	 �������#�� 	 �� 	���	
¢���	�#���#����#�	��#	��#�#�#�	�	��#	���������

@<�[���	���!��\�
�#�#���	�����#�	¢#�#	������#�	��	�������#	\#�����	��	

��	�#���# 	 ��#\	��	��\#	����#���#� 	 ���#	\�����������£� 	
�	
��	�#�£	°�±	����	���#	\#�����	��	�����\�#�	��	�#\#�#�	
°�±�	���#�	���##	��	��#��	�¢�	��	���¢	����	��#�#	��	�	����¡	
�#���������	�#�¢##	��#�#	\#�����	��	\���#��#	#������	
#¥��#��#� 	 � 	 �\�#� 	 �� 	 ���¡#� 	 ��#� 	 ���#� 	 ` 	 °±� 	 ��#	
������� 	 ���¢#� 	 ���� 	 ��# 	�����# 	�� 	������#����#�� 	 � 	#���£	
���¡#�	��	����¢��#	�£��#\�	�#��¡�	���	�	�\������	�\����	
�	�	�\�#�	��	������£	��������	���	�����#�	\�����������£�	
#�����#�£�	��	�#��������£� 	`	°®±�	
����	·	���	������#�	�	
����#����	��	�	���#	\#�����	��	¡##���#	��#������#	\��#��	
�#���#� 	 �� 	 ���������##��� 	 � 	 ���#� 	 #¥��#���� 	 ��	
\�����������£� 	���#��#�� 	�	°�±�	��#	�������	����	�����#�	
�#���������� 	 �#�¢## 	 �#��¡ 	 ������¡� 	 ��#� 	 \��� 	 �� 	 ��#	
������¡ 	 \#������ 	 ���#���� 	 �� 	 ��#�����# 	 �#� 	 � 	 �#	
���#�	��	�����#�^	���������##��	�	��#	���#�	���#�	

���#��¡	\�����������£	#¥��#��#�	��	���¡#	�\�����	
�� 	 °�± 	 �#�#���#� 	 � 	 �������� 	 ��� 	 ��\����¡ 	 ���¡#	
�\���� 	�	�#��¡ 	�� 	 �\��#\#�����	����\#��� 	 ` 	 °�±�	
������	·	���	��#����#�	#�����¡	��¤#������#�#�	�£��#\�	
��µ#	������¡	���\	��#	���£���	��	��#	�����#�	�\����#�	�£	�	
���¡# 	 �#��#��� 	 �#£ 	��#����#� 	���¡#� 	 ��µ# 	 � 	 �#�\� 	��	
���#�ª\�����#�	��#�	��	���#�	`	�	���#�	¢����	��¡	��	
��	°¯±�	��#�#��#�	�£	�#¡�#����	�#���¡�	�#�#���#�	�	���¡#	
�\����	\��#�	���#�	�	���##	����¸	��#�����#�	�����������	
�� 	�¡¡�#¡����� 	 �#£	���� 	�#��#� 	 ���\�� 	��¡�����\� 	 ��	
��������#	���	��#	�\����#�	�����#�	������¡	�����#	#��#����	

## 	 �� 	 ������ 	 #¥�\�#� 	 � 	 °�¹±� 	 ��# 	 #��#��� 	 ��	
#����������� 	 ��#�����#� 	 �� 	 ���£\������\ 	 � 	 ���¡#	
�\����² 	 ��#£	����	������#�	��¡�����\�	��� 	���������¡	��#	
��\��#�#	�\����	��	���¡#�	\��#	�	�	¡��#	������	�	��#	
���#�	����	¨����	��	����	�	°�±�	���#�	��	�##	��	������¡	
\#����#�� 	 �������¡ 	 ��� 	 ���� 	 �� 	 ������������ 	 �#�¢##	
�����#��	��	�#��	��	���£µ#	���¡#	�\�����	
����£�	�	°��±	
��	°��±�	�	���¡#	�\����	\��#�	¢��	�#��#�	��	�	��������	
�#�#��	��	����£	��#	���¡#������£	��	��¤#������#�#�	�£��#\��	
 �# 	 �����#� 	 �������� 	 ��#� 	 �������#������ 	 ����#���#� 	 ��	
��¤#������#�#� 	 �£��#\� 	 �#��¡� 	 \#����#� 	 �£ 	 \#������ 	 ��	
��#����	���¡#������£�

��£	����#�#�	��������#�	���#	�##	������#�	��	�����	
����	#\�������	��#������#	\��#��²	���	#¥�\��#�	��#£	��	�#	
\���#\������ 	 \��#�� 	 ¦���# 	 �� 	 ����������� 	 �#�����#� 	 ���#	
��#�� 	 �� 	 ��¡����� 	 �#¡�#����§ 	 °�± 	 °��±� 	 �� 	 ����������	
��#���¡#�#����#� 	 \��#�� 	 ¦���# 	 �� 	 \����#��#���¡	
�#�����#�§�	`	���	���#��	��#£	����¢	���#���¡	�	����#	��	�	

������£ 	 �������#������ 	 ���#� 	 � 	 ��# 	 ����#� 	 �� 	 � 	 �#� 	 ��	
����¢��#	\#����#��	��	��#£	����¢	��#	�#�#����	��	�#��¡	
�� 	 �\��#\#����� 	 ��\���#� 	 #���£ 	 � 	 ��# 	 ����¢��# 	 ���#	
�£��#�	 �#£	����	����¢	��¡��µ�����	����	�������#	����¢��#	
��	�#��#�	#������#	��	��\���#	��#	���#��	��#£	�#�#��#�	��	
���	��	¢#	��¢�	����#�	��	�#��£	°�±	���#	�##	��#	�����	��	
��# 	 � 	 �
 	 ��¡�����\ 	 �� 	 ����\�������£ 	 �������� 	 ����¢��#	
������£	\��#���	 �#£	���#	��#�	�	�������������	��¡�����\�	
�� 	 ��#���£ 	 ����# 	 ������� 	 \#����#� 	 ���� 	 ��# 	 ��# 	 �#��	
��#������� 	 �� 	 ��#����# 	 #����� 	 ���#�£ 	 �� 	 �# 	 #����#�#�	
����¡ 	\���#��#� 	���#� 	�#��£ 	·	����#�� 	\�£	���#���	
#�¡�� 	 °�®±� 	 °��±� 	 ���# 	 ��#� 	 ������������� 	 ��¡�����\� 	 ��	
�������� 	 ����¢��# 	 ������£ 	 ��#������# 	 \��#��� 	 ���#	
�#�#��£�	°��±	���#	��#���¡��#�	�
	��¡�����\�	¢���	�#¡���	
��	��#��	����������#�	��	�������#�£	���#��	��#	����#��������£	��	
�����£ 	 ����¢��# 	��\��#��� 	�	 ��# 	���#� 	���� 	 � 	\���	
����#�\#���#� 	 �#�����#�� 	 ��# 	 #���\���� 	 ����#��	
�#�#��	�	���#�����	����#�	����	��#	�#���#�	���\	�	��\��#	
���#� 	 ���� 	 � 	� 	��#����� 	 ����£� 	¢#	���� 	¢���#� 	� 	 ��#	
��#��������� 	 �� 	 ��#�� 	 ���#�� 	 �� 	 ��# 	 �#�#�\����� 	 ��	
��#�����	���#������	�£	�#�����¡	��#\	¢���	��µµ£	���#������	
°��±�	` 	°�¯±�	°�¹±�	��	°��±�	¶#��	��	´#��	��#�#�	��#	
������¡#�	��	�	�������\��#���¡	��������	���¡	¨�£#���	
#�¢����	��\���#�	��	�	���#	�#¡�#��������#�	���������	
 �#£	����	����#	�����¡�	���#	�����#�	����	¨�£#���	#��	��	
������#	�#�#��� 	��#�������� 	�� 	¢#�� 	�� 	 ����������¡	 ��#	
�#������# 	��#�����£� 	 �#����# 	�	#¥�#�� 	 ¤��¡#\#�� 	 ��	
���\��#�# 	 ����\���� 	 ���� 	 ��# 	 �#������# 	 � 	 ����¢��#	
#¡�##��¡�	

`	��#	��#�#�	¢����	¢#	#¥����#	��¢	�	�������������	
�� 	 ������������� 	 ��������#� 	 ����� 	 �#�� 	 ��#�����¡	
\�����������£	#¥��#��#�	��	���¡#	�\�����	 �#	�����¢�¡	
�#���� 	 ��#�#�� 	 ��# 	 �����#� 	 �£����#���¸ 	 �� 	 ���#�� 	 ��¢	
������¡	�����	����#�#	���¡#	�\�����	

]<����
��������	�����	��������������
¶��	�#���¡	���	¢����	¢#	�����¢	�	���##���#�	����#��¸	

¦�§ 	 �£����#��� 	 ��������� 	 ������¡ 	 \#����� 	 �#�#����� 	 ¦��§	
��#������# 	\��#�� 	¡##������ 	��	 ¦���§ 	\��#�� 	#��������	
��	��#�

³# 	 ��# 	 ��#�#��#� 	 �£ 	 ��# 	 �#��������� 	 �#�¢## 	 ��#��
�����#� 	 �#�#�#��#�� 	 �\#�£ 	 ������¡� 	 � 	 ������#������	
����#��£�	��	���¡#	�\�����	���	��¤#����#	��	��	�##	¢����	
�£�#� 	�� 	������¡	 ����#�#� 	\��#	���¡#	 �\����� 	` 	���	
��\��	 ���#�����# 	 �#��#¢� 	¢#	���# 	����#� 	 ���� 	�#�£	 �#¢	
¢����	������#	�	\��#	��	�#��	��\��#�#	�#������	��	���¡#	
�\�����	��#��	\��#�	����¡	���	������	\��	����	����	�#	
��	���	�	�	��¤#������#�#�	�#��¡	¦�\#�£�	�����������	
�¡¡�#¡�����	���������	��	��#�����#§�	`	���	����£�	¢#	
����	��#	�\����	\��#�	�#��#�	�	��#	����
	���¤#��	°��±²	
¢#	�����#�	��	��	�#	��	��#	\���	¡##����	`�	����¢�	�\����	
����������	�	�	�£��#\����	¢�£²	����	��	�	�\������	������	
���#��¡	#�����	��	\���#��#	����	�#�������	

123

³�#	�	���¡#	��	�����#�#��	��	��	#�#����£	��	��#���£	
�£��#\	��\��#��	����	¢���	�#	�\����#�²	��	¢���	#���#	����	
��# 	 �£��#\ 	 ¢��� 	 ����� 	 �� 	 ����#���£ 	 ���#� 	 ���¡#	
�\��#\#������	���	���#�	�� 	��#	�����#�	�	��¢	��#	
�£��#\	�#����	 ��	�	���¡#� 	`� 	��	¡##����£	���#��#�	����	�	
�£��#\	�������	#����£	�	���¡#	��	��#	�\�#�	��	�\����#�	
��\��#�� 	 �� 	 �\���� 	 � 	 ��\��#� 	 �#�#�� 	 �� 	 � 	 ������ 	 �	
\#����� 	�� 	� 	�������#� 	��	#¥�\��#� 	�� 	���¡#�� 	�#	��	
���#	��#	�#�#���	��	�	�������#�	��#	���¡#	�	�	\#����^�	
����#	���\	º������º	��	º����#��#�º 	��	 ��#	�#\����	��	 ��#	
�#���������	�#�¢##	�	�����	��	���	���#�� 	�	����� 	��	��	
���¡#� 	 ��# 	 ��#����#�� 	 ` 	 ���� 	 ���#¥�� 	 ¢# 	 ���� 	 ���¡#	
�\����	��#	�#�	��	�����#�	����	�#����#	�	����#����	���#�	����	
���¡#�	`	���	¢����	¢#	��#	��#�#��#�	��£	�	���¡#�	����	
���#	�	�£������	�\����²	�	¡��#	���¡#	��	�������#��µ#�	�£	
� 	 ���# 	 �������\���� 	 ��\#¢�#�# 	 � 	 ��# 	 �£��#\� 	 `� 	 ��#	
�£��#\	��	����#������£	�#���\���#��	��#	��#�#	��	�	�\����²	
���#�¢��#�	¢#	���#	�	�\�����	`	°��±�	��#	�������	¡��#	��#	
���� 	 ���� 	 ������¡ 	� 	 ����� 	 �� 	 ®� 	 ���¡#�� 	 ������¡ 	 ��	
���¡#�	���	�������#��	�®	���	\#������	��	�®	���	�����#��

�	 ��#	���#� 	���� 	¢#	¢���#� 	¢���	�	�#� 	�� 	\#�����	
�#���#�	��	������¡�	 �#£	��#	��#�#�#�	�	����#	��

�	���� ^�_�
�	��

�¶� �#����#	¶��	�	�����¸	�\�#�	��	\#�����	����#�	
���	�	�#����#	��	�	\#���¡#�

��� �#���¡#	�����¡	������¡¸	�\�#�	��	\#���¡#�	
�#�	�£	�	�����	�	���#����	��	��#	���#�	�����#�	��	
��#	�£��#\�

�¨�� �¨�	 ���¡¸	 �#�#�� 	 �� 	 ��# 	 �����#� 	 ��#� 	 �£ 	 ��#	
���¡#�	������

�¨�`�¨ �¨�	`�	��#�	¨£¸ 	�#�#��	��	��#	�����#�	���¡	��#	
���¡#�	������

�¨� ������¡ 	 ¨#�¢## 	 ��¤#��¸ 	�\�#� 	 �� 	 �����#�	
¢���	¢����	�	�����	��	�����#��

�¨�´� �¨�	 ´� 	 ��#�����¸	 �¨� 	 ¢������ 	 �����#��¡	
��#	�����#�	��#������

���`� ��#����� 	 �#����¼�#���� 	 `\���� 	 ������¡¸	
�\�#�	��	���#��	�����#�	¢���	¢����	�	�����	���	
�	��#������	��	��#	\#�����\#����	�£�#	��	�	
������¡	��	��#	�£�#	`\����	������¡	¦`�§�

���`� ���#�� 	 �#����¼�#���� 	 `\���� 	 ������¡¸	
�\�#�	��	�����#�	¦���#��	����	���#�	�����#�	��	
��������#�§	¢���	¢����	�	�����	���	�	��#������	
��	��#	\#�����\#����	�£�#	��	�	������¡	��	��#	
�£�#	`��

���¬� �#��#���� 	�#����¼�#����	¬¥���� 	������¡¸	
�\�#�	��	��������#�	¢���	¢����	�	�����	���	�	
��#������ 	 �� 	 ��# 	 \#�����\#���� 	 �£�# 	 �� 	 �	
������¡	��	��#	�£�#	¬¥����	������¡	¦¬�§�

���¬� ���#�� 	 �#����¼�#���� 	 ¬¥���� 	 ������¡¸	
�\�#�	��	�����#�	¦���#��	����	���#�	�����#�	��	
��������#�§	¢���	¢����	�	�����	���	�	��#������	
��	��#	\#�����\#����	�£�#	��	�	������¡	��	��#	
�£�#	¬��

`�����"<� �#	�#�#��#�	������¡	\#�����

 �#	#¥�	�#����	¢���	�����	�	��# 	������������£	��	�
	
��¡�����\�	��� 	��#������#	\��#��	¡##�����	��	��#� 	���	
��¤#����# 	 �� 	 �� 	 ������# 	 #�����#� 	 �� 	 �����# 	 \��#��� 	 ���	
��#�����¡	���¡#	�\����	�	��	������������	

{<��>����
���
��>��
��������	�|��������
�����#��#���¡ 	 �� 	 �� 	 � 	 ��¡������ 	 �#�� 	 ��� 	 ��#	

������¡	��	��#������#	\��#���	`�	��	�	�\������	��	��������	
������#��	��	�`²	��	������#�	\�£	��������#�	���#	��������	
�#������� 	 ����¡£� 	 �������������� 	 �������\����¡� 	 #��� 	 `	
����	����£� 	¢#	¢���	�##	��¢	��\#	��	��#\	�����	������#	
#�����#� 	���¡# 	 �\���� 	��#������# 	\��#��² 	 ��#� 	¢# 	¢���	
�������	��#��	������£	�	�	���#¥�	¢�#�#	��#£	��#	��#¡���#�	�	
�	����\��#�	�#������\���¡	��������

���#��	�#�����	��#���	��	¨�£#���	´#�¢����	¦¨´§	��#	
��#�#���¡	�#��#�#�����	\��#���	 ����	���#�	��#	�	������	
��	#�#¡��	¢�£	��	\��#�	�	#¥�#�� 	��¢�#�¡#² 	��#£	��#	
����	��#	�����	�#��#�#�����	�����#	���	\���	��	��#	��������	
���#�	�	����\��#�	������	���#��¡	�#�����	��##��	\���	
��	 ��#	��¡�����\�	�������¡	��#\�	��#	�#�£	#�����#�� 	��	
\��#�� 	 ����#� 	 �£ 	 ��#�# 	 ��¡�����\� 	 ��# 	 ���� 	 #�����#��	
¶����£� 	 ¨�£#��� 	 #�¢���� 	 ��������# 	 � 	 ����������	
����������# 	 �������� 	 ¢���� 	 �� 	 ��#¡���# 	 ��#�����£	
¢����	�#����¡�	���#��¡	����	#¥��������	����	��#	����#	
��	�#����£�	���#��#��	¢���	¨´��	��	��	����	�������#	��	#¥�����	
#¥�#���^	 ¤��¡#\#��	 ��	��������#	��#�������� 	` 	��������	
¨´�	���#	��#	�������£	��	���#\#���	�����¡	�	����²	����	
�� 	 ���# 	 �� 	 ¢#�� 	 ��� 	 ����\#�#�� 	 �����¡ 	 �� 	 ��� 	 ��������#	
�����¡�	����������¡	��#	\��#�	#��������	 ���	�������#������	
¢��� 	 ��������# 	 �� 	 ��# 	 �\����#\#� 	�� 	¨�£#��� 	#�¢���	
��������#	��	����\#�#���	�£	��#	����������	��	#¢	�����	

³# 	 ���# 	 �#�#��#� 	 �#�#��� 	 ��¡�����\� 	 �#��¡�¡ 	 ��	
�������	�
	��������#��	��	¢#	���#	��	��#\	�	����¢��#	
���� 	����#��#� 	 ���\	� 	 ���� 	\#���\	��µ# 	����������� 	³#	
����# 	 � 	 ���¡��\ 	 ���£��� 	 ������¥ 	 �£��#\� 	 ����#� 	 ¨���	
°�±�	`�	��	�	�#�	��	��#¡���#�	����¢��#	������	¢����	����¢	�	
#¥�#��	��	#������#	��\#	����¢��#	�������#��	#�¡��	���#�����	
��	����������	¢#��#��#��	���	��\��#¥	�����������	#���	³#	
�����#�#� 	 ��# 	¨��� 	 �£��#\ 	 � 	 ��� 	 �#���� 	 ����¹² 	 �� 	 ��	
¢����# 	 � 	 ���� 	 �� 	 ������ 	 �¯ 	 �����#�� 	 �# 	 \#�����	
�����#�#�	�	����	¢���	¦�##	����#	�§	��#	#¥�����#�	���\	����	
�£��#\�

��\#	�� 	 ��# 	��#� 	�
	��¡�����\�	��# 	 �\��#\#�#� 	 �	
³¬���	�	��#	�����#	�����\��¡	#����\#�	°�®±�	³#	
���#	�#�#��#�	��#\	�	�#��#��	��	���##	��������#��	 �#	�����	
�# 	 �� 	 ��# 	 ������� 	 �� 	 �#����� 	 ��##� 	 ��������² 	 �� 	 ��	
�#��#�#�#�	�£	���	�	�\��#\#�����	��	��#	¢#�����¢	
��®	��¡�����\	°��±�	`� 	��	�	���#����#�	�#���¡	��¡�����\	
���� 	 ����#� 	 � 	 ������������� 	 \��#� 	 �#��#�#�#� 	 �£ 	 �	
�#�����	��##	¦��	#������#�	���#�§�	 �#	�#���	��������	��	
���#� 	 �������²	 ����� 	 ��� � 	 �� 	 �´� 	 �#��#�#� 	 ����	
��������� 	 �# 	 ���\#� 	 �\��#\#�� 	 � 	 ������������ 	 ���#	
�#��#��	`� 	¡��¢�	���#�	�£	¡�##���£	����¡	��������	¢���	

124

��¡�#�� 	 ����\���� 	 ¡��� 	 �� 	 ���#� 	 ����� 	 ����##�� 	 ��	
���#\#����£	���#	#���	���#� 	�	��#	���#�	����	��� 	
����¢�	��#	�������	��	���#�	�£	��#	��#�����#	¡##�����	��	
������� 	 �#����� 	 ��##�² 	 ��� 	\�� 	 ��#� 	 �� 	 �� 	����� 	 � 	�������	
�#�����	��##	���#��	��	�	#���#�£	#¥����#�	�#�	¶����£�	
�´� 	 °��± 	 �\��#\#�� 	 ��# 	 ���#��¡ 	 �#�����#� 	 ¢����	
�#��#�#��	�������������	��¢�#�¡#	��	�	���¤�����#	��¡����	
#¥��#���� 	 �#���¡ 	 #��� 	 ������ 	 �# 	 ���� 	 �������� 	 �� 	 �	
�£���� 	 �#² 	 �� 	 �� 	 ���������#� 	 �£ 	´¨ �## 	 ¦´�½�#�¨�£#�	
�#������ �##§	����	��\��#�	���#	¨�£#���	��������#��	��	
��������#�� 	 ���#� 	 � 	 �#����� 	 ��##�� 	 `� 	 #¥������ 	 � 	 ��##	
��������#	��	�����#	��#	�����#�	����#	���	�������#�	��	��	
¡##���#	�	���#	¨�£#���	��������#�	���	#���	�������#�

 �#	��\�������	��	\��#��	�������£	��	��#	�����	��	
�	���������������	����#���#�	`�	��	�#�����	¢�#	��#	�\���	
��	����	���	�����¡	��	�#���¡	��	��\��#��	¢����	��	���	���#²	
�����	#�#�£	�����#	���	�##	��#�	#¥����£	��#	���	�#���¡�	
 ���#	�	�#��\#�	��#	�#��	�����#�	��������#��	���	#���	�
	
��¡�����\�	���#¡��£�

���¡#	�\����	¼	������¡	\#����#�
`������	��	�#�����	
��##�¸	��	��	��®

����®¾

`������	��	���#�¸	�����	
��� �	���	�´�

�����¾

`������	��	¨�£#���	
�#�����	��##�¸	´¨ �##

����®¾

`�����@<	��\���#�	��������#�

`	�#�\�	��	�������£�	¢#	�����	��#��£	��#�#���¡	�#������	
 �#£ 	 �#\������# 	 ��# 	 ��� 	 �#�¢## 	 ������¡ 	 ��	
\�����������£	#¥��#��#�	��	���¡#	�\�����	 �#�#	�#�����	
��	�#	�\����#�	¢���	�	��������#	��#��#�#����²	¢#	���#	
����#� 	 ���� 	 ��\# 	 �#����� 	 ��# 	 �#��#� 	 ��� 	 ¢������ 	 ��#	
��������#	�#�#�����	���	��	¢���	�#	��#�#���¡	��	�#�#��	���	��#	
#¥�#��\#��	¢���	�	�����	��������#	�#�#�����	

` 	 �#�\�	�� 	�#�#��#� 	 ��#��� 	\#������ 	�\���� 	������¡	
�##\�	��	 ����#�# 	\���	\��#	���¡#	 �\���� 	 ���	���#�	
�£�#�	��	������¡�	���#	�	\���	���#��	��#	�\����	��	\���£	
�#���#�	��	����	�£�#	��	������¡�	�	��#	���#�	����	��	����	
��� 	 ���� 	 ��� 	 ��# 	 �����#� 	 ��� 	 ¢���� 	 ��# 	 �\�#� 	 �� 	 ������	
\#�����	����������	��	¢#��	��	��#	�\�#�	��	�����#�	��#�	
¢���	��#	���¡#�	������	��	���¡#�	�\����	������¡	¦\#����#�	�£	
��# 	 ���`� 	 \#����§ 	 �#�#�\�#� 	 ���¡# 	 �\����� 	´¨ �##	
�#����� 	 ���#� 	 \��# 	 �#������ 	 �� 	 ���¢#� 	 ���� 	 ������¡	
\#����#�	�£	�¨�´�	��	�¨��	\#�����	����	����#�#�	
��# 	 �\����� 	 �� 	 �����#� 	 \��# 	 #¥�#��\#�� 	 � 	 \��# 	 ����	
#¥�����#� 	 ���\ 	 ������� 	 �� 	 �#��#�#�����# 	 �£��#\� 	 ��#	
##�#�	��	�����\	����	����������

 ���	��	�	#¥�\��#	��	���#�	������#�	�£	����	\��#���	
�� 	 ����� 	 �����# 	 �£ 	 ����\��#� 	 �#������\���¡ 	 �£��#\�	
�#�����#�	��	����¢��#	������£	���#��\#�¸

���#	�¸	�¨�´�	≤		��®
													�¨��	≤	¹�®
				→	�\����¸	³#��	¦¹��§

���#	�	¸	�¨�´�	¿	��®
														�¨��	¿	���®
					→	�\����¸	����¡	¦¹��§

}��>���"<		`���#�	���#�

	 ����#� 	 ������� 	 \��#� 	 �� 	 ¨�£#��� 	 #�¢���� 	 ¢����	
��#¡���#	��#�����£	¢����	�#����¡�	���#��¡	�	\��#��¡	
���� 	 �� 	����# 	 �� 	 �#����£� 	¨´�	��# 	 ��# 	 �#���� 	 �� 	 � 	\#�¡�¡	
�#�¢##	¡����	��#��£	��	����������£	��#��£�	¨´�	��#	���#�	
�	��#	¨�£#�	��#��#\�	 ���	��#��#\	�#�����#�	��#	�#������	
¢����	#¥���	�#�¢##	��\��#	��	���������	�����������#��	`�	
�	��	¨	��#	�¢�	#�#��	��	��	¢#	��¢	��#	����������£	��	
��	��	¨	��	¨	��¢�¡	��	��#	¨�£#�	��#��#\	����¢�	��	
�#�#�\�#	��#	����������£	��	�	��¢�¡	¨¸	

§¦
§¦§ª¦§ª¦

>]
\]\>]>\] =

�	¨´	��	�	������	¡����	¢�#�#¸
�	´��#�	�#��#�#�	����\	�������#��	�	����\	�������#	���	
��\# 	 ����#�� 	 ��� 	 #¥�\��# 	 ÀÁ#�Â 	 �� 	 À´�Â� 	 �� 	 �	
�����������	����������£	���	��#�#	����#��	¢�#�#	��#	��\	��	
�����������#�	��	���	����#�	\���	�#	#����	��	��	
�	���#�#�	#�¡#�	�#��#	������	�#������	�#�¢##	��#��	�	
#�¡#	¡�#�	���\	�	���#�	��#	��¢����	�	�����	��#�	���#�	
��#� 	 ¢���� 	 ���#�� 	 ��# 	 ��\# 	 ����� 	 ��# 	 \��� 	 �#	
��#�#�#� 	 �������#�� 	¬��� 	 ��# 	 �� 	 �#���#� 	 �� 	 � 	 ´��#	
����������£	 ���#	¦´� §�	¢����	\��#��	��#����	�#�����	
�#�¢##	��#	��#	��	���	���#���	`�	�	��#	���	�	���#��	�	
����������£	����#	¢����	�#	��������#�	���	����	��#�	������£�	
´� �	��#	¡##����£	��#��#�	�£	���¡	�	\�¥���#	��	#\�������	
����	¢���	#¥�#���	¤��¡#\#��	`	����	������	¡�����	��#	����#	
�� 	 #��#�� 	 �#���������� 	 �#�¢## 	 ��# 	 �������#� 	 ��# 	 ��	
�#�#�\������� 	 ��� 	 �������������� 	 ���� 	 ���#������ 	 �� 	 �	
����#	��	�#�#���	����#�	��#�^�	�����#	�£��#\�������£	��#	
#��#��	��	#��#���	¢����	�#�#�	�	��#\�	���	\�����#�	��£	
��#	����������£	��	���#���¡	��#\�	 �#	����������	��#�#��	��	
¨´�	��	����	��#£	�����#�	����	#¥�#���	��¢�#�¡#	¦�	��#	
¡���� 	��	 ��� 	��������#§ 	��	#¥�#��\#�� 	�����#�	� 	����	
¦����\#�#��§�

 �#	\��	���¡#�	��	���	��������	���	�����#��¡	¨´��	
��#	��#	�����¢�¡¸	

��	´#�¢���	��������#	����������	������¡	���\	
				���������	��¢�#�¡#	¦#\�������	�����#�§
��	����\#�#��	���#������	¦��#	����������£	����#�
				��µµ£	��¡��§
��	¨�£#���	��#�#�#	¦��¡�����\��	�����§

~�	!��\��	�>�	>�����
�	�>�	��
��
Ã##����£� 	 � 	 ¨´ 	 ���������� 	 �� 	 ��# 	 � 	 �¢� 	 ���¡#�¸	

�������¡ 	 ��# 	 �������# 	 ¡���� 	 ��������#� 	 ��# 	 ����¡�¡	
����������£	����#�	��	#�¢���	��#�	°��±�	 �#	���#������	��	
��#�#	����#�	��	��#	�������¡	��	��\��	#¥�#���	��	������¡	
���\	#\�������	�����#��	

³# 	 ��#��#� 	 #����#� 	 � 	 ���� 	 �#����� 	 ��# 	 �£����#���	
����\�¡ 	 ���� 	 ������¡ 	 ����#�#� 	 ���¡# 	 �\���� 	 � 	 �	
��¤#������#�#�	�����������	��¢#�#��	��	¢#	�����#�	��	��#	
��\# 	 ��\# 	 ��� 	 \#����� 	 \#�����¡ 	 ��# 	 ������� 	 ���#�� 	 ��	
������¡	�#�¢##	�����#��	��#	¨´	����������	��	���#�£	��	

125

�#	����	��	���	��������#	��\��#¥�	 `	��������	��#	�#�����	
�����#�	�£	��#�����	�
	��¡�����\��	�����\	����	�\�¡	��#	
�# 	 �#�#��#� 	 \#����� 	 ¦�## 	 ����# 	 �§� 	 \#�����¡ 	 ����	
������#������	����#��£�	���#	\#�����	��#	#��#����#�£	�#�#���	
��	���¡#	�\����� 	���#�	�	��¡��#	�	��#	�	�����������	��	
��#�#	�#�#���	\#������	��\#	��	��#�#	\#�����	��#	�#¡���#�	
�� 	 �#��¡ 	 \#����� 	 ¦\<<^`	 �� 	|<<^`§� 	 ���#�� 	 ��#	
�����#�#�	��	 �\��#\#�����	\#�����	¦<]`� 	`>|~� 	��	
`>|�\§�	 �#	��¡��#	�	����#	��#�#��	��#	¡����	#¥��#���¡	
����	��¢�#�¡#	�	��#	���\	��	�	¨´�	
#�	��	��#	����	�	����	
� 	¨´� 	 ��# 	 �#����� 	 �#�¢## 	 ���#�� 	 �� 	����� 	��#� 	 ��#	
������ 	 ¦���# 	 �� 	^�����	 ��#§ 	 �� 	 �#�������� 	 ¦���# 	 ��	
$���!�<������	��	^������������<������	��#�§�

}��>���@�	���¡#	�\����	#�¢���

������	�����__��	�	��

 �	���#�� 	�����������#� 	 ��	 ��#	��#�� 	 �� 	 �� 	#�#����£	 ��	

�����¡����	�¢�	�£�#�	��	�������#	�	¨´¸	#��£	�������#�	��	
��#�\#����# 	 �������#�� 	 �# 	 #��£ 	 ��#� 	 �����������#� 	 ��#	
���#���£ 	 �#���#� 	 ���\ 	 \#����#\#�� 	 �� 	 ��#�# 	 �������#�	
������¡	���\	���	���¡#�	����������	¨����
�
	���
����<	 	` 	���	#�¢���	¦��¡��#	�§�	��#	#��£	��#�	
�#��#�#�	��#	����#�#�	\#������	���	��#�#	#��£	�������#�	��#	
����������# 	 �������#� 	 ¢���� 	 ���# 	 \#�������# 	 �\#�����	
����#��	 �#	�\�#�	��	�������#	����#�	���	��#�#	�������#�	
�� 	 �# 	 �����#² 	 �� 	 �#�#�� 	 �� 	 �����# 	 � 	 ��# 	 �����#�#�	
���¡#� 	 ����������� 	 ` 	 ���#� 	 �� 	 ���������# 	 ��# 	 �����������#�	
�#������� 	 ��#�# 	 �������#� 	 ��# 	 �������£ 	 �������\#� 	 ���	
�����#�#	�������#�	����¡	�	��\��#�	�\�#�	��	����#��	 ���	
�������\����	��	�#	����\�����#�	�£	����������	��	��µµ£	
��¡���	 `�##�� 	 ��# 	 ��µµ£	���������¡	����#�� 	 �#����#� 	 ��#	
������� 	 ����#� 	 �� 	 � 	 \#���� 	 �£ 	 � 	 �#� 	 �� 	 ������� 	 ¢����	
�#��#�#� 	 ��# 	 \#\�#����� 	 �#¡�## 	 ¦�� 	 ���#���§ 	 �� 	 #���	
����#	��	��#	�������	��µµ£	���#��	¦���#	À�\���Â�	À��#��¡#Â�	
�� 	 À���¡#Â§� 	 �# 	 ��µµ£ 	 ���������¡ 	 ¡##����µ#� 	 ��#	
�#¡�����¡ 	 \#����� 	 �£ 	 ¡����� 	 ����¢�¡ 	 � 	 ����# 	 �� 	 �#	
��������£	��������#�	�	�#	��	\��#	¡�����	��	��#	��\#	��\#�	
 �#	���#���	��	��#	����#	\#\�#�����	��	���������#�	�	���	
¡������ 	 ��¢#�#�� 	 #\��������£� 	 ¢# 	 �� 	 �#�#�\�# 	 ��#	
����\��	�\�#�	��	¡�����	¢���	����������	��¢	��#�	��#	
�\# 	 �� 	 �� 	 �������� 	 ��#�����#� 	��� 	 ��� 	 ��#�����#�	
������#�	��	��¢	��	¡���#�	¢���	�	�#��#�	¢�£	�	����	�#�	�	
�������	¡�����	°�¯±�	³#	��#�	���	����	��#	����������	����¢��#	
������	¦�#����	��¹§	°�¹±�

 ���#	�	¡��#�	�	#¥�\��#	��	´� 	���	\<<^`	��#�	`�	��	
�����	�	#¥�\��#	��	����#	\#����#�	¦#����	��	�®§	���	��#	
\<<^`	\#�����	 �	����	����#	����#����	�¢�	\#\�#�����	
�#¡�##� 	 ¦¹��¯ 	 �� 	 ¹�®�®¹§ 	 � 	 ��# 	 �¢� 	 ��µµ£ 	 ����#���	
 �#�# 	 \#\�#����� 	 �#¡�##� 	 ��������# 	 ��# 	 �����������#�	
¢����	��#	��#�	��	�#��#	��#	´� 	��	\<<^`	��#�

�\��� ¹��

��¡# ¹�®�

`�����]<	 �#	´� 	��	\<<^`	#��£	��#

�
	�������	��
����<	 `�#�\#����# 	��#� 	 ��# 	�� 	���#���£	
\#�������#�	 �#£	��#	�#��#�	��	����#�#�	�£	��#��	���#�	
��#�� 	 `�#�\#����# 	��#�	 ���# 	�	��������#� 	����������£	
����#� 	 �#�# 	����������£ 	����#� 	�� 	�#	��¤���#� 	�£	���¡	
\����# 	 �#���¡ 	 ������¡ 	 ���\ 	 ��# 	 ��\��# 	 ���� 	 �� 	 ��#	
��#��#� 	 ���#�� 	 � 	 ���#� 	 �� 	 ����#�# 	 �������#�£ 	 ��	
#¡����#�£	���	�����	��#��	 �#	����������£	������������	��#	
���#��#�	�������¡	��	��#	�\������#	��	��#	¢#�¡��	��	#���	
���#�	���	��#	�����	��#�	��	��#	�#¡��¡�	��	�#���#	´� �	
��	��	#�#����£	��	�����#�	��#	¢#�¡��	��	#���	���#�	��#	�	
�#������	��	����#�#	��	���	�����	��#�	¶��	�����	´� �	��#	
�������£	¡��#	������¡	���\	�����#�	�	��#	��#��	��	���\	
#¥�#���	�������	¶��	�����#�	��# 	$���!�<������	 �������#	
��	�#��#�	�£	���	�¢�	���#�� 	\<<^`	 �� 	|<<^`�	`�	��	�	
��#���� 	 �� 	 ����¡ 	 ��# 	 ��������� 	 ����������£ 	 ��	
$���!�<������	��#¸	�	¦$���!�<�������Ä	\<<^`�	|<<^`§�	
��¢#�#�� 	 ���# 	 ��# 	 �#����� 	 �#�¢## 	 ��# 	 ���#� 	 ��#�	
\<<^`	��	|<<^`	��	��#��	�����	��#	$���!�<������	��	
�#��������� 	 ��# 	 ����¡ 	 ��#�#�# 	 �� 	 ��#�# 	 \#����� 	 ����	
�#��#�	��#	����¡	��#�#�#	�� 	$���!�<������� 	�	�������#	
��#����	���	 ��# 	$���!�<������	 ��#	´� 	��	��#�#�#�	�	
����#	¸

`�����{<� �#	$���!�<������	��#�\#����#	��#	´�

�	�#����¡	¢����	��	�#	�����#�	��	��#	�����¢�¡¸	��	��#	
�\�#�	��	�����#�	¦���#��	����	���#�������#�	��	��������#�§	
¢���	¢����	����	�����	���	�	�\��������	��#������	��	��#	
\#�����\#���� 	 �£�# 	 �� 	 �\��� 	 ¦|<<^`	 �\���§� 	 �� 	 ��#	
�\�#� 	 �� 	 ���#�� 	 �����#� 	 ¢��� 	 ¢���� 	 ���� 	 ����� 	 ��� 	 �	
�\��������	��#������	��	��#	\#�����\#����	�£�#	��	�\���	
���� 	 ¦\<<^`	 �\���§� 	 ��# 	 �#��¡ 	 \#����� 	 ��#�#�#	
����������£	�	����	�	�£��#\	��	¢#��	��	�\����	 �#�#���#�	
��#	����������£	��	��#	����#	ÀÁ#�Â	�	��#	����������£	����#	��	
$���!�<������	 ��#	��	�#	�¹¾�	`� 	��	�\������	��	�#����	
�#�#	����	��#�#	��#	��������£	���#�	\#�����	¦���#�	���	����#	
�����#�#�	�	����	����£§	��	¢����	��#	�#��#�	���#	�#��¡	
\#�����	��	�\��#\#�����	\#������	��	���#��#��£� 	��	
�������#�£	��	#¡����#�£	����#�#	���¡#	�\�����

���`� �\���
��¡#
���`� �\���
��¡# �\���
��¡#
Á#� ¹�� ¹� ¹� ¹��
´� ¹�� ¹�� ¹�� ¹��

126

�����	�
���<	 	`�	����#�����	��	�	�����#�#	�������#	����¡	
���##	����#�� 	 �	�#��#	��# 	^����� ���#	´� �	¢#	��#�	�	
��������������� 	 ����#�� 	 � 	 � 	 �#����� 	 ��##� 	 �������	
��¡�����\�	 `� 	 ��	�	 �#�����#	¢�#�#	��#	����	�#�	 ��	�����#�	
��� 	 ´ 	 ������� 	� 	 \��#� 	 �� 	 �#��#� 	� 	 ´�� 	 ������� 	 ��#	
�#��#�	�	��#	�#\���¡	������ 	 �#	��¡�����\	�#�#��� 	 ��#	
��\#	���¡	���	#���	�#	��	´	����	������²	����	��#	¢���#	
��#�����	��	\��#	´	��\#��	`	���	���#�	¢#	�����#�	��#	����	
�#� 	 ¦¨��� 	 �£��#\§ 	 ��� 	 �¹ 	 ������� 	 ���# 	 ® 	 ¡��#� 	 ��#	
�����#�	�����������#��	 �#�#	�����������#�	��#	��\���#�	�£	
�����#��¡	��#	����������#	 ����\����	��������#�	 �� 	��#	
�#��#�	��	��#	����#�	�#������	��##��

`������<	 �#	^�����	��#	´�

�������
��
_���
��
��#	��#	¡����	��������#	��	���	´� �	��#	�#��#��	¢#	

�� 	 ����##� 	 ¢��� 	 ��# 	 ¨�£#��� 	 ��#�#�#� 	 `� 	 �#����� 	 �	
�����#	��	��������� 	�����������#�	��	���	��#��	³#	���#	
��#� 	 ��# 	 ¨´� 	 ¦¨�£#��� 	 ´#�¢��� 	 ����� 	 � 	 ����§	
#����\#� 	 �� 	 ����#�# 	 ���� 	 ¡���� 	 ¨´� 	 �� 	 � 	 �#� 	 �� 	��#	
�����# 	 ����¢��# 	 ����� 	 ��#�#� 	 ��� 	 �#�#���� 	 ��	
�#�#���\#� 	�£ 	���¡ 	¡������ 	�����������#� 	\��#��� 	 `� 	 ��	
¢����#	�	����	��	��	��������#	�	��#	¢#���	

#�	��	�#����	����	���	#¥�#��\#�����	¢��	\��#	�	��#	
¨���	�£��#\	¦�#����	����¹§	¢����	������	�¯	�����#�	
¦�����#�§� 	 ¶�� 	 ��# 	 #�¢��� 	 #¥#������ 	 ¢# 	 ����\�£	
�����#	�	�����#	���\	¢����	¢#	���#	��#	\#����	����#�	
����#�����¡	��	#��£	��#��	��	���	��	��#	�����������#�	
������������	��#	�����#�	���	�������#�	����#��	¢#	���#	�	
#���\��#	 � 	 ��#	���\	�� 	����������£	 ��� 	 ��#	������� 	����#�	
����¡#�	��	��#	^�����	��#	¦�##	��¡��#	�§�

����¡ 	���#��#� 	 ���## 	 ����#� 	Å³#��Æ� 	Å��#��¡#Æ�	 ��	
Å����¡Æ	 ��	��#	^�����	��#�	��	¢���	��#	��#�	����	����	
¦�##	��¡��#	����#§�	¢#	��	������#	����	��#	���¡#	�\����	
���	�	����������£	��	�¯��¾	��	�#	À����¡Â�

���#��#�� 	 ¨�£#��� 	 #�¢���� 	 ���#� 	 ��# 	 ����������£ 	 ��	
����#���¡	��#�����	��	��#	���\	Å	³���	¢���	�����	��	Ç©	Æ�	
����¢�¡	��	��#���£	���#���� 	�����#\�	��	������	 ��	�#	
��#����#	���	�\����#\#��	

�	�#���	��#����	���¢�	����	�£	�#��#���¡	��#	\#�����	
����#� 	`>|�\	 �� 	`>|~�	���¡#	�\����	¢#��#�	\��#	
¦��� 	 ����������£ 	 �� 	 �#�¡ 	 À³#��Â 	 ¡��¢� 	 ���\ 	 ®��®¾ 	 ��	
�¹��¾§�	���#��#�£�	��#	��#����	�	#¥#�����	���¢�	����	�£	
���#���¡ 	 ��# 	`>|�\	 �� 	`>|~	 \#����� 	 ����#�² 	 ��#	
���¡# 	 �\���� 	 �#��\#� 	 ���#���¡�£ 	 ����¡� 	 �#	
����������£ 	 �� 	 ��# 	 Å����¡Æ 	 ����# 	 \��#� 	 ���\ 	 ���®¾ 	 ��	
���¾�	

��	����¸ªª�¤������#���¡#�#�ª

}��>���]<	���¡#	�\����	#�¢���	���#�	��#����	�

�#����� 	 �����#� 	 � 	 ��# 	 �#��� 	 �� 	 ����� 	 ��#�����	
�����\	����#	���#��£	����	�£	���¡	�	�	�������������	
��������	¦�##	�#��#����#�£	���#	�	��	���#	�	��	��¡��#	�§�	
¶��	#¥�\��#�	��#	��#����	�	�#����	#¥��#���¡	���� 	`>|�\�
�� 	`>|~	 \#����� 	 ����#�# 	 �������#�£ 	 ���¡# 	 �\�����	
����#�����	��	��#	�#����	���������#�	�£	��#	���#	�	��#�#�#�	
#����#�	�	����	�#�����

�<���
��>���

 �#	\��	��¤#����#	��	����	¢���	��	��	�\����#	��#	������£	

��	����¢��#	���������	�£	�#���¡	���\	����	���¤#����	��	�£	
�������¡	��¢�#�¡#	����	¢���	¡���#	�����#	�#�#���\#���	
`	����	¢����	¢#	���#	���#�	��	���¢	����	\����#	�#���¡	��	
� 	 �#�����# 	 �������� 	 ��� 	 ���¡# 	 �\���� 	 ��#������² 	 ¢#	
������#� 	������� 	�
	��������#� 	 �� 	 ���£µ# 	 �� 	��#����	
���¡#	�\����	�	��¤#������#�#�	�£��#\��	�	������¡�	����£	
�� 	� 	¡##��� 	 �£��#��� 	�� 	������� 	���\#� 	¢���� 	�#���¡	
¢��� 	 ���� 	 ���¤#�� 	 ¢#�# 	 �������£ 	 #��#����� 	 � 	 �#���£ 	 ���	
��������� 	 ¢# 	 ���� 	 � 	 ����#����� 	 �£����#��� 	 �#�¢##	
������¡ 	 �� 	 ���¡# 	 �\����� 	 �# 	 #¥�#��\#����� 	 ¢��	
\��#	�	� 	����������	������¡	�¯	�����#�� 	 �#	�����	
�\������	��������	��	�#�����#	��	��#	��������#�	�����#�	
�£ 	 ��# 	 \����#��#��#� 	 ��#������# 	 \��#��¸ 	 ��#£ 	 ��#	
��\������#	���	����#	�����#�	¢���	���#�	�#�����#��	 �#	
�#������ 	 � 	 �#�\� 	�� 	 ����#� 	\��#�� 	 ¦\#����� 	 �#�#��#� 	�£	
�#����� 	 ��##� 	 �� 	 ���#�§� 	 ¢#�# 	 ��#��� 	 ��� 	 ��# 	 ¨�£#���	
#�¢���	��������#	�����������	 �#�#���#��	¢#	�#��#�	��#	
´� �	���	#��£	��#��	��#�\#����#	��#��	��	��#	�\����	
��#� 	³#	��#�	��µµ£	 ��¡�� 	 �� 	�#���# 	�����������#� 	����#�	
������¡	���\	�	�#�	��	\#����#�	¦�������#�	����#�	��	#��£	
��#�§�	 �#	#�¢���	#¥#�����	��	��#	��#����	��	�#�#���	
��#�����	#���#�	��	��	\��#	��#�������	�	���¡#	�\�����	
 �#	�#�����	��	����	��#�����	�����\#�	����#	���#��£	����	
¢���	���#�	�	�������������	��������#��	

 �#	\��	���#¡��	��	����	�
	������#�	\��#��	��	����	
¢# 	 �� 	 ���������# 	 ��#\ 	 � 	 � 	 �#������\���¡ 	 ����#���	
¢�#�#�	��¢�#�¡#����#�	�£��#\	������#����# 	�##��	�	¡���	
�#������� 	 �#�¢## 	 ¢��� 	 ¢# 	 �����#� 	 �� 	 � 	 #¥�#��	
��¢�#�¡# 	 ¦��# 	������#� 	\��#��� 	#�¡�� 	 ���#�� 	 ��##�� 	¨´��	
Ç§ 	 �� 	 ��# 	 ����#���#� 	 ���� 	 #¥����� 	 ���� 	 ��¢�#�¡#�	

`\��#\#������#����� Á#� ´�
�#��¡�#����� Á#� ´� Á#� ´�

³#�� ¹��¯ ¹�� ¹�� ¹�¯�
��#��¡# ¹�¹¯ ¹�¹� ¹��� ¹�¹
����¡ ¹��� ¹�� ¹�� ¹�¹�

127

��¢#�#�� 	 ��#£	���#	 �� 	�# 	�����\#�	��	¡##����µ#�	�£	
\��#	#¥�#��\#�� 	�	\��# 	����¢��# 	����� 	#¥�����#� 	���\	
������� 	 �� 	 �#��#�#�����# 	 ������������ 	 ��� 	 �� 	 ��#	
�����#¡#	��	������#	�#�#���	��	�#�����#	\��#���

¶����£� 	 ¢# 	 ��# 	 � 	 ��# 	 ����#�� 	 �� 	 �����#��¡ 	 �����#�	
#¥�#��\#��	�	���#�	�£��#\�	�£	������¡	���#�	������¡	
\#����#\#��� 	 ���#� 	 ������#������ 	 ����#���#�� 	 �� 	 ���#�	
������� 	 ¢���� 	 ����� 	 �����#\#� 	 �� 	 �#��#� 	 #¥���� 	 ����	
��������£	�#������

[�_���
���
°�± 	³� 	
�� 	 �� 	 �#�£¸ 	 ��¤#������#�#� 	 �#����� 	 ���� 	 ��#����	
������������£�	��	�£��#\�	��	����¢��#�	��	¦�§�	�¯¯��	��������
°�± 	����	�����\�#��	��¶�	�#\#�#�¸ 	�	�#�����	����#	���	��¤#���
���#�#�	�#��¡�	`¬¬¬	 ���������	�	����¢��#	¬¡�##��¡�	�¹	
¦�§�	�¯¯�	���¯��
°�±	´� 	³���#�	�� 	������	º����#��#	�������	���	��¤#������#�#�	
���¡��\�º	� 	`¬¬¬	 ���������	� 	����¢��#	¬¡�##��¡� 	����	
���	`���#	���		��¡#�	�¹��¼�¹�	�#�	�¯¯���
°± 	
� 	 �� 	 ¨����� 	 �� 	 �� 	 �����È�#� 	 �� 	 ��µ\�� 	 �� 	 ³É��¸ 	�	
��\��#�#���# 	 ¶��\#¢��� 	 ��� 	 ������#����# 	 ¬���������	
`�#������� 	 ����¢��# 	 ¬¡�##��¡ 	 �#�#���� 	 ´#�¢��� 	 �#����	
`�¬�´�¯�����	
°®±	 ��	
����� 	����	���������	³�
�	�#��¸	�#���¡� 	�#�����¡	
��	���¡	������¡	\#�����	�	��¤#������#�#�	¬����\#��	`	
�`Ã�
�´ 	 ����
�Ê¯� 	 ³������� 	 � 	 ��¤#������#�#� 	 �������	
�#������	�������	����	�¯¯��
[6} L.C. Briand, J. Wust, H. Lounis: Replicated Case Studies for
Investigating Quality Factors in Object-Oriented Designs. In
Empirical Software Engineering, an International Journal, March
2001, Kluwer Academic Publishers, 6(1):11-58.
[7] J. Han, "Supporting Impact Analysis and Change Propagation
in Software Engineering Environments" in Proceedings of the
STEP’97, London, England, pages 172-182, July 1997.
[8] G. Antoniol, G.Canfora, A. D. Lucia, "Estimating the size of
changes for evolving Object-Oriented Systems : a Case Study" in
Proceedings of the 6th International Software Metrics
Symposium, pages 250-258, Boca Raton, Florida, Nov 1999.
[9] D.C. Kung, J. Gao, P. Hsia, J. Lin, Y. Toyoshima, "Class
firewall, test order, and regression testing of object-oriented
programs" in Journal of Object-Oriented Programming, Vol. 8,
No. 2, pages 51-65, May 1995.
[10] L. Li, A. J. Offutt: Algorithmic Analysis of the Impact of
Changes to Object-Oriented Software. In proceedings of
ICSM’96, 1996, 171-184.
°��±	����	����\��	��	��������	����	�#��#�	��	¶�	
���\��	º�	
���¡#	`\���� 	���#�	��� 	���¡#������£	���#��\#� 	 �	��¤#���
���#�#� 	 ����¢��# 	 �£��#\�º� 	 ` 	 ����##��¡� 	 �� 	 ��# 	 ����	
¬���\���� 	 ³����¡ 	 ���#�#�# 	 � 	 ����¢��# 	 ����#��# 	 ��	
�##¡�##��¡ 	 ����^¯¯� 	 ��¡#� 	 ��¹����� 	 �\��#���\� 	 �#	
´#��#������	�����	�¯¯¯�
°��± 	�� 	�������� 	���� 	�#��#�� 	¶� 	
���\�� 	 �� 	Ã� 	������#���	
����� 	 ���#��� 	 �#�����#�¸ 	 � 	 ¬\������� 	 ����£ 	 � 	 `��������	
�£��#\�� 	 ` 	 ����##��¡� 	 �� 	 ��# 	 ³������� 	 � 	 ����������#	
��������#� 	 � 	 ��¤#������#�#� 	 ����¢��# 	 ¬¡�##��¡� 	 ��¡#�	
�¯����	��#��	¶���#�	��#	�¹¹¹�
[13] T.M. Khoshgoftaar, J.C. Munson: Predicting Software Devel-
opment Errors Using Software Complexity Metrics. In IEEE jour-

nal on selected Areas in Communications, vol.8, n.2, February
1990.
[14] A. Porter, R. Selby: Empirically guided software develop-
ment using metric-based classification trees. In IEEE Software,
March 1990, 7(2):46-54.
[15] V. Basili, Condon, K. El Emam, R. B. Hendrick, W. L. Melo:
Characterizing and Modeling the Cost of Rework in a Library of
Reusable Software Components. In Proc. of the IEEE 19th Int’l.
Conf. on S/W Eng., Boston, 1997.
[16] M. Jorgensen: Experience with the Accuracy of Software
Maintenance Task Effort Prediction Models. In IEEE TSE, Au-
gust 1995, 21(8):674-681.
[17] M.A. De Almeida, H. Lounis, W. Melo: An Investigation on
the Use of ML Models for Estimating Software Correctability. In
the Int. Journal of Software Engineering and Knowledge Engi-
neering, October 1999.
[18] H.A. Sahraoui, M. Boukadoum, H. Lounis: Building Quality
Estimation models with Fuzzy Threshold Values. In “L’objet”,
volume 7, number 4, 2001.
°�¯±	´�¬�	¶#��	��	��	´#���	ÊÊ �#	���£	���#������	¶�����£	��	
��# 	 ��# 	 �� 	 ¨�£#��� 	 ´#�¢���� 	 �� 	 ��#�#� 	 ������������� 	
#¡��	
��¡�\#��ÊÊ� 	 ����#\����� 	 ���£ 	 ¦¨���#�� 	�� 	 ��# 	 `��� 	 ��¦�§§�	
��¹�����	�¹¹¹�
[20] N.E. Fenton and M. Neil, ''Making Decisions: Using
Bayesian Nets and MCDA'', Knowledge-Based Systems 14,
307-325, 2001.
°��± 	´#�� 	 �� 	 ¶#�� 	 ´¬� 	 ´�#��# 	
� 	 ÊÊ¨�����¡ 	 ���¡#�����#	
¨�£#���	´#�¢����ÊÊ�	 �#	��¢�#�¡#	¬¡�##��¡	�#��#¢�	�®¦�§�	
�®�����	�¹¹¹�
[22] R. Schauer, R. K. Keller, B. Laguë, G. Knapen, S. Robitaille,
G. Saint-Denis: The SPOOL Design Repository: Architecture,
Schema, and Mechanisms. In Hakan Erdogmus and Oryal Tanir
editors, Advances in Software Engineering. Topics in Evolution,
Comprehension, and Evaluation. Springer-Verlag, 2001.
[23] ���	�����	��	
�����	��	��������¸	���£µ�¡	���¡#	`\�
����	�	��¤#������#�#�	�£��#\��	`	����##��¡�	��	��#	���	¬��
���`��� 	����¢��# 	 ¬¡�##��¡ 	 �� 	 �����#� 	 �����������	
���#�#�#�	������ª��������	¦�������§�	��¡���	�¯��#��#\�#�	��	
�¹¹��
°�± 	 ¬� 	 ������#\� 	 �� 	 ������� 	 º¨��� 	 ����¹	¸ 	 ���#�	
�^����������º�	��`��	�����£	�¹¹��
°�®±	 I.H. Witten, E. Frank: Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementation.
Morgan Kaufmann Publishers, San Francisco, California, 2000.
°��±	����	�����¸	��®¸	���¡��\�	���	�����#	
#���¡�	���¡�	
����\�	�������#���	�¯¯��
°��±	 P. Clark, T. Niblett: The CN2 induction algorithm. In ML
Journal, 1989, 3(4):261-283.
[28] P. Naïm, P. Wuillemin, P. Leray, O. Pourret, A. Becker,
''Réseaux bayésiens'', Edition Eyrolles, 2004.
°�¯±	¬�	 ���¢�#���	�	��#	\#��¡	��	��Ê�	��������	��#�����#�	
��� 	 ��µµ£ 	 �����#��� 	¶�µµ£ 	 �#�� 	 �� 	 �£��#\�� 	�����®� 	 ´� 	�� 	��	
�������	�¯���
°�¹± 	 `��¡����� 	 ����������� 	 �#����#� 	 ³�� 	 ���
��Ë 	 � 	 ���	
³���¢�Ë	��#�^�	Ã���#�	���£��¡��	Ì	�¯����¹¹��

128

Program File Bug Fix Effort Estimation Using
Machine Learning Methods for OSS

Syed Nadeem Ahsan, Javed Ferzund and Franz Wotawa

Institute for Software Technology
Technische Universität Graz

8010 Graz, Inffeldgasse 16b/2, Austria
{sahsan, jferzund, wotawa}@ist.tugraz.at

Abstract-Accurate effort estimation model plays an important
role in software maintenance and software project management.
Most of the effort estimation models are related to commercial or
closed software systems, whereas it is difficult to develop an
effort estimation model for open source software system (OSS).
Reasons may be the inherent complexity of OSS, the large
number of software developers or contributors and the absence
of effort data. Most of the OSS systems do not maintain effort
data, while this data is required to develop and validate the effort
estimation model. In this paper we present the bug fix effort
estimation model for open source software system. This paper is
divided into two parts; in the first part we present a heuristic
approach to mine the effort data from the developers or
contributors activity logs. In the second part, we present six
different effort estimation models, which are based on statistical
regression and machine learning (ML) methods. To develop the
effort estimation model, we used a set of metrics as estimators
along with the bug fix effort data, which is obtained in the first
part. The set of metrics are obtained from program files, source
code changes and CVS log. To perform experiments we selected
the Mozilla open source project and downloaded bug fix reports
along with bug fix activity data from the corresponding bugzilla
server. We also downloaded source files revisions and CVS log
data from CVS repository. Furthermore, we compared the
outcome of the different effort models using several evaluation
criteria. The results show that the machine learning models are
better compared to the statistical regression model. While in case
of machine learning based model, the support vector machine has
the lowest relative absolute error.

I. INTRODUCTION
The main function of the software maintenance is to keep

the software alive by performing three major tasks i.e.
customer support, update documents and perform changes in
the source code. The changes in the source code are required
to remove faults, to enhance existing features or to add new
features. The timely completed maintenance task makes it
possible to deliver the product in time, which is the key
requirement of the today’s software industry and has to be
based on accurate estimation model.

There are several advantages of having an effort estimator.
First, it provides initial knowledge about the complexity of the
product. Second, it may be used to obtain the cost of the
product. Moreover, an effort estimator allows for task
assignment and resource management. Most of the research
work on effort estimation model is related to closed software
system [2, 3, 5], while very few attempts have been made to
develop an effort estimation model for OSS [12, 8, 16]. One

reason may be the absence of the effort data, because most of
the OSS systems do not maintain the maintenance effort data.
While effort data are required to build and validate the effort
estimation models [8].

In this paper our focus is to establish an accurate effort
estimation model for corrective maintenance task of OSS
systems. To perform this experiment, we obtained data from
the Mozilla project repository, and precisely show how the
relevant data can be extracted and under which assumptions.
There are many possibilities for the model, including
statistical regression and machine learning methods. In order
to answer the question which method would give back the
best, i.e., most accurate estimator, we tested six different
methods using the same data set. The models are constructed
using a set of metrics as model estimator. These set of metrics
are related to developer expertise, source code changes and
program files. The main contributions of our work are:
i) Developed a method to mine the bug fix effort data from

the developers or contributor’s log of bug fix activity.
ii) Developed regression and ML based effort estimation

models using the obtained effort data and a set of metrics.
The paper is organized as follows: In Section 2 we discuss

related work. In Section 3 we describe how we obtained the
data from the software repositories. Furthermore, we explain
the used program file change metrics. In Section 4 we discuss
the estimation models and analyze the obtained results.
Finally, we conclude the paper and discuss future work.

II. RELATED WORK
Different approaches are used to establish estimation

models, like algorithmic, analogy, hybrid and machine
learning. Initially algorithmic estimation methods were used
for software estimation, like Boehm’s constructive cost model
COCOMO [4] and COCOMO II [3], Albrecht’s function point
method [2] and Putnam’s software life cycle management
(SLIM) [15]. These are based on historical data of effort.
These approaches involve the construction of mathematical
models from empirical data.

Eick et al. [14] worked on the software evolution data of
fifteen years. They showed that the code decays, means if the
code life is large then it needs more effort to add new changes.
They extracted a large number of features from the evolution
data and constructed multiple models. Their regression based

129

effort estimation model shows that more effort is required to
make changes in the older source code. Their model also
shows that the number of added or deleted lines has less
impact on effort. De Lucia et al. [9] obtained a data set from
five different projects. They used multiple linear regression to
build the estimation models. They found that the performance
of their models was enhanced if they included the different
types of maintenance task into their models. They used cross
validation to assess their models.

Magne Jorgensen [10] developed eleven different effort
prediction models based on regression, neural network and
pattern recognition and reported that the model based on
regression and pattern recognition are best compared to other
models. Song et al. [13] used the NASA’s SEL defect data set
and applied association rule mining on the data set, to classify
the effort using intervals. They found that association rule
mining technique is better to predict the effort compared with
other machine learning techniques like PART, C4.5 and Naïve
Bayes. Gary D. Boetticher [5] used neural network to develop
an effort estimation model. He used different combination of
product metrics to train the model. His result shows that neural
network can be used for an effort estimation model.

Stefan Koch [12] discussed the issue of programmer
participation and effort modeling for OSS. He worked on the
GNOME project data and estimated the effort on the basis of
programmer participation and the product metrics. He showed
that the impact of programmer participation on effort
estimation is less compared to the product metrics. Cathrin
Weiss et al. [16] used the available effort data of the JBoss
project, which is maintained by JIRA bug reporting system.
They used the text similarity and the nearest neighbor
approach, and obtained the average effort data of all the
resolved bugs whose summary and title are similar to the new
bug report summary and title. They used the obtained average
effort value as the predicted effort value of the new bug report.

Liguo Yu [8] analysed an evolution data set of 121
revisions of Linux to develop an effort estimation model for
OSS. Since Linux does not maintain effort data, therefore he
first performed an experiment on NASA SEL database, which
is a closed software system and maintained actual effort data.
From this experiment he identified those measures which can
be used indirectly to represent maintenance effort. In the next
step he used those indirect measures as effort and developed
two regression based estimation model for Linux project. Our
work is similar to his work but we used different approach to
obtain the effort data. Also we used both multiple linear
regression and machine learning methods to develop effort
estimation model.

III. OBTAINING DATA FROM REPOSITORIES
In order to develop an effort estimation model we have to

obtain the relevant data from the available repositories. These
include the metrics data and an estimate of the effort needed to
fix a certain bug. In particular we rely on the Mozilla CVS
repository and Mozilla bug database. In case of another

software project where a CVS repository or a bug database
like bugzilla is available, all the information extraction
described in this section can be directly applied. In other cases
the described metrics and effort data may be extracted in a
different way. However, the underlying concepts including
which metrics to use and how to obtain the effort estimates
can be re-used. The overall data extraction process for effort
estimation is shown in Figure 1.

A. Metrics Data
For obtaining the metrics we downloaded the selected

revisions of the C++ program files and bug reports from the
Mozilla CVS and bugzilla repositories and stored them on a
local disk. In the following paragraph we describe the process
which we used to extract the metrics data. The complete list of
metrics with description is shown in Table 1.
First we identify those revisions of program files where bugs
were fixed. To accomplish this task we used an approach [6]
and parsed the CVS log comments of each source file
revisions. If the comment contains a word like Bug, Fix or
Fixed followed by some integer value, which is similar to any
of the existing bug report id. Then it means that revision is a
bug fixed revision. After identifying all the bug fixed
revisions, we extracted all those lines of code from bug fixed
revisions, which have been changed to fix the bug. To
perform this task we take the differences between two
consecutive revisions, i.e., the revision where the bug has been
fixed and its immediate predecessor. These program files
difference data are further processed to obtain a set of metrics
related to program file changes i.e. TCLOC, TDELTA and TCOPE.
We also processed all those program file revisions which are
immediate predecessor of the bug fix revisions and extracted
the set metrics related to whole program file i.e. TLOC, TFUNC,
TELINE, TFINC, TCYCLO, TPCOUNT, and TRPOINT. We also obtained

TABLE 1
LIST OF METRICS

Metrics Description

SFCOUNT Number of source files which are changed to fix the bug.

DCOUNT Number of developers who are involved in fixing a bug.

DEXP Developer’s Expertise

TPREV Total Source File Age: Adding all the previous revisions of
the source files which are involved in fixing the bug.

TPFREV Total previous fix revisions of source files.

TLOC Total line of source code.

TCLOC Total changed line of code.

TDELTA Total number of change location in source files. Delta is
change hunk pair, we have at least one delta whenever a file
is changed.

TFINC Total number of included source files/packages.

TFUNC Total number of function.

TELINE Total number of executable lines.

TCYCLO Total cyclomatic complexity metrics.

TPCOUNT Total number of parameter count.

TRPOINT Total number of return points.

TCOPE Total number of changed operators.

130

the total number of previous revisions TPREV, the total number
of program files which are changed to fix a bug i.e. SFCOUNT
and the total number of previous bug fix revisions TPFREV of
each bug fixed revision of source file.

Finally we processed bug reports and developer’s activity
data which are related to the bug fixing activities, and obtained
the two measures i.e. developer counts (DCOUNT) and
developer’s expertise (DEXP). The DCOUNT is the count of
developers or contributors who were involved in fixing a bug.
The DEXP is obtained by adding the rank values of all those
developers who were involved in fixing a bug. We rank the
developers according to their number of bugs fix count. To
perform this task we downloaded 93,607 bug reports together
with the bug fix history from the bugzilla repository. For
detailed description of the above mentioned process, we refer
the reader to our technical report [1].

B. Bug Fix Effort
The conventional maintenance effort estimation process

involved three steps. In the first step it is required to extract
maintenance effort data along with other related measures
from the previous maintenance records. Then in the second
step, it is required to build the model using the data obtained
in the first step. While in the third and final step the model
may be used to predict the future maintenance effort [8].
Unfortunately most of the OSS system does not maintain
actual effort data and consequently it becomes more difficult
to develop an accurate effort estimation model. However
software repositories contain a lot of maintenance related data.
In the previous section we have described in detail how we
have extracted all the maintenance related measures from
these repositories. Now in this section we describe our
approach and method which we have used to extract the actual
bug fix effort data from bug repository.

 The most frequently used maintenance effort measure is
the total number of man-hours required to accomplish the
maintenance task. Therefore we focus to extract the actual
time spent by developer to fix the bugs and we considered that
time as an estimated actual bug fix effort.

Bug reporting systems are used in open source software to
store the software maintenance records. Mozilla
(http://www.mozilla.org) and lots of others OSS use Bugzilla
(http://bugzilla.mozilla.org), as a bug reporting system.
Bugzilla maintain the complete history of bug life cycle of all
the reported bugs. Each reported bug in bugzilla has a
complete life cycle. Figure 2 shows the bug life cycle.
According to this life cycle, a bug starts as UNCONFIRMED.
It immediately moves to the status NEW, after that the bug is
validated by the quality assurance (QA) person. Then it is
moved to ASSIGNED status, which is then followed by the
RESOLVED status. Finally a bug may reach a status of
VERIFIED, which is then followed by CLOSED. In some
cases after the VERIFIED status a bug may go to REOPEN
status, and the cycle is repeated.

Let us now go into more detail of the bug life cycle. If a

bug is said to be NEW, the QA person assigns the bug to any
relevant developer/contributor in order to find a solution.
Hence, the real work for fixing a bug starts when a bug is
moved to the ASSIGNED status. The bug is solved when the
developer or contributor provides a solution and moves the
status to RESOLVED. The duration between ASSIGNED and
RESOLVED is the actual period where effort is spend on
source code changes to fix the bug. Hence, we assume that this
time period is the actual bug fix time and thus the only time to
be considered as effort. Note that in some cases a QA person
reassigns the same bug to another developer or in some cases
the previously assigned developer assigns the bug to some
other developer, which makes the computation of the overall
effort even more difficult. Since no information regarding the
distribution of effort among the different developers is
available, we assume that all developers contribute. Thus we
calculate the sum of all time periods for each developer or
contributor to come up with a single total bug fix effort.

Fig. 2 The Bugzilla bug life cycle

Fig. 1. Data extraction process

131

For a single developer we compute the effort necessary to

provide a solution to a bug report as follows: We start with the
bug reports assigned to the developer. We compute the effort
assigned to a bug report for each month of the year using the
given dates for ASSIGNED and RESOLVED. The time span
between ASSIGNED and RESOLVED cannot be used directly
to compute the effort. The reason is that a developer works on
several bug reports in parallel but it is impossible to spend
more than all days of a month in working. Hence, the time
spent has to be multiplied by a factor. This factor takes into
account the limited number of days available for working
within a particular month. To understand how we have
estimated bug fix effort from bug reports, consider an example
in which a developer has fixed four bugs in the month of
February. The example data is shown in Fig. 3. The gray bar
represents the durations in which the developer fixed those
bugs. We obtained these durations from bug reports by
subtracting the bug assigned date from the bug resolved date.
In this example we assume that during some days of the month
the developer worked in parallel on multiple bugs. Therefore
we have to multiply the duration of bug fix with a common
multiplication factor (Mk). We obtain the multiplication factor
by dividing the total actual working days of a month (Tw) with
the sum of all the assigned working days for all the assigned
bugs, Mk = Tw /�Days = 24/47 = 0.51 and Ei = � (Bug fix
duration for bugi)k× Mk. Where Ei is the bug fix effort for bug
i, and k is the number of months spent to fix a bug. In this
example k=1. Therefore, E1 = 6×0.52 = 3.12. Similarly we
can estimate effort for other bugs, E2=5.1, E3=10.7, & E4=5.1.

If a bug is fixed in more than one month, then the bug fix
duration for the first month is obtained by subtracting the bug
assigned day from the last day of the month, and for the last
month, the bug fix duration is obtained by subtracting the first
day of the month from the bug resolved day. We consider the
whole days of a month as bug fix duration for all the
intermediate months. We multiplied each month’s bug fix
duration with the respective multiplication factor. Finally, we
add all the obtained values to get the estimated effort value.

We have applied the above mentioned method on each
downloaded bug report and developer’s activity data, and
obtained the complete history of the previous bug fix efforts.
We used this valuable data and created a log book that
contains the bug fix effort history of all those developers or
contributors who ever fixed at least one bug. An example of
the automatically generated log book is shown in Fig. 4.
Besides its main advantage of providing the effort data, there
may be several other advantages, like it may be used for the

analysis of developer’s activity patterns. It is shown in Fig 4
that the developer Neil is more active during the last months of
the year 2001 as compare to the initial months of the same
year, similarly we can use this log book data to analyze the
month wise or year wise effort distribution.

Developer Name: X Month: February
1 2

IV. EFFORT ESTIMATION MODEL
The second and most important contribution of this paper

is the development and comparison of different models for
extracting an effort estimator from the obtained metrics and
effort data. Names of all these methods are shown in Table 3.
For the evaluation of models we have used the mean absolute
error (MAE), the root mean square error (RMSE), the mean
relative absolute error (MRE), the mean magnitude of relative
error (MMRE), the root relative square error (RRSE), the
correlation coefficient R, and the percentage of prediction
PRED(x). Following are the formal definitions of these
evaluation measures. Where EACT stands for the actual effort,
E for the predicted effort, and n for the total number of

v
PRED

obser ed values.
� ������	
�� � �
��� � ,

� �������� � ���� ,

��� � � ������� ������	 ��, ��� �� � � ���� ������	 ������
,

�� �
���� ������	
����
, PRED(x) =�� � !�"#���$ �% &'�()*+,-".+�/0�

According to Conte et al [11], the MMRE value for the

best effort prediction model should be Í 25%, and PRED(25)
Î 70%. To develop estimation models, we used freely
available ML tool WEKA (http://www.cs.waikato.ac.nz). For
evaluation purposes we used different models on a dataset,
which comprises 7027 number of data instances.

A. Multiple Linear Regression Model
To develop an effort estimation model using statistical

multiple linear regression (MLR), we used a set of metrics as
set of estimators for the model, and effort as a dependent
variable. The set of metrics is shown in Table 2. Beside the
used metrics, Table 2 also comprises the Pearson and
Spearman correlation of the metrics with the effort. The
obtained MLR model is given below,
EFFORT=-13.8×DCOUNT - 1.09×DEXP + 5.8×SFCOUNT - 0.01× TPREV +
0.02×TPFREV + 0.001×TLOC + 0.02×TCLOC - 0.035×TDELTA -
0.03×TFUNC + 0.004×TELINE - 0.025×TCYCLO + 0.02×TPCOUNT -12.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

 Bug Id= 1,
Bug fix duration 06 days

 Bug Id= 2, Bug fix duration 10 days
 Bug Id= 3, Bug fix duration 21 days
 Bug Id= 4, Bug fix duration 10 days
 Total working days Tw = 24 days

 Fig. 3 Developer monthly bug fix activity

132

The correlation data in Table 2 shows that SFCOUNT,

DCOUNT, and DEXP are positively correlated with the effort data.
The metrics DCOUNT, and DEXP are related to developers while
SFCOUNT is the total numbers of source files, which are changed
to fix a bug. Whereas the metrics which are directly related to
the source code like line of code TLOC, cycloramic complexity
TCYCLO etc are positively correlated with the effort value, but
their correlation with effort is not high. It shows that in case of
OSS, metrics related to developers are more correlated with
effort as compared to the source code metrics. The obtained
Pearson’s correlation coefficient value of the model is 0.53,
this indicates that the predicted effort value using MLR model
is highly correlated with the actual effort values. While R2 and
adjusted R2 values are 0.289 and 0.291 respectively. The
further results of model accuracy estimation are shown in
Table 3.

B. Machine Learning Models
In order to develop an accurate effort estimation model,

we have analyzed several machine-learning (ML) algorithms
using WEKA tool [7]. All the selected ML algorithms belong
to the class of supervised learning methods, which are
commonly used for classification and regression. To obtain a
better model we used 10 fold cross-validation. It is an
important technique to avoid over-fitting models on training
data, as over-fitting will give low accuracy on validation. It
actually divides the data set into 10 equal parts and randomly
selects 9 parts for training and 1 part for testing and repeats it
for 10 times [7]. In the following paragraph we discuss each
model and its performance.

To obtain the support vector machine (SVM) based
model, we used SVMreg algorithm, and we used the filter data
type i.e. normalized training data. While to obtain a neural
network based model, we used multilayer perceptron, which
belongs to the feed forward class of networks. We designed
multiple neural networks using 1, 2, and 3 hidden layers with
2, 4-2 and 6-4-2 perceptron per hidden layer, and set the
number of learning steps between 500-1000. For M5Rules

method we used two classification rules on the basis of the
DCOUNT metrics value. We also used the decision tree M5P and
fast decision tree learner method REPTree with the pruning
option. Table 3 depicts the obtained results. We see that each
model has a good correlation value. The highest correlation
value is for the classification rule M5Rules i.e., 0.56, while its
MMRE value is 74%. In case of SVMreg the correlation value
is 0.51and the MMRE value is 63 %, which is the lowest.
Therefore in our experiment the best model is the support
vector machine SVMreg, although the value of MMRE is
acceptable, while PRED(0.25) = 0.20 and PRED(0.5) = 0.45,
which is not very close to the ideal value. There are several
reasons of MMRE value being so high. One may be the
presence of noise or outlier in the data set. The other may be

TABLE 2.
CORRELATION OF METRICS WITH EFFORT

Sr. Metrics
Correlation With

Effort Mean
Standard
Deviation

p-value
(sig-level

0.001) Pearson Spearman
1 SFCOUNT 0.32 0.51 1.8 1.6 0.000
2 DCOUNT 0.41 0.43 2.2 1.5 0.000

3 DEXP 0.36 0.36 15.2 10.1 0.000

4 TPREV 0.19 0.24 224.4 289.4 0.000

5 TPFREV 0.18 0.28 144.1 199.5 0.000

6 TLOC 0.20 0.27 2472.0 2799.3 0.000

7 TCLOC 0.18 0.30 39.4 85.5 0.000

8 TDELTA 0.22 0.23 10.0 20.9 0.000

9 TFINC 0.21 0.32 52.8 59.7 0.000

10 TFUNC 0.21 0.28 103.3 115.3 0.000

11 TELINE 0.19 0.27 2200.8 2425.9 0.000

12 TCYCLO 0.20 0.26 424.1 482.9 0.000

13 TPCOUNT 0.21 0.27 179.4 200.1 0.000

14 TRPOINT 0.18 0.24 171.3 215.4 0.000

15 TCOPE 0.13 0.24 29.3 67.4 0.000

Developer Name: neil@httl.net Log Year: 2001
Bug Id Date Assigned Date Resolved Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Total Days
1697 2001-04-25 2003-07-31 02.31 08.74 06.47 04.43 04.11 03.75 03.31 02.86 02.28 038.26

38367 2000-05-16 2003-04-07 15.50 21.19 27.46 13.85 08.74 06.47 04.43 04.11 03.75 03.31 02.86 02.28 113.95
54175 2000-12-28 2001-02-09 15.50 06.81 00.00 022.31
58523 2001-12-11 2005-03-02 001.47
66475 2001-10-12 2004-11-28 02.03 02.86 007.17
72481 2001-03-27 2001-08-15 03.54 13.85 08.74 06.47 04.43 01.99 039.02
75686 2001-07-27 2003-02-28 00.57 04.11 03.75 03.31 02.86 02.28 016.88
80837 2001-05-14 2003-03-20 04.79 06.47 04.43 04.11 03.75 03.31 02.86 02.28 032.00
85908 2001-06-15 2003-09-11 03.24 04.43 04.11 03.75 03.31 02.86 02.28 023.98
87924 2001-06-26 2003-09-11 00.86 04.43 04.11 03.75 03.31 02.86 02.28 021.60
89212 2001-07-04 2003-10-17 03.86 04.11 03.75 03.31 02.86 02.28 020.17
97532 2001-08-29 2005-09-30 02.60 03.75 03.31 02.86 02.28 012.46
99328 2001-10-08 2002-12-12 02.46 02.86 02.28 007.60
107418 2001-11-16 2003-01-17 01.33 02.28 003.61
110254 2001-12-02 2002-01-21 02.14 002.14
111606 2001-11-27 2001-11-28 00.10 00.00 000.10
114522 2001-12-11 2002-01-15 01.47 001.47
116196 2001-12-20 2002-09-13 00.81 000.81

Days per month used to fix the bug 31.00 28.00 31.0 30.01 31.01 29.98 26.58 31.00 30.00 28.94 29.20 30.08 365
 Assigned bugs per month 2 2 2 3 4 6 8 9 8 11 12 14

Fig. 4 Example of log book that contains the complete history of bug fix effort

133

the quality of the effort data set because we don’t get it from
Mozilla project rather we extract it by our own heuristic
method. Another big issue with the MMRE is its value
strongly influenced by a few very large MRE values [10].

TABLE 3
EVALUATION RESULTS OF DIFFERENT EFFORT ESTIMATION MODELS

PRED(x) Sr.
No

MMRE RRSE Method Name R MAE RMSE (%) (%) 0.25 0.50
1 Multiple Linear Regression 0.54 11.88 23.5 81.0 84.7 0.09 0.17
2

V. THREATS TO VALIDITY
The computation of effort spent to correct a bug described

in a bug report assumes that the real effort is distributed
evenly. This might not be the case but since there is no other
information available, it is the best we can do. This
assumption as well as the others introduces some errors in the
resulting data. But given the huge amount of data available in
the repositories we expect that there is no error inherently built
in this system of computing the effort. Hence, there might be a
decrease of reliability in the data but there should always be an
upper bound.

We also assumed that developers spend whole assigned
period in fixing the bug, but this might not be the case,
because in OSS only some experienced developers are doing
as a full paid job, while most of the contributors are volunteers
and they may be involved in some other jobs during bug
assigned period. Also one cannot completely rule out the
existence of any outliers. However we have almost removed
most of them from our dataset.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented the result obtained from

different effort estimation models for OSS system. These
models are based on statistical methods as well as machine-
learning methods. All the models are based on the same
underlying metrics and effort data and trained with the same
number of instances i.e. 7027. Since most of the OSS system
does not maintain the bug fix effort data, therefore we
developed a method for deriving this information from bug
repositories. We processed the developer’s activity log data
and obtained the bug fix effort values in terms of bug fix days.
Table 3 shows that the machine learning and multiple linear
regression based effort estimation models have correlation
values between 0.51 and 0.56. Similarly the MMRE values lie
between 63% and 93%. This shows that the performance of
our models is satisfactory. In future we will work to identify
some other metrics that have good correlation with effort data.
We will continue our work on bug reports to improve the
extraction of effort data. These will ultimately improve our
effort estimation model.

REFERENCES
[1] Syed Nadeem Ahsan, Javed Ferzund, and Franz Wotawa, “Mining

Software Repositories for Software Estimation Model,” Technical
Report, Institute for Software Technology, TU-Graz, 2009.

[2] Albrecht, A.J. Gaffney, J.E., Jr., "Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science
Validation,", IEEE Transactions on Software Engineering, vol.SE-9,
no.6, pp. 639-648, Nov. 1983

[3] Boehm, B., et al., “Cost Models for Future Software Life Cycle Process:
COCOMO 2,” Annals of Software Engineering, 1995.

[4] B. W. Boehm, “Software Engineering Economics,” Englewood Cliffs,
NJ, Prentice Hall PTR, Oct 1981.

[5] Boetticher, G., “An Assessment of Metric Contribution in the
Construction of a Neural Network-Based Effort Estimator,” Second Int.
Workshop on Soft Computing Applied to Software Engineering, 2001.

[6] M. Fischer, M. Pinzger, and H. Gall. “Populating a release history
database from version control and bug tracking systems,” ICSM 2003.

[7] Ian H. Witten, Data Mining Practical Machine Learning Tools and
Techniqu,. Second Edition, 2005.

[8] Yu, L. “Indirectly predicting the maintenance effort of open-source
softw.: Res. Articles.” J.Softw.Maint.Evol. 18, 5(Sep.06), 311-332, 2006.

[9] De Lucia, A., Pompella, E., and Stefanucci, S. 2002. “Effort estimation
for corrective software maintenance.” In Proceedings of the 14th
international Conference on Software Engineering and Knowledge
Engineering (Ischia, Italy, July 15 - 19, 2002). SEKE '02, vol. 27.

[10] Jorgensen, M., "Experience with the accuracy of software maintenance
task effort prediction models," IEEE Trans. Softw. Eng. vol.21, no.8,
pp.674-681, Aug 1995.

[11] Conte, S. D., Dunsmore, H. E., and Shen, Y. E. 1986 Software Engg.
Metrics and Models. Benjamin-Cummings Publishing Co.

[12] Koch, S., Effort Modeling and Programmer Participation in Open
Source Softw. Projects, Inform. Economics and Policy, 20(4): 345-355.

[13] Qinbao Song, Martin Shepperd, Michelle Cartwright, Carolyn Mair,
Software Defect Association Mining and Defect Correction Effort
Prediction, IEEE Trans. Softw. Eng. vol. 32, no. 2, pp. 69-82, 2006.

[14] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., and Mockus, A.
2001. Does Code Decay? Assessing the Evidence from Change
Management Data. IEEE Trans. Softw. Eng. 27, 1 (Jan. 2001), 1-12.

[15] Putnam, L.H., "A General Empirical Solution to the Macro Software
Sizing and Estimating Problem," Software Engineering, IEEE
Transactions on , vol.SE-4, no.4, pp. 345-361, July 1978

[16] Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A. 2007.“ How
Long Will It Take to Fix This Bug?.” In Proceedings of the Fourth
international Workshop on MSR (May 20 - 26, 2007). International
Conference on Softw. Eng. IEEE Computer Society, Washington, DC, 1.

ACKNOWLEDGMENT

The research work presented in this paper is partially funded by
the Higher Education Commission (HEC), Pakistan and partially
conducted within the competence network Softnet Austria
(www.soft-net.at) that is funded by the Austrian Federal Ministry of
Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsfrderun gsgesellschaft mbH. (SFG), and the city of
Vienna in terms of the centre for innovation and Technology (ZIT).

Support Vector Regression (SVMreg) 0.51 9.36 26.7 63.8 95.8 0.20 0.45
3 Neural Network (Multilayer Perceptron) 0.54 29.2 58.2 93.6 86.3 0.10 0.22
4 Classification Rule (M5Rules) 0.56 10.8 23.0 73.6 82.5 0.18 0.28
5 Decision Tree (REPTree) 0.51 10.8 23.9 74.23 86.0 0.10 0.23
6 Decision Tree (M5P) 0.55 10.6 22.9 77.7 82.5 0.13 0.26

134

An Architecture-based Evolution Management Method for Software Product Line

Xin Peng, Liwei Shen, Wenyun Zhao
School of Computer Science, Fudan University, Shanghai 200433, China

{pengxin, 061021062, wyzhao}@fudan.edu.cn

Abstract
In software product line (SPL) development,

evolutions occur in core assets and application
products. How to ensure their alignment in evolution is
a big challenge. Products in an SPL share a reference
architecture, which centers in SPL development and
evolution, so architectural evolution management is a
natural and essential choice for SPL. In this paper, we
propose an architecture-based evolution management
method for SPL, in which both architecture and
component evolutions are supported. An integrated
version model for both core assets and application
products is proposed. Based on the model, the method
provides evolution processes for architectures and
components, both supporting forward customizations
and backward feedbacks by merging and
synchronization. The prototype tool for the method has
been developed on the open-source version control
system Subversion, and preliminary application has
shown that it can effectively support SPL evolutions.

1. Introduction
In SPL, there are both domain-level (domain

engineering) and product-level (application
engineering) developments with different goals and
disciplines. These two kinds of development activities
are often inclined to evolve to different directions if
there is no effective coordination. For example,
application engineers may decide to make architectural
adaptations incompatible with the reference
architecture or directly modify domain components
under demands of product customers. If this kind of
deviations accumulates, the organization will lose the
control on the product line gradually. Therefore,
successful SPL engineering requires management and
coordination of two kinds of development activities to
meet the organization’s overall business goals [1].

Software configuration management (SCM) is the
discipline of managing the evolution of complex
software systems [2]. The discipline enables us to keep
control and track software changes, and is an integral
part of any software development and maintenance
activity [3]. In traditional software development, SCM
is performed within each project. However, in SPL,
evolution management of application-engineering
projects and the domain-engineering project should be

coordinated and unified to maintain the integrity and
consistency of the SPL. The overall coordination must
ensure that the products and core assets remain aligned
with each other [1].

Products in an SPL share a reference architecture,
which specifies the common structure of the products
and centers in the development and evolution of both
core assets and application products. Architectural
SCM acknowledges the central role that the software
architecture plays in software development and
maintenance [2]. Therefore, architectural SCM is an
effective means for evolution management in SPL.
There have been some related works on evolution
management for SPL architecture, e.g. the xADL-
based works ([4][5][6]). These works focus on
evolutions of architectures only and do not provide
supports for component evolutions, evolution
integration and product release, etc.

In this paper, we propose an architecture-based
evolution management method for SPL. The method
provides coordinated and unified evolution
management for SPL, which can keep the continuous
optimization of core assets, and at the same time
support the implementation of customer requirements
in each product. On the other hand, the method
supports evolutions of both architecture/component
specifications and component implementations. In the
method, evolution managements for architectures and
components are separated, and a comprehensive
version model for both core assets and products is
proposed to form the basis of evolution integration and
release configuration.

The remainder of this paper is organized as follows.
Section 2 introduces some related work and compares
our works with them. Section 3 presents the evolution
management method. Section 4 presents a case study
and evaluates our method. Finally, we draw
conclusions and discuss future work in section 5.

2. Related work
Traditional SCM tools are designed with the

intention of versioning a single product, so they do not
have facilities to support forward and backward change
propagations [7]. Van Gurp et al. [8] propose to
combine product derivation and variability
management based on existing version management

135

tools (e.g. Subversion [9]). Yu et al. [3] propose an
evolution-based SCM model for SPL, but no detailed
introduction on architecture and component evolutions
are reported. Thao et al. [7] present a SCM system
MoSPL for product derivation in SPL. MoSPL
provides version management at the component level,
and explicitly manages logical constraints and
derivation relations among components, thus enabling
the automatic propagation of changes in core assets to
products and vice versa. Their method concentrates on
component-level derivation and evolution only.

The xADL group has a series of works on
evolution management for SPL architecture. They
present Ménage, the xADL 2.0 based environment for
managing evolving SPL architectures in [6]. The tool
provides supports for architectural element versioning
and reference architecture customization. Their
architecture differencing and merging method is
presented in [5]. However, evolution synchronization
and component evolutions are not mentioned.

 Our method adopts xADL 2.0 to represent both
reference and application architectures also. However,
our evolution management method differs from theirs
at several aspects: evolutions of both abstract
architecture models and component implementation are
supported; both evolutions of core assets and
application products are involved with periodic
synchronizations. Furthermore, in architecture merging,
our method adopts the policy of variability abstract on
the differences among the reference architecture and
application architectures, not the all-included merging
in [5].

3. Our method
3.1 xADL 2.0

xADL 2.0 [4] is a highly-extensible, XML-based
architecture description language, which includes a set
of schemas to describe the architecture of a single
software system or a product line. The most important
part is the Structure&Type schema, which is used to
describe basic architectural elements at design time,
including components, connectors and links. Each
component in architecture can have a component type
describing the type information of the architectural
components, including signatures, etc.

Architectural variability for SPL is supported by
the Options and Variants schema. Options indicate
points of variation in an architecture where the
structure may vary by the inclusion or exclusion of a
group of elements [4]. Variants indicate points in an
architecture where one of several alternatives may be

substituted for an element or group of elements [4].
Each optional or variant element is accompanied by a
guard condition to determine the inclusion or exclusion
of it. Readers can refer to [4] for detailed introductions
to xADL 2.0.

Figure 1 depicts an xADL-style reference
architecture of the online book shopping product line.
In the architecture, there are optional component
AcctMgtUI and AcctMgt and variable component
Payment and Discount. Payment has two variants of
PayByVirtualCur and PayByCreditCard for two
different modes of payment. Discount has no variants,
implying that each application can have different
discount policy, so it is an abstract component to be
instantiated in application engineering. Guard
conditions for these optional and variant components
are also listed in Figure 1. It can be seen that payment
mode (represented by the symbol payMode) is the
main variation point. And variation constraints are
implied by guard conditions: if setting payMode to be
virtualCur then components for account management
(AcctMgtUI and AcctMgt) should also be bound.

Figure 1. Reference architecture of the online
book shopping product line

3.2 SPL version model

The version model of our method extends the
structure model of xADL 2.0 schemas of
Structure&Type, Options and Variants. The model
is depicted in Figure 2, in which grey boxes represent
elements from xADL 2.0 and others are our extensions.

From the model, we can see that both architectures
and components are versioned entities. In each product
line, there is only one reference architecture (RefArch),
and all the application architectures (AppArch) are
derived from it. Both RefArch and AppArch can have
multiple versions, and each version is composed of a
set of Component, Connector and Link. Besides,
there are architectural variations (optional and variant
components) and variation constraints in each
RefArch version. Each AppArch version may be
synchronized with a RefArch version or not,
representing the independent evolutions and periodic

136

synchronizations of RefArch and AppArch. By
synchronization, we mean that the adaptations of an
application asset are within the variability scope of
corresponding domain asset. Similarity, there are both
domain and application components, their versions and
derivation/synchronization relationships between them.

In our method, component specifications are
separated from component implementations as
independent versioning entities. Each component
implementation declares a component specification as
its type and then each version of it will implement a
specification version, representing that the component
implementation complies with the specification. To
distinguish the evolutions of architectures and
components, we assume that each ComponentType in
xADL 2.0 refers to a component specification version
in our model, thus component implementations are
completely separated from architectures.

Figure 2. SPL version model

3.3 Evolution process
In our method, core assets and products can evolve

independently. Temporary deviations are allowed, and
periodic synchronizations on both architecture and
component level will be performed to reunify core
assets and application products.

Figure 3. Architecture evolution process

Architecture evolution process in our method is
presented in Figure 3. We can see that besides
independent reference or application architecture
evolutions, there are also cross evolution paths,
including architecture derivation, architecture merging

and synchronization. The first version of an application
architecture is always derived from the latest version of
the reference architecture, e.g. Aa1.0 is derived from
Ra1.1 and naturally they are synchronized. After that,
the application architecture can evolve independently
(e.g. Aa1.1 and Aa1.2). On the other hand, reference
architecture may also evolve for design optimization or
new features (e.g. Ra1.2). After some time, periodic
merging is performed among current versions of the
reference architecture and all application architectures
to make a new reference architecture version (e.g.
Ra1.3). This merging propagates architecture
evolutions in application products to the reference
architecture. After that, synchronization is performed
to propagate evolutions of reference architecture back
to application architectures. Then, reference
architecture and application architectures are
synchronized again (e.g. Ra1.3 and Aa1.3).

Figure 4. Component evolution process

In our architecture-centric evolution management,
component evolutions are managed in term of their
variability types, as shown in Figure 4. Derived
application components are first derived from domain
components along with the application architecture
derivation or synchronization. It can be derived from a
mandatory component, or an optional or variant
component that is selected in architecture
customization. After derivation, the application
component can evolve independently and periodically
be merged with corresponding domain component.
Application-specific components are first created
entirely for an application along with application
architecture evolution. It may be a new part added to
the architecture or a new variant for variable domain
component. It will be evaluated in architecture merging
by the domain architect and may be adopted as a
domain component if the architectural extension is
accepted into the reference architecture. Besides, an
application-specific component can also be the

137

application-specific implementation (instantiation) for
an abstract domain component. In this case, only
synchronization on component specification should be
considered in following evolutions, since abstract
domain component specifies type information only.

3.4 Architecture evolutions

3.4.1 Architecture derivation Guard conditions in
xADL 2.0 provide a built-in mechanism for automated
application architecture derivation, e.g. the xADL

environment [6] provides the SELECTOR component.
A guard condition is a Boolean expression composed
of symbol, value and the comparison between the two
parts, i.e. equal to, greater than, etc. A symbol can be
used in several guard conditions for different optional
or variant components. In architecture derivation, the
application engineer will be requested to assign values
to all the symbols, then all the optional or variant
components can be determined to be bound or not
according to the value of their guard conditions.

Table 1. Merging policies for different kinds of architectural differences
Difference Type Description Merging Policy

merged as new mandatory ComponentNewComponent A Component in AppArch does not exist in RefArch, and the new Component links to

at least one Component that corresponds to non-abstract Component in RefArch merged as new optional domain Component

NewComLinkToAbs A Component in AppArch does not exist in RefArch, and the new Component links to

a Component that corresponds to an abstract Component in RefArch

N/A

OptionalComRemoval Optional Component is removed in AppArch N/A

MandComRemoved Mandatory Component is removed in AppArch change the mandatory Component to be

optional

DifComSpecVersion Non-abstract Component has the same component specification in AppArch, but with a

new component specification version

merged with the domain component

specification to make a new version

NewComponentType Non-abstract Component has a new component specification in AppArch merged as alternative Component and replace

the original mandatory Component

VariantBound Variable domain Component is customized to one of its prescribed variant in AppArch N/A

DifVariantComSpecV

ersion

Variable domain Component is customized to one of its prescribed variant in AppArch,

and the variant has a revised specification (new component specification version)

merged with the variant component specification

to make a new version

NewVariantComType Variable domain Component is customized to a new added variant (with new

component specification) in AppArch

Add the new application variant to the variable

domain Component

AbsComInstance Abstract Component is replaced by an application-specific component in AppArch N/A

3.4.2 Architecture merging Architecture merging in
our method is performed on architectural differences
between reference architecture and application
architecture, which can be captured by our SPL
evolution management environment. The differences
can occur at the structure or type level. For example,
removing a component is a structural difference, and
replacing a variable component with a new variant is a
type difference.

We identify 10 kinds of basic architectural
differences, including architectural customizations as
listed in Table 1, in which type differences are
represented by grey lines. VariantBound,
OptionalComRemoval, AbsComInstance,
NewComLinkToAbs are architectural customizations
within prescribed scope, so no merging operations are
needed. Other cases are differences beyond the
variability scope and merging operations will be
performed. For example, in the cases of both
NewComponent and NewComLinkToAbs, a new
component is added in the application architecture. In

NewComLinkToAbs, the component is linked to an
application component corresponding to an abstract
component in the reference architecture, so it is
considered to be part of the instantiation for the abstract
component. In NewComponent, the component is
linked to non-abstract domain components, so it is
considered to be an additional architecture adaptation,
e.g. the application engineer may decide to add an
logging component to the Order component shown in
Figure 1 for better security.

Merging policies for those architectural differences
are listed in Table 1. In our method, differences on
component specification mean completely different
components (e.g. new variant), while differences on
component specification version mean revised
component specifications (e.g. adding an interface or
interface revisions). It can be seen that in some cases
user intervention is needed, e.g. to determine whether
merged as mandatory or optional component in
NewComponent. After merging, new architectural
variation points or functional extensions may be added

138

to the reference architecture, e.g. adjusting mandatory
components to be optional, or accepting new domain
components from application architectures.
3.4.3 Architecture synchronization After architecture
merging, the reference architecture embodies all the
application differences by new variation points, which
makes it possible to synchronize application
architectures. Architecture synchronization is to
propagate evolutions in reference architecture, from
both itself and other applications, to each application
architecture. It can be seen as the re-derivation of
application architecture from the new reference
architecture version.

The symbols in xADL 2.0 represent business or
design options independent of specific variation points,
so the customization decisions (symbol value
assignments) can be reused. For those newly added
symbols, the application engineer will be requested to
assign values for them.

3.5 Component and product evolution

Component-level evolutions include individual
component evolution and cross evolution also.
Individual component evolution may be due to revision
of specification or implementation only. For a
component, evolution may be due to new specification it
implements (e.g. adding a new interface) or purely an
implementation revision (e.g. bug fixing). The former is
supported by versioning of component specifications
and the management of the implementation relations
between component implementations and specifications
(see Figure 2). The latter is implemented by file-level
evolution management and can be supported by
traditional version management system, e.g. Subversion
[9] integrated in our implementation.

Among those cross component evolutions depicted
in Figure 4, component merging and synchronization
are the main problems. In component merging, derived
application component versions will be merged into
corresponding domain component. It is file-based
merging of component implementations, so the merging
can be supported by the version merging mechanism in
traditional SCM systems. Component synchronization is
to propagate new version of a domain component to
those application components derived from it. After
synchronization, a copy of the domain component will
become the current version of the application
component.

Product evolution is supported by the product
release mechanism. As mentioned before, evolutions on
the architectural level and component level are
separated in our method. Product release should first
choose an application architecture version and then
determine versions for all the components involved.

4. Case study and evaluation
Our method has been implemented in the prototype

evolution management tool ASCMPL (Architecture-
based Software Configuration Management tool for
Product Line). It is an eclipse plug-in developed on
Subversion [9] and xADL [4] library. ASCMPL
provides direct support for architecture and component
specification development. File-based evolutions of
component implementations are managed by
Subversion, and file-level versioning information (e.g.
URLs and revisions in Subversion) is referred in
component configuration information for integration.

In order to evaluate our method, we conduct a case
study on an enterprise product line, i.e. the online book
shopping system, with ASCMPL. It is a Java-based web
system. Figure 1 shows the initial reference architecture
of the product line, in which payment mode is
considered as the main variation point (see the symbol
payMode in the guard conditions). Based on this
reference architecture, an application engineer derives a
product variant and adapts the application architecture
to meet application-specific requirements. The adapted
application architecture is shown in Figure 5, in which
grey blocks represent new application components and
dotted blocks represent components with modified
specifications.

Figure 5. Adapted application architecture

According to our architecture merging method, we
identify 9 architectural differences of 7 different types
and corresponding merging operations as shown in
Table 2. After merging, new variation points are
introduced, including optional component
CashConfirm, AfterService and alternative component
TransInform. Besides, two new symbols of
afterService and inform are added and a new candidate
value cash is added for the existing symbol payMode.
Due to the limitation of space, the reference architecture
after merging is not presented. In this case, some
component-level evolutions are also involved, e.g.
component-level merging between domain component
Delivery and the modified application component
Delivery. In following evolution synchronizations, these
new features in the reference architecture will be
propagated to other applications and their existing
customization decisions can be reused. For example, an

139

application with the component PayByCreditCard can
reuse the decision “payMode=creditCard” in the
synchronization, and decisions for new symbols (e.g.
afterService) should be complemented of course.

From the case study, it can be seen that for a real
software product line, long-term and coordinated
evolution management is necessary. Architectural SCM
is essential for SPL evolutions, since both of them
acknowledge the central role of architecture. Moreover,
in order to provide comprehensive evolution
management, both specification- and implementation-
level evolutions should be supported. Our evolution
management method provides an integrated version
model for both architectures and components. Based on
the version model, the method supports both forward
architecture derivation and backward evolution
feedbacks by architecture merging and synchronization.
It also provides the mechanism to integrate traditional
file-based SCM tools to make a comprehensive
evolution management for SPL.

Table 2. Architecture differences and merging
operations in the case study

Difference Difference Type Merging operations

PayByCash NewVariantComType
as a new variant of Payment with

guard condition “payMode=cash”

CashConfirm NewComponent
as a new optional component with

guard condition “payMode=cash”

AcctMgt
OptionalComRemova

l
N/A

AcctMgtUI
OptionalComRemova

l
N/A

MyDiscount AbsComInstance N/A

MyCustomerRankin

g
NewComLinkToAbs N/A

Delivery DifComSpecVersion

merged with the domain component

to produce a new specification

version

AfterService NewComponent
as a new optional component with

guard condition “afterService=true”

TransInform-SMS NewComponentType

merged with TransInform-email to

make a new alternative component

TransInform with guard condition

“inform=SMS” and “inform=email”

5. Conclusion and future work
In this paper, we present an architecture-based

evolution management method for SPL. A version
model involving both domain and application
architectures and components is proposed and evolution

processes for architectures and components are
presented. The method supports architecture merging
and corresponding evolution synchronization. For
component-level evolutions, our method supports both
specification and implementation evolution.

In our future work, we will try to integrate feature
model [10] and other SPL artifacts in the evolution
management on certain feature-based traceability
mechanism. On the other hand, we will try to integrate
the evolution management with our product derivation
tool [11] to provide a complete platform for incremental
SPL development.

Acknowledgments. This work is supported by National
Natural Science Foundation of China under Grant No.
60703092, and National High Technology Development
863 Program of China under Grant No. 2007AA01Z125.

References
[1] P. C. Clements, L. G. Jones, L. M. Northrop, J. D.
McGregor. Project Management in a Software Product Line
Organization. IEEE Software, 2005, 22(5).
[2] B. Westfechtel, R. Conradi. Software Architecture and
Software Configuration Management. In SCM 10, 2001.
[3] L. Yu and S. Ramaswamy. A Configuration Management
Model for Software Product Line. INFOCOMP Journal of
Computer Science, 2006, 5 (4).
[4] E. M. Dashofy, A. Hoek, R. N. Taylor. A Comprehensive
Approach for the Development of Modular Software
Architecture Description Languages. TOSEM, 2005, 14 (2).
[5] P. Chen, M. Critchlow, A. Garg, et al.. Differencing and
Merging within an Evolving Product Line Architecture. In
PFE’03, 2003.
[6] A. Garg, M. Critchlow, P. Chen, et al.. An Environment
for Managing Evolving Product Line Architectures. In
ICSM’03, 2003.
[7] C. Thao, E. V. Munson, T. N. Nguyen. Software
Configuration Management for Product Derivation in
Software Product Families. In ECBS’08, 2008.
[8] J. Gurp and C. Prehofer. Version Management Tools as a
Basis for Integrating Product Derivation and Software Product
Families. Variability Mgmt., Workshop at SPLC’06.
[9] Subversion. http://subversion.tigris.org.
[10] X. Peng, W. Zhao, Y. Xue, Y. Wu. Ontology-Based
Feature Modeling and Application-Oriented Tailoring. In
ICSR’06, 2006.
[11] X. Peng, L. Shen, W. Zhao. Feature Implementation
Modeling based Product Derivation in Software Product Line.
In ICSR’08, 2008.

140

Towards design and architectural evaluation of product variants: A case study on
an open source software system

Muhammad Irfan Ullah†, Guenther Ruhe†‡, Vahid Garousi‡
†Department of Computer Science, ‡Department of Electrical and Computer Engineering,

University of Calgary, Canada
{miullah, ruhe, vgarousi}@ucalgary.ca

Abstract

Evolving a software system demands a careful
balance between equally important but often
conflicting views of customers and system
architecture. This paper proposes a method to
address evolution of a software system into a product
line containing specialized product variants for
specific markets while aligning the two views. The
proposed method COPE+ iteratively explores the
solutions space to generate product variants for the
two views independently. It uses density based
clustering to identify market segments. Impact of the
proposed features on the existing product’s
architecture is heuristically determined. Behaviors of
the promising variants are then compared with that
of the existing system through extended mq-
simulation on statechart representations. This
determines the degree of similarity between existing
system and proposed product variants. Finally,
human experts evaluate the suggested products.
COPE+ is applied to jEdit, a popular open source
editor. Results indicate usefulness of the proposed
method in bringing together the diversified views of
customers and architecture.

1. Introduction
A software product line (SPL) is a set of software
intensive systems that share a common, managed set
of features satisfying the specific needs of a
particular market segment or mission [1]. SPL is a
viable approach if a company plans to target a wide
and diverse customer base. Typically SPLs evolve
from existing products or systems that are successful
and therefore attract customers from a wide variety of
domains. A number of real-world case studies show
the presence of this phenomenon, e.g., CelsiusTech
Ship Systems 2000 and Cummins Inc. diesel engine
SPL to name a few [1]. As a note on terminology, we
use the term product variant to refer to an individual

product in a SPL. Helferich et al. [2] report that in the
product definition phase many of the existing SPL
development methodologies either focus on technical
details [3] without involving customers in this
process or they identify marketing techniques for this
purpose without prescribing how to translate the
results of these techniques into tangible products [1].
Proposed method COPE+ attempts to address this
shortcoming for the specific evolution scenario when
an existing (single) software system is evolved into a
product line. It builds upon and improves our
previous work (COPE) [4] as following:
1. Feature impact analysis on existing system

architecture using heuristics.
2. Evaluation of customers’ proposed product

variants using results of impact analysis in 1.
3. Behavioral comparison of selected product variants

with existing system using statecharts.

The remainder of this paper is organized in seven
sections. Section 2 presents the problem statement.
Section 3 introduces technical concepts included in
COPE+. Section 4 presents related work. Section 5
presents proposed method COPE+. Section 6
illustrates the method using jEdit system. Section 7
discusses applicability and value of COPE+ and
Section 8 presents future work.

2. Problem Statement
This paper addresses the question: “How can an
existing software system facing feature requests from
a diverse customer-base be evolved into a product
line with product variants targeting different market
segments such that the impact on system architecture
is reduced?” Cost-benefit analysis of impact on
architecture has not been done in this work.

3. Background
In this section we introduce two technical concepts
that will be used in COPE+.

141

3.1 Statecharts
We use statechart (also referred to as state transition
diagram) [5] representation of the system to evaluate
behavioral similarity between an existing system and
its product variants. Statechart representation makes
it possible to perform this comparison in an
operational and systematic manner. A statechart is a
directed graph G = (S, L, T, s0) where

S is a set of states
L is a set of labels of transitions
T is a transition relation such that T � S x L x S
s0�S is the initial state

3.2 Simulation-based Comparison of Statecharts
Structure-based (cost and feature-based) similarity
measures for statecharts are not very useful where
semantic information is important [6]. Therefore, we
selected a behavioral based comparison method:
extremal quantitative simulation (mq-simulation, for
short) [7] which considers semantics of the
statecharts while calculating similarity. Below, we
briefly explain simulation based comparison of
statecharts.

Simulation: If a statechart G1 has all of the behaviors
of a statechart G and maybe more then G1 completely
simulates G. Similar simulation relation can be
established from G to G1 [7].

Bisimulation: It is a two way simulation. G1 and G
bisimulates each other if G1 simulates G and G
simulates G1.

However, mq-simulation in its original form is not
applicable to our problem since it does not allow
partial similarity. Additionally, for product line
design it is important to identify variation points in
product variants with respect to existing system,
hence we extended mq-simulation to address these
issues.

For G1 = (S1, L1, T1, t0) simulates G = (S, L, T, s0) we
extend mq-simulation as following:
1. Label matching between any two transitions a and

b can also accommodate partial similarity. Note
that originally the results were binary [0, 1].
L (a, b): L x L Ñ [0 .. 1]

2. A set of variation points initialized as VP = {} will
be maintained during the simulation process and
updated with respective states where mismatch
occurs.

G1 simulates G results in a measure Q(s0, t0) with
value in the range [0 .. 1] and a set VPa

G simulates G1 results in a measure Q(t0, s0) with
value in the range [0 .. 1] and a set VPb

We combine the two simulation results to evaluate
the bisimulation between G1 and G as:

G1 bisimulates G =
2

)s,t(Q)t,s(Q 0000

Average is just one of the ways to combine the two
simulation results. We think it is reasonable to
calculate a mean value to compare bisimulation of
various proposed product variants. However, other
measures such as addition of two simulation results
for each product variant can also be done.

VP = VPa � VPb

The rationale of performing union on the two sets is
to get variation in both directions of simulation.
Details of our extended mq-simulation model and its
application can be found in [8].

4. Related Work
As mentioned in Section 1, COPE+ bridges the gap
between customers and system architecture which
has been declared as a major deficit in software
product line development methodologies [2].
Scoping is one of the most critical activities in early
phases of SPL development, however, it typically
generates results based on economic and technical
considerations and does not include customers’ input
in product definition [3]. Other related works to
COPE+ are FAAM [9] and QFD-PPP [10], however,
these methods have an implicit assumption of
greenfield development and there is no consideration
for existing product’s architecture. Feature Oriented
Domain Analysis (FODA) [11] method of SEI
investigates product features to define domain for a
set of related products. Like COPE+, it maps product
features on architectural components and uses
statecharts for behavioral representation of the
system. However, FODA’s goal (domain definition)
is different from that of COPE+ (product evolution).

Kuhn et al [12] have proposed the idea of semantic
clustering for refactoring of software systems. We
have used this concept for identifying the impact of
proposed features on existing system architecture.
For behavioral comparison of systems, COPE+
extends the work of Sokolsky et al [7].

5. Method: COPE+
COPE+ is a decision support method architected on
the concept of Hybrid Intelligence as implemented in
EVOLVE* [13] for the problem of release planning.
The idea of decision support systems is to suggest the
most qualified solution(s) from a large solutions
space using advanced computational techniques to
the human expert who can select the one that is most
promising using soft and implicit objectives. The
rationale behind the concept of hybrid approaches is
that the solution generated by combining human and

142

computational intelligence is better than the one
generated by applying them in isolation [13]. COPE+
has three phases as shown in Figure 1. The focus of
this paper is on Exploration phase where we
introduce computational techniques to systematically
evaluate customers’ suggested products with existing
architecture.

jEdit - Existing Product (G)

s0
s
1

File Access
Mode

s5

s2

Edit Mode

s4

Help

s3

Set t ings Mode

a1 a8

a7 a2

a4

a6

a3a5

jEdit - Product Var ian t 1 (G 1)

t0 t1
F il e Ac c ess

Mo de

t5

t2

Ed it Mo de

t4

He lp

t3

Set t in gs M od e

b1 b 8

b 7 b2

b
4

b6

b3b
5

t6

Se le c t UI
b9

b10

jEd it - Pro duct Var iant 2 (G2)

t0

t1
F il e Ac c ess

Mo de

t5

t2

Ed it Mo de

t4

He lp

t
3

Set t in gs M od e

b
10

b
8

b2

b
4

b6

b3b
5

t
6

Authe n tic a t i on
M od e

b
9b1

Figure 1: An overview of the iterative method COPE+

5.1 Phase 1 - Modeling
The first phase of COPE+ formalizes the problem in
three domains, i.e., customers (left oval in fig. 1,
Phase 1), architecture (right oval in fig. 1, Phase 1)
and proposed product features (middle oval in fig. 1,
Phase 1). Relationships are established amongst these
domains through customers’ voting on the features
and impact analysis of features on architecture.

Customers are represented by C = {c1, c2, …, cl}. For
simplicity, it is assumed that all the customers have
equal importance. Features are represented as F = {f1,
f2, …, fm}. The granularity of a feature is not preset.
It can be a single feature request or multiple feature
requests grouped together on any given criterion.
Customers vote on the features based on a 9-point
likert scale (1: least desired to 9: extremely desired).
A vote represents value of the feature to a customer.
Additional criteria can also be defined for voting.

Existing system architecture is evaluated at the
abstraction level of packages (a package is a
composition of classes) which are represented as K =
{k1, k2, …, kn}. Each one of the proposed features fi
impacts a set of packages Òi � K. Such Òi can be
generated through any impact analysis technique
such as [12]. We refer to Òi as Package Impact Set
for feature fi. In the opposite direction, each package
kj (partially) implements a set of features Ój � F
referred to as Feature Impact Set for package kj. A
dependency relationship is established amongst the
packages implementing the same feature. This
relationship is defined by an nxn matrix Ô such that
for any two packages x and y, if Òx Õ Òy Ö {} then

Ô(x,y) = 1 otherwise Ô(x,y) = 0. Sum of all the
entries in column (or row) j gives the Dependency
Value Øj for the package j.

5.2 Phase 2 - Exploration
This phase gets inputs from the Modeling phase and
uses them to explore the solutions space. On the
customers’ side, DBSCAN [14] clustering algorithm
is applied using RapidMiner version 4 to customers’
voting on proposed features. Two additional input
parameters, Ù (neighborhood distance) and MinPts
(minimum number of data points in a cluster)
required by DBSCAN are also evaluated. Interested
reader is referred to [4] for details on the reasons for
selection of DBSCAN and its application. By varying
the value of Ù, all possible cluster configurations Oa =
{oap, …., oaq} are generated where as each oai is a
customers cluster representing a market segment. A
products set Pa = {pap, …., paq} for each cluster
configuration Oa is proposed containing products pai
corresponding to market segments oai.

On the architecture side, the impact of implementing
the proposed features is calculated. Three heuristics
based on greedy algorithms are used independently to
select features for implementation such that the
impact on existing architecture is reduced. H1 is
illustrated in Algorithm 1, given below. H2 and H3
are defined similarly [8].
H1: Package with smallest Dependency Value first.
H2: Package with least number of classes first.
H3: Package with least number of lines of code first.

Algorithm 1: ARCHITECTURAL_IMPACT
Inputs: For each feature fi, Package Impact Set Òi. The set of all packages
K. For each package kj, Dependency Value Øj and Feature Impact Set Ój.
Output: A sequence of implementation for features fi such that total number
of packages impacted is minimized.
1. BEGIN
2. BinA = K, BinB = {}, QueueC = {}
3. WHILE BinA is NotEmpty
4. BinB = Package kj from BinA with smallest Øj
5. BinA = BinA – kj
6. Search Ój for fi such that |Òi| is smallest
7. BinB = Òi
8. BinA = BinA - Òi
9. QueueC = fi
10. END WHILE
11. RETURN QueueC
12. END

Each heuristic identifies a set UHi of cut-points. A
cut-point is defined as a group of features formed by
combining adjacent iterations when new packages
added from iteration i to i+1 are less than the
threshold t. The value of threshold is selected based
on the data set under consideration, additionally; a
range of threshold values can also be used. As
features are added to the group within a cut-point
boundary, very few new packages are impacted but
as we move across to the next cut-point, a large
number of packages are impacted even for including
one new feature. Product sets PSa proposed by the

143

customers are then evaluated using these cut-points.
Most promising product set is selected for further
evaluation. Up to this point all the analysis on the
products was static. The behaviors of the product
variants in the selected product set are now analyzed
in more detail by comparing them with the existing
system. We use statechart representation of the
system to evaluate behavioral similarity through
bisimulation between each proposed product variant
and the existing product as presented in Section 3.2.
The sequence of activities in this phase is shown in
Figure 1, Phase 2: Exploration.

5.3 Phase 3 - Consolidation
In the third phase, human experts analyze the results
for proposed product variants. They are able to
address also tacit concerns not being handled in the
formalized solution method in Phase 2. As a result,
the experts can also identify certain changes to the
underlying model to generate more appropriate
solutions in the next iteration. The detailed
discussion of Consolidation phase is out of scope of
this paper and will be presented in follow up work.

6. Application of COPE+ on jEdit
We have applied COPE+ to jEdit v4.0
(www.jedit.org) which is a popular open source text
editor.

6.1 Phase 1 - Modeling
A total of ten customers belonging to diverse
domains were hypothetically asked to vote on the
proposed feature groups i.e. l = 10. We selected 95
feature requests from the jEdit project website [15]
while 14 feature requests were hypothetically
created. To determine the impact of these features on
the existing system, we classified them into nine
groups based on their functionality, using results of
[12]. All the analysis in this case study has been
performed at the level of feature groups as shown in
Table 1, therefore, m = 9. jEdit v4.0 has thirty
packages containing 394 classes. Impact analysis is
performed at the level of packages hence, n = 30.
Evaluation of Package Impact Set Òi, Feature Impact
Set Ój is partially shown in Table 1.

Table 1: jEdit feature groups and architectural impact

ID Feature
Group

Functionality Packages
util
(Ó1)

options
(Ó2)

browser
(Ó3)

asm
(Ó30)

1 DC (Ò1) Domain Concepts X X X
2 UI (Ò2) User Interface X X
3 RE (Ò3) Regular Expressions X
4 TB (Ò4) Text Buffers X
5 DW (Ò5) Dockable Windows
6 BS (Ò6) Beanshell Scripting
7 XR (Ò7) XML Reader
8 BA (Ò8) Bytecode Assembler X
9 TZ (Ò9) Tar and Zip Archives X X

A cross in a cell (Table 1) means feature group fi
impacts package kj and conversely package kj
(partially) implements feature group fi. Collecting all
entries in row i forms the set Òi, doing the same for
column j results in Ój. Dependency Value Øj for each
package of jEdit is evaluated through an nxn
packages interaction matrix referred to as Ô. Detailed
data and analysis of this example are presented in [8].

6.2 Phase 2 - Exploration
We have used a range of values for Ù (1 to 18) to
generate all possible customers’ cluster
configurations using DBSCAN [14]. Results for
three such configurations are shown in Table 2. Last
column shows market segments containing
customers.

Table 2: Cluster configurations using DBSCAN

Ù Configuration No. of Clusters Market Segments

12 O1 2 o11: 1, 3, 9, 10
o12: 5, 6, 7, 8

15 O2 2 o21: 1, 3, 4, 9, 10
o22: 2, 5, 6, 7, 8

18 O3 1 o31: 1, 2, 3, 4, 5, 6, 7,
8, 9, 10

Product sets for these cluster configurations are
shown in Table 3. Product variants within each
product set are generated by combining the features
highly desired (e.g., voted 7 or higher on a 9-point
likert scale) by the customers in corresponding
market segment.

Table 3: Products sets for market segments

Products
Set

Product Variants

PS1
p11: XR, UI, DW, TB
p12: UI, TB, BS, DC, TZ

PS2
p21: XR, UI, DW, BS
p22: UI, TB, RE, DC

PS3 p31: XR, UI, DW, TB, RE, DC

Application of the heuristics H1, H2 are shown in
Figures 2 and 3 respectively. Illustration of H3 is not
shown due to space shortage. These impact diagrams
identify the cut-points as dashed vertical lines using
threshold t=2, which is reasonable for the given data.
However, other threshold values can also be used to
generate multiple sets of results for each heuristic.

Table 4 summarizes the impact of implementing
proposed features on the jEdit architecture. For each
heuristic, the set of cut-points is presented. The
values in the last column (architectural impact) are
calculated using the impact diagrams for
corresponding heuristics (e.g., Figures 2 and 3).

144

Figure 2: Impact on jEdit’s architecture using H1

Figure 3: Impact on jEdit’s architecture using H2

Now we evaluate the customers’ proposed products
in Table 3 with architectural impact as shown in
Table 4. Results are shown in Table 5.

Table 4: Feature impact on jEdit’s architecture

Heuristic Cut-point
Set

Features Architectural
Impact

H1

UH1 =
{cp1, cp2,
cp3, cp4,
cp5}

cp1 = {XR}
cp2 = {UI, DW}
cp3 = {TB, RE, TZ,
BA}
cp4 = {BS}
cp5 = {DC}

cp1 = 6.7%
cp2 = 46.7%
cp3 = 66.7%
cp4 = 80%
cp5 = 100%

H2 UH2 =
{cp1, cp2}

cp1 = {BS}
cp2 = {DC, UI, DW,

TB, XR, TZ,
BA, RE}

cp1 = 20%
cp2 = 100%

H3 UH2 =
{cp1, cp2}

cp1 = {BS}
cp2 = {DC, UI, DW,

TB, XR, TZ,
BA, RE}

cp1 = 20%
cp2 = 100%

Table 5 shows that all product sets perform equally
using H2 and H3. However, PS1 has the least impact
on the architecture using H1. Hence it is selected for
behavioral comparison with the existing system.

Table 5: Impact of product variants on jEdit’s architecture

Product
Set

Product
Variant

Arch.
Impact

(H1)

Arch.
Impact

(H2)

Arch.
Impact

(H3)

PS1 p11 66.7% 100% 100%
p12 100% 100% 100%

PS2 p21 80% 100% 100%
p22 100% 100% 100%

PS3 p31 100% 100% 100%

In this example, G (Figure 4) is the statechart
representing simplified subset of behavior of the
existing jEdit system. Performing analysis on a
subset of behavior is valid because only the states

where product variants extend the existing system
need to be examined. States are shown as rounded
rectangles while arrows represent transitions with
label ai as events triggering those transitions. Due to
space shortage, one event (a1 = open file) is shown as
an example. We will compare the behavior of each
proposed product variant of PS1 with the existing
jEdit system through bisimulation. The statechart
representations are generated by analyzing the design
documentation of the existing system.

Figure 4: Statechart representing a simplified subset of
jEdit’s behavior

Bisimulating Product Variant p11
A major new functionality proposed for product p11
is related to different types of user interfaces
including tablets, table top displays for distributed
team development [8]. Figure 5 represents behavior
of p11 as statechart G1 including this additional
functionality. G1 = (S1, L1, T1, t0) simulates G = (S,
L, T, s0) results in Q(s0, t0) = 1 which implies p11 has
all the behavior of existing jEdit system. The set of
variation points VP1a = {}. For the opposite case i.e.
G simulates G1 results in Q(t0, s0) = 0.66 which
means the existing jEdit system simulates the
behavior of p11 up to 66%. This is because of the
presence of new events b9 and b10 as well as a new
state t6. The variation points set VP1b = {s2} meaning
s2 state in the existing jEdit system becomes a
variation point in p11 initiating new behavior. The
two results are combined to generate the bisimulation
as following:

G1 bisimulates G =
2

)s,t(Q)t,s(Q 0000
 =
2

66.01
 = 0.83

VP1 = VP1a � VP1b = {} � {s2} = {s2}

Bisimulating Product Variant p12
Customers for product p12 have requested inclusion
of multiple user types with different access privileges
to the project. Product p12 requires ability to define a
team structure with approval hierarchy [8]. This
translates to the statechart G2 in Figure 6 representing
behavior of p12. The results of applying bisimulation
between G2 and G are as following:

G2 bisimulates G =
2

)s,t(Q)t,s(Q 0000
 =
2

75.075.0
 = 0.75

VP1 = VP2a � VP2b = {s0, s2} � {s0, s2} = {s0, s2}

2

24

13

19
2014

17

30

2
3

4
5

8
7

1

9

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8
Algorithm Iteration Number

N
um

be
r o

f P
ac

ka
ge

s

0
1
2
3
4
5
6
7
8
9
10

N
um

be
r o

f F
ea

tu
re

s

Packages

Features

cp
 1

cp
 2

cp
 3

cp
 4

cp
 5

6

25 27 28 29 30
8

6
5

4

9

1
0

5

10

15

20

25

30

35

1 2 3 4 5 6
Algorithm Iteration Number

N
um

be
r o

f P
ac

ka
ge

s

0
1
2
3
4
5
6
7
8
9
10

N
um

be
r o

f F
ea

tu
re

s

Packages

Features

cp
 1 cp
 2

145

Figure 5: Statechart representing a simplified subset of p11’s
behavior

Figure 6: Statechart representing a simplified subset of p12’s
behavior

6.3 Phase 3 - Consolidation
In the final phase of COPE+ a human expert will
evaluate the results of Exploration phase and evaluate
the suggested products with respect to their
bisimulation results. A trade off analysis can be
performed between the bisimulation values and
variation point sets to make product selection
decision. Details are out of scope of this paper and
will be presented in follow-up works.

7. Discussion
Evolving a software system is a complex problem.
This complexity exponentially increases when there
are multiple market segments requiring customized
product variants. COPE+ helps decision makers by
exploring the vast solutions space and selecting
promising solutions for in depth evaluation. We have
selected three different heuristics so as to identify an
evolution strategy with the least impact on the system
architecture. However, this is an ongoing effort and
results presented in this paper have not been
validated. Hence, we cannot confirm how much the
architectural impact will be reduced by using these
heuristics. Acceptance of a particular solution also
requires proactive participation of customers for
making trade-offs between architectural impact and
feature selection.

8. Future Work
We plan to include more heuristics for architectural
impact evaluation and eventually use evolutionary
algorithms to generate more robust solutions. Further

case studies are planned to validate effectiveness, or
otherwise, of COPE+ in aiding product evolution
decisions. Cost-benefit analysis of proposed method
will also be performed as part of these case studies
including investigation of a convenient level to which
impact on architecture should be reduced for
acceptable results.

Acknowledgements
This research is partially supported by the Natural
Sciences and Engineering Research Council of
Canada (NSERC Discovery Grant no. 250343-07).
Vahid Garousi is supported by the NSERC
Discovery Grant no. 341511-07 and also by the
Alberta Ingenuity New Faculty Award no.
200600673.

References
[1] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns, Addison-Wesley, August 2001.
[2] A. Helferich, K. Schmid and G. Herzwurm, “Product

management for software product lines: An unsolved
problem?”, Communications of the ACM, Vol. 49, No.
12, December 2006, pp. 66-67

[3] K. Schmid, “A comprehensive product line scoping
approach and its validation,” in proceedings of the ICSE
2002, Orlando, USA, pp. 593 – 603.

[4] M. Ullah and G. Ruhe, “One product versus product
line: Decision support based on customer needs
analysis”, Doctoral Symposium at SPLC 2007, Kyoto,
Japan, pp. 174-183

[5] J. Rumbaugh, I. Jacobson and G. Booch, The Unified
Modeling Language Reference Manual, 2nd Ed., Pearson
Education, July 2004.

[6] A. Sanfeliu and K. Fu, “A distance measure between
attributed relational graphs for pattern recognition”,
IEEE Transaction on Systems, Man and Cybernetics,
Vol. 13(3), pp. 353-362, 1983

[7] O. Sokolsky, S. Kannan, and I. Lee, “Simulation-based
graph similarity”, in TACAS, pp. 426-440, 2006

[8] M. Ullah, “COPE+ and its application”, Technical
Report SERG-2009-01, University of Calgary, Canada.

[9] T. Dolan, Architecture Assessment of Information-
System Families: A Practical Perspective, Ph.D. Thesis,
Technical University Eindhoven, 2001

[10] A. Helferich, G. Herzwurm, and S. Schockert, “QFD-
PPP: Product Line Portfolio Planning Using Quality
Function Deployment”, in proceedings of SPLC 2005,
Rennes, France

[11] K. Kang et al., “Feature-Oriented Domain Analysis
(FODA) Feasibility Study”, Technical Report CMU/SEI-
90-TR-021

[12] A. Kuhn, S. Ducasse and T. Girba, “Semantic clustering:
Identifying topics in source code”, Information and
Software Technology, Vol. 49(2007), pp. 230-243

[13] G. Ruhe, and A. Ngo-The, “Hybrid Intelligence in
Software Release Planning”, International Journal of
Hybrid Intelligent Systems, Vol. 1(2004), pp. 99-110

[14] M. Ester, H. P. Kriegel, H. Sander and X. Xu, “A
Density Based Algorithm for Discovering Clusters in
Large Spatial Data Sets with Noise”, KDD 1996,
Portland, USA

[15] http://sourceforge.net/projects/jedit/

146

Decision Support System Environment for Software Architecture Style Selection
(DESAS v1.0)

Shahrouz Moaven1, Hamed Ahmadi2, Jafar Habibi1, Ali Kamandi1

1Sharif University of Technology, PO Box 11365-9517, Tehran, Iran
2Young Researchers Club, PO Box 14737-33985, Tehran, Iran

moaven@ce.sharif.edu, ha.ahmadi@qazviniau.ac.ir, jhabibi@sharif.edu, kamandi@ce.sharif.edu

Abstract. In software systems development lifecycle
making use of software architecture, especially by taking
advantage of architecture styles and patterns, is an
essential part which increases product's quality.
Nowadays, in order to cover complexity of systems,
combination of different architecture styles should be
used; therefore ambiguous behaviors might occur. Hence,
due to the critical need for toolsets capable of selecting
suitable styles and patterns, an environment is proposed
in this paper which can perfectly cover different aspects of
the implementation of decision support system (DSS). The
designed environment obviates data implementation
concepts and security considerations. Moreover, it is
updatable; precision of architectural decisions and
quality of designed architectures will improve by time.

Keywords: architecture style, heterogeneous style,
Decision Support System, fuzzy inference.

1 Introduction

Nowadays, fundamental role of software architecture as a
powerful contrivance in controlling complexity of projects
is such unavoidable that architectural design is an
essential part of development lifecycle [1]. Making use of
software architecture styles and patterns is a most
common way in architectural design which helps in
finding risks early and increasing quality of products [2].
Architecture styles and patterns are some reusable and
frequently-used structures which specify software
components, their specific properties and relations among
them [1, 3]. However, in spite of having some recognized
advantages and disadvantages, these results are not
conclusive and should be refined in different domains or
in case of having combined styles [4]. Today, due to the
enormous increase in terms of complexity and scale of
projects, the importance of this matter increases [5].

Consequently, problem of selecting architecture styles is a
multi-criteria problem [6] in which lots of features of a
project should be considered. Aggregation of all these
criteria is a very complicated and challenging issue with

which most of human users try not to be faced. Hence, we
need tools that are able to first, consider all criteria related
to the problem domain to aggregate them, and then, select
suitable styles and patterns which can perfectly cover
different aspects of the domain as much as possible [7].
To overcome mentioned issues, an environment is
represented in this paper which is a set of tools capable of:
storing and retrieving all necessary data and information,
making inferences, making multi criteria decisions to
select and design heterogeneous architecture styles, and
suggesting some alternative architectures for the system
with respect to architect's priorities.

Moreover, because of updating capability, expertise of the
environment will increase after being used in different
projects. The abstract design of the DSS and the needed
tools were presented in [6, 7]. In this paper, architecture of
data communication and existing access levels are
presented in the implementation of the DSS which prove
capabilities of the DSS in practice.

The remainder of this paper is organized as follows. Issues
we faced in selecting a suitable style are discussed briefly
in section 2. Existing composite styles are classified in the
third section. Moreover, these two early sections contain
some considerations we faced with while implementing
the environment. Some details about DSS of architectural
selection are presented in section 4. Data structure and
constitution of interaction between users and DESAS are
topics of scrutiny in the fifth section. Section 6 includes
related work. Last section contains conclusion.

2 Issues of Style Selection

Selecting suitable architecture style(s) that can help us in
satisfying functional and especially non-functional
requirements of a system correctly and precisely is one of
the most important parts of software design process [8]. In
order to select suitable architecture styles, that are able to
cover different characteristics of the problem domain and
satisfy wide variety of requirements, different goals and
objectives should be considered. Hence, architecture style
selection is a multi-criteria decision-making problem. In

147

addition, comparing capabilities and benefits of software
architectures is somehow difficult; moreover, results
should be refined and completed in accordance with
architects' experiments [6]. Additionally, complexity of
architecture style selection will increase as we need to
aggregate effectiveness and importance of each
requirement in order to make precise decisions.

When deciding about architecture styles to select, based
on the problem domain, selection of only one style among
existing styles, including simple or heterogeneous styles,
might satisfy all requirements. In this case, only functional
and non-functional system requirements and priorities of
the architect are taken into consideration. But in some
cases, only one of the existing simple or heterogeneous
styles does not satisfy requirements and cannot cover the
problem domain completely [9]; therefore, more than one
of the existing styles must be selected. In this case, not
only functional and non-functional requirements and
priorities of the architect should be considered, but also
combination constraints should be taken into account.

Making use of more than one architecture style comes
with consistency problems and constraints. In this
situation, by considering each architecture style alone,
including heterogeneous or simple, different results might
be obtained in comparison with the case that each one is
part of (another) heterogeneous architecture and should be
combined with other style(s) [9]. For example, when an
existing style which satisfies a quality attribute, e.g.
performance, significantly, is combined with, e.g.
embedded into, another style which satisfies performance
as well, obtained architecture will not necessarily satisfy
performance significantly too. Level of satisfying
performance by overall architecture must be evaluated.

Besides, because of the complexity of today's software
systems and their large scale, most of systems should be
developed based on heterogeneous architectures which are
combination of different architecture styles. For selecting
architecture styles, evaluation methods and techniques
[10] are usually used; but these methods do not pay
attention to the abilities and capabilities of styles.

3 Possible Composite Styles

In order to implement an environment which is able to
design software architecture, we need to know possible
combinations of architecture styles. Because, combining
architecture styles in order to cover the problem domain is
one of the most important issues in architecture design.
Generally we can classify these combinations into four
categories [11] (imagine p and q are architecture styles):

� Sequential heterogeneous styles
� Embedded heterogeneous styles
� Parallel heterogeneous styles
� Hybrid heterogeneous styles

Sequential- Putting architecture styles together in a way
that when one part of system, which has a special style,
finishes, another part with a different style will start. �1�2
indicates sequential arrangement of architecture styles.

Embedded- Whenever a component of an architecture style
has another style itself, it is called embedded heterogeneous
architecture style. 1���2 means that q is inside p.

Parallel- Whenever two or more architecture styles exist
in a system structure without any interaction, we have
parallel heterogeneous styles. We represent it by�1

2.

Hybrid- By virtue of complexities of contemporary
systems and their need for making use of styles that have
enough coverage of the problem domain, sometimes we
should use a combination of the mentioned styles.

4 DSS for Architecture Selection

The DSS defined in [7], is a meta-model that can help
architects to choose suitable architecture style(s) and
design architecture of their systems. This DSS takes
advantage of all useful information that could help in
performing precise decisions [7]. It includes of four
essential components which give the system abilities of
storing, extracting, and adding all necessary information.
These components are: Knowledge base, Tools, Decision
maker, and User Interface.

Knowledge base: knowledge base is the most essential
component of the system and contains all necessary
information needed for making precise decisions. It
contains three components: domain repository, style
repository, and rule base. Domain repository contains
information related to the importance of each quality
attribute in different domains. This information could be
updated after each decision making process; update is
performed with respect to the new results in various
domains. Style repository contains information related to
the level of satisfaction of different quality attributes by
different styles. Generally, style repository includes
mechanisms of storage, search, and update. It maintains
styles and patterns and, moreover, their categories, the
relation among them and experimental information about
their usage. Rule base contains some rules which indicate
interaction among quality attributes in an architecture
style with respect to the domain. These rules are extracted
from architecture styles repository and domain repository.

Tools: this component is a collection of some tools which
are needed in the DSS. Aggregation tool is the most
important tool which is used to aggregate different
criteria; and its precision has a direct relation with quality
of results. Hence, a fuzzy aggregation tool is used in the
DSS which has an acceptable precision and has proved its
capability in architecture style selection [6]; however,
other tools could be used for aggregation. Extracted rules
and priorities of architect are inputs of the fuzzy tool.

148

Moreover, other tools can be used in line with aggregation
tool which will be discussed in the next section.

Decision maker: decision maker is another important
component of the system. The responsibilities of the
decision maker are: receiving and sending information
from and to all components of the DSS, recognizing new
compositions and adding them to the styles repository, and
making decision about updates. Moreover, this part
consists of an internal human agent as an internal expert
architect and makes decisions about updates [7].

User Interface: generally, receiving users' input, included
all necessary information to make decision, and delivering
it to the decision maker; receiving decision results and
representing it for users; and retrieving some information
from system are performed by this component.

But, implementation of these components, the way of
interaction with users, and the way of handling this
interaction by exploiting expertise factor are discussed in
the next section.

5 DESAS V1.0

Describing each component of the DSS, in order to exploit
their benefits and capabilities, is important and, if
performs suitably and appropriately, will increase
precision and validity of decision results. Hence, in order
to implement the DSS efficiently and effectively, some
requirements should be satisfied. For this system, three
main requirements are considered: issues in knowledge
base implementation, validation of entered data, and
customization for each user. Satisfaction of requirements
and sub-requirements can provide us with benefits and
capabilities of the DSS in selecting and designing
architecture styles, especially composite styles. Moreover,
other facilities are considered for the environment which
increase its capabilities and improve its applicability by
specific updating process. These facilities are mentioned
in a separate subsection.

5.1 Implementation of Initial Knowledge Base

To design the knowledge base in a way that increases
applicability and quality of designed DSS some important
requirements are concerned. At first, structure of
repositories and rules must be inferable and must consider
different aspects like quality and quantity attributes, and
interaction among them so that high quality inferences are
performed. In works presented in [6, 7], theoretical
structure of databases and tables of the DSS was
represented. But we noticed that in order to implement the
knowledge base perfectly, other considerations like
notations to formalize different combinations of
architecture styles [11] must be concerned. Moreover, we
need rules which can determine interaction among quality
attributes of an architecture style with respect to the
specified domain and specified importance level of all
possible combinations of criteria.

As mentioned, rules are stored in the rule base and are
extracted from style and domain repositories. These rules
cover all aspects of interaction among criteria sets,
including synergy and redundancy, with respect to the
problem at hand. In the designed rule base two types of
rules exist: one for interaction among styles, while the
other covers interaction among quality attributes.
Equations (1) and (2) are hold for each type respectively.

34 5� 6 789:��;<�= � ;<� (1)34 ;> ? @A BCD ;E ? @F 7GHC ;E � �;E I J�B:K�;> � ;> I J (2)

Translation of (1) with respect to the notation defined in
[11] and mentioned in section 3 is: if the pipes-and-filters
architecture style (represented by P) embeds into layered
architecture style (represented by L), security attribute of
the overall system will not change. General translation of
(2) is: if a specified architecture style, concurrently
satisfies two quality attributes cost (represented by�;>) and
performance (represented by�;E) more than the threshold
Ti, extra profit is obtained.

Additionally, rule selection can be categorized in two
types of simple and complicated. If requirements domain
that should be satisfied is not extensive, selection of a rule
would be enough. In this case, the rule exactly exists in
rule base and is enough for the condition. Therefore,
making use of fuzzy integral, which is a discrete tool, is
enough for decision making [6]. But in some cases,
selection of an existing rule cannot support the condition
and more than one rule is needed. In this case, selected
rules and priorities are used to make fuzzy inference.

5.2 Data Validation

Data validation is an important requirement of system
implementation that should be covered. If a DSS user,
changes some information related to the repositories
correctly or not, this change must not affect the main
repositories of the system before being certified. To
obviate the need, all performed changes enter to a separate
place and will not affect main data. It is the responsibility
of the expert architect to take these changes under close
scrutiny and perform them into the main database in case
of being certifiable. Another important thing is that the
expert architect can modify these changes before storing
to the database. Moreover, he can modify data stored in
the database if needed. These actions are performed
through a user interface component called EXA form and
represented in Figure 1. Modifications can be performed
with respect to expert's experiences and results of previous
projects which have been performed by making use of the
DSS. Besides, expert architect is responsible for validating
new composite styles and adding them to the main
database. Although the responsibility of initializing the
knowledge base is up to the expert architect, but
dependability to the expert will diminish by increasing the
expertise level of the system; this is a case of having
change in the architecture of DSS after long usage.

149

Figure. 1. A schema of the EXA form

5.3 Customization for Each User

Although all changes that each user performs do not enter
to the repositories directly, but every user must be able to
retrieve these changes while accessing to the main data.
Hence, the place to store empirical data should be
nonvolatile and the users must be able to retrieve
previously-entered data and change this information if
needed. Consequently, to obviate these requirements, we
make use of layered architecture for interaction of user
with the environment which is represented by Figure 2.
This structure is designed for the access of users to the
data, and moreover, represents internal structure of the
user interface component. This multi-layered architecture
avoids occurrence of repugnance and avoids entrance of
invalid information. Moreover, it provides the DSS with
more flexibility and the ability of being customized for
each user. Therefore, users not only can exploit the main
data of the system but also can make use of their stored
experiences and opinions in decision making processes.

As represented in Figure 2, a central database exists in the
lowest layer which consists of style and domain
repositories' data. The decision maker component of the
DSS has a human agent -expert architect of the system-
which has the authority of changing these data and
updating repositories. In order to differentiate users, and
satisfy security requirement, four access levels are defined
based on users' experiences. Abilities of updating,
inserting, and adding new styles are motivation for
differentiations. For example, the internal expert architect
has complete access to all parts of the system. By defining
access levels based on experiences we can rank users'
results and opinions. The access control information
resides in the central database.

In the next level, a data warehouse is considered which
consists of lower data by considering users' customized
and changed data; in addition, temporary and empirical
data of users will not affect the main data. It is used to
store static analyses and perform dynamic analyses; the
request of a dynamic analysis is received via user

interface. Additionally, users can perform some changes
like updating information of each style, adding a
composite style, or adding a new style into data
warehouse, with respect to their access level.

Figure. 2. Structure of user interaction

Analyzing and searching for architecture styles should be
performed with respect to both needed quality attributes
and project domain. This capability is provided for users
via analyze page of the user interface component which is
represented in Figure 3.� Moreover, user can choose the
place to perform search (either customized individual data
in the data warehouse or the base-data in the main
database) and compare results to take the best decision.

5.4 Other Facilities

The DESAS v1.0 is a first release of our tool and to
complete it and to help in having better performance and
more usability we should perform progress in accessories
part of the environment. For example a coding part is
included which can help in implementations; because
codes are predefined and we can take advantage of this
capability. In the experience part some experiences about
styles and their composition deployed on different
domains are included. Other parts and useful accessory
features will be completed in future work.

5.5 Case Study

In order to represent an experience with usage of the tool,
we take advantage of the famous KWIC example [8]. To
compare different architecture styles we take advantage of
three criteria: performance, reusability, and flexibility. We
incorporate criteria change in algorithm (CA), change in
data representation (CD), and change in function (CF)
into the criterion flexibility to increase precision.

As represented in Figure 3, in the input part, there is a
"more" link by which user can use more criteria related to
the problem domain; moreover, he can just use the fuzzy
inference tool from this part. Note that what is shown in
the GUI are some common quality attributes. It is the
responsibility of fuzzy aggregation tool to calculate
importance of flexibility. In order to obtain result, two
rules (3) and (4) are extracted from rule base.

150

Figure. 3. A schema of the analyze page
LM�NO4 ? 7A�BCD�NOP ? 7F�7GHC�NO4 � �NO4 Q H�BCD�NOP � NOP Q H (3)LM�NOB ? 7A�BCD�NO4 ? 7F�7GHC�NOB � �NOB I H�BCD�NO4 � NO4 I H (4)
Once obtaining a result for flexibility, overall architecture
of the system must be selected by considering all quality
attributes. In this case, some other rules are extracted from
rule base which represent interaction among quality
attributes. When this phase is performed, an evaluation of
each architecture style is obtained which represents level
of adequacy of each one for the problem at hand. Obtained
results are used as basic information for entering to the
database again. Next, system architect should consider the
limitation of implementation cost, which generally is an
effective and important parameter, in order to balance
technical requirements and costs. Hence, the system will
extract information about cost of architecture styles and
starts analyzing. Rules (5), (6) and (7) represent some
extracted rules during inference.

LM�R�S�BK7�7GHC��NT�L � ULC��NT�RV �NT�B� Q H (5)LM�R�

�3�7GHC��NW�L � NW I �XKL�R Y
�NW�R Q �NW�3
 (6)LM�6�

�Z�7GHC��;>�= � ;> I �[\=�Z Y
�;>�6 Q �;>�Z
 (7)

The notation�]^_ indicates the importance level of different parts
of the system; With respect to the structure defined in [11].

Rule (5) says that making use of ADT embedded into
Layered diminishes overall performance (Qp). Rule (6)
says that making use of Implicit Invocation in parallel
with Layered is useful to diminish costs and will reduce
the overall cost. Rule (7), is same with (6). It is extracted
because we imagine that, with respect to the fuzzy
inference, Layered style was removed from candidate
styles since it was not technically acceptable. Although,
with respect to the fuzzy inference [6], Pipes-and-Filters is
a valuable style for the problem at hand, but making use
of Blackboard in parallel can balance overall cost; and it
can be considered as a suitable design for this problem.

6 Conclusion and Future Work

In this paper, with respect to the approach that proposed to
make use of a DSS, we designed an environment by which

some tools are implemented for selecting and designing
heterogeneous architecture styles. This environment
considers all criteria related to the problem domain and its
expertise increases after each usage. It is secure enough
and prevents entrance of invalid data; moreover, it can be
customized for each user. In the designed environment
information entered by users is confirmed and registered
with respect to their experiences in projects. Furthermore
the tool is client capable, so that user specific data can be
processed in addition to the common and shared data. By
exploiting unremittingly-updating information, expertise
and performance of DSS will increase. The designed
multi-layer architecture makes the environment capable of
storing historical data by considering the time dimension.
This data is used by expert architect to decide about
changing information of the central database. Moreover,
each user can store and retrieve his empirical data and
exploit it in future without affecting the base knowledge
of the system. Finally, we mention that this architecture
for the DSS can be modified after several usages.

Representing an extended knowledge base to achieve
more adaptation with software architects' working
requirements is our future objective in order to complete
the environment. This will obtain by exploiting the results
which have acquired by making use of the tool practically.

7 References

1. Bass, L., Clements, P., Kazman, R., Software Architecture in
Practice, Addison-Wesley Professional, 2nd edition, 2003.

2. Klein, M., Kazman, R., Attribute-Based Architectural Styles,
Tech. Rep. CMU/SEI-99-TR-022., Carnegie Mellon
University, School of Computer Science, 1999.

3. Tao, L., Fu, X., Qian, K., Software Architecture Design:
Methodology and Style, Stipes Publishing L.L.C., 2006.

4. Svahnberg, M., Supporting Software Architecture Evolution-
Architecture Selection and Variability, Ph.D. Thesis,
Blekinge Institute of Technology, DS No. 2003:03, 2003.

5. Shaw, M., Clements, P., The Golden Age of Software
Architecture, IEEE Software, Vol. 23, No. 2, pp. 31-19, 2006.

6. Moaven, S., Habibi, J., Ahmadi, H., Kamandi, A., A Fuzzy
Model for Solving Architecture Styles Selection Multi-
Criteria Problem, In proc. of 2nd UKSim European Modelling
Symposium on Computer Modelling and Simulation,
England, pp. 388-394, 2008.

7. Moaven, S., Habibi, J., Ahmadi, H., Kamandi, A., Decision
Support System for Architecture-Style Selection, In proc. of
6th Intl. Conference on Software Engineering Research,
Management and Applications, pp. 213-220, 2008.

8. Shaw, M., Garlan, D., Software Architecture: Perspectives on
an Emerging Discipline, Prentice Hall, 1996.

9. Firesmith, D.G., Capell, P., Hammons, C.B., Latimer, D., and
Merendino, T., The Method Framework for Engineering
System Architectures, AUERBACH, 2008.

10.AT&T. Best Current Practices: Software Architecture
Validation, Internal report, 1993.

11.Moaven, S., Kamandi, A., Habibi, J., Ahmadi, H., (in press).
Towards a framework for evaluating heterogeneous
architecture styles, Asian Conference on Intelligent
Information and Database Systems, 1-3 April, 2009.

151

Towards Architecture-centric Collaborative Software Development

Yanchun Sun, Hui Song, Wenpin Jiao
Institute of Software, School of Electronics Engineering & Computer Science, Peking University,

Key laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, P.R.China

E-mail: {sunyc, songhui06, jwp}@sei.pku.edu.cn

Abstract

In the development of large and complex software
systems, software engineers are required to cooperate
with their efforts. They develop shared understanding
surrounding multiple artifacts, each artifact
embodying its own model, over the entire development
process. How to support software artifacts based
collaboration efficiently within a large development
process becomes a big challenge in software
engineering. Since software architectures are
considered as the blueprints for target software
products and they can be used to organize various
software artifacts in software development process
from a high level perspective, this paper puts forward
an architecture-centric collaborative software
development approach to supporting the collaborative
software development across the whole software
lifecycle. The paper also illustrates how the approach
works by studying one case in detail.

1. Introduction
 To produce large software, software engineers often
develop multiple shared artifacts over the entire
development process [1]. How to support software
artifacts based collaboration efficiently within a large
development process becomes a big challenge. This is
just the main concern of this paper.

Software artifacts based collaboration distinguishes
collaboration in software engineering from such
broader collaboration that tends to provide artifact-
neutral coordination technologies and toolkits.
Artifact-neutral coordination technologies are based on
natural language and easy to use but they are short of
semantic information support for the development
artifacts and context, which is easy to lead to
ambiguous understanding for developers. On the
contrary, artifacts based collaboration can solve this
problem if we can use the models besides the artifacts
very well according to the models’ good structure,
clear syntax and explicit semantics. Moreover, artifacts
based collaboration can reduce the intensive

collaborative communication based on the common
understanding of software artifacts.

For the collaboration based on software artifacts, the
version control systems are often frequently used to
manage the software artifacts [9]. These tools are very
important for collaborative development among
software engineers, but the artifacts stored in these
tools are almost code-level programs and lack a
reasonable organization from the viewpoint of software
development process. As a result, these tools are short
of support for collaborative development process.

To support the collaborative development, it is
necessary to provide software developers with an
appropriate model to organize various software
artifacts in software development process from a high
level perspective. Then, software engineers can
collaboratively develop software based on this model.

With software becoming large and complex,
software architecture (SA) becomes a blueprint to
guide the development and maintenance of software
systems. Some SA-centered development methods
have been put forward for collaborative development
[2,3,4,5,6,10], but they do not use the semantics of SA
adequately, they just support simple collaboration for
several authors based on the management of authority,
and moreover, they support collaborative development
just in special phase rather than the whole lifecycle.

In this paper, we put forward an architecture-centric
collaborative development approach, which extends
our previous approach [12] for supporting
collaboration from the design phase to the whole
lifecycle. First, based on version control tool and
semantic information of SA, we abstract the
information of fine-grained modifications into SA in
order to support the collaborative design of software
architecture among designers. Because SA is a core
artifact in the whole software lifecycle, by introducing
bi-transformation technologies [8], we transform the
modification manipulation of other artifacts to the
modification manipulation of SA model, to support the
collaborative development among different developers.

The rest of this paper is organized as follows.
Section 2 presents some related work. In Section 3, we

152

put forward an architecture-centric approach to
supporting collaborative software development.
Section 4 illustrates the approach by studying one case
in detail. Section 5 concludes the contribution of the
paper and gives the future work.

2. Related work
 Software engineers in the academy and industry
have developed a wide range of SA-based technologies
to support collaborative work on their projects.
 In the academy, Richard Taylor and David Garland
present their own Architecture Description language
(ADL) and propose the SA-centered development
method based on the ADL [2,3]; ArchStudio from UCI
[5] and ACMEStudio from CMU [7] typically support
collaborative authoring by versioning architecture
description files. MolhadoArch system from University
of Wisconsin is integrated with a fine-grained version
control tool to afford the collaboration at the level of
individual model elements [6]. In the industry,
Siemens’s Hofmeister etc. describe a set of architecture
views and put forward a corresponding software
development method from requirement to
implementation [4]. IBM also focuses on SA-centered
development method and “Rational Software
Architect” is an UML modeling tool focused on
software architecture [10]. Engineers work
collaboratively on diagrams with collaboration
mediated via the configuration management system.
 Compared with our architecture-centric
collaborative development approach supporting for the
whole software lifecycle, most of the collaborative
supports provided by these tools above are fine-grained
and without the semantic information of SA and
moreover, they are just limited in the special phase
rather than the entire software lifecycle.

3 An Architecture-centric Collaborative
Development Approach

We present an approach supporting architecture-
centric collaborative development, which is described
as Fig. 1. Our approach is based on a software reuse
methodology ABC(Architecture Based Component
Composition) [11]. ABC method argues that SA
should play a centric role in the whole software
lifecycle. Based on this, we present the idea of the
architecture-centric collaborative software
development. During the whole development process,
software developers manipulate and produce different
artifacts in different phases. These artifacts have the
relationships of refinement, and can be viewed as
different views of software architecture model in some
sense. Thus, our approach can support artifact based
collaboration via introducing bi-transformation

between different artifacts and SA model.

Design of
Software

Architecture

Architecture
Based

Component
Composition

Architecture
Based

Application
Deployment

Architecture
Based

Maintenance
and Evolution

Design View
Deployment

View
Runtime

View
Implementation

View

Architecture-
Oriented

Requirement
Analysis

Phases

Artifacts

Architecture Model

Mainly operate on

Bi-transformation

Integrated Development Environment
Refinement

Fig. 1. Overview of the Approach
By referencing the typical architecture description
language (ADL), we define the meta-model of

software architecture by using Eclipse Ecore. Fig. 2
describes the core elements in the meta-model. The
core concept of this meta-model is Component. We
partition and organize every software system into

components, each with a relatively individual concern.

Fig. 2. Software Architecture Model in Our Approach
We also introduce the concept of InnerStructure,

which helps organizing the whole system as a
hierarchical structure to support the stepwise
refinement during architecture design. Based on the
meta-model, we construct a software architecture
modeling environment by using Eclipse GMF, named
ABCTool, in order that we could assist designers to
record their design decisions by recording their
manipulations such as additions and deletions of
elements and modifications of properties and
relationships of elements. The entire architecture
model is recorded in the form of XMI in several files.

Designers can modify the SA model via the graphic
interfaces. When the designers finish and save the
modification, some related XMI files will be changed.
As pure context files, these XMI files can be managed
by a version control tool. In our work, we select CVS
to achieve this. By using CVS, we can record who
makes the modifications and what modifications have
been made to SA model in the collaborative
development process. We use Eclipse Plug-in to
encapsulate the record file of these modifications and
visualize them in ABCTool.

153

By CVS interface, we can obtain the information
about the modifications from the XMI files. By
analyzing the modifications information, we can elicit
which elements in SA model have been modified and
what kind of modifications have been made. Moreover,
we can display the modifications explicitly in
ABCTool, for example, using different color to
distinguish added components, deleted components
and unchanged components.

For the changed model, collaborative developers can
select to accept, reject or add new modifications. The
maintenance activities for modifications can be
mapped to the operations in CVS. During the
maintenance, collaborative developers can use the
modification information offered by CVS to identify
the intention of modifications. Sometimes, they may
need to contact directly the developers making
modifications to discuss the goals of the modifications.

In different phases, developers will deliver different
artifacts, but most of these artifacts record some core
information of SA. In other words, some
transformation relationships exist between these
artifacts and SA model. Thus, by transforming the core
information in SA and adding special information in a
given phase, the artifacts in the given phase can be
constructed. Using those research fruits in the bi-
transformation field [8], we can use a set of
transformation rules to reflect the modifications of SA
model into other models, and also reflect the
modifications of SA level information in other models
to SA model. Thus, we can utilize the approach above
to assist with the collaborations among a variety of
developers participating in different phases.

4 Case Study

M

D3

D1

D2

Projectcreate

Architecture1

Arch_Diff1

Architecture2
confirm

comment

I1

create design

Implement
Model1

Implement

modify

Implement
Model1

Implement

I1
Bi-Tr Bi-Tr

Impl-Arch-Diff Impl-Arch-Diff

Comment

M

Comment

Confirm

Architecture3

R1

Runtime
Architecture

Running
SystemReflect

Compare

Runtime
Architecture

MConfirm

Architecture5

Fig.3. The Collaboration among Different Participants
In this section, we use a case to demonstrate our

approach to collaborative development process. The
case is about designing and developing a prototype
website to support comparison shopping, based on two
existing shopping system, Java Pet Store (JPS) and
Rubis auction system. The comparison shopping
system retrieves information of the same good from

JPS and Rubis and lists it on one page so that
customers could make decision on where to shop.

There are 6 members participated in this case study,
including a manager(M), 3 designers(D1,D2,D3), an
implementer(I1) and a runtime administrator(R1). The
detailed collaboration among these participants is
described as Fig.3.

Design Phase
 First of all, manager M records the information
about all members and launches this development
process by creating a new project. Then he submits this
project so that it could be used as a shared work space
for all members. D1 is in charge of the big picture of
this system. After an investigation of the existing
systems, he decides to choose JPS and Rubis as a base
to develop this comparison shopping system, and he
records (Design) this decision into the first version of
the software architecture. The current version of
architecture only represents that the system must
contain a UI component for comparing information
about commodities, and the information is acquired
from two existing systems, i.e. JPS and Rubis.
Currently, the two systems are treated as single
components(described as Fig.4).

Fig.4. The First Design Version Made by D1
After the manager commits this version of

architecture, D2 enters the design activity by checking
out this shared project along with the first version of
architecture model. D2 notices that it is not a good
design for subsequence maintenance that the
information retrieving logic, the comparison logic and
the user interface in the original version of architecture
are all encapsulated in component “Compare”. Thus he
separates the original component “Compare” into three
ones and get a new version of architecture. As a
common designer, D2 does not have the authority to
commit his architecture as a new version, but he can
compare his version with the current version in the
project, which is the first version designed by D1. The
comparison version is shown as Fig.5. The green
background means new added component and the blue
background represents the modified ones.

Fig.5. The Comparison Version Made by D2

154

 All the members of this development team can
check out this comparison version to find what has
been changed by D2. They can also make their
comments on the changes. Now D3 enters the project,
and from the comparison version she knows that D2
added a new component “UI” and a new component
“Retrieve” and changed the component “Compare”.
She agrees with D2’s decision of providing separated
component for retrieving information about
commodities, and thus she records “agree” as well as
her comments on component “Retrieve” in comparison
version. But in the meantime, she thinks that the logic
of “comparison” is not complex and does not need a
separate component. So she records “disagree” on
component “UI” and gives her comments. She also
provides her own version of architecture, and commits
the comparison version. Now every member of this
team can check the two comparison versions, and give
their comments on the changes. Finally, M checks the
two comparison versions, collects the comments, and
makes the final decision. In our case, M finally adopts
D2’s version, and merges (confirms) D2’s change with
his original version. Then he commits this new
architecture model as the second version of
architecture design.
 (2) Implementation Phase
 The team uses this second version of architecture
model to start implementation. I1 first uses our
transformation support to systematically translate the
architecture model into an implementation model as
follows. As JPS and Rubis are all J2EE applications, I1
also chooses J2EE as the platform for his
implementation. Thus the implementation
model(described as Fig.6) is specific to J2EE. I1
implements “UI” as a web component, and implements
component “compare” and “retrieve” as two individual
EJB components. EJB “retrieve” interacts with the
existing JPS and Rubis system via remote procedure
invocation (RMI).

Fig.6. Implementation Model Made by I1
 This implementation model directly complies with
the second version of architecture model. But when
considering deployment, I1 finds that this
implementation is not satisfied. He notices that there
are a big amount of data exchange between component
“retrieve” and the existing JPS and Rubis system, and
thus RMI will cause bi-performance penalty. So it is
better to implement two EJBs for retrieving and
adapting data, so that he can deploy the EJB for JPS

onto the same server with JPS system, and deploy the
retrieve EJB for Rubis on Rubis’s server.

Fig.7. Implementation Model Made by I1 when Deploying

Fig.8. The Third Version made by M
 But this implementation does not comply with the
final architecture, and as an implementer, I1 does not
have the authority to arbitrarily change the original
design. Now he can use bidirectional transformation to
trace back his change, and get a new architecture
model. Then he compares his trace-back architecture
with the original architecture, and commits the
comparison version. Finally, M checks out the
comparison version of I1’s architecture, and notices
that the only difference is that the retriever component
is substituted by two adapters. He thinks that this
difference does not conflict with the original decision
of the designers, and thus M adopts I1’s modification
and commits it as the third version of
architecture(shown as Fig.8).
 (3) Runtime Maintenance Phase

In the current version of architecture, JPS and Rubis
are all composite components. In maintenance phase,
the runtime administrator needs to use the detailed
information, including the inner structure, the
information about running platform, and the runtime
data collected from the platform, to maintain the
system at runtime. Our comparison shopping system is
deployed on a J2EE compliant application server,
named PKUAS. In this section, we present how R1
uses our architecture-based support to maintain the
running system.

The Fig.9 is a snap shot of our architecture-based
runtime management tool for PKUAS. The central
editor shows part of the architecture model of JPS.
Many of the elements in this architecture model are
actually the images of resources at runtime. For
example, the component SignOn is an image of the
EJB named SignOnEJB running on PKUAS, and some
of the attribute values displayed in the bottom attribute
view are actually retrieved at runtime. R1 can make his
diagnosis for the running application on the basis of

155

the attribute changes or element emergences or
disappearances, and he can manipulate the running
application by directly changing some of the attribute
values, e.g. he can change the value of
MaxInstancesCached, and the instance pool allocated
for SignOnEJB will be resized, when the maintainers
finally launch the synchronize command.

Fig.9 Architecture-based Runtime Management Tool
 After the system has been used for some time, R1
notices that the early version of JPS does not block
brute force attracts, which means a malicious user may
access the store by trying passwords for many times.
R1 knows that it is caused by inadequate constraints on
the component SignOn, so he instantiates a new
Constraint element in architecture model, assigns it
with a simple prototype implementation, and inserts it
into the constraint list of component “SignOn”. When
he launches the synchronization command, the
interceptor will be dynamically inserted into the
container of “SignOnEJB” without restarting the server.
Since all the changes on the system should be decided
by M, R1 also has to trace back his changes into
original architecture model. As a local modification on
an inner EJB inside the JPS system, this modification
only affects the inner implementation of JPS
component in the original architecture model, without
changing its interface. Therefore, M concludes that this
modification does not violate the original architectural
decision, and he adopts R1’s runtime evolution.

5 Conclusions
 This paper puts forward an approach to supporting
architecture-centric collaborative development in
different phases. We use SA model to distill the
semantics of context changes recorded in CVS, and
then display the change of SA model to assist different
designers to collaborate their design. By using bi-
transformation technologies, we use the transformation
relationships between SA and other artifacts to support
the collaborative development for different developers.

In the future, we will make further research on how
to introduce more architectural knowledge (e.g., design
rationale) to facilitate the collaborative development.

Acknowledgments. This effort is sponsored by the
National Basic Research Program of China (973) under
Grant No. 2009CB320703, and the National High-
Tech Research and Development Program (863) of
China under Grant No. 2007AA01Z127,
2008AA01Z139, and the Science Fund for Creative
Research Groups of China under Grant No. 60821003.

References
1. Jim Whitehead, "Collaboration in Software Engineering:

A Roadmap", In: Future of Software
Engineering(FOSE'07), Minneapolis, MN from May 19
to May 27, 2007.

2. Nenad Medvidovic, David S. Rosenblum, Richard N.
Taylor, "A language and environment for architecture-
based software development and evolution", in
Proceedings of the 21st international conference on
Software engineering, Los Angeles, California, United
States, 1999.

3. David Garlan, Shang-Wen Cheng, An-Cheng Huang,
Bradley Schmerl, Peter Steenkiste, "Rainbow:
Architecture-Based Self-Adaptation with Reusable
Infrastructure" Computer, vol. 37, no. 10, pp. 46-
54, Oct., 2004.

4. C Hofmeister, R Nord, D Soni, Applied Software
Architecture, Addison Wesley, 2000.

5. UCI Software Architecture Development Environment,
2007, http://www.isr.uci.edu/projects/archstudio.

6. T.N.Nguyen and E.V.Munson, Object-oriented
Configuration Management Technology can Improve
Software Architectural Traceability”, in 3rd ACIS
International Conference on Software Engineering
Research, Management and Applications(SERA’05),
Mount Pleasant, Michigan, USA, 2005, pp.86-93.

7. A. Kompanek, "Modeling a System with Acme", 1998,
http://www.cs.cmu.edu/~acme/html/WORKING-
%20Modeling%20a%20System%20with%20Acme.html.

8. Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao,
Masato Takeichi, Hong Mei, "Towards Automatic Model
Synchronization from Model Transformations", in
Proceedings of 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE
2007), Atlanta, Georgia, November 5-9, 2007.

9. Grady Booth, IBM Rational, "Introducing Collaborative
Development Environments", Dec 2006,
http://www.alphaworks.ibm.com/contentnr/cdepaper.

10. IBM, "Rational Software Architect Overview," 2007,
http://www-306.ibm.com/software/awdtools/architect/
swarchitect/.

11. Hong Mei. ABC: Supporting Software Architectures in
the Whole Lifecycle. In: Proceedings of the Second
International Conference on Software Engineering and
Formal Methods (SEFM’04), 28-30 September 2004,
Beijing, China. IEEE Computer Society 2004.

12. Yanchun Sun, Hui Song, Xinghua Wang, Wenpin Jiao.
Towards Collaborative Development Based on Software
Architecture. In the 20th International Conference on
Software Engineering and Knowledge Engineering
(SEKE'2008), Redwood City, CA, USA. July 1 - July 3,
2008, 250-254.

156

ANALYSIS OF AGENT ORIENTED SOFTWARE ENGINEERING
METHODOLOGIES FOR SOCIAL CAUSAL MODELS�� � � � �

Michele Atkinson, Kutta Technologies, Inc.
Sheryl Duggins, Southern Polytechnic State University �

Abstract -- This research examines the application of
agent-oriented software engineering methodologies to a
social causal model. It evaluates several popular agent-
oriented software engineering methodologies including Gaia,
TROPOS, Prometheus, and AUML. The research presents
an analysis of the methodologies and focuses specifically on
causal models, where agents are used to analyze a
cause/effect relation between a social attitude and a social
effect. A case study is performed and analysis is
summarized as recommendations for improving agent-
oriented software engineering methodologies.

1. INTRODUCTION

Social causal models are used to study the cause and
effect relationships at play in social systems. Social
scientists use causal models as abbreviated depictions of a
realistic setting based on abstraction and idealization.
Distinct from a replica (which aims to produce an identical
copy of the social system), a model abstracts away details
that are not of interest and assembles abstractions of what is
interesting [1].

Agents are particularly well-suited for building social
causal models because their inherent properties tend to
emerge behaviors, as human behaviors do, in a macro-level
effect of the micro-level agent interactions. Wooldridge and
Jennings [4] described the properties of agenthood as:
autonomy, reactiveness, proactiveness, and social ability.
When agents possess each of these properties, they possess
an individual reasoning ability that (when observed as a
society of agents) evolves social outcomes that might not
have been considered before. These evolutionary
characteristics are the main reason analysts are interested in
social applications of agent modeling. We wondered how
much more accurate social models could be if engineering
methodologies were improved so that analyzed causal
relationships could be aggregated to project possible
outcomes. With this research we hope to identify where
subjective decisions exist in current methodologies and to
suggest improvements for minimizing subjective decisions in
the design process.

A. Rationale

The U.S. Army is investing millions to improve their
understanding of the causal system at work in the Iraqi
insurgency. Insights need to be organized and disseminated
as a social model of human intelligence data so that cultural
lessons learned can be preserved across brigades, from one
deployment to another. To harness the power of networked

intelligence data, the model will be distributed on the Joint
Forces Global Information Grid as a powerful system of
systems. Machine-readable human intelligence will be
mined, analyzed, and distributed across the Grid with
Semantic Web technologies including metadata, ontologies,
and intelligent agents [2]. Agents are critical pieces of the
Grid, because they are the system components that will that
fuse latent, incomplete, and inconsistent observations about
people, events, and relationships into cohesive information.
They will interpret and apply cultural rules to derive possible
courses of action and mitigate undesirable effects. Finally,
agents will learn and refine the uncertainty of the human
intelligence as they analyze more data. In short, agents will
help U.S. troops manage and propagate cultural insights from
one brigade to another long after the first and second
deployments have returned home. Because of this potential,
agents are of great interest for modeling cultural
understanding and tracking insurgents.

B. The Need for Agent-Oriented Software Engineering
Methodologies Applied to Causal Models

Causal models are social simulations that are used to
evaluate whether there is a causal relationship between a
given stimuli and an observed effect. The following points
illustrate the difficulties that social simulations present.

Belief systems are not static. In the Iraqi insurgency,
beliefs, desires, and intentions evolve as events unfold;
therefore every possible permutation cannot be anticipated at
design time. Methodologies need to account for the
evolution of belief systems as events unfold.

Group belief systems are aggregates of the individual
belief systems. The Iraqi insurgency is a perfect example of
how the groups often have their own belief systems that
emerge from separate and distinct individual belief systems.
It is the group’s integrated belief system that shapes the
actions taken on the environment. Yet the individual belief
system must still be represented explicitly because groups
often splinter and form new groups. This implies an
aggregation (and to some degree, a computable summation)
of individual attitudes.

Groups influence individuals. Though lone suicide
bombers have become a more common occurrence in some
parts of Iraq, the suicide bombers are not acting alone. Their
acts are generally planned and encouraged by a larger,
organized group. Again, this implies that the group has a
collective belief system that shapes the interactions on the
environment as opposed to individual belief systems. The

157

group’s belief system actually constrains the individual’s
actions on the environment.

The goal of this research is to identify which of the
existing AOSE methodologies provide the most robust
simulation while handling these unique challenges.

C. Approach
This research will evaluate four AOSE methodologies,

propose evaluation criteria related to social causal modeling,
and evaluate each of the selected methodologies using those
criteria. The methodologies selected for this research include
Gaia [5,6], TROPOS [7], Prometheus [8], and Agent UML
[9,10]. One of these methodologies will be chosen to
implement a case study on the Iraqi insurgency and the
results are presented here.

This paper assumes familiarity with the AOSE
methodologies and will not describe them in detail here. The
four models are representative of a larger classification of
agent design approaches in the AOSE methodology
literature, including Belief Desire Intent (BDI) models,
societal role models, and agent-based UML models [12].
Gaia and TROPOS incorporate the societal role models,
while Prometheus does not. TROPOS and Prometheus
incorporate the BDI models, while Gaia does not. AUML
supports agent-based UML models and provides no support
for BDI constructs. An analysis across these models should
give insight into whether causal models are better suited to
societal role modeling, BDI modeling, or AUML modeling.

Each of these methodologies will be evaluated according
to the criteria established in prior research [11,12] as well as
new criteria specific to causal modeling. Highlights of our
Iraqi case study will be detailed, followed by our
recommendations for future work.

II. MODEL CLASSIFICATIONS

Originally proposed by [13], BDI models use mentalistic
constructs to represent the complex and dynamic aspects of
the system. Before the idea of beliefs was introduced, the
agent’s environment was usually captured in rigid data
structures called concept frames. However, beliefs
introduced the concept of managing uncertainty about the
environment. Beliefs are distinct from concept frames
because they include a measure of uncertainty about the
environment that influences how the agents act.

Desires represent the objectives of the agent. Because
desires are expressed as desirable environmental states,
agents can exhibit proactiveness, reactiveness, and autonomy
in pursuing the desired goal state without explicit direction
from another entity. Intent is an agent’s expression of
available alternatives in pursuit of its desires. Expression of
intent is a critical piece to enabling social ability because
negotiation and coordination with other agents requires a
vocabulary for expressing what needs to be done and how
agents will organize tasks amongst themselves. Ultimately,

autonomy, reactiveness, proactiveness, and social ability
came to be the defining properties of agenthood [5].
Therefore, it is a reasonable expectation that mentalistic
constructs may be a necessary to decompose agent systems.

Societal models focus on identifying the role each
organization plays in a society. The social level analysis at
the system layer identifies the domain’s relevant
organizations. The analysis treats those organizations as
agents and analyzes their interaction with each other through
goals and actions. Thus, the societal role model situates the
domain’s mentalistic decomposition inside the domain’s
societal decomposition.

III: METHODOLOGY EVALUATION CRITERIA

Our evaluation criteria are derived from the work of [12],
but the evaluation is our own work. Lin’s group organized
their criteria into four categories similar to those of [11],
including: 1) concepts and properties, 2) notations and
modeling technique, 3) process, and 4) pragmatics. The
concepts and properties criteria relate to the desirable
properties of the agent design and include autonomy, mental
reasoning, adaptation, and social properties. The notations
and modeling technique criteria relate to the methodology
itself. These include whether the notation supports the
required expressiveness, layers of decomposition,
modularity, code generation, refinement of protocols, and
traceability. The pragmatics criteria describe how practical a
methodology is to use. Pragmatics take into account the
availability of toolsets, the required level of expertise,
whether a methodology assumes a particular implementation,
and how easy it is to deploy agents. The Causal Modeling
criteria are our own criteria and focus specifically on
designing social simulations.

A. Analysis

Our analysis scored each of the criteria for each
methodology on an ordinal scale using an overall summation
to evaluate which methodology was strongest in each area
and overall. The observations are detailed in Tables 1-4.
The scoring criteria have been omitted because of page
limitations on this paper. In our analysis, AUML is
compared along with Gaia since Gaia recommends using
AUML for its detailed design phase.

Prometheus scored strongest in the concepts and
properties criteria, because it is the most deliberate about
addressing the organic components of agents. Prometheus
explicitly designs the sensors and actions, as well as internal
reasoning mechanisms for adaptation and autonomy.
Prometheus pays particular attention to the social behavior of
agents, guiding the derivation of their communications,
collaborations, and organization.
��

158

TABLE�1.��CONCEPTS�AND�PROPERTIES�CRITERIA.�
Gaia/AUML TROPOS Prometheus
Sensed Perceptions and Interactions:
Sensed perceptions organized as
resources early; interactions evaluated
early and throughout.

Glosses over sensed perception
design; protocols specified as
AUML interaction diagrams.

Interface descriptions take place early
on. The percept template descriptor
describes the perceived data; action
template descriptor describes actions.

Internal Reasoning: Represents the
internal reasoning as a set of liveness
rules and safety properties, but goals are
not explicitly specified.

TROPOS represents internal
reasoning as goals that are
decomposed as capabilities and
protocols.

Represents internal reasoning as goals
that are decomposed as capabilities,
plans, and actions.

Adaptation: Belief system adapts
through the addition of new rules.

Adaptation requires a redesign of
goal decomposition.

Adaptation requires a redesign of
goal decomposition.

Concurrency: AUML specifically
notates concurrent sequences in detail.

AUML specifically notates
concurrent sequences in detail.

Prometheus does not provide
guidance for concurrent designs.

Communications: Protocols are
explicitly designed and associated with
roles and activities.

TROPOS recommends using AUML
to diagram agent protocols. Agent
protocols are derived from the goal
capability derivation.

Uses protocol and message
descriptors to describe interactions
between agents, which decompose
into actions. More detail than others.

Collaboration: Goals implied in
liveness rules and safety properties.
Rules can be achieved collaboratively by
sharing a protocol and using the
specified data format to exchange
necessary information.

The protocol definitions provide a
way for agents to share goals. These
are delegated to AUML.

Prometheus has a specific data
template for shared data objects that
is derived after the protocols are in
place.

Agent Abstraction: Gaia refers to
organizational patterns to guide agent
partitioning. It recommends
organizational efficiency and simplicity,
but does not explicitly guide them.

Agent partitions are derived from
stakeholder analysis.

Data coupling diagrams are used to
analyze the coupling and cohesion
between agents. Prometheus is the
most detailed in this particular area.

TABLE�2.��NOTATIONS�AND�MODELING�CRITERIA�EVALUATION.�
Gaia/AUML TROPOS Prometheus
Expressiveness: Gaia’s formal notation
is easier to maintain earlier on while
agent partitions are still forming. AUML
is the most expressive as far as
diagrammatic notations go.

TROPOS relies on diagrams to
decompose the system, but lacks the
template definitions for each
diagram entity found in Gaia and
Prometheus. Without templates,
TROPOS feels somewhat loose in
definition and scope.

Prometheus’ template diagrams guide
the designer through a detailed
description of the agent system,
including its belief system, its
environment, and its
communications.

Complexity: Gaia is somewhat vague
about how to partition the agents, but
AUML is extremely strong at nesting
diagrams to conceptualize a system from
general to specific.

TROPOS moves from stakeholder
analysis to goals, then capabilities,
and finally protocols. It is less of a
modular approach and more of a
waterfall of decompositions.

Prometheus starts with goals and
decomposes more specific goals from
there. However, Prometheus seems
to be missing the most abstract layer,
which is the role layer.

Modularity: Captures protocol
abstractions for reuse.

No focus on reuse. No focus on reuse.

Executable: Since no toolset exists at
this point, there is no code generation.

Tools do exist for TROPOS, but
none appear to generate agent code.

There does not appear to be a toolset
to support Prometheus.

Refinement: Reasoning elements (rules)
are derived from analyzing the
capabilities needed for each role.
AUML is particularly nice for refining
Gaia’s more abstract specifications into

TROPOS actually derives goals first
and backs them into a list of
stakeholders. It seems more natural
to derive the stakeholders first;
allowing the goals to fit inside the

Prometheus skips over role
identification and starts with goal
identification which is decomposed
into the belief system of capabilities,
plans, and actions.

159

detailed sequences and collaborations. scope of the identified stakeholders.

TABLE�3.��PRAGMATICS�CRITIERIA�EVALUATION.�
Gaia/AUML TROPOS Prometheus
Tools: Evaluation of AUML toolset
being investigated at
http://www.auml.org, but no toolset
established as of August 2008.

A suite of tools is available at
http://www.troposproject.org.

AUML has been integrated into the
Prometheus toolset.

Required Expertise: Gaia relies on
organizational modeling and patterns.

No background information
required.

No background required. Mission
statement is to cater to those
unfamiliar with agents.

Modeling Suitability: Slanted toward
rules based architecture.

Tied to BDI architecture. Tied to BDI architecture

Domain Applicability: Formal
notations and diagrams support any
domain’s concepts.

Diagrams support any domain’s
concepts.

Templates and diagrams support any
domain’s concepts.

Scalability: The formal notation
predicates might be very hard to manage
for a very large domain.

Diagrams can be scalable if they are
handled in modular chunks.

Diagrams can be scalable if they are
handled in modular chunks.

�
TABLE�4.��CAUSAL�MODELING�CRITERIA.�

Gaia/AUML showed best on the notations and modeling
technique criteria, mostly because Gaia’s formal notation
suits early expressions without transforming them into
operational rules or tree structures. AUML scored
particularly well on the aspects of complexity and refinement
because of its nested protocols notation.

There was no clear winner in the pragmatics criteria,
showing that none of the methodologies have reached
significant maturity in their toolsets or bodies of knowledge
to dominate the industry. Unfortunately, TROPOS and
Prometheus seem to be married to the BDI implementation
without providing any kind of guidance to evaluate whether
the BDI architecture is the right architecture.
 None of the methodologies handle social experiment
constructs directly. The scope of the null hypothesis and
control and experimental variables, summation of attitudes,
and the systematic decomposition of uncertainty are all
conspicuously absent.

Overall, a combination of Gaia and AUML scored the
highest on our criteria evaluation. At the time, we thought
Gaia refrained from tying itself to a particular

implementation and AUML provided rich specification for
implementation details. The formal notation seemed like a
good solution for capturing scope without mapping onto
operational constructs, and it seemed the societal focus of a
social conflict would map well into Gaia. Therefore, Gaia
was chosen as our methodology for the Iraqi case study
outlined below.

B. Case Study

Our case study was based on Hashim’s book [3] on the
Iraqi insurgency. In the book, Hashim ponders a causal
relationship between Sunni displacement and insurgency
growth. Sunnis were generally thrown out of prominence in
Iraq after the fall of Saddam Hussein. The Sunnis made up
22% of the population and were generally either educated
professionals or highly skilled military veterans. The U.S.
had promised stipends to disbanded military veterans that
never came through. This led to a significant portion of
educated people that were left idle and that shared a common
distain for the U.S. – a cast of willing hands ripe to be put to
effective use in the insurgency.

Gaia/AUML TROPOS Prometheus
Social experiment building blocks: no
support

no support no support

Aggregation of attitudes: There is no
decomposition for the computable
summation of attitudes.

It is unclear how the semantic expression of an individual belief system
morphs into a representative group belief system.

Decomposing uncertainty: There is no
decomposition of managing uncertainty
in the sensed data.

no support no support

160

A useful simulation would be to evaluate whether paying
stipends to the Sunnis would have slowed the growth and
maturity of the insurgency at this time. The following
hypothesis is derived to guide the model:

Causal model hypothesis #1: Paying the promised
stipends to the Sunnis would have decreased their
numbers in the insurgent ranks and the insurgency would
not have seen such an increase in organizational
maturity.

Such a simulation would need to account for the various
perspectives involved to determine whether other groups
would react unfavorably to the Sunnis receiving stipends.

Gaia directs the developer to identify the relevant
organizations in the domain. Table 5 shows the
organizations that played major roles. Those organizations
have been formed into the organizational model for the Iraqi
case study.

TABLE 5. GAIA’S ORGANIZATIONAL MODEL
General Population. Generally united in the desire to
drive the U.S. occupation out of Iraq and to take control
of the opportunity that is shaping the future of Iraq.
Sunni Arabs. Privileged minority in Iraq’s population
that failed to setup a representative government and found
themselves without the wealth or identity they once held
in the old regime.
Shi’a Arabs. Historically represented as the
disadvantaged and oppressed population. They are
disliked by the Sunnis.
Former Ba’thist Regime. Appointed by Saddam to
government and civil positions and found themselves
turned out of their positions when Saddam was
overthrown.
U.S. Stabilization Forces. United in their effort to bring
Iraq into a stable state and to establish the representative
government necessary so that extremism cannot thrive.

The organizational model is followed by the

environmental model, which indicates what data should be
read by the agent system. The environmental model for the
Iraqi case study was compiled from the Initiative on Security
and Globalization Effects’ MPICE Framework of indicators
and metrics for conflict transformation and stabilization1.
The societal cleavage metrics translate into environmental
sensors in the Gaia environmental model (see Table 6).

���
!�`abcdbedf�bg�hggijkklllmnbofpfqgfrmqfgknfbrphkqstfkuvwxym���

TABLE 6. ENVIRONMENTAL MODEL SENSOR
EXAMPLE
SOCIETAL CLEAVAGES
reads hateAttacks Incidence of hate crimes and

attacks on symbols of group
identity.

 inclinationTo
Violence

Group acceptance of exclusionary
social paradigms, readiness to use
violence to achieve socio-political
ends, including killing of
noncombatants/innocent civilians.

 The role model identifies the basic skills associated with
each role. It is iterated throughout the rest of the design
process. The roles that were identified included the occupied
population, the insurgent, the old regime, the returning
exiles, and the occupier. Table 7 illustrates the definition of
the insurgent role.

TABLE 7. GAIA ROLE DEFINITION EXAMPLE
Role
Schema:

Insurgent

Description: This role is assumed by native Iraqis who
see the fall of the old regime as a turning
point for Iraq and want to see Iraq
controlled by Iraqis, not the U.S.

Protocols
and
Activities:

ImpactConsentForThePeaceProcess
DisruptSafetyOfElectionProcess
TerrorizeElectionParticipants

Permissions: Access to all reads variables.
Access to all changes variables.

Liveness
Responsibilit
ies:

(DisruptSafetyOfElectionProcess
)cooperationAccepted < tipping point

Safety
Responsibilit
ies:

 OLD_REGIME(INSURGENT[i])
INSURGENT(DisruptSafetyOfElectionProc
ess(OCCUPIED))
INSURGENT(TerrorizeElectionParticipants
(OCCUPIED))

The interaction model defines the details for each
protocol named in the role model. Table 8 defines the
protocol the Old Regime and the Occupied Population roles
would use to influence the peace process.

TABLE 8. GAIA PROTOCOL DEFINITION
EXAMPLE

Protocol Name ImpactConsentForThePeaceProcess
Initiator Old Regime
Partner Occupied Population
Inputs securityStability

basicNeedsStability
diversityAcceptance

Outputs convergence
hateAttacks
inclinationForViolence
extremism

161

Description This protocol evaluates the Old
Regime’s alternative approaches to
disrupting the peace process. Its
sensors into the environment are
measures of the displaced population
returning to Iraq to participate in the
peace process. Its effect on the
environment is expressed as
intolerance for the peace process.

Once the protocols are defined, Gaia recommends analyzing
control relationships to begin identifying the organizational
structure:

Once the control relationships are identified, the
developer can begin partitioning the agents. First, we
capture the role of the old regime and the returning exiles as
parts of the occupied population and the U.S. Forces as the
occupier:

Next, we map the ethnic groups that make up the
majority in the old regime and the returning exiles:

Finally, we identify the groups that have reason to join
the insurgents.

Each of the artifacts above is analyzed to produce the
services model. An example service definition is shown in
Table 9.

TABLE 9. GAIA SERVICE MODEL EXAMPLE.
Service: Communicate Consent For The

Peace Process
Inputs: qualityOfLife; hateAttacks
Outputs: hopeForReform
Preconditions: elections have been organized
Postconditions: elected officials in place

IV: INTERPRETATION OF RESULTS
Gaia appears to be married to rules-based

implementations early in the analysis in the same way that
TROPOS and Prometheus are married to BDI
implementations early on. Overall Gaia is less methodical
about deriving the internal reasoning structure than it is in
analyzing the organizations, roles, and agent partitioning.
Gaia’s strength is in the societal level analysis of the system,
as opposed to the internal reasoning level analysis.

The findings of this research suggest that the AOSE
methodologies are not necessarily competing approaches
toward the design approach, but instead represent differing
perspectives into several design approaches. Gaia does a
good job of analyzing organizations and the roles that
support those organizations. But once the Gaia process starts
analyzing the rules that guide the behavior of each role, it is
much less methodical than it was in the role analysis. Once
Gaia analyzes the societal organization of agents, the internal
reasoning system of an agent needs to be analyzed in a way
that is independent of a particular architecture; the analysis
should determine what type of architecture would be best
suited to the system. Gaia, TROPOS, and Prometheus were
all found to be biased toward a particular implementation in
their early analyses.

Gaia seems a logical front end to all the other
methodologies if some modifications and extensions were
made:
� Role analysis should be carried out within the scope of
the null hypothesis, control variables, and experimental
variables.
� The organizational patterns literature needs to be
summarized as a set of templates to guide the designer
through which organizational pattern is best.
� The expression and classification of rules should be
dropped in the early analysis and attention focused on
defining the end state of interactions between agents.
� Rules should be established as part of the interaction
model to express sequences without regard for what type of
rule they are.
� AUML should be integrated into Gaia’s design phase to
take advantage of layered decomposition of activities and
protocols.

V. RECOMMENDATIONS FOR FUTURE WORK
The early analysis phase in all the methodologies should

be free of any conceptual mapping onto an operational
construct (like a rule, a belief, desired state (goal), or
intention). The end product of the analysis phase should be
scoped definitions of the roles at play in the domain and a
conceptual representation of the interactions between agents
at the macro-level and the micro-level.

Our case study highlighted that group attitudes are not
easily computable in BDI architectures. In reality, groups
are made up of individual belief systems that coalesce into a
shared belief system. When a BDI representation explicitly
decomposes an individual attitude (i.e., goals, beliefs,

162

capabilities, actions, etc.), it is hard to compute the group’s
belief structure dynamically as individuals enter and exit the
group. Rules-based expert systems are better at this because
they are based on numerical computations instead of
semantic nodes.

However, the drawback of rules-based systems is that
they rely solely on numerical approximations of attitudes
(such as an anger attribute scaled from 0 to 100) and
therefore have no deliberate evaluation of alternatives the
way BDI models do. Rule-based systems rely on
probabilities that an event will happen or the degree that an
entity possesses a particular attribute. The assessment of
these attributes is often times highly subjective. Therefore,
we assert the following:

1. When the interactions between agents take place at
the societal level, and those interactions are constrained by a
computable summation of group attitudes, the most
computable implementation is the rules-based expert system.
The BDI implementation would be too semantically
expressive to compute.

2. When the interactions between agents take place at the
micro- (individual to individual) level (that is, the
interactions focus on an individual’s belief system), the most
deliberative implementation is the BDI implementation. An
expert system may skim over important nuances of decision-
making in the domain because the decisions are driven by
probability equations, not a deliberate evaluation of
alternatives in a particular context.

The next evolution of methodologies should focus on
divorcing themselves from a particular implementation and
providing design patterns that help a designer evaluate when
a particular modeling technique or algorithm is appropriate.

Finally, we propose that the agent methodologies
address criteria that are specific to causal social simulations:

� Guidance on scoping the social experiment. We
recommend that the AOSE methodologies integrate an
analysis step before the role analysis that scopes the
experiment in terms of a null hypothesis, control and
experimental variables, and provide some guidance on
eliminating bias in the agent simulation. This is an important
first step that constrains how many roles need to be analyzed.

� Representation of uncertainty. Many agent
implementations need a way to interpret incomplete or
uncertain information. Many agent implementations are
made up of fuzzy logic nets or Bayesian networks, yet the
methodologies fail to explain how to decompose the fuzzy
logic.

� Group belief system formation. The methodologies
need to account for complex systems that combine individual
measures into a cohesive, aggregate belief system that
represents a group belief system.

� Computability. The methodologies need to compute
collective attitudes in such a way that system constraints and
rules can be evaluated in a computable way.

References
[1] Schmidt, B. (2001). What are agents and what are they
for? In N.J. Saam & B. Schmidt (Eds.), Cooperative Agents:
Applications in the Social Sciences (pp. 5-20). Springer
Publishing.
[2] Antoniou, G. & van Harmelen, F. (2008). A Semantic
Web Primer. Cambridge, Massachusetts: The MIT Press.
[3] Hashim, H.S. (2006). Insurgency and Counter-
Insurgency in Iraq. Ithaca, NY: Cornell University.
[4] Wooldridge, M. & Jennings, N. (1995). Intelligent
Agents: Theory and Practice. Knowledge Engineering
Review. 10(2), 115-152.
[5] Wooldridge, M., Jennings, N., & Kinny, D. (2000). The
Gaia methodology for agent-oriented analysis and design.
Journal of Autonomous Agents Multi-Agent Systems. 3, 3,
(pp. 285-312).
[6] Zambonelli, F., Jennings, N., and Wooldridge, M. (2003)
Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and
Methodology (TOSEM). Volume 12, Issue 3. Pp. 317-370.
[7] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., &
Mylopoulos, J. (2004). Tropos: An Agent-Oriented
Software Development Methodology. Proceedings of
Autonomous Agents and Multi-Agent Systems, (pp. 203-
236). Kluwer Academic Publishers.
[8] Padgham, L. & Winikoff, M. (2004). Developing
Intelligent Agent Systems. West Sussex, England: John
Wiley & Sons Ltd. [9] Odell, J., Van Dyke Parunak, H., &
Bock, C. (2001). Representing agent interaction protocols
in UML. In Proceedings of the 1st International Workshop
on Agent-Oriented Software Engineering. Lecture Notes in
Computer Science, vol. 1957. (pp. 121-140). New York:
Springer-Verlag.
[10] Bauer, B., Muller, J., & Odell, J. (2001). Agent UML:
A formalism for specifying multiagent software systems.
Int’l Journal of Software Engineering and Knowledge
Engineering. 11, (3). (pp. 207-230).
[11] Sturm, A. & Shehory, O. (2003). A Framework for
Evaluating Agent-oriented Methodologies. In Proceedings
of the 5th Int’l Bi-Conf. Wkshp on Agent-Oriented Info Sys
(AOIS), Springer LNCS 3030.
[12] Lin, C., Kavi, K., Sheldon, F., Daley, K., &
Abercrombie, R. (2007). A Methodology to Evaluate Agent
Oriented Software Engineering Techniques. In Proceedings
of the 40th Hawaii International Conference on System
Sciences. (pp. 1-10).
 [13] Rao, A. & Georgeff, M. (1992). An abstract
architecture for rational agents. In C. Rich, W. Swartout, &
B. Nebel (Eds.), Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and
Reasoning, (pp. 439-449). Cambridge: Morgan Kaufmann
Publishers.

163

REALIZATION OF SEMANTIC SEARCH USING CONCEPT LEARNING
AND DOCUMENT ANNOTATION AGENTS

Behrouz H. Far1

Cheng Zhong1 Zilan (Nancy) Yang1 Mohsen Afsharchi2

1 Department of Electrical and Computer
Engineering, University of Calgary, Canada

{far, czhong, zyan}@ucalgary.ca

2Department of Electrical and Computer
Engineering, University of Zanjan, Iran

afsharchim@iasbs.ac.ir

ABSTRACT

Currently, search systems are based on commitment to a
common ontology. In the real world, it is preferred to enable
Web repositories to exchange information freely while
keeping their own ontology. This helps contents providers to
represent information independently in the repositories at
the expense of bringing complexity to the communication
and negotiation. To solve the communication complexity
problem we present (1) a method for semantic search
supported by ontological concept learning, and (2) a
prototype multi-agent system that can handle semantic
search while encapsulating complexity of such process from
the users. The method introduces a spiral search process
and a layered structure of semantic interoperability. Agents,
which conduct semantic search on behalf of users, deploy
ontologies to organize documents in their corresponding
repositories. Through a detailed experiment we will show
that agents can improve their search capability by learning
new concepts from each other, and consequently, provide
better search results to the users.

Index Terms — multi-agent system, semantic search,
ontology, concept learning, interoperability, annotation.

1. INTRODUCTION

Current popular search engines are mainly divided into

three common categories: horizontal, vertical and
combination search engine. Horizontal search features
keyword-based indexing and minimal natural language
processing. Users need to evaluate the search results for
obtaining desired documents. Vertical search indexes
content specialized by location, topic, etc., typically tailored
to users’ preferences. Instead of returning thousands of
documents, vertical search engines deliver more relevant
results matched with the users’ local needs. In 2007, Google
introduced the “Universal Search” system that replaced
some of search results with blended listings that come from
vertical sources, such as news, video, images, etc. The
blended search engine requires changes like re-categorizing,

reorganizing, and/or refining content of documents by
grouping them by some attributes. This type of search
engine typically works with a predefined ontology.

In contrast with the traditional keyword search
technology which depends on the occurrence of words in
documents, semantic search denotes one or more concepts
in the context of other concepts. Understanding the
denotation of concepts can help retrieval part of search
engine understand the context of search, the activity the
users is trying to perform, thus drive expectations on the
categories of documents [5]. The essence of semantic search
is semantic interoperability towards denotation part in the
search phrase. Nowadays, general denotation procedures are
realized depending on ontology-oriented means, and
ontologies adopted are usually evolved and maintained in a
distributed way. Thus, multiplicity of ontologies raises the
issue of integration and may lead to ineffective
communication among peers involved in a semantic search.

Multi-agent systems (MAS) research offers some
solutions for the semantic interoperability. Recently, the
idea of having agents learn concepts from peers has been
suggested as a solution. For example, the work in [7]
suggests a method for learning a language and the work in
[10] has focused on interactions between two agents to learn
a single concept. We have already presented a method for
agents to learn concepts from several peers [1, 2] and a
method for verification of the learnt concepts [4].

The goal of this research is to devise a process, a model
and a prototype multi-agent system (MAS) for semantic
search that features concept-learning and semantic
interoperability. Research overview and MAS system design
will be explained in Sections 2 and 3. A detailed experiment
to verify usefulness of the prototype system is provided in
Section 4 followed by conclusions in Section 5.

2. RESEARCH OVERVIEW

The general research goals of semantic search using

concept learning MAS involves: (1) algorithms for concept
learning; (2) methods of concept learning verification; and
(3) cooperative search engine and supporting MAS. In this

164

paper we focus on the third goal, by creating a MAS that
supports semantic search by taking advantage of concept
learning and verification. In order to achieve the goal, the
followings objectives must be fulfilled:
1) Individual agents are capable of learning ontological

concepts from several peer agents through the
interaction with other agents and validating these
concepts to better communicate and share information.

2) Semantic search engines are capable of dynamically
annotating the data repositories.

3) An integrated method or mechanism is required to
support and facilitate the implementation of complex
interactions among agents.

To achieve the first objective, ontological heterogeneity
in MAS must be solved. This is directly related to the fact
that any ontology of certain domain can potentially evolve
independently. Therefore the only way for agents with
diverse views of the world to understand each other is being
able to understand each other’s conceptualization of the
domain, and then find common grounds among themselves.
Previous works on agents’ communication mostly assumed
a complete common understanding of the concepts is used
to represent a domain. However, it is now known that this
may not be necessarily true. Even if having common
conceptualization, still the agents are required to be aware
that they have a common conceptualization using
mechanisms such as social networking. This fact is
summarized with the point that any conceptualization is
invented based on its utilization [8]. Consequently, ontology
learning solutions are gaining more popularity [9, 10].

To achieve the second objective (i.e. semantic search
engine), more advanced than a typical query handling
system, we have devised a spiral workflow process that
incorporates both concept learning and semantic search (See
Figure 1). On one hand, search engines should be capable of
responding to the requests according to agreements with
concept learning module. On the other hand, annotation
procedures of search engine can be done on the fly based on
the newly obtained concept instead of fixed predefined
ontological concepts. This is a novel view exposing intrinsic
relationship between concept learning and semantic search
in a heterogeneous environment. In such environment,
concept-learning and semantic search are treated equally as
basic roles, involved in the process, which support each
other to achieve their own goals by enriching the set of
ontological concepts and reducing ambiguity of the search,
respectively. Following the spiral process, concept-learning
module and semantic search take actions alternately.

To achieve the third objective, the problem of integration
and communication between agents raised by multiplicity of
ontologies need to be solved. As the essence of semantic
search is semantic interoperability among different agents
towards denotation part contained in the search expression,
semantic search is expected to be able to take advantages of
concept learning to establish an integrated mechanism to
help find common understandings of concepts, and based on

it, higher-level modalities of ontology may accomplish
interoperations with respect to those denotations.

Figure 1. Spiral search and learning process

The work introducing the algorithm for agents to learn
concepts from several peer agents (objective 1) has been
presented in [1, 2, 12] and a method of verification of
concept learning has been presented in [4]. Also the work
regarding an initial implementation of a semantic search
engine has been presented in [13].

 3. SYSTEM DESIGN AND IMPLEMENTATION

Based on the semantic interoperability model [3], we have
devised the layered semantic search architecture composed
of encoding, lexical, syntactic, semantic and semiotic layers
(see Figure 2). According to the definitions of
functionalities of layers [13], in order to achieve the
interoperations between peers, modeling semantics of
concepts and use them in the semantic and semiotic layers
need external “schema” (i.e. procedural knowledge),
however, for the lexical layer, the declarative contents could
solely accomplish modeling by referring concepts to some
commonly-understood objects. Considering the fact that the
concept learning module [1, 2] is built with a kind of
declarative concept learning algorithm, i.e. concentrating on
lexical layer, the current implementation of the prototype
also has focus on the lexical layer.

Figure 2. Scope of the prototype system

165

Furthermore, from the cognitive sciences perspective,
lexical layer would be a basis of communication which
ultimately leads to understandings of semantics, so that
successfully achieving semantic interoperation would lay a
solid foundation for other layers.

Figure 3 shows architecture for the prototype system.
System’s functional blocks are briefly introduced below.

3.1. Document Annotator (DA)
The documents annotator is used for annotating
“molecules”, combinations of keyword, on which some
well-defined constraints are applied. Creating such
annotation, especially dynamically creating annotations is a
fundamental role, not only for concept learning, but also for
semantic search involving newly learnt concept. Document
Annotator is developed using IBM’s UIMA (Unstructured
Information Management Architecture) [6]. Annotator
implements actions SelectBestConcept, SelectPosEx and
CreateNegEx according to the UIMA annotation scheme.

3.2. Concept Learner (CL)
The concept learner is responsible for implementing action
Learn which takes training documents as input and output
concept classifier. Also it offers function to do action
Integrate.

3.3. Communication Engine (CE)
Communication Agent implements actions QueryConcept
and ReplyQuery which facilitate agent communication.

3.4. Personal Assistant Agent (PAA)
Currently, there are two types of PAAs – Training
Application (TA) and Semantic Search Application (SSA).

Figure 3. Prototype system and MAS components

GAIA analysis and design methodology [11] is used to

design the MAS that implement the above mentioned
functions. The MAS associated with each repository is
composed of 4 types of agents – Concept Learner,

Document Annotator, PAAs and Communication Engine, as
shown in Figure 3.

4. EXPERIMENTAION AND EVALUATION

We have designed three experiments using the developed
prototype system to observe how the evolution of search
results is influenced by concept learning and semantic
search and compare them with traditional search. In
Experiment 1, a series of traditional queries will be
processed by the agents residing on data repositories (Figure
3) in order to observe behaviors of a traditional search and
to set benchmarks for comparing with the results of other
experiments. Experiment 2 is designed to observe the
concept learning stage of the spiral search process. Before
sending queries, a new concept is supposed to be identified
through interactions between Concept Learner (CL) and
Document Annotator (DA) agents, and using the attributes
of the new concept, the initial repositories are re-structured
to be hierarchical repositories. Experiment 3 is conducted
using the hierarchical data repositories of Experiment 2. It
represents the stage of semantic search of the spiral process.
The queries are processed after the annotation process in
which annotators initiatively annotate data repositories they
are handling with the same type system which is designed to
filter documents.

The disambiguation of search results is measured by a
metrics named ROD (Ratio of Disambiguation) which
represents the precision of query results.

100%PosROD
Pos Neg

	 �

• Pos: number of positive documents. The contents of a
positive document meet the query conditions.

• Neg: number of negative documents. A negative
document is a false positive document.
The positive or negative is determined by a human

expert.

4.1. Test data set
The test data set consists of files describing course

syllabi in Computer Science offered by three major
universities. A course syllabus file normally contains a
course identifier, a course description and the prerequisites
of a course. The University of Michigan organizes
Computer Science (EECS) as an engineering discipline and
as a joint program with electrical engineering; the
University of Washington considers Computer Science
(CSE) as an engineering discipline but independent from
electrical engineering and as a joint program with computer
engineering; in Cornell University Computer Science (CS)
is a pure science program in the science faculty. The three
universities together offer 279 courses in electrical
engineering and/or computer science, excluding some
courses such as seminar course. We set up three data
repositories, one for each university, with each repository
having a MAS (Figure 3) to handle it. The AgC, AgW and AgM

166

stand for the MAS handling Cornell University, University
of Washington, and University of Michigan, respectively.

4.2. Experiment setting

The search goal is to find all courses in programming
languages from the three data repositories. Query phrases
utilized for the three experiments are constructed with five
keywords which are related to the search goal. There are
five query phrases are listed in Table 1.

Table 1. Query phrases

Query ID Feature Content
F1 Language
F2 Language, Program
F3 Language, Program, Computer
F4 Language, Program, Computer, Science
F5 Language, Program, Computer, Science, Software

4.3. Experiment 1: Traditional search

Traditional search is conducted in Experiment 1. The
result is recorded in Table 2, and visualized in Figure 4.

Table 2. Results summary: Experiment 1

 AgC AgM AgW
Pos. Neg. % Pos. Neg. % Pos. Neg. %

F1 4 1 80 4 16 20 4 15 21
F2 6 2 75 8 30 21 6 28 18
F3 6 5 55 8 55 13 6 50 11
F4 6 7 46 8 56 13 6 51 11
F5 6 7 46 8 62 13 6 55 11

Examining the record of Experiment 1, we can find that

the ratio of disambiguation of AgC is much higher than the
AgM and AgW. We think that this is caused by different
composition of data repositories. AgC actually holds courses
of pure computer science, whereas AgM and AgW manage
courses with composition of both computer science and
electrical engineering.

In addition, it is worth to mention that:

1) The more terms added to each query, the more
documents were retrieved, regardless of whether the
documents were positive or negative.

2) Ratios of disambiguation were not guaranteed to be
improved with terms added to the query. In this case, it
caused the ratios to get worse by adding more terms.

3) All three data repositories were isolated so the number of
positive documents was definite. The queries with
feature F2 obtained all positive documents in the
repositories. After that, no other positive document could
be found and the search noise made results worse.
From this experiment we can conclude that the

composition of data repository influences the search results,
confirming that the expected results are significantly
correlated with the data repository.

4.4. Experiment 2: Search with Concept Learner

Experiment 2 focuses on examining the behavior of
queries, when the Concept Learner has been introduced. The
algorithm built into the Concept Learner takes the same data
repositories as in Experiment 1 to identify a new concept,
Computer Science, and then using it to identify all its
subcategories. Using the learnt concept, the data repositories
are reorganized for the subcategories of Computer Science
[1]. One subcategory, the programming languages, is
directly adopted to annotate data repositories when
annotating action is performed.

Through concept learning, the initial flat data
repositories were restructured to a two-level hierarchy. We
repeated the queries as in Experiment 1 on these structured
data repositories. The queries were no longer traditional
because at this point any query would have been assumed by
the search engine to be a query for all courses of Computer
Science. In practice, new concept (in this case Computer
Science) will be involved in each query feature to
semantically describe it. The results of Experiment 2 are
recorded in Table 3 and visualized in Figure 5.

Table 3. Results summary: Experiment 2

 AgC AgM AgW
Pos. Neg. % Pos. Neg. % Pos. Neg. %

F1 4 0 100 4 4 50 4 6 40
F2 6 0 100 6 10 38 6 13 32
F3 6 3 67 6 13 32 6 19 24
F4 6 4 60 6 13 32 6 19 24
F5 6 4 60 6 20 23 6 19 24

For Experiment 2 we can conclude that:
1. RODs have been improved for all the three repositories

and for all the queries. Intuitively, as shown in Figure 5
all the lines representing trends of change of RODs have
shifted up significantly.

2. Variations of ROD are still following the same trend as
in Experiment 1 (i.e. with the terms added to query, the
RODs are decreasing).

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6

AgC %

AgM %

AgW %

Number of Keywords

ROD

Figure 4. Visualization of results: Experiment 1

167

The reason for RODs to be different is due to the differences
of composition among the data repositories. In the data
repositories mixing courses of both disciplines Computer
Science and Electrical Engineering such as AgM and AgW,
irrelevant courses (e.g. electrical engineering related
courses) were eliminated more effectively than that of pure
data repository as those of AgC, only holding courses of
computer science.

4.5. Experiment 3: Search with document annotation

From the results of Experiment 2, we could conclude
that through applying concept learner, search performance
improves. However, the trends of ROD remained the same
as in Experiment 1.

In this experiment, we apply the Document Annotator
(DA) agent to semantically determine if a document is about
the searched concept or not, and to see how search
performance would be influenced.

Experiment 3 was carried out based on the refined data
repositories in Experiment 2. At the beginning of the
Experiment 3, each data repository was annotated with the
same UIMA [6] type system (i.e. kind of concept hierarchy).
An aggregate annotator was established consisting of a
series of primitive annotators for annotating terms including
language, program, C, C++, and Java. As all the
documents to be scanned and relocated, were already under
computer science, we were able to replace those non-
domain specific terms (computer, software, and science)
with those specific terms of the domain computer science
(C, C++, and Java). The following expression illustrates a
typical annotation logic of the aggregate annotator:

<Language + Program + [C|C++|JAVA] �
Computer Programming Course>

This can be interpreted as: “if a three-concept entity
created through some logic built in the annotator has been
found in the document, then this document is a target
course, i.e. computer programming language course.”

Once the annotation process was completed, the
corresponding alteration to the current data repositories was
made. Documents that had not been annotated successfully
were removed from the sub-directory dedicated to computer

programming language course description. Hence, the ratios
of positive documents were raised and the noise that was
brought in by adding terms to the query was reduced.

Through the Experiment 2 and the annotation process of
the Experiment 3, data repositories were structured with two
levels: applying concept learner in Experiment 2 and
annotation in Experiment 3. Then we continued to process
queries with the same set of features on these restructured
repositories. The results of Experiment 3 are listed in Table
4, with visualization in Figure 6.

Table 4. Results Summary: Experiment 3

 AgC AgM AgW
Pos. Neg. % Pos. Neg. % Pos. Neg. %

F1 4 0 100 4 4 50 4 6 40
F2 6 0 100 6 10 38 6 13 32
F3 6 0 100 6 10 38 6 13 32
F4 6 0 100 6 10 38 6 13 32
F5 6 0 100 6 10 38 6 13 32

Compared to Experiment 2, the RODs for the first two
queries (i.e. F1 and F2) remained the same as Experiment 2,
but the RODs of the rest of queries (with features F3-F5)
showed improvement. The reason that the trend lines are
more or less horizontal is that adding terms to queries no
longer brings noises as in the previous experiments because
the sources of noise (i.e., irrelevant documents) had already
been removed.

4.6. Experiment evaluation and summary
Contribution to the improvement of search results made

by both Concept Learner (CL) and Document Annotator
(DA) agents is the main concern. In order to evaluate
contributions made by concept learning and annotation, the
percentages of increment of ROD for each query and their
average, contributed by concept learning and annotation, are
computed respectively. The results are listed in Table 5. As
the �R1 and �R2 in Table 5 indicate:
• The average rate of increase of ROD achieved through

concept learning on AgC (28%) is much less than those
on AgM (121%) and AgW (121%).

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6

AgC %

AgM %

AgW %

Number of Keywords

ROD

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6

AgC %

AgM %

AgW %

Number of Keywords

ROD

Figure 5. Visualization of results: Experiment 2

Figure 6. Visualization of results: Experiment 3

168

• The average rate of increase of ROD achieved through
annotation on AgC (%37) is larger than those on AgM
(21%) and AgW (20%).

• Both concept learning and annotation made almost
identical contributions on data repositories AgM and AgW.

The reason is that AgM and AgW are mixed data repositories,
therefore concept learning had more significant effect on
them than on AgC. However, later in the spiral process,
composition of the three data repositories becomes
increasingly similar, and consequently, annotation affected
the results similarly.

Table 5. Comparison of results

Data
Repository

R1(%) R2(%) R3(%) �R1(%) �R2(%)

AgC 80 100 100 25 0
75 100 100 33 0
55 67 100 22 49
46 60 100 30 67
46 60 100 30 67

Avg. 28 37
AgM 20 50 50 150 0

21 38 38 85 0
13 32 38 146 19
13 32 38 146 19
13 23 38 77 65

Avg. 121 21
AgW 21 40 40 90 0

18 32 32 78 0
11 24 32 118 33
11 24 32 118 33
11 24 32 118 33

Avg. 121 20
R1: Values of ROD of Experiment 1; R2: Values of ROD of Experiment 2;
R3: Values of ROD of Experiment 3; �R1: (R2-R1)/R1; �R2: (R3-R2)/R2

Therefore we could conclude that using either concept
learning or annotation in isolation would not necessarily
lead to a noticeable search improvement but the sequential
use of them in the generative/spiral process can potentially
lead to a major improvement.

5. CONCLUSIONS

In this paper we presented a method and a prototype MAS
for semantic search-learning. This method is based on the
architecture of layered semantic interoperability. The central
procedure is composed of dynamical document annotation
and concept learning mechanisms to solve the problem of
semantic heterogeneity in distributed information
management with minimum overhead and no need to
commit to a common ontology. A detailed experiment was
conducted on three data repositories with different
ontologies within a specific domain. The experiments were
focused on two major parts of the spiral process of semantic
search and concept learning. The findings were:

1. When contents of data repositories are relevant to the
query keywords, the composition of the data repositories
influences the search results. Adding keywords to the
query is not helpful for disambiguating the results.

2. Both Concept Learner (CL) and Document Annotator
(DA) agents play significant role in refining the
compositions of data repositories in different ways: CL
achieves the improvement through reconciling the
conflicts of concept between the holders of data
repositories, guided by attributes of the newly learned
concept. DA, on the other hand, works on its own data
repository by applying individual annotation algorithms
to restructure the contents.
Future work includes implementation of mechanisms for

finding peers through social networking which will lead to
an open MAS for semantic search.

REFERENCES

[1] M. Afsharchi, B.H. Far and J. Denzinger, “Enhancing

Communication with Groups of Agents Using Learnt Non-
unanimous Ontology Concepts,” Journal of Web Intelligence
and Agent Systems, vol. 3, no. 1-3, pp. 1-16, 2007.

[2] M. Afsharchi, B.H. Far, J. Denzinger, “Ontology Guided
Learning to Improve Communication among Groups of
Agents,” Proc. AAMAS’06, pp. 923-930, 2006.

[3] J. Euzenat, “Towards a principled approach to semantic
interoperability,” A. Gomez-Perez et al (eds.) IJCAI’2001
Workshop on Ontologies and Info Sharing, Seattle, 2001.

[4] B.H. Far, A.H. Elamy, N. Houari and M. Afsharchi,
“Adjudicator: A Statistical Approach for Learning Ontology
Concepts from Peer Agents,” The 19th Int. Conf. on Software
Engineering and Knowledge Engineering (SEKE 07), 2007.

[5] R. Guha, R. McCool, E. Miller, “Using the semantic web:
Semantic search,” Proceedings of the WWW’03, 2003.

[6] IBM, “Unstructured Information Management Architecture
(UIMA)”, http://domino.research.ibm.com/comm/research_
projects.nsf/pages/uima.index.html, 2007.

[7] K.C. Jim, C.L. Giles, “Talking Helps: Evolving
Communicating Agents for the Predator-Prey Pursuit
Problem,” Artificial Life 6(3), 2000, pp. 237–254.

[8] M.R. Genesereth, and N.J. Nilson, “Logical Foundation of
Artificial Intelligence,” Morgan Kauffman Publishers. Inc.
Palo Alto. CA, 1987.

[9] L. Steels, “The origins of ontologies and communication
conventions in multi-agent systems,” Autonomous Agents and
Multi-Agent Systems, 1(2):169–194, 1998.

[10] A.B. Williams, “Learning to Share Meaning in a Multi Agent
System, Autonomous Agents and Multi Agent Systems 8(2),”
pp. 165–193, 2004.

[11] N. Wooldridge, and D. Kinny, “The GAIA methodology for
Agent-Oriented Analysis and Design,” 2000.

[12] Y. Zilan, C. Zhong, B.H. Far, “A Practical Ontology-Based
Concept Learning in MAS,” Proc. IEEE CCECE’08, pp. 335-
338, 2008.

[13] C. Zhong, Y. Zilan, M. Afsharchi, B.H. Far, “Ontology
Learning Supported Semantic Search Using Cooperative
Agents,” The 20th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE 08), pp. 123-128, 2008.

169

Agent-based Simulation Model for the Evolution Process of Open Source Software1

Taemin Seo and Heesang Lee*
Dept. of Systems Management Eng., Sungkyunkwan University, Korea

Abstract

The Open Source Software (OSS) system is a type of
software that is developed and evolved through voluntary
developers and users. We illuminated the relationship
among developers, users, and OSS with the evolution
process of OSS in this article. We analyzed prior literature
of OSS to determine the roles of developers and users who
participate in OSS projects and described the evolution
process of OSS using an agent-based simulation model. We
performed various computer simulations to analyze the
relationship among developers, users and the results of OSS.
We also studied factors that affect the evolution process of
OSS.

1. Introduction.

Open Source Software (OSS) is software that has been
developed and improved by voluntary developers who share
the source codes with other people for continuous evolution
of the program. The collaboration experiments of many
developers, the GNU project and free software foundation,
and the users who want to choose freely among many
software lead to this open environment for source code. The
OSS growth demonstrates a phenomenon that increases at
rapid rates, unlike proprietary software.
 The purpose of this article is to illuminate the
relationship with the evolution process of OSS among
various agents by observing and/or researching of certain
agents in the evolution process. The simulation model
presented here describes the linear and fast growth of OSS
by combining various factors, and provides a variety of
possible alternative experiments along with changes of
parameters

Based on prior literature and various OSS project
materials, we determined that the factors which affect the
evolution process of OSS projects are the roles of two
agents, developers and users, and their changes during the
evolution process. We determined the essential factors in
the evolution process of OSS through various simulation

1 This work was supported by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea government (MEST)
(R01-2008-000-10500-0).

* Corresponding author. Email: leehee@skku.edu

experiments using a multi-agent based simulation software
for computer simulation.
 This article is divided into five sections. Section II
describes various related studies of the OSS phenomenon
and evolution cases which were used in our research models.
Section III presents our research model for the evolution
process of OSS by developers and users. Section IV
introduces our agent-based simulation model using a multi-
agent based simulation program. Section V discusses our
analysis of the factors that affect the evolution process of
OSS by changing various parameters. Section VI concludes
the article and mentions topics for further research.

2. Related Research Works

In a study of the motivations for participating in OSS [1],
Hars and Ou classified the participant motivation of
developers as internal factors or external rewards. The
internal factors arise from participants’ personal hobbies
and preferences. The internal factors are reaped from
working to increase the welfare of other people. The
internal factors also include community identification,
motivation by the feeling of competence, satisfaction and
fulfillment that arises from writing a program, and altruism,
which is a variant of intrinsic motivation. The external
rewards include obtaining direct or indirect rewards by
increasing their marketability and skill base or by selling
related products and services. The external rewards also
include future rewards such as revenues from related
products and services, human capital, peer recognition and
personal needs.

In a study of the OSS community [2], Xu and Madey
divided those people participating in the OSS into two
groups: the user group and the developer group. The user
group includes both the passive user free from direct
contribution and the active user who reports software bugs
and new needs. The developer group is classified into four
classes: peripheral developer, central developer, core
developer, and project leader.

In a study of the growth and evolution of OSS [3],
Godfrey and Tu found that the OSS demonstrated super-
linear growth versus the sub-linear growth of proprietary
software. This phenomenon was explained by the fact that
the number of developers who participated in the OSS was
not limited.

In a study of agent-based simulation of open source

170

evolution [4], Smith, et al. regarded the agents as both
developers and unfulfilled requirements. They presented an
agent-based simulation model that included the complexity
of software modules, which was a limiting factor in the
evolution using the NetLogo program. The model also
added the fitness of software and the motivation of
developers to its requirements. The developers could create,
modify and re-factor the modules that included fitness and
complexity in the model. These results indicated that
increasing the number of developers yielded better results in
terms of the system size.

In a study of the role of core developers in OSS
development [5], Long investigated the factors that affect
the success or failure of OSS projects. Focusing on the role
of core developers, he divided the developer group into the
core developer group and the community group. He
analyzed an established theoretical framework based on the
organization theory and empirical data for 300 OSS projects.
He found that the leadership and activity of core developers
was an important factor in the development of OSS projects.

3. Research Models

3.1. Basic Research Model

Our basic research model for the OSS evolution process
is illustrated in Fig. 1. In this model, there were three
components that had interdependent relations with each
other: the developer group that represents the people who
develop an OSS, the user group that represents the people
who use the OSS, and the OSS itself. We conjecture that the
present success of OSS cannot be achieved if one of the
three components interacts poorly.

Users

Developers Open Source
Software

Report Bugs
Request Features

Create Module
Develop Module
Refactor Module
Modify Bugs
Extend OSS

Support OSS Program

Fig. 1. Basic Research Model

More detailed interconnections among the three

components are explained in the following sections.

3.2. Role of Developers in the Proposed Model

We investigated the role of the developer group that
participates in the OSS and its effect on the evolution of
OSS projects. There have been several research studies
performed to determine the reason for participation in OSS
[1, 7, 8, 9, 10]. Some of the potential reasons include the

increased satisfaction through skill advancement and
participation in personal hobbies and interests. Other
potential reasons include participation to achieve future
rewards or economical profit and to improve one’s own
social popularity and reputation through time, effort and
experience. The motivation for participating in the OSS and
the attraction of OSS, which are expressed in our model by
the rate at which the OSS can attract participant’s interests,
are important factors that affect the evolution process of
OSS.

The core developer group, which usually consists of 5 to
15 persons from the developer group for an OSS project,
was also important for our model. The rate of increment of
the OSS source codes increases rapidly when the core
developer group is active in controlling the structure and
direction of development [5, 11]. The core developer group
definitely contributes to the progress of the OSS as they
manage the CVS (Concurrent Version System) and present
the goal and direction of the OSS to the developer group.
Therefore, their role among developer groups and activity
areas are important factors that affect the evolution process
of OSS in our model.

 A refactoring task is an activity that readjusts the
structure of codes without changing the results. This task
generally increases the readability and carries out
maintenance while decreasing the complexity of the code,
which is different from the task of removing software bugs
and adding new features. Therefore, refactoring refers to the
maintenance tasks that change and improve inner structures
without affecting the output seen by the user group. As the
projects progress in the early stage, the code becomes more
complex since the OSS progresses around the developer
group without a central control mechanism [6]. However,
after progressing to a certain stage of evolution, the
developer group improves the level of OSS while
decreasing the complexity of codes through refactoring.
Therefore, the task of refactoring is also an important factor
that affects the evolution process of OSS.

3.3. Role of Users in the Proposed Model

Within the user group, we assumed that there are a
passive user group and an active user group [2]. The
passive user group only downloaded and used the programs
for personal needs, while the active user group reported
software bugs and requested new requirements for the OSS
in our model.

When the user group chooses the programs, the attraction
of OSS is as important as the actions of the developer group
since the user group wants programs that suit their needs. It
is important to determine whether the programs are
sufficient for the user group in order to indicate the desired
features or needs. Therefore, the attraction of OSS is an
important factor that affects the evolution process of OSS in
our model. We also assumed that the rate of the active user

171

group, which affects the evolution process of OSS, was an
important factor in our model since the active user group
makes a direct contribution to the evolution process of OSS.
The number of software bugs found by the active user group
increases the amount of work for the developer group. The
new requirements requested by the active user group
necessitate OSS extension work. Therefore, the software
bug detection and feature requirements are also important
factors that affect the evolution process of OSS in our
model.

Through these investigations, we developed our detailed
research models that include the roles of developers and
users and their effect on OSS. The detailed models are
shown in Figs. 2 and 3.

Attraction of OSS

Motivation of
Developer

Active Area of
 Core Developer

Rate of
 Core Developer

Function of
Refactoring

The number of
Developers

Participation period
of Developers

Leaving of
Developers

Growth of OSS

Fitness of OSS

Complexity of OSS

Fig. 2. Detailed research model for the role of developers

Attraction of OSS

Rate of Bug
Modification

(Role of Developer)

Rate of
Active Users

Rate of
Bug Detection

Rate of
Feature Request

The number of
Users

The number of
Active Users

Participation period
of Active Users

Work of Bug
Modification of

Developer

The number of
Bug Detection

The number of
Feature Request

Leaving of
Active Users

Expansion of OSS

Fig. 3. Detailed research model for the role of users

In the next two sections, we examine the relationship

among developers, users and the OSS through computer
simulation based on these detailed models.

4. Modeling for Relations and Roles

We attempt to understand and model the relationships
and roles among developers, users and the OSS in this
section. As we mentioned above, we focused on the analysis
and derivation of factors that affect the evolution process of
OSS. We executed the computer simulation using the
AnyLogic program, which is a multi-method simulation

software that supports the most common simulation
methodologies. It also includes a wide range of data
analysis and business graphics objects such as bar charts,
time plots and histograms. Once a computer simulation
model is complete, we can use it to run various experiments
by using various parameter settings [14]. The agents in our
model were the OSS, the developer group and the user
group. We based our model on the theory of the OSS
evolution process presented by Smith et al. [4]. We assumed
that the developing OSS had one project that consisted of
several modules. Our model included an initial development
area (2,500 modules) and an expansion development area
(2,400 modules). The initial development area was assumed
as an area that the developer group initially chose and the
expansion development area was an area that would be
developed for the expansion by the additional requirements
of the user group. The OSS also had attractions that could
affect participation in the developer group and the user
group.

Each module had fitness and complexity in our model.
The fitness is regarded as the length or the completion level
of the software code, the file size and so forth. The
complexity is regarded as the complicated level of each
module. As the complexity of an OSS increases, the more
difficult it is for the developer group to understand the
software code. Therefore the complexity will negatively
affect the increasing of the fitness.

The developer group consisted of the core developer
group and the general developer group in our model. Both
developer groups participated in the OSS by attraction to
the OSS and developer recommendations, and seceded from
the OSS because of the inner and outer motivation of each
developer. The recommendation by the developer group
does not appear in the early stages of the development,
rather it appears when the number of developers is above a
certain value. We assumed this in order to reflect the
network effects.

A person in the developer group moved randomly around
neighborhood modules in our model. At regular intervals,
they chose one of the following behaviors:

1. If a developer’s probability was below a certain value,

they did nothing.
2. If a developer was on a module with software bugs,

they modified the bugs.
3. If a developer was on a module that was not yet

created, they created the module with low fitness and
low complexity.

4. If a developer was on a module with a certain fitness
and low complexity, they developed the module to
increase its fitness and complexity.

5. If a developer was on a module with high fitness and
high complexity, they re-factored the module to
decrease its complexity.

172

The core developer group manages and develops general
projects. We assumed that the core developer group’s
movement among modules was frequent and their level of
code writing skills was high. On the other hand, the general
developer group does not take direct responsibility for the
project. Their movement among modules is not frequent
and their level of code writing skills is relatively low. The
core developer group also has an active area. If a person in
the general developer group was not included inside the
active area, they were regarded as being harmful to the
mission and vision of the projects and their outer motivation
was decreased in our model. A member of the core
developer group may become bored and secede from the
OSS when the fitness of the module was above their inner
motivation in our model. A person in the general developer
group seceded from the OSS when they reached the point
described above or when their outer motivation equaled
zero.

People in the user group reported bugs and requested the
need for new areas or features. They jumped randomly
around modules. At regular intervals, they chose one of the
following behaviors:

1. If a user was inside the developing area, they found the

existence of software bugs and reported the software
bugs.

2. If a user was in the expansion area, they communicated
new requirements to the developer group. If the
number of user needs was above a certain value, the
OSS was extended and evolved gradually.

The user group could develop grievances and secede

from the OSS when the software bugs they found were not
modified by the developer group.

When the simulation began, OSS started with a single
core developer at the same time in our model. After a
certain amount of time passed, the developers and users
who were interested in participating in the OSS joined their
respective groups. Our simulation model using the
AnyLogic program is detailed in Fig. 4.

Fig. 4. Simulation model for the evolution process of OSS

5. Experiment Results

We executed the simulation of the OSS evolution process

for 1 year. Its time unit was hours and its total time was
2,924 units. The parameter values used in this model are
noted in Table 1.

TABLE I
PARAMETER SETTING

Parameters Value
Attraction of OSS for Developers 0.3
Inner Motivation of Developers 80
Outer Motivation of Developers 6
Active Area of Core Developers 10

Rate of Core Developers 0.05
Attraction rate of OSS for Users 0.4

Rate of Active Users 0.1
Rate of Bug Detection 0.3

Rate of Feature Request 0.4
Rate of Bug Modification 0.7
Function of Refactoring true

Based on the parameter set, we executed ten computer

simulation experiments and then could draw a graph from
the data that included the average OSS growth rate of 10
experiments as time passes.

Fig. 5 shows the evolution process with a high growth
rate of OSS. In Fig. 5, we assumed that the project started
on January 1. The growth was slow in its early stage, but it
grew rapidly after March. Then, as the project became more
complete, its growth rate slowed again. Therefore, the
variation throughout the project was close to the stretched S
curve. The speed variations in this model are caused by an
increase in the number of developers and users and their
time of contribution throughout the given parameters. The
project growth starts slowly due to the low number of
developers and users participating in it. After a certain time,
growth speeds up due to an increase in the number of
developed modules as the number of developers and users
attracted to the project increases and participation grows.
When the project no longer evolves, the developers and
users participating in the project start to lose interest in the

Fig. 5. Evolution process in high growth of OSS

173

development and secede from the project. Accordingly, its
growth rate gradually slows.

5.1. Relation between OSS Attraction and OSS Growth

We examined how the attraction of OSS affected the OSS

growth. First, the parameter value for the participation rate
of the developer group changes from 15% to 35% in 5%
increments and 10 simulation runs were executed for each
case. Fig. 6 shows the difference in the growth of the OSS
based on various participation rates of the developer group.
This figure indicates that the 30% and 35% attraction rates
for developers produce a higher growth rate of OSS. As
developers are increasingly attracted to OSS, more
developers will participate in the OSS. This causes the
growth rate to increase because the development of modules
occurs more often.

Fig. 6. Difference of OSS growth according to the
change of attraction rate of developer group

Next, the parameter value for the participation rate of the

user group changes from 15% to 35% in 5% increments and
10 simulation runs were executed for each case. Fig. 7
shows the growth difference according to the change in
participation rates. It also shows that as users become more
attracted to OSS, the growth rate for OSS increases. As
users are increasingly attracted to OSS, more developers
will participate in the OSS because of increasing user’s new
needs. Therefore, the growth rate is higher as the number of
developer increases and the development area is extended
for new requirements.

Fig. 7. Difference of OSS growth according to the

change of attraction rate of user group

There is not much difference in the rate of growth in the
early stages of the OSS, since the file size is less than 2500,
the OSS is developed in the initial development area, and
after the file size reaches 2500, it is developed in the
expansion area according to the demand of users.

5.2. Developer’s Motivation and OSS Growth/Fitness

We examined how the developer’s motivation affects the
growth and fitness of OSS. First, the parameter values for
inner motivation changed from 50 to 80 by intervals of 10
and 10 simulation runs were executed for each case. Fig. 8
shows the difference in growth according to the change in
the parameter value. Fig. 9 shows the difference in the
average fitness and complexity according to the change in
the parameter value.

Fig. 8. Difference of OSS growth according to

the change of inner motivation

Fig. 9. Average Fitness and Complexity of OSS

according to the change of inner motivation

The study results indicated that the file size increased
linearly in the case of low inner motivation, but the file size
increased rapidly after a certain time in the case of high
inner motivation. We determined that this is caused by a
difference in all of the developers’ contribution time. Some
people in the developer group contributed to the OSS and
then seceded from it when they were bored, because their
inner motivation was driven by personal hobbies and
preferences. As shown in Figs. 8 and 9, in the case of low
inner motivation the OSS grows linearly and the fitness is
low because the developer group does not take an interest in
it and their contribution time is short. However, in the case

174

of high inner motivation, the growth rate is higher as more
developers conduct voluntary participation and
recommendations, because the developer group takes an
interest in the OSS and their contribution time is long.

Next, the parameter values for outer motivation changed
from 1 to 7 by intervals of 2 and 10 simulation runs were
executed for each case. Fig. 10 shows the difference in
growth according to the change in the parameter values. Fig.
11 shows the difference in the average fitness and
complexity of the OSS. We determined that this situation is
caused by a difference in the general developers’
contribution time due to the given parameters. The results
of Figs. 10 and 11 indicate that the growth rate is higher and
the code is more complete when the contribution time is
longer due to high outer motivation.

Fig. 10. Difference of OSS growth according to
the change of outer motivation

Fig. 11. Average Fitness and Complexity of OSS

according to the change of outer motivation

5.3. Role of Core Developer and OSS Growth/Fitness

We studied how the role of core developers affects the
growth and fitness of OSS. The parameter values for their
active area changed from 5 to 13 by intervals of 2 and 10
simulation runs were executed for each case. Fig. 12 shows
the difference in growth according to the change in
parameter values and Fig. 13 shows the difference in
average fitness and complexity according to this change.

These results indicate that the OSS growth rate and
fitness are higher when the active area is larger, in other
words, they effectively represent the mission and direction
and reflect the opinions of the developer group.

We determined that this is caused by a difference in the
general developers’ contribution time due to the given
parameters. When their active area is small, the outer
motivation of the general developer group who participates
in the OSS decreases rapidly. Accordingly, when the
contribution time of the general developer group is shorter,
they frequently secede from the OSS and then the growth
rate and fitness decrease. When their active area is large,
the contribution time of the general developer group is
longer and the growth rate and fitness increase.

Fig. 12. Difference of OSS growth according to

the change of active area

Fig. 13. Average Fitness and Complexity of OSS

according to the change of active area

5.4. Role of User and OSS Growth

We studied how the role of the user affects the growth
(expansion) of OSS. The parameter values for the users’
interest in new features changed from 0% to 40% by 10%
intervals and 10 simulation runs were executed for each
case. Fig. 14 shows the difference in growth of the OSS
according to the change in the parameter values and Fig. 15
shows the difference in its average fitness and complexity
due to this change.

 When the needs for new features are not frequent, Figs.
14 and 15 show that the expansion of the project is slow but
the fitness and complexity of the OSS is high. On the
contrary, when the needs for new features are frequent, they
also show that the expansion of the project is fast, but the
fitness and complexity of the OSS is low. As the need for
new features increases due to frequent requirements from

175

the user group, the development area expands quickly, but
the average fitness and complexity are controlled by the
exchange of requests between the user group and the
developer group.

We interpreted these results to indicate a difference in
communication between the developer group and the user
group. When the need for new features is not frequent, the
developer group does not reflect the opinions of the user
group and it only develops in the initial development area
because of the lack of communication between the two
groups. Therefore, its fitness may be higher but the various
requirements of the user group are not satisfied, so the
expansion rate of the OSS may gradually decrease. On the
contrary, when the various requirements of the user group
are frequent, the developer group develops the OSS to
reflect the various requirements of the user group due to
sufficient communication between the two groups and
continuous evolution is possible.

Fig. 14. Difference of OSS growth according to

the change of request for new features

Fig. 15. Average Fitness and Complexity of OSS according

to the change of request for new features

5.5. Refactoring Function and OSS Fitness/Complexity

We studied how refactoring affects the fitness and
complexity of OSS. Ten simulation runs were executed for
each case whether refactoring existed or not. Fig. 16 shows
the difference in growth due to the changes in refactoring
and Fig. 17 shows the difference in the average fitness and
complexity of the OSS due to these changes. When
refactoring task is implemented, the difference in the growth
of the OSS is not large but the difference in its fitness and

complexity is relatively large. As a result of refactoring, the
OSS complexity is decreased, which affects the fitness and
total quality of the OSS. Without the refactoring task, the
developer can find it difficult to understand the written
codes since they are more complex.

Fig. 16. Difference of OSS growth according to

the existence of function of refactoring

Fig. 17. Average Fitness and Complexity of OSS according to

the existence of function of refactoring

6. Conclusions

According to Lehman’s laws of software evolution, the

software becomes gradually more difficult to add new
modules or functions as a software development project
gets larger and more complex [13]. This occurs because of
the limited number of developers and the closed source
code in the project. In the OSS, however, every developer
can participate in the project due to the potential for an
unlimited number of developers. Due to this, the code is
written quickly and the OSS grows at a rapid rate.

The rapid growth of OSS occurs due to an ecosystem of
developers and users and OSS itself. In other words, the
growth of OSS does not occur due to a single factor, but by
a combination of various factors among each agent. We can
observe this phenomenon in our simulation model. If any
factor of the OSS is weak or small, the rapid growth does
not occur effectively.

Prior literature indicates that the evolution of OSS is
focused on one or two factors. However, our article
combines several factors found in prior literature and makes
an agent-based model that uses many factors to explain the
evolution process of OSS. From this model, we
demonstrated that the factors affected by the OSS evolution

176

are the participation and duration of developers,
participation of users and activity of core developers. Since
we can trace what factors affect the evolution of OSS and
how they affect its evolution, software development
companies that want to participate in OSS development can
improve their software development strategy by considering
the results of our study. To achieve an effective outcome,
the companies should understand the core factors of OSS.
By considering these core factors, efficient investments can
induce the effective development of OSS projects for the
company. These investments will also lead to the successful
evolution of OSS itself.

References

[1] Hars, A. and Ou, S. (2002), “Working for Free? Motivations
for participating in open source projects”, Intern. J. Electronic
Commerce, 6(3).
[2] Xu, J., Madey, G. (2004), “Exploration of the Open Source
Software Community”, NAACOSOS Conference.
[3] Godfrey, M. and Tu, Q. (2001), “Growth, Evolution, and
Structural Change in Open Source Software”, International
Workshop on Principles of Software Evolution.
[4] Smith, N., Capiluppi, A., Fernandez-Ramil, J. (2006), “Agent-
based Simulation of Open Source Evolution”, Softw. Process
Improve. Pract., 11:423-434.
[5] Long, J. (2006), “Understanding the Role of Core Developers
in Open Source Software Development”, Journal of Information,
Information Technology, and Organizations, Vol 1.

[6] Madey, G., Freeh, V., and Tynan, R. (2003), “Agent-based
Modeling and Simulation of Collaborative Social Networks”,
AMCIS2003, Tampa, FL. August.
[7] Hertel, G. Neidner, S., and Hermann, S. (2003), “Motivation
of software developers in Open Source projects: and Internet-
based survey of contributors to the Linux kernel”, Research
Policy, 32(7), 1159-1177.
[8] Ghost, R. and Prakash, V. (2000), “The Orbiten Free Software
Survey”, First Monday, 5(7), July.
[9] FLOSS(2002), “Free/Libre and Open Source Software: Survey
and Study”, FLOSS Final Report.
[10] Hann, I-H., Roberts, J., Slaughter, S., and Fielding, R. (2002),
“Economic Incentives for Participating in Open Source Software
Projects”, in Proc. Twenty-Third Intern. Conf. Information
Systems, 365-372, December.
[11] Mockus, A., Fielding, R., & Herbsleb, J.D. (2002), “Two
Case Studies of Open Source Software Development: Apache and
Mozila”, ACM Transactions on Software Engineering and
Methodolgy, 11(3), 309-346.
[12] Xu, J., Gao, Y., Christley, S., Madey, G. (2005), “A
Topological Analysis of the Open Source Software Development
Community”, Proceedings of the 38th Hawaii International
Conference on System Sciences.
[13] M. M. Lehman, J. F. Ramil, P. D. Wemick, D. E. Perry, and
W. M. Turski. (1997), “Metrics and laws of software evolution –
the nineties view”, 4th International Software Metrics Symposium
[14] AnyLogic, http://www.xjtek.com/anylogic

177

Towards Merging Goal Models of Networked Software

Zaiwen Feng, Keqing He, Rong Peng, Jian Wang, Yutao Ma
State Key Lab of Software Engineering, Wuhan University

420072, Wuhan City, Hubei Province, China
fengzaiwen@sina.com

Abstract

The ultimate goal of networked software is to
realize mass customization. i.e., to satisfy the
individualized requirements at a low cost and in a
short time. Domain knowledge created by domain
modeling provides essential reuse basis for mass
customization. However, to meet individualized
requirements, it is necessary to customize requirements
based on common domain knowledge. Under this
background, a number of individualized goal models
are brought out. These models are difficult to reuse for
user’s individualized request and manage. In order to
prompt knowledge reuse, merging individualized goal
models is necessary. In this paper, we present an
approach to merge goal models with high semantic
similarity. We define three basic merging patterns to
merge atomic goal models with involvement of human,
and describe the respective algorithm. Based on basic
merging patterns, a systematic algorithm is presented
to solve more general merging.

Keywords: pattern, goal, merging, knowledge

1. Introduction

Recently, service-oriented software development
has been deemed as a new programming paradigm in
software engineering to prompt the next revolution in
software development [4]. Service-Oriented software is
composed of loose-coupling component distributed on
Internet, especially (semantic) web services. Thus,
organizations are able to create and deploy new
software applications agilely to satisfy rapidly
changing users’ requirements.

Based on the background, we propose Networked
Software (NS) that is a complex system of which
topology structure and activity can be evolutionary
dynamically [5]. We proposed systematic development
methodology and formalization frame for NS [6, 12].
In summary, the most important feature of NS
development is to meet the common requirements of

user’s via mass customization, and to meet
individualized, diversiform requirements via
fast-response, changing-with-demand services.

Developing NS consists of two basic phase. First is
modeling selection according to user’s requirements. It
includes: text requirements are required on-line, and
then requirements goal is elicited from text
requirements. The system will query in the domain
knowledge base (DKB) and give the solution (always
represented as goal requirements model) as feedback to
user’s requirements. Nevertheless, solution that DKB
provides may be always too generalized to fulfill
individualized requirements. So the second phase is
individualizing. User adds, deletes or modifies the
initial solution based on common base knowledge to
meet individualized goal. The result is: there will
always be more than one varied goal models around a
base goal model. As time goes by, these varied goal
models become more and more and they are difficult to
reuse and manage. So it is necessary to integrate all
varied goal models to uniformed one in order to meet
individualized requirements of user group.

In this paper we propose a systematic approach to
merge semantic similar goal models based on RGPS.
We generalized three refinement patterns for
AND/OR-Refinements via observation. These
refinement patterns are constraint condition for judging
whether models can be merged. Then we present three
types of merging patterns and corresponding algorithm.
Lastly we propose a general algorithm for complex
merging by means of invoking basic merging pattern.
Our approach requires humans in some phase to ensure
correctness of merging.

The paper is structured as follows: Section 2
describes definition of goal model in RGPS briefly and
mapping method. Section 3 provides three refinement
patterns of goal model which is the theory base of our
paper. Section 4 depicts the pattern-based merging
approach. Section 5 gives a case study for the approach.
Section 6 discusses related works currently. At last,
Section 7 concludes the paper.

178

2. Goal Model of NS

This Section we will give the definition about goal of
NS and semantic similarity of goals.

2.1. Definition of Goal

A goal is an objective the system under
consideration should achieve. Goals may be formulated
at different levels of abstraction, ranging from
high-level, strategic concerns (such as “”provide
ubiquitous cash service” for an ATM network system)
to low-level, technical concerns “card kept after 3
wrong password entries” for an ATM system [9].

The goal layer is important layer of RGPS frame. In
RGPS frame, goals include functional goals and
non-functional goals. Functional goals describe
function that a system must achieve. A functional goal
consists of three parts in RPGS [12, 6]. That is, a verb
that indicates the operation, a noun that indicates the
object dealt with by the operation, and the manner, a
prefix or a suffix that indicates how operation affects
the object. Such as the functional goal “Sort order by
arrival of time”, we can extract from it that operation
is “Sort”, the object is “order”, and the manner is “by
arrival of time”.

In goal-oriented methodology, goal is always
elaborated from high-level to concrete operation and
operational description of system-to-be. Goal
refinement is a process that a high-level goal is
decomposed into subgoals. Generally speaking, in
goal-oriented methodology, goal refinement strategy is
classified as AND-Refinement and OR-Refinement.
AND-Refinement means that satisfying all subgoals in
the refinement is sufficient for satisfying the parent
goal. OR-Refinement means satisfying one of the
refinements is sufficient for satisfying the parent goal
[9]. In this paper, all goal models to be merged adopt
AND-Refinement or OR-Refinement.

2.2. Semantic Similarity of Goal Definition

 To merge goal requirements model, the first
necessary step is to map concepts of goal in two
models. The principle of mapping two goal concept is
they are semantic similar. According to Section 2.1, a
goal definition is divided to three parts:
 DefinitionOfGoal = {operation, object, manner}
 Necessary condition of semantic similarity of
goal definitions is that each part of them are synonymy.
For example, G1 “Book train ticket” and G2 “Order
train ticket” have semantic similarity since operation

of G1 “Book” and operation of G2 “Order” are
synonymy.

3. Refinement Patterns for Goal Model

In goal-oriented methodology, goal is always
elaborated from high-level to concrete operation and
operational description of system-to-be. [10] discusses
goal refinement pattern from formal perspective with
temporal logic. In this paper we present some
refinement pattern from engineering perspective via
generalization to a great deal of goal models from
projects. See Table 1.

When domain expert edits knowledge of DKB, it
will be his consideration scope that which refinements
pattern is for each goal assertion to be decomposed.
Extending to concept set of Section 2.1, we define
definition set for each goal (not leaf goal) below.

DefinitionOfGoal = {operation, object, manner,
refinementpattern}

4. Approach of Merging Goal Model

In the section we first give some definitions, then
three basic merging patterns are presented, at last we
depict a systematic algorithm for merging complex
goal model.

4.1. Basic Definition

Definition1 (Overlap Point). Overlap points are a pair
of goals which are respectively located in two goal
models. Goal pairs must have semantic similarity.
Definition2 (Merging Point). Merging point is the
joint for two goal models to be merged. Merging point
is also overlap point. Generally roots of two models to
be merged are merging point.
Definition3 (Conflict Point). When two goal models
are merged, requirements semantic conflict may
happen. We call a pair of goals which respectively lies
in two goal models and conflict each other conflict
points.
 We use the techniques described in [11] to detect
conflict between goals. General method consists of
deriving boundary conditions by backward chaining, or
the use of divergence patterns. Detection and
resolution of goals requires involvement of human.
Definition4 (Atomic Goal Model, AGM). An AGM
consists of goals and refinement relation. All non-leaf
goals must have the same refinement pattern.
Refinement relation must be all AND-Refinement
simultaneously, or OR-Refinement simultaneously.
Instances of AGMs are depicted in Figure 1.

179

Table.1. Refinement Pattern of Goal
Refinement Patterns Description Example
Object Decomposition

Pattern
All subgoals are one part of the parent
goal.
If we decompose G to G1,
G2,G3,...,Gn. Then we can say G1, or
G2, or G3,..., or Gn is one part of Gn.
Or G includes G1,G2,G3,...Gn.
This decomposition pattern can be
used in AND-Refinement.

Decomposing “Deal With Order”
to “Add Order”, “Delete Order”
and “Modify Order”.
Decomposing “Obtain
Information of City Facility” to
“Obtain Information of hotel”,
“Obtain Information of School”

Business Process
Decomposition Pattern

Subgoals have temporal relation and
could be regarded as a business
process model.
If we decompose G to
G1,G2,G3,...,Gn, we can say G1, or
G2, or G3,...,or Gn is one subprocess
in achieving G.
This decomposition pattern can be
used in AND-Refinement.

Decomposing “Supply Customer”
to “Get Order”, “Verify Order”,
“Process Order”, “Package
Order”, “Ship and Bill”.

Means Decomposition
Pattern

All subgoals are means listed to
address the parent goal.
If we decompose G to
G1,G2,G3,...,Gn, we can say G is
achieved by means of
G1,G2,G3,...,Gn (AND-Refinement).
Or we can say G is achieved by
means of G1, or G2, or G3,..., or Gn
(OR-Refinement).
This pattern can be used in AND or
OR refinement.

Refine “Provide Feedback” to
“Use Email” and “Use Web
Form” with OR-Refinement.
Refine “Ensure Secure Distance
between Trains” to “Maintain
Safe Speed”, “Maintain Safe
Train Response to Command”
and “Maintain no Sudden Stop of
Preceding Train” with
AND-Refinement.

Fig.1. Instance of Atomic Goal Model

4.2. Basic Merging Pattern

Definition5 (Basic Merging Pattern). We define some
basic merging patterns. When merging AGMs, these
patterns help to make correct merging strategies. There
are three basic merging patterns: AND-AND Pattern,
OR-OR Pattern and AND-OR Pattern.
Definition6 (Condition for merging). Necessary
condition for merging two AGMs is: (i) Semantic
similarity for roots of AGMs; (ii) Refinement patterns
of AGMs must be the same if both are
AND-Refinement, or both are OR-Refinement.
Refinement pattern can be different if one is
AND-Refinement, and the other is OR-Refinement.

� AND-AND Pattern

When two AGMs to be merged are both
AND-Refinement, simultaneously have the same
refinement patterns, then AND-AND pattern will be
used.

Supposing T and T’ are goal models to be merged.
G, G’ are respectively root of T, T’. G, G’ are merging
point. The algorithm for merging model T and T’ with
pattern AND-AND is defined below:
Algorithm MergeWithAND-AND(T,T’,G,G’)
1. Depth-first traverse T’ from G’.
2. For each goal ''Gj T� . Supposing overlap point

set of T and T’ is set A
({(, ') , ', (, ')}A Gi Gj Gi T Gj T SemanticSimilarity Gi Gj	 � �

). If Gj’ is not one of goals of goal pairs in A, then
domain expert will determine where Gj’ is inserted
in T as merging. If Gj’ is a leaf goal of T’, then
Gj’ is added to T in a position that domain expert
determines. If Gj’ is not a leaf goal of T’, then Gj’
is added to T in a position that domain expert
determines, and all subgoals of Gj’ in T’ will be
still subgoals of Gj’ in T.

3. Conflict detecting. When Gj’ of T’ is added to T,
detect whether conflict happens between Gj’ and
other goals of T. So we get the set of conflict point
B,

180

{(, ') , ', (, ')}B Gi Gj Gi T Gj T GoalConflict Gi Gj	 � �

. Resolve conflict if conflict happens. Extremely,
merging fails if conflict cannot be resolved by all
means.

4. If Gj’ is one of goals of goal pairs in A and Gj’ is a
leaf goal, then Gi and Gj’ are merged to the one in
T ((Gi and Gj’ are overlap point)).

5. If Gj’ is one of goals of goal pairs in A and Gj’ is
not a leaf goal, supposing Gi and Gj’ are overlap
point, P, P’ are subtrees of T, T’ as Gi, Gj’ are
roots. MergeWithAND-AND(P,P’,Gi,Gj’).
Recursion happens.

Thus, T becomes the new goal model after T’
merges to T with AND-AND pattern.

� OR-OR Pattern

When two AGMs to be merged are both
OR-Refinement, then OR-OR pattern will be used.

Supposing T and T’ are goal models to be merged.
G, G’ are respectively root of T, T’. G, G’ are merging
point. The algorithm for merging model T and T’ with
pattern OR-OR is defined below:
Algorithm MergeWithOR-OR(T,T’,G,G’)
1. Depth-first traverse T’ from G’.
2. For each goal ' . If Gj’ is not one of goals

of overlap point, then domain expert will
determine where Gj’ is inserted in T as merging. If
Gj’ is a leaf goal of T’, then Gj’ is added to T in a
position that domain expert determines. If Gj’ is
not a leaf goal of T’, then Gj’ is added to T in a
position that domain expert determines, and all
subgoals of Gj’ in T’ will be still subgoals of Gj’
in T.

'Gj T�

3. If Gj’ is one of goals of overlap point and Gj’ is a
leaf goal, then Gi and Gj’ are merged to the one in
T ((Gi and Gj’ are overlap point)).

4. If Gj’ is one of goals of overlap point and Gj’ is
not a leaf goal, supposing Gi and Gj’ are overlap
point, P and P’ are subtrees of T and T’ as Gi and
Gj’ are roots. MergeWithOR-OR(P,P’,Gi,Gj’).
Recursion happens.

Thus, T becomes the new goal model after T’
merges to T with OR-OR pattern.

� AND-OR Pattern

When we merge one AGM with
AND-Refinement to the other with OR-Refinement,
we will use AND-OR pattern.

Case (a) AGM T is AND-Refined with Object
decomposition pattern, or Business process
decomposition pattern, the other AGM T’ is

OR-Refinement. G, G’ are respectively root goals of T,
T’, and G, G’ are merging point. The algorithm for
case (a) is depicted below (See Figure 2).

Fig.2. AND-OR Pattern (Case (a))

Algoritm MergeWithAND-OR_a(T,T’,G,G’)
1. Supposing G” is the new goal after merging G and

G’. Add all subgoals of T’ (G1’,G2’,…,Gn’) to
G1” with OR-Refinement. Then add all subgoals
of T (G1, G2, ..., Gm) to G1’, G2’, …, Gn’. New
goal model T” (See Figure 2 (c)) is generated.

2. Conflict Detecting. When we add G1, G2, ..., Gn
to Gq’, conflict should be detected between G1
and Gq’, G2 and Gq’, …, Gn and Gq’. Supposing
conflict is found between Gp and Gq’ (See Figure
2 (c)). We first resolve the conflict between Gp
and Gq’. Extremely, Gp will be deleted if conflict
cannot be resolved by any means. Iterate the same
operation from G1’ to Gn’.
Algorithm ends. Thus we obtain new goal model

T” after merging T and T’.

Case (b) One AGM T is AND-Refinement with Means
Decomposition pattern, the other T’ is OR-Refinement.
G, G’ are respectively root goals of T, T’, and G, G’
are merging point. The algorithm for case (b) (See
Figure 3) is depicted below.

Fig.3. AND-OR Pattern (Case (b))

Algoritm MergeWithAND-OR_b(T,T’,G,G’)

181

Urban transportation query information system help
travelers to arrange routine in city. E.g. [13]. See
Figure 4. T, T’ are both individualized goal models,
and our task is to merge T and T’. Roots of goal
models that is “Arrange Bus Travel Routine” are
merging point.

1. Supposing G” is the new goal after merging G and
G’. Add goal A to G” with OR-Refinement. The
goal A is aid point.

2. Add all subgoals of G (G1… Gm, see Figure 3 (a))
to aid point A with AND-Refinement.

 Algorithm ends. Thus we obtain the new goal
model T” after merging T and T’.

4.3. Complex Merging

Definition7 (Complex Merging). If each model to be
merged has more than one AGMs, we name the
process of merging as complex merging.
 Supposing G,G’ is respectively the root of T,T’.
T, T’ are goal models to be merged. G, G’ is merging
point. The following is the algorithm for complex
merging.
Algorithm MergingComplex(T,T’, G,G’)
1. Searching for all overlap points of goal

model T and T’. Supposing all subgoals of goal
model T is in set
A=

(, ')i jG G

{ ()}i i igoal goal T goal LeafNode T� � � , and
all subgoals of goal model T’ is in set
B= { 'i i i (')}goal goal T goal LeafNode T� � � .
Traverse A, B respectively and find goal pairs

that
satisfy .
(, ')i jG G

'i j iG T G T Semanticsimilarity G G� � � �

Fig.4. Case Study of Complex Merging (Before
merging)

(, ')j
 According to algorithm MergingComplex(T,T’,
G,G’), First we will search for overlap points of T, T’.
See Figure 4, overlap points are signed with shallow
red, and merging point is signed with shallow red and
bold black border. Then traverse T, T’, we found
AGMs of T, T’ (Signed with rectangle or eclipse
dashed border, see Figure 4(a), show omitted in Figure
4(b)). We flag goals in T, T’ which are both roots of
AGMs and belong to overlap points (Signed with
exclamatory mark in yellow triangle). Table 2 depicts
refinement patterns of AGMs of T, T’.

2. Traverse T, T’ to search for AGMs of T, T’. We
flag goals which belong to overlap points and are
the roots of AGMs.

3. Supposing G” is the new goal after merging G and
G’. Based on basic merging pattern, merging two
AGMs which G, G’ is respectively the root of.
Supposing the output is goal model T” which G”
is the root of.

4. Address the next flagged goal L of T. Supposing
L, L’ are overlap points. Merging the goal pairs
(L, L’) in T” based on basic merging pattern.
Iterate this step until all flagged goals of T have
been addressed.
Algorithm ends. The output T” is the merged goal

model.

Data of Table 2 shows that AGM1, ..., AGM4 of T,
T’ can all be merged respectively. Thus we merge
AGM1 which the goal “Arrange Bus Travel Routine”
are root of. T, T’ are merged to the new goal model T”
after that. Merging point of T, T’ is the goal “Arrange
Bus Travel Routine”.
 We continue to merge AGM2, AGM3 and
AGM4 in T” with AND-AND pattern, AND-OR
pattern and OR-OR pattern respectively. In the end we
get the new merged model T”. See Figure 5.

5. A Case Study

In this section, we illustrate complex merging with a
case study in urban transportation domain.

182

Table.2. Atomic Goal Model of T, T’
T T’
Root of AGM
- AND/OR
Refinement

Refinement
Pattern

Root of AGM
– AND/OR
Refinement

Refinement
Pattern

Merged
Yes or No–
(If Yes,
Merging
Pattern)

AGM1 Arrange Bus
Travel
Routine-AND-R
efinement

Business
Process
Decomposition
Pattern

Arrange Bus
Travel
Routine-AND
Refinement

Business
Process
Decomposition
Pattern

Yes
(AND-AND
Merging
Pattern)

AGM2 Provide
Functional
Requirement-A
ND-Refinement

Object
Decomposition
Pattern

Provide
Functional
Requirement-A
ND-Refinement

Object
Decomposition
Pattern

Yes
(AND-AND
Merging
Pattern)

AGM3 Get Bus Travel
Routine-OR-Ref
inement

Means
Decomposition
Pattern

Obtain Bus
Travel
Routine-AND-
Refinement

Object
Decomposition
Pattern

Yes
(AND-OR
Merging
Pattern)

AGM4 Evaluate Bus
Travel
Routine-OR-Ref
inement

Means
Decomposition
Pattern

Evaluate Bus
Travel
Routine-OR-Re
finement

Means
Decomposition
Pattern

Yes
(OR-OR
Merging
Pattern)

Fig.5. Case Study of Complex Merging (After

merging)

6. Related Works

There are many works on mapping and merging of
ontologies at present. It seems that there always are
more than one ontologies in the same domain, which
will cumber effective semantic queries for knowledge.
So it is necessary to coordinate ontologies including
mapping, alignment, and merging. HCONE-merge [7]
can automatically align and then merge ontologies,
HCONE-merge makes use of the intended informal
meaning of concepts by mapping them to WordNet
senses using the Latent Semantic Indexing method.
ONION [14] present an Ontology-Composition
Algebra that consists of a set of basic operators that
can be used to manipulate ontologies. FCA-Merge [15]
apply techniques from natural language processing and
formal concept analysis to derive a lattice of concepts
which is explored and transformed to the merged

ontology by the ontology engineering. These
approaches are efficient to merge knowledge as
ontologies but does not refer to merging of
requirements model.

[8] proposes the Constraints-based Modular Petri
Nets (CMPN) approach as an effective way to
formalize the informal aspects of use cases. Further, it
aims to integrate use cases from different viewpoints
and analysis completeness and consistency.

Some works focus on merging of process model
such as [16, 17]. [16] groups merges in several
categories and describes the corresponding algorithm
for performing these operations. Based on first order
logic implemented by a set of Prolog rules, [17]
proposed an approach for merging overlapping
orchestration by defining a formal model named
OMSM and guiding the developers with
transformation rules to create new orchestration.

7. Conclusions

In this paper we propose a systematic approach
aiming to merge individualized goal model. Based on
observation to a number of goal models depicted in
Tropos, Kaos, we group AND-Refinement &
OR-Refinement relation in three refinement patterns:
Object decomposition pattern, Business process
decomposition pattern and Manner decomposition
pattern. Then we present four types of basic merging
patterns, corresponding algorithm are presented too.
AGMs can be merged with one of basic merging
patterns within corresponding constrants. Our
approach requires domain expert such as: Validate the

183

inserted position in some merging patterns, detect and
resolve conflict. In the end we propose a general
algorithm for complex merging by means of invoking
basic merging patterns.

Using this approach, domain experts can integrate a
number of semantic similar individualized goal models
to one uniform model which is applicable to a user
group. Reuse degree of domain knowledge is enhanced.
In this way, user can directly query the goal model that
can cover his individualized requirements which is
impossible to realize before merging.

ACKNOWLEDGMENT

This research project was supported by the
National Basic Research Program of China (973) under
Grant 2007CB310801, the National High Technology
Research and Development Program of China (863)
under Grant No.2006AA04Z156, the National Natural
Science Foundation of China under Grant
No.60873083, 60703018, 60803025 and 60703009.

References
[1] P. Bresciani, A. Perini, P. Giorgini, “Tropos: An
Agent-Oriented Software Development Methology”,
Journal, Autonomous Agents and Multi-Agent Systems.
Volume 8, Number 3, pp. 203-236, 2004.

[2] J. Castro, M. Kolp, J. Mylopoulos, “Towards
Requirements-Driven Information System Engineering: The
Tropos Project”, Journal, Information System, Vol 27,
Issue 6, pp. 365-389, 2002.

[3] B. Henderson-Sellers, P. Giorgini, P. Bresciani,
“Enhancing Agent OPEN with concepts used in the Tropos
methodology”, Available at:
http://dit.unitn.it/~pgiorgio/papers/esaw03.pdf

[4] N. Gold, A. Mohan, C. Knight, et al “Understanding
Service-Oriented Software”. Journal, IEEE Software, 21(2):
pp. 71-77, 2004.

[5] K. Q. He, P. Liang, R. Peng, et al, “Requirement
emergence computation of networked software”, Frontier of
Computer Science in China, 1(3): pp. 322-328, 2007.

[6] K. Q. He, R. Peng, et al, “Networked Software”,
Chinese Science Press, ISBN: 978-7-03-023160-4, Beijing,
China, 2008.

[7] Konstantinos Kotis, George A. Vouros, Konstantinos
Stergiou. “Towards automatic merging of domain ontologies:
The HCONE-merge approach”, Journal, Web Semantics
Science, Services and Agents on WWW. 4(2006), pp.60-79.

[8] Woo Jin Lee, Yong Rae Kwon. “Integrating and
Analysis of Use Cases Using Modular Petri Nets in

Requirements Engineering”, Journal, IEEE Transaction on
Software Engineering, VOL. 24, NO.12, Dec 1998.

[9] Axel van Lamsweerde, “Goal-Oriented Requirements
Engineering: A Guided Tour”, In 5th IEEE International
Symposium on Requirements Engineering, Toronto, August
2001, pp. 249-263.

[10] Robert Darimont, Axel van Lamsweerde, “Formal
Refinement Patterns for Goal-Driven Requirements
Elaboration”, In: Proceedings 4th ACM Symposium on the
Foundations of Software Engineering (FSE4), San Francisco,
Oct. 1996, pp. 179-190.

[11] Axel van Lamsweerde, “Managing Conflicts in
Goal-Driven Requirements Engineering”. Journal, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
24, NO. 11, NOVEMBER 1998.

[12] Jian Wang, Keqing He, Ping Gong, et al “RGPS: A
Unified Requirements Meta-Modeling Frame for Networked
Software”, In Proc. of Third International Workshop on
Advances and Applications of Problem Frames
(IWAAPF'08), Leipzig, Germany, May 2008.

[13] Chendu Internet Services for People’s Travel. Available
at: http://www.cdgzcx.com/index.jsp

[14] Prasenjit Mitra, “An Algebraic Framework for the
Interoperation of Ontologies”, A dissertation for the degree
of doctor in Stanford University, August, 2004.

[15] Gerd Stumme, Alexander Maedche. “FCA-Merge:
Bottom-Up Merging of Ontologies”. In 7th Intl. Conf. on
Artificial Intelligence (IJCAI '01), Seattle, WA, 2001. pp.
225-230.

[16] Shuang Sun, et al Merging workflows: A new
perspective on connecting business processes. Journal of
Decision Support Systems. 42(2006) pp.844-858.

[17] Cl´ementine Nemo-Cailliau1, Tristan Glatard1, Mireille
Blay-Fornarino, et al. “Merging overlapping orchestrations:
an application to the Bronze Standard medical application”.
In IEEE International Conference on Services Computing
(SCC 2007), Salt Lake City, USA, July 2007. pp. 364-371.

184

Comparison of Some Single-Agent and Multi-Agent Information
Filtering Systems on a Benchmark Text Data Set

Snehasis Mukhopadhyay∗, Shengquan Peng∗, Rajeev Raje∗, Mathew Palakal∗, and Javed Mostafa+

Abstract— Information filtering is a technique to identify, in
large collections, information that are relevant according to
some criteria (e.g., a user’s personal interests, or, a research
project objective). There have been many information filtering
systems developed by many researchers using a variety of
techniques. The authors of this paper have also developed
three information filtering systems: SIFTER (Smart Informa-
tion Filtering Technology for Electronic Resources), D-SIFTER
(Distributed SIFTER), and SIFTER-II. While SIFTER involves
a single monolithic agent, D-SIFTER and SIFTER-II are de-
veloped using different multi-agent technologies. The objective
of this paper is report the experimental results obtained with
respect to the filtering performance and processing time for
SIFTER, D-SIFTER, SIFTER-II, as well as several other
filtering systems developed by other research groups on a
benchmark data set, ı.e., the OHSUMED collection available
as part of the TREC-9 Ninth Text Retrieval Conference in
2005. The primary conclusion of these experimental results is
that the multi-agent systems achieve comparable high filtering
performance of single-agent monolithic systems, but with a
drastically reduced processing time.

I. INTRODUCTION

Advances in computer networking have made it possible
for an increasingly wider spectrum of the population to
access and manipulate digital information. Paralleling this
development has been the exponential growth in the volume
of information available through world-wide computer net-
works. As the size of the interconnected world will grow, so
will be the burden on users in selecting relevant information
from the flood of solicited or unsolicited information. How
to identify relevant information from large collections and
prevent an ”information overload” on user is the focus of
many research and commercial efforts. Information filtering
(IF) is a technique used to classify, sort, and present infor-
mation according to a particular user’s interest. IF systems
are commonly personalized to support long-term information
needs of a particular user or a group of users with similar
needs. They accomplish the goal of personalization by di-
rectly or indirectly acquiring information from the user. In IF
systems, these long-term information needs are represented
as interest profiles (Lewis, 1995), which are subsequently
used for matching or ranking purposes.

SIFTER (Mostafa et al, 1997) is a single agent cen-
tralized information filtering system, aiming to tackle the
information overload problem. A single-agent information
filter faces serious problems while dealing with relatively
∗ With the Department of Computer and Information Science, Indiana

University Purdue University Indianapolis, 723 W. Michigan St. SL 280,
Indianapolis, IN 46202 smukhopa@cs.iupui.edu

+ With the School of Information and Library Sciences, University of
North Carolina, Chapel Hill, NC 27599 jm@unc.edu

large-scale applications. Creating a single monolithic large
filter serving the users over a large information domain
leads to unacceptable processing time, poor fault tolerance,
and poor adaptability. A collaborative society of agents
involved in information filtering may overcome many of
these limitations, while resulting in a filtering performance
very similar to that of a single large monolithic agent. D-
SIFTER (Distributed SIFTER) (Mukhopadhyay et al, 2005)
provides this enhancement to SIFTER. D-SIFTER is a
homogeneous system, in which all the agents are same
except for their knowledge base. D-SIFTER suffers from the
problems associated with scalability, and flexibility. Despite
the limitations, D-SIFTER emphasizes the importance of
a distributed filtering paradigm. These limitations of D-
SIFTER are eliminated in SIFTER-II (Distributed Multiple
Agent Information System) (Mukhopadhyay et al, 2005).
The agents in SIFTER-II are heterogeneous, i.e., they have
different functionality. In particular, different agents perform
the various information tasks, e.g., document collection,
document classification, and user interaction (interest profile
maintenance and updating). The system is flexible and open,
it allows agents to join and leave freely. All these differences
make SIFTER-II a new and improved system. It retains the
advantages of D-SIFTER, and adds more powerful features.

A critical question that arise in the design of large-scale
information filtering systems is whether or not it is better to
use distributed multi-agent information filtering. If so, quan-
titative results indicating such benefits in real-word situations
are desirable. This is the main objective and contribution
of this paper. Large-scale experimental studies involving
computer science data-set and the well-known TREC data-
set are presented to illustrate the advantage of distributed
filtering as well as to compare the different approaches.

II. A BRIEF OVERVIEW OF THE RELEVANT
INFORMATION FILTERING SYSTEMS

In this section, we provide a brief description of the
seven information filtering systems whose performances are
compared on the TREC-9 benchmark data set. Out of these
seven systems, three (SIFTER, D-SIFTER, and SIFTER-II)
have been developed by the authors of this paper and the
others have been reported in the on-line proceedings of the
TREC-9 conference.

A. Single-agent Filtering System (SIFTER)
SIFTER classifies and presents the incoming documents to

the user in an ordered fashion based on the user’s interests.
The agent maintains a knowledge base, called the thesaurus,

185

which consists of key words and phrases culled from an
authoritative source in a specific domain of interest. The
agent classifies incoming document based on the thesaurus
into different categories, keeps on learning the user’s interests
for different categories and maintains a dynamic user profile.
SIFTER is a single agent isolated system, consists of four
components: a document representation module, a document
classification module, a user profile learning module and a
user interface module.The representation module is respon-
sible for converting a document into a numeric structure
that can be manipulated by the classification module. The
well-known vector-space model is used for the representation
(Salton, 1989). The classification module consists of two
important stages: an unsupervised cluster learning stage and
an vector classification stage. During the first stage, clusters
are generated from an initial set of sample documents vectors
and each is represented by its centroid. A simple heuristic
unsupervised clustering algorithm, called Maximin-Distance
Algorithm (Tou, 1974), is used to determine the centroids
over the document vector space. During the second stage,
the incoming documents are classified into the corresponding
cluster according the similarity between the document and
the centroid. The measure used for computing the similarity
between two document vectors is the cosine similarity mea-
sure (Salton, 1989). The user profile is used to determine
the user preference for the different classes of information
so as to prioritize the presentation of incoming document.
A reinforcement algorithm is employed for user interest
profiling. The user interface module provides user with a
window, from which the user can interact with the system.
More details can be find in (Mostafa et al, 1997).

B. Distributed Information Filtering System (D-SIFTER)
D-SIFTER is aimed at improving the information filtering

performance by providing a collaborative environment so
that the agents can help each other to complement the
thesaurus deficiency. In particular, all the agents are identical,
employing the same algorithms for document representa-
tion, classification and learning of user profiles, except for
the thesaurus. This may be caused by difference in the
domains of information that the agents are designed for,
personalization of each agent’s thesaurus to different users,
or independent automatic term discovery process in the
agents. The communication among different agents takes
place through a shared server. The basic idea behind D-
SIFTER is: when an agent fails to classify a document, it
will put this document into a waiting queue on the server.
If another agent classify that document, the result will be
placed in a result queue on the server. The original agent
will periodically check the result queue and it will bring the
result back (Raje et al, 1997).

D-SIFTER emphasizes the importance of a distributed
filtering paradigm, and improves the system performance.
However, D-SIFTER is a homogeneous system, in which
all the agents are same except for their knowledge base. The
agents can not communicate with each other directly, as they
go through a central server, which results in the problems

associated with scalability, performance, and flexibility.

C. Distributed Multi-agent Information Filtering (SIFTER-
II)

The agents in SIFTER-II (Mukhopadhyay et al, 2005)
are heterogeneous, i.e., they have different functionalities. In
particular, different agents perform the various information
tasks, e.g., document collection, document classification, and
user interaction (interest profile maintenance and updating).
The communication method is flexible, i.e., the agent can
choose a suitable method according to its intention. For
example, when an agent wants to advertise a task to the agent
community, it will broadcast the message; when an agent
decides to coordinate with a specific agent, it will commu-
nicate with this agent directly. The document classification
process can be carried out in parallel. The user can enhance
the agent’s knowledge base and share with other user agents
as needed. The system is flexible and open, it allows agents
to join and leave freely. All these differences make SIFTER-
II a new and improved system. It retains the advantages of
D-SIFTER, and adds more powerful features.

SIFTER-II has many different types of agents and dis-
tributed object services. These agents can be classified into
five categories according to their functionalities: adminis-
trator agent, domain agent, wrapper agent, user agent and
classifier agent. In addition, there is a centroid generator
service and a sifter server.

The administrator agent provides the directory service to
the SIFTER-II system. This agent provides all the informa-
tion of the non-agent services, such as the training service.
Each domain agent concentrates on a single domain, such
as computer science or biomedical science. Each wrapper
agent is responsible for retrieving documents from a specific
source and transforming the information to a standard form.
If there are new documents, the wrapper agent will notify the
domain agents about these documents. The domain agents
will broadcast the new documents to user agents. The user
agent is the proxy of the user. Each user has a corresponding
user agent. The user agent keeps a user profile and updates it
by using user’s feedback. The user agent is also responsible
for coordinating with the domain agent to get new documents
and with classification agent to classify the documents. The
user can expand the default knowledge base or create a
new one, and share their own knowledge with other user
agents. The classification agent is in charge of classifying the
documents. It has a representation and classification module,
but does not have any knowledge base associate with it. This
architecture lets the classification of multiple documents to
work in parallel, not over-loading any agents.

D. The Fudan Filtering System
Fudan is a single-agent filtering system whose methodol-

ogy and performance has been described in the TREC-9 pa-
pers (Wu et al, 2001). Very briefly, the system constructs an
initial profile vector consisting of a weighted sum of a topic
vector and feature vectors. The topic vector represents a set
of important terms or words representing a topic of interest.

186

A feature vector is an additional set of words extracted from
relevant documents so as to maximize the mutual information
with the topic terms. When a new document is encountered,
its similarity is computed with the profile vector using the
well-known Cosine similarity measure. The new document
is considered relevant if the similarity exceeds a user-defined
threshold. The details of the methods can be found in (Wu
et al, 2001).

E. The Microsoft Filtering System

The Microsoft filtering system is another one for which re-
sults were submitted for TREC-9 Conference (Robertson and
Walker, 2001). Unlike SIFTER, D-SIFTER, and SIFTER,
it does not classify documents, but merely computes a
relevance value of documents, based on the occurrence of
terms in a profile. The latter is adapted based on identifying
“important” terms using a suitably defined measure of impor-
tance. The threshold used for determining which documents
are relevant, is also adapted on-line. The details of the system
can be found in (Robertson and Walker, 2001). However, the
authors clearly state that the computational load was heavy,
requiring a week’s time on a single machine for the particular
task in TREC-9.

F. The CMU-Y Filtering System

(Zhang and Callan, 2001) discusses the details of the
CMU-Y filtering system referred to in the experimental
studies reported in this paper. Briefly, this filtering system
has three major modules: YParser, YClipset and YLearner.
YParser processes the input data stream, YClipset filters the
input data based on a profile, and YLearner updates the
profile based on relevance feedback. The initial profile is
the set of terms used in the title and description fields of the
topic of interest. The profiles are updated using the Rocchio
algorithm (Rocchio, 1971). The dynamic profile is matched
with a new document and an adaptive threshold is used to
decide whether or not the document is relevant. The details
of the various methods used in the system can be found in
(Zhang and Callan, 2001).

G. The KAIST Filtering System

(Lee et al, 2001) describes the results of the experiments
performed with the filtering system referred to as KAIST.
In this system, once again the Rocchio algorithm (Rocchio,
1971) is used to update the profile and a support vector
machine (SVM) algorithm is used as a pattern recognizer
deciding whether a document is relevant or not. The results of
the SVM classification are re-filtered using profile-document
similarity, based on intra-class and inter-class thresholds.

It is clear that the SIFTER, D-SIFTER, and SIFTER-II
systems are conceptually different from the others in the
sense that they involve the intermediate step of document
classification using unsupervised clustering, before profile
learning using relevance feedback. Further, D-SIFTER and
SIFTER-II are the only two systems referred to in this paper
which use multi-agent technologies.

III. EXPERIMENTS WITH TREC-9 INFORMATION
FILTERING TRACK DATA

In order to find out whether or not it is better to use dis-
tributed multi-agent information filtering, large-scale experi-
mental studies need to be conducted on a standard real-world
data set to compare the performance of different approaches.
This paper mainly describes the experiments conducted on
SIFTER, D-SIFTER and SIFTER-II with TREC-9 Informa-
tion Filtering Track data (OHSUMED document collection).
The OHSUMED document collection is briefly described
first. The experimental results with SIFTER, D-SIFTER, and
SIFTER-II are presented and compared with other reported
results (with Fudan, Microsoft, CMU-Y, and KAIST filtering
systems) in the on-line TREC-9 conference proceedings.

A. OHSUMED document collection
The OHSUMED training collection is a set of 54,710

references from MEDLINE, the on-line medical informa-
tion database, consisting of titles and/or abstracts from 270
medical journals published during 1987. The OHSUMED
test collection is a set of 293,856 references form MED-
LINE, published over a four year period (1988-1991).
The available fields are title, abstract, MeSH index-
ing terms, author, source, and publication type. William
Hersh (hersh@OHSU.EDU) and colleagues obtained the
OHSUMED document collection for their information re-
trieval experiments (Hersh, 1994). Some abstracts are trun-
cated at 250 words and some references have no abstracts at
all (titles only).

B. Evaluation of System Performance
For the TREC experiments, filtering systems are expected

to make a binary decision to accept or reject a document
for each profile. Therefore, the retrieved set consists of an
unranked list of document. Two measures were used in
TREC-9 conference. One was essentially the linear utility
measure, the other is precision-oriented measure (Robertson
and Hull, 2001).

The linear utility measure has been described in previous
TREC reports. The particular parameters being used are a
credit of 2 for a relevant document retrieved and a debit of
1 for a non-relevant document retrieved:
Utility = 2 ∗ R+ − N+

where R+ is the number of relevant documents and N+

is the number of non-relevant documents. When evaluation
is based on utility, it is difficult to compare performance
across topics. Simple averaging of the utility measure gives
each retrieved document equal weight, which means that the
average scores will be dominated by the topics with large
retrieved sets. Furthermore, the utility scale is effectively
unbounded below but bounded above; a single very poor
query might completely swamp any number of good queries.
On TREC-9 conference, another performance measure, T9U,
is used as:
T 9U = Max(2 ∗ R+ − N+, MinU)
MinU = −100 for OHSU topics, −400 for MeSH topics
MnT9U is the mean value of the T9U measure over topics.

187

TABLE I
COMPARISON OF FILTERING PERFORMANCE OF SINGLE-AGENT

SIFTER, D-SIFTER, AND SIFTER-II WITH THE BEST REPORTED

TREC9 RESULTS

SYSTEMS MnT9P MnT9U Proc. time/doc(mSec)
Fudan 31.7 -1.1 NA
Microsoft 30.5 -5.3 NA
CMU-Y 26.1 -26.9 NA
KAIST 20 12.2 NA
SIFTER (theta 0.6) 30.6 -6.5 6165.8
D-SIFTER(3 agents) 29.9 -8.5 1500.7
D-SIFTER(6 agents) 28.8 -11.5 374.1
D-SIFTER(9 agents) 25.5 -23 162.7
D-SIFTER(12 agents) 22.9 -35 97.4
SIFTER-II(3 agents) 29.1 -10.5 1602.5
SIFTER-II(6 agents) 27.7 -14 523.2
SIFTER-II(9 agents) 24.4 -26.5 329.4
SIFTER-II(12 agents) 22 -38.5 192.1

(NA means ‘not available’)

The idea of precision-oriented measure is to set a target
number of documents to be retrieved over the period of the
simulation; the target is set to 50 documents for each topic.
The measure, T9P defined below, is essentially precision, but
with a penalty for not reaching the target:
T 9P = M/Max(Target, N)
Target = 50 documents
M = Number of relevant retrieved documents
N = Number of retrieved documents
MnT9P is the mean value of the T9P measure over topics.

The comparison of the results obtained with the seven
filtering systems is shown in Table 1. The results for
SIFTER, D-SIFTER, and SIFTER-II were generated locally
through extensive experimentation, while those for Fudan,
Microsoft, CMU-Y, and KAIST were collected from the
TREC-9 conference web site. It can be seen that the best
performances with all of SIFTER, D-SIFTER, and SIFTER-
II are comparable to the best filtering results reported in
TREC-9. The thresholding parameter in the clustering al-
gorithm (and hence, the number of centroids) in SIFTER
was adjusted to realize the best filtering performance. Fur-
ther, the number of agents in the distributed filters D-
SIFTER and SIFTER-II were adjusted so as to realize as
fast processing as possible, without sacrificing the filtering
performance significantly (the main objective of multi-agent
filtering). Since processing time results were not reported for
TREC9 conference in (Robertson and Hull, 2001), we report
only the average processing time per document realized
with SIFTER, D-SIFTER, and SIFTER-II for comparable
filtering performance. The results clearly show that much
faster processing is possible with distributed multi-agent
filtering systems. It is worth noting that, although precise
processing time information was not provided for TREC-9
systems, the authors of the Microsoft system does report a
week’s continuous processing on a single machine for all the
documents, which roughly corresponds to 11 secs or 11,000
msecs of processing time per document.

C. Analysis of the Results with the TREC Experiments
It can be concluded that, the advantages of distributed

approaches over a centralized are lower processing time, even
while maintain high filtering performance (as measured by
precision and recall). With the measurements of TREC-9
conference, the filtering performance is comparable to the
best reported results. This implies that these three informa-
tion filtering systems all can give good filtering performance.
Two approaches that incorporate distribution with respect
to knowledge and functionality highlight measurable advan-
tages of a distributed approach over a centralized approach.
D-SIFTER and SIFTER-II are flexible and efficient informa-
tion filtering system. They provide the necessary flexibility,
adaptability and scalability, thereby, lending themselves to
be implemented as a large interconnected system.

REFERENCES

[1] Fisher, G. and Stevens, C. (1991). Information access in complex,
poorly structured information spaces. In Proceedings of ACM Special
Interest Group on Human COmputer Interaction Annual Conference,
pages 63–70.

[2] Hersh, W. R., Buck, C., Leone, T. J., and Hickam, D. H. (1994).
Ohsumed: An interactive retrieval evaluation and new large test
collection for research. In Proceedings of the 17th Annual SIGIR
Conference, pages 192–201.

[3] Lee, K., Oh, J., Huang, J., Kim, J., and Choi, K. (2001). TREC-9
Experiments at KAIST: QA, CLIR, and Batch Filtering.
http://trec.nist.gov/pubs/trec9/t9 proceedings.html.

[4] MESH. (2001). http://www.nlm.nih.gov/mesh/.
[5] Mostafa, J., Mukhopadhyay, S., Lam, W., and Palakal, M. (1997).

A multilevel approach to intelligent information filtering: Model,
system, and evaluation. ACM Transactions on Information Systems,
pages 368–399.

[6] Mukhopadhyay, S., Peng, S., Raje, R., Mostafa, J., and Palakal, M.
(2005) Distributed Multi- Agent Information Filtering: A Comparative
Study. Journal of the American Society for Information Science and
Technology, vol 56, no. 8, pp. 834–842.

[7] Raje, R., Mukhopadhyay, S., Boyles, M., Patel, N., and Mostafa, J.
(1997). On designing and implementing a collaborative system using
java-rmi. In Proceedings of the Fifth International Conference on
Advanced Computing, pp. 404–411.

[8] Raje, R., Mukhopadhyay, S., Boyles, M., Papiez, A., Patel, N.,
Palakal, M., and Mostafa, J. (1997). A bidding mechanism for
web-based agents involved in information classification. WWW
Journal, Special Issue on Distributed World Wide Web Processing:
Applications and Techniques of Web Agents, 1:155 – 165, 1998.

[9] Rocchio, J. J. (1971). Relevance feedback in information retrieval in
The SMART Retrieval System. Experiments in Automatic Document
Processing, pages 313–323, Prentice Hall Inc.

[10] Robertson, S. and Hull, D. A. (2001). The TREC-9 Filtering Track
Final Report.
http://trec.nist.gov/pubs/trec9/t9 proceedings.html.

[11] Robertson, S. and Walker, S. (2001). Microsoft Cambridge at TREC-
9: Filtering track.
http://trec.nist.gov/pubs/trec9/t9 proceedings.html.

[12] Salton, G. (1989). Automatic Text Processing. Addison-Wesley.
[13] TREC. (2001). http://trec.nist.gov/data.html.
[14] Tou, J. T., and Gonzalez, R. C. (1974). Pattern Recognition Principles.

Addison-Wesley.
[15] Wu, L., Huang, S., Guo, Y., Liu, B., and Zhang, Y.

(2001). FDU at TREC-9: CLIR, Filtering and QA tasks.
http://trec.nist.gov/pubs/trec9/t9 proceedings.html.

[16] Zhang, Y. and Callan, J. (2001). YFilter at TREC-9.
http://trec.nist.gov/pubs/trec9/t9 proceedings.html.

188

Towards Adaptable BDI Agent: a Formal Aspect-Oriented Modeling Approach

Lily Chang and Xudong He
School of Computing and Information Sciences, Florida International University

 Miami, FL 33199, USA
Email: {lchan003, hex}@cis.fiu.edu

Abstract

In this paper, aspect-oriented concept is incorporated

into predicate transition nets to model agents based on BDI
structure, which describes the mental attitudes of
autonomous agents. Our modeling approach not only
explicitly models the BDI structure to bridge the gap
between agent theory and agent design, but also
modularizes the BDI agent model into various aspects to
enhance the adaptability and reusability of agent models.

1. Introduction�
Multi-agent systems [21] have drawn a lot of attentions

due to their modularity and adaptability in complex system
design. On formal approach for agent-oriented modeling [9],
there were many works based on Petri nets to model multi-
agent systems. However, most of the works were focused
on modeling agent mobility and controls at system level [13,
23]. There are essential concerns such as agent reasoning,
behavior adaptation and interaction in multi-agent system
modeling have not yet been fully addressed. In order to
address the essential concerns of agent-oriented modeling,
we adopt the well known Belief-Desire-Intention (BDI)
model [19] as the fundamental structure of our Predicate
Transition nets (PrT nets) [7] agent model. BDI model has
been widely used in a number of rigorous logic models and
applications [4, 12, 18, 20, 22]. Nevertheless, only a few of
them provide concrete models. The beliefs refer to the
knowledge that an agent has about the world; desires are
the goals that an agent would like to achieve; and,
intentions are the plans that can reach agent goals. Beliefs,
desires and intentions describe the mental attitudes of an
agent and are the key elements to enable rational actions,
which address the property of agent autonomy [22]. In this
paper, we use PrT nets as the modeling language and show
that it is viable to explicitly model BDI structure. PrT nets
are an excellent formal model for the study of critical
aspects in concurrent and distributed systems. Especially,
the non-determinism of PrT nets is an important feature in
modeling agent autonomy and behavior adaptation. Since
PrT nets are formal models that provide a sound basis for
system analysis to unveil errors and missing requirements
at the earlier stage of system development process, costly
fixes at later stages can be avoided.

In addition to address the essential concerns of modeling
an agent, we further exploit the modularity and adaptability
of BDI model by introducing the concept of aspect from
aspect-oriented programming (AOP) [10] into PrT nets.
Although multi-agent system architecture has the advantage
of modularity by decomposing a complex system into
multiple agents that can be designed individually to solve
particular problems, the modularity is addressed at system
level since an agent is the unit of abstraction that
encapsulates its functionalities and controls [21]. In AOP,
aspects are non-functional properties that can be wrapped
into modular units and used wherever necessary. As a result,
the software system using AOP is more manageable and
efficient [10]. Similarly, we consider the essential concerns
regarding certain agent properties as the candidates of
aspects in a BDI agent model. For example, autonomy is an
essential property of an agent [9], that is, an agent is a
decision maker instead of a passive object. During the
execution of an agent task, agent may need to reason for the
consequent in order to act coherently. Therefore, the
behavior of reasoning can be modeled as a reusable aspect
in addition to action model. Separation of reasoning
concerns allows the extensibility of decision logic. The
conceptual model of our aspect-oriented BDI agent is
shown in Figure 1, where the crosscutting behaviors of an
agent’s action model are related to several essential agent
concerns such as reasoning, behavior adaptation and
interaction. Note that, in addition to BDI structure, our
conceptual model includes an interaction aspect to address
the modeling of an agent’s interactions with external
environment (e.g., resource acquisition). Although,
modeling the interactions of multiple agents is not the focus
of this paper, the interaction model is indispensable since
sociality is an essential concern of agent-oriented modeling
[9].

Figure 1. An aspect-oriented BDI agent model.

189

Other than essential aspects, there are different concerns
with regard to different design objectives of agents. For
instance, mobile agent design concerns about agent
mobility, task agent design concerns about collaboration,
interface agent design concerns about learning, etc. By
separating different agent concerns into aspects from agent
model, modularity and adaptability can be achieved at agent
level. Consequently, the agent model is adaptable to
incorporate different aspects for the analysis of different
concerns and is more manageable to deal with extensibility.

The remainder of this paper is structured as follows.
Section 2 presents the PrT nets modeling approach of
aspect-oriented BDI agent model. Section 3 discusses the
related works and the conclusion is drawn in Section 4.

2. Realizing Aspect-Oriented BDI Agent Model

In the following sections, we first introduce the PrT nets,
and then present the modeling approach of BDI structure;
lastly, we give the modeling approach of aspects, which
includes specifying an aspect, aspect weaving, weaving
patterns and weaving process.

2.1 Predicate Transition Nets�
PrT nets are high level nets that are able to differentiate

tokens by defining different token types and transition
constraints. As a consequence, both data and controls can
be addressed. More importantly, with operational semantics,
PrT nets are amenable for model execution [5] and model
checking [1]. A PrT net structure is composed of places,
transitions and flow relations (arcs). Each place in a net can
be defined to hold data tokens with a specified token type;
and, each transition defines the enabling conditions in first-
order logic formulas to select desired data tokens. Markings
are states, which are token distributions in a net structure.
Formally, a PrT net is a tuple (N, Spec, ins), where N= (P, T,
F) is a net structure. P and T are finite sets of places and
transitions of N, where ∅≠∪∅=∩ TPTP , and

)()(PTTPF ×∪×⊆ is a set of arcs, which define the flow

relations. Spec is an algebraic specification, which includes
sorts, operators, and equations. Terms defined in Spec
include tokens in P, labels on F and constraints associated
with T. An inscription ins=),,,(0MRLϕ maps net elements

to their denotations in the algebraic specification Spec. ϕ is

a mapping from P to the set of sorts; L is a sort-respecting
mapping from F to the set of labels; R is a mapping from T
to the set of constraints; and M0 is the initial marking – a
mapping from P to the set of tokens. The formal definitions
with regard to the dynamic semantics of a PrT net can be
found in our previous work [3].

As an example for demonstration, a PrT net structure is
shown in Figure 2, where the circles are places, the bars are
transitions and the arrows are flow relations. By defining
the net elements (P, T, F) and the inscription ins of net N,
the behaviors of net N in Figure 2 can be described by the
firing sequences that change the marking from one to the
other.

Figure 2. A PrT net structure

For example, the static and dynamic semantics of the net
structure in Figure 2 can be formally specified as follows:
P = {Miami, Houston, Atlanta, Los Angeles}
T = {t1, t2, t3, t4}
F = {(Miami, t1), (Miami, t2), (t1, Houston), (t2, Atlanta),
(Houston, t3), (Atlanta, t4), (t3, Los Angeles), (t4, Los
Angeles)}

TRUEtRtRtRJohnxtR

PERSONLosAngelesAtlantaHoustonMiami

=====

℘====

)4()3()2(;'')1(

)()()()(ϕϕϕϕ

// All places are defined to hold multiple tokens of the token
type PERSON. Transition t1 is enabled only when
x=’John’. There are no further constraints defined for
transitions t2, t3 and t4.
L(Miami, t1) = L(Miami, t2) = L(t1, Houston) = L(t2,
Atlanta) = L(Houston, t3) = L(Atlanta, t4) = L(t3, Los
Angeles) = L(t4, Los Angeles) = x

∅===

><><=

)()()(

},{)(

000

0

LosAngelesMHoustonMAtlantaM

MaryJohnMiamiM

The behavior of net N is the set of all execution
sequences starting from the initial marking M0. However, a
possible firing sequence based on the above initial marking
is M0[t1>M1[t2>M2[t3>M3>[t4>M4 where the
corresponding markings are as follows:

∅==

><=><=

)()(

}{)(};{)(

11

11

LosAngelesMAtlantaM

MaryMiamiMJohnHoustonM

∅==

><=><=

)()(

}{)(};{)(

22

22

LosAngelesMMiamiM

MaryAtlantaMJohnHoustonM

∅==

><=><=

)()(

}{)(};{)(

23

33

HoustonMMiamiM

MaryAtlantaMJohnLosAngelesM

∅===

><><=

)()()(

},{)(

444

4

MiamiMHoustonMAtlantaM

MaryJohnLosAngelesM

2.2 Modeling BDI Structure

Beliefs are the knowledge that an agent has about the
world. Traditional approach in AI community is to
represent knowledge symbolically as a collection of logical
formulas [16] consisting of facts and rules. PrT nets are net
representations of predicate logics and are amenable to
represent logical sentences as a net structure [8, 17]. For
example, a logical clause),(),(yxancestoryxparent � can

be represented by a net structure, in which a transition
represents the implication, ‘parent’ as the input place and
‘ancestor’ as the output place of the transition respectively.
The arc from place ‘parent’ to the transition and the arc
from the transition to place ‘ancestor’ are labeled with the
pair of variables <x, y>.

190

We consider desires as the set of pre-defined agent goals
that can be achieved with respect to the design objective of
an agent model. Intuitively, agent goals are a set of
reachable markings in a net with respect to some initial
markings. Therefore, if a PrT net structure specifies the
action model of an agent, then, intentions are the possible
transition sequences that can reach goal markings from
current markings. For example, in Figure 2, John is
currently at Miami and intends to go to Los Angeles. Los
Angeles is a goal. Nevertheless, there are two paths
available from current location Miami to Los Angeles: (1)
Miami-Houston-Los Angeles (2) Miami-Atlanta-Los
Angeles. The transition sequences for the paths are
M0[t1>M1[t3>M2 and M0[t2>M1[t4>M2. The net structure
in Figure 2 exhibits the non-determinism that addresses the
autonomy of path selection to reach agent goal (Los
Angeles).

2.3 Modeling Aspects

Now, consider of choosing the path from current
location Miami to Los Angeles, there are two viable paths
to Los Angeles. However, there may exits a path of agent’s
best interest (e.g., choose whichever the fare is cheaper). To
extend the action model in Figure 2 with reasoning
behaviors, the net structure of agent knowledge can be
modeled separately as a reusable aspect and woven at the
point of making decision. In this case, the conclusion of a
reasoning aspect can be woven at transition t1 and t2 as an
additional enabling condition to enforce a desired path.
Similarly, the action model of an agent is extendable for
alternate plans, which can be modeled as aspects as well.
As a consequence, the behavior adaptation of an agent
model can be addressed. For example, if John travels by
Houston, other traveling paths to Los Angeles from current
location Houston may further be available. Thus, an aspect
of alternate path can be woven at place ‘Houston’ to extend
the adaptable behavior.

For aspect weaving, we borrow the terms from AspectJ
[11]. First, a join point is a well-defined point, where
additional behaviors can be woven into. A join point can be
a transition or a place in a net structure. Second, an advice
is a net structure that is to be woven into the associated net
that has the specified join points. Third, a pointcut specifies
the join points in associated nets. Fourth, an aspect is a
modular unit that specifies pointcuts and advices. We
consider aspect weaving as the process of connecting
advices to the nets that are specified in pointcuts.

We demonstrate the aspect weaving of a net and an
aspect using the net structure of Figure 2 in Section 2.1.
Assuming there is an alternate path: Houston-San Antonio-
Dallas-Los Angeles, and the net structure is shown in
Figure 3(a). Place “Houston” in Figure 2 is considered as a
place join point where alternate paths might be available.
Figure 3(b) shows the woven net after appropriately
weaving the aspect of an alternate path into the net in
Figure 2 by connecting an incoming arc from “Houston” to

transition t11 and connecting an outgoing arc from transition
t12 to place “Los Angeles”.

����� ���	
����
������

���������

�� ��

��

���	
������ ������

���	
������ ������

���

���

������� ���	
������� ���

��� ���

���

���

�

�

�

�

�

�

�

�

�
�

� � � �

� � � �� �

Figure 3. (a) An alternate path (b) A woven net.

In order to properly weave different nets together, we
need to specify the aspect and its join point(s). Thus, the
specification of an aspect should include (1) the name of
the aspect (2) pointcuts, which specify the connecting
points of relevant nets (3) advice, which is a net structure to
be woven. As a result, the alternate path aspect (Figure 3(a))
with respect to the original net in Figure 2 can be specified
as shown in Figure 4, where the name of original net is
represented by N, and the name of advice is represented by
B. The pointcuts defined in the aspect ‘Alternate Path’
specify the join points of net N in a format as follows:
(advice_name.pointcut_name: net_name.join_point1
[,net_name.join_point2, ….]).

Figure 4. An alternate path aspect.

The above example shows that there are two possible
kinds of join points in a net, namely transition join point
and place join point. A place join point is considered as a
place where an aspect of alternate choice can be added; or,
as a place that can hold the tokens generated from an aspect
of some extended behaviors. A transition join point is
considered as a point where an aspect of some concurrent
behaviors can be added; or, where an aspect of additional
enabling conditions can be added. We generalize some
weaving patterns in addition to previous example and show
them in Figure 5, where (a), (b) and (c) are the patterns of
transition join point since the weaving point is at a
transition; and, the patterns in (d), (e) and (f) are place join
point since the weaving point is at a place. Patterns (a) and
(d) are similar to after advice in AOP; (b) and (e) are

191

similar to before advice; (c) and (f) are similar to around
advice, which add an explicit control to a net.

����
����

����

��� ���

����

����

���

��� ��� ���

����

Figure 5. General weaving patterns.

Intuitively, during a weaving process, a transition join
point must be connected with a place in the advice and a
place join point must be connected with a transition in the
advice. This is to ensure the correctness of the syntax and
static semantics of a woven net. The weaving rules for both
transition and place join point(s) are as follows.
(1) For every join points that are specified in the pointcut(s)

of an aspect, reconnect the input arc(s) and/or output
arc(s) that are associated with the specified pointcut(s)
in the advice with the join points in original net.

(2) Label the arc(s) with the same type of variable(s) with
respect to the join point(s) in original net.

(3) The dotted places and transitions that highlight the
specified pointcuts in advices are discarded after
weaving process.

Figure 6. The weaving process of aspects and

associated nets.

Let N be the net structure (desires) that represent basic
agent plan, and A be the set of all aspects, which may
include the reasoning behavior (beliefs) and alternate plans

(intentions). For all aspects in A such that each advice adv
has a set of pointcuts PC, in which each pointcut pc_name
specifies the join point in advice adv and a set of associated
join points PJ in net N in a form of adv.pc_name.:
N.pj_name,[N.pj+1_name,…, N.pn_name] in order to
compose A and N. A pointcut pc_name could be a transition
or a place; however, the associated pair of pc_name in PC
and the join points pj_name in PJ must be of both
transitions or places. The composition of A and N is through
a weaving process that is briefly described in Figure 6.

3. Related Works

On formal approach for modeling multi-agent systems,
there were works based on temporal logic [2, 19, 22] and Z
notation [15]. Although temporal logic is well suited in
specifying the properties of reactive agents based on BDI
agent architecture [19], its property-oriented nature
provides no state transition relations. Thus, it is difficult to
map a temporal logic specification to an implementation. Z
notation provides rich type definitions. However, Z notation
provides no explicit operational semantics and no effective
definition of the concurrency, thus is insufficient to specify
the concurrent and interacting behaviors of agents.
Furthermore, in [15], there was no discussion about BDI
structure and rational behaviors.

Among Petri net based research works for modeling
agents, most of the works were focused on the control
structure and the mobility of agents (e.g., the works in [13,
23]). In [25], BDI model was used in their framework based
on object-oriented Petri nets; however, the focus was on the
modeling of message passing and a planner module where
BDI was represented by places. In [14], a component-based
modeling approach was developed based on Colored Petri
nets by the invention of potential arcs to address the
resource conflict resolution among agents. The focus was
on the construction of agent plans that were free of conflicts.
In [17], a mechanism has been derived to transform a logic
program that is represented by a set of Horn clauses to an
equivalent PrT net structure. The logical sentences were
represented as a net structure in [17].

 To the best of our knowledge, there was no work
integrating aspect-oriented concept with PrT nets for
modeling multi-agent systems based on BDI structure. In
[6], Unified Modeling Language (UML) was used to model
the aspectual components in multi-agent systems. In [24,
26], security concern was modeled individually based on
PrT nets and woven into a base net to generate a secured
net model. Nevertheless, both of the works [24, 26] were
not related to multi-agent system modeling and limited to
security aspect.

4. Concluding Remarks

We address the essential concerns of modeling an agent
by adopting BDI structure, and the structural complexity of
modeling a BDI agent by incorporating aspect-oriented
concept into PrT nets. Our modeling approach enhances the
modularity and adaptability of PrT net models. As a result,

Aadv ∈∀ do {
Cc Pnamep ∈∀ _

 do {
Jj Pnamep ∈∀ _

 do {
Reconnect output arc(s) of namepc _

in adv from namep j _ to •namepc _ ;

Label the arc(s) with respect to the token
type of connected place in N;
Reconnect input arc(s) of namepc _ in

adv from namepc _• to namep j _ ;

Label the arc(s) with respect to the token
type of connected place in N;

 Discard namepc _ in adv;

}
 }
 }
// namepc _• and •namepc _ represent the pre-set and

post-set of namepc _ respectively.

192

net models are more manageable to adapt different
concerns for the analysis of critical aspects in multi-agent
systems. This paper presents a conceptual model of our
ongoing research for modeling multi-agent systems using
PrT nets. The future works of our study include the detailed
modeling approach of essential aspects; such as modeling
the reasoning aspect where the rules can be dynamically
changed and applied instead of modeled as a static net
structure.

Acknowledgements. This work was partially supported by
NSF grants HRD-0833093 and IIP - 0738465.

Reference

[1] G. Argote, P. Clarke, X. He, Y. Fu, and L. Shi: "A
Formal Approach for Translating a SAM Architecture
to PROMELA", Proc. of the International Conference
on Software Engineering and Knowledge Engineering
(SEKE08), San Francisco, July, 2008.

[2] H. Barringer, M. Fisher, D. Gabbay, G. Gough and R.
Owens, METATEM: A Framework for Programming
in Temporal Logic, Proceedings on Stepwise
Refinement of Distributed Systems: Models,
Formalisms, Correctness., LNCS, Vol. 430, pp.94-129.

[3] L. Chang, J. Ding, X. He, S. Shatz: A Formal
Approach for Modeling Software Agents Coordination,
Communication of SIWN, Vol. 3, 2008, pp.58-64.

[4] K. Fischer, J. P. Muller, M. Pischel: A Pragmatic BDI
Architecture, Intelligent Agent II, Vol. 1037, pp.203-
218, Springer-Verlag, 1995.

[5] Y. Fu, Z. Dong, and X. He: “A Translator of Software
Architecture Design from SAM to Java”. International
Journal of Software Engineering and Knowledge
Engineering, vol. 17, no.6, 2007, 709-755.

[6] A. Garcia, U. Kulesza, C. Lucena: Aspectizing Multi-
agent Systems: From Architecture to Implementation,
SELMAS, LNCS Vol. 3390, pp.121-143, February
2005, Springer Berlin / Heidelberg.

[7] H. J. Genrich, Predicate/Transition nets. Advances in
Petri Nets 1986, pp. 207–247.

[8] X. He, W. C. Chu, H. Yang: A New Approach to
Verify Rule-Based Systems Using Petri Nets,
Information and software Technology, Vol. 45, No.10,
pp.663-669, 2003.

[9] N. Jennings and M. Wooldridge, Agent-Oriented
Software Engineering. Proceedings of the 9th European
Workshop on Modeling Autonomous Agents in a
Multi-Agent World, 2000.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J. M. Loingtier, J. Irwin: Aspect-
oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP). Springer-Verlag LNCS 1241, June 1997.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, W. Griswold: Getting Started with AspectJ,
Communication of ACM, Vol. 44, No. 10, pp. 59-65,
2001.

[12] D. Kinny, M. Georgeff and A. Rao, “A Methodology
and Modeling Technique for Systems of BDI Agents,”
Proceedings of the Seventh European Workshop on
Modeling Autonomous Agents in a Multi-Agent World,
1996.

[13] M. Kohler, H. Rolke, Modeling Mobility and Mobile
Agents Using Nets Within Nets, Proc. of International
Conf. on Application and Theory of Petri Nets, LNCS
vol. 2679 (2003), 121-139.

[14] J. Lian and S. M Shatz, Potential arc: A Modeling
Mechanism for Conflict Control in Multi-agent
Systems. Proceedings of the 4th Symposium on Design,
Analysis, and Simulation of Distributed Systems
(DASD-06) 2006, pp. 467–474.

[15] M. Luck, N. Griffiths and M d’Inverno, From Agent
Theory to Agent Construction: A Case Study.
Proceedings of the ECAI’96 Workshop on Agent
Theories, Architectures, and Languages: Intelligent
Agents III 1997, Vol. 1193, Springer-Verlag:
Heidelberg, Germany, pp. 49–64.

[16] J. McCarthy: Programs with Common Sense, Semantic
Information Processing, pp. 403-418. Cambridge, MA,
MIT Press.

[17] T. Murata, D. Zhang: A Predicate-Transition Net
Model for Parallel Interpretation of Logic Programs,
IEEE Transactions on Software Engineering, Vol. 14,
No. 4, 1988..

[18] A. S. Rao, M. Georgeff.: BDI Agents: From Theory to
Practice. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95),
pages 312–319, San Francisco, CA, June 1995.

[19] A. S. Rao, M. Georgeff: Modeling Rational Agents
within a BDI Architecture, Proceedings of Knowledge
Representation and Reasoning, pp.473-484, 1991.

[20] K. Sycara, J. A. Giampapa, B. Langley, M. Paolucci:
The RETSINA MAS, a Case Study, in SELMAS 2003,
pp.232-250. Springer-Verlag.

[21] M. Wooldridge, “An Introduction to Multi-agent
Systems”, J. Wiley, New York, 2002.

[22] M. Wooldridge. Reasoning about Rational Agents. The
MIT Press: Cambridge, MA, 2000.

[23] D. Xu, J. Yin, Y. Deng and J. Ding: A Formal
Architecture Model for Logical Agent Mobility. IEEE
Transactions on Software Engineering. Vol. 29, No. 1,
pp. 31-45, Jan. 2003.

[24] D. Xu, K. E. Nygard: Threat-Driven Modeling and
Verification of Secure Software Using Aspect-Oriented
Petri Nets. IEEE Transactions on Software Engineering,
Vol.32, No.4, pp.265-278, IEEE Press.

[25] H. Xu and S. M. Shatz, A Framework for Model-based
Design of Agent-oriented Software. IEEE Transactions
on Software Engineering, 2003, pp. 15–30.

[26] H. Yu, D. Liu, X. He, L. Yang, S. Gao: Secure
Software Architectures Design by Aspect Orientation,
Proceedings of the 10th IEEE International Conference
on Engineering of Complex Computer Systems, pp.47-
55, 2005, IEEE Computer Society.

193

A Multi-Agent Debugging Extension Architecture

Ziad Al-Sharif, Clinton Jeffery
Computer Science Department

University of Idaho
zsharif@ieee.org, jeffery@cs.uidaho.edu

Abstract
The Idaho Debugging Extension Architecture (IDEA)

enables dynamic analysis agents, such as automatic
debugging and visualization agents, to be loaded on the fly
in a source-level debugger. IDEA is an event-driven
debugging architecture that provides a simple interface to
load API-compliant external dynamic analysis agents
during a debugging session. Multiple standalone agents
can be loaded and managed under the control of the
source-level debugger. Successful agents can be migrated
into the source code of the debugger core as permanent
features with higher performance.

1. Introduction

A source-level debugger helps programmers locate bugs
by stepping through the source code and examining the
current state of the execution. Some drawbacks of typical
source-level debuggers are: 1) limited information provided
about the execution history, 2) lack of automated, analysis-
based debugging techniques, and 3) closed architecture that
provides little or no cooperation with external debugging
and visualization tools.

Reversible and post-mortem (trace-based) debuggers,
such as ODB[13], TOD[15], and Whyline [11,12] provide
debugging techniques based on the ability to browse
forward and backward through the states of an execution.
This approach provides outstanding debugging capabilities
such as finding where and why some action has happened,
but poses formidable scalability problems, and is good at
finding some types of bugs and not others. While they
provide valuable capabilities, some trace-based debuggers
neglect common debugging techniques such as altering the
state of the buggy program.

This paper presents the Idaho Debugging Extension
Architecture (IDEA). IDEA supports extensions called
agents. An agent is an event-driven task-oriented program
execution monitor. IDEA’s agents are written and tested as
standalone programs, after which they can be loaded and
used on the fly from within the conventional source-level
debugger, or integrated as permanent features into the
debugging core, with almost no source code alteration.
Different agents perform different debugging missions such
as detecting a suspicious execution behavior, performing an

automatic debugging procedure, or executing a dynamic
analysis technique.

IDEA’s debugging extension agents monitor the
execution of a program for specific run time events; an
event is an action during the execution of the program such
as a method being called or a major syntax construct being
entered. Different agents can be loaded and active, and each
agent receives different runtime events based on their own
request. Agents are coordinated by a central debugging
core. Each agent 1) provides the debugging core with its set
of desired events, 2) receives relevant events from the
debugging core, 3) performs its debugging mission, which
may utilize execution history prior to the current execution
state, and 4) sends its analysis results back to the user.

IDEA processes and filters execution events, manages
the debugging session, and handles external and internal
debugging agents. IDEA allows the debugging core and any
number of compatible dynamic analysis agents to assist in
locating and finding bugs. Separately-compiled
dynamically-loaded external agents receive their
information from IDEA’s debugging core, which controls
them. All active external/internal agents are suspended
whenever a breakpoint or a watchpoint is reached, and they
are resumed whenever the user resumes the buggy program.
The external debugging agents’ standard inputs and outputs
are redirected and coordinated by IDEA’s debugging core.

2. Debugging with Agents

Conventional debuggers allow users to explore their
debugging hypotheses using manual investigation.
Debugging with agents leverages the conventional
debugging process by empowering the user with more tools
to inspect the state of the buggy program. IDEA’s agents
may retain information beyond the current state of
execution and perform automatic debugging and dynamic
analysis techniques that could be supported by trace-based
debuggers such as ODB [13,15]. However, IDEA’s agents
are task-oriented; each agent embodies a lightweight task-
specific analysis technique.

IDEA’s agents can be written and tested as standalone
programs and then loaded into the debugger to work in
concert with each other. Using IDEA, it is easy to define
debugging agents that capture specific execution behaviors

194

such as: 1) loops that iterate N times, for some N >= 0;
2) variables that are read and never assigned or assigned
and never read during a particular execution;
3) expressions such as subscripts that fail silently in a
context where failure is not being checked; 4) a variable
that may change its type during the course of execution; or
5) a trace of variable states, which allows users to trace
backward and see where a specific variable was assigned
long before it is involved in a crash. For example, many
functions return a specific value when they encounter an
error or fail to accomplish their job. An agent can
automatically catch any of these failed functions and save
the user the time that can be spent during a manual
inspection.

Furthermore, IDEA’s agents are employed within the
conventional source-level debugging session, which
provides a simple interface to load, unload, enable, or
disable debugging agents on the fly, and the user can be
selective about which agent(s) to use.

3. Design

IDEA features novel properties that distinguish it from
other debugging architectures. First, it provides two types
of extensions: dynamic extension on the fly during the
debugging session (external agents), and formal steps for
migrating and adopting standalone agents as permanent
debugging features (internal agents). Second, it encourages
users to write their own agents and incorporate them into a
typical source-level debugging session. Finally, it supports
an interactive users interface, where simultaneous agents
can be loaded and managed during a debugging session.
The user does not need to restart the debugging session
whenever a decision is made to incorporate any of the
debugging agents in that session. In contrast, common static
and dynamic analysis tools and libraries have to be linked in
advance into the source code of the buggy program, or
initialized at the start of the host debugger.

IDEA’s debugging core is comprised of five major
components: 1) a console that provides the interface
between the user and the debugging facilities, 2) a session
that initializes and coordinates the debugging situation, 3) a
debugging evaluator that provides the main monitoring loop
and event filtering, 4) an agents interface that facilitates and
provides the programming interface for external and
internal extensions, and 5) a debugging state that maintains
and shares the state of the debugger between the rest of the
components and the user. See Figure 1.

5. Implementation

IDEA’s implementation is based on two components that
make the source-level debugger an event coordinator for the
extensions; Internals and Externals. These components are
plugged in to the main debugging loop as extra listeners on
the runtime events. IDEA manages and coordinates the

external agents and forwards received events, from the
buggy program into different external debugging agents
based on their interest. Extensions to an IDEA-based
debugger are coordinated within the agents’ interface of the
evaluator component. Extensions are abstracted by objects
which serve as Proxies for external agents or as Listeners in
the case of internal extensions.

The Alamo monitoring framework provides high level
primitives to control the buggy program and to customize
the reported events. The next reported event will be one of
those specified by a set of event types called an event mask;
a detailed event filter for the current set of desired events.
For the selected event types, if the event code has a
corresponding entry in the hash table named value mask,
then only those events that have a matched value is
reported. This optimization limits the number of reported
events to the inquired ones, and reduces the number of
context switches.

IDEA’s debugging core coordinates all of the built-in
classical debugging techniques, the internal agents, and the
dynamically loaded external agents. For every received
event, first it checks whether any classical action is needed
such as a breakpoint, or watchpoint. Then it checks for any
enabled internal and/or external agent; it forwards events to
the enabled agents based on their event mask.

6. Extensions

IDEA supports two types of agents: 1) standalone agents
that can be loaded on the fly, from any point, during the
debugging session, and 2) built-in debugging agents that are
incorporated into the debugging core as permanent
debugging features.

The event masks of extension agents (internals and
externals) are added to the set of events that are requested
by default by the debugging core. On the fly, the debugging
core starts asking the buggy program about those extra
events. When the debugging core receives an event from the
buggy program, it forwards the received event to those
extension agents that are enabled and requested this event in

Figure 1. The IDEA Architecture

User

Session St
at

e

Debugging
Evaluator

Multi-Agents
Interface

Library of
Agents

External
Agents

The AlamoDE Debugging Framework

The Buggy Program

195

their event mask. For internal agents, this takes the form of
a call to a listener method, while for external agents it takes
the form of a thread switch (Unicon threads are called co-
expression), which the agent sees as a return from its
EvGet() event request. EvGet() is an Alamo primitive that
resumes the buggy program until the next available event.
See Figure 3.

Different agents can be loaded and active, and each
agent receives different runtime events based on their own
event mask. An extension agent may change its event mask
during the course of execution. A change on any extension
agent’s event mask immediately triggers an update of the
event mask of the debugging core and alters the set of
events received by the debugging core and forwarded to the
extension agent.

6.1. Sample Agent

The code provided in Figure 2 shows a prototype of an
IDEA-based agent. It is a toy example that captures the
number of calls of user-defined functions/methods and
native built-in functions, and finds the ratio for each call
type. This provides a rough measure of the degree of VM
overhead for a particular application. The class Example()
contains three types of methods: 1) event handlers, which
collect information based on the received events; handler
methods start with the prefix “handle_” followed by the
name of the event code (handle_E_Pcall()),
2) information analyzers, which analyze the collected
information by the event handlers; analyzer methods start
with the prefix “analyze_” followed by any name
(analyze_info()), and 3) information or result writers,
which output the result found by the agent; writer methods
start with the prefix “write_” followed by any name
(write_info()). Agents that follow this method naming
convention can be registered automatically with the library
of internal agents. Otherwise, agents can be registered
manually. See Section 6.4.

6.2. External Agents

External agents can be written and tested as standalone
tools, and subsequently loaded on the fly and used together
during a debugging session. IDEA’s external agents are
loaded and controlled by its debugging core. Active agents
are paused whenever the buggy program is paused and they
resume whenever it resumes.

IDEA’s debugging core receives runtime events from the
buggy program based on the current debugging context, and
the event masks of the external agents. The Externals
component multiplexes the received events between
different external agents. Events are sent to related active
agents. An external agent requests events from the
debugging core using the EvGet() primitive, which
transfers control from the external agent to the debugging
core. EvGet() is the same primitive that transfers control

$include "evdefs.icn"
link evinit
class Example(eventMask, pcalls, fcalls, prate, frate)

method handle_E_Pcall()
pcalls +:= 1

end
method handle_E_Fcall()

fcalls +:= 1
end
method analyze_info()

total := pcalls + fcalls
prate := pcalls / total * 100
frate := fcalls / total * 100

end
method write_info()

write(" # pcalls = ", pcalls, " at rate :", prate)
write(" # fcalls = ", fcalls, " at ratio :", frate)

end
initially()

eventMask := cset(E_Pcall || E_Fcall)
pcalls := fcalls := 0.0

end
procedure main(args)

EvInit(args)
obj := Example()
while EvGet(obj.eventMask) do

case &eventcode of {
E_Pcall:{ obj.handle_E_Pcall() }
E_Fcall:{ obj.handle_E_Fcall() }
}

obj.analyze_info(); obj.write_info()
end

Figure 2. An IDEA-based agent prototype

Figure 3. IDEA’s general control/events flow

EvGet()
D

eb
ug

gi
ng

 C
or

e

B
ug

gy
 P

ro
gr

am

EvGet()

Event
EvSend()

EvSend()

EvGet()

lightweight Thread
Context Switch

External
Agent 1

External
Agent N

Figure 4. UML of UDB; An IDEA-based debugger

196

and acquires events from the buggy program when the agent
is used in a standalone mode. The Externals component
forwards events to any of the external agents using the
EvSend() primitive, which is another Alamo primitive that
sends the last event received by the debugging core to the
external agent. A context switch occurs whenever control
transfers between the debugging core and either a buggy
program or an external agent. Event forwarding is
accomplished without the knowledge of the external agent
itself, which means the external agent needs no
modification to be loaded and used by IDEA’s core.

6.3. Internal Agents

Besides support for whole programs as external agents,
IDEA supports insertion of dynamic analyses into the
debugging core as a listener agent that implements a set of
callback methods. IDEA’s debugging core implements
different built-in agents for different classes of bugs. For
performance reasons, each agent has its own
implementation based on the type and the combination of
events that the debugging core must monitor in the buggy
program.

The Internals component handles the built-in agents.
Internal agents are called from the main debugging loop
with a call to the forward() method of the Internals
component, where internal agents are registered during
initialization. The Internals component checks which
agents are active and calls the related underlying method(s)
based on the event code that is received by the debugging
core.

6.4. Migration from Externals to Internals

External agents allow automatic debugging techniques
based on various dynamic analyses to be developed and
tested easily in the production environment. Selected
external agents may become internal—built-in monitors
within the debugging core for improved performance.
Internal agents do not pay the (lightweight, but still painful)
cost of the context-switch communication between the
debugging core and the external agents. IDEA provides
smooth migration from external agents to internal. The first
issue in migration is to accept a callback-style event listener
architecture in place of the more general main() procedure
that an external agent uses from a separate thread. IDEA
provides an abstract class called Listener, which must be
subclassed within the external agent before the external can
be used as internal. The Listener class allows the
debugging core to acquire the event mask of the migrated
internal agents, and to determine which listener methods to
use for the various event types.

The agent prototype discussed in Figure 2 can be used as
a standalone program or as an external agent under IDEA
without any modification. In order to move such an external
agent to an internal one, the user must derive this Example

class from IDEA’s Listener abstract class and register it in
the Internals class. Whenever its own event mask changes,
this abstract class helps the Internals class rebuild the event
mask for the internal agents and the debugging core by
calling the updateEventMask() method in IDEA’s State
class to update the debugging core with the new event mask
obtained from the internal agent.

An object of the newly migrated internal agent must be
instantiated and inserted into the list of clients in the
Internals class. This can be done through the method
register() from the Internals class. For example, to register
the prototype Example agent provided Figure 2 as an
internal agent, the programmer has to place a call to the
method register() in the constructor of the Internals class
where the first parameter associates the agent with a formal
name as an ID during the debugging session, and the second
parameter is an object of that agent class
(register(“call_count”, Example())). This is the simple
automatic registration that applies for agents who follow the
sample agent convention shown in Figure 2 and discussed
in Section 6.1. To register a complex agent that does not
follow this sample convention, the method register() can
be called with three extra parameters to register the method
handlers, the analyzers, and the writers respectively.

register(“call_count” , Example() ,
 [“handle_E_Pcall”, ”handle_E_Fcall”] ,
 [“analyze_Info”], [“writer_Info”])

Furthermore, the new internal agent must be stripped of
its main() procedure before compilation and linking into
the debugging core. Alamo primitives found in the external
agent are no longer needed when it becomes an internal
agent. EvInit() is needed once per each buggy program and
it is already performed by the debugging core. IDEA’s
EvGet() asks the buggy program for the next event, so the
extension agent has no need to call this function. IDEA
forwards events to relevant enabled internal agents based on
their event mask. The mapping of events such as E_Pcall to
their listener methods (handle_E_Pcall) is constructed
automatically and used by the Internals class report()
method.

7. Evaluation

In order to evaluate and refine the IDEA architecture, a
debugger called UDB was constructed. UDB is an event-
driven source-level debugger for Icon and Unicon
programs. It implements the classical debugging features
found in a typical debugger such as GDB, and it utilizes
IDEA’s agent-based extensions. See Figure 4.

An IDEA-based debugger must use different approaches
to implement features found in standard source-level
debuggers, and faces potential performance challenges. In
compensation, this type of implementation greatly
simplifies the process of experimenting with new debugging

197

techniques that probably would not be undertaken if the
implementation was limited to the low-level approaches
found in other debuggers.

Nevertheless, one of the biggest considerations in the
design of a source-level debugger is the performance. In
IDEA, a considerable amount of time is spent on:
1) processing the instrumentation in the buggy program,
2) filtering the received events in the debugging core, and
3) processing the context switches between the debugging
core, the buggy program and the external debugging agent.
Since IDEA’s debugging core is a mediator between those
external agents and the buggy program, each external agent
imposes two extra context switches. For events that the
debugging core does not itself need, there are two levels of
context switches where outside IDEA there would be only
one: the first is between the debugging core and the buggy
program, and the second is between the debugging core and
the external agent. Alamo’s event filtering techniques,
provided by the event mask and the value mask, reduce the
amount of context switches; a context switch occurs only
when there is an event and it is needed by either the
debugging core or any of its agents.

Under UDB, eight different debugging agents were
loaded and tested as external agents, and then migrated to
become part of the UDB’s library of internal agents. The
slowdown imposed by the external agents was at most 3
times slower than the standalone agent mode, and the
slowdown imposed by the migrated internal agents, was at
most 2 times slower than the standalone agents. This suite
of debugging agents imposes at most 20 times slowdown on
the execution of the buggy program over an uninstrumented
execution mode, but in the general case, the slowdown
depends on the algorithms used by the dynamic analysis
technique implemented by the debugging agent. To place
this in perspective, a debugger such as valgrind [14]
imposes a 20 to 50 times slowdown, and it does not provide
the interactive debugging environment that IDEA and its
debugging tools provide, where the user can be selective
about which and where to enable/disable agents from within
a breakpoint based debugging session.

8. Related Work

Standard source-level debuggers such as GDB [16] and
its graphical front end DDD [20] provide convenient
debugging and tracing facilities. But using a conventional
source-level debugger is still time consuming; it is largely
based on forming a hypothesis and guessing where to place
breakpoints. One way to reduce the debugging time is to
automate the debugging process. Automated debugging is a
challenging problem that goes back to the 60's [5] and mid
70's [10]. Its most challenging part is the reasoning about
the information supplied by the debugging tool, which still
heavily depends on the human factor.

Trace-based debuggers such as ODB [13, 15], provide
debugging facilities by tracing the complete program

history of states. In ODB, the program must be traced first
before the debugging techniques can be used, but it
provides the ability to investigate backward in the execution
history. IBM’s JInsight [3] combines tracing and
visualization techniques, but it generates a huge amount of
traced data in a short period of time. In general, the most
common problem of trace-based debuggers is the huge
amount of traced data that limits the scalability and raises
the level of complexity. An example of a recent tool is
JDLab [1], which applies the graph theoretical algorithms to
reduce the amount of traced events.

A debugging architecture such as JPDA, with its lowest
level JVM TI [6], provides an event-based debugging
infrastructure and enough events for conventional
debugging, profiling, and visualization. JVM TI supports
about thirty five kinds of events, whereas IDEA
incorporates more than one hundred kinds of events. IDEA
users use events, event-sequences, and event-patterns to
write their own debugging agents that detect specific
execution behaviors— some of which are suspicious
behaviors and others are defined bugs.

Both IDEA and JVM TI, provide techniques to inspect
the state and to control the buggy program running in the
VM. JVM TI agents must be loaded and initialized at the
start of the JVM, whereas IDEA’s extension agents can be
loaded on the fly from any point during the debugging
session. IDEA’s debugging agents can be designed and
tested as standalone programs, then dynamically linked into
debugging sessions, and finally incorporated in the
debugger source code as permanent extension.

Valgrind [14] provides a formal mechanism for custom
extensions, but it does not provide dynamic extensions or
interactive debugging. IDEA provides a debugging
architecture that maintains the interactive debugging found
in conventional debuggers such as GDB, and it provides
enough events to maintain lightweight task-oriented custom
trace-based debugging agents.

9. Future Work

Our future work aims at using IDEA to develop a wide
range of automatic debugging agents. Performance can be
further improved by buffering related events and avoiding
extra context switches; this will help for both internal and
external extension agents. Another potential improvement is
to offload the cost of external agents onto additional
processor cores. The simplest speedup approach initially
will be to add the most useful agents of automatic
debugging techniques as internals, which will reduce the
context switches on external agents.

Subsets of the Alamo framework used by IDEA for
Unicon debugging have been implemented for monitoring C
and Python [9, 19]. Future work may extend IDEA’s
debugging facilities to these languages, or port IDEA to run
on other debugging platforms such as JPDA. Another
potential future work is to use an instrumentation

198

framework, such as ASM, PIN, and Atom, as a substitute
for Alamo.

10. Conclusion

Different programmers and bugs require different
debugging techniques. It is impossible to provide every
desirable debugging technique in one tool. IDEA provides a
compromise solution by allowing programmers to run a
chosen suite of dynamic analysis agents from within a
normal interactive debugging session. The IDEA
architecture: 1) combines the capabilities of classical and
trace-based debuggers, 2) lets users write their own high
level standalone debugging agents and loads them from any
point into an interactive debugging session, and 3) provides
simple mechanism to incorporated standalone programs as
internal permanent features.

Compared with the slowdown of many automatic
debugging techniques, the performance of IDEA is very
good. However, the true test of IDEA’s performance will be
whether it enables debugging agents that justify their time
cost by the value they provide to programmers, as valgrind
often does.

11. Acknowledgments

This research was supported in part by an appointment
to the National Library of Medicine Research Participation
Program. This program is administered by the Oak Ridge
Institute for Science and Education for the National Library
of Medicine.

12. References
[1] Alekseev, S. 2007. Java debugging laboratory for automatic

generation and analysis of trace data. In Proceedings of the
25th Conference on IASTED international Multi-
Conference: Software Engineering (Innsbruck, Austria,
February 13 - 15, 2007). W. Hasselbring, Ed. ACTA Press,
Anaheim, CA, 177-182.

[2] Bruneton, E. A Java bytecode engineering library, ASM 3.0,
Feb 2007, http://asm.objectweb.org.

[3] De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G.,
Vlissides, J., and Yang, J., Software Visualization, State-of-
the-Art Survey. LNCS 2269, Stephan Diehl (ed.), Springer
Verlag, 2002.

[4] Griswold, R. E., and Griswold, M. T.1997. The Icon
Programming Language. Peer-to-Peer Communications, Inc.,
San Jose, California.

[5] Jacoby, K. and Layton, H. 1961. Automation of program
debugging. In Proceedings of the 1961 16th ACM National
Meeting ACM, New York, NY, 123.201-123.204.

[6] Java Platform Debugging Architecture,
http://java.sun.com/javase/6/docs/technotes/guides/jpd.

[7] Jeffery, C. L., 1999. Program Monitoring and Visualization:
an Exploratory Approach, Springer New York.

[8] Jeffery, C. L., Mohamed, S., Pereda, R., and Parlett, R. 2004.
Programming with Unicon. http://unicon.org/book/ub.pdf.

[9] Jeffery, C., Zhou, W., Templer, K., and Brazell, M. 1998. A
lightweight architecture for program execution monitoring.
SIGPLAN Not. 33, 7 (Jul. 1998), 67-74.

[10] Katz, S. and Manna, Z. 1975. Towards automatic debugging
of programs. In Proceedings of the international Conference
on Reliable Software (Los Angeles, California, April 21 - 23,
1975). ACM, New York, NY, 143-155.

[11] Ko, A. 2006. Debugging by asking questions about program
output. In Proceedings of the 28th international Conference
on Software Engineering (Shanghai, China, May 20 - 28,
2006). ICSE '06. ACM, New York, NY, 989-992.

[12] Ko, A. J. and Myers, B. A. 2004. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Vienna, Austria,
April 24 - 29, 2004). CHI '04. ACM, New York, NY, 151-
158.

[13] Lewis, B. Debugging Backward in Time. Proceedings of the
Fifth International Workshop on Automated Debugging.
AADEBUG 2003, September 2003, Ghent.

[14] Nethercote, N. and Seward, J. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. Proceedings
of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego.

[15] Pothier, G., Tanter, É., and Piquer, J. 2007. Scalable
omniscient debugging. In Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object Oriented
Programming Systems and Applications (Montreal, Quebec,
Canada, October 21 - 25, 2007). OOPSLA '07. ACM, New
York, NY, 535-552.

[16] Stallman, R. M., Pesch, R., Shebs, S., et al. 2002. Debugging
with GDB: the GNU Source Level Debugger.
http://sourceware.org/gdb/documentation.

[17] Templer, K. and Jeffery, C. 1998. A Configurable Automatic
Instrumentation Tool for ANSI C. In Proceedings of the 13th
IEEE international Conference on Automated Software
Engineering (October 13 - 16, 1998). Automated Software
Engineering. IEEE Computer Society, Washington, DC, 249.

[18] Tzoref, R., Ur, S., and Yom-Tov, E. 2007. Instrumenting
where it hurts: an automatic concurrent debugging technique.
In Proceedings of the 2007 international Symposium on
Software Testing and Analysis (London, United Kingdom,
July 09 - 12, 2007). ISSTA '07. ACM, New York, NY, 27-
38.

[19] Zeller, A. and Lütkehaus, D. 1996. DDD—a free graphical
front-end for UNIX debuggers. SIGPLAN Not. 31, 1 (Jan.
1996), 22-27.

[20] Ziad Al-Sharif. Debugging with UDB, User Guide and
Reference Manual. Unicon Technical Report #10.

199

A Recognition-Primed Architecture for Human-Centric Multi-Agent Systems

Xiaocong Fan
The Behrend College

The Pennsylvania State University
Erie, PA 16563, USA

xfan@psu.edu

Abstract

Human-centric multi-agent systems in dynamic domains
often involve a great level of human-agent collaboration
where time stress and high stakes are the norm. Drawing
upon Klein’s recognition-primed decision model, we pro-
pose a recognition-primed agent architecture for building
human-centric multi-agent systems. The concept of timed
Petri nets is extended to explicitly capture the timing con-
straints and collaboration points along teamwork processes
where both human and agents can play a role. In addition,
we describe how the idea of recognition-primed agent ar-
chitecture is implemented in SMMall–a framework for de-
veloping human-centric cognitive agents.

1. Motivation

Agent architecture has been one of the key research ar-

eas of multi-agent systems. Many architectures have been

proposed, investigated, and successfully applied in various

domains. For example, Soar [7, 12] and ACT-R [1] are

two notable cognitive agent architectures, STEAM [15] and

CAST [17] are architectures that focus on cooperation and

collaboration among intelligent agents.

Recently, researchers in multi-agent systems field have

manifested increasing interests in using intelligent agents

to model, simulate, and support human teamwork behav-

iors [9, 4, 2]. However, only a few focused on agent archi-

tectures for human-centric systems. For instance, Norling

examined how to extend the well-known BDI architecture

with Klein’s recognition-primed decision (RPD) model to

support human-like decision making [9]. Interestingly, the

CAST [17] system was also extended with a computational

RPD model and resulted in the R-CAST [2].

The objective of this research is three-fold. We first

would like to argue that Klein’s RPD model itself actually

can be employed as a generic cognitive agent architecture;

the RPD model can be treated as a reification of the stan-

dard sense/decide/act loop. Second, because decision mak-

ing teams in time-stressed domains rely more and more on

the timeliness and quality of decision making activities, we

choose to use extended timed Petri nets to explicitly cap-

ture timing constraints of a teamwork process. Lastly, as

a proof-of-concept, we briefly describe how the generic ar-

chitecture is implemented in SMMall–a framework for de-

veloping human-centric cognitive agents.

The rest of the paper is organized as follows. Relevant

research background is introduced in Section 2. In Section

3, we extend the timed Petri-net to define collaboration net,

and present a formalism of a team RPD process. In Section

4, we describe how the generic architecture is implemented

in SMMall. Section 5 concludes the paper.

2. Research Background

Klein’s Recognition-Primed Decision framework (RPD)

[6] is a naturalistic decision making model that attempts to

capture how human experts make decisions in realistic set-

tings based on the recognition of similar experiences.

The original RPD model includes a recognition phase

and an evaluation phase. In the recognition phase, a deci-

sion maker synthesizes the observed features about the cur-

rent decision situation into appropriate cues or pattern of

cues, then uses a strategy called “feature-matching” to recall

similar cases by matching the synthesized cues with previ-

ous experience. In the case that feature-matching cannot

provide an acceptable solution due to lack of information or

experience, another strategy called “story-building” is used

to develop a potential explanation of how the current situ-

ation might have been emerging, and a workable solution

can be suggested afterward.

The recognition phase has four products: relevant cues

(what to pay attention to), plausible goals (which goals

make sense), expectancy (what will happen next), and typi-

cal courses of action COA (what actions worked before). In

the evaluation phase, a decision maker evaluates the recog-

nized courses of actions one by one until a workable solu-

200

tion is obtained. Due to the dynamic and uncertain nature

of the environment, a decision maker keeps monitoring the

status of expectancy so that the situation can be further diag-

nosed in case that the decision maker had misinterpreted the

situation. Similar to case-based reasoning, the RPD model

stresses on Simon’s satisficing criterion [13] rather than op-

timizing in option evaluation.

The RPD framework has been widely employed to de-

velop cognitively inspired software agents [10, 16, 14, 9,

2, 3]. Warwick et al. [16] proposed a decision-specific

RPD architecture, encoding experts’ experience as traces

in a long term memory (LTM) structure based on Hintz-

man’s multiple trace memory model [5]. Sokolowski [14]

employed a composite agent approach, where the RPD de-

cision process was captured by five embedded agents. Fan

et al. [2, 3] have implemented R-CAST to support human-

agent decision-making teams, arguing that managing the

RPD decision process at the team level enables team mem-

bers (humans and agents) to establish a shared mental model

about the dynamic progress of joint activities. However,

all these attempts lack either teamwork support (distributed

cognition) or timeliness support, and none of them explic-

itly employ RPD as the kernel of their architecture.

3. Collaboration Net and RPD Process

To capture timing constraints of a process, we choose to

extend the notion of timed transition Petri nets (TTPT) [11].

A TTPT is a tuple 〈P, T, A, f0, γ〉, where P is a finite set

of token places; T is a finite set of transitions; A ⊆ (P ×
T)∪ (T ×P) is a set of directed arcs connecting places and

transitions; f0 is the initial marking (specifying the number

of tokens in each place p ∈ P); and γ is a mapping that

associates each t ∈ T with a time duration. The input places

(pre-places) of a transition t, denoted by •t, are the places

from which an arc runs to t; the output places (post-places)

of t, denoted by t•, are the places to which arcs run from

t. ‘•’ is also used for pre-(post-) transitions. We extend the

timed transition Petri net with some new concepts.

Definition 1 (Token Types) A local token θ is a token that
flows only within the net where it is originated; A sync token
π is a token received from another peer agent through a
synchronization message; A team token ωG with respect to
a group G of agents is a meta token which contains exactly
one token slot for each agent a ∈ G.

Let Θ, Π, and Ω be the universe of local tokens, sync

tokens, and team tokens, respectively. Let ωG(a) return a

reference to the token in the slot for agent a in ωG. ωG(a) =
null if the slot for a has no token.

Definition 2 (Fulfillment) A team token ωG is fulfilled iff
(a) ∀a ∈ G · ωG(a) �= null, (b) ∃!b ∈ G · ωG(b) ∈ Θ, and
(c) ∀a �= b ∈ G · ωG(a) ∈ Π.

That is, a team token is fulfilled iff there is exactly one

token from the local agent and one sync token from each of

the group members through synchronization messages.

Definition 3 (Node Types) A local node is a Petri net place
that takes local tokens only. A team node with respect to a
group of participating agents is a Petri net place that takes
local tokens (when a transition is fired) and sync tokens
(when a message is received) to produce a team token and
manages its fulfillment.

A transition can trigger the execution of an activity. An

activity can be performed by agents individually, or jointly

performed by a group of agents. Each activity α is asso-

ciated with a role constraint ρ(α), which specifies the ca-

pability requirements on an agent. We use CanDo(a, α)
to indicates that agent a satisfies ρ(α) (i.e., can do α). We

also assume that each activity α is guarded with a collec-

tion of first-order expressions, which is denoted by pre(α).
An agent a cannot perform α if pre(α) is false when it is

evaluated relative to a’s mental state.

Because a group of agents need to synchronize their ac-

tivities, we assume there is a global timing mechanism in

the system and define timers in terms of global time points.

Definition 4 (Timer) A timer ξ is a tuple 〈s, e〉, where s
and e are the starting and ending global time points, re-
spectively.

Let s(ξ) and e(ξ) return the starting and ending points of ξ,

respectively, and Ξ be the universe of timers.

Definition 5 (Collaboration Net) A collaboration net is
an extended TTPT 〈L,M, T, A, f0, γ, δ〉, where

• L is a finite set of local nodes;

• M is a finite set of team nodes. For each m ∈ M , let
G(m) returns the group of participating agents (which
can be dynamically assigned);

• T is a finite set of transitions, each of which is asso-
ciated with an activity. For each transition t ∈ T , let
α(t) return the associated activity;

• A ⊆ ((L∪M)×T)∪(T×(L∪M)) is a set of directed
arcs connecting places and transitions;

• f0 is the initial marking;

• γ : T → Ξ. γ(t) returns the timer associated with
transition t; and

• δ : M → Ξ, where δ(p) returns the timer associated
with team node p.

We say that a group of agents share a collaboration net iff

each agent has a local copy of the net and they all agree on

the global timing constraints as given by γ and δ.

201

Definition 6 (Transition Enableness) A transition t of a
collaboration net is R-enabled w.r.t. agent a iff (i)
CanDo(a, α(t)) holds; (ii) pre(α(t)) is evaluated by a as
true; (iii) for any p ∈ •t, there is a token in p; and (iv) for
any p ∈ •t ∩ M , the team token in p is fulfilled.

Definition 7 (Transition Semantics) When firing a transi-
tion t, an agent a will (i) immediately remove the tokens
from its input places •t; (ii) idle if s(γ(t)) has not come;
(iii) when s(γ(t)) comes, start executing the associated ac-
tivity α(t); (iv) once e(γ(t)) comes, stop the activity, de-
posit one token in each of the output places t•, and for any
p ∈ M ∩ t•, the slot of the team token for the local agent
a is filled, and the agent sends a synchronization message
with a sync token to each agent peer in G(p) excluding it-
self; and (v) if the current time falls beyond γ(t), skip the
activity, deposit one token in each of the output places t•,
and for any p ∈ M ∩ t•, fill the slot of the team token for
the local agent, and send a synchronization message with a
sync token to each agent peer in G(p) excluding itself.

Definition 8 (Time-adaptable Team Net) A time-adapt-
able team net is a collaboration net where a transition fires
as soon as it is R-enabled.

A time-adaptable team net allows an agent to conduct

minimal chores (e.g. synchronization, belief update) be-

fore proceeding forward. Since all the activities with bro-

ken timers are skipped, a delayed agent could catch up with

the other peer agents while still honoring the operation se-

quence. A time-adaptable team net offers a compromised

solution when both timeliness and team coherence are the

keys to teamwork success.

3.1. Team RPD Process

In order to support the orchestration of a decision mak-

ing group (e.g., involving agents and human), we develop a

timed Petri-net based RPD process and adapt it to teamwork

settings.

Definition 9 (Team RPD Process) A Team RPD process is
a time-adaptable team net
 = 〈L,M, T,A, f0, γ, δ〉 as
depicted in Figure 1, where

• T = {ti|0 ≤ i ≤ 11}, where for i from 0 to
11, α(ti) refers to SituationExperiencing, Feature-
Matching, StoryBuilding, RecognitionConsolidating,
ExpectancyMonitoring, COASelecting, COAAdjusting,
COAEvaluating, RecognitionChecking, Recognition-
Refining, SituationRefreshing, and COAExecuting, re-
spectively. α(t3), α(t7), and α(t8) are team activities;

• L = {p0, p1, p7, p8};

t 0 : S i t u a t i o n
E x p e r i e n c i n g

t 1 : F e a t u r e
M a t c h i n g

t 2 : S t o r y
B u i l d i n g

t 4 : E x p e c t a n c y
M o n i t o r i n g

t 7 : C O A
E v a l u a t i n g t 6 : C O A

A d j u s t i n g

t 1 1 : C O A
E x e c u t i n g

t 1 0 : S i t u a t i o n
R e f r e s h i n g

t 8 : R e c o g n i t i o n
C h e c k i n g

t 5 : C O A
S e l e c t i n g

t 9 : R e c o g n i t i o n
R e f i n i n g

p0

p1 p2

p6

p4

p5

p7 p8

t 3 : R e c o g n i t i o n
C o n s o l i d a t i n g

p3

E x p e r i e n c e
b a s e

E x p e r i e n c e
b a s e t e a m n o d e

l o c a l n o d e

Figure 1. The RPD Cognition Process

• M = {p2, p3, p4, p5, p6}, where G(p2) is the group
of agents taking the role of performing t3, G(p3) is the
group of agents taking the role of performing t4, G(p4)
is the group of agents taking the role of performing t5
and t6, G(p5) is the group of agents taking the role
of performing t7, and G(p4) ∪ G(p6) is the group of
agents taking the role of performing t8;

• A and f0 are obvious, γ and δ are problem specific.

Given a decision task d, we assume the presence of

an experience base Δd–a collection of decision making

experience–as pertinent to d. The nature of a decision task

determines the collection of features (predicates) required to

fully describe and understand a situation. Let Ψ(d) be such

a collection for task d. Ψ(d) can have a structure among the

features (e.g. layered structure reflecting information pro-

duction chains). Each experience is a tuple 〈S, Act〉, where

S is a collection of instantiated predicates, describing a spe-

cific situation, and Act is a set of course of actions (COA)

that worked before under situation S. Let ηd be a subjective

threshold such that a reasonable explanation can be drawn

from a situation description S when |S| ≥ ηd. Typically,

ηd ≤ |S| ≤ |Ψ(d)|.
The activity SituationExperiencing is performed by an

agent to collect and synthesize (situation awareness) rele-

vant information to produce a description of the current sit-

uation S0. When ηd ≤ |S0|, FeatureMatching is used by an

agent to match S0 with past experience in order to identify

similar cases. When ηd > |S0|, StoryBuilding is used to

develop a potential explanation of S0.

RecognitionConsolidating is a team activity, which is re-

sponsible for generating the four recognition products (ref.

Sec. 2): a set E of expectancy, a set C of relevant cues,

a set G of plausible goals, and a set Λ of COAs (object-

level processes) as drawn from the matched experience and

customized to the current situation. A team policy can be

employed by a group of agents to negotiate on the prod-

ucts. Ψ(d)\S0 is a collection of missing information in S0.

Those with a future time point as an argument (what will

happen next) can be used to generate E, while others can

be used to generate C for diagnosing the situation.

202

ExpectancyMonitoring and COAEvaluating are parallel

activities. In ExpectancyMonitoring, an agent keeps moni-

toring the expectancy E as the situation changes, broadcasts

a violated expectancy (anomaly) to agents in G(p6) when-

ever it emerges, and produces a set χ ⊆ E of violated ex-

pectancy. COASelecting maintains a selected COA λ and a

candidate set ΛC . Initially ΛC = Λ and λ = null. When

COASelecting fires, a new λ is drawn (removed) from ΛC .

In COAAdjusting, an agent adjusts the selected λ.

COAEvaluating is a team activity. It is responsible for

resolving uncertainties regarding the selected COA λ. In

particular, a group of agents need to collaborate on four ac-

tivities as related to the potential intention to do λ. First,

determining who will assume the responsibility of doing

λ. When more than one agents take the role, they have

to communicate to establish mutual beliefs regarding each

other’s commitment to the role. Second, λ is a domain-level

process that can have timing constraints. All the involved

agents need to check whether the timing constraints can be

honored. Third, it has to be checked that the execution of λ
will keep the achievability of all the goals in G. A symbolic

reasoning engine can be employed for this purpose. Fourth,

each potential doer also needs to make a commitment to in-

forming others whenever it individually figures out that the

constraints of doing λ no longer hold. This will allow the

team to terminate the evaluation of λ and start to consider

another COA at the earliest possible opportunity. In the end,

if λ is accepted as a solution, Workable(λ) is asserted; if

λ is not a solution, it can be adjusted and reevaluated in the

next iteration. Setting λ to null will trigger the selection of

a new COA.

RecognitionChecking is a team activity and it is a point

to synchronize the monitoring and evaluation processes. It

is responsible for checking the achievability of plausible

goals in G. G has been checked in t7. However, it is neces-

sary to check it again because (a) the group of agents reach-

ing t8 can be different (e.g., a super set) from those reach-

ing t7, and (b) the situation might have changed. Again, a

team policy can be employed to do so. In the end, Recog-

nitionChecking establishes a group commitment to λ (with

Committed(λ) asserted) if G is achievable and no anomaly

occurs so far.

COAExecuting is performed to implement the commit-

ted COA, which can involve multiple agents (and the human

counterparts). RecognitionRefining is performed to further

diagnose the situation. SituationRefreshing is performed to

start a new round of situation recognition.

In Figure 1, {t1, t2}, {t5, t6, t8}, and {t9, t10, t11} are

collections of transitions sharing input places. Typically, a

conditional structure can be captured by multiple transitions

sharing the same set of input places. However, an agent

can get blocked due to lack of condition if the associated

preconditions are not well structured.

Definition 10 A well-structured net is a net such that for
any collection U of transitions, if they share the same set of
input places, their preconditions complement. Formally, if
∀U ⊆ T , ∃P ⊆ L∪M such that (i) (∀t ∈ U · •t = P) and
(ii) (∀p ∈ P · p• = U), and U and P are the smallest sets
satisfying (i) and (ii), then

∨
t∈U pre(α(t)) is always true.

Property 1 The net in Figure 1 is well-structured with the
assignments bellow:
pre(FeatureMatching) � ηd ≤ |S0|;
pre(StoryBuilding) � ηd > |S0|;
pre(COASelecting) � (ΛC �= ∅) ∧ (λ = null);
pre(COAAdjusting) � (λ �= null) ∧ ¬Workable(λ);
pre(RecognitionChecking) �

((ΛC = ∅) ∧ (λ = null))∨
((λ �= null) ∧ Workable(λ)) ∨ (χ �= ∅);

pre(COAExecuting) �
(χ = ∅) ∧ ∃β ∈ Λ · Committed(β);

pre(RecognitionRefining) � (χ �= ∅)∧
� ∃g ∈ G · Unachievable(g);

pre(SituationRefreshing) �� ∃β ∈ Λ·Committed(β)∨
((χ �= ∅) ∧ ∃g ∈ G · Unachievable(g)).

Bellow, we assume
 is a well-structured team RPD net.

Definition 11 A multi-agent system collaborating through

 is dead iff there exists one agent being blocked at a team
node of
.

Property 2 Given that a group of agents {a1, a2, · · · , an}
collaborate through
. Suppose in
, node p starts a
parallel branch which contains a team node m, and let
T ′ = {t ∈ T |p ∈ •t}. The system is dead if there ex-
ists an agent ai such that (i) ai ∈ G(m), and (ii) ∀t ∈
T ′ · ¬CanDo(ai, α(t)).

Proof Sketch: Suppose ak ∈ G(m) and ak has entered

the parallel branch (in its own copy of
) and is waiting

at m for a sync token from agent ai. However, for ai, no

transition in the parallel branch can be enabled due to lack

of capability (Condition (ii)), thus ai cannot send out a sync

token to ak, who will be blocked forever. �
For instance, in Fig. 1, if agent a ∈ G(p5) but cannot

do COASelecting and COAAdjusting, a could make other

agents blocked at p5.

Property 3 Assume that an agent cannot get blocked due
to lack of condition or capability. A multi-agent system col-
laborating through
 can honor
’s timing constraints.

Proof Sketch: According to the firing semantics of tran-

sitions and the assumption, the only possibility of break-

ing a timing constraint is at team nodes. We also assumed

that the communication is reliable. When there is no de-

lay of sync tokens, the team token at a team node can be

203

����� ����	�
��

������
����	 ������	 ���

����	

Figure 2. Agent Architecture

fulfilled immediately, then all the timing constraints can be

fully honored. When there is communication delay, sup-

pose some sync token for node m is the last one arrived at

an agent a and e(δ(m)) is already passed. In such a case,

it is possible that agents other than a are still on schedule.

For those agents like a who are lagging behind will speed

up while still honoring the firing sequence, they will even-

tually catch up with other agents and honor the rest of the

timing constraints. �
It is highly likely that lagging happens randomly to the

group of agents. In such a case, the system can still of-

fer services with a desirable level of quality when a role is

played by multiple agents.

4. Recognition-Primed Agent Architecture

An agent architecture typically takes the standard

sense/decide/act loop as shown in Figure 2, where the “de-

cide” module can be replaced by concrete inference mech-

anisms (e.g., game theory or POMDP for utility-based

agent architecture, intention generation for BDI architec-

ture, reflection-deliberation for layered architecture).

We argue that the RPD model can be employed as a

generic architecture for cognitive agents for the following

reasons. First, human beings are not ideal decision makers.

When making decisions, people usually do not know all the

possible choices or their probabilities, and they rarely use

classical decision theories to arrive at a decision [6, 8]. Con-

trastly, cognitively inspired models like RPD take a more

human-like approach where the decision making processes

of an agent and its human peer can be easily meshed with

each other, leading to human-aware computing with im-

proved trustworthiness and system performance.

Second, the RPD model offers a well-structured

macrocognitve process that captures the cognitive activ-

ities undergoing in the mind of an individual decision

maker. Computational RPD models can be constructed

from this macrocognitve process such that human and agent

could adapt their work progress to the changing time stress

and collaborate under the same context. In addition, the

RPD process can be extended into a team process where

multiple agents (including both agents and human) could

Figure 3. Team RPD Process in SMMall

synchronize their teamwork behavior and exchange expe-

rience/knowledge/information along the decision process.

Consequently, a multi-agent system build upon the team

RPD process is able to progressively establish and maintain

a shared mental model about the ongoing activities.

Third, the timeliness and quality of decision making is

critical to teams in time-stressed domains such as disaster

response, military command and control. The RPD model

exactly focuses on how people actually make decisions in

realistic settings that typically involve ill-structured prob-

lems, uncertain dynamic environments, shifting/competing

goals, and time stress. A RPD-enabled recognition-primed

architecture would enforce distributed agents to honor the

time-stress feature of realistic decision making tasks. As

cognitive aids, it is also feasible for an agent to learn re-

alistic cognitive models of its human peer (e.g. model of

cognitive inclination). Such models would allow an agent

to offer nonintrusive help when its human peer is under time

stress or cognitively overloaded.

We have implemented SMMall (Shared Mental Models

for all) – a system for developing cognitive agents. Figure

3 gives a screenshot of SMMall agent, the kernel of which

implements the team RPD process as formalized in Sec. 3.

Process modeling in SMMall involves a 2-dimensional

process space: abstraction dimension and composition di-

mension. Along the composition dimension, a (complex)

process can be decomposed into sub-processes at the same

204

abstraction level. Along the abstraction dimension, we

distinguish processes at the meta level, cognition level,

and domain level. The team RPD process is a meta-

level process, which serves as a mechanism for coordinat-

ing lower-level processes and offers a common ground for

all the agents/human to anchor their recognition context.

Cognition-level processes refer to those activities (courses

of action) associated with each transition of the RPD pro-

cess. The procedural knowledge captured by a cognition-

level process can be applied in various domains. For

instance, FeatureMatching may involve feature selection,

information-need analysis, and experience filtering. Note

that different agents may have different cognition-level pro-

cesses, and a cognition-level process (e.g., COAEvaluating,

COAAdjusting) may involve the manipulation of domain-

level processes (e.g, removing threats in the field).

All processes in SMMall are modeled as time-adaptable

team net, where each place and transition is associated with

a human-adjustable timer. Through the interface, a human

user can easily navigate processes at different levels and is

able to collaborate with an agent on cognitive activities such

as situation evaluation, COA adjusting, experience filtering,

and recognition refining. A person may be involved in mul-

tiple decision making groups and playing different roles at

the same time. SMMall supports parallel RPD processes

and allows a human user to switch among multiple on-going

decision making tasks.

5. Conclusion

Developing multi-agent systems for human-centric

teamwork is extremely challenging. It mandates the integral

consideration of architectural flexibility, teamwork adapt-

ability, and the self-management of collaboration contexts.

We extended the concept of timed Petri nets to explicitly

capture timing constraints and collaboration points along

the RPD process. The team RPD process can serve as a

paradigm for designing multi-agent systems that support

collaborative decision making activities in dynamic, time-

stressed domains.

We also argued that the RPD model can serve as the ker-

nel of cognitive agent architectures, which allows a group

of agents and their human peers to interact with each other

and adapt to collaboration needs from other members. The

framework not only lays a foundation for building human-

centric multi-agent systems, it also offers a practical coor-

dination and cooperation mechanism for agent systems that

need to operate in uncertain, time-stressed domains.

References

[1] J. R. Anderson and C. Lebiere. The atomic components of
thought. Mahwah, NJ: Erlbaum, 1998.

[2] X. Fan, S. Sun, M. McNeese, and J. Yen. Extending the

recognition-primed decision model to support human-agent

collaboration. In AAMAS’05: Proceedings of the fourth in-
ternational joint conference on Autonomous agents and mul-
tiagent systems, pages 945–952. ACM Press, 2005.

[3] X. Fan and J. Yen. R-CAST: Integrating team intelli-

gence for human-centered teamwork. In Proceedings of
the Twenty-Second National Conference on Artificial Intel-
ligence (AAAI’07), pages 1535–1541, 2007.

[4] B. J. Grosz, S. Kraus, S. Talman, B. Stossel, and M. Havlin.

The influence of social dependencies on decision-making:

Initial investigations with a new game. In Proceedings of the
third international joint conference on Autonomous Agents
and Multiagent Systems, pages 782–789, 2004.

[5] D. L. Hintzman. Judgments of frequency and recognition

memory in a multiple-trace memory model. Psychological
Review, 95:528–551, 1988.

[6] G. A. Klein. Recognition-primed decisions. In W. B.

Rouse, editor, Advances in man-machine systems research,

volume 5, pages 47–92. Greenwich, CT: JAI Press, 1989.
[7] J. Laird, A. Newell, and P. Rosenbloom. Soar: an architec-

ture for general intelligence. Artificial Intelligence, 33(1):1–

64, 1987.
[8] B. Mellers, A. Schwartz, and A. Cooke. Judgement and de-

cision making. Annual Review of Psychology, 49:447–478,

1998.
[9] E. Norling. Folk psychology for human modelling: Extend-

ing the BDI paradigm. In AAMAS ’04: International Confer-
ence on Autonomous Agents and Multi Agent Systems, pages

202–209, 2004.
[10] E. Norling, L. Sonenberg, and R. Ronnquist. Enhanc-

ing multi-agent based simulation with human-like decision

making strategies. In S. Moss and P. Davidsson, editors,

Proceedings of the Second International Workshop on Multi-
Agent Based Simulation, pages 214–228, 2000.

[11] C. Ramchandani. Analysis of asynchronous concurrent sys-

tems by timed petri nets. Technical Report MAC-TR-120,

PhD thesis, Massachusetts Institute of Technology, Cam-

bridge, MA, 1974.
[12] F. E. Ritter, editor. Techniques for Modeling Human Perfor-

mance in Synthetic Environments: A Supplementary Review.

2002.
[13] H. Simon. A behavioral model of rational choice. Quarterly

Journal of Economics, 69:99–118, 1955.
[14] J. Sokolowski. Enhanced military decision modeling using a

multiagent system approach. In BRIMS’03: Proceedings of
the Twelfth Conference on Behavior Representation in Mod-
eling and Simulation, pages 179–186, 2003.

[15] M. Tambe. Towards flexible teamwork. Journal of AI Re-
search, 7:83–124, 1997.

[16] W. Warwick, S. McIlwaine, R. Hutton, and P. McDer-

mott. Developing computational models of recognition-

primed decision making. In Proceedings of the tenth con-
ference on Computer Generated Forces, 2001.

[17] J. Yen, J. Yin, T. Ioerger, M. Miller, D. Xu, and R. Volz.

Cast: Collaborative agents for simulating teamworks. In

Proceedings of IJCAI’2001, pages 1135–1142, 2001.

205

Using Knowledge Objects to Exchange Knowledge in a MAS platform

Ana Paula Lemke and Marcelo Blois
PPGCC – PUCRS, Av. Ipiranga 6681, Partenon, 90.619-900, RS, Brazil

{ana.lemke, marcelo.blois}@pucrs.br

Abstract

Agent-based platforms and toolkits have been proposed
to help developers to create agent-based applications, but
there is a visible separation between theory and practice.
Some challenges, such as representing the knowledge used
by software agents in a structure suitable for it to be reused
and shared, still need to be addressed by the agent
platforms. This paper describes the main features of the
SemantiCore+Ontowledge, an agent infrastructure to
develop multi-agent systems in which the agents can
manage their knowledge and perform in a Semantic Web
context. It is proposed the use of knowledge objects to
encapsulate and organize the knowledge available using an
ontology-based knowledge representation.

1. Introduction

The Semantic Web brings structure to the meaningful
content of Web pages and creates an environment where
software agents can readily carry out sophisticated tasks for
users [1]. In fact, many descriptions of the Semantic Web
include the use of agents as an enabling technology for
delivering services to the users [2]. The most common way
to enable agents to interoperate over the Semantic Web is to
give each of them the same specified conceptualization of
the domains they are expected to work in [3]. This ontology
can represent public information or an agreed set of
definitions and meanings of basic communicable concepts.
Thus it would be desirable for agent infrastructures to
support the development of knowledge-aware systems so
that agents can collect Web content (shared knowledge)
from diverse sources, process the information and exchange
the results with other agents.

Other challenging problem in the deployment of open
and flexible systems using the Web infrastructure is the
development of agent platforms that provide mechanisms
for the agents to manage their knowledge. A promising way
to solve the problem of improving the agents' behavior in a
MAS is explicitly representing the domain knowledge and
making this knowledge available to other agents. So,
besides the basic requirements every agent platform must
have such as agent communication and coordination, we
believe that the development of MAS also include
knowledge management (KM) activities to specify the

knowledge the agents need to reason in order to
interoperate and act.

This paper introduces the SemantiCore+Ontowledge
framework which allows the development of software
agents capable of self-manage their knowledge. A
SemantiCore+Ontowledge agent can search and apply
updated knowledge at run-time for achieving a certain goal
and it is capable of evaluating its execution results to
identify when the current knowledge must be replaced for
other knowledge. The motivation for implementing these
operations in an agent platform was based on human’s usual
behavior: (i) when we do not know how to do something,
we usually look for information in books, at web sites, or
ask someone who does it; (ii) if we do not obtain good
results doing something, we usually look for another way to
do it better. Native knowledge search and exchange is not
present in most agent platforms available.

The SemantiCore+Ontowledge is an extensible
framework where component organization, different hot
spots instantiation, KM functionalities, and native OWL
processing contribute to differentiate it from other agent
platforms. In our approach, rather than modeling mental
attributes of agents, we concentrate on the way knowledge
is distributed among agents and how it can be used and
learned efficiently.

This paper is structured as follows. Section 2 presents
the architectural requirements. Section 3 describes the
SemantiCore+Ontowledge framework architecture. Section
4 presents a discussion about the proposed framework and
the case studies developed. Section 5 describes some
related works and section 5 concludes the paper.

2. Architectural requirements

In order to adapt or learn, the agents should be able to
obtain knowledge and dynamically change their behavior.
The appropriated knowledge could be obtained by
cooperating with other agents (knowledge exchange) or by
new knowledge creation (possibly based on algorithms for
machine learning and inference engines). Focusing on the
first alternative, we compiled some requirements an agent
platform must have to enable knowledge exchange.

Requirement 1. The agent platform shall provide
domain knowledge representation to the agents. The
agent’s knowledge must be encoded using a formal

206

language. It is essential for agents to interpret the
knowledge available and infer new knowledge.

Requirement 2. The agent platform shall provide an
outline for creating knowledge packages. The knowledge
must be divided into slices or knowledge packages. Each
knowledge package must contain all knowledge necessary
for an agent to achieve a goal. Some researchers investigate
the exchange of action plans among agents [4, 5]. We
believe that an action plan represents a fragment of the
necessary knowledge1 for an agent to achieve a goal. A
knowledge package should include an action plan, rules,
beliefs, sensors, effectors, and so on.

Requirement 3. The agent platform shall offer facilities
for agents to exchange knowledge between each other.
Agents are expected neither to possess the capability of
looking for external knowledge nor to dynamically extend
their knowledge base with the knowledge retrieved from
other agents. To exchange knowledge and use the retrieved
knowledge, the agents should be able to execute a set of
tasks. Several questions need to be addressed in engineering
MAS where knowledge exchanges can happen. For
instance, it must be decided which knowledge can be
exchanged, and how to understand and use the knowledge
retrieved from another agent.

In the SemantiCore+Ontowledge framework, the agent’s
knowledge is represented as ontologies (requirement #1), it
is defined the notion of knowledge objects (requirement
#2), and there are methods for allowing knowledge objects
sharing and use (requirement #3). The next section will
explain how SemantiCore+Ontowledge framework
implements the cited requirements.

3. SemantiCore+Ontowledge Framework

The SemantiCore+Ontowledge (or simply S+O) is a Java
framework designed to allow agents to share and use
knowledge in MASs. It provides a better support for agents
that do not possess the necessary knowledge for achieving a
certain goal. In the literature, there is a lack of proposals to
integrate a KM process in a MAS architecture allowing
agents to encapsulate the knowledge available in a format
suitable for it to be stored and exchanged among other
agents. The creation of agent platforms specifically
designed for supporting the deployment of agent systems in
the Semantic Web is also a subject that needs more
attention from the agent community.

The proposed framework allows the creation of agents
that use a defined KM process to make explicit and share
knowledge. KM can be defined as “the identification and
analysis of available and required knowledge assets and
knowledge asset related processes, and the subsequent
planning and control of actions to develop both the assets
and the processes so as to fulfill organizational objectives”

1 Our notion of knowledge is similar to the one used in [6] for information
in action, i.e. information applied to a specific purpose.

[7]. This definition of KM implies that it is necessary for
business organizations to: (i) be capable of identifying and
representing their knowledge assets; (ii) share and reuse
these knowledge assets for differing reasons and by
different users; and (iii) create a culture that encourages
knowledge sharing and reuse [8].

Mapping a KM process in a software architecture could
help agents to share knowledge. However, the KM process
must be mapped to the characteristics of MAS
organizations. For instance, there is no meaning to talk
about implementing a culture for encouraging knowledge
sharing and reuse in MAS organizations. A MAS
organization needs to be capable of representing and
sharing its knowledge assets.

3.1. The S+O agent components

S+O agents are formed by five basic components. The
Sensorial component is responsible for sensing the
environment. It manages all the different sensors an agent
has, selecting one of them according to the kind of message
received from the environment. The Decision component
handles the rules and facts that form the mental model of an
S+O agent. The Decision controls the agent goal’s
execution. The S+O agents have goals (represented as an
ontology instance) and these goals can be achieved by the
execution of an action plan.

The Execution component manages the execution of the
agent’s actions allowing developers to access all the agent’s
primitives. Actions may need to send messages to other
agents as a part of their processing. The encapsulation of
these messages in different structures and their transmission
in the environment is the responsibility of the Effector
component. When an agent is created, the developer may
indicate the types of effectors the agent will work with. This
feature allows an agent to talk simultaneously with different
peers such as Web services (SOAP messages) and agents
created in a FIPA-compliant platform (ACL messages).

The Organizer component includes mechanisms for
allowing agents to retrieve external knowledge to achieve
their goals. The agent’s knowledge is represented as
knowledge objects that are stored in the agent’s knowledge
base (internal knowledge base). The KOs can be retrieved
from other agents or from the environment knowledge base.
Execution records are used to proactively start the
searching for “better” KOs. Knowledge acquisition and
loading are enabled by the knowledge acquisition and
loading mechanisms. The agents can share KOs using the
knowledge sharing mechanism. In the next sections, we
provide a detailed discussion of these concepts.

3.2. Knowledge Object Structure

The KOs encapsulate the basic elements to achieve a
certain goal (solve a problem). They are represented using
an ontology-based knowledge representation. Ontologies

207

are a promising technology for information sharing and
reuse [9]. Basically, each KOs can be divided into four
main parts: (i) a problem description; (ii) a list of meta-data;
(iii) an access modifier; and (iv) a solution for the problem
described.

The first three parts are represented as Goal_Item,
Description_Item and Restriction_Item. The solution
description is formed by all other architecture-dependent
elements in the KO (these elements are loaded in the
agent’s architecture when a specific KO is applied). For
instance, in a BDI agent, the architecture-dependent KO
items would be beliefs, desires and intentions.

The Goal_Item is used in association with the KO goal.
The KO goal (like the agent goal) is represented as an
ontology instance that describes the concepts involved in
the problem. The KO goal is compared to the ontology
which describes the problem trying to be solved to check if
the KO is suitable to solve it. The Goal_Item also contains
some criteria to evaluate the KO execution. These criteria
are used to check if the goal was satisfactory achieved or
not. To make a KO evaluation, an agent: (i) uses the
knowledge encapsulated into a KO to achieve a specific
goal; (ii) recovers its criteria for evaluating goals
achievement; and (iii) compares the information derived
from goal’s execution to compute the KO execution grade.

The Description_Item represents meta-data about the
KO. These meta-data were selected among the set defined
by the Dublin Core Metadata standard
(www.dublincore.org). An agent can use these data as
additional information to select the most appropriate KO to
use or share. The Restriction_Item represents KO sharing
restrictions. It indicates the set of agents the KO can be
shared with. Sharing restrictions are verified by the
knowledge sharing mechanism when an agent wants to
share a KO with other agent in the organization.

The KOs can contain architecture-dependent items of
five types (sensors, effectors, rules, facts and action plans).
Each architecture-dependent item has two attributes:
element, that represents an agent’s architectural
constructor; and elementSchema, that contains an
ontology with all necessary information to recreate the
agent’s architectural constructor in other agents. During
knowledge transmission the elementSchema is
instantiated with the information provided by the element
attribute. The instantiated model is the unique information
transmitted through the environment.

To implement an architecture-dependent item is
necessary to extend the KOItem class. The KOItem class
contains four abstract methods to serialize, parse, load and
remove a specified element. The serialize method
enables KO items transmission. The parse method
indicates how to understand the knowledge retrieved from
another agent. The load method describes how to use the
knowledge retrieved (how to load it in the agent’s
architecture). The remove method is responsible for
eliminating the item of the agent’s architecture.

If an agent wants to sell books, for example, it will need
- among other items - a sensor to capture messages whose
subject includes the text “book requisition”. Then the
Books_Selling KO - which encapsulates the knowledge
related to books selling - should have a “RequisitonSensor”
sensor to capture string messages whose subject contains
the string literal “book requisition”.

To share a KO it is necessary to serialize all its items.
Then, for an agent to share the Books_Selling KO it must
serialize its “RequisitonSensor” sensor. To serialize a
Sensor_Item is necessary to gather: the sensor’s name; the
sensor’s class (sensors are hot spots in the S+O framework
and they are created extending the Sensor class); and the
sensor’s header and content patterns (these patterns are used
to filter the messages received from the environment). The
Figure 1 shows a fragment of the OWL code that was
generated for sharing the Books_Selling KO.

When the Books_Selling KO was parsed in the receiver
agent (after transmission), a new StringSensor object
will be created with the name “RequisitionSensor” and the
header pattern (“?message”, “subject”, “book requisition”).
If the Books_Selling KO was selected to be applied, then
the “RequisitionSensor” sensor will be added in the agent’s
sensors list. Thus the agent will be able to capture messages
whose content contains the string literal cited.

3.3. Knowledge bases

The internal knowledge base represents the agent’s
knowledge base. It is dynamically extended with the KOs
retrieved from other agents. Though it is possible to
implement a procedure for discarding a KO after its usage.
This can be useful in computational devices with limited
physical resources such as Personal Digital Assistants
(PDAs).

The Librarian agent represents the environment
knowledge base and it is an administrative agent in S+O
framework. The Librarian’s knowledge base contains only
approved KOs. An approved KO was evaluated and
confirmed by a domain expert. The knowledge retrieved
from the Librarian agent may be considered more
“trustworthy” since it was evaluated by an expert. On the
other hand, other agents can provide more updated KOs.
We will implement interfaces for KOs uploading, creating
and editing in the near future.

3.4. Execution records management

Each time a KO is executed an execution record is
created with the results of the execution. The execution
records allow an agent to create policies for requesting new
KOs to achieve a particular goal based on previous
execution results. The changing policy defines how the
execution results are evaluated. For instance, if the
Books_Selling KO execution was evaluated in a numeric
scale from 1 to 5, then a possible changing policy would be

208

to request new KOs to achieve the “Books_Selling” goal
after executing the Books_Selling KO with an evaluation
equal or less than 3 for 5 times. Using the execution history
the agents are able to create more effective
recommendations and evolve their behaviors.

3.5. Knowledge acquisition and loading
mechanisms

The knowledge acquisition mechanism is started when
an agent needs: (i) to replace obsolete or unsuitable
knowledge (based on the execution history); or (ii) to find
knowledge applicable to achieve a goal without knowledge
associated. The activities executed for retrieving relevant
KOs are described below.
1.The achievement of the goal without prior knowledge is

suspended (goals with obsolete knowledge are not
suspended while the knowledge acquisition mechanism is
executed).

2.The set of addressees for the knowledge request message
is defined. The agents have a list of possible addressees
for knowledge request messages. This list can have the
following values: (1) the identifiers of particular agents in
the system; (2) “all” (default value), which means that the
request message will be sent to all agents found in the
yellow pages service (agents whose expertise are related
to the agent’s needs); or (3) “Librarian”, which is the
environment knowledge repository. The resultant
addressees list indicates who to ask for the knowledge
required.

3.A knowledge request message is created and it is sent to
all the agents in the addressees list.
When the requester agent receives a response to a

knowledge request, it verifies if the request is not expired
and if so it stores the received knowledge. Each agent has
an attribute named waitingTime that determines the time

spent between the knowledge request message sending and
the verification of the received knowledge. The loading
mechanism is started when the waiting time ends. The
activities executed for selecting and loading the most
suitable KO are described below.
1.The agent uses criteria for checking the similarity

between a requested knowledge and the KOs received. In
the S+O framework, both the agent goal and the KO goal
are represented as an ontology instance so the criteria
must estimate the similarity between two ontologies. An
example of criterion used to check the similarity between
two ontologies (provided by OntoMetric) is to verify the
percentage of common concepts between them [10].

2.The most suitable KO is selected according to a loading
policy. An example of loading policy could be: “select the
higher graded KO independently of its relevancy value”.
The loading policy must be implemented when the S+O
framework is instantiated.

3.The selected KO is loaded in the agent’s architecture. The
load method (of the KOItem class) is used to load all
KO items in the agent’s architecture. If one KO item
cannot be loaded, other KO must be selected.

4.The selected KO is stored in the agent’s internal
knowledge base and it is associated with the goal that
started the knowledge acquisition mechanism. If the goal
achievement was not suspended, then it is necessary to
wait for executing this activity until to accomplish the
goal.

5.The goal achievement is restarted.

3.6. Knowledge sharing mechanism

When an agent requests knowledge other agents can
respond with KOs that are similar to the requested
knowledge. The agents have a set of criteria to check the
similarity between the KOs available and a specific

<rdf:Description rdf:about="http://semanticore.pucrs.br#KO3">
<j.0:hasItem rdf:resource="http://semanticore.pucrs.br#KO3_item2"/>
<j.0:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Books_Selling</j.0:name>
...
<rdf:type rdf:resource="http://semanticore.pucrs.br#KnowledgeObject"/>

</rdf:Description>

<rdf:Description rdf:about="http://semanticore.pucrs.br#KO3_item2">
<j.0:element rdf:resource="http://semanticore.pucrs.br#RequisitionSensor"/>
<j.0:itemClass rdf:datatype="http://www.w3.org/2001/XMLSchema#string">agent.organizer.hotspots.SensorITEM</j.0:itemClass>
<rdf:type rdf:resource="http://semanticore.pucrs.br#KOItem"/>

</rdf:Description>

<rdf:Description rdf:about="http://semanticore.pucrs.br#RequisitionSensor">
<j.0:headerPattern rdf:resource="http://semanticore.pucrs.br#fact21"/>
<j.0: sensorClass rdf:datatype="http://www.w3.org/2001/XMLSchema#string">sensorial.hotspots.StringSensor</j.0:sensorClass>
<rdf:type rdf:resource="http://semanticore.pucrs.br#Sensor"/>

</rdf:Description>

<rdf:Description rdf:about="http://semanticore.pucrs.br#fact21">
<j.0:subject rdf:datatype="http://www.w3.org/2001/XMLSchema#string">?message</j.0:subject>
<j.0:predicate rdf:datatype="http://www.w3.org/2001/XMLSchema#string">subject</j.0:predicate>
<j.0:object rdf:datatype="http://www.w3.org/2001/XMLSchema#string">"book requisition"</j.0:object>
<rdf:type rdf:resource="http://semanticore.pucrs.br#SimpleFact"/>

</rdf:Description>

Figure 1. Piece of OWL code generated for Books_Selling KO sharing.

209

requested knowledge. The KO sharing restrictions must be
verified when an agent wants to share a KO. For instance,
some “strategic” KOs can be private, which means that they
cannot be provided to other agents. To select one or more
KOs to share, an agent has a delivery policy. An example of
delivery policy could be: “send only the KOs that precisely
match the requested knowledge”.

4. Discussion: S+O Agents in Action

Agents usually cannot deal with the lack of the
knowledge required for achieving their goals. The agent
platforms typically focus on the distribution issues such as
concurrency control, message passing, environment
management and internal agent architecture
implementation. They do not include mechanisms for
managing the agent’s internal knowledge which could allow
agents to work together by exchanging knowledge.

Knowledge organization and exchange are important for
several reasons. Firstly, the agent’s knowledge can be
insufficient to achieve a specific goal. Secondly, the
resources required to execute a plan may be unavailable.
Finally, the environment is unpredictable and uncertain,
which means that it is impossible to predict the future. All
of these would possibly result in a situation where the
agent’s goal achievement is unfeasible with the knowledge
available. Hence, the agent must be able to change its
know-how to achieve a certain goal.

The S+O framework facilitates agents' knowledge
organization allowing them to recover and share knowledge
at run-time. Since it is a flexible architecture, it has some
application specific hot spots. For instance, the criteria for
checking the similarity between a requested knowledge and
the KOs available are defined as hot spots in S+O
framework and thus the developers can implement different
algorithms to evaluate the similarity between two
ontologies.

It is difficult to evaluate quantitatively the contribution
of our proposal to the agent’s execution. Firstly because the
application results are strongly related with the context or
situation in which the agents are inserted to achieve their
goals, i.e., there is a set of metrics whose measures are
context-dependent. As mentioned above, the environment is
unpredictable and uncertain, which also means that it is
impossible to generalize the results obtained. However, we
have been developing a number of case studies to
investigate whether knowledge exchanges improve the
agent’s abilities and to explore the framework’s potential.

The first case study developed was a scenario adapted
from [1]. The scenario begins when Pete and Lucy (brother
and sister) want to schedule physiotherapy sessions for their
mother (named as Marie). Pete and Lucy use their personal
“S+O agents” to execute the scheduling task. Nine agents
were created for implementing this scenario. LucyAg was
Lucy’s personal assistant. Among its pre-defined goals there
was the “Clinics Selection” goal used to find the most

appropriate clinic for a prescribed treatment. PeteAg was
Pete’s personal assistant that also had the “Clinics
Selection” goal. The other agents represented the Marie’s
doctor, the health care company, the health care services
ranking, and 4 different clinics.

Neither LucyAg nor PeteAg had the knowledge required
to achieve the “Clinics Selection” goal. Different selection
policies were implemented to enable LucyAg and PeteAg to
select different KOs for achieving the “Clinics Selection”
goal. Two KOs were created and made available: the KO-1,
that provides treatments scheduling knowledge considering
the patient insurance plan and location; and the KO-2, that
contains an alternative knowledge for treatment scheduling
allowing clinics to be directly contacted using a yellow
pages service to find them.

Using the KO-2, PeteAg was able to identify a different
set of clinics suitable for Marie’s prescribed treatment than
LucyAg (in our example, LucyAg used the KO-1 for
achieving the cited goal). It does not indicate that the results
presented by KO-1 usage are always worse or better than
the results obtained by KO-2 usage. In the original problem
description, Lucy feels comfortable with the clinics selected
by her agent. But as Pete is not satisfied with the results
given, he demands his agent to redo the searching
operation. As a clinic indicated by PeteAg was selected for
the treatment, we can say that “the KO-2 was more
appropriated to achieve the ‘Clinics Selection’ goal in this
context”. This scenario was implemented using Java and
Eclipse. The ontologies were created using OWL DL and
processed using the Jena 2.4 API.

Other scenario has been developed to explore the
execution history usage. In this scenario there are two
vendors of cars and some customers. All vendors and
customers have personal S+O agents to help them to sell
and buy cars. The vendors’ agents shall act in order to
increase the vendors’ profits. On the other hand, the clients’
agents shall negotiate with the vendors’ agents in order to
decrease the car cost. If a vendor’s agent does not obtain
good results for sometimes (if it does not sell a car to a
possible customer or sells it for an unsatisfying price), then
it needs to replace its selling strategy to maximize the
vendor’s profits. The agent can improve its abilities by
using a different KO but it is also possible that it has
unsatisfactory results again. However, the S+O agent will
evaluate its results constantly and while it does not find the
appropriated knowledge to achieve a certain goal, it will
pursue a better KO.

5. Related Work

In most of the agent platforms, when an agent cannot
deal with an unknown event or does not have the knowledge
required to achieve a certain goal, the event or goal are
simply dropped. However, some platforms already consider
the use of a “default knowledge” that is used when the
knowledge available cannot be applied to achieve a specific

210

goal (for instance, the implementation of 3APL [11]
assumes the use of a “default plan” to dealt with an event
without suitable plans associate to it).

In [4], it is presented the Coo-BDI approach. This
approach aims to implement agents that dynamically change
their behaviors by cooperating with other agents
(“cooperation” means to retrieve external plans for
achieving certain desires). Although this work has some
similarities with ours, in a broader view there are some
important differences that must be taken into account.
Firstly, we believe that an action plan just represents a
fragment of the necessary knowledge for an agent to
achieve a goal. For instance, to execute properly a plan (and
consequently to achieve a certain goal) it is necessary for a
BDI agent to have specific beliefs. These beliefs should be
retrieved together with the plan. Thus, we indicate the use
and exchange of knowledge objects instead of only action
plans. Other significant difference of our proposal is the
execution history usage. The COO-BDI approach focus on
exchanging plans to cope with the situation in which no
local plans are available for managing an event or goal. [5]
shows theoretically how the Coo-BDI approach can be used
by AgentSpeak’s agents implemented with Jason.

Other proposals partly investigate the integration of KM
processes in MAS organizations. Just to make some
examples, [12] presents an architecture to design
computational intelligence systems including a framework
for KM. This paper covers some aspects of a KM process
but they are rather superficial. For instance, it does not
present the knowledge representation format to exchange
knowledge. In [13], issues related to the knowledge capture
and distribution are addressed. Though this work considers
these two issues, several other issues are missing. There is
no explanation about the knowledge selection mechanism or
about the degree of compatibility of a specific knowledge
and the agent’s needs.

6. Final Remarks and Future Works

This paper presented general aspects of the
SemantiCore+Ontowledge (S+O) framework. S+O focuses
on knowledge distribution and use. The main knowledge
organization unit is the knowledge object (KO) which
encapsulates all necessary items to achieve a specific goal.
KOs are represented as ontologies for knowledge sharing.

We believe that the ability of exchanging knowledge
represents a considerable improvement in the development
of MAS. The benefits of the proposed architecture also can
be considering in a pervasive environment. An important
requirement for an agent in a pervasive environment is the
support for configurable and adaptive behavior in order to
dynamically react to the changes in the environment and in
the agent’s goals. To satisfy such requirement, we need an
infrastructure with knowledge management features.

S+O has some limitations and improvements
opportunities. For instance, a visual agent development tool

must be provided in order to facilitate the agent definition.
This visual composer may also have intrinsic ontology
development support so the facts and rules can be directly
defined and tested using ontologies. An IDE such as Eclipse
can be adapted to help KOs creation together with the
regular application code.

Acknowledgments

Study developed by the Intelligent Systems Engineering
Group of the PUCRS, financed by Dell Computers of Brazil
Ltd. (addendum PDTI) with resources of Law 8.248/91.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic
Web”. Scientific American Magazine, May 2001.

[2] L. Kagal et al. “Agents Making Sense of the Semantic Web”.
In: Proc. First GSFC/JPL Workshop on Radical Agent Concepts,
2002, pp. 417-433.

[3] J. Elin. “Ontologies and the Semantic Web”, Bulletin of the
American Society for Information Science & Technology,
Apr/May 2003.

[4] D. Ancona and V. Mascardi. “Coo-BDI: Extending the BDI
model with cooperativity”. In: Proc. of DALT-03, 2003.

[5] D. Ancona et al. “Coo-AgentSpeak: Cooperation in
AgentSpeak through Plan Exchange”. In: Proc. of AAMAS’2004,
2004, pp. 698–705.

[6] T. Kucza, “Knowledge Management Process Model”.
http://www.inf.vtt.fi/pdf/publications/2001/p455.pdf, 2005.

[7] A. Macintosh, I. Filby, and A. Tate. “Knowledge Asset Road
Maps”. In: Proc. of PAKM98. Basel, 1998.

[8] J. Stader and A. Macintosh. “Capability modelling and
knowledge management”. Applications and Innovations in
Intelligent Systems VII, Springer-Verlag, 1999, pp 33-50.

[9] M. Obitko and V. Marik. “Ontologies for Multi-Agent-Systems
in Manufacturing Domain”. In: Proc. of the 13th International
Workshop on Database and Expert Systems Applications, France,
2002, pp. 597- 602.

[10] A. Tello and A. Gómez-Pérez. “ONTOMETRIC: A Method
to Choose the Appropriate Ontology”. Journal of Database
Management, 15, 2 (2004), pp. 1-18.

[11] 3 APL platform. http://www.cs.uu.nl/3apl/, 2008.

[12] R. Weber and D. Wu. “Knowledge management for
computational intelligence systems”. In: Proc. of the 8th IEEE
International Symposium on High Assurance Systems Engineering
(Singapore, 2004), pp. 116–125.

[13] H. Rybinski and D. Ryzko. “Knowledge sharing in default
reasoning based multiagent systems”. In: IEEE/WIC IAT’03,
(Halifax, 2003), pp. 576-579.

211

JAAF: A Framework to Implement Self-Adaptive Agents

Baldoino F. dos S. Neto1, Andrew D. da Costa1, Manoel T. de A. Netto1, Viviane T. da Silva2
and Carlos J. P. de Lucena1

1PUC-Rio, Computer Science Department, LES – Rio de Janeiro – Brazil

2Universidade Federal Fluminense, Computer Science Department – Niterói – Brazil

{bneto, acosta, mnetto, lucena}@inf.puc-rio.br
viviane.silva@ic.uff.br

ABSTRACT

The self-adaptation paradigm aims to develop software systems
that can autonomously adapt themselves to context changes and
handle adverse situations on their own. However, appropriate
implementation of self-adaptive software systems is still an open
issue. Therefore, this paper proposes a framework (Java self-
Adaptive Agent Framework - JAAF) to implement self-adaptive
agents based on a set of steps to perform self-adaptations of
software agents. The framework provides support to three main
agent-related properties: autonomy, pro-activity and reasoning.
Besides taking advantage of software agents to better implement
self-adaptive software systems, JAAF extends the JADE
framework that already gives support to autonomy and pro-active
agents. In order to provide reasoning agents, JAAF uses a set of
methods based on rules, cases and genetic algorithms.

1. INTRODUCTION

The complexity of current systems has influenced the
software engineering community to look for systems able
to adjust or adapt their behavior in response to changes in
the environment. In this context, autonomic computing and
consequently self-adaptive systems have become one of the
most promising directions.

Although there are several approaches [1]-[3] describing
how systems can perform self-adaptations, they are not
implemented by the use of software agents, and therefore
do not contemplate agent-related properties that are
important to self-adaptive systems, such as autonomy,
learning, reasoning and pro-activity [5], [6]. Besides, they
do not provide the adequate flexibility to create different
plans for self-adaptation. Such flexibility is important to
make it possible to implement different processes that
promote self-adaptability in different domains.

Therefore, the Java self-Adaptive Agent Framework
(JAAF) was proposed. In order to take advantage of
software agents to better implement self-adaptive software
systems, such framework extends the JADE framework that

already gives support to autonomy and pro-active agents.
By using JAAF it becomes easier the construction of self-
adaptive agents due the infra-structure provided by the
framework, which offers support to the implementation of
different self-adaptation processes composed of activities
that can perform collect of data, analysis, decisions, etc.
The framework provides mechanisms that help the
implementation of such activities, such as, reasoning
methods based on rules, cases, genetic algorithms, besides
different ways of collecting data, format them, etc. JAAF
can be instantiated to implement, for instance, biological,
ubiquitous computing and autonomic computing systems.

The paper is organized as follows. Section 2 presents
some related work. In Section 3 the JAAF is detailed and
Section 4 states a case study by describing how agents can
perform self-adaptation in real situations. Finally, Section 5
concludes and presents some future work.

2. RELATED WORKS

In [1] the authors propose a self-adaptation process
based on four key activities: collect, analyze, decide, and
act. The collect activity provides mechanisms that collect,
aggregate, filter and report details (such as metrics)
collected from an application. The analyze activity
correlates and models complex situations aiming to detect
problems. The decision activity provides mechanisms that
construct the actions that the agents need to execute in
order to achieve goals. And finally, the act activity controls
the execution of the actions proposed by the decision
component. The main difference between our approach and
theirs is that our framework can be used to instantiate
different self-adaptation processes composed of any set of
activities.

Rainbow [2] uses an abstract architectural model at
runtime to monitor the properties of an executing system, to
evaluate the model for constraint violation, and — if a
problem occurs — to perform global and module
adaptations on the running system. Rainbow uses
mechanisms based on fix adaptation plans to monitor and

212

adapt the system behavior at runtime and uses constraints
(rule) in order to verify problems or violations. Besides
this, it uses utility functions [15] to determine the most
appropriate adaptation within a set of applicable ones.
Aiming to propose an approach more flexible, the JAAF
enables the elaboration of different adaptation plans and
provides not only rule-based reasoning, but also case-based
reasoning (CBR) mechanisms. According to [8], CBR is an
efficient way to implement some of the properties of
autonomic systems.

Kinesthetics extreme (KX) [3] works on the
implementation of a complete autonomic loop. This work
was driven by the problem of adding autonomic properties
to legacy systems; that is, existing systems that were not
designed with autonomic properties in mind. However,
sometimes it is not possible to modify these systems. Thus,
the addition of autonomic properties is required to be
completely decoupled from the system with autonomic
monitoring sensors added on the top of existing system and
monitoring functionality. KX focuses on the collection and
processing of monitoring data from legacy systems and
execution of repair. It does not provide support to the
elaboration of different adaptation plans and does not have
the intention of providing different reasoning mechanisms.

The Agent Building and Learning Environment (ABLE)
[4] provides an autonomic management in the form of a
multi-agent architecture; that is, each autonomic manager is
implemented as an agent or set of agents, thus allowing
different autonomic tasks to be separated and encapsulated
into different agents. Although ABLE provides reasoning
mechanisms, it does not allow the elaboration of different
self-adaptation plans.

3. JAAF
In this section we describe the main idea of the

framework, followed by the analysis of the JAAF class
diagram and the details about its kernel (frozen-spots) and
flexible points (hot-spots) [13].

3.1 MAIN IDEA

The JAAF framework is implemented by the use of
software agents, as illustrated in Figure 1 by the JAAF
architecture. JAAF extends JADE [9], [10], a FIPA
compliant framework to implement multi-agent systems
(MAS) developed in Java, in order to represent three
concepts: (i) agents that perform self-adaptation, (ii) plans
executed by agents representing self-adaptation processes
(or control loops) and (iii) activities that are the steps of
such processes. In order to implement self-adaptive systems
it is necessary to instantiate the JAAF framework by
implementing the plans or control loops and their activities.
JAAF already provides a control loop composed of four
activities, as detailed in Section 3.2.

Figure 1. JAAF Architecture

3.2 DETAILS OF THE JAAF
The class diagram depicted in Figure 2 illustrates the

main JAAF classes. The self-adaptive agents are
represented by the AdaptationAgent class and the self-
adaptation process by the PlanAdaptation class. Such class
extend the JADE class FSMBehaviour that provides
support to the implementation of finite automata composed
of activities (or behaviors) represented by the Behaviour
class.

JAAF already provides a self-adaptation process
represented by the ControlLoop class that is composed of
four activities (Figure 3): Collect (Section 3.2.1), Analyze
(Section 3.2.2), Decision (Section 3.2.3) and Effector
(Section 3.2.4), each one extending the Behaviour class.
This control loop was created based on the self-adaptation
process mentioned in [1]. Note that, although JAAF already
provides such control, it is possible to define others from
the PlanAdaptation class. It is also possible to implement
different activities (or steps of the loop), from the
Behaviour class, to different control loops.

3.2.1. COLLECT

This is the first step executed by the process. It is
responsible for providing mechanisms to collect, aggregate
and filter (format) data collected from the application.

In order to represent this idea, the framework offers two
concepts: sensor and format. The sensor defines the place
where the data should be collected (database, log, etc) and
the format defines the format of the collected data. This
activity also specifies when the agents should collect the
data, i.e., it describes the preconditions to activate the
sensor.

213

Figure 2. Class Diagram of the JAAF

3.2.4. EFFECTOR

This is the last step of the self-adaptation process. It
receives the selected action from the Decision activity, and
informs the agent the action to be executed. When the
action is executed, the control loop can be executed again
whether any self-adaptation is necessary.

3.3 HOT-SPOTS AND FROZEN-SPOTS

Since JAAF extends JADE, the JADE kernel is also the
kernel of JAAF and the hot-spots of the JADE are the hot-
spots of JAAF. For instance, the process used by agents to
communicate, and the agents’ identifiers are examples of
JAAF hot-spots inherited from JADE.

The hot-spots specifically defined in JAAF are:

Figure 3. Control loop provided by the JAAF framework

3.2.2. ANALYZE

The analyze activity is responsible for providing
mechanisms that analyze the data collected in the previous
activity in order to detect problems and suggest new
solutions. The framework gives support to three
techniques: (i) rule based reasoning (forward chaining,
backward chaining and fuzzy logic) [12], case based
reasoning [8] and genetic algorithm [11].

1. Agent (AdaptationAgent class): By extending such
class and implementing the executedPlan method,
it is possible to define different algorithms to
execute the plans of an agent.

2. Plan of self-adaptation (PlanAdaptation class): It
is possible to define new control loops (or plans)
and the sequence to execute the activities of the
control loops. JAAF already provides a default
control loop implemented in the ControlLoop
class. 3.2.3. DECISION

Decision is the third activity responsible for deciding
which action (or behavior) will be the next one to be
executed by the agent, while trying to achieve the goal.
Such decision is based on the information provided by the
previous step.

3. Activities (Behaviour class): It is possible to
define new activities to be called by the control
loops by extending the Behaviour class. JAAF
already offers four activities (Collect, Analyze,
Decision and Effector).

4. Sensor (Sensor class): One can define when and
where the data should be collected.

5. Format (Format class): It is possible to define the

214

format of the data to be collected by the Sensor.
6. Intelligent Algorithm module: JAAF offers three

kinds of algorithms: rule-based reasoning (forward
chaining, backward chaining and fuzzy logic),
case-based reasoning and genetic algorithm. Such
algorithms can be used at any point of the system
to help with the self-adaptation.

As mentioned above, in order to implement a self-

adaptive agent, the following steps should be performed:
(1) define a plan of self-adaptation by extending the
PlanAdaptation class; (2) create the activities that compose
such plan by extending one of the JADE classes that
represent behaviour; and finally (3) create a self-adaptive
agent by extending the AdaptationAgent class.

4. CASE STUDY: CREATION OF SUSCEPTIBILITY
MAPS

Landslides are natural phenomena, which are difficult to
predict since they depend on many (unpredicted) factors
and on relationships among those factors. The annual
number of landslides is in the thousands, and the
infrastructural damage is in the billions of dollars [14].
Since there is a need to systematically deal with these
factors, one of the main challenges faced by the specialists
is to decide the most appropriate model configuration to
generate susceptibility maps (SM), i.e., maps that show
locations with landslides risks in a specific area. By using
such a map, it is possible to identify the areas with highest
risks in a region.

In this context, we used the JAAF framework to create a
multi-agent system in order to generate an SM that shows
the places with landslide risks of Rio de Janeiro, a city in
Brazil. Each application agent is able to adapt the
configuration of its susceptibility model in order to meet the
SM closest to the one that represents the reality.

4.1 MAIN IDEA

The implemented system is composed of three agents, as
illustrated in Figure 4. The goal of the two susceptibility
generator agents (SGA) is to meet the most appropriate
configuration of its susceptibility models. The most
appropriated configuration is found by comparing the SM –
– generated by using the susceptibility model and its
configuration –– with an inventory map, which is a map
that stores the history of landslides that have occurred in
Rio de Janeiro over the last thirty years.

In this example, both agents use the same susceptibility
model but use different types of data and reasoning
algorithms (case-based reasoning and genetic algorithm) to
perform the self-adaptations.

When each SGA finds its most appropriate
configuration, it provides such configuration to the decision
agent. When the decision agent receives both
configurations, it configures the model and generates two

SMs. It compares the two SMs in order to discover which is
closest to the landslide history. Note that the decision agent
defines a timeout to receive such configurations.

Figure 4. Conceptual model of the case study

4.2 SUSCEPTIBILITY GENERATION AGENTS

The model used by both SGAs is described in equation
1. S represents the susceptibility value of a specific area in
an SM, X represents the factors considered to generate the
susceptibility value and W is the weight of the type of such
factors.

S = 1- Ýi = 1, n Wi * Xi (1)

Three types of factors (types of data) can be used:

Vegetation type (V), Slope (S) and Accumulated Rain (R).
Tables 1, 2 and 3 present examples of different types of

vegetation, different slope percentage and degrees of
accumulated rain together with the scale that should be
considered in each case. For instance, consider an area that
is constituted by a preserved forest, which has a slope of
5% and accumulated rain of 65 mm. The scales to be
considered in such a case are 0.85, 0.75 and 0.15. The
vegetation and the slope indicate that it is a preserved area
with a low slope and that the risk of landslides in such an
area is low. But the accumulated rain drastically increases
such risk.

Table 1: Vegetation Scale Configuration

Vegetation Scale
Preserved Forest 0.85
Degraded Forest 0.65
Uncovered Soil 0.0

Grass 0.35
Plantation 0.10
Floodplain 0.15

Table 4 exemplifies the weights attributed to each type

of factor. In the example, the accumulated rain is a little bit

215

more important than the other two types of factors when
evaluating the landslide risk.

Table 2: Slope Scale Configuration

Slope Scale
(0-3)% 0.9
(4-8)% 0.75

(9-25)% 0.6
(26-45)% 0.4
(46-75)% 0.2
(>75)% 0.0

Table 3: Accumulated Rain Configuration

Accumulated Rain (mm) Scale
(0-10) 0.90

(11-20) 0.84
(21-30) 0.71
(31-40) 0.53
(41-60) 0.53
(>60) 0.15

Table 4: Types of Factors Weights

Type of Factor Weight
Vegetation Type 0.3
Slope 0.3
Accumulated Rain 0.4

It is the goal of the two SGAs to choose the set of types
of factors to be used to generate the SM, to define the
scales exemplified in Tables 1, 2 and 3 and also to state the
weights that should be considered in each type of factor. By
adapting the parameters of equation 1, the agents try to
provide the most appropriate configuration.

4.2.1. GENETIC AGENT

While instantiating JAAF to implement the genetic
agent, it was not necessary to define a new control loop or
new activities. The control loop provided as default was
used and the four activities already identified were
implemented.

In the collect activity the agent collects the configuration
used to generate the actual SM, data from the inventory
map and formats them in an adequate format that can be
manipulated by the others activities of the control loop. The
JAAF was useful due to the available mechanisms that
allow to read and format data of different sources. Next, in
the analyze activity the agent uses a genetic algorithm to
analyze the collected data and the actual configurations
used to generate the previous SMs. After such analyses, a
set of configurations is suggested for the decision activity;
i.e., in the analyze activity the agent adapts the parameters
of equation 1 aiming to meet better configurations than
those previously used.

The decision activity uses a rule-based reasoning
algorithm to meet the ideal configuration of a susceptibility

model while considering only the vegetation type and slope
data. Since both the genetic algorithm and the rule-based
reasoning algorithm are provided by JAAF, the instance
only needed to provide the necessary parameters to execute
such algorithms.

In the last activity called effector, the agent uses equation
1 with the configurations suggested in the previous activity
to generate the SM. Note that the control loop can be
executed repeatedly until the agent meets the most
appropriate configuration or until the timeout defined by
the decision agent expires.

4.2.2. RBC AGENT

As the Genetic agent, RBC agent is also an SGA that
applies self-adaptation in order to meet an ideal
configuration of the scales and weights. However, the
control loop used is composed of five activities (Figure 5):
Feedback, Collect, Analyze, Decision and Effector. Since
the framework provides mechanisms that help on the
implementation of such activities and on the
communication between them, it is not difficult to
implement the needed control loop.

In the collect activity the agent retrieves data from the
inventory map, the configuration used to generate the
actual SM and formats them to be manipulated by the case-
based reasoning mechanism that is used in the next step.
The analyze activity uses a case-based reasoning algorithm
in order to analyze the collected data from the collect
activity and the cases stored in a case-base (past
experiences), aiming to suggest a set of better
configurations than those previously used. In this case, the
instance only needed to provide the necessary parameters to
execute the case-based reasoning algorithm, since such
algorithm is already provided by JAAF.

The decision activity uses a rule-based reasoning
algorithm on the configurations suggested in the previous
step in order to meet the ideal configuration of a
susceptibility model while considering the vegetation type,
slope and accumulated rain data.

Figure 5. Control loop defined by the RBC agent

 The next activity, called effector, receives the met
configurations in the previous activity and executes them.
If the timeout defined by the decision agent expires or the

216

best configuration is met, then the RBC agent sends the
configurations to the decision agent and the feedback
activity is executed. Otherwise, the collect activity is
executed.

The feedback activity is responsible for receiving the
chosen configuration by the decision agent and stores it in a
case-base as a successful case. This task contributes to
expanding agent learning.

5. CONCLUSION AND FUTURE WORKS

This paper proposes a framework that provides support
to the construction of self-adaptive agents by the
implementation of different plans for self-adaptation.
Nonetheless, it also provides reasoning methods based on
rules, cases and genetic algorithms that can be used by the
agents.

 The applicability of such a framework can be verified
by the case study presented in Section 4. The two agents
illustrated in the section use different self-adaptation
processes. One of them uses the process proposed as
default by the framework – the control loop composed of
four activities – while the other instantiates the framework
by implementing another activity and defining a different
self-adaptation process. In addition, these agents are able to
self-adapt the configurations of the susceptibility model
used to generate SMs by using different reasoning
mechanisms proposed by the framework.

We are in the process of defining new self-adaptation
control loops and mechanisms able to handle several of
them, not only control loops but also complex context using
ontology. It is also our intention to extend JAAF in order to
provide a framework not only for self-adaptation but also
for self-organization in a multi-agent environment. Such a
framework would guide the development of organizations
inspired by biological systems.

REFERENCES
[1] S. Dobson, S. Denazis, A. Fernández, D. Gaiti, E. Gelenbe, F.

Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A
survey of autonomic communications. ACM Transactions
Autonomous Adaptive Systems (TAAS), 1(2):223{259, December
2006.

[2] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley
Schmerl and Peter Steenkiste. Rainbow: Architecture-Based Self
Adaptation with Reusable Infrastructure. In IEEE Computer, Vol.
37(10), October 2004.

[3] Kaiser, G.; Parekh, J.; Gross, P. and Valetto, G. Kinesthetics eXtreme:
An external infrastructure for monitoring distributed legacy systems.
In Proceedings of the Autonomic Computing Workshop at the5th
Annual International Workshop on Active Middleware Services
(AMS), 2003.

[4] Bigus, J. P.; Schlosnagle, D. A., Pilgrim, J. R.; et. al..ABLE: A toolkit
for building multiagent autonomic systems. IBM Syst. J. 41, 3, 350–
371, 2002.

[5] Jennings, N. R. and Wooldridge, “M. Agent-oriented software
engineering,” In Bradshaw, J. (Ed.) Handbook of Agent Technology,
AAAI/MIT Press, 2000.

[6] Wooldridge, M. and Jennings, “N. R. Pitfalls of agent-oriented
development,” Proceedings of the Second International Conference
on Autonomous Agents (Agents'98), ACM Press, pp. 385-391, 1998.

[7] Huebscher, M. C. and McCann, J. A. A survey of Autonomic
Computing—Degrees, Models, and Applications. ACM Computing
Survey, August 2008.

[8] A. Amodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. In AI
Communications, volume 7:1, pages 39–59. IOS Press, March 1994.

[9] Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., Mungenast, R.,,
Jade Administrator’s Guide, 2007.

[10] Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., Jade
Programmer’s Guide, 2007.

[11] Melanie Mitchell, An Introduction to Genetic Algorithms (Complex
Adaptive Systems), The MIT Press, February 6, 1998.

[12] Costa, A., Lucena, C. J. P.; Silva, V., Cowan, D.; Alencar, P., A
Hybrid Diagnostic-Recommendation System for Agent Execution in
Multi-Agent Systems, ICSOFT 2008 – 3rd International Conference
on Software and Data Technologies, Porto, Portugal, July 2008.

[13] Fayad, M. , Johnson, R., Building Application Frameworks: Object-
Oriented Foundations of Framework Design (Hardcover), Wiley
publisher, first edition, ISBN-10: 0471248754, 1999.

[14] Karim S. Karam, Landslide Hazards Assessment and Uncertainties,
Thesis: Massachusetts Institute of Technology, September 2005.

[15] Petrucci, V. and Loques, O. Suporte a adaptação de aplicações usando
funções de utilidade. In 1st Workshop on Pervasive and Ubiquitous
Computing, WPUC 2007, SBAC-PAD 2007, October 2007.

217

An Agent-based centralized e-Marketplace in a
Virtual Environment

Ingo Seidel, Markus Gärtner,
Josef Froschauer, Helmut Berger

Matrixware Information Services GmbH,

Lehargasse 11/8

A-1060 Vienna, Austria

Email: {firstname.lastname}@matrixware.com

Dieter Merkl
Institute of Software Technology and Interactive Systems

Vienna University of Technology

Favoritenstrasse 9-11/188

A-1040 Vienna, Austria

Email: dieter.merkl@ec.tuwien.ac.at

Abstract

In this paper we present the design and implementation
of an agent-mediated B2C e-Marketplace as part of the
social and immersive 3D e-Tourism environment “Itchy
Feet”. Customers are able to interact in an intuitive
way in the 3D environment and assess tourism products
prior to purchase. The e-Marketplace provides services
via autonomous software agents for the entire purchase
cycle. Fair trade among agents is ensured by regulating
the environment with Electronic Institutions.

I. Introduction

Electronic Marketplaces (EMs) are electronic platforms

connecting buyers and sellers to conduct business. Wang

et al. [10] did a comprehensive literature review of EM

research and ascertained that most economic researchers

studied decentralized electronic markets but paid less atten-

tion to central platforms. Fisher and Craig [5] discovered

that the lack of social interaction in online channels and

the conflict between online and traditional channels are

crucial issues that hinder the adoption of EMs. Furthermore

it is important to enforce security mechanisms within a

marketplace to ensure fair trade. To address these aspects

our work concentrates on the creation of a central platform

in the B2C domain. The platform consists of a Multi-Agent

System to form and regulate the marketplace, a virtual en-

vironment to encourage user participation and communica-

tion facilities to support the formation of a community. The

whole marketplace is modeled in the virtual environment.

We intend to leverage 3D visualization for the presentation

of products within the virtual environment. This opens new

possibilities for providers to present their products and

consumers are able to get more insights than with text

and picture only presentations. To establish a sustainable

community we provide a common meeting place for users

to communicate and interact with each other. To encourage

trust and security we apply Electronic Institutions (EIs)

to regulate the marketplace. Electronic Institutions are a

Multi-Agent System methodology and provide a facility

for defining and regulating interactions between software

agents [4]. In our previous work we have connected EIs to

a 3D Virtual World to form the 3D e-Tourism environment

“Itchy Feet” [2], [7]. Itchy Feet has been developed as part

of a project in the tourism domain with the principal goal

of creating a 3D e-Tourism environment to support the

complex interaction patterns of providers and consumers

in e-Tourism. Autonomous software agents are used to

render the environment information rich and EIs are used

to regulate the actions of all participants.Software agents

and users participate in the system and are visualized in

the 3D Virtual World.

In this paper the final trading mechanisms of Itchy Feet

are presented and special focus is placed on the realization

of the auction process. The remainder of this paper is

structured as follows. In Section II the related work is

presented. Electronic Institutions and the Itchy Feet project

are presented in Section III. The marketplace is presented

in Section IV and Section IV-B illustrates how auctions

are conducted in the 3D Virtual World. In Section V the

paper is concluded and an outlook on future work is given.

II. Related Work

Mavetera and Kadyamatimba created a conceptual

framework for agent-mediated trading in e-Markets [6].

They identified several stages and components such as

product brokering, negotiation and contract formation that

are needed to implement a full e-Market system using

agent technology. Wang et al. [10] did a comprehensive

literature review on the current EM research. They iden-

tified eight major research themes and showed that most

218

studies address only the potential but not the real impact

of EMs. Furthermore, the results indicated that most of

the research methodologies are rather “qualitative” than

“quantitative”.

3D Virtual Worlds have been used in research for the

past 10 years and several researchers have worked on the

more specific topic of combining Multi-Agent Systems and

3D Virtual Worlds. Smith et al. [8] present an approach

where the agent logic is incorporated in a 3D environment.

According to the authors most worlds are largely static

and objects are used to trigger pre-programmed behavior.

Agents are supposed to enrich the world and should make

the environment more dynamic. The proposed framework

consists of a society of agents in which each agent controls

a 3D object. Adobbati et al. [1] present GameBots; a

system that abstracts from the Multi-Agent System and

provides a uniform interface to the 3D Virtual World. The

created environment is a multi-agent research test bed that

is not limited to a specific task in a fixed environment and

supports human testing and interaction. Traum & Rickel

[9] studied dialogue models between humans and software

agents in 3D Virtual Worlds. They concentrated on issues

such as proximity and attentional focus of others, the

interplay between speech and nonverbal signals and the

ability to maintain multi-part conversations.

III. Framework Description

In Itchy Feet, Electronic Institutions are connected to a

3D Virtual World in order to allow human users to partici-

pate in the agent system and to enable the visualization of

software agents in the 3D Virtual World. The concept of

EIs as well as the framework connecting them to the 3D

Virtual World are presented in the following.

A. Electronic Institutions

Electronic Institutions resemble real-world institutions

by using formal specifications to define interaction patterns

between agents [4]. These specifications describe what

agents are eligible to do within an EI. The building blocks

of EIs are i) the Dialogical Framework, ii) the Performative
Structure, and iii) the Norms and behavioral rules. The

Dialogical Framework defines the ontology and social

structure within the EI. The Performative Structure com-

prises scenes and transitions. Every scene has a protocol

that defines the possible interaction patterns among agents

within that scene. Scene protocols are defined as finite

state machines. A state change is performed when an

agent utters a message or a timeout occurs. It is possible

to define which agents are eligible to join or leave the

scene in which states. Scenes are connected by transitions.

Whenever an agent leaves a scene it needs to traverse a

transition to get to the next scene. Transitions may impose

restrictions on the movement of an agent. Norms, i.e. the

behavioral rules, establish role-based conventions that are

used to verify if interacting agents behave according to the

system’s normative specification. A detailed description of

EIs is given in [4].

B. 3D Electronic Institution Framework

In Itchy Feet two types of participants need to be con-

sidered: humans and agents. Agents are either autonomous

or controlled by a human user. In the latter case, the

couple human/agent is represented as an avatar in the 3D

Virtual World. The user delegates tasks such as information

gathering or product purchasing to the agent and learns

from the agent which rules and restrictions apply in the en-

vironment. The user must act according to these rules. The

movement and actions of the user in the 3D Virtual World

are verified by the agent in the EI. Autonomous agents

must be visualized in the 3D Virtual World such that users

are able to interact and learn from them. The visualization

of autonomous agents depends on their task. For example,

an agent that actively participates in conversations may

be visualized as an avatar, whereas a simple information

agent may be visualized as an information monitor. The

dependence between the two systems requires that the 3D

Virtual World is causally connected to the EI. In our case

this means that whenever the 3D Virtual World changes,

the EI must change as well. Whenever the EI evolves, the

3D Virtual World has to be modified in order to maintain a

consistent relationship. Conceptually speaking, the system

is composed of three layers. The 3D Virtual World is

located at the top layer, the EI is located at the bottom

layer and both components are causally connected by the

middleware [3], [7]. A detailed description of the system

architecture can be found in [7].

IV. The Itchy Feet Marketplace

Electronic Institutions are a useful framework for the

creation of an agent-based e-Marketplace. They enable

the participation of heterogeneous autonomous software

agents and define a regulatory environment that governs

the actions of these agents. However, the ability for human

users to engage in EIs is rather limited. In order to

overcome these limitations the 3D Virtual World is used

as an alternative user interface for end users. The fact

that the user is participating in the Multi-Agent System

is hidden by the framework and the user is only presented

with those interface controls that are necessary to complete

the user’s goals. The 3D Virtual World of Itchy Feet is

composed of three buildings which offer various services

to the users. The product trade takes place in the Travel

219

Agency and Auction House buildings. Products are traded

in two different ways: in the Travel Agency the user buys

products for a fixed price while in the Auction House the

user purchases a product within an auction. Every building

is a separate sub-marketplace and the product purchase

needs to be completed within the boundaries of this sub-

marketplace. For example, the user is only allowed to leave

the building if all the products in the user’s shopping cart

have been paid. This mechanism enables the support of

multiple sub-marketplaces that can be defined by different

providers to suit the needs of each individual provider. The

third building, the Forum building, is the meeting place of

Itchy Feet. In this building users are able to hang out, they

can share their knowledge and they are able to get help

from expert users. An overview of the 3D Virtual World

with the three buildings, including a detailed picture of

the Auction House, is shown on the left side of Figure 1.

The functionality which is available in these buildings is

defined in the Multi-Agent System. Every building corre-

sponds to exactly one Electronic Institution. The scenes

of an EI are visualized as rooms inside the building and

the transitions are visualized as doors connecting these

rooms. Whenever the user moves around in the 3D Virtual

World, the user’s agent mimics the movement in the EI.

Since there is no possibility to regulate inter-Electronic

Institution communication, a separate EI named Ether has

been designed. In contrast to the other EIs, the Ether

is not mapped to a building in the 3D Virtual World.

The Ether’s functions are accessible at every location

in the 3D Virtual World and include the shopping cart,

the inventory and the chat. Note that agent role names are

henceforth formatted in italic. The term User refers to the

role in the EI that can be played by a software agent as

well as a human user. In contrary the term “user” refers

to an actual human user that is participating in Itchy Feet

via the 3D Virtual World.

A. The Auction Protocol

The Auction House EI along with the Travel

Agency EI constitute the e-Marketplace of Itchy Feet. The

Auction House comprises six scenes: the offering scene,

the information scene, the clearing scene and three auction

scenes. The offering scene, lead by the OfferManager,

is the control unit of the Auction House. The Offer-
Manager overlooks the commodity flows and ensures that

every product is put on auction at the scheduled time.

Users inform themselves about available products in the

information scene and pay for auctioned products in the

clearing scene. Two types of agents, namely User and

Auctioneer, participate in the auction scene. The possible

interactions between these agents are determined by the

auction scene protocol.

Prior to the auction start, the OfferManager hands over

the product to the Auctioneer. As soon as the Auctioneer
receives the product, it informs all agents in the scene that

the auction will start. The process is based on a real world

English auction, resembling a forward auction starting at

a low price where bidders raise the price until no further

bids are issued or the bidding time has exceeded. Just

like in a real world auction the Auctioneer announces

the three different states “going once”, “going twice” and

“sold”. An auction ends in one of three different ways:

i) a bid has been issued and the Auctioneer announces

“going once”, “going twice” and “sold” without another

bid from a different User being placed, ii) the bidding

time has elapsed making the last User which issued a bid

the winner, iii) the bidding time has elapsed and no bids

have been issued. In any of these cases the Auctioneer
informs the OfferManager whether the product was sold

or not. After an auction has ended the Auctioneer remains

in a waiting state until it receives another product from the

OfferManager.

B. Auctions in the 3D Virtual World

The auction scene is visualized as a separate room of

the Auction House in the 3D Virtual World. The auction

room as well as the auction interface are shown on the

right side of Figure 1. The auction interface shows the

item to be auctioned, the current status of the auction and

contains an input box where the next bid is entered. The

screenshot shows four actors which are participating in

the auction. Two of them are autonomous software agents

and two of them are human users who are logged in the

3D Virtual World. The autonomous software agents are

visualized by the 3D Virtual World. The roles of these

agents determine how and where they are visualized. The

Auctioneer agent, which is responsible for conducting the

auction, is visualized on the stage behind the podium.

The other autonomous agent is playing in the User role

and is also interested in buying the product. This agent is

visualized among the other users and is wearing the robot-

like outfit. The different locations and outfits of each agent

role help the user to quickly identify the duties of each

avatar and make it easier to differentiate the individual

avatars.

The upcoming auctions are displayed on an information

panel in the information room of the Auction House. When

a user decides to participate in an auction, she enters the

auction room. As a consequence the user’s agent enters the

auction scene in the EI. The Auctioneer starts the auction

at the given time following the auction protocol. When

a bid is submitted by the user, a request is sent to the

user’s agent, which sends out a bid message in the auction

scene of the Auction House EI. The actions of each

220

Fig. 1. The 3D Virtual World with the Auction House building and the Auction Room

user and agent are visualized in the 3D Virtual World by

gestures and other visual cues. The bidding is illustrated by

a hand raising gesture and by a message box with the bid

amount that pops up over the avatar. If a user is announced

the winner of the auction, the product is displayed in the

shopping cart in the 3D Virtual World. The product is then

to be paid in the clearing room where the clearing scene

is visualized.

V. Conclusion & Future Work

In this work we have utilized 3D Virtual Worlds as a

new type of user interface for agent-based e-Marketplaces.

The focus was placed on the creation of an easy to use

interface enabling end users to participate in Electronic

Institutions and to interact with software agents. The

marketplace in this environment is realized by means of

auctions and fixed price product trade. The trade processes

are hereby defined in the EI and autonomous software

agents are responsible for their execution. In particular,

we have illustrated how auctions are conducted, how the

user is able to participate in a natural way and how the

connection between the user and the EI works.

The developed system will be used as a test-bed for

studying the interaction and behavior of users in an e-

Market setting. The next steps of our work involve the

execution of user studies where the acceptance of the

environment is evaluated.

VI. Acknowledgments

This work was funded by the FWF Austrian Science

Fund (project reference: L363).

References

[1] R. Adobbati, A. N. Marshall, A. Scholer, S. Tejada, G. Kaminka,
S. Schaffer, and C. Sollitto. Gamebots: a 3d virtual world test-
bed for multi-agent team research. Communications of the ACM,
45(1):43–45, 2002.

[2] H. Berger, M. Dittenbach, D. Merkl, A. Bogdanovych, S. Simoff,
and C. Sierra. Opening new dimensions for e-tourism. Virtual
Reality, 11(2):75–87, 2007.

[3] A. Bogdanovych, H. Berger, C. Sierra, and S. Simoff. Humans
and agents in 3d electronic institutions. In Proceedings of the
4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’05), pages 1093–1094, New York, NY,
USA, 2005. ACM Press.

[4] M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos.
On the formal specifications of electronic institutions. In Agent Me-
diated Electronic Commerce, The European AgentLink Perspective,
pages 126–147, Heidelberg, Germany, 2001. Springer-Verlag.

[5] J. Fisher and A. Craig. Developing business community portals for
SMEs - issues of design, development and sustainability. Electronic
Markets, 15(2):136–145, May 2005.

[6] N. Mavetera and A. Kadyamatimba. A comprehensive agent: me-
diated e-market framework. In Proceedings of the 5th International
Conference on Electronic Commerce (ICEC’03), pages 158–164,
New York, NY, USA, 2003. ACM Press.

[7] I. Seidel and H. Berger. Integrating electronic institutions with
3d virtual worlds. In Proceedings of the 2007 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’07),
pages 481–484, Washington, DC, USA, 2007. IEEE Computer
Society.

[8] G. Smith, M. L. Maher, and J. S. Gero. Designing 3d virtual
worlds as a society of agents. In Proceedings of the 10th Interna-
tional Conference on Computer Aided Architectural Design Futures
(CAADFutures’03), pages 105–114, Dordrecht, Netherlands, 2003.
Kluwer Academic Publishers.

[9] D. Traum and J. Rickel. Embodied agents for multi-party dialogue
in immersive virtual worlds. In Proceedings of the 1st International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), pages 766–773, New York, NY, USA, 2002. ACM
Press.

[10] S. Wang, S. Zheng, L. Xu, D. Li, and H. Meng. A literature
review of electronic marketplace research: Themes, theories and an
integrative framework. Information Systems Frontiers, 10(5):555–
571, 2008.

221

Semantic Service Matchmaking in the ATM Domain
Considering Infrastructure Capability Constraints

Thomas Moser, Richard Mordinyi, Wikan Danar Sunindyo, Stefan Biffl
Institute of Software Technology and Interactive Systems, Vienna University of Technology

Favoritenstrasse 9-11/188, Vienna, Austria
{thomas.moser, richard.mordinyi, wikan.sunindyo, stefan.biffl}@tuwien.ac.at

Abstract—In a service-oriented environment business processes
(BPs) flexibly build on software services (SSs) provided by sys-
tems in a network. A key design challenge is the semantic
matchmaking of BPs and SSs in two steps: 1. Find for one BP the
SSs that meet or exceed the BP requirements; 2. Find for all BPs
the SSs that can be implemented within the capability constraints
of the underlying network, which poses a major problem since
even for small scenarios the solution space is typically very large.
In this paper we analyze requirements from mission-critical BPs
in the Air Traffic Management (ATM) domain and introduce an
approach for semi-automatic semantic matchmaking for SSs, the
“System-Wide Information Sharing” (SWIS) BP integration
framework. A tool-supported semantic matchmaking process
like SWIS can provide system designers and integrators with a
set of promising SSs candidates and therefore strongly reduces
the human matching effort by focusing on a much smaller space
of matchmaking candidates. We evaluate the feasibility of the
SWIS approach in an industry use case from the ATM domain.

I. INTRODUCTION

Safety-critical systems and business processes, e.g., in the
Air Traffic Management (ATM) domain, have to become
more flexible to implement changes due to new business envi-
ronments (e.g., mergers and acquisitions), new standards and
regulations. A promising approach follows the service-
oriented architecture (SOA) paradigm that builds flexible new
systems for business processes (BPs) based on a set of soft-
ware services (SSs) provided by system nodes in a network. A
key design challenge is the matchmaking of BPs and SSs, i.e.,
finding the SSs that a) best meet the requirements of the BPs
under consideration and b) can be implemented with the
available network capabilities. The solution space is typically
large even for small problems and a general semantic solution
to enable comprehensive tool support seems infeasible.

To provide a SOA solution for a set of BPs, meaning to
identify suitable SSs for BPs, designers and system integrators
need to overcome 3 integration challenges that build on each
other:

1. Technical integration connects networked systems that
use heterogeneous technologies, i.e., different protocols, op-
erational platforms, etc. Current technical integration ap-
proaches like Enterprise Service Bus (ESB) [2] or Service
Oriented Architecture (SOA) [14] need manual configuration
on the technical detail level and tool support is typically fo-
cused on a single technology or vendor.

2. Semantic integration translates data content and format
between systems that use heterogeneous semantics, i.e., dif-
ferent terminologies for service names, data formats, etc. For

semantic integration, there is no standard or framework avail-
able, making the semantic transformations between multiple
services inefficient and expensive.

3. Business process support builds on technically and se-
mantically integrated systems that provide SSs the BP needs
to fulfil its goal. The system integrator has to select SSs that
really match the requirements of the BP, and check whether
the infrastructure capabilities can support the communication
requirements of the chosen solution.

Large BP and SS integration networks consist of hundreds
of integration nodes; changes of SS properties and network
capabilities make the correct and efficient identification of
feasible BP and SS pairs a recurring complex and error-prone
task. Current service matchmaking approaches focus on either
technical or semantic integration issues [20], while business
process support is, to our knowledge, missing. Tool support
for matchmaking of BPs and SSs need to make the require-
ments of BPs and SSs as well as the capabilities of SSs and
the underlying infrastructure understandable for machines.

In previous work, we introduced a systems integration ap-
proach, the “system-wide information sharing” (SWIS) ap-
proach. The SWIS framework explicitly models the semantics
of integration requirements and capabilities in machine-
understandable form (semantic integration) [17]; and the con-
nectors and transformations between heterogeneous legacy
systems (technical integration) to simplify systems integration
(business process support) [16].

In this paper, we describe the semantic matchmaking of
BPs and SSs and the optimization of the integration solution
with respect to available network capabilities. Semantic mat-
chmaking uses the machine-understandable SWIS models to
describe BP and SS requirements and SS and network capabil-
ities to derive 2 results: 1. Provide sets of possible SSs for
each BP; 2. Optimize the set of selected SSs with multiple
objectives (e.g., costs, delay) while observing the capabilities
of the underlying network infrastructure, a variation of the
knapsack problem [11]. We evaluate the feasibility of the
SWIS approach in a use case from the ATM domain.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes related work, Section 3 motivates the re-
search issues, while Section 4 describes the use case. Section
5 elaborates the semantic service matchmaking approach and
the optimization of the integration solution. Section 6 evalu-
ates the approach and Section 7discusses the results with re-
gard to the research issues. Finally, Section 8 concludes and
identifies further work.

222

II. RELATED WORK

This section summarizes related work on technical integra-
tion, semantic integration with semantic web services, and
service matchmaking with multi-objective optimization.

A. Technical Integration
Technical system integration is the task to combine net-

worked systems that use heterogeneous technologies to appear
as one big system. There are several levels at which system
integration could be performed [1], but there is so far no stan-
dardized integration process that explains how to integrate
systems in general.

The need for integration over heterogeneous middleware
technologies with different APIs, transportation capabilities,
or network architecture styles implies either solutions like
ESB [2] and SOA [14] or the development of static and there-
fore inflexible wrappers between each combination of mid-
dleware technologies, and thus increases the complexity of
communication.

B. Semantic Integration with Semantic Web Services
Semantic integration is solving problems originating from

the intent to share data across disparate and semantically het-
erogeneous data sources [6]. These problems include the
matching of ontologies or schemas, the detection of duplicate
entries, the reconciliation of inconsistencies, and the model-
ling of complex relations in different sources [18]. One of the
most important and most actively studied problems in seman-
tic integration is establishing semantic correspondences (or
mappings) between vocabularies of different data sources. [3]

The use of ontologies as a solution option to semantic inte-
gration and interoperability problems has been studied over
the last 10 years. Ontologies promise to provide machine-
understandable representation of knowledge, while allowing
the mapping between certain facts as well as the derivation of
new facts using reasoning approaches based on the modeled
knowledge [21]. In a general domain, semantic integration has
shown to be very hard if not unsolvable. However, in a specia-
lized domain, like the ATM domain, semantic integration
seems doable. Noy [18] identified three major dimensions of
the application of ontologies for supporting semantic integra-
tion: the task of finding mappings (semi-)automatically, the
declarative formal representation of these mappings, and rea-
soning using these mappings.

In SOA the promise of Web Services and the need for
widely accepted standards enabling them are by now well
recognized [7]. At the same time, recognition is growing of
the need for richer semantic specifications of Web Services,
so as to enable fuller, more flexible automation of service
provision and use, support the construction of more powerful
tools and methodologies, and promote the use of semantically
well-founded reasoning about services. Furthermore, richer
semantics can help to provide fuller automation of activities as
verification, simulation, configuration, supply chain manage-
ment, contracting, and negotiation of services. [12]

To meet this need, researchers have been developing lan-
guages, architectures and related approaches for so called Se-

mantic Web services [13]. The Ontology Web Language for
Services (OWL-S), which seeks to provide the building blocks
for encoding rich semantic service descriptions in a way that
builds naturally upon the Web Ontology Language (OWL),
supplies Web Service providers with a core set of markup
language constructs for describing the properties and capabili-
ties of their Web Services in unambiguous, computer-
interpretable form [4].. WSDL-S [15] is another approach for
annotating current Web Service standards with semantic de-
scriptions. The Web Service Modeling Ontology (WSMO)
[10] is a framework for Semantic Web Services which defines
a rich conceptual model for the development and the descrip-
tion of Web Services based on two main requirements: max-
imal decoupling and strong mediation.

All three approaches, OWL-S, WSDL-S and WSMO, pro-
vide mechanism for semantically describing Web Services,
with the major goal of allowing generic description of service
functionality as well adding semantics to general service de-
scriptions like provided/consumed messages or service bind-
ings. This ambitious goal seems very useful for generic ser-
vice descriptions; however its usage is limited in specific do-
mains like in the ATM domain, since too specific features
would complicate a generic approach too much. Therefore, we
defined our own ontology-based architecture for describing
the properties and features of the ATM services [17].

C. Service Matchmaking Approaches
Semantic matchmaking can be seen as major feature of se-

mantic integration which supports designers and system inte-
grators by providing sets of possible integration partners re-
garding both structural and semantic attributes. However, the
relevant semantic concepts are hard to define unambiguously
for general domains, thus the focus on a well-defined domain
like ATM provides semantic clarity.

Kolovski et al. [8] provide a mapping of WS-Policy to
OWL. WS-Policy provides a general purpose model and syn-
tax to describe the policies of a Web service. It specifies a
base set of constructs that can be used and extended by other
Web service specifications to describe a broad range of ser-
vice requirements and capabilities. The main advantage of
representing Web Service policies using OWL is that OWL is
much more expressive than WS-Policy and thus provides a
framework for exploring richer policy languages. Verma et al.
[20] present an approach for matching the non-functional
properties of Web Services represented using WS-Policy.
Oldham et al. [19] present a framework for the matching of
providers and consumers based on WS-Agreements. The WS-
Agreement specification defines a language and protocol for
capturing relationships with agreements between two parties.

Both WS-Policy and WS-Agreement define a generic
framework for the representation of standard Web Service
policies, however both frameworks seem too generic to be
effectively used in a concrete scenario from a specialized do-
main like the ATM domain is. Therefore, we used the concept
of describing Service policies using a knowledge representa-
tion language like OWL, but defined our own extendable poli-
cy representation language which is better suitable for the
ATM domain [17].

223

III. RESEARCH ISSUES

Recent projects with industry partners from the ATM do-
main raised the need for semi-automated BP integration sup-
port in technology-driven integration environments. Recently,
we developed a data-driven approach [16] that explicitly mod-
els the semantics of the problem space, i.e., BP integration
requirements and network infrastructure capabilities [17]; the
solution space, i.e., the connectors, and data transformations
between SSs. Finally, we provide a process to bridge problem
and solution spaces, i.e., identify feasible BP and SSs pairs
while fulfilling business requirements and optimizing the cho-
sen integration solution according to multiple objectives.

Figure 1 provides an overview on the integration layers,
data flows between the integration layers, and the steps of the
semantic service matchmaking process: SM1: For each BP,
identify the suitable SSs sets, which fulfil all BP service and
data requirements. From these possible BP and SSs sets, the
system integrators choose the most promising sets, the so-
called collaboration sets. SM2: The selected collaboration sets
are then optimized regarding the original infrastructure re-
quirements of both the business BPs and the SSs, as well as
the available limited capabilities of the infrastructure’s nodes
and links. The outcome of SM2 is an optimized configuration
of the integration solution, consisting of the selected collabo-
ration sets as well as their grounding to the underlying integra-
tion network infrastructure.

Figure 1: Semantic Service Matchmaking Process Steps.

Based on this, we derive the following research issues:
RI-1: Semantic Matchmaking of SS candidates for one

BP (SM1). Provide machine-understandable descriptions for
BP and SSs requirements as well as SS and network capabili-
ties to provide tool support for SM1 to make the search space
reduction effective (low number of false negatives and false

positives) and efficient (less human effort required) compared
to the current human-based approach.

RI-2: Resource Feasibility Check and Optimization for
all Collaborations (SM2). Provide a framework to enable a)
checking the validity of a set of BPs and SSs with the infra-
structure capability constraints and b) ranking valid solutions
by multiple optimization criteria like network cost and service
delay.

IV. ATM SCENARIO DESCRIPTION

This section describes the integration scenario from the
ATM domain used throughout this paper. The ATM use case
(Figure 1) represents information that is typically extracted
from customers/participants in workshops on requirements
and capabilities elicitation for information systems in the avia-
tion domain. In safety-critical domains like ATM BP integra-
tion solutions have to pass certifications before deployment,
which typical dynamic SOA solutions [2, 14] cannot fulfil
regarding the current rigid integration network in the ATM
domain designed to guarantee integration requirements even
in case of partial failure.

In the ATM domain semantic matchmaking is an effort for
scarce human experts who have to cope with a huge search
space and often miss better solutions due to their simple heu-
ristic search strategies. Tool-supported semantic matchmaking
provides designers and system integrators with a set of prom-
ising integration partner candidates and therefore strongly
reduces the human matching effort by focusing on a much
smaller space of feasible matchmaking candidates that can be
rated according to relevant optimization criteria.

Figure 2: A Typical ATM Domain Integration Network.

As shown in Figure 2, the integration network consists of
business services connected to integration network nodes.
Between these nodes, there may exist different kinds of net-
work links using different transmission technologies (e.g.,
radio or wired transmission) as well as different middleware
technologies for communication purposes. The capabilities of
nodes and links, like throughput, availability, reliability, or
security are explicitly modelled in order to be capable of se-
lecting suitable communication paths for particular service
requirements, e.g., the communication link between the red
ATMIS Node and the red Node 12 represents a reliable and
secured communication path which may be requested by e.g.,
the ATMIS business service.

224

V. SEMANTIC SERVICE MATCHMAKING

This section describes the semantic service matchmaking
approach as well as the multi-objective optimization of the
chosen integration services candidates.

A. Identification of Possible Collaboration Candidate Sets
The identification of possible collaboration candidate sets is

implemented as a heuristic algorithm. Step by step, the possi-
ble collaboration candidate sets are reduced by applying the
rules described to the possible collaboration candidate sets.
The heuristic rules that are applied during the source/sink
matching are described in the following paragraphs.

Message mapping. During the description of the SS mes-
sages, each SS message segment was mapped to a domain
concept, which has been specified in the common domain
ontology. Therefore, for all segments of the message required
by a certain BP, it is searched for messages of the SSs that
contain segments, which are mapped to the same domain con-
cept, and if possible, to the same message format.

Service Policies. In addition, SSs can define requirements
(policies) regarding preferred or unwanted SS partners, as
well as other non-functional requirements, e.g., QoS require-
ments regarding the underlying integration network. A policy
is a restriction or a condition for a single collaboration or a set
of collaborations, in order to allow the communication via the
underlying integration network. In SWIS-based applications,
there are two kinds of policies. On the one hand, there are
policies which are valid for all collaborations. They specify
global conditions that need to be fulfilled by all collaborations,
e.g., a maximum time for the delivery of messages. On the
other hand, there are policies which are required only for a
specific subset of collaborations. These policies specify condi-
tions that need to be fulfilled by the collaborations containing
particular SSs, e.g., the communication has to use only secure
links, or only a specified set of other SSs is allowed to partici-
pate in the collaboration. The SS policies that regard other SSs
are evaluated by checking whether the attributes and tags of
every SS of the particular collaboration candidate meet the
service policies defined by the BP.

Format Translation. If a message segment is mapped to
the same domain concept as the required message segment,
but the formats of the two segments differ, check whether
there is a converter defined for the two formats. A converter is
used to convert the format of message segments from one ba-
sic data type to a different one. An explicit identifier is de-
fined to allow the search for the converter at runtime (e.g., by
using Java Reflection).

External Service Transformation. If the message segments
differ in the domain concept they are mapped to, check if a
service exists that consumes a segment mapped to the same
domain concept as the segment of the message of the SS and
provides a message with a segment mapped to the same do-
main concept of the segment of the message of the BP.

Route Deduction. As last rule it is checked whether there is
an existing route between the nodes connecting the SSs and
the node connecting the BP.

If all the rules mentioned above are successfully applied to
a set of one or more SSs and a BP, then the particular set is
accepted as collaboration candidate. If any of the rules cannot
be met, the particular set is discarded as collaboration candi-
date.

B. Validity-Check and Optimization of Collaborations
Once all collaborations have been specified a Scenario is

derived. A Scenario contains beside all collaborations a speci-
fication detailing how to configure the network infrastructure,
so that the integration solution is optimized according to the
given objectives. In the following the process steps needed to
optimize the scenario is explained.

Preliminary Checks. The process step checks whether
there is at least one single network route for each collabora-
tion satisfying all global and collaboration specific policies. If
this step cannot be completely satisfied the process raises an
exception. The system integrator either updates or removes
the collaborations which cannot be mapped to a network route,
and restart the process step, or adapts the semantic infrastruc-
ture model, by adding additional nodes and links.

Route Derivation. Once it has been verified that each col-
laboration can be mapped to at least one route in the network,
the process step derives every possible route for each collabo-
ration. The only restrictions are that no node is allowed to
appear twice within the same route and all policies have to be
satisfied. The valid ones are retained; the ones violating the
restrictions are removed. At the end of this process step, each
collaboration will have either a single route or a set of valid
routes to choose from.

Creating Scenarios. The processing step combines each
route of each collaboration with each other. This means that a
scenario consists of a set of collaborations where each colla-
boration represents exactly one route. The more scenarios are
created, the higher the probability to find a scenario that is
well suited for achieving the stated optimization objectives.

Evaluation. The process iterates through all scenarios and
calculates their fitness according to the optimization objec-
tives. The fitness of a scenario is the fitness of all its contain-
ing collaborations, and represents the real values (e.g. the time
a message needs and the costs along the chosen route) of the
objectives. The fitness represents the trade-off of the configu-
ration, the routes of each collaboration predetermine. The set
of fitness values is then analyzed according to the Pareto Front
approach [5]. The Pareto Front contains either a single Scena-
rio or a set of Scenarios. In the latter case there may be several
“nearly equivalent” configurations as integration solutions.
Thus, the system integrator has to decide which one to pick
for practical deployment.

Multi-Objective Optimization. We have accomplished the
process of optimizing collaborations by implementing a Java
version of the mPOEMS approach into the SWIS framework.
mPoems is an evolutionary algorithm using the concept of
dominance for multi-objective optimization. The results and
explanations of the approach can be found at [9].

225

VI. EVALUATION

In this section, we evaluate the SWIS framework using a
clear and comprehensible example to show the principles of
our approach.

Figure 3: Service Matchmaking Example.

An example for semantic service matchmaking in the SWIS
framework is shown in Figure 3. There are three services of
provided by legacy systems, two provider services (ATMIS
and SFDP) and one consumer service (PFIP). The consumer
service needs information that can be obtained from the pro-
vider services, i.e. FlightID, Departure, Destination and
FlightStatus. This needed information is provided separately

by the two provider services, so the system has to find the
suitable information that match with the consumer service’s
needs. Additionally, the service ATMIS_TransReqs defines a
policy for the underlying integration network, stating that only
secure network links may be used for the communication.

From the domain knowledge description, we know that
Flight ID is a synonym for Flight Number, that Departure and
Arrival are combinations of the airport code and country code
of departure/arrival, and that the FlightStatus arrived or de-
parted, can be derived by checking the occurrence of either
TimeOfArrival or TimeOfDeparture.

Next, we calculate the network resources needed for send-
ing messages from the SFDP Node to the PFIP Node with
less capacity. From the integration network description, we
can see several nodes connected by links. Each link contains
information regarding source node and target node, support
for secure transmissions and the transmission delay. The
communication between ATMIS to PFIP needs to be done
using secure connections only. There are two possible connec-
tions, either via Node Y or via Node Z. The system will choose
connection via Node Y because it has less delay (6) than con-
nection via Node Z (7).

VII. DISCUSSION

The example shows that even for small problems the solu-
tion space is typically large. However, large BP and SS inte-
gration networks consist of hundreds of integration nodes; and
changes of SS properties and network capabilities make the
correct and efficient identification of feasible BP and SS pairs
a recurring complex and error-prone task. By providing only
sets of feasible/promising service provider and consumer can-
didates, semantic matchmaking supports designers and system
integrators by providing sets of possible integration partners
regarding both structural and semantic attributes. However,
the relevant semantic concepts are hard to define unambi-
guously for general domains, thus the focus on a well-defined
domain like ATM provides semantic clarity.

We used the concept of describing Service policies using a
knowledge representation language like OWL, but defined our
own extendable policy representation language which is better
suitable for the ATM domain. We do not use standardized
Web Service description frameworks because, since the
strengths of Web Service description frameworks lies in the
generality of the approach, however their weakness is that it
may become complicated to describe domain-specific issues.
For specific domains, it may be useful to use the principles of
web service descriptions but tailor them to the domain. Addi-
tionally, we defined our own ontology-based architecture for
describing the properties and features of the ATM services.

We have developed a data-driven approach [16] that explic-
itly models the semantics of the problem space, i.e., BP inte-
gration requirements and network infrastructure capabilities
[17]; the solution space, i.e., the connectors, and data trans-
formations between SSs. In this paper, we described a process
to bridge problem and solution spaces, i.e., identify feasible
BP and SSs pairs while fulfilling business requirements and
optimizing the chosen integration solution according to multi-

226

ple objectives. In order to evaluate the proposed process, we
have derived two major research issues that will be discussed
in the following paragraphs.

Semantic Matchmaking of SS candidates for one BP.
Current service matchmaking approaches focus on either
technical or semantic integration issues [20], while business
process support is, to our knowledge, missing. In the SWIS
framework, we presented a combined service matchmaking
approach that performs matching based on the data of the ser-
vices and available service policies regarding other services.
The SWIS framework’s semantic service matchmaking en-
ables an effective search space reduction and poses lower risk
and effort compared to the current human-based approaches.

Resource Feasibility Check and Optimization for all
Collaborations. The optimization process steps allow using
existing resources efficiently. Out of all possible collabora-
tions for a single business process which are creatable by
means of the proposed semantic matchmaking approach, only
those are desirable to be deployed in the integration solution
which fulfills certain criteria. Those criteria are set up by the
integration expert so that existing collaborations use the un-
derlying integration network infrastructure with its limited
resources as efficient as possible.

VIII. CONCLUSION AND FURTHER WORK

In this paper we presented an approach for semi-automatic
semantic matchmaking for software services (SSs), the “Sys-
tem-Wide Information Sharing” (SWIS) Business Process (BP)
integration framework. The SWIS BP integration frameworks
uses the machine-understandable SWIS models to describe BP
and SS requirements as well as SS and network capabilities to
provide sets of possible SSs for each BP. Out of these possible
sets, the system integrators choose the wanted sets. These
wanted sets are then optimized with multiple objectives (e.g.,
costs, delay) while observing the capabilities of the underlying
network infrastructure.

We evaluated the feasibility of the SWIS approach in an
industry use case from the ATM domain. The example shows
that even for small problems the solution space is typically
large, and even bigger for large BP and SS integration net-
works consisting of hundreds of integration nodes. A tool-
supported semantic matchmaking process like SWIS can pro-
vide system designers and integrators with a set of promising
SSs candidates and therefore strongly reduces the human
matching effort by focusing on a much smaller space of mat-
chmaking candidates.

Further Work. Further work will include a detailed de-
scription of the semantic design to translate between matched
services and an evaluation measuring the effectiveness and
efficiency of deriving the semantic transformation with tool-
support compared to a manual approach.

ACKNOWLEDGMENT

The authors would like to acknowledge all project members
of the SWIS (System-Wide Information Sharing) project per-
formed from 2006-2008 at Vienna University of Technology
together with Frequentis AG and Austro Control GmbH.

REFERENCES

[1] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema, “Developing Applications Using Model-Driven Design
Environments,” COMPUTER, 2006, pp. 33-40.
[2] D.A. Chappel, Enterprise Service Bus, O'Reilly Media, 2004.
[3] A. Doan, N.F. Noy, and A.Y. Halevy, “Introduction to the special
issue on semantic integration,” SIGMOD Rec., vol. 33, no. 4, 2004,
pp. 11-13.
[4] J. Dong, Y. Sun, and S. Yang, “OWL-S Ontology Framework
Extension for Dynamic Web Service Composition,” 18th Intl Conf
on SE & Knowledge Engineering (SEKE'2006), 2006, pp. 544-549.
[5] M. Ehrgott, Multicriteria Optimization, Springer, 2005.
[6] A. Halevy, “Why your data won't mix,” Queue, vol. 3, no. 8,
2005, pp. 50-58.
[7] S. Herr, K. Läufer, J. Shafaee, G.K. Thiruvathukal, and G. Wirtz,
“Combining SOA and BPM Technologies for Cross-System Process
Automation,” 20th Intl Conf on SE & Knowledge Engineering
(SEKE'2008), 2008, pp. 339-344.
[8] V. Kolovski, B. Parsia, Y. Katz, and J. Hendler, “Representing
Web Service Policies in OWL-DL,” 4th International Semantic Web
Conference (ISWC 2005), Springer, 2005, pp. 461-475.
[9] J. Kubalík, R. Mordinyi, and S. Biffl, “Multiobjective Prototype
Optimization with Evolved Improvement Steps,” Evolutionary Com-
putation in Combinatorial Optimization, 2008.
[10] H. Lausen, A. Polleres, and D. Roman, “Web Service Modeling
Ontology (WSMO),” W3C Member Submission, vol. 3, 2005.
[11] S. Martello, and P. Toth, Knapsack problems: algorithms and
computer implementations, John Wiley & Sons, 1990.
[12] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDer-
mott, D. McGuinness, B. Parsia, T. Payne, M. Sabou, and M. Solanki,
“Bringing Semantics to Web Services: The OWL-S Approach,” First
International Workshop on Semantic Web Services and Web Process
Composition, Springer, 2005, pp. 26-42.
[13] S.A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web Ser-
vices,” IEEE INTEL. SYSTEMS, vol. 16, no. 2, 2001, pp. 46-53.
[14] P.P. Mike, and H. Willem-Jan, “Service oriented architectures:
approaches, technologies and research issues,” The VLDB Journal,
vol. 16, no. 3, 2007, pp. 389-415.
[15] J. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, and
K. Sivashanmugam, “WSDL-S: Adding Semantics to WSDL-White
Paper,” 2004.
[16] T. Moser, R. Mordinyi, A. Mikula, and S. Biffl, “Efficient Sys-
tem Integration Using Semantic Requirements and Capability Mod-
els: An approach for integrating heterogeneous Business Services,”
11th International Conference on Enterprise Information Systems
(ICEIS 2009), 2009, accepted for publication.
[17] T. Moser, R. Mordinyi, A. Mikula, and S. Biffl, “Making Expert
Knowledge Explicit to Facilitate Tool Support for Integrating Com-
plex Information Systems in the ATM Domain,” International Con-
ference on Complex, Intelligent and Software Intensive Systems
(CISIS 2009), 2009, accepted for publication.
[18] N.F. Noy, “Semantic integration: a survey of ontology-based
approaches,” SIGMOD Rec., vol. 33, no. 4, 2004, pp. 65-70.
[19] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour, “Semantic
WS-agreement partner selection,” 15th International World Wide
Web Conference, ACM, 2006, pp. 697-706.
[20] K. Verma, R. Akkiraju, and R. Goodwin, “Semantic Matching
of Web Service Policies,” 2nd International Workshop on Semantic
and Dynamic Web Process (SDWP 2005), 2005.
[21] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schus-
ter, H. Neumann, and S. Hübner, “Ontology-based integration of
information-a survey of existing approaches,” Workshop on Ontolo-
gies and Information Sharing (IJCAI-01), 2001, pp. 108-117.

227

Ontology Mapping Representations:
a Pragmatic Evaluation

Hendrik Thomas, Declan O’Sullivan and Rob Brennan
Knowledge & Data Engineering Group, School of Computer Science and Statistics, Trinity College Dublin, Ireland

Email: {Hendrik.Thomas, Declan.OSullivan , Rob.Brennan}@cs.tcd.ie

Abstract— A common approach to mitigate the effects of ontol-
ogy heterogeneity is to discover and express the specific corre-
spondences (mappings) between different ontologies. An open
research question is: how should such ontology mappings be
represented? In recent years several proposals for an ontology
mapping representation have been published, but as yet no for-
mat is officially standardised or generally accepted in the com-
munity. In this paper we will present the results of a systematic
analysis of ontology mapping representations to provide a
pragmatic state of the art overview of their characteristics. In
particular we are interested how current ontology mapping
representations can support the management of ontology map-
pings (sharing, re-use, alteration) as well as how suitable they
are for different mapping tasks.

I. INTRODUCTION

Ontologies are an important component for implemen-
tation of the semantic web vision [1]. The promise of on-
tologies is to enable the sharing of a common understand-
ing of a domain that can be flexibly communicated be-
tween users and applications [2,3]. However, the actual
conceptualisation of a domain and the subsequent explica-
tion in an ontology language is a very heterogeneous
process [4]. For example conceptual heterogeneity arises
due to the natural human diversity involved in modelling a
domain [5], e.g. two ontologies could differ because they
provide a more (or less) detailed description or could re-
flect different viewpoints of the same domain. These dif-
ferent levels of heterogeneities [6] are major obstacles to
the promise of interoperability based on ontologies [7].

A common approach to mitigate the effect of heteroge-
neity is to discover the specific correspondences between
the different ontologies and to document these correspon-
dences using an appropriate ontology mapping expression
[8,9]. We define ontology mapping as the task of relating
the vocabulary of two ontologies sharing a domain in such
a way that the structure of ontological signatures and their
intended interpretations are respected [10].

One aspect, which is still open to discussion, is: how
should ontology mappings be represented [6,8,11]? In this
paper we define an ontology mapping representation as an
explicit specification of the correspondence between on-
tologies to improve their interoperability. In recent years
several proposals and recommendations for such an ontol-
ogy mapping representation have been published but as
yet no representation specific format is standardised or
even generally accepted in the semantic web community
[8,12]. Thus an ontology engineer, when confronted with
the need to merge or align multiple ontologies has a
choice between multiple currently available ontology
mapping representations, each with their individual
strengths and weaknesses for a specific mapping task.

Publications focusing on representations of ontology
mapping are relatively rare compared to the huge number
focusing on other related questions for matching and
mapping, e.g. matching algorithms to identify mapping
candidates [13]. However, some previous studies on on-
tology matching and mapping systems provide some in-
sight [10,11,12]. Most of these previous evaluations focus
primarily on the technical capabilities of matching and
mapping tools [12,14] and less on applicability of map-
pings representations [6]. In addition, only sparse informa-
tion has been published on the support of reusability and
management of mappings, e.g. specification of supporting
meta-data [11]. Finally, the evaluation processes and crite-
ria sets used in previous work have been quite heteroge-
neous which makes it difficult to identify trends and im-
provements over time. In summary, a detailed evaluation
framework as well as a comprehensive and up-to-date
evaluation focusing on the capabilities of current ontology
mapping representations is currently missing.

In this paper we present the results of a systematic
analysis of ontology mapping representations to provide a
pragmatic state of the art overview of their characteristics.
In particular we are interested how the ontology mapping
representations can support the management of ontology
mappings (sharing, re-use, alteration) as well as how suit-
able they are for different mapping tasks. The results of
this evaluation will be of interest for understanding ontol-
ogy mapping interoperability issues and will also support
ontology engineers in choosing the most suitable mapping
representation for their application.

II. EVALUATION FRAMEWORK

A. Methodology

To derive metrics for an evaluation of mapping repre-
sentations we apply the Goal Question Metric (GQM)
method as a tried and tested method for a structured and
replicable evaluation of software products [15]. GQM
provides a hierarchical structured procedure starting with
goals for each relevant evaluation dimension [15]. Each
goal is refined into several questions to break down the
issue to characterize the object of measurement. Each
question is then refined into metrics (objective, subjective)
in order to answer it in a quantitative way. The result of
the application of the GQM method is a replicable and
detailed specification of a measurement system targeting a
particular set of relevant issues [15]. In the following sub-
sections we give a brief introduction to our evaluation
framework for ontology mapping representations derived
using the GTM method. The framework reflects our
evaluation focus on management and applicability of on-
tology mapping representations. A detailed description of
the framework can be found in [16].

228

B. Evaluation Goals, Questions and Metrics

Turning to the literature of ontology mappings it can be
observed that instances of mapping relations can be quite
heterogeneous, ranging from simple equivalence relations
or mathematical conversions to complex structural map-
pings [5,11,12]. Therefore one of the fundamental goals of
ontology mapping representations is (G1) the ability to
express a mapping relation. Relevant for this goal are the
ontology elements which can be addressed as well as the
different kinds of mapping relation types which are sup-
ported. In addition we need to consider the supported op-
erators and functions for the expression of conversion and
structural mappings. Table I gives an overview of all de-
duced criteria for this goal [16].

TABLE I GOAL 1: ABILITY TO EXPRESS A MAPPING RELATION
Criteria Type Examples

Question 1: Which kind of ontology elements can be addressed?
Single ontology element yes|no OWL class, property
Ontology fragment yes|no SELECT ?x WHERE {?x ?y ?z}
Ontology as a whole yes|no http://kdeg.org/nembes.owl
Question 2: Which relations types are predefined?
Count of predefined types 0..X 3
List of predefined types list equivalence, subsumption
Extensibility yes|no add a “neighbor” relation
Question 3: Which function for conversion mappings are supported?
Numerical function yes|no add, subtract, multiply
String functions yes|no delete leading white spaces
Date functions yes|no 2006/12/31 to 31/12/2006
Question 4: Which function for structural mappings are supported?
Add / remove classes yes|no remove class town
Add / remove instances yes|no add instance Dublin
Add remove relation yes|no add Dublin is-part-of Ireland
Add remove attributes yes|no remove a variant name

The second aspect is that (G2) ontology mapping repre-
sentation should be computationally efficient to process
[7,11] in order to support the pragmatic concerns of im-
plementing ontology interoperability solutions. Table II
gives an overview of all deducted criteria for this goal.

TABLE II GOAL 2: COMPUTATIONALLY EFFICIENT TO PROCESS

Criteria Type Examples
Question 1: How is the compatibility of the representation?
Implementation independent yes|no MAFRA format
Syntax yes|no XML, RDF, OWL
Question 1: Which tool support the mapping representation?
Creation & editing tools List Ontology Alignment API
Sharing tools List CVS
Management tools List COMA++
Mapping visualization tools List MAFRA

Besides these aspects we need to consider that the con-
struction of a specific ontology mapping can be complex
and time-consuming [12]. Instead of creating the same or
similar mappings repeatedly it is important to have a goal
(G3) to enable sharing and reuse of existing mappings to
reduce the effort involved in the creation of mappings
[7,8]. To decide if an ontology mapping can be reused, it
is essential to understand how the mapping was created.
An analysis of the life cycle of an ontology mapping [7] is
helpful for identification of relevant decisions and infor-
mation, e.g. which matching algorithms have been used
[8,18]. Meta-data documenting this lifecycle is needed to
facilitate sharing and reuse of mappings. An ontology
mapping representation should provide suitable place-
holders to make this information retrievable in a structured
and predictable way. Previously we have defined a map-
ping lifecycle [8] and based on that we identified meta-
data to document the source and target ontologies, the
matching phase to identify mapping candidates, the map-

ping phase as well as the management phase. Table III
gives an overview of all deduced criteria for this goal.

TABLE III GOAL 3: SHARING & REUSING OF EXISTING MAPPINGS

Criteria Type Examples
Question 1: How are the sources and target ontologies documented?
Ontology identifiers yes|no string based matcher
Version information yes|no ontology version 1.5.4.
Ontology format(s) yes|no OWL lite, RDF(s)
Canonical format yes|no XML schema [8]
Terms used yes|no link to relevant thesauri
Ontology measures yes|no count of classes
Question 2: How is the matching phase documented?
Matching policies applied yes|no policy of organization A
Matching creation type yes|no automated or manual
Info on manual matching yes|no link to documentation
Identify used matcher yes|no model based matcher
Matcher configuration yes|no parameter
Matcher type yes|no linguistic based matcher
Question 2: How is the mapping phase documented?
Matching policies applied yes|no policy of organization A
Used pre-validated mappings yes|no A;creator = B;author
Mapping context yes|no specification of use-cases
Confidence level yes|no 5 of 10
Mapping strategy yes|no OISIN framework [8]
Question 3: How is the management phase documented?
Distribution system yes|no peer-to-peer network
Version information yes|no map version 1.2.3
Format information yes|no INRIA 1.0
Conflict/consistency check yes|no conflict mapA vs. mapB
Author information yes|no Hendrik Thomas
Date of creation yes|no 19.12.2008 17:00
Authority for changes yes|no see http://onto.authority.ie
Dependencies yes|no mapping A depends on B
Change propagation yes|no newsgroups announcement
Question 4: How is the interpretation of the meta-data supported?
URI to identify entities yes|no http://cs.tcd.ie/onto/fname
Human-readable labels yes|no first Name
Documentation of meta data List source code, publications
Documentation URI yes|no http://cs.tcd.ie/onto/docu
Ontology identifiers yes|no URL of ontology source

Another relevant issue for this evaluation framework is:
which ontology mapping representations should be in-
cluded in the evaluation? Currently there are several non-
ontology based (e.g. Text, XML) and ontology based (e.g.
RDF, OWL [1]) languages used to express mappings [7].
The problem is that there is no consistent usage of these
languages or formats. In fact, many mapping tools use the
same languages to express mapping results (e.g. RDF is
very common) but in different ways and as a consequence
they support different functions and operators to express
mappings [7,8]. From a pragmatic point of view it is
therefore not enough to evaluate a representation language
like OWL in isolation. In fact, it is important to under-
stand which specific instances of ontology mapping repre-
sentations are supported by the individual mapping tools.

III. EVALUATION RESULTS

In this evaluation we analyzed 13 different mapping
and matching applications (see appendix for a complete
list). The selection include historically relevant and estab-
lished tools but also examples of up-to-date matching ap-
plications [24]. For each of the 22 supported ontology
mapping representation instances, 31 different evaluation
parameters were determined. The evaluation was con-
ducted in early 2009 by the authors in the Knowledge and
Data Engineering Group, Trinity College (Dublin). The
complete evaluation results are available online at:
https://www.cs.tcd.ie/~thomash/mapping_eva/results.php

229

A. Results for G1 Ability to Express a Mapping Relation

The first aspect we analyzed in our evaluation was the
expressiveness of the application in terms of which opera-
tors and functions are supported to express mappings. We
noticed that all analysed tools are limited to addressing
individual ontology elements as subjects of mappings
(Q1). Thus none of the evaluated applications is able to
address ontology fragments which is quite odd because
mappings of complex statements need to consider more
than one concept and could easily be addressed with cur-
rent querying languages (e.g. SPARQL) [7]. Considering
the support for mapping correspondences, we ask which
predefined types are supported (Q2). Our data showed that
majority of analysed applications (61%) support only the
equivalence relation. Other popular mapping types are
subsumption and incompatible. The majority of applica-
tions (> 64%) don’t support the extensibility of pre-
defined mapping types (Q3). Only analyzed APIs (e.g.
FOAM [25], Alignment API [26]) could (at least theoreti-
cally) be extended to support other mapping types. How-
ever, that isn’t a flexible and user-friendly approach. An-
other aspect is the support of functions to express complex
mapping. Our data showed that no mapping instance sup-
ports conversion functions (G3), e.g. numerical, string or
date. An exception is RIMOM [27], which support basic
numerical functions to manipulate attributes, e.g. <user>
#addr+#zip=#ci</user>. Also most representation in-
stances (> 76%) don’t support functions for structural re-
arrangements. Only MAFRA [18], OMT, RIMOM [27]
support adding of instances and attributes. Overall com-
plex mappings can not be represented with the analyzed
tools. Please note that Alignment API provides an export
in XSLT, which supports complex transformations but in
the current version none are supported.

B. Results of G2: Computationally Efficient to Process

On examination of the compatibility of the ontology
mapping representation (Q1) we note that 68 % of the
representations are implementation independent because
they are based on common standard technologies like
XML or RDF. Only 27 % of the applications use a pro-
prietary format (text files) . The majority of representa-
tions (> 36.5 %) are based on RDF. In particular 5 of these
8 mapping representation instances are based n the RDF
based INRIA format [26]. This shows that INRIA is still
not a de-facto standard but a most popular method for
representing mappings. However, this popularity is sup-
ported by the fact that the Ontology Alignment Contest
demands that all results are delivers in the INRIA format
[24]. Considering the tool support (Q2), to the best of our
knowledge the majority of mapping representations can
only be edited and visualized in their original tools. The
only exception is the INRIA format which can be proc-
essed by different mapping tools, e.g. Lily, FOAM, Ri-
MOM. Also, as far as we know none of the analyzed ap-
plications provide any sophisticated management or shar-
ing tools for mapping information. One exception is
COMA++ which provides functions for the manipulation
of previous confirmed mapping results, e.g. invert domain
or difference analysis [19]. Also worth mentioning is the
OMT which supports the automatic testing of mappings to
ensure that a given set of source instances translate into
the expected set of target instances. However, many tools
are based on standard languages like XML or RDF and
these can be processed by other common applications.

C. Results of G3: Enable Sharing and Reuse of Existing
Mappings

The third goal analyzed was: how mapping representa-
tions instances support the sharing and reuse of previous
mappings [7,8]. In particular we analyzed how the ontol-
ogy mapping life cycle is documented. The first question
was: what meta-data is supported to document the source
and target ontologies (Q1). The first finding is that all
mapping representations contain an ontology identifier,
e.g. URI, file paths or labels. This is not surprising be-
cause a basic requirement for any mappings is the ability
to identify the source and target ontology. Furthermore,
none of the analyzed representations provide any informa-
tion on the version of the processed ontologies. This is
quite odd because ontologies can be very dynamic (re-
views, updates) and the validity of mappings must be
checked for any new version of the ontology. For the
processing and especially the applicability of automated
matching algorithms it is important to know the ontology
format. However, only 64 % of the representations pro-
vide such information and in the majority the format can
only be deduced by the file extension. This is ambiguous
because “.owl” could indicate an OWL DL or OWL Full
ontology, e.g. which is essential for a reasoning based
matcher. Only the INRIA format [12] and the XML for-
mat used by OMT explicitly specify the format which is
more appropriate for users and applications. None of the
analyzed mapping representations contained information
on the used canonical format, the terms usage as well as
ontology measurements.

The second question is: how is the mapping phase
documented (Q2)? It is important to understand how
matching candidates were created to decide if a mapping
can be reused. Most applications don’t provide any infor-
mation on the applied matching policies. Only in FOAM
[25], an individual classifier can be defined to model sim-
ple matching policies. Considering information on the
applied type of matcher we must note that only FOAM
explicitly specifies if an automated or manual matching
was applied. This is quite odd given the fundamental dif-
ference between automatic and manual matching relating
to quality and quantity [11,17]. In addition no representa-
tions provided details on the manual matching process
(e.g. who, when) which makes a validation almost impos-
sible. On the other side at least 23 % of the mapping for-
mats specified the applied matching algorithm but com-
monly by a unambiguous labels, e.g. “Value Algorithm”
in Ontobuilder. In common quite different parameters are
used to configure automated matchers [11] and it is sur-
prising that only 9 % of the representations specify the
applied matcher configuration. Also none of the formats
contain information on the specific type of automated
matching algorithm, e.g. string or structure based.

0% 20% 40% 60% 80% 100%

Onto ident.

Onto version

Onto format

Cano format

Terms usage

Onto Measur

Match. policies

Type of matching

Info man. matching

Matcher ident.

Matcher config

Matcher Type

C
ri

te
ri

a

Mapping Representation Instance

Fig. 1. Results for the Documentation of the Source and the Target

Ontologies Phase and the Mapping Phase

230

The next question was: how is the mapping phase
documented in the mapping representation? (Q3). Our
results showed that most mapping representation instances
don’t provide information on applied mapping policies.
Only in MAFRA is it possible to define simple mapping
conditions. In addition, most formats don’t provide infor-
mation on pre-validated user mappings. Only the repre-
sentation used by FOAM provides an explicit link to pre-
validated user mappings. Also no information is available
on the context in which the mapping was created. This is
especially problematic because many decisions made in
the mapping life cycle are based on external factors and
therefore the context is essential for a validation of map-
pings. The majority of representations (59 %) provide a
confidence level for each mapping pair. In common this is
a normalized measure of the strength of the relation pro-
vided by the applied matching methods [11]. However, it
is problematic that no information is available about, how
these individual ratios are calculated and should be inter-
preted. Also the documentation of the applied mapping
strategy is very limited. Only FOAM and RIMOM pro-
vide a placeholder for a mapping strategy.

0% 20% 40% 60% 80% 100%

Q2 Map policies

Q2 pre-vali maps.

Q2 Map
context

Q2 Confi. level

Q2 Map. strategy

C
ri

te
ri

a

Mapping Representation Instance

Fig. 2. Results for Q2 Documentation of Mapping Phase

In conclusion we asked: how is the management phase
documented in the mapping representation? (Q4). None of
the analyzed mapping representations provided any in-
formation on the distribution system and therefore it is
difficult to find the newest version of the mappings. Also
no information on the version of the mapping itself is pro-
vided as well as no information on possible conflicts.
Really surprising was that no representation contained
information on the author or the date of creation. The only
exception is RIMOM which at least stores a creation date
but it is unclear how the value should be interpreted. To
know which specific mapping format used is essential for
processing, but only 50 % of the mapping representations
instances explicitly specify their format. In addition none
of the formats provide any information on the authority
for changes, relevant dependencies or the method for
change propagation. Overall this is a major problem be-
cause it makes the management and sharing of mappings
over time or in a different context challenging especially if
the source and target ontologies evolve over time. As a
result, current mapping phase relies on external change
management and consistency systems.

0% 20% 40% 60% 80% 100%

Distri.sys

Map. Version

Map format

Conf lict

Author

Date of creation

Change auhority

Dependencies

Change propagation

C
ri

te
ri

a

Mapping Representation Instances

Fig. 3. Results for Q3 Documentation of Management Phase

The last question was: how is the interpretation of the
meta-data supported? (Q4). Our data showed that the ma-
jority of representations (> 73%) use URIs to identify
elements in the mapping representation. However, URIs
are commonly established but they are not consistently
used in all implementations. Thus not always an unambi-
guous identification is provided, e.g. only 68 % of the
source and target ontologies are identified by a URI, the
rest only by file paths and simple labels. In addition, in all
mapping representations human-readable labels can be
found which helps users to interpret the mapping repre-
sentations. However, only 59 % of the applications pro-
vide a documentation which is commonly very rudimen-
tary. Also none of the URI’s refer to a explaining web
resource.

IV. SUMMARY AND FUTURE WORK

In this paper we have presented an evaluation of ontol-
ogy mapping representations. In summary, our evaluation
revealed three insights. Firstly, when the heterogeneity of
mapping use-cases [28] is considered, the level of sup-
ported expressiveness in mapping applications and repre-
sentations is still too low and can not be extended flexibly.
The majority of representations support only equivalence
relation and no complex mappings. This result is not sur-
prising because most applications are designed as match-
ing tools and their main purpose is the identification of
equivalence relations. However, this study is limited to
actual implementations but other more generic and ex-
pressive mapping languages have been designed, e.g. C-
OWL [29]. Such languages may be more powerful but
they are not currently used or supported by tools.

Secondly, our evaluation showed that all phases of the
ontology mapping lifecycle are very poorly documented
and as a result management and reuse of mappings is in-
sufficiently supported by current mapping representations.
The lack of meta-data makes it impossible to identify the
provenance of the mappings, the latest version of the
mappings or the context in which they were created or
used. Also disappointing is the common lack of sufficient
documentation which makes correct and consistent inter-
pretation of the representations difficult or impossible.
Another disadvantage is that currently all meta-data is
stored in single attributes only. However, most meta-data
elements have a complex knowledge structure and a sim-
plified model is not enough for a practical reuse, e.g. an
authors name is not enough to contact him. Recently, so-
phisticated technologies have been evolved to model
complex meta-data, e.g. FOAF for contact details. Such
common and established technologies are currently not
used in mapping representations but could support the
creation of richer knowledge models and interoperability
of lifecycle meta-data.

Thirdly, the evaluation showed that the majority of
mapping representations can be processed efficiently be-
cause they build on standard technologies. RDF is the
most common language to express mappings and the RDF
based INRIA format has the highest chance of establish-
ment as a de facto standard. However, the majority of the
representations can only be reused efficiently in the origi-
nal application which makes reuse in a broader scale chal-
lenging. Hence, ontology mapping representations are still
very limited and heterogeneous in terms of expressiveness
and meta-data support. No standardised ontology mapping
representation has yet emerged or is generally accepted.

231

The reasons for this are the multitude of map-
ping/matching approaches available, e.g. different match-
ing algorithms, matching types etc. Each approach has
unique requirements for mapping representation, simply
because different information and structures need to be
represented to express a correspondence. The design of a
mapping representation which fulfils all those require-
ments might be too complex or could lead to a format
which represents only the smallest common denominator.
For example INRIA is generic but, compared to proprie-
tary formats (e.g. FOAM) less detailed. Multiple mapping
representations may be unavoidable because for different
mapping scenarios, different representations of the map-
ping correlations are suitable. In contrast, meta-data which
documents the mapping lifecycle is more uniform and for
most correlation representations are available. As a result
we propose that it is more beneficial to develop the con-
cept of a flexible enrichment of existing and future ontol-
ogy mapping representations in order to augment their
usage, reuse and management. In particular, in an ontol-
ogy based meta-layer a common vocabulary for modelling
life-cycle meta-data could be established and linked to the
individual formats representing mapping correlations [20].
Established mapping formats and tools don’t need to be
changed but available meta-data can still be stored and
retrieved in a structured, documented and predictable way.

In conclusion, the remarkable efforts to support the
creation of ontology mappings are just the first step. Fur-
ther research is needed to develop more powerful concepts
for the management, sharing and reuse of ontology map-
pings to even begin to support the flexible communication
of a common understanding of a domain at a scale large
enough to control the overall information glut [1].

ACKNOWLEDGEMENTS
This work is partially funded through the Science Founda-
tion Ireland FAME project (award No. 08/SRC/I1408).

REFERENCES
[1] Antoniou, G., van Harmelen, F., A Semantic Web Primer (Co-

operative Information Systems),The MIT Press, 2004.
[2] Gruber, T. A, Transistional Approach to Portable Ontology Speci-

fications, Knowledge Acquisition, 5, pp. 199-220, 1993.
[3] Fensel, D., Ontologies Silver Bullet for Knowledge Management

and Electronic Commerce, 2nd edition, Berlin, 2003.
[4] Corcho, O. A declarative approach to ontology translation with

knowledge preservation, Volume 116 Frontiers in A.I., 2005.
[5] Euzenat, J., An API for ontology alignment, in: Proceedings of the

International Semantic Web Conference (ISWC 2004), Springer,
Berlin, Germany, 2004. pp. 698-712.

[6] Pepijn, R. S. V., Dean, M. J., Bench-capon, T. J. M. , Shave, M.,
An analysis of ontological mismatches: Het-erogeneity versus in-
teroperability, AAAI, Spring Sympo-sium on Ontological Engi-
neering, Stanford, USA, 1997.

[7] Bouquet, P., Ehrig, M., Euzenat, J. et al., D2.2.1 Specification of a
common framework for characterizing alignment,
http://www.inrialpes.fr/exmo/cooperation/kweb/heterogeneity/deli
/kweb-221.pdf, 2005.

[8] O’Sullivan, D., Wade, V., Lewis, D. Understanding as We Roam,
in IEEE Internet Computing, 11, (2), 2007, p26 - 33 DOI:
http://doi.ieeecomputersociety.org/10.1109/MIC.2007.50

[9] Hameed, A, Preece, A., Sleeman, D., Ontology Reconciliation,
Handbook of ontologies, in: Stabb S. and Suder R. (eds) Interna-
tional Handbooks on Information Systems, Springer Verlag, Ber-
lin, Germany, 2004, pp 31-250.

[10] Kalfoglou, Y., Schorlemmer, M. Ontology mapping: the state of
the art. in The Knowledge Engineering Review, 18(1):1–31, 2003.

[11] Euzenat et al. D2.2.3: State of the art on ontology alignment,
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-223.pdf, 2004. E04b

[12] Euzenat et al. D2.2.6: Specification of the delivery alignment
format, 2006. http://www.inrialpes.fr/exmo/cooperation/kweb/
heterogeneity/deli/kweb-226.pdf

[13] Shvaiko, P., Euzenat J., A Survey of Schema-based Matching
Approaches, in DIT Technical Report DIT-04-87, 2004.

[14] Noy, N., Semantic Integration A Survey of Ontology-Based Ap-
proaches, in Special Issue on Semantic Integra-tion, SIGMOD Re-
cord, Volume 33, Issue 4, pages 65-70, December 2004.No04

[15] Basili, V. R., Caldiera, G., Rombach, H. D., Goal Question Metric
Approach, ftp://ftp.cs.umd.edu/pub/sel/papers/ gqm.pdf, 2000.

[16] Thomas, H., O'Sullivan, D., Brennan, R.: Evaluation of Ontology
Mapping Representations. In: Workshop on Matching and Mean-
ing, Edinburgh, 2009

[17] Falconer, S., Storey, M.-A., A cognitive support framework for
ontology mapping. In Proc. of the 6th Int. Semantic Web Confer-
ence, http://iswc2007.semanticweb.org/papers/113.pdf, 2007.

[18] Maedche, A., Motik, B., Silva, N. et al. MAFRA - A MApping
FRAmework for Distributed Ontologies, in: Proc. of the 13th Int.
Conf. on Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web, 2002, pp. 235 - 250. Ma02c

[19] Aumüller, D. et al. Schema and Ontology Matching with
COMA++. In: Proc. of the ACM SIGMOD Int. Conference on
Management of Data, 2005; pp. 906-908.

[20] Thomas, H., Redmann, T., Markscheffel, B. Controlled semantic
tagging, in: Shoniregun, C. A., Logvynovskiy, A.: Proc. of the In-
ternational Conference on Information Society, 2007, pp. 346-352.

[21] Beigi, M., Calo, S., Verma, D., Policy Transformation Techniques
in Policy-based Systems Management, in: Proc. of IEEE Policy
2004, NY, June 2004.

[22] Smith, B., Ontology and Information Systems, Lecture Text,
http://ontology.buffalo.edu/ontology(PIC).pdf, 2000.

[23] Garshol, L.M., Moore, G. ISO/IEC JTC1/SC34, Information
Technology, http://www.isotopicmaps.org/sam/sam-model/ (2006)

[24] Wang, P. Xu, B. Lily. Proc. of the 3rd
 int. workshop on Ontology

Matching,08,http://dit.unitn.it/~p2p/OM2008/oaei08_paper7.pdf
[25] Ehrig, M, Sure, Y. FOAM - Framework for Ontology Alignment

and Mapping; In: Ashpole, B, et al: Proceedings of the Workshop
on Integrating Ontologies, volume 156, pp. 72-76. October 2005.

[26] Euzenat J., An API for ontology alignment, Int. Semantic Web
Conference 2004, Springer, Berlin, Germany, 2004, pp 698-712.

[27] Caracciolo, C., et al.Results of the Ontology Alignment Evalua-
tion Initiative 2008. Proc. of the 3rd int. workshop on Ontology
Matching, 2008. http://www.dit.unitn.it/~p2p/OM-008/oaei08_
paper0.pdf.

[28] Giunchiglia, F., Shvaiko, P., Semantic matching, in: proc. of the
Workshop on ontologies & distributed systems, pp. 193-146, 2003.

[29] Bouquet P. et al. C-OWL: Contextualization Ontologies. In proc.
of the 2nd Semantic Web Conf. 2003, pp. 164-179

APPENDIX A OVERVIEW OF EVALUATED APPLICATIONS

Application Link
Alignment API http://alignapi.gforge.inria.fr/
Anchor-PROMPT http://protege.stanford.edu/plugins/

prompt/prompt.html
COMA++ http://dbs.uni-leipzig.de/Research/coma
Context Matching Algo-
rithm (CtxMatch)

http://dit.unitn.it/~zanobini/
downloads.html

CROSI Mapping System http://www.aktors.org/crosi/
Falcon-AO http://iws.seu.edu.cn/projects/matching/

projects.jsp
Framework for Ontology
Alignment & Mapping
(FOAM)

http://www.aifb.uni-karlsruhe.de/
WBS/meh/foam/

Lily http://ontomappinglab.googlepages.com/
lily.htm

MAFRA http://mafra-toolkit.sourceforge.net
MapOnto http://www.cs.toronto.edu/

semanticweb/maponto/
OntoBuilder http://iew3.technion.ac.il/OntoBuilder
Ontology Mapping Tool s http://www.wsmx.org/
Risk Minimization Ontol-
ogy Mapping (RiMOM)

http://keg.cs.tsinghua.edu.cn/project/Ri
MOM/

232

Bridging Semantic Gaps Between Stakeholders
in the Production Automation Domain with Ontology Areas

Stefan Biffl, Wikan Danar Sunindyo, Thomas Moser
Institute of Software Technology and Interactive Systems, Vienna University of Technology

Favoritenstrasse 9-11/188, Vienna, Austria
{ stefan.biffl, wikan.sunindyo, thomas.moser}@tuwien.ac.at

Abstract—Stakeholders from several domains with local termi-
nologies have to work together to develop and operate software-
intensive systems, like production automation systems. Ontolo-
gies support the translation between local terminologies via
common domain concepts. Unfortunately, the ontology models
can become large and complex if they include several aspects on
a domain and some parts of the data model are volatile. In this
paper, we propose a data modeling approach to support ontology
users based on ontology building blocks, so-called “Ontology
Areas” (OAs), which allow solving tasks with smaller parts of the
overall ontology. We evaluate the proposed approach with use
cases from the production automation domain: translation be-
tween stakeholder roles to support design-time and run-time
decision making. Major result in the study context is that OAs
improved the efficiency of data collection for decision making.

I. INTRODUCTION

The integration of business processes and IT systems in
homogeneous environments (i.e., consistent data formats and
terminology) is supported by well-established approaches like
data integration using Scheer’s ARIS for CIM [21]. However,
in more heterogeneous environments with a range of data
formats and local terminologies like the production automa-
tion domain, typically stakeholders from several areas (e.g.,
business experts, software engineers and electrical engineers)
work together to develop and operate software-intensive sys-
tems. A homogenization of these environments is often not
achievable, if the stakeholders come from different organiza-
tional backgrounds or organizations change over time due to
mergers and acquisitions. The precondition for successful se-
mantic integration is a common understanding on the relevant
concepts in the problem domain of the project.

An example for a collection of common problem domain
concepts is the Enterprise-Control System Integration1 (ECSI)
standard [1] for developing automated interfaces between en-
terprise and control systems. The objectives of ECSI are to
provide a) a consistent terminology as foundation for supplier
and manufacturer communications, b) consistent information
models, and c) consistent operations (process) models, which
are the basis for clarifying application functionality and how
information shall be used.

However, a standard like ECSI can only cover parts of the
problem domain without getting too complex and hard to use.
Further, many key players in the production automation do-
main currently do not follow this standard, which often hin-
ders the cooperation of stakeholders in projects, since trans-

1 http://www.isa-95.com

formations between stakeholder terminologies to overcome
semantic gaps between the stakeholders need to be conducted
by scarce experts or carefully hand-crafted.

Ontologies are flexible open-world data models for knowl-
edge representation, which store information in machine-
understandable notation [12]. Therefore, ontologies can help
to bridge semantic gaps between partial data models by pro-
viding mappings between them via common domain concepts.
Ontologies usually capture problem-domain-specific informa-
tion which can be reused later. Due to their concurrent devel-
opment ontologies need to be checked for inconsistencies to
stay useful. However, ontologies in practice usually have to
combine several view points and thus get large and complex,
particularly, if the ontology contains volatile domain elements,
such as run-time data.

In this paper, we propose a data modelling approach that
helps structure ontologies with ontology building blocks, so-
called “Ontology Areas” (OAs). An OA is a meaningful part
of an ontology for a stakeholder, which helps ontology users
managing a complex ontology. The combination of all needed
OAs represents the overall ontology for supporting the origi-
nal engineering process.

We evaluate the proposed OA approach with use cases in
the production automation domain: 1. Translation between
local stakeholder terminologies; 2. Provision of design context
for run-time data interpretation; and 3. Run-time measurement
representation for design model improvements. The use cases
are based on the data model of the “Simulator for Assembly
Workshops” (SAW) [15] and compare the performance of an
ontology with and without OAs. The evaluation showed that
OAs made the data collection in the ontology for decision
support more efficient in the study context, since the OAs
result in a smaller ontology for the tasks in the use cases.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes related work on system integration and
ontologies. Section 3 describes the industry use case and Sec-
tion 4 derives research issues. Section 5 introduces the OA
approach, while Section 6 evaluates the approach and dis-
cusses the results. Finally, Section 7 concludes the paper and
identifies further work.

II. RELATED WORK

This section summarizes related work on system integration
and ontologies for semantic integration to reconcile different
views of stakeholders on system data.

233

A. Integration of Heterogeneous Systems
System integration is the task to combine a range of smaller

systems to appear as one big system. There are several levels
at which system integration could be performed [3], but there
is so far no standardized integration process that explains how
to integrate systems in general.

Typical integration solutions focus either on technical het-
erogeneity (how to connect systems that use different plat-
forms or protocols) or on semantic heterogeneity (how to
translate data in messages between systems that use different
data formats or terminologies). In order to cope with technical
heterogeneity on service level middleware technology [9]
supports syntactical transformation between services, while
the semantic heterogeneity of services can be addressed with a
common data schema [13]. Limitations of these integration
approaches are: 1. The need for a common data schema [13],
which is hard and time-consuming to negotiate, sometimes
impossible if stakeholders continue to disagree. 2. The need
for integration over heterogeneous middleware technologies
(with different APIs or network architecture styles) implies
the development of static and therefore inflexible wrappers
between each combination of middleware technologies, and
thus increases the complexity of communication.

Semantic integration is defined as the solving of problems
originating from the intent to share data across disparate and
semantically heterogeneous data [13]. These problems include
the matching of ontologies or schemas, the detection of dupli-
cate entries, the reconciliation of inconsistencies, and the
modelling of complex relations in different sources [20]. Over
the last years, semantic integration became increasingly cru-
cial to a variety of information-processing applications and
has received much attention in the web, database, data-mining
and AI communities [6]. One of the most important and most
actively studied problems in semantic integration is establish-
ing semantic correspondences (also called mappings) between
vocabularies of different data sources [7].

B. Ontologies for Semantic Integration
An ontology is a representation vocabulary for a specific

domain or subject matter, like production automation. More
precisely, it is not the vocabulary as such that qualifies as an
ontology, but the (domain-specific) concepts that the terms in
the vocabulary are intended to capture [5]. Many authors like
Goh [11] identified three main categories of semantic hetero-
geneities in the context of data integration that can appear:
confounding conflicts (e.g., equating concepts are actually
different), scaling conflicts (e.g., using different units for the
same concept), and naming conflicts (e.g., synonyms).

Noy [19] identified three major dimensions of the applica-
tion of ontologies for supporting semantic integration: the task
of finding mappings (semi-)automatically, the declarative
formal representation of these mappings, and reasoning using
these mappings. There exist two major architectures for map-
ping discovery between ontologies: 1. It is possible to create a
general upper ontology which is agreed upon by developers of
different applications. Two examples for ontologies that are
built specifically with the purpose of being formal top-level

ontologies are the Suggested Upper Merged Ontology (SUMO)
[18] and DOLCE [10]. 2. There are approaches comprising
heuristics-based or machine learning techniques that use vari-
ous characteristics of ontologies (e.g., structure, concepts,
instances) to find mappings. These approaches are similar to
approaches for mapping XML schemas or other structured
data [4, 6]. The declarative formal representation of mappings
is facilitated by the higher expressive power of ontology lan-
guages which provide the opportunity to represent mappings
themselves in more expressive terms.

Uschold and Gruninger [23] identified four main categories
of ontology application to provide a shared and common un-
derstanding of a domain that can be communicated between
people and application systems [8]: Given the vast number of
non-interoperable tools and formats, a given company or or-
ganization can benefit greatly by developing their own neutral
ontology for authoring, and then developing translators from
this ontology to the terminology required by the various target
systems. While it is safe to assume there will not be global
ontologies and formats agreed by all possible stakeholders, it
is nevertheless possible to create an ontology to be used as a
neutral interchange format for translating among various for-
mats. There is a growing interest in the idea of “Ontology-
Driven Software Engineering” in which an ontology of a giv-
en domain is created and used as a basis for specification and
development of some software [19]. The benefits of ontology-
based specification are best seen if there is a formal link be-
tween the ontology and the software. To facilitate search, an
ontology is used as a structuring device for an information
repository (e.g., documents, web pages, names of experts);
this supports the organization and classification of repositories
of information at a higher level of abstraction than is com-
monly used today.

As alternative approach for semantic integration of system
models the infrastructure of Model-Driven Architecture
(MDA) [16] provides architecture for creating models and
meta-models, defining transformations between these models,
and managing meta-data. Although the semantics of a model
is structurally defined by its meta-model, the mechanisms to
describe the semantics of the domain are rather limited com-
pared to machine-understandable representations using, e.g.,
knowledge representation languages like RDF2 or OWL3. In
addition, MDA-based languages do not have a knowledge-
based foundation to enable reasoning (e.g., for supporting
quality assurance), which ontologies provide [2]. Beyond tra-
ditional data models, like UML class diagrams or entity rela-
tionship diagrams, ontologies provide methods for integrating
fragmented data models into a common model without losing
the notation and style of the individual models [14].

Seidenberg and Rector [22] proposed web ontology seg-
mentation to counter decreasing ontology performance when
ontology size increases. The algorithm to make ontology seg-
mentation is similar to our approach, but we extend the usage
of ontology areas for more stakeholders and volatilities.

2 Resource Description Framework: http://www.w3.org/RDF/
3 Web Ontology Language: http://www.w3.org/2007/OWL

234

Figure 1: Sources of semantic gaps between stakeholders: domain layers, design-/run-time views;
the data model contains common domain concepts to bridge semantic gaps.

III. INDUSTRY USE CASE

In cooperation with industry partners in the production
automation domain we conducted the project “Simulator for
Assembly Workshops” (SAW) [15], which simulates complex
reconfigurable production automation systems by scheduling
sequences of transport and machine tasks over 100 times
faster than the actual hardware4. The SAW simulator has been
validated with real hardware components to ensure simulation
validity for real-world production automation systems. In the
SAW context stakeholders from different backgrounds work
together and could benefit from better automated access to
each others data models which is currently only possible via
the stakeholders themselves as the data models are not well
integrated.

Figure 1 illustrates sources of semantic gaps between
stakeholders: stakeholder domain layers with different local
terminologies; and design-/run-time views which are semanti-
cally not well connected. The data model, in our case an on-
tology model (the Engineering Knowledge Base (EKB) [17]),
contains common domain concepts to bridge the semantic
gaps between stakeholder terminologies and design-/run-time
views.

The three stakeholder layers in Figure 1 are: a) the business
layer (B) for production planning to fulfil customer orders by
assigning optimal work orders to the workshop; b) the work-
shop layer (W) for coordinating the complex system of trans-
port elements and machines to assemble smaller basic prod-
ucts into larger more comprehensive products according to the
work orders; and c) the operation layer (O) for monitoring the
individual transport system elements and machines to ensure
their contributions to the workshop tasks. Those three layers

4 Automation & Control Institute; http://www.acin.tuwien.ac.at

are divided into two parts based on the time those layers
worked on, namely design time (development) and run time
(usage).

Figure 1 (right hand side) illustrates part of the data model
that represents common domain concepts for the uses cases in
UML-class-diagram style notation. The bottom box of each
data element shows which stakeholder layer (B, W, and O)
needs this data element to conduct their tasks and when: at
Design Time (DT) or Run Time (RT).

From the SAW project we derived the following use cases
that illustrate semantic gaps between stakeholders and how to
overcome these gaps using ontology-based approaches.

UC-1. Translation between local stakeholder terminologies.
The business manager on the business layer receives customer
orders and schedules work tasks to the coordinator in the
workshop layer. While they have a defined interface for ex-
changing work task information, they use local terminologies
for concepts that are only occasionally needed to resolve
scheduling issues, e.g., reference to specific customer orders if
limited workshop capacity does not allow to fulfil all work
tasks in a shift and negotiation on which tasks have higher
priority are necessary to determine which customer orders will
be fulfilled. Because the stakeholders use different terminol-
ogies, translations are necessary to automate references to
customer orders between stakeholders in business and work-
shop layers.

UC-2. Run-time measurement data representation and
analysis for design model improvements. If an engineering
knowledge base is available to support run-time decisions
with design knowledge, it is easy to also provide all kinds of
run-time measurements linked to design elements, e.g., actual
capacity of infrastructure, to iteratively improve the accuracy
of design estimates with feedback from run time.

235

IV. RESEARCH ISSUES

The general idea of Ontology Areas (OAs) is to structure a
comprehensive ontology into smaller building blocks with the
following benefits for the designer and user of the ontology:
� A smaller ontology based on OAs that contains the mini-

mal necessary knowledge for a specific task can be se-
lected from a comprehensive ontology to facilitate more
efficient use and change.

� We expect a smaller ontology (consisting of selected OAs)
to exhibit lower cognitive complexity for designers who
work with ontologies to make tools that support the
automation of stakeholder tasks.

� Specific OAs can contain the more volatile ontology ele-
ments and thus make the design of the overall ontology
more stable against changes.

As measurement criteria for evaluation we use the size of
an ontology (and an OA) by counting the number of facts and
relationships. In our study context the comprehensive ontol-
ogy consists of: a) the production automation domain concepts
(i.e., data model in Fig. 1) for design-time and run-time ele-
ments; and b) stakeholder extensions to the data model, such
as local terminologies and mappings, for all stakeholders.

We used the following guidelines to design the OAs: a)
concepts that a particular stakeholder (in business, workshop,
or operation layer) needs to fulfil his typical tasks in order to
achieve cohesiveness of the OAs; b) discern between common
domain concepts and local add-ons of a stakeholder (such as
terminology), which may change in different project contexts;
c) keeping apart more stable design-time concepts from more
volatile run-time concepts; and d) structuring volatile run-time
data by manageable time intervals depending on the frequency
of data elements’ change. According to these guidelines ex-
amples for concrete OAs are: the design-time concepts of a
business stakeholder and the run-time terminology of a work-
shop stakeholder.

From the use cases we derive the following research issues
(RIs) to investigate the benefits of an ontology structured with
OAs compared to an ontology without OAs.

UC-1. Translation between local stakeholder terminol-
ogies. The ontology supports each role by allowing to use
their local terminology to communicate with other stake-
holders. For this task sufficient OAs need to contain for the
communicating stakeholders: the common domain concepts in
their universe of discourse (see also in Fig. 1 the data elements
and their link to associated stakeholders), local terminologies,
mappings between local terminology elements and common
domain concepts (on class level).

RI-1a: Compare the complexity (size) of the minimal on-
tology with OAs to the complexity of the overall ontology in
the study context.

RI-1b: Compare the efficiency of the minimal ontology
with OAs to the efficiency of the overall ontology in the study
context to conduct the translation task.

The other use cases address benefits from making links be-
tween design-time and run-time data elements available at run
time.

UC-2. Run-time measurement data representation and
analysis for design model improvements. In the study con-
text the collection of run-time data points, e.g., on process
characteristics and quality of service of the infrastructure,
helps to provide data for future design improvements, e.g., for
more realistic planning and more efficient system configura-
tions. The designers and quality management personnel, who
conduct the data analysis procedures, often do not know in
advance precisely which analysis functions they will need.
Thus, a considerable amount of raw data would be beneficial
to store in the ontology for querying design-time relationships
and run-time data together. Unfortunately, even moderate data
collection (10 data points) at reasonable frequency (e.g., one
measurement every second) leads over a shift of 8 hours to a
number of run-time data elements that easily exceeds the size
of the design-time data elements in the ontology.

OAs that are designed to hold all measurement instances of
a data element in a certain time interval (e.g, one minute) al-
low to keep the complexity of the ontology needed for analy-
sis manageable: Only the OAs that contain relevant run-time
measurements for a given analysis need to be considered.

RI-2a: Determine the minimal complexity of OAs to sup-
port a specific data analysis task more efficiently, such as cal-
culating process characteristics. Compare the result with OAs
to the (cognitive) complexity of using a whole ontology.

RI-2b: Compare the efficiency of the minimal ontology
with OAs to the efficiency of the overall ontology in the study
context to conduct the data analysis task

V. ONTOLOGY AREAS FOR BRIDGING SEMANTIC GAPS

In this Section we explain in more detail how to address the
use cases with an ontology that uses OAs as basis for the
evaluation of the RIs in Section 6.

An ontology area is a subset of ontology as a building block
that can solve a certain task. The ontology can be broken into
ontology areas based on several aspects, for example by the
time, volatility, layer and roles. Figure 1 shows the break
down of ontology into several ontology areas based on the
stakeholder layers (business, workshop, operation) and time
when models are mostly used (design time and run time).
Some parts of the data mode are much more volatile than oth-
ers, e.g., run-time process measurements compared to design-
time workshop layout. For example, each data point measured
once a second in a shift that takes 8 hours produces around
30,000 data point instances, which need to be reduced by sta-
tistical methods or will take considerably storage space.

To make an OA from the whole ontology, we can follow
this basic algorithm. First, define a task that is needed to be
solved by the stakeholder. Second, find related classes for
doing the task. Third, find classes that linked to the classes in
step two. Fourth, drop other classes that are not needed and
save as a new ontology. Also, we can reconstruct the whole
ontology from the ontology areas, by merging them together
into one ontology by using ontology tool like Protégé.

We illustrate in three use cases (UC-1 to UC-2) how OAs
help reduce the complexity of the ontology for bridging se-
mantic gaps in production automation systems.

236

UC-1. Translation between local stakeholder terminol-
ogies. The stakeholders of the production automation systems
need to work together to achieve their goal. A common data
schema is not possible because the stakeholders usually use
different data formats, local terminologies and tools to access
the data from the system. The ontology (EKB – Engineering
Knowledge Base) plays a role as a common domain concept,
where the local terminologies from the stakeholders will be
mapped to. By mapping each local terminology to the ontol-
ogy, the system can translate the local terminologies from one
stakeholder to the other stakeholders. The translation could be
the name of function, some names in the argument of the
function, different data format, or the meaning of some pa-
rameters. However, the complexity of the ontology may in-
crease when the number of the terminologies and the stake-
holders is also increases, since the ontology should store all
terminologies, the mappings and the common concepts.

By using the ontology areas, the stakeholder can take a
small part of the ontology that he really cares and solving his
task with the same results but less complexity than by using
the full ontology. The example is illustrated on figure 2.

Figure 2. Translation between Business Terminology
and Workshop Terminology.

The business stakeholder has a local terminology “Cli-
entContract”, while the workshop stakeholder has a local
terminology “BusinessOrder”. Both have a common con-
cept to class CustomerOrder in the Ontology Areas. Then,
both terminologies will be mapped to the class CustomerOrder
as mention in Listing 1a.

Listing 1a. Mapping terminologies to the common concept.

mapping('ClientContract','CustomerOrder').
mapping('BusinessOrder','CustomerOrder').

From the mappings above, we can have a translation be-
tween two local terminologies by using rule on Listing 1b.
The query and result can be seen on Listing 1c.

Listing 1b. Simple translation rules.

translate(Term1,Term2) :-
 mapping(Term1,CommonConcept),
 mapping(Term2,CommonConcept),
 not(Term1 = Term2).

Listing 1c. Translation result.

translate(X,Y).
X = 'ClientContract'
Y = 'BusinessOrder'

The translation is just one example for translations in gen-
eral. OAs for this use case would just consider the parts of the
ontologies for the stakeholders involved (see Figure 2): stake-
holder concepts, their local terminologies and mappings,
which can more easily be added to and removed from an on-
tology as stakeholders change in a particular context. The
evaluation for this use case will be explained on section 6.

UC-2. Run-time measurement data representation and
analysis for design model improvements. Run-time meas-
urement information can be used to make design time infor-
mation more accurate. Volatile information like run-time
measurement can produce large amounts of data which would
make a single ontology unnecessary large and slow down the
performance of the ontology. The need for storing a high vol-
ume of run-time measurement data in the ontology occurs if
the concrete future statistical analysis procedures are not
known at the time of measurement.

Partitioning of the ontology in areas of similar volatility al-
lows building partial ontologies for the task or query at hand.
Run-time measurement at the frequency of 1 data point per
second provides 30,000 data points of shift of 8 hours. If this
is too much information for the ontology to hold, it is possible
to define OAs for smaller time windows, which allow includ-
ing the data for a certain time frame to be loaded into the on-
tology for data analysis as needed without exceeding the ca-
pacity of the ontology.

Semantic gaps between run-time measurement and design-
time information occur when we have data elements from the
interface of the machine at run time, but there is no machine-
understandable documentation for the design of the interface.
To solve this problem, we first give meaning to run-time data
that are needed to be stored in the ontology and then provide a
link from run-time to design-time semantics.

For example, to find out the maximum process time of cer-
tain machine functions, we can measure the process duration
of that machine function in one shift, so we collect sufficient
and still manageable data. The measurement result is an event
named “process” that consists of the id, the batch number,
status and timestamp of machine function. Listing 2a shows
several measurement results that can be obtained by filtering
run time data. The real data themselves is a very long list.

Listing 2a. Run-time event data with semantic annotation.
% process (machine function id, batch number, status,
timestamp)
process(‘MF1’,’B-100’,’start’,2009-02-03 T 10:01:06.01)
process(‘MF1’,’B-100’,’stop’,2009-02-03 T 10:01:06.11)
process(‘MF2’,’A-200’,’start’,2009-02-03 T 10:01:06.12)
process(‘MF1’,’B-101’,’start’,2009-02-03 T 10:01:06.13)
process(‘MF1’,’B-101’,’stop’,2009-02-03 T 10:01:06.21)
process(‘MF2’,’A-200’,’stop’,2009-02-03 T 10:01:06.24)

 To calculate the maximum process time of certain machine
function, first we should calculate each process time by using
predicate “process_time” to find the difference between the
timestamp of “stop” status and the related timestamp of “start”
status from the same machine function and batch number, and
the keep it in the list using “list_of_process_time” predicate.
Then with using the predicate “maxprocess” we will find the

237

maximum value of process time of certain machine function
(MFun) from the list of process time.

Listing 2b. Example analysis rule on run-time data.
max(X,Y,X) :- X >= Y.
max(X,Y,Y) :- X < Y.
maxlist([X],X).
maxlist([X,Y|Tail],Max) :-
maxlist([Y|Tail],MaxTail),max(X,MaxTail,Max).
process_time(MF,SN,T) :-
 process(MF,SN,start,X),
 process(MF,SN,stop,Y),
 T is Y - X.
list_of_process_time(List,MFun) :-
findall(T,(process_time(MF,SN,T),MF = MFun),List).
maxprocess(MFun,T) :-
 list_of_process_time(List,MFun),
 maxlist(List,T).

For query, for example we want to know the maximum
process time of ‘MF1’. The result can be seen on Listing 2c.

Listing 2c. Result of data analysis.

maxprocess('MF1',T).
T = 0.1

The machine function entity in design time consists of the
id and process time attributes. Usually the values of process
time attributes come from estimation, but by using run-time
measurement on process time, we can compare the previous
design-time estimates to actual run-time data analysis for re-
search on design improvements.

The illustrating example above is simple enough to conduct
statistical analysis at run time, but for more complex statistical
analyses, a solution for storing large amounts of data in an
ontology may be necessary, which would inflate ontology size
and decrease the ontology reasoning performance. OAs allow
to manage stacks of run-time data elements and keep the size
of ontology within well-performing capacity ranges.

VI. EVALUATION AND DISCUSSION

We have implemented the OAs from the SAW ontology us-
ing Protégé 3.3.1. The SAW ontology consists of 24 classes
and 3,000 instances from the simulation of production auto-
mation system. The evaluation will compare the measurement
of the whole ontology and the ontology areas for three differ-
ent use cases explained in section 5, as follows.

UC-1: Translation between local stakeholder terminol-
ogies. We compare the complexity (size) of the minimal on-
tology with OAs to the complexity of the overall ontology in
the study context. For the minimal ontology with OAs, the
business and workshop stakeholders have local terminologies
of 300 and 400 words, respectively. Both need 100 words to
communicate with each other. There are 200 to 700 data ele-
ments representing common knowledge, and 200 words for
mapping from both local terminologies to the common con-
cepts. Totally 1,100 to 1,600 entities are needed for the OAs.

 Meanwhile, the comprehensive ontology for 6 stake-
holders consists of around 1,800 words for local terminologies
and around 300 words to communicate with each other. There

are 1,600 words of common knowledge, and 600 to 1,800
words for mapping of all local terminologies to common con-
cepts. In total, the comprehensive ontology consists of 4,200
to 5,400 words. In this case, OAs can reduce the ontology size
to 20 to 30 % of the comprehensive ontology.

We can compare the efficiency of the minimal ontology
with OAs to the efficiency of the whole ontology in conduct-
ing the translation task as follows. To produce 100 words of
translation results from 200 words of mapping, the OAs needs
3 operators of query applying to those mapping.

The comprehensive ontology can produce more transla-
tions (300 words) with 3 operators of query as well. But the
query should be applied to more mapping (600 to 1,800
words). With OAs we can reduce the size of mapping and
make the operation faster.

UC-2: Run-time measurement and analysis for design
improvement. For evaluation we will determine the minimal
complexity of OAs to support a specific data analysis task
more efficiently, such as calculating process characteristics.
Then we will compare the result with OAs to the (cognitive)
complexity using a comprehensive complexity.

In the OAs of the specific task, for 1 volatile entity the run-
time measurement consists of 30,000 data points per shift. In
the overall ontology, there may be many more, e.g., 300,000,
data points in one shift. By using the OAs, the user can focus
only on entity that he needs, and thus reduce the complexity of
data handling considerably.

The efficiency of the minimal ontology with OAs is com-
pared to the efficiency of the overall ontology in the case to
conduct the data analysis task as follows. In the OA, to obtain
5 data points analysis, it needed to run 3 operators of query
over 30,000 data points at one shift. Hence 18,000 operations
on data points are needed to obtain one of the measurements.

In the whole ontology, to obtain 20 data points analysis, it
needed to run 3 operators of query over 300,000 data points at
one shift. Hence 45,000 operations on data points are needed
to obtain one of the measurements. OA is notably more effi-
cient than overall ontology.

Lesson learned. From the experiences with these use cases,
we can learn the following lessons.

Building a smaller ontology for a task. As OAs allow fo-
cusing on the content of interest for a stakeholder task, we
could show that the resulting ontology is considerable smaller.
A smaller ontology is often also more efficient to handle and
allows tackling tasks that use a particularly large number of
data elements (e.g., run-time measurements in UC-3).

Focus stakeholders on relevant data elements. The combi-
nation of OAs, design-time, and run-time data elements al-
lowed filtering relevant data elements for stakeholders, which
would not be possible without the combination. Thus the OA
approach helped lower the cognitive complexity for stake-
holders by providing just the relevant subset of the compre-
hensive ontology.

Version management for ontology areas. With the OA con-
cept we can flexibly build task-oriented ontologies based on
different criteria (like volatileness, layers, roles). It is even
possible to compare different versions of the same OA (e.g.,

238

production automation system designed with different pa-
rameter settings) to compare the run-time reactions to from
changing design parameters. However, this ability also raises
the need for better version management for OAs to ensure the
building of consistent ontologies for specific tasks.

VII. CONCLUSION AND FURTHER WORK

Ontologies support the translation between stakeholder lo-
cal terminologies via common domain concepts, in our case
production automation concepts. Typically, the ontology
models become very large and complex compared to the basic
data model (such as used in a data base to automate run-time
processes) if they include several aspects on a domain and
some parts of the data model are volatile. In this paper, we
proposed a data modeling approach based on ontology build-
ing blocks, so-called “Ontology Areas” (OAs), which allow
solving tasks with smaller parts of the overall ontology. We
evaluated the proposed approach with use cases from the pro-
duction automation domain. Major result in the study context
is that OAs improved the efficiency of data collection task for
decision making by lowering the cognitive complexity for
designers and users of the ontology.

Further work. We see further research in the following di-
rections.

Effort for OA design and use. While OAs make a compre-
hensive ontology, which stores and uses engineering know-
ledge both at design time and run time, more manageable,
their application needs the effort of designers for structuring
the overall ontology and for building task-specific smaller
ontologies. Thus we will conduct empirical studies on the ef-
fort needed to design and use ontologies with OAs. Future
work could include human-subject experiments to
 assess complexity and efficiency more rigorously.

Guidelines for the OA approach. While we found OAs use-
ful to manage a large and complex ontology, we see the need
for guidelines for the application the OA approach when de-
signing a new ontology as well as for structuring already es-
tablished ontologies with OAs to improve their performance.

Maintenance effort. Particularly for ontologies which
should be changed by many users concurrently, we see a po-
tential advantage of the concept of OAs, as areas with differ-
ent rates of change can be easily separated, simplifying the
checking of models for consistency etc. In the context of our
case study this could be measuring the effort for typical
changes, such as a new workshop layout, new machines, or
new connections between machines.

ACKNOWLEDGMENT

We want to thank our colleagues at ACIN and TU Prague,
for their feedback and inspiring discussions; and the SAW
team at TU Wien for providing the application environment
for the research use case.

REFERENCES
[1] American National Standard, "Enterprise-Control System Integration,"

in Part 1: Models and Terminology. vol. ANSI/ISA-95.00.01-2000
North Carolina, USA: ISA (the Instrumentation, Systems, and
Automation Society), 2000, p. 142.

[2] K. Baclawski, M. K. Kokar, P. A. Kogut, L. Hart, J. Smith, J. Letkowski,
and P. Emery, "Extending the Unified Modeling Language for Ontology
Development," International Journal of Software and Systems Modeling
(SoSyM), vol. 1, pp. 142-156, 2002.

[3] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.
Neema, "Developing Applications Using Model-Driven Design
Environments," COMPUTER, pp. 33-40, 2006.

[4] S. Bergamaschi, S. Castano, and M. Vincini, "Semantic integration of
semistructured and structured data sources," SIGMOD Rec., vol. 28, pp.
54-59, 1999.

[5] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, "What are
ontologies, and why do we need them?," Intelligent Systems and Their
Applications, IEEE [see also IEEE Intelligent Systems], vol. 14, pp. 20-
26, 1999.

[6] I. R. Cruz, X. Huiyong, and H. Feihong, "An ontology-based framework
for XML semantic integration," in International Database Engineering
and Applications Symposium (IDEAS '04), 2004, pp. 217-226.

[7] A. Doan, N. F. Noy, and A. Y. Halevy, "Introduction to the special issue
on semantic integration," SIGMOD Rec., vol. 33, pp. 11-13, 2004.

[8] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce: Springer, 2003.

[9] E. H. Gail, L. David, C. Jeromy, re, N. Fred, C. John, and N. Martin,
"Application servers: one size fits all ... not?," in Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, Anaheim, CA, USA, 2003.

[10] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari, "Sweetening
WordNet with DOLCE," AI Magazine, vol. 24, pp. 13-24, 2003.

[11] C. H. Goh, "Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems." vol. PhD: MIT, 1996.

[12] T. R. Gruber, "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing," in Formal Ontology in Conceptual Analysis and
Knowledge Representation, N. Guarino and R. Poli, Eds.: Kluwer
Academic Publishers, 1993.

[13] A. Halevy, "Why your data won't mix," Queue, vol. 3, pp. 50-58, 2005.
[14] M. Hepp, P. De Leenheer, A. De Moor, and Y. Sure, Ontology

Management: Semantic Web, Semantic Web Services, and Business
Applications: Springer-Verlag, 2007.

[15] M. Merdan, T. Moser, D. Wahyudin, and S. Biffl, "Performance
evaluation of workflow scheduling strategies considering transportation
times and conveyor failures," in International Conference on Industrial
Engineering and Engineering Management (IEEM 2008), 2008, pp.
389-394.

[16] J. Miller and J. Mukerji, "Model Driven Architecture (MDA)," Object
Management Group, Draft Specification ormsc/2001-07-01, July, vol. 9,
2001.

[17] T. Moser, A. Schatten, W. D. Sunindyo, and S. Biffl, "A Run-Time
Engineering Knowledge Base for Reconfigurable Systems," Institute for
Software Technology and Interactive Systems, Vienna University of
Technology, Austria, Vienna, 2009, http://tinyurl.com/c5snc3 .

[18] I. Niles and A. Pease, "Towards a standard upper ontology," in 2nd
International Conference on Formal Ontology in Information Systems,
2001, pp. 2-9.

[19] N. F. Noy, "Semantic integration: a survey of ontology-based
approaches," SIGMOD Rec., vol. 33, pp. 65-70, 2004.

[20] N. F. Noy, A. H. Doan, and A. Y. Halevy, "Semantic Integration," AI
Magazine, vol. 26, pp. 7-10, 2005.

[21] A. W. Scheer, Computer-Integrated Manufacturing, 4th ed.: Springer,
1989.

[22] J. Seidenberg and A. Rector, "Web Ontology Segmentation: Analysis,
Classification and Use," in International World Wide Web Conference
(WWW 2006) Edinburgh, Scotland: ACM, 2006, p. 10.

[23] M. Uschold and M. Gruninger, "Ontologies and semantics for seamless
connectivity," SIGMOD Rec., vol. 33, pp. 58-64, 2004.

239

LD2SD: Linked Data Driven Software Development

Aftab Iqbal, Oana Ureche, Michael Hausenblas, Giovanni Tummarello
Digital Enterprise Research Institute (DERI),

National University of Ireland, Galway
IDA Business Park, Galway, Ireland

firstname.lastname@deri.org

ABSTRACT
In this paper we introduce Linked Data Driven Software De-
velopment (LD2SD), a light-weight Semantic Web method-
ology to turn software artefacts such as data from version
control systems, bug tracking tools and source code into
linked data. Once available as linked data, the related infor-
mation from different sources is made explicit, allowing for a
uniform query and integration. We show the application of
LD2SD using a real-world software project as the reference
dataset and discuss the added value of LD2SD compared to
existing technologies.

1. MOTIVATION
In the software development process, both humans and

so called software artefacts are involved (Fig. 1). Human
beings such as developers and clients (customers, project
managers, etc.) typically interact not only face-to-face or
telephone, but also by means of discussion forums, emails,
etc.. The software artefacts shown in the lower half of Fig. 1
can be understood as heterogeneous, interconnected datasets,
conveying information about the software project and the
humans involved.

It is worth mentioning that very often these interconnec-
tions are not explicit, hence machine-accessible but rather of
an implicit nature (a mentioning of a certain Java class in a
blog post, for example). Further, some of these datasets,
such as the program source code or versioning data are
mainly under the control of a developer, whilst other datasets
are widely “filled” by clients. Then, there are datasets that
are shared between developer and clients (e.g., a discussion
board). In any case, the datasets are closely related and
interdependent. A bug report, for example, may lead to a
change in the program code and additionally the documen-
tation needs to be updated. This may be reflected in the
configuration management system. Further, a feature re-
quest may indirectly arise from a discussion on a discussion
board, for example.

Nowadays, development takes place mainly in two envi-
ronments, (i) the developers Integrated Development Envi-
ronment (IDE), such as Eclipse1, and (ii) the Web, such as
for finding examples and documentation, discussions, etc.
as a large. We need hence not only make the links between
the software artefacts within a project explicit but also al-

1http://www.eclipse.org/

Figure 1: LD2SD Overview.

low connecting to data on the Web. Having such an explicit
representation of the connection between the datasets avail-
able we will be able to support certain scenarios often found
in the software development process:

1. Synthesis Scenarios—support the development of
new source code:

• A developer could effectively query colleagues for
support (expert finding) and/or being suggested
contextualised code fragment(s);

• A project manager could learn from previous projects
and/or metrics.

2. Analysis Scenarios—support the project manage-
ment and maintenance of existing source code:

• One could perform opinion mining on SIOC [8]
based representations of the discussion forums [19]
in order to generate reports on a component or ex-
tract features requests and/or bug reports. SIOC
(Semantically Interlinked Online Communities) is

240

a vocabulary to describe the content and struc-
ture of online community sites. It allows to create
new connections between discussion channels and
posts;

• Given that the documentation is interlinked with
the source code, a dynamic FAQs could be pro-
vided;

• Developer profiles, based on their commitments
to versioning control systems and the source code
could be provided.

The contribution of this work is twofold: first, we intro-
duce Linked Data Driven Software Development (LD2SD),
a light-weight Semantic Web methodology to turn software
artefacts such as data from version control systems, bug
tracking tools or Java source code into linked data. Further,
we show the application of LD2SD on a reference software
project.

The paper is structured as follows: in section 2 we present
use cases for LD2SD. Then, we introduce the overall LD2SD
methodology in section 3 and discuss its characteristics in
section 4. We report on exemplary implementation of LD2SD
in section 5. In section 6 we review related work and com-
pare it to our approach. Finally, we conclude in section 7
and outline future steps.

2. USE CASES
As motivated above, there are plenty of real-world scenar-

ios one could think of where explicit interlinks between data
sources would be desirable. We have detailed out a couple
of use cases in the following which we realise in the realm
of the software development. The use cases described below
have in common that at least two data sets are involved.
Note, that in case only one data set (such as bug tracking)
is targeted, various solutions (cf. section 6) already exist,
potentially not justifying the effort to apply LD2SD .

Finding an expert Jim has a long career in software project
management. He knows that a task will be solved fast
and bug-free only by a developer who is an expert in
the required field. Jim now wants to assign a new task
which involves Web pages scrapping. He needs to find
a member of his team who is an expert in the HTML-
Parser Java library.

Issues not fixed in due time Bug tracking systems con-
tain a lot of issue entries. These issues need to be
fixed on assigned dates. Harry, a project leader, is
very busy, having to travel most of his time. He just
came back from a project review and wants to know
if all the issues due yesterday have been fixed. Harry
additionally wants to know about the breakdown in
terms of lines-of-code committed and which packages
have been effected.

Find developer replacement Mary, a developer for a soft-
ware company, has to relocate with her husband in an-
other city. Julie, her supervisor, needs to hire a devel-
oper who can replace Mary. Therefore, Julie wants an
analysis of her expertise and latest activities: assigned
bugs, committed code, mailing list and blog posts, sub-
sequently finding CVs that match Mary’s expertise.

Assigning a bug to a developer Bug tracking environ-
ments structure bugs assignment by projects. John, a
user of project X finds a bug and reports it on a blog
post. Sarah, a developer of project Y, reads the blog
post. However, she does not know the project X de-
velopers and their experience. She needs to find the
most active developer in project X and assign the bug
to him/her.

3. LD2SD FOUNDATIONS
We first introduce linked data, the foundation of Linked

Data Driven Software Development (LD2SD), and then give
an account of the LDSD methodology.

3.1 Linked Data
The basic idea of linked data [6] has first been outlined

by Tim Berners-Lee in 20062, where he described the linked
data principles as follows: (i) all items should be identified
using URIs [18] and these URIs should be dereferenceable,
that is, using HTTP URIs allows looking up the an item
identified through the URI, further (ii) when looking up
an URI (an RDF [13] property is interpreted as a hyper-
link), it leads to more data, and (iii) links to URIs in other
datasets should be included in order to enable the discovery
of more data. In contrast to the full-fledged Semantic Web
vision, linked data is mainly about publishing structured
data in RDF using URIs rather than focusing on the onto-
logical level or inferencing. This simplification—comparable
to what the World Wide Web did for hypertext—fosters a
wide-spread adoption [4].

3.2 Methodology
In order to provide a uniform and central access to the

different datasets, one needs to interlink, integrate and align
them. Various techniques could potentially be utilised (see
also section 6), however, given the arguments regarding linked
data above, we decided to realise a linked-data driven ap-
proach. In Fig. 2 the overall LD2SD methodology is de-
picted. This methodology basically covers the layers as de-
scribed in the following:

1. Assign URIs to all entities in software artefacts and
convert to RDF representations based on the linked
data principles, yielding LD2SD datasets;

2. Use semantic indexer, such as Sindice [15] to index the
LD2SD datasets;

3. Use semantic pipes, such as the DERI Pipes (cf. sec-
tion 5.2) allowing to integrate, align and filter the
LD2SD datasets;

4. Deliver the information to end-users integrated in their
preferred environment, such as discussed in section 5.3.

4. LD2SD CHARACTERISTICS

4.1 Scale to the Web
In 2007, the Linking Open Data (LOD) project3, an open,

collaborative effort aiming at bootstrapping the Web of Data

2http://www.w3.org/DesignIssues/LinkedData.html
3http://esw.w3.org/topic/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

241

Figure 2: LD2SD Methodology.

by publishing datasets in RDF on the Web and creating
interlinks between these datasets, has been launched. With
over 50 interlinked dataset offering billions of RDF triples
and millions of interlinks, the so called “LOD cloud” enables
entire new application areas [11].

We highlight the fact, that by utilising LD2SD, a Web-
scale data integration of software development-related infor-
mation is hence made possible. One can imagine that—as
both LD2SD and LOD follow the linked data principles—we
are able to connect software artefacts to the LOD datasets,
such as DBpedia [3], hence enabling the reuse of existing
information in the software development process.

4.2 Read-only?
To this end, LD2SD allows us to integrate, view and filter

the data. However, one problem remains unresolved: updat-
ing the original software artefact. With a recently launched
community project called pushback4—aiming at turning the
current “read-only” Semantic Web into a read/write Seman-
tic Web—we are confident to adequately address this issue
in the near future.

5. IMPLEMENTATION
The methodology described in the previous section will

be demonstrated herein. We have divided this section ac-
cording to Fig. 2: in section 5.1, we describe the reference
data set and the interlinking, in section 5.2, we show the
querying of the interconnected datasets using DERI Pipes5,
and in section 5.3 we present some earlier work on Semantic
Widgets.

5.1 Data Layer
We first present a list of candidate software artefacts to be

converted to RDF and then we present a concrete example
to realise some use case described in section 2.

To practice what we preach, we have chosen the Sindice
software project6 as the reference software project. In Ta-
ble 1 the details regarding the respective LD2SD datasets

4http://esw.w3.org/topic/PushBackDataToLegacySources
5http://pipes.deri.org/
6http://sindice.com/

are listed, yielding more than 43,000 (43k) RDF triples in
total.

In order to apply the interlinking approach to our soft-
ware artefacts as listed in the previous section we examine
the RDF datasets in the following. An excerpt of an ex-
emplary RDF representation of some Sindice Java source
code is shown in listing 1. Further, an example of some

1 @prefix b: <http :// baetle. googlecode .com/svn/ns/#> .
2 @prefix : <urn:java:org.sindice.projects.wp.> .
3 :WPLinkExtractor a b:Class;
4 b:contained <> ;
5 b:uses <urn:java:java.awt.Component > ,
6 <urn:java:java.io. IOException > .

Listing 1: An exemplary Java RDFication.

RDFised Subversion logs is shown in listing 2. From the

1 @prefix b: <http :// baetle. googlecode .com/svn/ns/#> .
2 @prefix : <svn :// sindice.com/svn/> .
3 :bc275 a b:Committing ;
4 b:added <svn :// sindice/wp/ WPLinkExtractor .java > .
5 b:author :oanure .

Listing 2: An exemplary Subversion RDFication.

listings 1 and 2, we are able to conclude that both RDF
fragments are describing the same entity, “WPLinkExtrac-
tor.java”. We can interlink7 these two RDF fragments as
shown in listing 3 using an owl:sameAs property indicating
that these URIs actually refer to the same entity.

1 : WPLinkExtractor owl:sameAs
2 <svn :// sindice/wp/ WPLinkExtractor .java > .

Listing 3: An Interlinking Example.

5.2 Integration Layer
After RDFising and interlinking the software artefacts,

the next step is integrating the artefacts and query them.
DERI Pipes [16] are an open source project used to build

RDF-based mashups. They allow to fetch RDF documents
from different sources (referenced via URIs), merge them
and operate on them. In our case at hand, this involves four
major steps:

1. Fetch the RDF representation of the Subversion log,
JIRA8 issue tracker, Java source code, etc. using the
RDF Fetch operator9;

2. Merge the datasets using a Simple Mix operator10;

3. Query the resulting, integrated dataset with SPARQL11;

4. Apply XQuery12 in order to sort and format the data
from the previous step.

7http://www4.wiwiss.fu-berlin.de/bizer/pub/
LinkedDataTutorial/#RDFlinks/
8http://www.atlassian.com/software/jira/
9http://pipes.deri.org:8080/pipes/doc/#FETCH

10http://pipes.deri.org:8080/pipes/doc/#MIX
11http://www.w3.org/TR/rdf-sparql-query/
12http://www.w3.org/TR/xquery/

242

Software Artefact Data Format RDFizer Vocabulary Triples

JIRA Bug Tracker relational data D2RQ [7] BAETLEa 12k
Java Source Code structured data SIMILE RDFizerb SIMILE Java2RDF 22k
Subversion relational data BAETLE RDFizerc BAETLE 7k
Developer’s calendar RFC2445 [10] iCalendar to RDFd iCalendar e 1k
Developer’s profile FOAF/RDF system specific FOAFf 1k
Developer blog relational data SIOC exporterg SIOC [8]h not yet implemented
Project Mailing Lists RFC2822 [17] SIMILE RDFizeri SIMILE Email2RDF not yet implemented

Table 1: The Sindice Reference Software Project.

ahttp://baetle.googlecode.com/svn/ns/
bhttp://simile.mit.edu/repository/RDFizers/java2rdf/
chttp://code.google.com/p/baetle/
dhttp://www.kanzaki.com/courier/ical2rdf
ehttp://www.w3.org/TR/rdfcal/
fhttp://xmlns.com/foaf/spec/
ghttp://sioc-project.org/wordpress/
hhttp://rdfs.org/sioc/spec/
ihttp://simile.mit.edu/repository/RDFizers/email2rdf/

The output of the implemented pipe is then accessible via
an URI.

Let’s consider the situation described in the Issues not
fixed in due time use case (cf. section 2). The information
we need to process is contained in a JIRA RDF dump13

describing the issues assigned to a developer, and in the
the developers FOAF14 files. The state of an issue can be
Open, Closed or Resolved. We are interested in issues that
are Open and that were due yesterday. Further, we want
to display the issue summary and the author full name. In
order to retrieve the information we are interested in, we
apply a SPARQL SELECT query (listing 4) .

1 PREFIX b: <http :// baetle.googlecode.com/svn/ns/#> .
2 PREFIX w3s: <http :// www.w3.org /2005/01/ wf/flow#> .
3 SELECT ?issue ?author ?summary ?due_date
4 WHERE {
5 ?issue b:assigned_to ?author ;
6 b:due_date ?due_date ;
7 b:summary ?summary ;
8 w3s:state

<http :// ld2sd.deri.org/data/Bugs2RDF/Open >
.

9 }

Listing 4: SPARQL Query to Select Overdue Issues.

As a matter of fact, SPARQL is currently limited to fil-
ter only specific dates. However, XQuery allows some basic
calculations on top of the resulting SPARQL XML file, as
shown in listing 5. In the XQuery box (see Fig. 4) we can
specify the Content-type:xml/html, allowing us to format
the output using HTML and directly display the result in
a Web browser. The code snippet from listing 5 calculates
the yesterday’s date by subtracting one day from the cur-
rent date (lines 4-5) and renders the summary, author and
issue elements as rows in an HTML table (Fig. 3). In a
second step, the developer’s profiles exposed as FOAF can
be integrated. This would for example mean that the URIs
in the Author -column in Fig. 3 would be replaced by the

13http://ld2sd.deri.org/data/Bugs2RDF/RDFDump.rdf
14http://www.foaf-project.org/

1 for $b in .//*: result
2 where xs:date(xs:dateTime($b/*: binding[@name =
3 "due_date"]/*: literal))
4 = xs:date(xs:date(current -date())-
5 xs:dayTimeDuration("P1DT0H0M"))
6 return
7 <tr style="background: #CBE9C7; color:

black;">
8 <td> { $b/*: binding[@name =

"summary"]/*: literal } </td>
9 <td> { $b/*: binding[@name =

"author"]/*: uri } </td>
10 <td> { $b/*: binding[@name =

"issue"]/*: uri } </td>
11 </tr>

Listing 5: XQuery Filtering by Yesterday’s Date.

Figure 3: Pipe Result in a Web Browser.

respective developer’s full name. Further, by integrating
the developer’s profile data, one can be group developer by
team-membership (for example “core”, “API”, etc.) or ren-
der dependencies on other developers.

In the same manner the data from Subversion can be in-
tegrated in a further step in order to enable the breakdown
in terms of lines-of-code committed or the highlight which
packages have been effected by a certain bug-fix. Conclud-
ing, the more data sets are integrated, the richer the queries
may be.

A screen-shot of a pipe implementing the above example
is depicted in Fig. 4.

5.3 Interaction Layer
The interaction layer handles the interaction between the

integrated data as described above and the end-users, such
as developers. We have shown elsewhere [21] how to utilise

243

Figure 4: DERI Pipes.

the datasets using Semantic Widgets. With Semantic Wid-
gets, we provide a methodology to enhance existing Web
applications and deliver aggregated views of information to
end-users. These views are accessed by clicking buttons

Figure 5: Examples of Semantic Widgets.

which are injected into the DOM of a Web page. For ex-
ample, next to a bug, related information regarding bugs or
dependent bugs is displayed as shown in Fig. 5.

6. RELATED WORK
There are certain technologies in the open source com-

munity available to combine software artefacts. Existing
work related to combining software artefacts has been de-
scribed in Dhruv by Ankolekar et.al. [1], a Semantic Web
system for open source software (OSS) communities. It pro-
vides a semantic interface allowing users to see a detailed de-
scription of highlighted terms in the message posted during
bug resolution in cross-links pages. Their approach extracts
information about software artefacts using information ex-
traction techniques based on noun phrases, code terms and
references to other artefacts. Dhruv is specifically designed
for OSS bug resolution processes.

Another interesting, closely related work has been de-
scribed in [2]. There, a relational database is used to store
information related to version control and bug tracking data.
The source code meta model has been represented using the
Rigi Standard Format (RSF) [20], which is a triple based
specification language that can be easily customised [2]. The
integration of these three artefacts has been done by (i)

querying the relational database, and (ii) merging the re-
sult with the source model RSF files. In contrast to their
approach, we have provided a methodology to integrate the
candidate software artefacts by RDFizing and interlinking
them using linked-data driven approach.

In [12], Kiefer et.al. have presented EvoOnt 15, a software
repository data exchange format based on OWL 16. EvoOnt
includes software code, code repository and bug informa-
tion. They have used the iSPARQL 17 engine which is an
extension of SPARQL, to query for similar software entities.
iSPARQL is based on virtual triples which are used to con-
figure similarity joins [9]. Their approach differs from our
approach in that we have used DERI pipes to integrate and
query different software artefacts.

Existing work related to our use cases discussed in sec-
tion 2 has been described in [14]. Their approach uses
data from change management systems and heuristics are
based on but are limited to only two software artefacts, i.e.,
for software bugs and source code commits. Contrary to
their approach, we have added developer’s information from
blogs, mailing lists and developer’s profile to realize our use
cases.

In [5], Basili et.al. have presented Experience Factory con-
cept for software development. Experience Factory supports
the evolution of processes and other forms of knowledge,
based on experiences within the organization [5]. Experi-
ences are captured from FAQs, chat logs, emails and project
presentations. In contrast to their approach, we have pro-
vided a methodology to capture knowledge from candidate
software artefacts and interlink them to find a certain ex-
pertise.

Mylyn18 is a sub-system for the Eclipse IDE allowing mul-
titasking for developer and task management. It provides
the means render bug-related data in the Eclipse IDE for
developers to work efficiently in their development environ-
ment without having to log in to the Web based application
to update or create new bugs. The limitation of Mylyn
is that it works only with task repositories such as JIRA,
Bugzilla19.

Further, there are plug-ins20 which integrates Subversion
with bug trackers, for example Bugzilla or JIRA. The plug-in
displays all Subversion commit messages related to a specific
issue. To the best of our knowledge such Subversion plug-ins
are available for a few bug trackers.

Existing work described above somehow try to address
the integration or interlinking of different software artefacts
but some of them are desktop applications and some are
Web based applications and none of the above described
approaches address all the candidate software artefacts we
described in this paper (see Table 1). Still what is missing is
the existence of a generic framework where all software arte-
facts can be collected and queried that would allow project
managers to get an overall view of the software development
projects.

15http://www.ifi.uzh.ch/ddis/evo/
16http://www.w3.org/TR/2004/REC-owl-guide-20040210/
17http://www.ifi.uzh.ch/ddis/isparql.html
18http://www.eclipse.org/mylyn/
19http://www.bugzilla.org/
20http://subversion.tigris.org/links.html#
misc-utils

244

7. CONCLUSION & OUTLOOK
We have motivated and introduced Linked Data Driven

Software Development (LD2SD) as well as demonstrated its
value in a concrete setup in this paper. The basic idea un-
derlying LD2SD is to make the implicit links between
software artefacts found in software development—such
as version control systems, issue trackers, discussion forums,
etc.—explicit and expose them using RDF. By using LD2SD,
one enables a Web-scale integration of data, connecting to
the LOD cloud and enabling the vast reuse of information.

We plan to implement further LD2SD use cases to show
how one can benefit from it, especially when more than two
data sources are involved. We aim to overcome a shortcom-
ing of the current implementation, as it is not 100% linked
data conforming; in certain places we use URNs rather than
HTTP URIs. Additionally we will improve the interlink-
ing, yielding higher-quality and also more links between the
LD2SD datasets.

Acknowledgements
Our work has partly been supported by the European Com-
mission under Grant No. 217031, FP7/ICT-2007.1.2, project
Romulus—“Domain Driven Design and Mashup Oriented
Development based on Open Source Java Metaframework
for Pragmatic, Reliable and Secure Web Development”21.

8. REFERENCES
[1] A. Ankolekar, K. Sycara, , J. Herbsleb, R. Kraut, and

C. Welty. Supporting online problem-solving
communities with the Semantic Web. In Proceedings
of the 15th International Conference on World Wide
Web, Edinburgh, Scotland, 2006.

[2] G. Antonio, M. D. Penta, H. Gall, and M. Pinzger.
Towards the Integration of Versioning Systems, Bug
Reports and Source Code Meta-Models. In Electronic
Notes in Theoretical Computer Science, pages 87–99,
2005.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. G. Ives. DBpedia: A Nucleus for
a Web of Open Data. In The Semantic Web, 6th
International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC
2007, pages 722–735, 2007.

[4] D. Ayers. Evolving the Link. IEEE Internet
Computing, 11(3):94–96, 2007.

[5] V. R. Basili, M. Lindvall, and P. Costa. Implementing
the Experience Factory concepts as a set of
Experience Bases. In Proceeedings of the 13th
International Conference on Software Engineering and
Knowledge Engineering, pages 102–109, 2001.

[6] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked Data on the Web (LDOW2008). In Linked
Data on the Web Workshop (WWW2008), 2008.

[7] C. Bizer and A. Seaborne. D2RQ - Treating Non-RDF
Databases as Virtual RDF Graphs. In 3rd
International Semantic Web Conference, Hiroshima,
Japan, 2004.

[8] U. Bojars, J. Breslin, V. Peristeras, G. Tummarello,
and S. Decker. Interlinking the Social Web with

21http://www.ict-romulus.eu/

Semantics. In IEEE Intelligent Systems, 23(3):
29-40,, 2008.

[9] W. W. Cohen. Data Integration Using Similarity Joins
and a Word-Based Information Representation
Language. In ACM TOIS, pages 288–321, 2000.

[10] F. Dawson and D. Stenerson. Internet Calendaring
and Scheduling Core Object Specification (iCalendar),
RFC2445. IETF Network Working Group, 1998.
http://www.ietf.org/rfc/rfc2445.txt.

[11] M. Hausenblas. Exploiting Linked Data For Building
Web Applications. IEEE Internet Computing, N(N):to
appear, 2009.

[12] C. Kiefer, A. Bernstein, and J. Tappolet. Mining
Software Repositories with iSPARQL and a Software
Evolution Ontology. In Proceedings of the ICSE
International Workshop on Mining Software
Repositories (MSR), Minneapolis, MA, 2007.

[13] G. Klyne, J. J. Carroll, and B. McBride. Resource
Description Framework (RDF): Concepts and
Abstract Syntax). W3C Recommendation 10 February
2004, RDF Core Working Group, 2004.

[14] A. Mockus and J. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on
Software Engineering, Orlando, 2002.

[15] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
International Journal of Metadata, Semantics and
Ontologies, 3(1):37–52, 2008.

[16] D. L. Phouc, A. Polleres, C. Morbidoni,
M. Hauswirth, and G. Tummarello. Rapid
Prototyping of Semantic Mash-Ups through Semantic
Web Pipes. In Proceeedings of the 18th International
World Wide Web Conference (WWW2009), ACM,
Madrid, Spain, 2009.

[17] P. Resnick. Internet Message Format, RFC2822. IETF
Network Working Group, 2001.
http://www.ietf.org/rfc/rfc2822.txt.

[18] L. Sauermann and R. Cyganiak. Cool URIs for the
Semantic Web. W3C Interest Group Note 31 March
2008, W3C Semantic Web Education and Outreach
Interest Group, 2008.

[19] S. Softic and M. Hausenblas. Towards Opinion Mining
Through Tracing Discussions on the Web. In Social
Data on the Web (SDoW 2008) Workshop at the 7th

International Semantic Web Conference, Karlsruhe,
Germany, 2008.

[20] S. R. Tilley, K. Wong, M. A. D. Storey, and H. A.
Muller. Programmable Reverse Engineering. In
International Journal of Software Engineering and
Knowledge Engineering., pages 501–520, 1994.

[21] A. Westerski, A. Iqbal, G. Tummarello, and S. Decker.
Sindice Widgets: Lightweight embedding of Semantic
Web capabilities into existing user applications. In
Proceedings of the 4th International Workshop on
Semantic Web Enabled Software Engineering,
ISWC08, 2008.

245

Improving Searchability of a Music Digital Library
with Semantic Web Technologies

Paloma de Juan
Departamento de Ingenierı́a

de Sistemas Telemáticos

Universidad Politécnica de Madrid

Email: paloko@gsi.dit.upm.es

Carlos Á. Iglesias
Germinus XXI (Grupo Gesfor)

Email: cif@germinus.com

Abstract—Traditional search systems are usually based on
keywords, a very simple and convenient mechanism to express a
need for information. This is the most extended way of searching
the Web, although it is not always an easy task to accurately
summarize a natural language query in a few keywords. Working
with keywords means losing the context, which is the only thing
that can help us deal with ambiguity. This is the biggest problem
of keyword-based systems. Semantic Web technologies seem a
perfect solution to this problem, since they make it possible to
represent the semantics of a given domain. In this paper, we
present three projects, Harmos, Semusici and Cantiga, whose aim
is providing access to a music digital library. We will describe two
search systems, a traditional one and a semantic one, developed
in the context of these projects and compare them in terms of
usability and effectiveness.

I. INTRODUCTION

For some years now, we have been living in a world

where the Web has been dominated by plain textual contents.

These have been reachable thanks to search engines and

directories, which have been designed to work in a keyword

environment. The main problem of a keyword-based system is

ambiguity. Unfortunately, the meaning of a keyword can only

be determined by its surroundings (if available). The concept

of “context” can not be applied in this situation.

The same happens when we look for multimedia resources,

which are becoming more and more important lately. A picture

(or a video or audio file) can not usually be reduced to a set of

words1. In order for users to share this kind of contents, they

must provide some keywords to make them reachable by other

users. In this way, a conventional system can give access to

both textual and multimedia resources. There are hundreds of

relationships between the semantic descriptors used to tag the

multimedia resources. However, this information is not taken

into account when a search is processed.

The type of queries a keyword-based system can accept are

quite limited and semantically poor. A keyword in a text field

can mean anything. We have no information about its nature:

it could be the name of a city, an address, the title of a book,

a date, a person’s name or even an identifier. If we named

that text field, we could partially restrict the meaning of the

keyword, e.g. the keyword is a date. But what is the semantics

1It is possible to automatically extract features from multimedia resources
and use them as tags, but it is a costly process.

of this date? In the context of the projects this paper presents,

it could be the date a master class was recorded, the date a

composition was composed, the birth date of a composer...

We need to move to a new search paradigm that allows us to

ask more semantically complex questions, e.g. “I want to find

compositions by Nordic composers.”

Changing the search paradigm or, let us say, the system

interface, would not be enough to provide better results. We

could find a way to let the user express very accurately what

she is looking for but we will need to change the structure

that supports the knowledge of the system if we really want

to exploit the semantic relationships that link all the concepts

involved. An ontology may help us define rules that would

enrich the knowledge base with more information than what

is explicitly stated.

In this paper, we will present the changes we have

introduced in a traditional system in order to improve

its searchability both in terms of usability (changing the

interface) and effectiveness (changing the structure that

supports the knowledge base). We will also discuss how we

have progressively improve our system in the context of three

projects we have been or are involved in: Harmos, Semusici

and Cantiga.

In Section II, we will present our previous and current

work in the field, describing the three projects we have just

introduced. In Section III, we will describe MagisterMusicae,

the system built for Harmos. In Section IV, we will explain

how we have improved this system in the context of Semusici

and Cantiga. In Section V, we will describe Cantiga Search

System. An evaluation of the improvements of this system

over the one introduced in Section III will be conducted in

Section VI. Finally, we will review some related projects and

present our conclusions and future work in Sections VII and

VIII, respectively.

II. RESEARCH CONTEXT

A. Previous Work

The work presented in this article comes from the

experience in several projects related to music digital libraries

with the common aim of providing Internet access to music

resources hold by different institutions. The collection we have

been working with contains more than 700 audiovisual hours

246

of recorded master classes, property of Fundación Albéniz [1].

These resources have been tagged according to a set of tags

that define a vocabulary of pedagogical concepts, which we

will talk about later.

The first of this series of music related projects we

have been involved in was European eContent Harmos

project. Harmos produced a collection of audiovisual contents

belonging to the music heritage, where education was the

principal focus and the project’s main objective. The resulting

system is available at http://www.magistermusicae.com. We

will describe this system in the next section. The aim of the

second project, Semusici, was to improve Harmos system by

applying Semantic Web technologies. The main output of this

project was Semusici ontology.

B. Cantiga Project

The goal of the last of this series of projects, Cantiga, is

to investigate how Web 2.0 technologies can be applied to

the cataloging and search of music resources. In this project,

we are trying to develop a platform that will help users

annotate and find contents of digital libraries from different

music institutions. This platform is also intended to provide

a framework to help these institutions communicate (both

internally and externally) and interact, allowing them to create

workflows. These workflows should help automating such

tasks as translation, quality control and other administrative

procedures. The system will also support federated search

across all the libraries available.

In order to decrease the high cost of manual cataloging,

the system uses advanced tools to semi-automatically extract

features from the multimedia resources. This will help users

annotate these resources, which will make it easier to retrieve

them. We are also using Semusici ontology to classify the

resources. Using a formal structure to model the domain will

make searching faster and will increase the precision and recall

of the system. The reason is that users will be able to produce

more accurate queries and will get a whole set of semantically

related results.

III. MAGISTERMUSICAE SEARCH SYSTEM

MagisterMusicae, the system developed in the context of

Harmos, is a simple search system based on facets. This is

a search paradigm in which keywords are placed in slots2,

the so-called facets, that have a certain semantics. The main

interface consists on a series of drop down menus (as shown

in Fig. 1) that allow the user to search a master class given the

instrument it is oriented to, the teacher giving the lecture and

the composer who composed the piece of music being played

in the class. To simplify the process of searching, a teacher

can only be selected in case an instrument has already been

chosen. Also, a teacher has to be selected before chosing a

composer.

The advanced search interface (Fig. 2) allows the user to

select a series of keywords

2In this case, the user is asked to select values instead of filling text fields.

Fig. 1. MagisterMusicae Basic Search Interface

belonging to seven different categories: Instruments, Teachers,

Students, Concepts, Composers, Works and Movements. This

makes it possible to look for a master class without knowing

anything about the instrument it is addressed to. There is much

more information about the master classes available in the

knowledge base (dates, places, languages...) that can not be

used to build a query in this system. Including a tab for every

single category would probably have made users refuse the

system.

Fig. 2. MagisterMusicae Advanced Search Interface

Neither of the two search systems allow the user to type

any term of her choice, as they both provide a guided search

service. Internally, MagisterMusicae uses a relational database

to store the information (no ontology is used). The selected

keywords are used to build a simple SQL query which is

expected to deliver a list of master classes fulfilling all the

requirements the user has posed.

IV. IMPROVING SEARCHABILITY

The system we have just described has certain limitations,

which will be discussed in the next section. The following

subsections will present our work in improving the way users

access the contents of the Fundación Albéniz master classes

collection. We have been particularly concerned about the

effectiveness of the system in terms of number of results

delivered when the knowledge base has no explicit information

about some fact. This is a key point in Semantic Web

technologies, since the structures they propose have the ability

to make explicit knowledge that is implicit in a given domain

[2].

247

A. Applying Semantic Web Technologies

As we have already said, Semusici intended to improve the

results of Harmos by introducing Semantic Web technologies.

An ontology was built in order to support all the information

contained in Harmos database. As we will see later in

this section, most of the knowledge is hidden behind the

relationships between the concepts involved. An ontology,

by definition, represents a formal model of the common

interpretation of the entities and relationships of a given

domain (or, as Gruber said, “an explicit specification of

a conceptualization” [3]). Therefore, it has great powerful

retrieval and inferential capabilities. Another reason why we

chose this structure is that it makes it possible to easily

import information from external sources in order to enrich

the knowledge base.

The knowledge base we have been working on has two

distinct parts. The first one captures all the information that

can be useful to answer any query that is not directly related

to the pedagogical aspects of a master class. For instance,

“Show me all the recordings related to composers born in the

18th century.” This part of the knowledge base contains all

the information about the context of a master class, mainly

biographical and bibliographical data.

The other part of the knowledge base is the concepts

taxonomy. This taxonomy contains over 350 pedagogical

concepts that are used as tags to describe the recordings. It

was built from Harmos pedagogical taxonomy [4] following

a bottom-up strategy in order to redistribute the concepts in a

way their relationships could be exploited3. This taxonomy

aims to cover the whole spectrum of music practice and

teaching, focusing on pedagogical aspects, such as technique

(general or specific of an instrument), mechanics, musicology,

musical elements (rhythm, melody, harmony, form...), etc.

Semusici ontology consists of more than 150 classes and

almost 40 properties. We may distinguish four substructures:

• A Domain ontology. It includes classes

such as Composition, Instrument, Composer,

Teacher, and other concepts that characterize a

composition, such as Genre, Style or Form. It also

contains the class Person, representing those who are

involved in a master class or have composed a piece

of music, and the class Place, which will help us

geographically locate the master classes, as well as

indicate where a person was born or dead.

• The Instrument taxonomy, which is part of the domain

ontology. Instruments have been classified according to

the family they belong to.

Every instrument is an instance of a class representing

its family (StringInstrument, WindInstrument,

PercussionInstrument...). The taxonomy these

families conform has been modelled using SKOS [5].

• A Resources ontology. This ontology models the

multimedia resources that support the master classes

3The original distribution had very little semantic information and the
elements in each level were not always equally specific.

(mostly videos, but also audio files and documents)

and their features. It includes concepts such as Class,

Multimedia and its subclasses Video, Audio
and Document, and the properties title, date,

language, targetAudience, etc.

• The Concept taxonomy. This taxonomy contains the new

and improved distribution of the pedagogical concepts

assigned to the master classes and has also been modelled

using SKOS. The different categories are arranged

hierarchically under the class Concept. Properties such

as relatedTo, partOf and elementOf are used to

semantically relate concepts.

B. Linking the Ontology with External Data Sources

We also decided to include links to external data sources.

Our aim was to populate our ontology with information that

is not usually provided by the annotators, but is related to

the subject of the master classes. There are many sites that

offer a wide variety of RDF data sources, like Geonames [6],

MusicBrainz [7], CIA Factbook [8], DBpedia [9], etc.

We wanted to provide a way to allow the system perform

geographical entailments. We chose CIA Factbook as our

source. The CIA Factbook is an annual publication of

the Central Intelligence Agency of the United States with

information about the countries of the world. The Factbook

provides a summary of the demographics, geography,

communications, government, economy, and military of 266

countries, dependencies and other areas in the world.

We linked our geographical resources (instances of the class

Place) with the corresponding entries in the CIA Factbook.

This means we can now relate composers, compositions and

master classes in terms of their location. We could even

geolocate them and draw a map with all the items associated

to each place, in order to help users find information in a more

visual way. Moreover, this newly incorporated knowledge can

help us find resources in an area of any size, even if the only

information we have is the name of a city somehow associated

to those resources (being the place where the class took place,

the place where a composer was born...).

C. Alternative Search Paradigms

The purpose of the Semantic Web is to improve the way

users access the vast amount of information that is available

through the Internet. The systems providing this access have

made users change their natural way of expressing their need

for information, that is using natural language. At this moment,

the use of keyword-based queries is so extended that is difficult

to conceive any other mechanism of searching the Web. For

most people, it is very simple and fast to summarize what is

in their heads in a few words (which is actually very little

information about what they are looking for).

The main problem of keyword-based systems is ambiguity.

The correct meaning of a word can not be determined

without considering its context. Unfortunately, in a traditional

keyword-based system there is no such context. The key to

solve this is adding semantics both to the query and the

248

resources users are looking for. Of course this would mean to

restructure the whole Web, which is impossible. But applying

this to restricted domains can really improve the search.

There are many ways users can express their need for

information without losing the context. A popular paradigm

of search is faceted search. As we have already seen (as it

is the case of MagisterMusicae), we build the context of the

query by navigating through different categories, which are

usually arranged in a taxonomy.

In order to fully keep the context of the query, users should

express it in natural language. Unfortunately, it is very difficult

for a system to correctly process a natural language query. We

would then need a solution combining both the advantages

of semantics and keywords. The nearest solution to a natural

language processing (NLP) system would be a template-based

one.

In a template-based system, we associate a template to a

keyword (or a set of keywords). This makes it possible to

produce more complex queries. For instance, we could specify

that the date in the example we proposed in the Introduction

is “the date when the composer of the composition that is

referred to in the master class I am looking for was born.”

The only thing the user has to do is select the template that

best suits the semantics of the keyword she wants to search

for.

The number of templates should be limited to a few ones in

order not to overwhelm the users with too many alternatives.

Otherwise, they may feel they are choosing an option among

the available ones. Instead, we want to provide them with an

intuitive way to build the request they have in mind. Users

may be able to quickly choose the proper context to what

they know about what they are looking for.

V. CANTIGA SEMANTIC SEARCH SYSTEM

The prototype built in the context of Cantiga is a result

of all the improvements presented in the last section. Its

core is an extended version of Semusici ontology and its

interface is based on templates. We analyzed the current

state of the knowledge base and discarded those queries that

would not retrieve any content. This dramatically decreased

the number of possible templates. However, the underlying

ontology allows a much more diverse set of queries, based on

properties of compositions and composers that have not yet

been used. This will make it possible to include a whole lot

of new queries when the knowledge base grows.

We have adapted the traditional one-level model of

templates into a hierarchical one. Instead of using a single

level of templates, we decided to group the queries according

to common components of meaning, in order to let the

user combine these pieces and build a whole template. Our

intention is to give her the impression of being progressively

restricting the meaning of the piece of information she wants

to search for. Besides, we do not want to overwhelm her by

offering her too many options at a time, as we have already

said.

We built a tree with the fragments of templates. This tree

has up to 5 levels of depth. Each branch defines a restriction on

the meaning of the piece of information the user is looking for.

A total of 35 templates were defined, each of them represented

by a path that goes from the parent node to each leaf node of

the tree.

The parent node of this tree is “Which classes,” since that is

what the user is ultimately looking for. The first level contains

fragments of queries about the parameters of a master class.

For example, we find the piece “were held in X?,” which

means that the value “X” introduced by the user is not only a

place, but “the place where the master classes took place.” In

the case of “are addressed to X?,” “X” is “the audience for

whom the classes are meant.”

Whenever we found a parameter representing a complex

concept, e.g. a Composition, a new level was added to

the tree. Following this example, we created a second level

whose parent node is “refer to a composition.” This level

contains new fragments of queries concerning the properties

of a composition, e.g. “of the form X,” “composed by,” etc.

We proceeded the same way until every path reached a leaf

node, i.e. one that contained a field to be filled by the user.

This way, the user would build a template selecting the path

that best restricts the meaning of the term she intends to look

up, e.g. “Which classes refer to a composition composed by
someone born in X?” The interface of this system can be seen

in Fig. 3.

VI. EVALUATION

Cantiga seach interface proved to be much more easy-

to-use and intuitive than MagisterMusicae’s. First, in

MagisterMusicae the user was expected to select an instrument

before continue searching, which is pretty convenient in case

one is a performer or a music student. However, this is a huge

drawback if you are just interested in master classes taught by

a certain teacher or referring to a certain piece of music, no

matter what instrument they are focused on.

Of course there is the advanced search interface, but still

this is not the interface presented to the user in the first

place. Neither of MagisterMusicae interfaces allows the user

to provide any keyword of her own. She will need to find the

piece of information she already knows among hundreds of

options in order to select the proper value.

Cantiga search interface, on the other hand, provides a

simple way to build a query that is really expressed in natural

language. As opposed to MagisterMusicae’s case, the user will

not be selecting search parameters but the context of a keyword

she will be able to provide. In the worst case, the user will have

to make five selections (which is the number of levels of the

template tree) in order to complete a whole template. However,

the feeling she will get is the feeling of building a sentence

and not just adding conditions to a query. In short, Cantiga

template system provides a natural way that feels closer to

the way human beings express restrictions.

One thing that has not been considered in Cantiga is

conjunctive queries. While MagisterMusicae advanced search

249

Fig. 3. Cantiga Semantic Search System

allows the user to look for a master class establishing more

than one condition, Cantiga search system is only able to take

one piece of information provided by the user at a time. This

could be arranged by letting the user choose not just one

template, but any number of them (one for each known detail

about the master class she is looking for). For example, “Which
classes refer to a composition composed by someone born in
X and composed for an instrument of the Y family?”

About the coverage, we tested both systems in order to

check if they met the users’ needs. We took 73 sample queries

that were collected4 during the specification phase of the

ontology building process as a test set. We had previously used

those queries as competency questions [10] in order to select

the concepts the ontology was expected to formalize. This set

included all kinds of questions, from rather simple ones (e.g.

“I want to find classes taught by Argentinian teachers”) to very

complex biographical ones (e.g. “Find all the classes referring

to composers who used to work on commission”).

It turned out only 8 out of the 73 queries were considered

in the first system, whereas 18 were included among the 35

templates of Cantiga search system. Even if we increased the

number of facets, only 13 more queries could be processed

by MagisterMusicae search system. This limitation is due to

the lack of flexibility of the facet search paradigm, in terms of

semantics. It is impossible to express a complex relationship

in a system based on facets. For instances, we could never

build a query such as “Which classes have been taught by a

teacher whose first name is the same as Liszt’s?” or “Find

all the classes referring to works composed by the author of

‘Tosca.’ ”

The combination of a semantic layer and a template-based

interface is what makes Cantiga search system much more

powerful. That is why up to 30 more of the test queries could

be included as templates in this system. In fact, the reason why

there are yet 25 more questions that could not be processed

by this system is that they deal with rare concepts we decided

not to include in the ontology.

Perhaps the greatest value of Cantiga search system lies

in its expandability. Adding a new query to this system can

be done by just adding the corresponding template, whereas

4A survey was carried out among musicians and music students and lovers
in order to find out what kind of queries they would like to be able to ask.

adding a new query to MagisterMusicae’s involves not only

including a new facet, but also showing every possible search

value the user could introduce. And this would only be

possible assuming the semantics of the query can be expressed

using facets.

Finally, there is still another important reason why Cantiga

search system performs better than MagisterMusicae. Let us

say a user wants to look for master classes about strings

technique. The knowledge base may have no record of any

class related to the concept “strings technique,” yet the system

would be able to retrieve some results concerning “violin

technique” or “double bass technique.” The reason for this

is that the ontology contains information that links these

concepts. The mere fact of placing them in a hierarchy

represents some implicit knowledge that can be used in

situations such as this (i.e. a parent-child is inferred).

The interconnection with an external datasource such as

the CIA Factbook also allows to search using all kind of

geographical data. For instance, the system would provide

an answer to “Which master classes have taken place in

a European country?,” although such information is not

present in our knowledge base. We could even find “master

classes referring to a composer born in any country bordering

Austria.”

VII. RELATED WORK

In the past few years, there has been interesting research

on the field of semantic search. In [11], the possibilities

of using a view-based search paradigm to create intelligent

search interfaces on the Semantic Web are explored. This

thesis also presents a survey on semantic search related

projects. Five research directions are identified: augmenting

traditional keyword search with semantic techniques, basic

concept location, complex constraint queries, problem solving

and connecting path discovery. Our system would be part

of the third group. According to this analysis, the main

concern of this group is developing user interfaces that make

creating complex query patterns as intuitive as possible. Other

examples following this direction would be [12], [13] and [14].

There are some other approaches to template-based

semantic search. In [15], a non-hierarchical template system is

presented. This system uses templates of queries expressed in

natural language with variable parts for substitution purposes.

250

These queries correspond to real-life questions and problems,

just like in our case. The system was built into the JeromeDL

[16] system, a semantic digital library engine that uses

Semantic Web and Social Networking technologies to improve

browsing and searching for resources.
This template-based system intends to provide access to

publications, such as articles, books, etc., using only five

templates. We have to consider that the domain it covers is

much more limited than the one covered by Cantiga. The

semantics of these templates is rather simple. Therefore, in

this case it would not be necessary to split up the templates.

Still, a flat structure such as this would not be acceptable if

the number of templates increased. Another difference with

our system is that it works with conjunctive queries, as one

of the templates presents two slots to be filled by the user.
A more complex solution to semantic search is proposed in

[17]. They present an approach for translating keyword queries

to DL conjunctive queries using background knowledge

available in ontologies, i.e. formally interpretating keyword

queries. As we too did before, they discuss whether users

really want to express themselves using natural language or

maybe they find working with queries satisfying enough.
Finally, we can find some interesting web portals related

to semantic search in the specific domain of music resources.

The most important one is mSpace [18]. This service provides

access to musical contents using bibliographical information

associated to those contents, their classification and the

relation between the corresponding categories. There are also

some other interesting works on applying Semantic Web

technologies to digital libraries, like [19] or [20].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our work in the field of semantic

search through three projects whose purpose was to provide

access to a music digital library. We have compared two

different systems developed in the context of these projects

in terms of usability and effectiveness. The semantic search

system proved to be more flexible and powerful than the

traditional one, thanks to the use of an ontology and a

template-based interface.
We have proposed a solution to semantic search that

combines both the advantages of semantics and keywords. Our

hierarchical template-based prototype does not support user-

generated natural language queries, but it includes a set of

real-life questions that can be extended as needed. We will

keep on researching new ways of searching that do not entail

the drawbacks of a NLP system, but allow a more flexible and

intuitive way of expressing the semantics of a query.
Finally, we have enriched our ontology by linking it to the

CIA Factbook. We are currently working on linking it to other

DBpedia datasets in order to improve the coverage of the

system. We would also like to exploit a lexical resource such

as WordNet [21] to perform semantic query expansion.

ACKNOWLEDGMENTS

The research presented in this paper has been partially

supported by the Spanish Ministry of Industry, Tourism and

Trade under the National Plan of R&D, in the context of

Semusici (FIT-350200-2006-70 and FIT-350200-2007-44) and

Cantiga (FIT-350201-2007-8) projects.

REFERENCES

[1] “Fundación Albéniz.” [Online]. Available: http://www.fundacionalbeniz.
com

[2] M. Uschold and M. Grüninger, “Ontologies: Principles,
Methods, and Applications,” Knowledge Engineering Review,
vol. 11, no. 2, pp. 93–155, 1996. [Online]. Available:
http://citeseer.ist.psu.edu/uschold96ontologie.html

[3] T. R. Gruber, “Towards Principles for the Design of Ontologies
Used for Knowledge Sharing,” in Formal Ontology in Conceptual
Analysis and Knowledge Representation, N. Guarino and R. Poli,
Eds. Deventer, The Netherlands: Kluwer Academic Publishers, 1993.
[Online]. Available: citeseer.ist.psu.edu/gruber93toward.html

[4] C. Á. Iglesias, M. Sánchez, Álvaro Guibert, M. J. Guibert, and
E. Gómez, “A Multilingual Web based Educational System for
Professional Musicians,” Current Developments in Assisted Education,
2006.

[5] “SKOS Simple Knowledge Organization System.” [Online]. Available:
http://www.w3.org/2004/02/skos

[6] “GeoNames.” [Online]. Available: http://www.geonames.org
[7] A. Swartz, “MusicBrainz: A Semantic Web Service,” 2002. [Online].

Available: citeseer.ist.psu.edu/swartz02musicbrainz.html
[8] “CIA - The World Factbook.” [Online]. Available: https:

//www.cia.gov/library/publications/the-world-factbook
[9] “DBpedia.” [Online]. Available: http://dbpedia.org

[10] M. Grüninger and M. S. Fox, “Methodology for the Design and
Evaluation of Ontologies,” in IJCAI’95, Workshop on Basic Ontological
Issues in Knowledge Sharing, April 13, 1995, 1995. [Online]. Available:
citeseer.ist.psu.edu/grninger95methodology.html

[11] E. Mäkelä and T. Författare, “View-based Search Interfaces for the
Semantic Web,” Tech. Rep., 2006.

[12] N. Athanasis, V. Christophides, and D. Kotzinos, “Generating on
the fly queries for the semantic web: The ics-forth graphical
rql interface (grql),” 2004, pp. 486–501. [Online]. Available:
http://www.springerlink.com/content/4mlgmjqwffga031k

[13] T. Catarci, P. Dongilli, T. D. Mascio, E. Franconi, G. Santucci, and
S. Tessaris, “An Ontology Based Visual Tool for Query Formulation
Support.” Proc. of the 16th European Conference onArtificial
Intelligence (ECAI’04), 2004, pp. 308–312.

[14] L. Zhang, Y. Yu, Y. Yang, J. Zhou, and C. Lin, “An Enhanced Model
for Searching in Semantic Portals,” in In WWW’05: Proceedings of the
14th international conference on World Wide Web. ACM Press, 2005,
pp. 453–462.

[15] S. R. Kruk, K. Samp, C. O’Nuallain, B. Davis, and B. M. S.
Grzonkowski, “Search Interface Based on Natural Language Query
Templates.” Proc. of the poster session of IADIS International
Conference WWW/Internet 2006, 2006.

[16] S. R. Kruk, T. Woroniecki, A. Gzella, and M. Dabrowski,
“JeromeDL - a Semantic Digital Library,” in Semantic Web Challenge,
ser. CEUR Workshop Proceedings, J. Golbeck and P. Mika,
Eds., vol. 295. CEUR-WS.org, 2007. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/semweb/challenge2007.html#KrukWGD07

[17] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-Based
Interpretation of Keywords for Semantic Search,” in ISWC/ASWC, ser.
Lecture Notes in Computer Science, vol. 4825. Springer, 2007, pp.
523–536.

[18] “mSpace.” [Online]. Available: http://mspace.fm
[19] L. Hollink, A. Isaac, V. Malaisé, and G. Schreiber, “Semantic

Web Opportunities for Digital Libraries.” Proc. of 32nd Library
Systems Seminar of the European Library Automation Group (ELAG),
Wageningen, The Netherlands, 2008, 2008.

[20] S. Kruk, T. Woroniecki, A. Gzella, M. Dabrowski, and B. McDaniel,
“The anatomy of a Social Semantic Digital Library.” Proc. of
International Semantic Web Conference (ISWC), Athens, GA, USA,
2006, 2006.

[21] “WordNet: A lexical database for the English language.” [Online].
Available: http://wordnet.princeton.edu

251

Abstract

 The application of scientific methodology to clinical
practice is typically realized through recommendations,
policies and protocols represented as Clinical Practice
Guidelines (CPGs). CPGs have the purpose to help the
clinicians in their choices and to improve the patient care
process. Currently, there have been considerable efforts in
digital CPGs for their application to build Clinical Decision
Support Systems (CDSSs) in order to deploy them in several
hospitals.

The representation of guidelines and their introduction in
Clinical Information System (CIS) can lead to efficient
Clinical Decision Support Systems (CDSS), however this
poses several interesting challenges as it involves problems of
knowledge representation, inference, workflow definition,
access to unstructured databases of medical records and
others.

In this paper we describe the architecture of the Guideline
Engine, as part of the KON3 (Knowledge ON ONcology
through ONtology) project. We use a semantic web approach
– employing a domain ontology, a patient ontology, decision
rules and a Guideline Engine formed by a Process Engine and
by a Rule Engine. A Guideline Engine is a computer program
which can interpret a clinical guideline represented in a
computerized format and perform actions towards the user of
an electronic health record (EHR). We also report a specific
case study of the application of the model in oncology.

Index Terms - CDSS (Clinical Decision Support System),
Ontology, CPGs (Clinical Practice Guidelines), Protégé,
KON3 (Knowledge ON ONcology through ONtology), SAGE,
Process Engine, Rule Engine, EBM (Evidence Based
Medicine)

1. Introduction

linical Practice Guidelines (CPGs) are disease-specific
recommendations to assist clinical decision-making in

accordance with best evidence.
Several studies have demonstrated that health professionals

show more effective compliance with guidelines when they
are embedded in the knowledge layer of the CDSS and
provide a customized management protocol for the individual
patient at the point of care [13]. However, the sustainable and
successful application of CPG requires a sequence of
activities, in particular the CPG needs to be formally
computerized to enable it to be executed by computer systems,

and to be systematically incorporated within a CDSS.
CPG guided DSS [7][14][17] are particularly useful in

clinical settings where health different clinicians are required
to deal with complex or unusual cases with the aim of
standardize and share the knowledge about clinical treatments.
In such situations, CPG-based DSS can guide the clinician’s
actions and suggest proper recommendations.

In order to achieve a CPG-guided CDSS is necessary to (a)
encode CPGs in a structured format at semantic level
(ontology); (b) transform the CPGs inherent decision logic
into medically salient decision rules; (c) execute the
computerized CPG to achieve decision support; (d) ensure the
validity of the transformed knowledge and to provide trust in
the recommended actions.

In literature, there are several theoretical approaches in
CPGs systems, see for example [1] and [21]. On the contrary
there are very few papers describing experiences about the
realization of a CDSS that reports approaches, architectures
and implementation details including issues, limitations and
assumptions.

SAGE Project (Standard-based Sharable Active Guideline
Environment) [24][25], involves a Guideline Model, a Protégé
based tool for encoding, viewing and testing CPGs, the
knowledge deployment process and the knowledge execution
architecture. However no detail information about the
architecture and functionalities of its Execution Engine is
available in literature, except [20].

Another interesting work is reported in [12] suggesting an
approach and architecture for implementing a CDSS that
adopts SAGE Guideline Model. The followed approach
involves the translation of the guideline representations to a
proprietary knowledge model and to store them in knowledge
repository.

In order to be integrated into the clinical workflow, the
guideline based approach should depend on the specific
patient and pathology at the hand. This implies that CDSS
should be integral part of the CIS and the inference engine
must be linked with all available clinical records of the patient
[6]. Indeed, the wide-spread distribution and use of
computable CPG content can be improved if the research
community focuses on lack of standards for representing
medical knowledge, and on the prohibitive complexity and
expense required to adapt encoded guideline content across
the heterogeneity of data structures, semantics, and medical
vocabularies in use in the nation’s health care information
systems.

The main objective of the KON3 [4], a joint effort between

A Guideline Engine For Knowledge Management
in Clinical Decision Support Systems (CDSSs)

Michele Ceccarellia, Alessandro De Stasioa, Antonio Donatiellob, Dante Vitaleb

 a University Of Sannio, RCOST (Research Centre On Software Technology), Benevento, 82100 Italy
b Unlimited Software S.r.l., Napoli, 80143 Italy

e-mail: ceccarelli@unisannio.it, a.destasio@u-s.it, a.donatiello@u-s.it, dv@unlimitedsoftware.it

C

252

companies, university and regional government agencies, is to
obtain a sharable knowledge based on CPG at a reasonable
cost and in a form that can be integrated into the clinician’s
workflow. The main features of KON3 is the adoption an
Ontology for representation of guidelines in addition to a
registry based healthcare information infrastructure.

 Here we describe the main architecture and
functionalities of the central element of developed system
consisting into a Guideline Engine together with its
application within an oncology environment.

KON3 CDSS is a generic system, because it’s guideline
independent provided that it’s conforms to adopted Guideline
Model. If this requirement is met, so it’s possible to encode
end execute any guideline.

The paper is organized as follows, Section II describes
KON3 project and the adopted architecture. Section III
describes the KON3 underlying knowledge representation
while in Section IV, the architecture of the Guideline Engine is
described in details. Section V describes a case of study in
oncology environment, in particular in the Breast Cancer
environment. This guideline, designed and represented at
ontology level, is executed by the KON3 Guideline Engine.
Section VI contains conclusions and future works.

2. KON3

KON3 architecture is described in this section. As shown in

Figure 1, the KON3 CDSS is composed by:
• Knowledge Base, it’s the knowledge representation at

semantic level. It’s divided into:
o Guideline, it represents the guideline model;
o VMR (Virtual Medical Record), it represents the

patient data;
o Vocabulary, it contains information about the used

vocabulary;
o Expression, it is the module to represent the rules.

• Guideline Engine, it is the module to guideline
executions. It’s divided into:
o Process Engine, it’s the scheduler of the guideline;
o Rule Engine, it is the component that executes the

rules.
• Guideline Editor, it provides the necessary tools to

design a guideline.
The CDSS interacts with Electronic Health Record (EHR)

Module through some interfaces in order to get and set data in
patient’s EHRs.

The Electronic Patient Record (EPR) is the record of the
periodic care provided mainly by one institution. Typically
this will relate to the healthcare provided by an hospital to a
patient.

The EHR is a longitudinal electronic record of patient
health information generated by one or more encounters in any
care delivery setting. Included in this information are patient
demographics, progress notes, problems, medications, vital
signs, past medical history, immunizations, laboratory data
and radiology reports.

The CDSS, EHR and EPR modules share a vocabulary in

order to use a single terminology. This is a recurring problem
for the semantic interoperability. The main used vocabularies
are SNOMED [26] and ICD9 [9].

Figure 1: Kon3 architecture

2.1. Overall picture

An overall picture describing the context on which KON3

works is shown in Figure 2. KON3 Guideline Engine is depicted
with its knowledge base and its main modules. It is also shown
a Client Module that permits clinician to interact with EHR
and with KON3 too.

Figure 2: an overall picture

In a typical scenario, clinician inspects the electronic health

record of a patient through an user interface. He also interacts
with KON3 CDSS, in order to extract guidelines that should be
activated for the patient profile specified (Figure 2 (a)). During
this phase, KON3 interacts, through the VMR Module, with
EHR, in order to extract needed clinical data and populate an
internal VMR. After clinician and patient agree on a specific
health care drift, and execute a specific guideline. So KON3
CDSS influences health choices by clinicians in order to
improve health care, offering some disease-specific
recommendations (Figure 2 (b)).

3. KON3 Knowledge Base

3.1. Guideline Model
The SAGE Guideline Model is briefly described here for

illustration purposes. For a more detailed survey, see [23][25].

253

Figure 3: The SAGE Guideline Model

SAGE represents the evolution and aggregation of concepts,

solutions and approaches of previous works on guideline
modeling (including Asbru [15], GLIF3 [3][16], EON [23],
PROforma [5], GUIDE [19] and PRODIGY [11]). It advances
the state of the art by focusing on requirements that previous
models have not met simultaneously: (a) incorporation of
workflow awareness, (b) employment of information and
terminology standards, (c) incorporation of simple flow-of-
control standards, and (d) attention to integration with vendor
CIS. Here we don’t analyze in details the various works; for a
detailed survey see [2].

The Guideline Model is a computable knowledge
representation "format" for encoding the content and logic of
executable CPGs.

It conceptualizes CPGs as having metadata such as issuing
organization, enrollment criteria that defines its target
population and recommendation sets consisting of some usage
context (specific clinical circumstances) where some course of
actions are preferred over others (decisions about appropriate
health care).

The enrollment and decision criteria are written in terms of
an executable expression language that make use of guideline
concepts (linked to standard terminologies) and clinical
evidence (formulated as evidence statements) for selecting
particular action and that may make queries to external
knowledge sources. Guideline actions are defined in terms of a
set of action specifications (e.g., order laboratory tests or send
an alert message) that are linked to corresponding actions in a
CIS.

3.2. Standard Terminology

In order to support semantic interoperability at the domain
level, vocabulary standards are needed. KON3 uses the core
vocabulary resources of SNOMED CT, in order to support
semantic interoperability between CDSS and EHR.

3.3. Virtual Medical Record – VMR

A major obstacle in deploying and executing CPG is the
variability of electronic medical records and the consequent
need of adapters. It is also needed that a CDSS execution
engine can query and update patient data during guideline
execution regardless of data base organization. In order to
provide standardization of content at the information model
level, an idealized model of clinical record information

artifacts compliant with formalisms of the HL7 Reference
Information Model (RIM) [8] is adopted. This is called the
Virtual medical Record (VMR) [10]. The adopted VMR in
KON3 is composed by 13 classes: Observation, Encounter,
Problem, Adverse Reaction, VMR Order, Agent, Referral,
Appointment, Alert, Composite Clinical Model, Procedure,
Goal.

3.4. Expression Model

SAGE Guideline Model adopts GELLO [22] as expression
language; it was developed by the Clinical Decision Support
Technical Committee (CDSTC) of HL7. GELLO is a generic
expression language that can be used with any object-oriented
data model, but is a complex string-based language that is not
easy to write for someone who is not trained technically.

To make easy for guideline encoders to author computable
expressions, the adopted model introduces a number of classes
that organize expressions into typed data values, variables,
functions, and criteria. Each expression class corresponds to a
template of stereotypical GELLO expressions.

Expression Model supports four major types of criteria
templates: boolean combination, comparison, existence and
goal-satisfaction. In details criteria classes supported are:
• Comparison Criterion, a criterion used to compare an

instance or a set of instances of VMR classes - retrieved
according to a coded concept and a valid window - with a
predefined value;

• N-ary Criterion, a Boolean combination of other criteria;
• Presence Criterion, a criterion that checks for presence or

absence of coded concept in instances of a VMR class
within the valid window. There are five flavors of
Presence Criterion, one for each specific type of
instances (e.g. Observation), defining different behaviors:
Allergy Presence Criterion, Intervention Presence
Criterion, Substance Administration Presence Criterion,
Observation Presence Criterion.

• Goal Criterion, a criterion that checks if a goal of a
measurable clinical data is satisfied.

Figure 4: A guideline example design through a graph

4. KON3 Guideline Engine

4.1. The Process Engine
The Process Engine is a module whose purpose is to

execute, step by step, a guideline working as an action
scheduler.

A guideline may be designed through a graph. An example
of a guideline is shown in Figure 4; there are a set of useful
elements to design a guideline, such as:

254

• Context, it defines the guideline context. It’s possible,
through the context, to define constraints, events and pre-
conditions necessary to continue a guideline. It’s also
possible to entry in a subguideline;

• Action, it defines the current step to execute. The current
step may be a set of actions (Action Specifications). Also
the action may be formed by constraints and pre-
conditions;

• Decision, it consists of an alternative sets. Each
alternative is formed by rule sets. The Rule Engine
evaluates these rules and it returns a Boolean value. The
rules may be (A) Strict Rule Out, if the Rule Engine
returns a true value, then it means this alternative isn’t
feasible, else it’s; (B) Strict Rule In, if the rule sets with
true value exceed a fixed threshold, then the alternative is
strongly recommended; (C) Rule Out, if the Rule Engine
return a true value, then it means that there’s a
contraindication, however the clinician can select the
alternative; (D) Rule In, if the Rule Engine returns a true
value, then the alternative is recommended. However, if
there’s a false value, the clinician can select the
alternative.

Figure 5: A typical guideline structure

In general, an expected guideline is composed by a

sequence of Contexts. We adopt this convention in order to
manage correctly execution state to allow at clinician to entry,
in any point of the guideline. This necessity is derived by real
world, e.g. a patient should start a care in a hospital and should
continue it in another. So, we model these other entry points as
Contexts, too.

Process Engine traverses a guideline graph and manages its
single step. Process Engine executes each type of steps with
different behavioral, see Figure 5.

If it’s a Context, then the Process Engine controls if there
are conditions to evaluate. In this case it calls the Rule Engine
for evaluation of them. If the Rule Engine returns a true value,
then this step is activated, and so the Process Engine entries in
a possible subguideline. Also a subguideline is composed by
other actions and decisions.

If it’s an Action, then the Process Engine controls if there
are conditions to evaluate and, if required, calls Rule Engine.
If the Rule Engine returns a true value, then this step is
activated, and so the Process Engine manages the Action
Specifications. Action Specifications are action sets, in
particular they could be classified in: (a) Notify Action, which
purpose is to send a textual message to the clinician; (b)
Display Action, which purpose is to display expressions,

clinical data sets and supplemental materials; (c) Inquire
Action, which purpose is to interact with the clinician to get
some information about the patient; (d) Recommended VMR
Order, which purpose is to set interventions, referrals and
exams into the CIS.

If it’s a Decision, then the Process Engine controls if there
are conditions to evaluate and, if required, calls the Rule
Engine. The Process Engine evaluates first the Strict Rule Out.
If at least one is true, then the alternative is discarded, else the
other rules are evaluated. It also determines recommended
alternatives, according to Strict Rule In threshold and
highlights them. Finally all possible alternatives are returned
and proposed to clinician.

4.2. The Rule Engine

Since today there isn't a mature, complete and open source
GELLO expression engine accessible via programmable
interface, we choose to design and develop an ad-hoc engine.

The Rule Engine developed works on the expression classes
defined in the Expression Model, in particular on the
evaluation of the expression templates, called criteria. It is
possible to define a criterion as an access precondition on
Context, Action and Action Specification nodes and also as a
decision rule on Decision nodes, such as Strict Rule In, Strict
Rule Out, Rule In, Rule Out. Rule Engine supports and
executes all four major types of criteria templates. For each
class supported, there is an handler module that manages and
resolves instances of it. As mentioned above, an interaction
between Rule Engine and VMR module (and from VMR
module and EHR, too) is strongly needed, in order to retrieve
VMR instances needed to evaluate a criterion.

In a typical scenario, Guideline Engine asks to Rule Engine
to resolve a particular criterion on a specified patient, e.g. a
condition for evaluating if a particular Context may be
activated. Rule Engine retrieves needed clinical data for
specified patient from the VMR and resolves it. The output
could be true (condition satisfied for the patient) or false
(condition unsatisfied for the patient).

4.3. VMR Module

This module manages patients data collecting them into the
VMRs. When asked by Rule Engine, it retrieves data for a
specific patient from EHR, then it extracts only needed data
and populates VMR. Finally, it offers the VMRs to Rule
Engine.

5. A Case of Study: DCIS (Ductal Carcinoma In

Situ)

The case of study described here, is extracted and modeled
from a real guideline from NCCN1 Clinical Practice
Guidelines in Oncology v.2.2007. The specific guideline is the
Ductal Carcinoma In Situ (DCIS) one.

The National Comprehensive Cancer Network (NCCN), a
not-for-profit alliance of 21 of the world’s leading cancer
centers, is dedicated to improving the quality and effectiveness
of care provided to patients with cancer. NCCN Member

1 NCCN web site: www.nccn.org

255

Institutions develop resources, such as guidelines, that present
valuable information to the numerous stakeholders in the
health care delivery system.

DCIS refers to the most common type of noninvasive breast
cancer in women. In situ, or "in place", describes a cancer that
has not moved out of the area of the body where it originally
developed. With DCIS, the cancer cells are confined to milk
ducts in the breast and have not spread into the fatty breast
tissue or to any other part of the body (such as the lymph
nodes).

The clinical scenarios and guideline logic are encoded into
a computer interpretable model of guidelines, using a Protégé
[18] plug-in, called Graph Widget.

Figure 6: The DCIS guideline encoded.

The DCIS guideline, as shown in Figure 6, is composed by

four main phases:
• WorkUp (“DCIS startpoint”);
• Primary Treatment (“After Workup”);
• PostSurgical Treatment;
• Follow Up.

WorkUp
The guideline startpoint, the first possible Context, is “DCIS

startpoint”. The specific precondition is “Female and DCIS”,
it is composed by two criteria: (1) A “DCIS diagnosticated”
for this patient, (2) and “Patient is Female”. So the
precondition is true only if either are true. If this Context is
enabled the execution could start with the subguideline. In
“DCIS startpoint” subguideline there is only an Action, called
“Workup Actions”, that involves notifies that an historical and
physical examination, titled “H&P to do”, and a “Pathology
Review” are necessary. Also two recommended clinical order
titled “Mammography” and “Determination of Tumor
Estrogen” should be performed.
Primary Treatment

The second phase is Primary Treatment (PT), it is
composed by the subguideline shown in Figure 7. The
precondition for access here is composed by the precondition
for “Workup Action” Context and the criterion “Workup
Action Completed”.

Last one criterion is in order to analyze the VMR and verify
that the needed clinical exams are performed in a predefined
valid window.

In PT subguideline there is an inquire step (“Some
evaluations” Action), for asking to clinician about DCIS
details, such as DCIS grade and DCIS unicentrism. After a
Decision step is performed, in order to select the
recommended Primary Treatment for the patient. Here
clinician responses and other VMR data (e.g. DCIS
dimension) are evaluated. A summary of the underlying rules
in “Dimension Evaluation” is shown in Table I.

After this step, clinician and patient select the preferred
Primary Treatment from the list (Action DCIS0_PT_SMALL
or DCIS0_PT_BIG). Examples of possible Primary Treatment

for DCIS0_PT_BIG are ”Mastectomy without lymph node
dissection with/without reconstruction” and “Lumpectomy
with RT”.

Figure 7: Primary Treatment in DCIS

 Strict Rule Out Strict Rule In Threshold
DCIS0_PT_SMALL DCIS

DIMENSION
>= 0.5 cm

Is unicentric?
Is low grade?

1

DCIS0_PT_BIG DCIS
DIMENSION
< 0.5 cm

- -

Table 1: Alternatives in Primary Treatment

PostSurgical Treatment

This phase involves the post surgical treatment, see Figure
8. In particular is determined if a specific PostSurgical
Treatment is needed (“DCIS PostSurgical Treatment” Action),
or if only the risk reduction therapy is needed, see Table II.
This is determinate evaluating previous chooses, inferred from
VMR (e.g. “Mastectomy” preferred as choice in Primary
Treatment phase and detected as performed in VMR). Either
actions are composed by some Actions Specifications that
involves notifies to clinician, displays data, displays
supplemental materials (such as other guidelines, link to
publications, evidences, statistics), etc.

Figure 8: Subguideline in PostSurgical Treatment Context.

 Strict Rule Out Strict Rule In Threshold
DCIS0
PostSurgical
Treatment

- PT: Lumpectomy and RT
PT: Mastectomy

1

DCIS0
Reduction
Therapy

- - -

Table 2: Alternatives in Postsurgical Treatment

Follow Up

The prerequisite to access into this Context is a criterion
composed by the PostSurgical Treatment precondition and the
termination condition of the previous phase. This termination

256

condition is inferred from the VMR in a manner quite similar
to previous ones.

In the FollowUp subguideline the required follow up exams
are shown to clinicians specifying administration time
interval, amount and frequency. The exams are determinate
based on previous chooses, such as choices made in Primary
Treatment and PostSurgical Treatment (e.g. if treated with
Tamoxifen during PostSurgical Treatment, then display also,
as supplemental material, “NCCN Breast Cancer Risk
Reduction Guideline”).

6. Conclusions and Future Works

In this paper KON3 CDSS is described, focusing on the
execution of a CPGs in oncology environment (in particular in
Breast Cancer environment). However, the described system
could also be applied to other domains where the activities are
based on a design that entails a decision logic that is structured
in an algorithmic format. In general the algorithmic format
should be formed by Action Step, Decisional Step, and
Context Step.

We described a Guideline Engine composed by a Process
Engine and a Rule Engine to satisfy above requirements. The
Process Engine is the actions scheduler, while the Rule Engine
evaluates the criteria contained in a guideline. These criteria
are used in order to define conditions and decision rules.

Future developments will involve: (a) CPG Process
Authoring. It will provides a Graphical User Interface (GUI)
that permits to model and formalize CPGs; (b) CPG Rule
Authoring. It will provides a GUI that permits to define rules
in a CPG; (c) Use of EBM (Evidence Based Medicine). KON3
purpose is to provide a complex system to support clinicians
in their decision during a process care. The support is not only
through a guideline execution, but also through EBM theory.
Through EBM, the clinician is supported through a set of
documents, experiences, statistics.
7. Availability

All the project documents, as Guideline Model
documentation, KON3 architecture documentation and the
prototype are available on our web site
http://www.koncube.org.

References
[1] Beal T, Heard S., “An Ontology-based Model of Clinical

Information”, MEDINFO2007, IOS Press.
[2] Boxwala A., Greenes R.A., Shortliffe E.H. et al., 2000, “Toward

Standardisation of Electronic Guideline Representation”. MD
Computing, vol. 17(6), p. 39-44.

[3] Boxwala AA, Peleg M, Tu SW, Ogunyemi O, Zeng Q, Wang D,
et al., 2004, “GLIF3: A Representation Format for Sharable
Computer-Interpretable Clinical Practice Guidelines”. J Biomed
Inform. Vol. 37(3), p. 147-161.

[4] Ceccarelli M, Donatiello A, Vitale D, 2008, “KON3: a Clinical
Decision Support System, in oncology environment, based on
knowledge management”, 20th IEEE ICTAI 08, Vol. 2, p. 206-
210.

[5] Fox J, Das SK., 2000, Safe and Sound, Cambridge: MIT Press.
[6] Goldstein M.K. et al., 2004, “Translating Research into Practice:

Organizational Issues in Implementing Automated Decision
Support for Hypertension in Three Medical Centers”, Journal of

Am. Med. Informatics Assoc., vol. 11, p. 368-376.
[7] Gray J. A. Muir, 1997, Evidence Based Healthcare, W.B.

Saunders Company.
[8] HL7 Reference Information Model (RIM),

www.hl7.org/Library/data-model/RIM/modelpage_mem.htm
[9] ICD9, http://www.who.int/classifications/icd/en/
[10] Johnson PD, Tu SW, Musen MA, Purves I, 2001, “A Virtual

Medical Record for Guideline-Based Decision Support”, Proc.
AMIA Symp., p. 294-298.

[11] Johnson PD, Tu SW, Booth N, Sugden B, Purves IN, 2000,
“Using Scenarios in Chronic Disease Management Guidelines
for Primary Care”. In Overhage, JM editor. Proc AMIA Symp,
p. 389-393.

[12] Kim J Ah, Cho I, Kim J., 2008, “CDSS (Clinical Decision
Support System) Architecture in Korea”. In Proc. International
Conference On Convergence and Hybrid Information
Technology; p. 700-703.

[13] Lobach, D.F., Hammond, W.E., 1997, Computerized Decision
Support Based on a Clinical Practice Guideline Improves
Compliance with Care Standards. Am J Med.

[14] McGlynn E.A., Asch S.M., Adams J., Keesey J., Hicks J.,
DeCristofar A., and Kerr E.A., 2003, “The quality of health care
delivered to adults in the United States”, New England Journal
of Medicine. Vol. 348(26), p. 2635-2645.

[15] Miksch S, Shahar Y, Johnson P., 1997, “Asbru: A Task-
Specific, Intention-Based, and Time-Oriented Language for
Representing Skeletal Plans”. In: Motta E, Harmelen, F. v.,
Pierret-Golbreich, C., Filby, I.,Wijngaards, N., editor., KEML-
97, p. 9-1-9-20.

[16] Peleg M, Boxwala AA, Tu SW, Zeng Q, Ogunyemi O, Wang D,
et al., 2004, “The InterMed Approach to Sharable Computer-
Interpretable Guidelines: A Review”. J Am Med Inform Assoc.,
Vol. 11(1) p. 1-10.

[17] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R.A. Greenes, R.
Hall, P.D. Johnson, N. Jones, A. Kumar, S. Miksch, S.Quaglini,
A. Seyfang, E.H. Shortliffe, and M. Stefanelli, 2003,
“Comparing computer-interpretable guideline models: a case-
study approach,” Journal of the American Medical Informatics
Association, Vol. 10(1), p. 52-68

[18] Protégé Official Web Site, http://protege.stanford.edu/
[19] Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C,

Mossa C., 2000, “Guideline-Based Careflow Systems”. Artif.
Intell. Med., Vol. 5(22) p. 5-22.

[20] Ram Prabhu; Berg David; Tu Samson; Mansfield Guy; Ye Qin;
Abarbanel Robert; Beard Nick, 2004, “Executing clinical
practice guidelines using the SAGE execution engine”. Studies
in health technology and informatics, 107(Pt 1) p. 251-5.

[21] Siddiqi J. et al., 2006, “Towards and Automated Diagnosis for
the Treatment of Colon Cancer: Position and Progress”, IEEE
AICS2006, IEEE Press. http://www.match-project.com/

[22] Sordo M, Ogunyemi O, Boxwala AA, Greenes RA, Tu S., 2004,
“GELLO: An Object-Oriented Query and Expression Language
for Clinical Decision Support”. Summary Report prepared for
OpenClinical.

[23] Tu SW, Musen MA., 1999, “A Flexible Approach to Guideline
Modeling”. Proc AMIA Symp 1999; Hanley & Belfus, Inc., p.
420-4.

[24] Tu SW, Campbell JR, Glasgow J et al., 2007, “The SAGE
Guideline Model: Achievements and Overview”. J Am Med
Inform Assoc. 2007 Vol. 14(5), p. 589-98.

[25] Tu SW, Glasgow J, 2006, “SAGE Guideline Model Technical
Specification”, SAGE Consortium.

[26] Wang AY, Sable JH, Spackman KA, 2002, “The SNOMED
clinical terms development process: refinement and analysis of
content”, Proc AMIA Symp 2002, p. 845-849.

257

�
������	
���

�
�����������������������������	����#���*�\�	
��	��

�^`����������������^�^	�^
�����������������������������
�����
����������������������
��������������������������������
��
�����������������������
��
��

�
�������

����� ������ ��������� �� �������������� ������� ��
��
�����
��
������� ������
�����
�� ���� ����
�����

������
�
���� �������� ���������� ������� ��� ��������� ���� ����
����������
�������������
��� ����
����� ����������� ����
��
������� �����������
����������������������������������
�
� ������ �����
������ ������ �������
�� �
� ���� �������� �
��
������ ����
������ ������ ���� ���� ��������� ���� �����
��
��������������
����������
������
���������������������������
����� ��� ������ �
� ���� �

������
� ������� ��
������ ����
����������������

������
����������
����������������
��� ������������ ������� ����������� �	������� 	� 	������ �� !�	��
�� �	����� ���	��� ��� ���"���
�� ��	� 	����	���	�� ��� �����
�������� ������ 	����	���	�� �������� ����� ��� ����� "���� ��
��	
�� ������� ��� ����������� ���� ���������� �	������� ��	�
�������
�� !��������
� ���� ��	�����
� ����	� 	����	��� "�	���
�����������������	
������������������������	������ ���������
��� ���� "���� ��� ���������� ���������� ���� ���� ��� �����
���"���
�����#������������������������������������"�������
����������� ����� ������ ������������		���������������������
� ���
����� ����������� �	������ �� ��������� ������������ �����
����������� 	�!����� �� ��	�� 	������ ����	� ����� ��� ����
���"���
��������������������������������	��	���������������
�$ ��
��	��
� ���� ��"� ����� ���	��� ���� 	����	��� ���������� ����
��!�����������	�����
�����	��������������������������������
�������� �	������� �� �¡ �¢ �� £�"�!�	�� "���� ������
� 	�������� ��������������¤������� �������������
� ��� ����
��	������
�����%�����
�����&����	���� '�%&(��
)����#��������������� �� '	���!���� ��� ���� �����(��$�	�������
���������������������$���������������%&������������ ��	�
������������������	�������
¥�� ���� 	���	�� ����
� � ���"���� ����
���� ��� ���������
������������������������������������!���������������	�
����
��� ��������� ����������� ��� ��� ����	����� ���� � �������
��������¦�� �������� ���� ���� ��������� ����������� �$�	�����
����������
�¦������� ���� ��	��
� ��� �������������� �����
����� ��� �������� ����!����� ��� ��� �$ ��	�� �� ��"� �	����
������
�����������������������	� 	��������������������������
���������	����	����������������
�¦������� ����������������
��������������
%�	� 	� ����� ���������
�� ��� ������� ������ ��� ����
"��
����
� ��	�§� �����$������� ��	�� ��� ���� ������
�� ����
��!��
���"��
���������$������������$�����	������������$����
��� ���������������	������ ��� �����$ �	�� ���
��� ����� ����� ��	��

���	� 	��������!���������������������	��!�	��������	������
��� ������ �����	�������
�� ��� ���� �$ �	�� 	���������� �����
����� �����
����������
������������	���
��	��!�	�� ���� ����	���� ��� 	����	��� "�	��� ��� ���������
�����������������������	������� �	��
���	����� ��������� ����
�������� ��� ���� ���������� ��� ������ ��"� "�	��� ��!��
����
	����� ������	����	����� ������������� ������� 	���������
����$������� *���� ��� � ���� ��+ � "����� ����
���� ���
�����������"��
��� ��� ���� ��	��� ������	���$�	�������	��� ����
�������	�������������������������������£�"�!�	��������"�	���
�����¦�� ����� ����� �������� ���� ���������� ����� �����
����!����� ��� ��� �$ ��	�� ��� � 	����� ��������
� ����
��������� ������	����	�������������������������������������
�����������
���� 	�������	� ��� ����� � �	� ��� �	
���*��� ��� �����"���
�������� ¨� �!�	!��"�� ��	� � 	����� �����$��� �������� +�
 	������� ���� ��� ���� �$�	������� ��	����������� ª� ������	�����
���� ��������"��
����
���	������������¡�������������"�����
����������� ��� ������� #�������� �������� ¬� �����	�*��� ��	�
 	� ����� ���� ��������� ����	�� "�	�� 	������� ��� ��	�
��������������������
�������"������
,��������������
%�	� �������!�� ��� ��� ��!��� � ��� � 	�����"������ ���	���
�
�	��� �����������	�����������������������
���
���	�������
�����������������������������	����������	�����¦�����������
#�
�	�� �� ����	����� ����
���	��� �	��������	�� ��� ��	�
����������¦����������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
#�
�	����\���	����	��������	�������	�����������¦���������
�
¥�� 	�����������	��������	�¦����� �������������������"��
�
�������������

-�����������

��������������

.	������������

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

����� .���	��� ®��"�	�� ��	�
	� ���

������������������/������������

�0 � ¯ �

�����!��	����	

0"� ¯"�

����������	�������� ������	
�����������

���������

1*�
�����

�������
������
�

�

,

#

2 3

�� ��
%�� ��

�����®��"��)�����������	��'�®)�(�
4����"��)�����������	��'4)�(�
®��"��#	�#�������	��'®#�(�
4����"��#	�#�������	��'4#�(�

-�����������

��������������

.	������������

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

����� .���	��� ®��"�	�� ��	�
	� ���

������������������/������������

�0 � ¯ �

�����!��	����	

0"� ¯"�

����������	�������� ������	
�����������

���������

1*�
�����

�������
������
�

�

,

#

2 3

-�����������

��������������

.	������������

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

.	������������

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

---- ---

����� .���	��� ®��"�	�� ��	�
	� ���

������������������/������������

�0 � ¯ �

�����!��	����	

0"� ¯"�

����������	�������� ������	
�����������

���������

1*�
�����

�������
������
�
�������
������
�

�

,

#

2 3

�� ��
%�� ��

�����®��"��)�����������	��'�®)�(�
4����"��)�����������	��'4)�(�
®��"��#	�#�������	��'®#�(�
4����"��#	�#�������	��'4#�(�

�� ��
%�� ��

�����®��"��)�����������	��'�®)�(�
4����"��)�����������	��'4)�(�
®��"��#	�#�������	��'®#�(�
4����"��#	�#�������	��'4#�(�

258

,����5�����������	
�
�����	�� 	������"���������%�����
�����'%(����	����	�*���
��� �� ���� ��� ����� ��� ')(� ���� �� ���� ��� 	���������� �� '&(�
���"���� ������ ����� ���� 6���� ����� �� '�� ∈�)(� ���
	� 	�������� ��� �� ��	�� ������� °�����±� ���� �� ���� ��� ����
����������6���� ��	�� ���	� 	�����������������������	�������
"��	����������	��������������
�����	����
)²7����¨�� ³�� ��8�� ��²'�������� 7����� ��¨�³����8(�� ���²'��������
�����¨�³�� ������(�� #�	� �$�� ���� ��²'���������� ��� ��	�� 7������
���������������	�����������������	���������	������������������
��	�� ������������������	���������	8(����������²''�����������
��	(�� 7'����(�� '����������� ��	(�� '����������� �����	����� ��	(��
'����������������	(��'�������������������	�������	(8(��
#�	������� ���� 	���������� �� '&(� ����� ������� �	� ����� '������	(�
"��	�� ��� ���� ��� �	�� �"�� ����� ��� 	������� ��� 	�
� 7�����
���������
���������
���������
�������

{ }�� �	�������� ���������	���������������` � �⊂ × ×
�������������"��
��"���������������	���������� ���
�������
���9�����
���	�������� ���������	����������	��������
'�����	���������
�������)����	���������(��
������
���9������ ������������ ���������	����������	��������
')����	�����������������
������������	�(��
µ���������
������¶����¶��������
������µ��
������
����9�����
����������� ���������	�����������	��������
'�����������7������������8����������:���
������������(��
������
����9���������� ��"�������� �	�����������	������ ��
'������������
�����������(��
µ��������
������¶����¶��������
������µ��
,�,��-�����������$"�	���$�%%�
.�� ���������� 	�!�������� �����
���� ��������¦�� ��	����	�� "���� ��� ����� ��� "��
�� ����
��������¦�� ��	���� ������ ��� ����� ��� ���	� ������� �$�	�����
���� !�	����� ��������� ��� ������� '������� ����	�����
���"�	��� ���� �	�
	� ��(�� .���	�� ��	� ����� ���� ��� ������
��� ��������"�� 	���� ���� ��� �"�	���� �����"�� ���� ����
��������	� ������� ��� \.�6� �¨ � ��� �	��	� ��� � ���� ����
��������¦�� ��� ������� ����� �������� #������� ����
�	����

�	� ������ ������ ������� ��� ����
�� ��
	����������
����
�	��'������!�	����(���������������������������
,�#�����������������$"�	���$,%%���
��� ���� ����	���� ��� ������������ � 	������ ���� �$�	�������
��	�� ��� ����� ������ ��� ���� �%&�� "���� "�� �������	�
������������� �������� ����� �%&� '������
��� ������	��(�����
���	���	������"������������������	���	���������� ��'	���!����
��� ���� �����(� �$�	���� ��� ���� ��������� ���������$������� ���
�����%&������������ ��	�������������������	�������
�������	�������������� 	�������������	�� 	�����"������$�
������	������� ����������������	���	�����������
����
�"������	����!��"�����������������
������������ ��	�������
��������� ��� �����®��"��)�����������	�� '�®)�(� "�����
��	��� ���� ������
�¦�� ����� ��� �$�����
� ��� ���� ��$�� ��� ���
����$���� ���� ������� "��� 	� 	������� ���� 4����"��
)�����������	�� '4)�(� "����� ��������� ���� ��	��� �����
���$�������������
�����������������	�����
���	�������������

,�2��;��	����	�������$"�	���$#%%�
�����$�	������ ��	��� '�®)���4)�(��	�� �����"��
������ ���
����	����� ���� �	�#����� ��	���� ������ �	�#����� ��	��� �	��
��!����� ���"���� ���� '�(� ���"��#	�#�������	��� '®#�(�
"����� ��������� ���� �	�#����� ������
�¦�� ��	��� ���� '¨(�
4����"��#	�#�������	��� '4#�(� ����� 	� 	������� ����
�	�#�������	����������������$�����������������
���
,�3������������	���������$"�	���$2%%�
����� ��� � ��������� ��� ���������
� ���� ����	������� �����
�
�	��� 	�!����� ������ ��� �	��	� ���
���	���� ��� �����������
����	����
�������������������������������
,�<��������	
������������$"�	���$3%%�
��� �	��	� ������������ ������
�¦�� ����	����� ���� ��� ��	����
�������"���
��	� 	���������������������
���"���$ ���������
����	������� �$�	������ �	��� ����������� �	������� ���� ��	��
 	���������"�����������������4#����
�������	�������	��������� � �	��"�����������������	������ ���
����� ���������
�� �������
�� ������ �
�� �

������
�
��
������
�� #�	� ��	���	� �������� ������ ���� ����������
��
�����������	����	����	���		�������= ������· ��
#�����������������
��	�� �$�	������� ��� �� �"�� ����� 	������� '�(�� �$�	���� ����
�®)������'¨(�����	���������4)���
�����	�� 	����������$�	��������������
�¦������� ���"������
���� !����	� � ���� ������ ��¨ � "����� �����	��� ����
����������������	������"��������#��	�����
¥����!����� �����������������������������
��������������
��� ����������������� ����#��	����� ���� ��	������������
�¦��
����� ���
6���� �������� ��������� �� ��� �� ����� ��� ������ ����� �	��
�	��	����������������� ��	����������$����²'�����¨�³����(���
6��������� �������� 	�������
�"�����	����

�	�����	��	����
	���	�� ��	� ����� ���� ��� ���� ��	�� ���� '���²'�������� �����¨�³��
������((�������������*�����	����
������

{ } { }
{ }

' � (

� �

�� �̈���� � �� �̈����
�� �̈�������' � (

' � ����� (' � ����� (

��$���� � �

� � � > � � � >

�
 � �
>
 � � �

� � � ��� ��� ���

=

+ + + +

∈ ∈
∈ − −

=

��

#�	� �� ����� �� �� ��� ����� ��� �� ��	���� ���� ������	����
���������� � ��� �� ��������� �� ��� �������� ��� ���"���

� ¨

� ¨
7� ��� ������ 8

' � '���� ��7� ��� ������ 8((' � (
� � �

� �� � � �
 �
�

��� � � ��� � �
∈

= = �
���� 	������ ��� ��	�� �$�	������� ��� ���	���!��� #�	� �����
�������� ����������"�� ��� ���� ���� ���	��"���� ���� ���� ���
������
�¦������� ����%���� ��������!��
�����	������ �����!��
���	�� �	�� 	� ����� ��� ���� ������� ����� ®��"������������
��	��'®)�(���
�� ' � (¸?� '�(�� � ��� � � � &��∃ ∈ ∧ � ∈ �
£�"�!�	���� ��������������������� ��!�	���®)���¥����� ���
�	��	�� ���������)�����������	�����"�� '�®)�'�((���"��
�������	��������"�����������������������
*��� ��� �������	�� �� ����������� ���� ¹®)�'�(¹²��"���� �¸���
¥���������	��	�������®)�'�(�����
������������ ��º���

259

 ���'����(���������������
����� ����� ����	�� "���� ���� ����� �� ��� ��������� "���� ����
����	� ®)�'�(�� ������ ����� ����� �� "���� ��� #��������� �����
�®)�'�(��
����	��	� �������	�������	����������� ���������� ��'���������
�	� �����(��"�� ���� ���� ��������� ���������
� '���������
9�
��
��
���� ��
�������
����(��*���������� ����������� ��	�
����� ����� �� �� ��� ®)�'�(�� ���� ����� ��� '���³�� ��(� ���
®)�'�(��������!�������	���	�����������	���"��������
�� ®)�'�(*���������'���(²� ���������'���(�� �∃ ∈ ∧ ∅� �
����������������	�������������������"��
�����	�����
�� ' (���������'���(' (� &�� � � � �&�� �∃ ∈ ∧ � ∈ �
 ��,'�(���������������
��������������	��"����������� �����������	���	���������
��	��� "���� ��� ������ ���� ���� ����	� ®)�'�(�� ���� ����� ��
"����� ���� ���� ��
����� ���	��"���� ���� �����������"���� ���
#���������������®)�'�(���
�� ®)�'�(*���������'���(¸? ������'���(�� �∃ ∈ ∧ � �
��� �	��	� ��� ����	����� ���� ����� ��"����� ���� ���� ��
�����
���	�� ��� ���� ��������� ��� "�� ���� ���� ��������� ��$���	�
'	������9� ��
�������
����(�� ��$���	� ����������� ��	� ��
���� ��� ����� ��� '���� �¨�³���(� �� ���� ����� �� ����� ���� ����
��
��������	���
���������¨�	�������������������"��
�����	�����
� ®)�'�(�������'���(²��$���	'*���������'���((®)�'�(� �� � �∃ ∈ ∧ ∧ � ∈ �
�������������	������	���
��*��������������	�¦�����	���������
®)�'�(��"�������#����������������4)�'�(��
#�������� "��
���	���� ���� �����®��"��)�����������	�� '�
�®)�'�((� ���� ����4����"��)�����������	�� '4)�'�((�
������������������
�®)�'�(²� �®)�'��(

�� �∈�
4)�'�(²� 4)�'��(

�� �∈�
������ �$�	������ ��	��� '�®)�'�(�� 4)�'�((� �	�� �����
"��
���������	��	��������	����������� �	������������������
��� ������������� ���� ������� ���� ��	���"���� ��� �	����� ����
�����������	�������
2��;��	����	�������
�������������������	�¦��"��
������������	�������� 	�������
�	�� ������ '�(� �����	� ��� ���� �������� ��� ���� ���������
�ª ��? � ��� ������������ ��$�����������������	�'¨(������	����
���� ������������ ��� �������� ���� ��	����	�� ��� ���� ����� ���
��	����	��� ���������� ��ª �� £�"�!�	�� ��������� ��� 	�	����
��������������������
�������� � �	�"�� 	� ��������"���	��"��
����
�������#���
"����� ������ ����� �������� ���� ����		����� ��� ���� ��	��� ����
��������� ���� ���� ���������� ��� ��� ������ "�� ���� �"��
�����	���� ����)���������	����	��¥��
�� ')�¥(� ���� ����
���������"��
��'�¥(���
2���� �����������������;��	���
¥�����������������������	�#���������������������	���	�������
��������������)�¥����������	������������������)�¥�������
����� �������� ���� ��	�¦�� �	�#������ ���� �� �������� ����

������������������������ ��������		�������#�	��$�� ���� ����
��	�� ���°�����±�"����
�!�����������	����� �� �	������'¼�?(�
��� ���� ��	�� ����� �$����� ��� °��	�
	� ��±� '¼¨(�� ���� ��������

�!��� ���� !�	����� ������������� ����� ��� "��
��� ���� ��	�¦��
����������� ������ ������������� "�	�� ����	������ ��� ���
�$ �	��������"�������¬ �������������������+ ���������������
�	�����������������
��������	���� ��	������	���
�!�����	�����
'"���� �� ��� ����� � (�� ����)�¥'�����(� � �������	��������� ����
���� ��� ���� ��������¦�� "��
���� ����������� "���� ���� �����
����		��������������	��������������������
��������������������"��������"��
���	�����

�

' � (' � � (
�

)

�
�

��* �) � �) � 	
=

= ×� �¥������������������

� �'�����(�� ���� ����		����¦�� �����	� ��� ���� ��	�� �� ���
��������� �� ��� ��������� �� "���� �∈7������� ���"�	����
����	����� �	�
	� ��8��

� ���� "��
��� ��� ���� �������� �� ��� ���� ��	�� �� ��� ��
�����������'�����������(��

� ¹�¹��� ���� �����	� ��� ����		������ ��� ��	�� �� ���
������������

��������)���������������"��
����
�
����/���������� ;��	��������������

������ �?�
®��"�	��� ·�
.���	���� =�
��	�
	� ��� ¨�

�
2�,����������;��	���
��� ����� ��� ��"�� �	�� ����	������ ��� �����®)�'�(� ���������
"�� �$ ����� ���� ������
�¦�� 	���������� �� ��� ���������� ����
���������¥��
���� *��� ��� 	������ ����� �� �®)�'�(� ���
��� ����� ��� �� ���� ��� ������
�¦�� ����� ��� ������ "��
���������� ���� ���������¥��
��� ��� ����� �� ���� ���� ����
���������¥��
��������	���������	�	������������� �������"��
���� ���� ����������¥'���(� ��� 	� 	���������������¥��
���
��� ����� ��� ���� ���������¥��
��� ��� ���� ����� ��)�
�� ����� ��� ���� �����
����� ����
����� ����
���� ����
����
�����
��� ��� ������"�� ���� ���� ����������*���9� ��
������ ��
������
�������
��������
������������������������	���
�!�������� ��
����������������� ���'�����¨�³���(�������	���������� �	������
����� ������������
�	�����
�����������
��� ���������� ���� �¥'���(�� "�� � ��� ���� �����"��
�
����	�������

 *���'���)®�'�(�&(
)�¥'
��(¥&

' � (
*���'���)®�'�(�&(

�* �) ∈
×

=
�

�
¥�����

7�� �	���������� ����������	�����������������8`∈
��¥&��"��
�������������	��������� �	���������������������
������	���������� ��'�����
���������
���������
��������
����
���(��¥&�������!������������	��
���?��� ���

260

#�	� ��
�!��� ��	�� ��� ���� ��	�� �	�#������ '��� '��� �((� ���
����	������������������������������#�	�������
��'���(²�)�¥'���(½�¥'���(�
%����������	��#	�#�����������	����������������������������
������������� ����"��
�������� ��	���� ���������������� '¥�

'����((��#�	������ ' � (' � (��' (�* �) �� �) ��= ⋅ �������������������

¥��	�� �� ��� ���� ������ �����	� ��� ���������� ���� ���
'����������	�#�����(�������������	������������������	��
������		��������
3������������	���������
.�� ����� ������"�� ��!����� �������� ����� �� �������®��"��
#	�#�������	�� '®#�'�((� ������� ��������	� ����� �� �������
4����"��#	�#�������	�� '4#�'�((�� ���� �����������

���	������������������"�� �������
3�������
+�����¯"�$5%�
����� ��� � ����� ��� ��� ��������� ���� 	������ 	���!���� ��	���
����
� ���� ���� ��� 4#�� '�(�� � #�	� ������ "�� ����� ����� ����
����	!������� ��� ���� ���	� ��	��
����� ����� ���� ��� 4#�� ���
����� �������������������������	�����������������"�����������
��� ���
�� "�����	� ��� ���� ��	�� ��� 	���!���� �	� ���� ���� ���
������� ����
� ���� ����� ��� �����"�� ��	���� ������ "�����
������ ��	�������������������	�������
3�,��@��������������������������������
¥������������ ����®#�'�(��"���� ������"�����"�	���������
����������	������	���!����������� 	�!����� ���������
���	����
����	���!�	�������	����������������	�������
<�� ����������
��� ����� � �	�"�� ��������� �� ��������������� � 	����� ��	�
	� 	�������
����������������������������������	�������������
� 	�������� 	������������	������!����
�������	���
����
�����	������������������������������
�� ����"��
����
� ��� �� ��	�� �� ����� ���� �������� ���� ��	��
�	�#���
�� .���������� 	������ ��������� ���� ����� ���� ������
�¦��
����� ��� ���� ����� ���� �	�#����� ��	��� ������������ �$���� ���
���� ������
�� ���� "����� �	�� 	���!���� ����	���
� ����
��������	���	��
¥����� ���� ������� ��� ����������� ��� �� ���������� "�� �	��
��		������"�	���
� ��� ���� �!��������������	����������� ��
�������� ��	 ��� ��� �	��	� ��� �����	�� ���� 	���!������ ���
���������� "�� �	�� �� ��������
� ���� ������
�� ��	��������
�������
<��,����������
�� � ������� ���� \�		����)��� \�	����� ���� ������� #��� � ��������� .���
���	��
�����°%������4���������£�£�����
������� 	�!��&����!���
6A����!�����±�� ��� ���� ��$�� &6�	��!���)����	����� �&6)�
\���������	����'�	��\��(��¨??+��
�
�¨ �)�����
����� £��� �����	��� ���� �������!��� ®��� �������¾��
°\.�6�� .� #	���"�	�� ���� \	� ������ ��!��� �����
6�!�	������� ��	�&������1*������������. �����������.)*¿?¨��
'¨??¨(��
�

�+ � ������������ 6��� ��#����)�� °����$��
� �� ¥��� ����� "���� ��
��	������
���	�������������
�±��������6��	
��
����������¥����
�%���	��������1���¡=¬?+�¨¡¡�?�� ��=���·¢��¨??¨��
�
�ª � 6	������� ���� .������� .��� �����		�� £��� ������� ��� °#	���
��.�����������
��
������ ��$�� ����������� �����±�� ��� �	�������
�� ��� ����)%*�1\�
¨???�¥�	���� �������������.���������������������
����)��������
�����������	��®��£������'6���(���
�
�¡ �#��	�����)������ ���������.�����#��°%��)�������
���$������
���£� ���	����� ��� �� 	�!�� ���� &��	��!��� ��� �6�*�16�
���������±����)%&�.�¨??¬��
�
�¬ � \������ ��� °����$������ ��� �
��� "��±�� &� �	�� ��� �6.�
���!�	�������1��������··=��
�
�¢ �®����� ������.	�������.���£�� ��	������� ����� �1�����������
������������������	������*�����&�����	���\��������	����	��%��
°�������� ��	� .���	���� &��	��!��� ��� �6�*�16�)���������� ���
#����������\��������°������1����� ������������������¡??�¨¡¡���
���� �"������ ��$�� &6�	��!���)����	����� '�&6)� ¨??+(�� 6�� ���
¾��	��������*��������������'��(��4�.��1����� ��ªª��ª¡?��¨??+��
�
�= � ���������� ���� \�	
��	��� #�À¾�	�� ���� ���!����� � 	�����
�¦����������� ������#��� ���� �	������� ���������#������ � ���������
�����������������À��������6¦¨??·��°�����Á�����¦����	����������
�������
����� 6������#��±Â� ��� �¨� ��� �ª� �!	��	� ¨??·��
£������������������
�
�· � ���������� ���� ���	�� ���� \�	
��	��� #���À����$��
� ����������
�	������"��������	������
��%	�������%�����
�±������)�.�¨??·���
����	��������� �����	����� °����	������� ����)�������������
��������
���� ���� .������������±Â� ���� ¨??·�� £���������
���������
�
��? � ��	������ ���� ®�������� *�� �À%�����
�������� ����	�������
&��	��!���À�� ����	�������
����� �����ª�������	���������)����	�����
��� ����	������� ���� �������
���� ��������� ���1� ·¡+�¬?¢��¨¨�+��
 �¨+�¨=��¨??+��
��
��� � �����#����� ��� À����$������ ��� ��$���� ������$� �	�
����$������ ��� ����� ���� ��� ���� ������������À�� ��Á��� ��� �����	����
���������1���������������������. ��#�������&�������4��!�	����
&���������¨??¨��
�
��¨ ���������\��°������.&��&��	��!������������6$ �	���������
.��������� ��������� �	�������
�� 6�
��"����)������� 1�� ��
�	�������£�����
�
��+ �����������*1���\���	������)�����	���������� ±&� 	�������
�
�������£� ���%¥*� ����"�	��� �� �����������������
	�����±�� ���
#�	�������	���������¥�	���� ����#�	���������������®��"���
��
&� 	������������ ����������� "���� ®&� ¨??ª�� �� ���¨�� ¥������	��
)�������
�
��ª � Ã�	
�������� £��� ��������� ��� À����	�� ��� ������	���
������#��� ��	� �¦����$��������������������������	����	�À�����
�¨Á���.�����	����&������������Ä���	��	����)����¨??ª��
�

261

Automating Business Intelligence Recovery from a Web-based System

Jian Kang, Jianzhi Li, Jianchu Huang, Yingchun Tian and Hongji Yang
Software Technology Research Laboratory

School of Technology
 De Montfort University

LE1 9BH, Leicester, England
{jkang, jianzhili, jhuang, ytian, hyang@dmu.ac.uk}

Abstract
The theme of this paper is to explore a path to recover

business intelligence automatically from a Web-based
system to business intelligence base. It is a reverse
engineering task of decomposing the program code,
eliciting business intelligence data, and representing the
recovered results. The process is composed of four
procedures: business intelligence base decomposition;
programming style-based program partition; business
intelligence concept recovery; and formal business
intelligence concept analysis.

After a brief introduction of major issues covered by
the paper, the state of art of the area coined by the
authors as “business intelligence elicitation from a Web-
based system”, in particular, the kinds of business
intelligence that can be elicited from a Web-Based system
and the corresponding reverse engineering technical
solutions are presented.
Keywords: Business Intelligence Recovery, Web-Based
System, Reverse Engineering, Program Comprehension,
Program Partition, Concept Recovery, Formal Concept
Analysis

1. Introduction

The properties of modern human life are continuously
digitalised, e.g. publishing, advertising, and shopping. It
indicates that computing is becoming more and more
universal. With the further development of computing
technology, a mobile retailer, for instance, which is
concentrating on marketing mobile services and devices,
might require computing modules, such as Operator and
Producer News Monitoring, Service Usage Monitoring,
Customer Preference Investigating, and Mobile-Plan
Analysing etc., to be integrated into an existing Web-
based system. This kind of computing system is named
“online mobile retailing system”. The act of analysing the
system, developing and integrating new modules to meet
the business requirements is called software evolution.

However, the evolution task is more than analysing,
developing and integrating. The overall scenario is the
“online mobile retailing system” is mainly composed of
three parts: retailing web site, service running system, and
a database; each part serves a business role in mobile
retailing; and the retailing business data is exchanging

among different parts. To ensure the software evolution
task is successful, one of the key issues is that business
intelligence, which is embedded in the retailing system,
must be recovered and reused to meet the requirements
for new module development and integration.

Business Intelligence (BI) [16] is not a new concept in
software industry. It is a mature technology to monitor,
analyse and enhance business performance. The concept
of Business Intelligence Recovery (BIR) [9, 8] was
introduced into software reverse engineering by Kang et
al. They refers business intelligence recovery as one of
the software reverse engineering activities to have
business intelligence data, algorithm, mathematics model,
physics model and business logic. Kang et al. argue that
business intelligence recovery would help to enrich
business oriented program comprehensibility for a rule-
based reverse engineering system, e.g., business rule
extraction system [7]. By business intelligence recovery,
it would leverage reverse engineering from source code
and program structure level to higher abstraction levels
like component model level, software architecture level
and requirement level.

This research strives to bring reviewer closer to the
goal of Automating Business Intelligence Recovery (BIR)
from a Web-based System. It vertically elicits business
intelligence from system to Business Intelligence Base
(BIB). The overall recovery process of BI is composed of
four procedures: BIB decomposition, programming style-
based program partition, BI concept recovery, and formal
BI concept analysis. Nonetheless, the BIB glossaries must
be discussed in advance. Figure 1 is an example of BIB
about “one customer’s mobile service-consuming in last
quarter of 2008” in the mobile retailing system.

This BIB is grouped by BI cubes, in which monthly
service-consuming information of the mobile account is
recorded. It is the research goal to have this BIB by BIR.

In this BIB, there are:
� 3 Dimensions: time dimension, Service dimension, and

Usage Dimension, e.g., z{|w|}V� �{gc~f}V� {nfracpf}V�{�nbof}���
� 4*3 Member: four members in each dimension, e.g., z{nfracpf}V��{~cq�gf}V�{gf�g}V�{tbgb}V�{lfe}���
� 3 Levels of time dimension: year, season, and month, e.g., z{gc~f}V��{~sqgh}V�{lff�}V�{tb�}V�{~cq�gf}���
� 16*4 Sets: a BI cube is a BI set, e.g., z{gc~fV� nfracpfV��nbof}�m�

262

Figure 1: A Business Intelligence Base (BIB) of
Online Mobile Retailing System

Each business intelligence cube contains two sets of BI
information: BI concepts and relationships of BI concepts.
As it can be imaged, the entire BIB is multi-dimensional.
In Figure 1, there are approximately 128 sub-dimensions
for service-consuming analysis. Thus, it uncovers the first
task in BIR: BIB decomposition, see Section 2.

The paper is organised as follows: Section 2 introduces
the decomposition method to partition BIB into business
intelligence slices; Section 3 introduces a programming
style-based program partitioning method to partition
program code into function-oriented program modules;
Section 4 introduces BI concept recovery method; Section
5 introduces BI concept analysis to model recovered BI
results; Section 6 presents a case study of Auto-BIR in an
online mobile retailing system; Section 7 is related work;
and Section 8 is conclusion.

2. Partitioning Business Intelligence Base into
Business Intelligence Slices

The idea of partitioning business intelligence base into
business intelligence slices and using the business
intelligence slices to recovery business intelligence from
source code is in accordance with Finite Element method
[3] commonly used in mechanical engineering fields. In
Finite Element method, a finite number of basic
structures, such as triangles and circles, are used to
approximate more complex shapes in the real world.

Since the unnecessary relationships between business
intelligence concepts are removed as the business
intelligence base is partitioned into business intelligence
slices, the size of overall business intelligence base is
significantly reduced. This means that it can get a cost-
effective business intelligence base and benefits will also
be gained when recovering business intelligence from
source code using this business intelligence base.

Figure 2 presents an example of simplifying BI of
“Mobile-Plan Agreement and Assignment” to a piece of
business intelligence slice of “contract agreement” on

base of Strong Relationship (SR) and Weak Relationship
(WR) about a concept: “file”.

Figure 2: Simplification of a BI of “Mobile-Plan
Agreement and Assignment”

In Figure 2, business intelligence slice of “contract
agreement” is proposed as a cube of business intelligence
base. The “simplification” algorithm is not presented
since business intelligence base partition can be done off-
line and it is not of the top research priority.

3. Business Intelligence Oriented Program
Partitioning

Following Section 2, Section 3 introduces a proposed
method of program partitioning. In BIR, a good match
between program modules and business intelligence slices
is one of the successful criteria in research. Therefore, this
part of research needs to pay more attention.

Let � be a source program; ���V� V ��� be a set of
program modules that are the result of partitioning of ��,
each ��$V ! % " % � contains independent business
intelligence. Let ��� be a Business Intelligence Slice; ����V � V ���� be a set of partitions of ���� , each ���$V ! % � % � contains independent sub-business
intelligence from each other.

This program partitioning method generally involves
three steps:

1. Find all the possible ���.
2. Compute the coupling and coherence of each proposed ���
3. Choose program modules that have good value of BIS

coupling and coherence
As it can be imaged, the computational effort of BI

oriented program partition is extremely large. In order to
reduce the computational effort, a new heuristic rule-
based method has been sought to build efficient program
partitioning algorithms: programming style based
program partitioning.

It is identified that three groups of feathers in source
code can be used to distinguish different programming

263

styles. They are style of comments, style of names and
style of indentations.

Let ���V � V ��� be � different groups of
programming styles; let 1.$V/V ! % " % �V ! % � % �1.$ be
the different programming styles within group�" , where �1.$ is the total number of programming styles in group ".
If only one programming style 1.$V/ in one group ��$ is

allowed to use to distinguish business intelligence slices,
it will have totally �1.� Y �Y �1.� different signatures
to distinguish business intelligence slices.

Theoretically, if all the possible groups of
programming styles and all the possible programming
styles within each group are listed, business intelligence
slices will virtually be able to distinguish from source
program. In practice, some commonly-used groups of
programming styles will sufficient to partition a source
program into reasonable small program modules, see
Table 1.

A program will go through a partitioning process
which mainly has two stages, namely, programming style
sampling, and program cutting, see Script 1, Script 2 for
algorithms of program partition and Note.

4. Business Intelligence Concept Recovery

Given a source program, the major clue for the
existence of business intelligence slice is the names of
variable types and procedures and certain program
constructs implying business intelligence relationships.
However, the names embedded in source program often
occur as abbreviations and interpreting certain program
constructs as some business intelligence oriented
relationships may not always be appropriate, which makes
business intelligence embedded in the source program
ambiguous.

The first step at Section 4 is to collect all the procedure
names and variable type names from the program module.

Once this has been done, concept recovery rules can
then be applied to each of these names to recovery

business intelligence concepts. These concept recovery
rules are classified into direct matching, regular atomic
name recovery rules, irregular atomic name recovery
rules, regular compound name recovery rule and irregular
compound name recovery rules. The belief of a perfect
match is 1, see Table 2.

Note:
1. stands for the operation of assignment
2. <= stands for the operation of adding an element to a set
3. Programming Style (PS)
 Current Program Line (CPL)
 Sampling Function (SF)
 Sample Interval (SI)
 Pointer of Sampling Function (Sp)
 Name of Samples (SN)
 Cutting Points (CPs)
 Programming Style for Single-line Comment (PSSC)
 Programming Style for Multiple-line Comment (PSMC)
 Programming Style for Naming of Variable (PSVN)
 Programming Style for Naming of Procedure (PSPN)
 Programming Style for Un-nest Indentation (PSUI)

xs~~fqgn� �g�df�!j� k�����k�� �g�df��j� kk���� �g�df��j� k�����������k�� �g�df��j� k����������k��b~cqo� �g�df�!j� xsqqfpgcsq�ustfxsqafqgcsqn� �g�df��j� xsqqfpgcsq�ustf� �g�df��j� xsqqfpgcsqustfvrsorb~� �g�df�!j� e��wqtfqgbgcsq� �g�df��j� ee��� �g�df�qj� e�e��
Table 1: Programming Styles

v��� q�ddxv��� !���� q�dd��w�y�xv���? y�^�]��v�]��`u�^]�����v��� irsorb~~cqo�ng�df�cq�xv������w��in�cq�v����y����������v�{in}�� v�{in}�I !����y��y���������v���� in���������v�{in}�� !����y�^w�
����w���xv��~st��w���� '���y���������������� v����������v��� q�dd����y�^w�
����xv��� xv��I !y�^��w�y

 Script 1: Program Style Sampling Algorithm

�i�� !xvn�� q�dd��w�y��i��? ���^]����w�� ������{�i}�{v��x}��? ���{�iI!}�{v��x}���]�������� � ������{�i}�{v� �}��? ���{�iI!}�{v� �}���]������� � �������{�i}�{v�¡w}��? ���{�iI!}�{v�¡w}���]�������� � ������{�i}�{v�ux}��? ���{�iI!}�{v�ux}���]��������� � �����{�i}�{v�v�}��? ���{�iI!}�{v�v�}���]��������� � �����{�i}�{v��w}��? ���{�iI!}�{v��w}���������y����������xvn��� �i����y�^w������i�� �i�I�!y�^��w�y
 Script 2: Program Cutting Algorithm

264

 Programming Style for Nested Indentation (PSNI)

Once the concepts in a program module have been
recovered, the relationship between these concepts must
be generated also. This is done in formal concept analysis
model where formal concept lattice is used to extract
relationships from program constructs such as a
sequences of procedures calls, a single procedure call,
construct definition, database schema, etc. Since program
constructs can indicate relationship at only structural
level, these recovered relationships are named raw
relationships. This part of research has been discussed in
past works. Interested reviewer could refer to [10, 11, 12,
18, 19, 20].

5. Business Intelligence Modelling via Formal
Concept Analysis (FCA)

Let us call a tuple of sets, �¢V�V �� , that verify � £ �¢ Y ��, formal context. ¢ is usually called a set of
objects and � a set of attributes. The binary relation �
gives the incidence of the set of attributes on the set of
objects. It is them possible to define the following
applications, in whose definitions the notions,
respectively, of the set of attributes that certain objects
possess, and the set of objects that certain attributes
possess, can be seen: ¤j�¥��� ¦ �¥�¢�� § �¨ � z� © �
�ªV�� © �V «ª © ¢�¬j�¥�¢� ¦ �¥���� § � � zª © �
�ªV�� © �V «� © ��

These two definitions allow the following definition to
be made, that reflects the informal notion of concept as a
set of objects and attributes that are mutually determined.

Definition: Let us call a pair ��V �� © �¥��� Y ¥�¢�
that verifies �¨ � � and � � � , a formal concept.
Normally, the first set in the pair will be called the
concept extent and the second, the concept intent. The set
of formal concepts associated to a context �¢V�V �� will
be denoted as ¢�¢V�V ��.

On ¢�¢V�V �� a partial order relation can be defined
through the following formula where ��V ��V ��®V �®� ©¢�¢V�V ��: ��V �� % ��®V �®� ¯ � £ �°�¯ � ± �°�

From this definition, the following result can now be
proved. Theorem (Fundamental for concept lattice): The
set ¢�¢V�V �� with the defined partial order relation forms
a complete lattive in which the lowest and highest are
given bu the following formulas where T denotes a set of
indices, not necessarily finite, and «) © ²V ��³V �³� ©¢�¢V�V ��:

´��³V �³�³©µ � ¶·�³³©µ
V ¸¹�³³©µ

º¨»
¼��³V �³�³©µ � ¶¸¹�³³©µ

º¨ V·�³³©µ
»

The existence of the lowest and highest for any set of
concepts allows the following functions to be defined: ½j�¢ ¦ �¢�¢V�V ��ª § ´ ��V ��z�¾V¿��©�ÀV�VÁ�
Â©¾�Ãj�� ¦ �¢�¢V�V ��� § ¼ ��V��z�¾V¿��©�ÀV�VÁ�
�©¿�

It is easy to show that these functions admit a much
simpler notation, as follows: «ª © ¢V ½�ª� � �ª¨V ª¨�«� © �V Ã��� � ��V�¨�

This provides a practical way of determining the
largest concept in whose extent a certain object appears,
or which other objects share all the attributes of a given
object. Each node in such diagram represents a formal
concept and each arc indicates an order relation between
two concepts, where the larger is place above the smaller,
with the restriction that no intermediate concept exists.

6. Case Study

An online mobile retailing system is chosen as case
study in this paper. The 150K LOC is only partly shown.
Steps of the case study follow the four procedures in BIR
which have been mentioned above. “Business Intelligence
Slices” oriented “Program Modules” are presented in
code segments, see Script 3. An overall result of BIR, in
addition, is modelling and presented via formal concept
analysis in Table 3 and Figure 3.

�fracpfxsqn�~cqo`qbd�ncn�z�����������������������zxsqn�~cqo`qbd�ncn��''Äm'!���xsqn�~cqo�`qbd�ncn�usqgh�����������������z�fracpf�ct����fracpf�w^���Årff�fracpf�z���������������������cÅ���^bgb���q�dd���z�������������������������^bgb�xdsnf��cÅ���ucq�gf���q�dd���z�������������������������ucq�gf�xdsnf��

� ��df� y�b~idf� |fdcfÅ^crfpg�ubgphcqo� xs~idfgfd��~bgph� bttrfnn��bttrfnn�� !�fo�dbr�`gs~cp��b~f� �crng�Åcaf�dfggfrn� irs~s��irs~sgcsq� 'mÆwrrfo�dbr�`gs~cp��b~f�]qf�gs�sqf ng~qg��ngbgf~fqg� 'mÇ�fo�dbr�xs~is�qt��b~f� xs~idfgfd��ubgph� f~bcd�i�nh�È�� 'wrrfo�dbr�xs~is�qt��b~f� uc��ubgph Åqb~f��Åcrng�qb~f� 'mÄ
Table 2: Business Intelligence Concept Recovery

265

���������������������������fracpf�w^�z�������������������������wgfr~��smV�������������������������ucq�gfV��������������������������f�gV�������������������������^bgbV���z�wuy�dfafd����������������������������usqgh���u]��fracpf�w^�z��������������������������ucq�gfn����������������������������f�g���������������������������^bgb���������������������������fe��^bgb�w^�z��������������������������y~bcd���������������������������������c��c��
Script 3: Code Segement of BIR Case Study

The tabular context of business intelligence “plan
rolling” in the application is a specific module to handle
service calculation and control service rolling in
accordance with the mobile contract and the status of
service consuming. Table 3 could generate a piece of
business intelligence. It looks like those BI concepts and
data have been gotten, but it is abstract to understand. As
mentioned, engineers are lacking of business oriented
program comprehensibility when being front of a large
amount of data and code. A better idea is building BI
lattice with those recovered BI information.

� ucq�gfn� �rffucq�gfn�sddcqo� �f�g� �ff�f�g�sddcqo� ^bgb� �rff^bgb�sddcqo!''� � � � � ��''� � � � � ��''� � � � � � É''� � � � � � !'''� � �� �� � � '� � � � � �
Table 3: Tabular Context of “PlanRolling”

As seen in Figure 3, mobile plans 400 and 600 deal
with minutes rolling and data rolling quite often. It makes
sense since both plans quote 400 and 600 minutes with 15
GB internet fair usage every month. But for the plans
100, 1000 and 0, the situation is different; plans 100 and 0
do not quote any free internet services, while plan 1000 is
designed for the premier customers who are willing to pay
75 GBP every month for 1000 minutes, 3000 text and
unlimited data. The recovered business intelligence slice

matches perfectly to the business information in program
code.

Figure 3: Concept Lattice of “PlanRolling”

7. Related Work

With the business idea of Web, computing platform is
evolving at a more than predicable speed. It brings a
significantly difficult and remarkable task to software
engineers: understanding the computing completely.

Foundations of reverse engineering [4, 17] and
software evolution [13, 1] have been established since
1990s by groups of researchers. In those days, it was very
crucial to have a sound reverse engineering and evolution
methods to comprehend program code, identify reusable
components, and evolve the system architecture, etc.

Soon after, reverse engineering researchers turned
more attention to semi-functional information embedded
in a software system, e.g., program transformation [21],
program abstraction [15], domain knowledge recovery
[14], business rule extraction [7], etc.

Today, the phenomenon is continuously evolving,
along with the growing demand to meet business
dynamics, system is operated one upgrade after another. It
is because computing system needs to be fully taken
advantage from in daily business to keep itself in the
leading position in business world. This idea is not easily
achievable for a certain number of software systems. One
of the causes is the automatic mechanism of business
intelligence recovery is not guaranteed for those systems.

Therefore, data mining and knowledge recovery [5, 2,
6] methodologies continuously keep their promises in
accessing information in software analysis [22, 23] and
software evolution [24].

8. Summary

Generally, on one hand, automatic reverse engineering
is bottlenecked with lacking program comprehensibility.
The software mining work is not complete until program
comprehensibility is fully obtainable from program code.
Ideally, a business intelligence base is one of the sources

266

for program comprehensibility. The successful recovery
of business intelligence and its matches with program
code are meaningful to reverse engineering works. On the
other hand, business information system, especially a
system running in Web-based computing environment,
needs automating business intelligence recovery method
to explore the business data and logic.

Specifically, this paper presents an automatic path to
recover business intelligence from software system. It is a
software reverse engineering process of four procedures:
BIB decomposition, BI oriented program partitioning, BI
concept recovery, and BI formal concept analysis. Each
procedure is a sub-task in Auto-BIR.

The future research work is viewed as “automating
business intelligence accumulation in Web” to bridge this
work to nowadays Web computing environment.

References

[1] K. H. Bennett and V. T Rajlich, “Software Maintenance
and Evolution: A Roadmap”, In Proceedings of the 22nd
IEEE/ACM International Conference on Software
Engineering (ICSE’00), pp. 73-87, Limerick, Ireland,
June 2000.

[2] T. J. Biggerstaff, B. G. Mitbander and D. Webster, “The
Concept Assignment Problem in Program Understanding”,
In Proceedings of 15th IEEE/ACM International
Conference on Software Engineering (ICSE’93), pp. 482-
498, Los Alamitos, CA, USA, April 1993.

[3] D. Burnett, Finite Element Analysis: from Concepts to
Applications, Addison-Wesley Publican Co., October
1987.

[4] E. Chikofsky and J. Cross, “Reverse Engineering and
Design Recovery: A Taxonomy”, IEEE Software, vol. 7,
no. 1, pp. 13-17, January 1990.

[5] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “"From
Data Mining to Knowledge Discover in Databases”,
American Association for Artificial Intelligence
(AAAI’96), vol. 17, no. 3, pp. 37-54, 1996.

[6] W. B. Frakes and K. Kyo, "Software Reuse Research:
Status and Future", IEEE Transactions on Software
Engineering (TSE’05), vol. 31, no. 7, pp. 529-536, July
2005.

[7] H. Huang, W. Tsai, S. Bhattacharya, X. Chen, Y. Wang
and J. Sun, “Business Rule Extraction from Legacy
Code”, In Proceedings of the 20th IEEE Conference on
Computer Software and Applications (COMPSAC’96), pp.
162-167, 1996.

[8] J. Kang, Automating Business Intelligence Recovery in
Software Evolution, Ph.D. Thesis, De Montfort
University, 2009. (submitted)

[9] J. Kang, J. Pu, J. Huang, Z. Zhou and H. Yang “Business
Intelligence Recovery in Reverse Engineering”, In
Proceedings of the 2nd IEEE International Workshop on
Quality Oriented Reuse of Software (QUORS’08),
COMPSAC Workshops, pp. 765-770, Turku, Finland,
July 2008.

[10] J. Kang and H. Yang, “Supporting Static and Dynamic
Feature Modelling by Formal Concept Analysis”, In Pre-
Proceedings of the IEEE International Workshop on
Software Technology and Engineering Practice

(STEP’05), pp. 133-135, ICSM Workshops, Budapest,
Hungary, September 2005.

[11] J. Kang and H. Yang, “Modelling Web Applications via
Formal Concept Analysis”, In Proceedings of the 11th
Chinese Automation and Computer Society in UK
(CACSUK’05), Sheffield, UK, August 2005.

[12] J. Kang, H. Zhou and H. Yang, “Task Decomposition for
Communication Computation Overlap to Reengineer a
Web-Based System”, In Proceedings of the 11th IEEE
International Workshop on Future Trends of Distributed
Computing Systems (FTDCS’07), pp. 205-212, Sedona,
Arizona, USA, March 2007.

[13] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry
and W. M. Turski, "Metrics and Laws of Software
Evolution – The Nineties View", In Proceedings of the
4th IEEE International Software Metrics Symposium
(METRICS '97), pp. 20-32, 1997.

[14] Y. Li, Automating Domain Knowledge Recovery from
Legacy Code, Ph.D. Thesis, De Montfort University,
2002.

[15] X. Liu, Abstracting: A Notion for Reverse Engineering,
Ph.D. Thesis, De Montfort University, 1999.

[16] H. P. Luhn "A Business Intelligence System", IBM
Journal, October 1958.

[17] H. A. Muller, J. H. Jahnke, D. B. Smith, M. Storey, S. R.
Tilley and K. Wong, “Reverse Engineering: A Roadmap”,
In Proceedings of the 22nd IEEE/ACM International
Conference on Software Engineering (ICSE’00), pp. 47-
60, Limerick, Ireland, June 2000.

[18] J. Pu, Z. Zhang, J. Kang, Y. Xu and H. Yang, “Using
Aspect Orientation in Understanding Legacy COBOL
Code”, In Proceedings of the 1st IEEE International
Workshop on Quality Oriented Reuse of Software
(QUORS’07), COMPSAC Workshops, pp. 385-390,
Beijing, China, July 2007.

[19] Z. Zhang, J. Kang and H. Yang, “UML Modelling Web
Applications via Formal Concept Analysis”, In
Proceedings of the 18th KSI International Conference on
Software Engineering and Knowledge Engineering
(SEKE’06), pp. 532-535, San Francisco, CA, USA, July
2006.

[20] H. Zhou, J. Kang and H. Yang “OPTIMA: An Ontology-
Based Platform-Specific Software Migration Approach”,
In Proceedings of the 7th IEEE International Conference
on Quality Software (QSIC’07), pp. 143-152, Portland,
OR, USA, October 2007.

[21] M. Ward, Proving Program Refinements and
Transformations, Ph.D. Thesis, Oxford University, 1989.

[22] M. Weiser, “Program Slicing”, IEEE Transactions on
Software Engineering (TSE’84), vol. 10, no. 4, pp. 352-
357, July 1984.

[23] R. Wille, Restructuring Lattice Theory: An Approach
Based on Hierarchies of Concepts, Dordrecht-Boston,
March 1982.

[24] H. Yang and M. Ward, Successful Evolution of Software
Systems, Artech House Publishers, January 2003.

267

Automatic Class Matching to Compare Extracted Class Diagrams:
Approach and Case Study

Yan Liang, Nicholas A. Kraft, and Randy K. Smith

Department of Computer Science
The University of Alabama

Tuscaloosa, Alabama 35487–0290, USA
{yliang,nkraft,rsmith}@cs.ua.edu

Abstract

Reverse engineering tools often are employed by software
maintenance teams. The abundance of these tools makes
evaluation and cross-tool comparisons a difficult and time-
consuming process. Ignored by most evaluation approaches
and experiments is the understanding of similarities and
differences of the output artifacts produced by different
tools. We propose a novel approach to facilitate the tool
evaluation process by examining output artifacts directly. We
present a class matching algorithm to automatically detect
whether a given pair of classes represent the same entity
in source code. The algorithm divides all classes extracted
from each candidate tool into three categories: matched,
unmatched, and unknown. In this case study, we demonstrate
this approach by comparing the class diagrams for four C++

projects extracted by two open source tools: Doxygen and
StarUML. In a follow-up qualitative analysis of the matching
results, we evaluate the matching precision of our approach
and its capacity to reveal the differences between analysis
capabilities of different class diagram extractors.

1. Introduction

Program comprehension is a critical task for maintainers

of legacy systems [1]. Reverse engineering (RE) tools sim-

plify the program comprehension process by automatically

generating textual and graphical reports of design, depen-

dencies, and code structure. Call graphs and UML class

diagrams are examples of commonly extracted artifacts.

Different RE tools, even with similar technology, extract

artifacts that vary dramatically. There are several reasons

for the inconsistency of the output artifacts. Many RE tools

use a compiler front end to build abstract syntax trees

(ASTs) and then extract information from those ASTs.

Other tools relax the AST construction rules as a cost-

efficiency measure and to improve comprehensibility for the

average developer. Additionally, the intricacies of different

programming languages lead to a lack of widely accepted

correspondence between language elements and artifact con-

structs [2]. Lastly, although standard exchange formats such

as XML Metadata Interchange (XMI) [3] and the Graph

eXchange Language (GXL) [4] have been adopted by many

RE tools, tool interoperability is far from satisfactory [5].

Therefore, software developers need an objective tool eval-

uation approach to compare competing tools and identify the

best tool for a given task.

2. Motivation

A common approach to tool evaluation is to evaluate

output precision, which is typically measured by mapping

derived artifacts back to corresponding entities from the

input documents. This work commonly is done by hand

due to the lack of such mapping functions embedded in the

tools or the inconsistency of mapping rules among tools [6],

[7]. We seek to improve on this time-consuming process

by investigating output-to-output mapping for RE tools. Our

approach addresses two questions:

• Is it feasible to automatically identify two entities (in

our case – classes) in the output artifacts produced by

two tools that correspond to the same entity in the input

documents?

• Is this approach an effective way to examine the simi-

larities and disparities between tools?

Research on record matching, or record linkage, guides us

on how to identify two entities with different representations

but the same meaning [8], [9]. We use domain knowledge

of record matching and reverse engineering, along with

similarity metrics, to partitions classes extracted by two

tools into three disjoint sets: match, unmatch, and unknown.

We believe that such automatic classification will provide

quickly the qualitative evaluation of the tools needed by

developers and maintenance teams.

3. Class Matching Algorithm

In this section, we provide the details of our class match-

ing algorithm for pairwise comparison of class diagrams

produced by competing RE tools. For each class extracted

by a tool, the algorithm determines whether there exists a

corresponding class extracted by the other tool. We first

describe the representation of a class diagram on which the

algorithm operates and then describe the foundations of the

algorithm, including the encountered challenges.

268

3.1. Representation of Class Diagrams

Each class, c, in an extracted class diagram, D, has

three components: name, attribute set, and operation set.

We currently do not consider other components, such as

relationships, that may be extracted by a tool, T . We use

the term class to indicate any record data type, such as a

C++ class, struct, or union.

A name, such as a class or type name, is represented

as a string. An attribute can be represented by its name

or by a two-dimensional vector containing its name and

type name. An operation can be represented by its name

or by an n-dimensional vector containing its name, return

type name, and parameter type name sequence. We use the

phrase parameter type name sequence rather than parameter
type name set to indicate ordering. However, we use the

term set for attributes and operations. A tool may extract

them in a particular order, but our algorithm ignores order

in these cases. Further, if an operation is represented only by

its name, all extracted class operations comprise a multiset

(bag). In this case, the multiplicity of a name within the

multiset corresponds to the concept of method overloading

in object-oriented languages.

Suppose that we have two class diagrams D1 and D2

extracted by two RE tools, T1 and T2, respectively, for a

single input project.Based on the class matching model in

our previous work [10], D1 and D2 containing P and Q
classes, respectively, are represented as follows:

D1 = {ci = (clsNamei, attrSeti, operSeti) : i ∈ [1, P]}
D2 = {cj = (clsNamej , attrSetj , operSetj) : j ∈ [1, Q]}

3.2. Similarity of Class Pairs

Looking at individual classes in the class sets, the simi-

larity score of a class pair, sim(ci, cj), is indicative of how

close two classes are, and is computed as the average of

the similarities of the three components – each of which is

between 0 and 1.

SimclsName = sim(ci.clsName, cj .clsName)
SimattrSet = sim(ci.attrSet, cj .attrSet)
SimoperSet = sim(ci.operSet, cj .operSet)

sim(ci, cj) =
SimclsName + SimattrSet + SimoperSet

3

We describe computation of similarity scores for class

names in the following subsection. The similarity score for

two attribute sets is computed by:

sim(ci.attrSet, cj .attrSet) =
2 |ci.attrSet ∩ cj .attrSet|
|ci.attrSet| + |cj .attrSet|

The similarity score for two operation sets is computed

analogously, and the similarity score for empty sets is zero.

3.3. Similarity of Class Names

Class name matching is not a trivial exercise. For C++

an RE tool can extract a fully-qualified name from source

code using only syntactic information, but cannot always

guarantee completeness/correctness due to the presence of

the preprocessor or the use of a fuzzy parser [11]. The conse-

quence is that, even if many RE tools adopt the naming rule

of class pathname in the form of namespace::clsName
for a UML class diagram, tools may extract differ-

ent names for a single entity in the source code.

For example, Jikes::Annotation::Component and

Annotation::Component probably refer to the same

class in the source code.

To address the class name matching problem, in our

approach we measure the similarity between two name

strings. A name string is a sequence of case sensitive terms

separated by a delimiter. Computing the similarity of two

class name strings has three cases:

Case 1: If the class name strings are exactly the same,

which means they have equal length and the same terms

in the same order, their similarity score is 1.

Case 2: If the class name strings have no common terms,

their similarity score is 0.

Case 3: If the class name strings are not exactly the same

but have terms shared, we use a token-based string

matching algorithm to compute the cosine similarity

of the name strings. We use the tf–idf (term frequency-

inverse document frequency) term weighting scheme, a

name matching method first proposed by Cohen for the

WHIRL system [12].

The first two cases are straightforward. The third case

requires further consideration. For tf–idf, a term t of a name

string n is assigned a weight computed by:

wn(t) = log(tft,n + 1) ∗ log(idft)

tft,n is the number of occurrences of t in the name string

n, and idft is the value obtained by dividing the number of

all class names from two class diagrams for a single project

by the number of those names containing the term t.

The cosine similarity between two names n1 and n2 is:

sim(n1, n2) =
∑R

k=1 wn1
(tk) ∗ wn2

(tk)√∑R
k=1(wn1

(tk))2 ∗∑R
k=1(wn2

(tk))2

R is the number of distinct terms in name strings n1 and n2.

wn1
(tk) and wn2

(tk) are the weights of term tk in n1 and

n2, respectively. The cosine similarity metric is insensitive to

the location of term, which is critical for those name strings

with terms missed by the extraction algorithm.

In some cases, a class name similarity score only may be

used to determine an overall similarity score for two classes.

See Section 3.5 for details.

269

3.4. Classification of Extracted Classes

Class pair similarity scores are the foundation of our

scheme for pairwise comparison of extracted class diagrams.

Recall that we are guided by the approach of Fellegi and

Sunter [8], who classify pairs into three categories. Thus,

we define a classifier, f , that determines into which category

an extracted class should be placed: match set, unmatch set,

and unknown set. The classifier f is built upon a function, h.

For a class c extracted by one tool, h(c) finds the class(es)

extracted by the other tool that is most similar to c
For clarity we define f , and the three predicates that form

it, using symbols from Section 3.1. In particular, assume we

are classifying the classes of class diagram D1 and that ci

is the extracted class from D1 currently being considered.

match = ∃cj ∈ D2 : h(ci) = cj ∧ h(cj) = ci

unmatch = ∀cj ∈ D2 : sim(ci, cj) = 0
unknown = �cj ∈ D2 : h(ci) = cj ∧ h(cj) = ci

f(ci) =

⎧
⎪⎨

⎪⎩

ci ∈ matchSet1 if match is true;
ci ∈ unmatchSet1 if unmatch is true;
ci ∈ unknownSet1 if unknown is true.

The predicate match is true for a class ci ∈ D1 when

h(ci) returns exactly one class cj ∈ D2 and h(cj) returns

only ci. That is, among all class pairs involving ci or cj ,

(ci, cj) is the class pair with the single highest similarity

score. We call such a match a stable match, and in the case

of a stable match for a class pair (ci, cj) we place ci in

matchSet1 and cj in matchSet2.

The predicate unmatch is true for a class ci ∈ D1

when, for every class cj ∈ D2, the similarity score of

(ci, cj) is zero. In such a case, we place ci in unmatchSet1.

Therefore, if a class is extracted by one of the tools being

compared, but not the other, the class is placed in the

appropriate unmatch set.

The predicate unknown is true for a class ci ∈ D1 when

there does not exist a class cj ∈ D2 for which (ci, cj) is

the class pair with the single highest similarity score among

all class pairs involving ci or cj . That is, either (or both) of

h(ci) and h(cj) returns more than one class. We call such

a match an unstable match, and in the case of an unstable

match for a class pair (ci, cj) we place ci in unknownSet1
and cj in unknownSet2.

Using our matching classifier, f , we partition all extracted

classes for a class diagram into one of our three categories:

match set, unmatch set, and unknown set. These three sets

are collectively exhaustive and mutually exclusive: their

union includes all extracted classes for the class diagram

and their intersection is the empty set.

3.5. A Generalized Approach

We now have described the constituent parts of our class

matching algorithm. Figure 1 illustrates the entire algorithm

Figure 1. Algorithm Control Flow

as a flow chart. For each extracted class c from class

diagram D, we first attempt to determine the overall class

similarity score using only the class name. If there exists

an extracted class in the other class diagram whose name

is exactly the same as that of c then c is added to the

matchSet for D. If there exists no extracted class in the

other class diagram whose name shares common terms with

that of c then c is added to the unmatchSet for D. If

necessary, we find the class(es) in the other class diagram

that has the highest similarity score with c. If we find a

stable match, we add c to the matchSet for D; otherwise,

we add c to the unknownSet for D. When our class

matching algorithm terminates, each extracted class from a

class diagram belongs to exactly one of the three sets for

that class diagram.

4. Experiment

The two class diagram extractors we study are Doxygen

1.4.4 [13] and StarUML 5.0 [14]. The output of Doxygen is

a custom XML format, and the output of StarUML conforms

to XMI 1.1 and UML 1.3. Our first step toward class

matching is to perform of a series of semantics-preserving

data transformations on the output of each tool. After apply-

ing these transformations, we obtain sets of CSV files that

encode the extracted class diagrams. The implementation of

our class matching algorithm accepts these files as input.

Table 1 lists summary information for the four open

source C++ projects in our test suite. FOX is a toolkit for

graphical user interface development [15]. Jikes is an Java

compiler system from IBM [16]. Pixie is a RenderMan R©
like photorealistic renderer [17]. Scintilla is a source code

editing component [18].

4.1. Class Matching Results

Table 2 lists the sets computed by our class matching

algorithm. The value in each cell is the number of classes

270

Project Version LOC Classes Extracted Classes Extracted
(≈ K) by Doxygen by StarUML

FOX 1.4.17 110 289 123
Jikes 1.22 70 275 283
Pixie 1.5.2 80 254 220
Scintilla 1.66 35 93 78

Table 1. Test Suite for Experiment

Project Tool Unmatch Set Match Set Unknown Set
exact similar

FOX
Doxygen 2 116 3 168
StarUML 3 116 3 1

Jikes
Doxygen 3 5 267 0
StarUML 3 5 267 8

Pixie
Doxygen 52 200 2 0
StarUML 12 200 2 6

Scintilla
Doxygen 19 74 0 0
StarUML 1 74 0 3

Table 2. Class Matching Results. The last four columns
list the numbers of classes in the corresponding sets.

in the indicated set for the indicated project and tool. There

are two cases for match set (exact or similar), and we report

these separately in the table. For each project, the sizes

of the match sets for the two tools are always equal due

to the constraint provided by stable matching. Recall from

Section 3.1 that attributes and operations may be represented

in multiple ways; for this experiment we use the name-only

representations.

From Table 2, we observe:

• For the three projects other than FOX, most of the

extracted classes are placed into the match set. For

example, for Scintilla 74 of 93 classes extracted by

Doxygen and 74 of 78 classes extracted by StarUML

are exact matches.

• For the three projects other than Jikes, most of the

classes in the match set are exact (stable) matches. For

Jikes, most of the classes in the match set have names

similar to their peers.

• Doxygen and StarUML each yield a number of un-

match classes for each project.

• StarUML extracts unknown classes for each of the four

projects; in contrast, Doxygen extracts unknown classes

only for FOX. In particular, over 50% of the classes

extracted by Doxygen for FOX are unknown classes.

4.2. Analysis of Experimental Results

Our analysis centers on the two questions proposed in

Section 2: Can our approach match and classify classes

correctly? and Is such a classification an effective way to

analyze features between tools? To this end, we gave four

volunteers a project, both source code and class diagrams

obtained using Doxygen and StarUML. Their task was

to validate manually each extracted class in the source

code. A comparison between each extracted class and its

corresponding location in the source code is the only way

to tell us not only the quality of classification, but also the

potential causality between language syntax structure and

analysis features of a particular class diagram extractor. The

correctness or quality of classification is measured by the

number of false positives and false negatives.

4.2.1. Match Set

Manual matching results indicate that our class matching

algorithm results in no false positives: every pair of extracted

classes in the match sets are real matches, referring to

the same class in the source code. This result includes

both exact and similar matches. For instance, in Pixie, we

successfully identify that COptions::CDisplay::
extracted by StarUML matches

COptions::CDisplay::TDisplayParameter
extracted by Doxygen, and that

CShader::TShderParameter matches CShader::.

This is beyond our expectation because we intuitively

believe an equally weighting scheme for the similarity

calculation between classes could cause false positives.

Matching precision is a qualitative measurement of a

matching algorithm that is widely accepted by the research

community of record matching. Zero occurrence of false

positive means 100% matching precision for this case study

where two tools and four projects are involved.

Most notable in the match set is the large amount of

matches with similar class name for Jikes. Inspection on

related code provides the answer: every Jikes source file uses

the preprocessor to conditionally define the Jikes namespace.

For all classes defined in these source files, Doxygen ig-

nores this namespace and outputs the original class name,

while StarUML imposes the namespace as the prefix on

all extracted classes. As an example, consider the extracted

a piece of code below from the header file unzip.h of

Jikes. Doxygen extracts the class name huft, but StarUML

extracts Jikes::huft.

#ifdef HAVE_JIKES_NAMESPACE
namespace Jikes {
#endif
struct huft {

unsigned char e;
unsigned char b;
union {

unsigned short n;
struct huft *t;

} v;
};

In practice, the attributes and operations for extracted

classes placed in match sets based on name only may

differ significantly. An extensive comparison of attributes

and operations for each pair of matched classes is part of

our future work.

271

4.2.2. Unmatch Set

Each class in an unmatch set is identified by our matching

algorithm as being extracted by one tool but not by the other.

The matching algorithm generates a few false negatives:

some extracted classes with actual matches are improperly

placed into this set. These false negatives result from one

drawback of our matching algorithm: the comparison of

class attributes and operations is not undertaken if two class

name strings are found to have no similarity. For example, in

Pixie, the matching algorithm misses the match between the

class TArgument extracted by Doxygen and _14 extracted

by StarUML for the anonymous class shown in the following

code. These name strings share no term, yet all of the class

attributes are exactly the same. Ruling out this type of false

negative is part of our future work.

typedef struct {
unsigned char numArguments;
unsigned char uniform;
unsigned char numCodes;
unsigned char plNumber;

} TArguments;

In further analysis, we examined those classes extracted

by StarUML but not by Doxygen. Some of these extracted

classes are conditionally defined using preprocessor direc-

tives. Given this finding and the preceding analysis of match

sets, we infer that Doxygen and StarUML handle code with

conditional compilation in different ways: StarUML ignores

or is unaware of conditional compilation directives, while

Doxygen ignores conditionally compiled code unless other-

wise directed. Other unmatch classes extracted by StarUML

have no attributes or operations and correspond to extern
declarations in the source files. Overall, we postulate that

StarUML trades extraction accuracy for performance gains,

and important consideration for potential tool adopters.

4.2.3. Unknown Set

The unknown set covers those classes in a project where

there exists a cognitive gap between manual matching and

automatic matching. In the qualitative study, our subject

matter experts find corresponding classes in source code for

each of the extracted classes. However, this process does

not always yield a one-to-one match, because a tool may

(erroneously) extract multiple classes for a single class in

source code. To the contrary, our matching algorithm forces

a one-to-one match: the assumption is that a class defined

in source code should be extracted as at most one class, so

that one class extracted by one tool can match at most one

class extracted by the other tool.

The large number of unknown classes extracted by Doxy-

gen for the project FOX deserves careful analysis. We find

that StarUML extracts a large class FX::FXAPI<TYPE>
with a suspiciously large number of attributes, construc-

tors, destructors, and other operations. Indeed, through our

manual analysis we discovered that many of these attributes

and operations are actually members of other classes which

StarUML did not extract. On the contrary, Doxygen correctly

extracts those classes. We determined that a macro, FXAPI,

is misinterpreted as a template class by StarUML.

Another area of interest is the unknown classes ex-

tracted by StarUML for Jikes, Pixie and Scintilla. The

corresponding source code for most of these extracted

classes have similar syntactic structure: they are attributes,

but are deemed by StarUML to be a new classes due to

the C-style use of keyword struct before the attribute

type name. From the following code, StarUML extracts

an class SCNotification::NotifyHeader without

any attributes or operations. Such behavior indicates that

StarUML uses lexical, rather syntactic, analysis to guide its

reverse engineering process.

struct SCNotification {
struct NotifyHeader nmhdr;
int position;
int ch;
/* other data members not shown */

};

4.2.4. Summary

Our analysis shows that our matching algorithm generally

performs well, but can be improved using the knowledge

gained through this study. Similar issues for other reverse

engineering tools have previously been discussed in the

literature [7], [19], [20], but those issues either are not

specific to class diagrams, or lack concrete details. We

explore the behaviors of different class diagram extractors

by classifying the extracted classes into small groups from

which the details of discrepancies are easier to examine.

Generally, entities with missing data are not considered in

the application of most matching algorithms. However, the

use of such entities can not be avoided when performing

output-to-output artifact matching among RE tools. Other-

wise, the information that is most important to software

developers or maintenance teams might be ignored. Our

approach generally handles such missing information appro-

priately, as demonstrated by the low frequency of matching

false positives and matching false negatives. A reliable

matching algorithm that operates only on output artifacts

benefits the tool evaluation process for its contribution of

reducing evaluation effort, particularly the effort that would

be otherwise spent mapping all derived entities back to the

source code by hand.

4.3. Threats to Validity

There are threats to the internal and external validity

of this study. One threat to internal validity is that the

correctness of the manual matching results used in our

qualitative analysis is dependent upon the knowledge of

the human experts and their carefulness and patience when

272

reading source code. To avoid human errors, a second pass

may be required to validate the initial findings. Threats to

the external validity are our choices of tools and projects

for the study. For example, because we paired Doxygen and

StarUML with the Jikes project, we uncovered issues related

to conditional compilation that can help us to improve our

class matching algorithm. However, without experimenting

with additional tools and projects, we can not be sure that

there are not other issues that we have not yet uncovered.

5. Related Work

RE tool evaluation is an on-going issue in the literature.

In this study we focus on evaluating textual outputs of tools,

not on specific evaluation criteria such as precision metrics.

Murphy et al. [20] conducted an empirical study of static

call graph extractors. They applied nine tools to extract lists

of the calls between functions in C source code. Scripts were

run on the output produced by the tools to transform the ex-

tracted call lists to the form (function1;function2)
where function1 calls function2. Call graphs were

compared by computing the set intersection and difference of

call sets. Details about the low-level comparison algorithm

were not provided.

Sim et al. [7] designed a general-purpose benchmark to

evaluate C++ fact extractors. The benchmark enumerates

C++ language features, analysis problems, and reverse en-

gineering issues as the basis for creating a task domain

sample. Operators/expert users were then involved to check

the accuracy of facts extracted.

A number of studies on tool evaluation compare the

visualization capacities of tools [2], [21]. This approach

can indirectly reflect the precision and richness of the data

extracted by tools. Because what the user can see or would

like to see is dependent on tool configuration and the

downstream functionalities provided by tools, visualization-

based approaches can not expose the entirety of similarities

and differences among tools.

6. Conclusions and Future Work

In this paper we propose a class matching algorithm

to automatically reveal the similarities and differences of

tools by comparing their extracted output artifacts. The end

result of our class matching algorithm is three categories of

classes: match set, unmatch set and unknown set. Therefore,

extracted classes are organized in such a way that the

technical discrepancy between two extractors can be exposed

in detail with relatively low effort.

As for our future work, we need examine more tools

using more test cases to validate the applicability of our

algorithm. Further, because the attributes and operations for

extracted classes placed in match sets based on name only

may differ significantly in practice, we need to incorporate

comparison of attributes and operations for each pair of

matched classes. The addition of such a comparison will

yield more operational information about the similarities and

differences between the tools being compared. Finally, we

need to revise our matching algorithm to eliminate false

negatives that occur for anonymous classes when different

tools use different naming schemes for such classes.

References

[1] H. Müller, J. Jahnke, D. Smith, M.-A. Storey, S. Tilley, and
K. Wong, “Reverse engineering: A roadmap,” in Proceedings
of the Future of Software Engineering, Jun. 2000, pp. 47–60.

[2] Y.-G. Guéhéneuc, “A systematic study of UML class diagram
constituents for their abstract and precision recovery,” in Proc.
of the 11th Asia-Pacific Software Engineering Conference.

[3] International Organization for Standardization, “Information
Technology – XML Metadata Interchange,” Geneva, Switzer-
land, Tech. Rep. ISO/IEC 19503:2005, 2005.

[4] R. Holt, A. Schürr, S. E. Sim, and A. Winter, “GXL: A Graph-
Based Standard Exchange Format for Reengineering,” Science
of Computer Programming, vol. 60, no. 4, pp. 149–170, 2006.

[5] N. A. Kraft, B. A. Malloy, and J. F. Power, “An infrastructure
to support interoperability in reverse engineering,” Informat-
ing and Software Technology, vol. 49, no. 3, pp. 292–307,
Mar. 2007.

[6] I. T. Bowman, M. W. Godfrey, and R. C. Holt, “Connect-
ing architecture reconstruction frameworks,” Information &
Software Technology, vol. 42, no. 2, pp. 91–102, 2000.

[7] S. E. Sim, R. C. Holt, and S. Easterbrook, “On using a
benchmark to evaluate C++ extractors,” in Proceedings of
the 10th International Workshop on Program Comprehension,
Jun 26–29 2002, pp. 114–123.

[8] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,”
Journal of the American Statistical Association, vol. 64, no.
328, pp. 1183–1210, Dec. 1969.

[9] A. K. Elmagarmid, G. I. Panagiotis, and V. S. Verykios,
“Duplicate record detection: A survey,” IEEE Trans. Knowl.
Data Eng., vol. 19, no. 1, Jan. 2007.

[10] Y. Liang, “Automating matching artifacts for autonomous
tool evaluation,” in Proceedings of the 47th ACM Southeast
Conference, Mar 19–21 2009.

[11] N. A. Kraft, B. A. Malloy, and J. F. Power, “A tool chain for
reverse engineering C++ applications,” Science of Computer
Programming, vol. 69, no. 1–3, pp. 3–13, Dec. 2007.

[12] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A compar-
ison of string distance metrics for name-matching tasks,” in
Proceedings of the ACM Workshop on Data Cleaning, Record
Linkage and Object Identification, Aug. 2003.

[13] “Doxygen version 1.4.4,” http://stack.nl/ dimitri/doxygen/.
[14] “StarUML version 5.0,” http://staruml.sourceforge.net/.
[15] “FOX Toolkit version 1.4.17,” http://www.fox-toolkit.org/.
[16] “Jikes version 1.22,” http://jikes.sourceforge.net/.
[17] “Pixie version 1.5.2,” http://pixie.sourceforge.net/.
[18] “Scintilla version 1.66,” http://www.scintilla.org/.
[19] M. N. Armstrong and C. Trudeau, “Evaluating architectural

extractors,” in Proceedings of the 5th Working Conference on
Reverse Engineering, Oct 12–14 1998, pp. 30–39.

[20] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An
empirical study of static call graph extractors,” ACM Trans-
actions on Software Engineering and Methodology, vol. 7,
no. 2, pp. 158–191, Apr. 1998.

[21] S. Matzko, P. J. Clarke, T. H. Gibbs, B. A. Malloy, J. F. Power,
and R. Monahan, “Reveal: A tool to reverse engineer class
diagrams,” in Proceeding of 40th International Conference
on Technology of Object-Oriented Languages and Systems.

273

Modeling and Verification of Automatic Multi-business Transactions

Min Yuan, Zhiqiu Huang, Jian Zhao, Xiang Li

Information Science and Technology Institute,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

E-mail :{ yuanmin, zqhuang, jzhao, xiangli} @nuaa.edu.cn

Abstract

Web services increasingly integrate large numbers of
participants to provide complex business applications. As
the next step in the evolution of Web services technology,
several specific protocols are being proposed to address
coordinating business transactions. The specification
considered here is the tentative hold protocol (THP) which
facilitates the automated coordination of multi-business
interactions. This work tries to enhance the reliability of
multi-business by investigating formal techniques. A formal
framework based on Pi-calculus for multi-business
transactions is proposed. The formal specification of the
THP is presented, and then verification of THP specifica-
tion structural constraint among components is discussed.
Subsequently, the basic model of THP is reused and shared
in modeling of multi-business scenarios to enable the
reasoning of multi-business scenario from the perspective
of business logic requirement. The proposed framework
facilitates pointing out ill-defined details in the specifica-
tions to build up a correct multi-business flow. All of the
results can serve as the theoretical foundation to facilitate
the coordination of multi-business interactions for
implementing automatic multi-business transactions.

1. Introduction

Web services are moving from their initial “describe,
publish, interact” capability to a new phase in which robust
business interactions are supported[4]. There are increasing
needs for the enhanced transaction models that can
effectively support orchestrate loosely coupled services into
cohesive units of work and guarantee consistent and
reliable execution. Meanwhile in a web service transactions
based B2B environment, are often complex, involve
multiple autonomous parties, have long duration, and may
span business boundaries[10]. Just as what the BPEL
specification itself states that “The notion of LRT described
in BPEL is purely local and occurs within a single business
process instance.[6]” It points out that this research is quite

necessary that distributed coordination regarding an
agreed-upon outcome among multiple-participant services.
There are a number of emerging specifications that seek to
address the requirements of such web service based
collaborative business transactions, such as Business
Transaction Protocol (BTP), Web Services Transaction
(WS-Transaction) standards etc.

However service providers usually do not allow that
their resources (such as an online retailer’s items for sale)
are occupied for long periods by unpredictable business
operations in the loose-coupled and autonomous Web
Services environment. Taking a slightly different approach
to the problem, Tentative Hold Protocol (THP)[13],
published as a W3C (World Wide Web Consortium) note,
attempts to define a building block that can work with other
technologies in order to facilitate the automated coordina-
tion of multi-business interactions as well as the creation of
new opportunities to leverage the web services to improve
business efficiencies.

Faced the requirements of Business-to-business (B2B)
collaboration, how to design a correct business process,
model and verify business transaction has become an
important problem to be settled. But in fact THP does not
provide a formal semantics, and there are some imprecise
definitions in their informal description. It is generally
accepted that formal methods are an effective approach to
reducing design faults and raising trustworthiness of
systems. On the other side, formal modeling of Web
services transactions have become a hotspot research
recently. Existing work is mainly focused on formalizing
the specification of web services transactions[8] and their
semantics of compensation[2] occurred within a single
business process instance. Instead, here we investigate into
multi-business transactions coordination among multiple-
participant services.

To support the well-performing of large-scale sophisti-
cated e-business process, we must ensure the correctness of
business process and coordination. In this paper we present
a formal coordination framework for multi-business
transactions based on the tentative hold protocol (THP).
The formal specification and model checking of multi-

274

business transactions are presented. The organization of
the paper is as follows. Section 2 presents the overview of a
formal verification framework for multi-business. Further,
specification structural constraint verification of THP is
presented in Section 3, and discussions of the verification
of business logic requirement on THP are given in Section
4. Moreover, the related work can be found in section 5.
Finally, Section 6 gives the concluding remarks and
discussion of future work.

2. Formal Verification Framework for Multi-
business Transactions

According to the IEEE Standard Glossary of Software
Engineering Terminology, the correctness is defined as
freedom from faults, meeting of specified requirements,
and meeting of user needs and expectations. From the view
of define about model checking, it is a formal verification
technique that is increasingly applied to the design of
industrial digital systems, and it allows to verify if the
(possibly infinite) behaviors of a system satisfy a given
property[3]. Verification failures result in the business
specification and execution containing faults or flaws,
therefore two aspects properties must be addressed. They
are “specification structural constraint verification” and
“business logic requirement verification” respectively. The
former verifies the reliability of coordinating resources via
THP, while the latter verifies whether the requirement is
satisfied or not in the process of designing business process.
Notice that all models of multi-business cases inherit basic
processes and names from the model of THP, an overview
is shown in Figure 1.

Figure 1. Formal Verification Framework

3. Specification Structural Constraint Verification

The major components involved in Tentative Hold
Protocol[14] are displayed in Figure 2. There will be a THP
coordinator on both the client and resource owner side,
responsible for communicating hold requests, cancellations,
etc. Also, the resource owner will provide a rules engine
entity with which the resource side Tentative Hold Protocol
coordinator will communicate; it shall be responsible for
handling any business rule specific actions. This allows the
resource owner great latitude in providing targeted

customer service with the granting of holds, specifying
greater or lesser hold expirations for a given hold request,
as well as the potential for notifying valued clients when
some resource is being reserved by another client -
allowing the preferred client the opportunity to lock in their
purchase first. Tentative Hold Protocol can work with other
technologies to increase their effectiveness in automating
inter-business transactions. XML-based Web service
standards and THP play the key role in enabling automated
processes that span multiple businesses, and they facilitate
the coordination of complex multi-business interactions.

Figure 2. Components of THP

3.1 The Pi-calculus Model of THP

Among existing formal methods, the Pi-calculus pro-
posed by Robin Milner[9] has drawn much attention in the
field of service composition and business process modeling
because of its compositionability, mobility and theoretical
soundness. It describes and analyzes a concurrent mobile
system via the two core concepts: processes and names.
Processes interact with each other by exchanging names
which are used to express the atomic interactive actions in a
system. Hence, it is intuitive to adopt Pi-calculus to model
the service behavior and the interaction within transactions,
details about Pi-calculus refer to [9].

Processes and names are core concepts of Pi-calculus.
Processes interact with each other by exchanging names,
which can express the interactive actions among compo-
nents of THP. Thus the establishing of the correspondences
between components and processes is as follows.

Figure 3. Flow Chart of Pi-calculus model of THP

275

Figure 3 shows the flow chart of THP model in Pi-
calculus. Process CA, CC, CPS, RC, RPS, RIM and AMR
stand for the corresponding module of THP respectively
and channel u, g, h, z, x, w and y stand for channels used to
transport messages among modules of THP. From the
analysis above, we can build the model of THP in Pi-
calculus as follows:

 = Client() | ClientCoor() | CPS() |
 RC() | RPS | RIM() | ARM()
THP

CA : c - {Req, Resp,msg,u}
 Client(c) = u < Req > .u(Resp).Client(c)+ u(msg).Client(c)
CC : b - {Req,CPSResp, RCResp, stamsg, g,u,h}
 ClientCoor(b) = u(Req).([Req = Archinfo]g < Req > .
 g(CPSResp).u < CPSResp > +h < Req > .h(RCResp).
 ([RCResp = HoldGranted]g < msg1 > .u < RCResp > +
 u. < RCResp >)) | h(stamsg).g < stamsg > .u < stamsg >
RC : d - {Req, RPSResp, RIMResp, AMRStatmsg, z,h, w, x}
 RC(d) = h(Req).[Req = HoldRequest]x < Reqmsg > .
 x(RIMResp).([RIMResp = Granted]
 z < msg > .h < HoldGranted > +h < HoldDenied >).RC(d) |
 w(AMRstatmsg).h < stamsg > .RC(d)
RIM : e - {x, y, Req, RIMReq, AMRMsg, RIMResp}
 RIM(e) = x(Req).y < RIMReq > .y(AMRMsg).
 x < RIMResp > .RIM(e)
A M R : f - {y , w , R IM R eq , A M R R esp , A R M Sta tm sg}
 A M R (f) = y(R IM R eq).y < A M R R esp > .A M R (f) |
 w < A M R Sta tm sg > .A M R (f)
R P S : g - {z, R P SR esp , R eq , m sgR P S}
 R P S(g) = z(R eq).z < R P SR esp > .R P S(g) +
 z (m sgR P S).R P S(g)
CPS : h - {g, Req, CPSResp}
 CPS(h) = g(Req).g < CPSReq > .CPS(h)

3.2 Structural Constraint Verification among
Components

Figure 4. Result of Checking

Mobility Workbench (MWB) is an automatically
inference tool for Pi-calculus, which can detect whether
deadlock exists in a process. It is important to ensure that
the THP process is deadlock free. Figure 4 shows that all
the processes in THP are deadlock free. All the participator
in THP can reach the final state, and if a participator is in
the ready state, the THP can move forward to the next state
or return its initial state. Hence the model of THP can meet
non-obstructive and non-trivialness respectively.

4. Business Logic Requirement Verification

THP indicates the interactive process of multi-business
coordination which is implemented via the message
delivery, and defines styles of various messages in
accordance with THP by XML Schema. Thus we can apply
THP with XML Schema defined messages to design multi-
business processes. The elements and attributes of XML
Schema can be mapped into Pi-calculus expressions too,
and the multi-business processes can be derived from the
basic THP model and these Pi-calculus expressions. Thus it
can be checked to determine whether business process
meets user’s needs or not, which is help to omit design
defects and improve the reliability of multi-business.

4.1 Modeling of a Scenario Applying THP

According to the XML Schema of THP, messages are
made up of elements in sequence. In accordance with the
grammar formulate of XML Schema, these elements should
be sent according to a certain sequence. “holdHeader” is
the common message header of messages in the XML
Schema of THP. An scenario of applying THP, which can
be seen in detail in [14] and whose sequence diagram is
shown in Figure 5, is given and the scenario will be
modeled using basic THP model given above, then specify
some business logic requirement properties. If counterex-
amples are found by model checking, which means the
multi-business process has some defects, solutions will be
given to improve application designing.

Figure 5. Sequence Diagram of a THP Scenario

276

CA1 and CA2 represent two clients. According to
CA1’s activity, CA1can be written in Pi-calculus as below:

agentCA1()=CA1holdID\CA1\abc@emsoft.com<baseHead
er*>.CA1holdID\CA1\abc@emsoft.com(base-
Header*;holdDuration*)|CA1holdID\CA1\abc@emsoft.co
m(customerHold* cancellationReason)

CA2’s activity includes sending request, receiving hold
granted and consuming the resources, thus CA2 can be
modeled by Pi-calculus as:

agentCA2()=CA2holdID\CA2\xyz@emsoft.com<baseHead
er*>.CA2holdID\CA2\xyz@emsoft.com(baseHeader*;
holdDuration*)|CA2holdID\CA2\xyz@emsoft.com
<purchased>

Let CC1 represent the CA1’s Client Coordinator, CC1
be in charge of forwarding message between CA1 and the
Resource Coordinator RC, CC1’s Pi-calculus description is:

agent CC1=CA1holdID\CA1\abc@emsoft.com
(baseHeader*).CC1toRC<baseHeader>|CC1toRC
(baseHeader*;holdDuration*).CA1holdID\CA1\a
bc@emsoft.com< baseHeader*;holdDuration*>|
CC1toRC(customerHold*;cancellationReason).
CA1holdID\CA1\abc@emsoft.com.
< customerHold*;cancellationReason >

CC2 denotes CA2’s Client Coordinator, as modeling
CC1 above, CC2’s Pi-calculus model is:

agent CC2=CA2holdID\CA2\xyz@emsoft.com
(baseHeader*).CC2toRC<baseHeader>|CC2toRC
(baseHeader*;holdDuration*).CA2holdID\CA2\
xyz@emsoft.com< baseHeader* holdDuration*>

RC resides in the resource owner, which receives
request from CC1 and CC2 and then transmits responds to
CC1 and CC2 after contacting with Rules Integration
Module (RIM). RC can be written in Pi-calculus as follows:

agent RC=CA1toRC(baseHeader*).RCtoRIM< base-
Header*>.RCtoRIM(baseHeader*;holdDuration*).
CA1toRC< baseHeader*;holdDuration*>|ROtoRIM
(customerHold* cancellationReason*).CA1toRC<
customerHold* cancellationReason >|CA2toRC
(baseHeader*).RCtoRIM< baseHeader*>.RCtoRIM
(baseHeader*;holdDuration*).CC2toRC< baseHeader*;
holdDuration*>

RIM denotes the Rule Integration Module in the sce-
nario, RIM responses the requests from CA1 and CA2,

creates triggers in Resource Owner’s side to detect the
change of resource’s state. The Pi-calculus model of RIM is:

agent RIM=RCtoRIM(CA1baseHeader*).RCtoRIM
<CA1baseHeader* CA1holdDuration*>.RIMtoRO
< CA1baseHeader*;CA1holdDuration*>|RCtoRIM
(CA2baseHeader*).RCtoRIM< CA2baseHeader*;
CA2holdDuration*>.RIMtoRO< CA2baseHeader*;
CA2holdDuration*>

Resource Owner (RO) receives resource allocation
messages from RIM and then triggers are created. When
CA2 consumes the resource, the trigger is triggered and RO
sends message to RC, thus RC can update affected CA1.
RO’s Pi-calculus description is:

agent RO=RIMtoRO(CA1baseHeader*
CA1holdDuration*)|RIMtoRO(CA2baseHeader*
CA2holdDuration*)|ROtoRC< customerHold*
cancellationReason*>

The scenario model is composed of the processes above
concurrently:

THPInstance=(CA1|CC1)|(CA2|CC2)|RC|RIM|RO

4.2 Model Checking and Analyzing via SAL

Symbolic Analysis Laboratory (SAL)[5], a model
checker developed by Stanford Research Institute (SRI), It
is a framework for combining different tools for abstraction,
program analysis, theorem proving, and model checking
toward the calculation of properties (symbolic analysis) of
transition systems. SAL supports Linear Temporal Logic
(LTL) with quantifiers, user-defined recursive data types,
user-defined functions and unbounded data type. A
segment of multi-business transactions are described by
SAL language in Figure 6.

Figure 6. The System Transaction Described by SAL

TRANSITION [
 reserving:
 C2=request --> C2'=granted;
 []
 consuming:
 (C2=granted AND C1/=purchased) --> C2'=purchased;
 []
 invalid:
 (C2=granted AND C1=purchased) --> C2'=invalid;
]
END;
main: MODULE=
 process||
 RENAME C1 TO C2,
 C2 TO C1
 IN process;

277

In the scenario, two clients hold a resource together at
first, and then the resource is consumed by a client.
According to the business logic, the client should be
informed that the resource has been consumed and his hold
is invalid to avoiding the resource consumed by the two
clients. Besides, each request should have its corresponding
response, and these business logic requirements are related
to time, thus they can be described by Linear Temporal
Logic (LTL) as follows:

Property 1: Every request should have its correspond-
ing response wherever in asynchronous or synchronous.
The property can be written as:

G(C1=request=> F(C1=denied or C1=granted))

Property 2: Each resource can be consumed by one
client only, which can be written as:

G(NOT(C1=purchased AND C2=purchased))

The above two properties are the basic requirements for
the business logic of THP. Of course, other properties can
be defined on the basis of the specific manners in applying
THP. Then the following step, we will check the two
properties by SAL Model Checker named sal-smc running
in Linux. The result of checking is shown in Figure 7.

Figure 7. Result of Checking Property 1

The model checking result shows that if the main
module is deadlock free, property 1 is true, so it’s necessary
to check whether the main module is deadlock free. The
result of checking is shown in Figure 8.

Figure 8. Deadlock from Checking Property 1

According to the result shown in Figure 8, there is a
deadlock in the main module. C1 and C2 are both in the
purchased state, which is not allowed. This phenomenon
can be explained by the communication delay. In ideal
situation, when C2 consumes the resource, C1 will
simultaneously receive the message that the resource it
holds is invalid. While due to the limitation of communica-
tion in the practicing of the business processes, absolute

synchronization does not exist, thus C1 can not have notice
of the resource has been consumed by C2 as soon as C2
consumes the resource, and C1 is still allowed to consume
the resource. That means it might be possible that C1 and
C2 are both at the purchased state together.

As shown in Figure 9, a counter-example is found while
checking property 2 by SAL model checker and a path of
the counter-example is also given. According to the path of
the counter-example, C1 and C2 are transited to the granted
state from the request state, and then they are both transited
to the purchased state at last, as a result a deadlock is
occurred. THP allows multiple clients to hold the same
resource temporarily. When one of the clients places an
order, the remaining clients receive notifications of the
unavailability of the resource. However, nothing prevents a
client from placing an order for a resource immediately, at
which point another client might have taken the resource.
This problem is mentioned in [16] too, they proposed a new
reservation protocol which avoids the more need for
compensating transactions because of this matter via
blocking reservations. During modeling and verification of
multi-business transactions, engineers can make correct
decisions at the early design stage by finding ill-defined
details in the specifications. So this fact illustrates
enhancing the formal verification research has important
meaning to guiding practice of applying Web services.

Figure 9. Result of Checking Property 2

5. Related work

Current researches on THP mainly take into considera-
tion how to minimize the time required for clients to
successfully complete their multi-transactions depending on
the value of overhold size. Limthanmaphon et al. [7]
combine the tentative hold with compensation concepts and
try to minimize the possibility of transaction compensation.
Younas et al. [15] focus on the performance of composite

278

transactions and propose TCP (Tentative Commit Protocol),
which reduces latency in network communication and time
cost of transaction processing.

There are a number of researches that analyze and verify
transaction coordination protocol with formal methods,
Berger et al. [1] formally verify the classic two-phase
commit (2PC) protocol with asynchronous Pi-calculus. Qi
et al. [12] propose the syntax and operational semantics of
Membrane Calculus, which adopts the named nested
membrane structure based on Committed Join Calculus to
describe Web Service transactions, and makes analysis and
verification on WS-AtomicTransaction (WS-AT) and WS-
BusinessActivity (WS-BA) protocols. Park et al. [11]
present a Petri net for applying THP in conjunction with
two phase commit protocol, but they only model the THP
and 2PC phases, and do not check whether the model has a
given detailed business logic via model checking.

6. Conclusion

In this paper we have presented a formal coordination
framework for multi-business transactions based on the
tentative hold protocol (THP). Our formal solution
framework using Pi-calculus and the integration of existing
formal verification techniques is proposed to address the
ensuring two aspects that are the verification of specifica-
tion structural constraint among components and the
verification of business logic requirement on multi-business
scenario. The basic model of THP is reused and shared in
modeling of multi-business scenarios which inherit basic
processes and names from the model of THP. In analyzing
the model, we find some interesting issues. The multi-
business applying THP may fail to progress in some cases,
which can be seen as possible cause of abnormal termina-
tion. We point out ill-defined details in the specifications,
and such problem may be revealed by formal verifications.
Therefore, an immediate future work is to provide a
translation procedure from such schema and WSDL
representations about THP messaging to our model. We
also plan to model Rules Integration Modules (RIM) which
is responsible for determining whether the requested
resource is available. Therefore it has more need of precise
semantics. As a practical matter, we are currently
developing a transactional coordination framework, which
as a project the Natural Science Foundation of Hunan
Province of China, is used for verifying Web services
transaction on resource coordination.

7. Acknowledgement

This work is supported by the Natural Science Founda-
tion of Hunan Province of China with the title “Modeling
and verifying Web services transaction supported for
resource coordination” and Key Scientific Research Fund
of Hunan Provincial Education Department (No.08A064).

8. References

[1] M. Berger, and K. Honda, “The Two-Phase
Commitment Protocol in an Extended pi-Calculus,”
ENTCS, vol. 39, pp. 105-130, 2000.

[2] L. Bocchi, C. Laneve, and G. Zavattaro, “A calculus
for long-running transactions,” in Proc. of the 6th
FMOODS, Paris, France, 2003, pp. 124-138.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model
Checking: MIT Press, Cambridge, MA, USA, 1999.

[4] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S.
Weerawarana, “The next step in Web services,” Com-
mun. ACM, vol. 46, no. 10, pp. 29-34, 2003.

[5] L. de Moura, S. Owre, H. Rueß, J. Rushby, N.
Shankar, M. Sorea, and A. Tiwari, "SAL 2," Com-
puter Aided Verification in LNCS, pp. 496-500, 2004.

[6] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary,
C. Barreto, B. Bloch, F. Curbera, M. Ford, and Y.
Goland, "Web services business process execution
language," version 2.0, OASIS Standard, May 2007.

[7] B. Limthanmaphon, and Y. Zhang, “Web service
composition transaction management,” in Proc. of the
15th ADC, Dunedin, 2004, pp. 171-179.

[8] R. Lucchi, and M. Mazzara, “A pi-calculus based
semantics for WS-BPEL,” Journal of Logic and Al-
gebraic Programming, vol. 70, pp. 96-118, 2007.

[9] R. Milner, J. Parrow, and D. Walker, A calculus of
mobile processes. Part / , Information and
Computation, vol. 100, no. 1, pp. 1-77, 1992.

[10] M. P. Papazoglou, “Web Services and Business
Transactions,” World Wide Web, vol. 6, no. 1, pp. 49-
91, 2003.

[11] J. Park, and K.-S. Choi, “An adaptive coordination
framework for fast atomic multi-business transactions
using web services,” Decis. Support Syst., vol. 42, no.
3, pp. 1959-1973, 2006.

[12] Z. Qi, M. Li, C. Fu, D. Shi, and J. You, “Membrane
Calculus: a formal method for Grid transactions,”
Concurrency and Computation: Practice & Experi-
ence, vol. 18, no. 14, pp. 1799-1809, 2006.

[13] J. Roberts, and K. Srinivasan, "Tentative Hold
Protocol Part 1: White Paper," W3C Note, 2001.

[14] K. Srinivasan, P. G. Malu, and G. Moakley,
“Automatic Multibusiness Transactions,” IEEE Inter-
net Computing, vol. 7, no. 3, pp. 66-73, 2003.

[15] M. Younas, Y. Li, and C.-C. Lo, “An Efficient
Transaction Commit Protocol for Composite Web
Services,” in Proc. of the AINA, 2006, pp. 591-596.

[16] W. Zhao, F. Kart, L. Moser, and P. Melliar-Smith, “A
Reservation-based Extended Transaction Protocol for
Coordination of Web Services,” International Journal
of Web Services Research, vol. 5, no. 3, pp. 64-95,
2008.

279

An Adaptive Management Framework for Service Brokers in
Service-Oriented Architecture

W.T. Tsai, Tszyan Chow, Yinong Chen, Xiao Wei
Computer Science & Engineering, Arizona State University, Tempe, AZ 85287-8809, U.S.A.

Contact: wtsai@asu.edu

Abstract
Service broker is a critical part of service-oriented

architecture. A flexible and effective service broker
can greatly reduce the effort for service discovery,
matching, and evaluation of services and their
applications. The proposed broker system provides
adaptive feedback through a data-driven multi-caching
mechanism. The broker is evaluated by simulation
using Google Trends data. The data shows that this
proposed mechanism can adapt to the changing
environment efficiently and automatically.

1. Introduction

Software developed in Service-Oriented
Architecture (SOA) and Web services (WS) are
typically developed by three parties: service providers,
service brokers, and application builders [1]. A key
component of a service broker is the service registry,
which contains directories of contact and access
information of available services hosted by the service
providers. A service broker can also offer a service
repository that hosts services submitted by service
providers. Both service registry and repository are
critical for efficient service discovery and matching. In
fact, a service repository is similar to the concept of
service-oriented database system. Microsoft has
introduced the Service-Oriented Database Architecture
(SODA) in SQL Server 2005 to handle high
transaction volumes [4]. In SODA, the database is
composed of a set of interconnected services. The
database system can be partitioned according to
predefined service boundaries that meet SOA
application requirements. According to Jennings [2],
SODA can be used to orchestrate data-management
workflows with stored procedure instances that
activate on receiving the first of one or more messages,
as well as to handle each set of related messages within
a transaction.

The ebXML broker contains a service repository
and provides configurable and trustworthy computing
and host federated entities. The federated service
broker will need an adaptive broker management
mechanism for efficient management in a distributed
environment. Specifically, it needs to provide these

capabilities: Entities storage; ontology-based reasoning;
entity association information analysis; caching
services; adaptive feedback control; configuration
management; and concurrency control.

This paper proposes a service-oriented broker
system, which supports adaptive feedback control on
its component services, and provides a reconfigurable
multi-caching mechanism to improve the performance
for service discovery. Service data are organized in
caches, which are similar to cache groups in relational
database, except the service data are usually stored in
the form of XML trees instead of tuples [3]. Services
can be ranked so that only service data with high ranks
will be cached. Unlike the traditional database caching
methods, which often perform one cache replacement
strategy only at a time, the proposed management
system is designed to cache an array of classified
service information into different cache categories at
the same time. Such caching mechanisms can be
achieved in an automated or semi-automated fashion.
The automated caching strategy buffers the queries and
updates data continuously, and adjusts the caching
mechanism correspondingly. The semi-automated
caching strategy, on the other hand, allows a broker
operator and/or a service consumer to assign weights to
different caching criteria. The result has an immediate
effect on how service data will be cached and it is
possible that some participating services in the service
broker can be replaced by another new service to
support the new broker functionality.

In addition, service data preloading is introduced to
further improve the service discovery performance
using cached information. By using relational
information, relevant service data can be preloaded
into the cache to enhance performance.

In the rest of this paper, section 2 gives an overview
of an adaptive service broker management system.
Section 3 discusses the feature design of the proposed
system. Section 4 presents a case study with
experiment data to illustrate the key concepts. Section
5 concludes this paper.

2. What is An Adaptive Service Broker?
An adaptive registry provided by service brokers

can store the service information in the forms of tuples

280

in the relational databases; of objects in the object-
oriented databases; and of XML trees in XML
databases. Such information may include: Data used by
services; Service ontology; Business processes in
BPEL and OWL-S; Service specifications in XML or
WDSL; Service implementations (in Java or C#);
Service usage patterns such as most frequently used
services and most frequently used data; and Other
infrastructures.

2.1. Service-Oriented Broker Design
A service broker system can be compared with a

traditional database management system (DBMS). The
proposed broker adopts a schema-less approach to
create a reconfigurable storage environment for the
system to evolve over time. Information resides in the
broker system can be in one of these forms: a set of
tuples, XML trees, and a block of string text. To
ensure this mixed data work in a seamless manner, data
conversion (e.g., from XML to tuples or from tuples to
text) can be done by utilizing style sheets of data
management services within the broker system when
exchanging data between different parties. As a pure

service registry contains directory information only,
the comparison can be made with respect to a service
broker system, knowing that a service broker can be
either a registry or a broker system.

In DMBS, domain ontology information needs be
loaded into database before use. Such pre-processing is
not needed in the proposed broker system because the
consumer can subscribe service data directly.

2.2. Subsystems and Optimistic Operations
Figure 1 shows the design model of the proposed

system. It has two sub-systems: 1) Service Broker
Management System (SBMS) and 2) Service broker
with Multi-Caching mechanism (SBMC). The SBMS
is responsible for controlling and managing
concurrency, data, data operation, and ontology. The
SBMC is responsible for handling caching mechanism.
SBMS is shown on the upper, while SBMC is at the
lower part of Figure 1. These two parts communicate
via a traditional service broker, such as UDDI, which is
still needed so that standard protocols can be used in
the proposed system.

Ontology
Management

Service

Data
Operation

Service

Concurrent
Control
Service

Usage Data
Collection

Service

Ranking
Service

Data
Management

Service

Data
Storage
Service

Releasing
phase?

Buffer Conflict
Incoming Operations

Releasing
Phase Buffer

Dispatch Operation Released Buffer
Operations

Conflict
Operations

Consistent Operations

Yes

No

Releasing
phase ends?
No

WaitReleasing
phase ends?
No

Data Operations BufferYes

Multi-Caching
Management

Service

Cacheby-Domain
Management Service

Cacheby-Location
Management Service

Cacheby-Time
Management Service

Cacheby-Customer
Management Service

Cacheby-Event
Management Service

Cacheby-Domain

Cacheby-Location

Cacheby-Time

Cacheby-Customer

Cacheby-Event

Tag1

Tag2

Tag3

Tag4

Tag5
Service broker and
multi-caching
management system

Enterprise Service Bus

Figure 1. Adaptive Service Broker Management System

281

SBMS is also designed in a service-oriented
manner. Specifically, it is connected to a
communication bus such as EBS (Enterprise Service
Bus), and its constituent services such as ontology
management services and concurrency control
services are connected to the bus. Thus, they can be
replaced if needed. SBMS handles data in two
phases:
� Buffering Phase: During this phase, any incoming

read-only queries are executed in parallel, while
the executions of incoming add/delete/update query
operations are pended. However, if the query
process involves accessing data that may change by
the buffered add/delete/update operations, the
query action will be set to pending as well. When
the buffer is full or some other criteria are satisfied
(see Section 3), the system changes to the
Releasing Phase.

� Releasing Phase: During this phase, the pending
operations in the buffer are divided into groups.
While carrying out pending operations in each sub-
group, other incoming service requests/ query
results are continuously queued in the buffer. This
non-blocking approach boosts the performance of
the proposed service broker system (see Section 3).
Note that when all of the pending operations are
executed, the system returns to the previous phase.
SBMC handling caching mechanisms via multiple

dimensions, and the details of these dimensions can
be found in Section 3.2. Furthermore, this can be
designed in a service-oriented manner so that the
caching criteria can be dynamically changed if
needed.
3. Adaptive Service Broker System

This paper will discuss the multi-caching
approach with service ranking.

3.1. Ranking Mechanism for Caching
The proposed system features service caching,

along with ranking and data preloading, to shorten
service response time. The caching mechanism can
use the following mechanism to determine the
ranking, and highly ranked services will replace
lowly ranked ones.
1. Allow the users to assign weight to different

ranking criteria based on the historical data or the
users’ preferences. For example, suppose Apple
creates a service broker registry for iPod iTunes.
Since the information of downloading frequency
from a registered entertainment website is more
interesting than the last access time. A subscriber
might set the weight of the “most frequently used”
ranking criteria as 90%, while set the sum of other
criteria as 10%.

2. Automatically load a set of services with the
highest ranks into cache. The loading operation is

controlled by the pre-specified ontology so that
only the most relevant services are loaded into a
specific cache. For example, a “Cache-by-Types
of Songs” cache in the iTunes service registry
might load services that provide rapid music
downloading.

3. Whenever the historical data or user’s preferences
are changed, the system will dynamically update
the ranking.

3.2. Service Ranking
The following service ranking criteria can be used:

� Most frequently queried: This assumes that
frequently queried services will continue to be
popular in the future.

� Most recently queried: this assumes that a service
that is recently queried has a good chance to be
queried again.

� Best quality: This assumes that a service can be
objectively evaluated using known tools.

� Least cost: Choose a service with least cost.
� Most recently updated: A recently updated service

may be queried soon. For example, whenever a
new video game is available, many requests will be
made on this new game.

� Most Frequently updated: This may indicate that
numerous users requested to the provider to update
the service, and thus this service may be popular.

The following seven pieces of information need to be
collected accordingly and let

1. rkT be the time of ranking
2. qrT be the time of latest query
3. udT be the time of latest update
4. qN be the number of queries occurred in the period

qP before the time of ranking
5. uN be the number of updates occurred in the period

uP before the time of ranking
6. ASTR be the rank based on the calculation with

Webstrar approach
7. ceR be the rank based on the cost estimation.
The service ranks of the criteria above can be

calculated with the following criteria:
� Most frequently queried: Arrange services in

decreasing order of qN , and the mfqR rank of a
service within qP equals to its index in this
sequence.

� Most recently queried: Arrange services in the
increasing order of rk qrT T� , and the mrqR rank of
a service equals to its index in this sequence.

� Best quality: Arrange services in the increasing
order of ASTR , and the bqR rank of a service equals
to its index in this sequence.

282

� Least cost: Arrange services in the increasing order
of ceR , and the lcR rank of a service equals to its
index in this sequence.

� Most recently updated: Arrange services in the
increasing order of rk udT T� , and the mruR rank of
a service equals to its index in this sequence.

� Most frequently updated: Arrange services in
decreasing order of uN , and the mfuR rank of a
service within uP equals to its index in this
sequence.

The overall rank of a service can be calculated with

the following formula:
1

overall i i
N

R w R
i

� �
�

Where, N is the number of ranking criteria with the
default value 7, iR is the rank according to the ith

criterion, and iw is the weight of a rank criterion in
terms of percentage.

3.3. Multi-Caching
As different consumers may have different

preferences on the services registered, it is the
broker’s responsibility to ensure efficient service
matching and allocations to the corresponding
consumers. For example, when sending service
inquires to the service broker, a service consumer
may only be interested in services hosted in the
location closest to them. In this example, it will be
desirable for the service broker to use location-based
caching technique to cache these services.

Multi-caching is a way to provide efficient
services by reducing multiple round trips to the
server and increasing the availability of services.
Using a multi-caching approach, a service broker
system is equipped with multiple caches. Each cache
can store service data in response to various ranking
criteria and categories. For example, the ranking
option may include: Domain, Location, Customer,
Time period, and Special events.

For a given service registry, the information stored
in the broker will be searched by the users from
different locations during different time periods. If
the information is cached according to their domains,
it helps the users to retrieve the related services
rapidly. For example, assume that there exists a
service registry for sports-related services that caches
domains such as American sports leagues NBA, NFL,
and MLB. A service consumer requesting NBA
related services can easily query the services reside in
the NBA domain service cache. If the NBA services
are also cached by locations, the service consumers in
Phoenix area may query the services for the Suns and
service consumers in Chicago may query the services
for the Bulls easily. During NBA postseason games,
services related to the teams in the postseason will be
cached. When it is time for NBA all stars weekend,

the services such as all stars game tickets selling
services, all stars weekend hotel reservation services,
and travel planning services related to the host city
will be cached for convenient access.

3.4. Service Data Preloading
The performance of service discovery can be

further enhanced by automated preloading of related
services when adding a new service into the cache. In
the registry management system, relational
preloading is used as a preloading service, which
loads services related to the newly cached service
based on the relationship specified in the service
specification, instead of other factors such as locality.

The relationships among services are specified in
the service specification such as PSML (Process
Specification & Modeling Language) [5] and/or in
the ontology model. The broker management system
analyzes a variety of ontology relationships to
support relational preloading, as listed in the Table 1.

Table 1. Ontology Relationships Definition
Relationships Definitions
BelongTo The service belongs to a specific domain.
RelateTo A domain is related to another domain.

LocateAt The service is located at a specific
location (city/state/country).

OccurDuring The service’s contents focus on activities
during a specific time period.

InvolveWith The service is involved with other
services.

CloseTo An owner/customer of a service has close
relationship to other person.

FocusOn The service provides supports for a
particular event.

Each service may include specifications that cover
multiple of the above relationships. When a service is
added into the cache, the highly ranked services with
same ontology relationships may be swapped into the
multi-cache system. For example, when a service
consumer uses the browser located in Phoenix to
search for the best quality NBA services through a
service broker, the sport services that with the highest
rank in reporting NBA news will be swapped into
Cache-By-Domain. Similarly, any highly ranked web
services that are related to Phoenix Suns will also be
loaded into Cache-By-Location.

3.5. Data Operation and Optimization
This section presents an optimization approach to

data operation service called buffer-and-release. The
key idea is to buffer the incoming add/delete/update
operations as well as partial query operations in the
Data Operations Buffer and allow the rest of the
query operations run concurrently until certain
criteria are satisfied. When the criteria are met, the
system will release and execute all the holding
operations until the Data Operations Buffer is empty.
A query operation is buffered if and only if it tries to

283

access the data that will be modified by the existing
data operations in the Data Operations Buffer.

The Data Operation Service has two phases: the
buffering phase and the releasing phase. During the
buffering phase, the Data Operation Service accepts
all the incoming query operations, buffers add/delete
operations and partial query results until certain
criteria are satisfied. When the system is ready, it
switches to the releasing phase which will perform
the add/delete/query operations stored in the data
operations buffer. Once the Data Operations Buffer is
empty, the state is changed back to the buffering
phase. Let
1. aN be the number of add operations,
2. dN be the number of delete operations
3. qN be the number of query operations
4. esrN be the number of data entities in the service

broker
5. eomN be the number of data entities involve with

the add/delete operations in the Data Operations
Buffer

6. bfP be the pre-specified policies to regulate the
behaviors of the data operations

The proposed system supports the following
buffer releasing criteria:
1. ?a d tN N N� � , where tN is the pre-specified

threshold value.

2. ?a d
tpq

q

N N P
N
�

� , where tpqP is the threshold

percentage with respect to qN
3. ?eom teN N� , where teN is the maximum number

of data entities that are allowed to be involved
with the operations in the buffer

4. ?eom
tesr

esr

N P
N

� , where tesrP is the maximum

percentage between eomN and esrN
5. bfP is violated? For example, a policy might

specify the maximum number of add operations
is 100 times a day.

The above criteria can be dynamically selected and
replaced in the runtime based on the analysis results
after they are implemented as services.

The execution can be optimized by dividing data
operations buffer into parts and only one segment
will be executed at a time. When releasing operations
from a segment, operations that involve accessing
the same data in current partition (conflicted
incoming operations) will be buffered / pended, and
other non-conflicted incoming operations (consistent
incoming operations) will be dispatched and
executed immediately. The pending operations will
also be dispatched and executed after the releasing
phase ends. This non-blocking parallel design

amplifies the performance of the overall data
operation execution process.

There are multitudes of ways to partition database
schema. The partitioning approach that we adopt is
XML-file-based, for the most common format to
store the data in the service broker are XML files.
With operation partition, the execution process
during the releasing phase follows the algorithm
below.

Divide the data operations in the Data Operations Buffer
into N parts;
for (int i = 0; i < N; i++){

Pick up the ith part;
While (not all the operations in the ith part are
executed){

Pick up the next operation from the ith part which
does not access the same data as the operations
currently being executed;
Start executing this operation;
if (no such operations are left){

while (the load is not full){
Execute incoming query operations that
do not access the same data as the
operations currently being executed;}

}}

4. Experiments
To fully understand how the adaptive feature of

the service broker system works, it is important to
recognize how the system behavior changes in
accordance with the cached services and the users
query patterns. When the user first interacts with the
broker, the performance gain from the cache is zero
because no cache information is available. Once the
initial search is performed, all subsequent searches
may require less time to perform because. Figure 2
shows the generalized cache cycle in the proposed
system using the service access and cache data
collected during the events of the NFL Super Bowl
2007 and NBA All Start 2007. The y-axis on the left
represents the number of services retrieved from the
cache and the one of the right represents the
percentage of the cached services that are relevant to
the new query. The x-axis indicates the time when
the search happens.

In Figure 2, the two distinctive bell curves, S1 and
S2, are generated to represent two different domains
that are frequently queried by the users in a specific
time period. Both S1 and S2 first started from zero
cache hit and then gradually increase the hit rate as
services are being cached after each look up. The
service retrieval time is optimal when it achieves
90% cache hit. The reason being is that the service
subscribers are retrieving 90% of the desirable
services directly from the cache instead of the remote
servers. However, due to the dynamic nature of the
system, as a new service query arrives, the presently
cached items will be gradually replaced by the next

284

popular services. As a result, the cache hit % for the
previously popular service will be lower, and S1 and
S2 overlap with each other.

Figure 2. Sample Service Retrieval Cycle
To test the effectiveness of the proposed service

caching and preloading techniques discussed in the
preceding sections, a stimulation analysis has been
performed to compare different service calls along
with the cache information but uses actual data from
Google Trends [10]. The stimulation program is
written in C#. Google Trends analyze how frequently
a subject has been searched on Google over time and
across the global. Data obtained from Trends are
normalized and scaled relative to the average traffic
of the search item. To stimulate the service broker
system, the actual data for NFL and NBA search in
the United States during the February 2007 has been
collected from Trends.

The Search Index Volume (SVI) on the y-axis
indicates the popularity of the search item.
Presumably, all items start at 0.0 SVI. As the search
of a particular item become more frequent, the SVI
will be increased with respect to its norm. For
instance, in Figure 3 a noticeable spike (1.65 SVI)
between February 2nd and February 6th indicates the
search traffic is 1.65 times higher than the usual for
the NFL. In this experiment, only the data from
February 1st to 22nd 2007 is used. The SVI value has
been augmented by 100 to represent the virtual data
volume and the scale of the search data is also
compacted from daily to millisecond for the
stimulation program. All service query activities are
artificially generated according to the search pattern
observed in Table 2. The transformed version of
Trends graph is shown in Figure 4.

Table 2. Google Trends Data for NFL and NBA
in February 2007

5. Summary
This paper presents an adaptive service-oriented

registry management framework for service registries.
This framework supports adaptive feedback control,
reconfigurable service ranking, caching and

preloading. The data operations are optimized to
improve the performance of the execution process. A
case study and experiment data are presented in this
paper to demonstrate the techniques in the
framework. A stimulation analysis using Google
Trends data is also performed to demonstrate the
effectiveness of the proposed framework for service
discovery and matching for the service consumers.

Figure 3. Analysis using Google Trends Graph

Figure 4. Google Trends Reproduction

References
[1] Y. Chen, W.T. Tsai, Distributed Service-Oriented

Software Development, Kendall/Hunt Publishing, 2008.
[2] R. Jennings, “Program SQL Server 2005’ Service

Broker”, June 12th, 2006, available at
http://www.ftponline.com/vsm/2006%5F06/magazine/f
eatures/rjennings/.

[3] Y. Kim, S. H. Park, T. S. Kim, J. H. Lee, and T. S. Park,
“An Efficient Index Scheme for XML Databases”,
SOFSEM 2006, pp. 370-378.

[4] Microsoft, “Why Consider a Service-Oriented Database
Architecture for Scalability and Availability”, White
Paper, November 2005.

[5] W. T. Tsai, X. Wei, Z. Cao, R Paul, Y. Chen, and J. Xu,
“Process Specification and Modeling Language for
Service-Oriented Software Development”, 11th IEEE
International Workshop on Future Trends of
Distributed Computing Systems (FTDCS), Sedona, AZ,
March 2007, pp.181-188.

[6] H. Jiang, C. Ho, L. Popa, W. Han, “Mapping-Driven
XML Transformation”, In Proceeding 16th International
World Wide Web Conference (WWW), Banff, Canada,
May 2007.

[7] IBM WebSphere software, http://www-
306.ibm.com/software/websphere

[8] IBM Autonomic computing project, http://www-
03.ibm.com/autonomic/

[9] SmartChannels Repair, BBN, 2002,
http://aai.bbn.com/cougaar/Smart_Channels_SelfHealin
g_final.pdf

[10] Google Trends, http://www.google.com/trends

285

Requirements Discovery Based on RGPS Using Evolutionary Algorithm

Tao Peng, Bing Li, Weifeng Pan, Zaiwen Feng
State Key Lab of Software Engineering, Wuhan University, 430072, Wuhan, China

School of Computer, Wuhan University, 430072, Wuhan, China
tao.peng@163.com libing@sklse.org

Abstract

Requirements discovery is the base of software
engineering, and it has a great effect on the software
development. The requirements are usually elicited
through the communication with users in practice, but
this method is not suit for networked software. In this
paper, we present a novel method for requirements
discovery in networked software. It represents the
initial requirement with tree based on RGPS (Role-
Goal-Process-Service) and uses evolutionary
algorithm to find other requirements similar to the
given initial one. The experiment results show that the
method proposed in this paper not only can find out
the requirements similar to the initial one, but has
better adaptability and higher efficiency than the
traditional nested loop method used in the case of
complex requirements and domain ontologies. It is
promising.

1. Introduction

Networked Software is a novel software paradigm
which is proposed by our research group [1]. The
Networked Software is much different from the
traditional software, which elicits requirements from
users online, analyzes users’ requirements statements,
creates users’ requirements model, selects model
assets according to users’ requirements model,
discovers and composes web services to create a
system to satisfy users in an acceptable period of time.

The traditional method for requirements discovery
is interacting between developer and users, and the
researches of requirements discovery have been
carried out from different phase of software
developing [2], or from special software system [3].
However, for the characteristics of networked software,
we need a new method for requirements discovery.

On networked environments, there is a lack
of interaction between users and developers. Users
don’t know what software they need, and developers
don’t know who will use their software. RGPS [4] is a
requirements meta-modeling framework for networked
software which starts from analyzing requirements
and ends with providing solutions based on services.
RGPS is a bridge between users and developers, and
makes them work separately well. Generally, there is
no service can fulfill user’s requirement directly, so we
need a method to mining user’s potential requirements
and provide personalized services to them. All of these
should be completed online, so the similarity of
requirements and time consuming have high priority.

Based on RGPS, the Nested Loop (NL) [5] method
can be used to discover the requirements. It first
constructs the warehouses of similar words for each
element elicited from user’s requirement. Then it uses
nested loop to assemble the words in each warehouse,
and keeps the assembled requirements which have
fitness bigger than a given threshold. The advantages
of NL are that it can be easily implemented, and it can
discover all required requirements, but its efficiency is
very poor especially in the case of complex
requirements and domain ontologies.

For the problem proposed above. This paper
presents a new requirements discovery method named
RERD. It represents user’s requirement with tree, and
adopts evolutionary algorithm (EA) [6] to search
requirements similar to user’s requirement. The
numerical experiment shows that compared with the
NL method, the RERD method has better adaptability
and higher efficiency than NL in the case of complex
requirements and domain ontologies.

The reminder of the paper is organized as follows:
section 2 gives a brief introduction RGPS and EA.
Section 3 details the RERD method. Section 4 is the
numerical experiment. And we conclude this paper in
section 5.

286

2. RGPS and EA

As we talked above, RERD method is based on
RGPS and EA, so in this section we will give a brief
introduction to RGPS and EA at first.

2.1. RGPS
.

RGPS [4] is a service-oriented requirements meta-
modeling framework for networked software. It can be
used to guide requirements modeling in networked
software. According to the characteristics of
requirements in networked software, the RGPS
framework consists of four layers: Role, Goal, Process,
and Service. Web Ontology Language (OWL) is
adopted as concrete syntax to describe Role Layer and
Goal Layer, whereas Process Layer and Service Layer
are described by OWL-S.

Role Layer is used to depict the actors, roles played
by actors and context of the actors. A role can take
charge of several goals.

Goal Layer depicts goals and properties of goals.
Goals can be classified into Functional Goals and
Nonfunctional Goals. A Functional Goal has an
Operation, an Object and a Manner. Functional Goals
can be decomposed into several sub-goals. The
decomposition will go on until all the sub-goals are
Operational Goals which can be achieved by Processes.
Besides Functional Goals, Nonfunctional Goals are
also defined in the Goal Layer. Nonfunctional Goals
are classified into Quantitative Nonfunctional Goals
and Qualitative Nonfunctional Goals.

Because Process Layer and Services Layer have
little relationship with the work in this paper, we don’t
introduce it. For more details, please refer to Ref. 4.

2.2. EA

EA (Evolutionary algorithm) [6] uses the
mechanisms inspired by biological evolution
(reproduction, mutation, recombination, and selection)
to guide the learning and searching direction. EA can
find the best individual in a population with evolving.
However, in our method, we already have the best
individual which is user’s requirement, what we need
to do is to find the population of similar requirements.
In order to use EA to discover the requirements, we
should modify the traditional EA in many aspects such
as individual representation, the recombination
operation, the mutation operation, and fitness function

3. Construction of RERD

Figure 1 gives the overview of the RERD method:

Figure 1 The steps of RERD

3.1. Element Extraction

To represent user’s requirement, we should first
elicit the elements such as behavior, condition, event,
reaction, constraint status, etc from the requirement [7].
Because this paper only focuses on the discovery of
potential user requirements, only Role layers and Goal
layer will be used. Suppose that one requirement is
described as “grandpa wants to travel by car”, after
eliciting, we get four elements: Role, Goal, Purpose
and Manner. The Goal element is an abstract element
without a value, but containing the Purpose and
Manner elements. Where “Old_Man” is the value (or
word) of Role, “Travel” is the value of Purpose, and
“By_Car” is the value of Manner.

3.2. Mutation Pool

Mutation pool is a warehouse of words similar in
semantic. When the mutation operation is selected, we
will choose a word from the mutation pool to replace
the corresponding word of the parent requirement. To
prevent the mutation operation produce too much
useless requirement, we only construct the mutation
pool for all non-abstract elements of each initial
requirement. The child requirements will inherit the
mutations pools from parent requirements, no matter
the operation is recombination or mutation. We can
construct the mutation pool by following steps:
1) Add the word (value) of the non-abstract element

into warehouse;
2) Add the words of domain ontologies with

similarity value bigger than threshold Simlexical’
into the warehouse. Simlexical’ is a parameter can
be used to change the size of mutation pool.

The function used to evaluate similaritybetween any
pair of words’ is written as: [8]

)1,max()),((
)(),(

2121

21
21

llOODis
llOOSim lexical

−×+
+×

=
α

α

Where Simlexical (O1 , O2) is the similarity of word
O1 and word O2; Dis (O1 , O2) is the distance between

Step1: Model the requirements with RGPS, and extract the elements
correspondingly
Step2: Construct the Mutation Pool for each element in the initial
requirement
Step3: Represent the requirements with a tree structure, namely
requirement tree
Step4: Evolve the requirement tree with EA, and return a population of
similar requirements.

287

two words; l1 is the level of word O1; l2 is the level of
word O2; α is an adjustable parameter bigger than 0.
For more details, please refer to Ref. 8.

We should construct three types of mutation pool
for the requirements in section 3.1. They are Role
mutation pool, Purpose mutation pool, and Manner
mutation pool.

3.3. EA in RERD

In this section we will detail the EA that used in
RERD in the following aspects: individual
representation, recombination operation, mutation
operation and the fitness function.

3.3.1. Individual Representation. The individual
representation of GP (Genetic Programming) [9], the
tree structure, will be introduced into our method to
represent the requirements, which can be constructed
by following three steps:
1) The root node of the tree is “Requirement”;
2) The intermediate nodes of the tree are the abstract
element, for example, the Goal element;
3) The leaf nodes of the tree are the elements which
have a value (word), for example, the role element.

Figure2 gives an illustration of the representations
of the requirement “grandpa wants to travel by car”.

Figure 2 Requirement tree

3.3.2. Recombination Operation. Recombination is
an evolutionary operation to produce new individuals.
The new individual produced by combining the
different parts of parent individuals. In RERD, the
recombination operation is implemented by following
steps:
1) Choose two parent requirements randomly,
2) Choose a recombination point randomly, and
exchange the subtree rooted in the recombination
point to produce two new child requirements.

The recombination points of the two parent
requirements should be at the same point. Figure 3
gives an illustration of the recombination operation:
one parent requirement is “grandpa wants to travel by
car”, and the other parent requirement is “Harry goes
to school by bike”, and the recombination point is

“Manner” node. After recombination, we get two child
requirements that are “grandpa wants to travel by
bike” and “Harry goes to school by car”.

Requirement

GoalRole
Old_Man

Purpose
Travel

Manner
By_Car

Requirement

Goal Role
Child

Purpose
Study

Manner
By_Bike

Recombination
point

Parent 1 Parent 2

Requirement

GoalRole
Old_Man

Purpose
Travel

Manner
By_Car

Requirement

Goal Role
Child

Purpose
Study

Manner
By_Bike

Child 1 Child 2

Figure 3 Recombination operation

3.3.3. Mutation Operation. The mutation operation is
beneficial to the diversity of individuals. In RERD, it
only operates one parent requirement to generate new
individual by changing some specific genes randomly
which can be implemented by the following steps:
1) Choose a mutation point in the requirement tree,
which is either the intermediate node or the leaf node;
2) If the mutation point is at a leaf node, randomly
choose a new word from the corresponding mutation
pool, and replace the chosen old word. If the mutation
point is at an intermediate node, do mutation
operation for every leaf node of the subtree rooted in
this node.

Manner
By_Train

Requirement

Goal

Purpose
Travel

Manner
By_Car

Requirement

Goal

Purpose
Deliver

Child

Role
Old_Man

Role
Old_Man

Mutation pointParent

Figure 4 Mutation operation

Figure 4 illustrates the mutation operation: the
parent requirement is “grandpa wants to travel by
bike”. The mutation point is “Goal”. After mutation,

288

we get the child requirement, “grandpa delivers goods
by train”.
3.3.4. Fitness Function. After recombination and
mutation operation, we should evaluate the fitness of
the child requirements to discard the child
requirements with fitness smaller than a given
threshold. The fitness value is used to evaluate the
similarity between the child requirement and the
initial requirement. The fitness function used in
RERD can be written as:

∑
=

=
M

k
kklexicalkreq OOSimSim

1
),'(α

Where M is the number of leaf nodes. kO is the
word of the leaf node in initial requirements, and 'kO
is the word of the corresponding node in child
requirements.),'(kklexical OOSim is the similarity between

kO and 'kO . kα is the weight bigger than 0 on the
node.
3.3.5. Terminate condition. The terminate condition
in EAs usually has two types: one is controlling the
maximum evolving generation (MEG); the other one
is judging whether the requirement population has
been unchangeable in a certain number of generations.
To control the time the RERD method may cost, the
first type of terminal condition will be chosen here.

4. Experiment Analysis

In this section RERD will be applied to two
practical requirements discovery cases. The results of
the experiments show that the proposed method can
get similar requirements as the traditional methods,
with a better time efficiency. The experiments are
implemented with Java on Eclipse-europa platform in
a Dell notebook with CPU Intel T7250, Memory 1G,
and OS Windows XP.

4.1. Numerical Experiment

Suppose there is an initial requirement: “someone
will watch Olympic Games by train”. The elements
extracted are shown in table 1. The three domain
ontologies are available at [10]. The parameter settings
are shown in table 2:

Table 1 Elements extracted
Role Purpose Manner

Value Man Enjoy_Olympic_Game By_Train

Table 2. Parameter settings
Simlexical’ αrole αpurpose αmanner Simreq’ MEG

1 1 1 1 10 60

The program finds 18 similar requirements within
260ms. The 18 similar requirements shown in table 3
are ranked according to Simreq from small to large.

In the following, we will take the 1st and 18th

requirement as examples to analyze why they are
chosen by RERD. Since the 1st requirement’s Manner
is different from the initial requirement, we should
calculate the fitness of the requirement. According to
the formulas and the relationship of elements in
ontologies, the 1st requirement will be kept in the
population for its fitness is 13.2 larger than the
threshold Simreq’. By the same token, the 18th

requirement will also be kept for its fitness is 14.3.The
fitness value of the 18th requirement is bigger than the
1st requirement, so the 18th requirement is more
similar to the initial requirement than the 1st one.

Table 3 Similar requirements
No Role Purpose Manner Simreq
1 Man Enjoy_Olympic_Game By_Plane

13.2

2 Old_Man Enjoy_Olympic_Game By_Train
3 Father Enjoy_Olympic_Game By_Train
4 Man Watch_Basketball_Game By_Train
5 Child Enjoy_Olympic_Game By_Train
6 Man Watch_Football_Game By_Train
7 Woman Enjoy_Olympic_Game By_Train
8 Old_Wom

an
Enjoy_Olympic_Game By_Train

9 Baby Enjoy_Olympic_Game By_Train
10 Man Enjoy_Olympic_Game By_Coach
11 Middle_C

ouple
Enjoy_Olympic_Game By_Train

12 Man Enjoy_Olympic_Game By_Ship
13 Man Enjoy_Olympic_Game Long_Travel

_Manner 13.7
14 Man WatchSportGames By_Train
15 Person Enjoy_Olympic_Game By_Train
16 Man Watch_Swimming By_Train

14.317 Man EnjoyJalor By_Train
18 Man EnjoyHorsemanship By_Train

4.2. Data Comparison

In this section the proposed RERD will be executed
10 times under different size of mutation pool, and
compared with the traditional NL method in two
aspects: the requirement searching capacity (the
number of requirements obtained) and the time
efficiency. And the data are averaged. In RERD, the
size of mutation pool can be adjusted by setting
different similarity threshold Simlexical’. Here the
Simlexical’ will be set to be the following values: 1, 0.95,
0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, and 0.5.

The comparisons between RERD and NL in
requirement searching capacity are shown in figure 5.
On the whole prospective, the number of requirements
found increases with Simlexical’ decreasing. When
Simlexical’ changes from 1 to 0.7, the size of mutation
pool is small, and the evolving generation is big
enough to find all requirements, so the number of

289

requirements found by RERD is same as that of NL.
However, with the Simlexical’ decreasing, the size of
mutation pool increases, making the RERD can’t find
all the requirements only with 2 or 3 requirements
being missed compared with NL.

Figure 5 Comparison of requirements number

The comparisons between RERD and NL in time
efficiency are shown in figure 6. From the figure, we
can find that the consuming time increases with the
Simlexical’ decreasing. When Simlexical’ changes in the
range from 1 to 0.7, the consuming time of RERD is
larger than that of NL by roughly 80ms. When
Simlexical’ change in the range from 0.65 to 0, the
consuming time of NL increases at a high speed, near
to 2s. Conversely, the consuming time of RERD
increases slowly, still less than 1s.

Figure 6 Comparison of consuming time

Though NL can be used to find all the requirements,
it is very time consuming in the case of complex
requirements and domain ontologies. However, EA
with the characteristics of self-adaptation, makes
RERD can find requirements more effectively. It is
acceptable that the RERD to save the time at the cost
of missing several requirements.

5. Conclusion

A method for requirements discovery based on
RGPS and evolutionary algorithm is proposed in the
paper. And the construction of evolutionary algorithm
for requirements discovery is also proposed. It is

proved experimentally that the RERD method can find
requirements similar to the user’s requirement.
Furthermore, compared with the NL method, the
RERD method can be easier to control the time
consuming by setting maximum evolving generation
and more effective with acceptable missing few
requirements in the case of complex requirements and
domain ontologies. So the RERD method is more
suitable for the online processing course of networked
software.

Acknowledgements
This work is supported by the National Basic Research
Program of China (973) under Grant
No.2007CB310801, the National High Technology
Research and Development Program of China (863)
under Grant No.2006AA04Z156, the National Natural
Science Foundation of China under Grant
No.60873083, 60703018, 60703009 and 60803025.

6. References

[1] He Keqing, Liang Peng, et al. Requirement
emergence computation of networked software [J].
Frontier of Computer Science in China, 2007, 1(3):
322-328

[2] RR Lutz, IC Mikulski. Resolving Requirements
Discovery in Testing and Operations [C], the 11th
IEEE International Requirements Engineering
Conference, 2003.

[3] N Seyff, F Graf, et al. Mobile Discovery of
Requirements for Context-Aware Systems [C],
REFSQ 2008:183-197.

[4] Wang Jian, He Keqing, Li Bing, et al. Meta-
models of Domain Modeling Framework for
Networked Software [C], In Proc. of the Sixth
GCC Conference, Urumchi, China, July 2007.

[5] http://en.wikipedia.org/wiki/Nested_loop_join
[6] Liu Yong, Kang Lishan, et al. Genetic Algorithm

[M]. Beijing: Science Press, 1997.
[7] Liu Wei, Peng Rong, et al. Heavyweight Semantic

Inducement for Requirement Elicitation and
Analysis [C], the 3rd SKG, pp: 206-211, Oct. 2007

[8] Wu Jian, Wu Zhaohui, et al. Web Service
Discovery Based on Ontology and Similarity of
Words [J]. Chinese Journal of Computers, 2005,
28(4): 413 – 417.

[9] Zhang Zong-hua, Zhao Lin, et al. An Introduction
and Survey of Application of Genetic
Programming [J]. Computer Engineering and
Applications, 2003, 39(13): 94-97.

[10] http://61.183.121.131/973/ontology.rar

290

Mediation Based Variability Modeling for Service Oriented Software Product
Lines

Mohammad Abu-Matar
George Mason University

Fairfax, VA USA
mabumata@gmu.edu

Abstract – Service Oriented Architecture (SOA) has emerged as a
model for distributed software development that promotes agility
and large scale reuse. Software product lines (SPL) promote agile
and flexible application development for software families. SPL
development relies on feature models to describe the
configurations of software member applications. To develop
service-oriented SPL, variability analysis must be applied to
existing services that are decoupled from service requesters. In
this paper, we rely on SPL engineering principles to develop a
service oriented variability mechanism based on the Enterprise
Service Bus (ESB) concept. We start with service orchestration
models provided by domain business analysts. Then, we develop
feature models similar to those of SPL to model commonality and
variability requirements. Then, we develop Mediation modules to
model the variability requirements of service oriented
applications. Mediation modules reside in the ESB layer which is
above the services layer. This way, we model variability
independent of the services layer and yet satisfy variable
requirements of multiple service oriented applications. We then
show how variant member applications could be composed and
executed using the ESB in any SOA environment.

1. Introduction
 Software Product Lines (SPL) are families of software
systems that share common functionality, where each
member has variable functionality [1]. The main goal of
SPL is the agile and rapid development of member systems
by using reusable assets from all phases of the development
life cycle. This goal is similar to the goal of Service
Oriented Architecture (SOA) where agile and flexible
application development is a common theme.
 An essential requirements modeling phase in Software
Product Lines Engineering (SPLE) is Commonality and
Variability Analysis (CVA) where the common and varying
features of SPL member applications are outlined. CVA is
commonly expressed in Feature Models based on the SPL
common, optional, and alternative use cases.
 In SPL, a variable component architecture is specified up
front based on the feature model. In SOA, the main
elements of the architecture are services normally provided
by outside sources. A major characteristic of SOA is the
decoupling between the business process layer and the
service layer [2] where both layers can evolve
independently of each other. Therefore, services in the
service layer have no notion of the process layer or any

other clients. More importantly, services in the service layer
have no notion of any clients’ variability concerns.
 Variably modeling for service oriented applications
should be performed independent of the service layer, since
normally client applications have no control over the
provided services that can be located and consumed from
anywhere over the Web. Hence, the challenge is how to
design variability concerns of service oriented
applications independent of the service layer and yet use
the services in a way that satisfies multiple application
scenarios.
 In this paper, we use SPL variability modeling principles
to model variability of service oriented applications using
the Enterprise Service Bus (ESB) [5] layer.
 An ESB is an intermediary layer present in most SOA
environments that decouples service providers from
requesters. The ESB is normally built of off a Message
Oriented Middleware MOM [5]. Clients and services plug
into the ESB seamlessly without worrying about
communication or infrastructure details. In addition, the
ESB provides several utilities for SOA execution like
routing, transformation, mediation, and security.
 We start with service orchestration models provided by
business analysts. Then, we develop feature models similar
to those of SPLE [1] to model commonality and variability
requirements. Then, we develop Mediation modules to
model the variability requirements of applications.
Mediation modules reside in the ESB layer which is above
the services layer.
 The paper is structured as follows: section 2 presents the
ESB mediation modules that are used to realize variability,
section 3 details the proposed solution using a running
example, section 4 presents work, and section 5 concludes
the paper.

2. Service Variability Types and Mediation

Modules
 Service variability can occur in several situations. The
following list describes three types of variability based on
[3]:
� Composition Variability – where a business process

has to select a service from a pool of services.
� Interface Variability – where a service candidate is

identified, but its interface is slightly different than the
required functionality.

291

� Logic Variability – where a service candidate is
identified, but its internal logic needs a slight change.

 Mediation modules are middleware components that
reside inside the ESB layer [5]. Mediation modules act on
service requests before forwarding them to their
destinations. The following is a typical list of ESB
mediation modules types:
� Custom – are customized based on specific business

requirements. For example, a custom mediation
module can be developed to add discount pricing logic
to a payment service. We use custom mediation
modules to model business logic variability and
interface variability.

� Routing –used to route service requests to different
services based on some selection criteria. We use
Routing modules to route service requests to services
based on required feature requests.

� Transformation – used for data format transformation.
Some services dictate specific data format for
incoming messages. Transformation modules can be
used to transform incompatible client requests to the
required service’s format.

 In our research, we identify service variability types
based on SPL feature selection, and then design mediation
modules that realize the selected features as explained in
the remainder of this paper.
 We use UML stereotypes to model ESB mediation
modules using class diagrams. We use the following
stereotypes: <<Mediation>>, <<Service Selection>>,
<<Business Logic>>, <<Interface>>, and <<Data
Transformation>>.

3. Problem and Proposed Solution
 In this section we state the problem of our research and
then we detail the steps of our proposed solution.

Problem Statement
 How to design and execute variable service oriented
applications independent of the service layer and yet use
provided services in a way that satisfies multiple variable
scenarios and clients?

Proposed Solution
The following paragraphs explain the steps of the

proposed solution. These steps will be performed using tool
support which is not discussed in this paper.
 Service orchestration is modeled by simple activity
diagrams where each activity represents a service.
 The following diagram depicts a typical orchestration for
an E-Commerce Ordering example [7]. We use the
<<Service>> stereotype to indicate services and we call this
model the ‘Service View’.

Fig. 1. Ordering Service Orchestration

 Features [1] are reusable requirements that are present in
SPL members based on members’ specification. All
members of the product line have common features. Some
members have optional features, whereas other members
have to choose from alternative features.
 We represent feature models using class diagrams as
presented in [1]. The following diagram depicts the feature
model for the E-Commerce Order example, which we call
the ‘Feature View’

Fig. 2. UML Feature Model for Ordering Example

 The Order Kernel feature represents the original service
orchestration provided by the ‘Service View’ above. Kernel
features are mapped 1-1 to the requested services. The
Order SPL has an alternative payment method feature
where payments could be performed using credit or debit
cards. In addition, there is an optional feature where
Discount functionality could be selected. Order status
monitoring and overseas shipping could also be optionally
selected.
 It should be noted that unlike SPLE in [1], kernel
features here represent the original service orchestration,
but not the services present in all members of the SPL.
Instead, product line’s members are made of some services
from the original orchestration in addition to ESB modules
that realize variability of the remaining services in the
orchestration n as explained below.
 Optional and alternative features are associated with
affected services. For example, the following services are
affected by the Discount [7] optional feature: Acquisition,
Credit Ranking, Billing, and Payment Checking.
 The following diagram depicts the mapping between the
Discount feature and affected services:

Fig. 3. Discount Feature and Affected Services

 Map Alternative/Optional Features into ESB
Modules.

� Identify type of service variability (listed above).

292

� Build, Generate, or Reuse ESB modules.
� Map ESB modules to selected features.

 To realize the Discount feature, the following types of
services variability and mediation modules are identified:

TABLE 1. Type of Variability & ESB Modules

 The following diagram depicts the mapping between the
Discount feature and mediation modules .

Fig. 4. Discount Feature & Mediation Modules

 Compose Kernel, Alternative, and Optional Features.
Like SPL Application Engineering [1], service oriented
member applications will be composed using tool support
in the following manner:
� Based on feature selection, the desired member

application will be composed based on the metadata
that was saved in the registry. For example, if the
Discount feature is selected, the tool will search the
SOA Registry for the mediation modules that realize
the Discount feature. These modules were depicted in
figure 4 above.

� Mediation modules are then deployed into the ESB of
the SOA environment using the environment’s
configuration tools.

� The tool starts with the original service orchestration
depicted in figure 2 above and insert the corresponding
mediation activities in place of affected services. The
following diagram depicts the composed member
application based on the Discount feature:

Fig. 5. Discount Feature Member

Notice, that the above activity diagram has activities that
represent services <<Service>> and activities that represent
mediation modules <<Mediation>>. Activities with the

<<Service>> stereotype represent services from the original
orchestrations that were NOT affected by the Discount
feature. The sequencing of the orchestration is preserved
from the original business process shown in figure 1.
 The resulting member application composition could
then be expressed in the Business Process Execution
Language (BPEL) [6] or any other workflow language.
 Design and implement a Receptor <<Receptor>> ESB
module for the SPL. This module resides in the ESB and
intercepts messages destined for the services participating
in the SPL. The Receptor module is based on basic ESB
Routing capabilities [5] explained above.
 Request messages will have information that indicates
the specific SPL and the required features. Message
enriching patterns [4] could be used to augment messages
based on features selection. The following XML message
depicts a conceptual SOAP request that has feature and SPL
information in the header part of the message:

<SOAP-ENV:Envelope>
 <SOAP-ENV:Header>
 <tns:SPL>Order</tns:SPL>
 <tns:FEATURE>Discount</tns:FEATURE>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 In the above message, we use an XML tag that indicates
the name of the SPL <SPL> and another tag that indicates
the requested feature <FEATURE>.
 Using any SOA environment, member applications
could be executed:

� Service requests originating from BPEL code and
enriched with metadata indicating the SPL and
requested features are sent to the ESB.

� Requests are intercepted by the ESB’s Receptor
module.

� The Receptor will route the request to the
appropriate ESB mediation module.

� The ESB module does its processing and forwards
the request to the corresponding service

 The following diagram illustrates the execution dynamics
for the Discount member application:

Fig. 6. Discount Member Application

Service Type of Variability Mediation
Module

Acquisition Interface where an extra method is
needed for discount inquiry.

<<Interface>>

Credit
Ranking

Business Logic where credit
ranking is adapted for discount.

<<Business
Logic>>

Billing Business Logic where price is
adapted to for discount.

<<Business
Logic>>

Payment
Checking

Business Logic variability <<Business
Logic>>

293

4. Related work
 There have been several approaches for designing
adaptable service oriented applications. The authors in [8]
add variability analysis to an existing service oriented
analysis and design method (SOAD). Decision tables are
used in [8] to record variability types in each phase of the
SOAD process.
 The authors in [9] present architectural pattern
approaches to model variation points in Web Services.
 The authors in [10] advocate a SPL approach that has a
specific phase for service composition in the architecture.
They introduce several variation points that can be used to
customize the SPL during service selection in the
application engineering phase. However, the authors in [10]
do not tie service selection to the features required in the
SPL.
 The authors in [11] presented an SPL engineering
approach based on Web Services. Components in the
architecture were modeled using the <<web service>>
stereotype. UI feature selection determined the selection of
Web Services. UML activity diagrams modeled
customization choices based on feature/Web Service
interactions.
 In [9], the authors used the concept of features to solve
variability problems for SOA. The authors used Feature
Oriented Programming to modify the source code of
services. However, the authors’ approach assumes the
availability of service implementation code, which is not
the norm in most SOA scenarios.
 The authors in [3] presented four types of service
variability (Workflow, Composition, Interface, and Logic)
and described an approach to adapt services using the ESB.
The approach in [3] is similar to our approach in that it uses
ESB mediation modules (called Adaptation Managers) to
realize variability concerns. However, the approach in [3]
does not apply SPL principles, nor does it use features to
express variability.

5. Conclusion
 One of the major benefits of SOA is the flexible building
of IT solutions that can react to changing business
requirements quickly. SOA promises a world of IT
ecosystem where service providers offer their services and
service requesters use these services based on their business
needs. Normally, service providers are not aware of service
requesters and services are consumed by several requesters
with varying requirements.
 A research challenge is how to design and execute
variable service oriented applications independent of the
service layer and yet consume provided services in a way
that satisfies multiple variable scenarios and clients.
 In this paper, we used SPL variability modeling to model
variability of service oriented applications using the ESB
layer. We started with service orchestration models and
developed feature models to model commonality and
variability requirements. Then, we developed ESB

mediation modules to model the variability requirements of
service oriented applications.
 We believe that our approach has several benefits:
� The same service could participate in many SPLs.
� Services are not aware of variability concerns.
� ESB mediation modules can be updated or added at

runtime, thus an SPL can evolve by just manipulating
mediation modules.

� Reuse is maximized in SOA based applications by
indirectly extending services functionality.

� There is no need to introduce an additional computing
layer, since the ESB is present in SOA environments.

 We plan to create metamodels that describe the relation
between feature and mediation modules. We will take a
model driven approach where we consider our ‘Mediation
View’ as a Platform Independent Model (PIM) and the ESB
execution environment as the Platform Specific Model
(PSM). This approach enables us to devise automated
composition of SOA application.
 We intend to use commercial and open-source SOA
environments to demonstrate the viability of our solution.

6. References
[1] Gomaa, H. 2005. Designing Software Product Lines with

UML. Boston: Addison-Wesley.
[2] Erl, T. 2005. Service-Oriented Architecture Concepts,

Technology, and Design. Prentice Hall.
[3] Hyun Jung La et al., “Practical Methods for Adapting

Services Using Enterprise Service Bus,” Proc. 7th
International Conference (ICWE 2007), LNCS 4607,
Springer- Verlag, 2007, pp. 53–58.

[4] Bin Wu et al., "Dynamic Reliable Service Routing in
Enterprise Service Bus," pp. 349-354 , IEEE Asia-Pacific
Services Computing Conference 2008.

[5] Chappell, D. 2004. Enterprise Service Bus. O’Reily.
[6] Business Process Execution Language for Web WS

,http://www128.ibm.com/developerworks/library/specificatio
n/ws-bpel/

[7] S. Apel, C. Kaestner, and C. Lengauer, "Research challenges
in the tension between features and services," in SDSOA '08:
Proceedings of the 2nd international workshop on Systems
development in SOA environments. ACM, 2008, pp. 53-58.

[8] Soo Ho Chang, Soo Dong Kim, "A Service-Oriented
Analysis and Design Approach to Developing Adaptable
Services," pp. 204-211, IEEE International Conference on
Services Computing (SCC 2007), 2007

[9] N. Y. Topaloglu, R. Capilla, “Modeling the Variability of
Web Services from a Pattern Point of View”. European
Conference on Web Services (ECOWS2004), LNCS
Springer-Verlag, 2004, pp. 128-138.

[10] Rafael Capilla, N. Yasemin Topaloglu, "Product Lines for
Supporting the Composition and Evolution of Service
Oriented Applications," pp. 53-56, Eighth International
Workshop on Principles of Software Evolution (IWPSE'05),
2005

[11] Gomaa, H.; Saleh, M., "Software product line engineering for
Web services and UML," Computer Systems and
Applications, 2005. The 3rd ACS/IEEE International
Conference on , vol., no.pp. 110-, 2005

294

��������	
���������������������������
����������������Þ���	à���������������������

�����ÞÞ�
��Þ�������������Þ�����������

`��������������������
� !��"�#���â��"$����Þ�#%&%
���������$�`���#' %�	#%&%

��������		����� � ��������	 �
�	��� � �����������	�
 � ���	�����
	�	��	� � ��������� �� � 	���
������
���� ��� ��� � ���� �����
� �������
����� � �����
�	 � �� � ��������� � ������� � ����� � ����� � ��� � ����
�����
�������
���������������
�������������������	�������	������������
��������	� � �
����� � 	��� � 	�	��	 � �� � ��� � ������� � ����
 � ���
�������	����������	���	������ ��������
��	������������������������
��	������� � ������ ����������
������������	� ���������
�����	�
��� � ��
��	���
������� � ��
 ��	������		� � � ���
���	 �
������ � ���	��

�	��������
������	������	���	�������������		������	�
��
��� �������� �� �
�	�������
������	������������ �
�	������
������
���������� � ��
�����!�����������������������
�	�������	�� ����	�	�	��������
�	���
�������
�������� ������������������	��
���	���������
��	���
�
���������������
��������
�������"����������������������	��������
	������� ����� � � � 	������� � �	 � ��� ����� �� �����	 ��� ����������
�	�����	��
�	��������
�	�����������	���
������
��������
��������
�� � 	������ � �����	��������� � � "� � �	 � ��	� � ������� � �������
 � �����
�
�����	�	��	����	��������	�������
�������������������������������	�
��
�����	����		������������	�	�������	����������#�����$�����	���
���������
���������
���	�������
���������������������	����!������
�������	�������	�����
��������
���������������������
�

`(�)
����`
(

*������ � ������� � �����+� � �� � �� � ��$ � � � ��,������� �Þ��� � ���
Þ������������������������������������Þ��������Þ��������
������������������������"��-������������������������������
���������.�����������������$�����,�����Þ����$���������������
���.��������,���/!0"�
���Þ���� � ��������� � �� � �������� � �������$ � ���.�� � ��
������� �� � ���� ����Þ�������$ ������������ � ���. � ���� � ��������
����." � ����������� � �� ����� � ���� � ����� ����Þ�������� ��������
,����������������,����������������������$������,�����������
�������������"��`��
�������� � ����� � ���. � �� � ,����� � � � �������$ � ���� � ������
Þ��,�,����������,������������������������������������
��Þ���������������ÞÞ��Þ�������"

���� � Þ�������	������� � �������	��	��������� � �������
Þ������� � � � ���Þ�������� � ��������. � �� � ������ � �1����,���
��ÞÞ��� � ���Þ���� � �� � ����������� � �� � ���������� � ����
����Þ����������������������Þ���	,���������������������$�
Þ����������� � ������� � �����" � � ��� � ���������� � ������
Þ������Þ���������Þ���������ÞÞ��������,�������������Þ��������
�,���������,��
�����Þ�,��.������"� �`����������Þ�������������������������
Þ��Þ�� � ����������� � � � ��� � �����$ � ��Þ���������$ � ���

��������� � �� � ������ � �1Þ������� � ���� � ���Þ � �������� � ����
��������������������������������������/ $'$20"

`�Þ���������$ ������������������� ���,����������������������
���
������Þ���������"� ��������������������������������������
�.����������������������$ ��� ������1Þ������� ����������3 ��"�"$�
����������������������������.�$����������������.�$�����
���������,����Þ�����$���������/40"� �5���������������������
Þ������$�,��������������������������Þ���$�����,��������Þ����
�����������,��.����Þ�����������/&0"

àâ�67)
�(�

������� ��� ����. � � ��������� �������������� � ����������
������Þ������������������������,��������������������"� �
��
,��.����� � ������� � ����$ � � �Þ���������$ � �� � ���Þ���	,�����
�������������������������������������Þ������������������
������� � /8$#0" � �â�Þ���	�������$ � ��,9���	�������$ � �� � ����	
������� � �������� � ������Þ���$ � �� � ���� � �� � �,9��� � �����
�������$���������������Þ������Þ�����������Þ������������
Þ������Þ��������������������:����������$�����������:
���� � ��� �Þ��������� ����� � �� � �������� � �� � ������ ������
���Þ��� � �� � ����	����� � ������Þ���� � /�$!%$!!0" � ���Þ������ ����
������$��������������������Þ����Þ��������,9���	��������
������ ��.�����Þ�������$��������$ �������Þ���$ � ��������
��� � �ÞÞ��Þ����� � �����,�� � �� � �������� � ���Þ���� � �� � �����
�����������������/! $!'0"

��� �Þ������� ��� � ���� � �������������� � �� � ��� � ������� ��� � ����
Þ������Þ��" � � `� � �������:�� � � � ���Þ���� � ������� � ���
����Þ���������:���������������������������	�����$�����	
,������������	��	�����������������������Þ������������"�"�
â��� � � � ��ÞÞ��� � �� � ��� � ;����� � ���,�� � ������� � Þ�������
/!2$!40"��`�����������������$�������1Þ�������������Þ��������
�����������¦�������������������������§����."� �����������
������$�,���������������������������������.����Þ������Þ��$�
����������������Þ��
���������������,������â����������� %������"���������������
����$� �������������������$���������������������������
������������������"

��������������������������������<���$������<����'����������
�������+����$ � �� � <����� � ��� � ��� �Þ����� � �� � ��ÞÞ��� � �����"�
=�5� �� � ��� � ������� � ������ � ��� � ������ � ��� � �1����� � ����"�
����� � ������� � ��ÞÞ��� � ��������� � �� � Þ����,����� � ��
��Þ������������������������������������"��

295

�
�-5`(7

������� � ���� � ������ � �� � ������ � ��� � ���Þ������ � ���
������������,��
� � �Þ�������� � ��������" � � `� � ��������� � �����Þ�����
������������������������+����$���������������������������������
������� � �� � ����� � ���� � ��� � ����� � Þ��� � ,� � ����� � �����"�
���������$ � �� ������������:�����.����,�����:>�������,���
��Þ����������Þ���������¦.������§� ����� ����������������������
������������,��������������������������"

â�,������$ � ���Þ���	,���� � ������ ��� � ��� � ���� � �� � ����
�����" � ����������������������������������,���������������
��������������������.�������������������"��������ÞÞ������
,��������������,���������������,��������	����������������
���.� � �� � ������� � ������ � ����������	���������� � ���.�" � �����
�������� � ,������� � �� � �����$ � �� � ��� � ��Þ���������$ � ����
��������������������������������"� ��������������ÞÞ�����������
��������,��Þ�������������1�,�������������������.���������Þ��
����������Þ����� ������ ���������������ÞÞ�����������¦������
��§���������������������/!$!&0"��`�Þ���������$������.������������
�������	����,�������������Þ�����������������������������������
����������$ �,���������$ ������������� �������� � /!80" � � `� ������
Þ������� �� ������� ��� ������������� ���ÞÞ������������������
����������������������������Þ����������������"

�� 	�
����
���������
���������� ������������������� ���Þ���������������$����

,���1�����$ ����������� ������$ � � � �������� � ������������
���Þ���� � /!&0" � � �������� ����Þ���� � ��� � ��������� � ����
,�������,���.�� �� �� ����� � ���� ���� �� ��������$ � ����	������
������Þ���"� �;����������+�����Þ��Þ����$����������Þ�������
�,�������������������������,�1��������,������>�������������
��������$���Þ��$�������������������"� �;��"�!�¦�§���������
���Þ�� � ��. ��������� ��� � � �����$ � ������$ � ,�����$ � �� � �����"�
?��������ÞÞ������������,����$��������������$�����Þ�����$����
���������������������Þ����������$����������������,��" � �;���
������	�������� � �������+����$ � ��� � ,�1 ���� � ���� � ����� � ��
�1��������������������	���������������"��;��"�!�¦,§�������
� � ���Þ��� � ���� � ����� � �������� � ����� � ���Þ����" � � ����
������ � �������� � ��ÞÞ���� � *�������@� �� � '� � ������@�
������$ � ��� � �� � ����� � ��� � ������ � ������,�� � � � ��� � ��,"�
7�����������Þ�����������������,�����������Þ���,��������������
��� � �.�����Þ@� ��������$ � ����� � �� � ������,�� � ��� � �����
���������"��â������������������������,����,������������Þ��1�
Þ������$������������������,�������������,�1���,������$������
�����������Þ���Þ������$�������������������������������"

`�������������$���������Þ����������������������	������
������Þ���$ � ,�� � �� � ��� � �� � ���� � � � ������� � Þ��������
�����������3 ��"�"$ �� � ������" � �������������� ����Þ���� �����
����� � ���Þ������� ������ ������ ����Þ����$ � �� � �� � �� ��>������
��Þ����� � �� � �������+� � ���� � �� � Þ��� � �� � ��� � ��������

���Þ�������� � ���������" � � ���������$ � ���� � ���� � ��>�����
��������$�������������,������"

�������������� �������������� ����Þ���� � �� �,�������
��� � ����Þ� � �� � � � �������� � ���,��" � � ���� � ����������
��>����� � ���� � ���� � ���Þ��� � ���� � � � ���.�� � Þ���������
��Þ���"� �`� �����
���� � ���� � ��������� � ���� � ����� � �� � ����� � ��� � ������� � ���
������� � ¦�
;§$ � �� ����� � �� � ������� � ��Þ���� � ��.� � ������$�
�Þ���$ � �� � �����������" � � ��� � ���.�� � ������ � �������
���Þ��� � ¦��� � ��Þ�����Þ���§ � �� ����� � ���� � ���Þ����
¦��� � ��,���Þ���§ � �� � ������ � ������� � � � ,���$ � ����� � ���
���Þ�����Þ���"� �â�
���Þ��� � �� � ���� � �� � ��,�� � �� � ,����$ � ������� � ����
�,���������Þ���������������������������������"

������ � ����� � �������� � Þ������������ � ������,�� � �������
������� � ��������� � �����" � �â� � Þ�������� � ��Þ����������
¦������������>������������������§��������������������������
����,������������Þ����������Þ�������������������"� ����
�������� � ���� � Þ��,���$ � � � ��Þ����� � �
; ������� � ��� � �����
���Þ����Þ����������������������������$�������������������
������ � ��� � �� � ����� � ��� � ���������" � � ���� � ������������
�ÞÞ��
��ÞÞ�����������������$��������������������������������
����������.��������Þ�����"� ��������������ÞÞ�������������
�������
;�����������;��"� $����������������������������	
���������Þ���������������"

��� � 4	�
; � ������ � ¦�§ � ���� � �+����� � �� � �������� � ����
���Þ���� � ��.��� ����,�����$ �������� � ��� �&	�
;�¦,§ ������
���$�Þ����$����������������Þ�������.�������������9���"� �`�
,���������$����������������������������������Þ�������¦�$��$����
�§ �������������"� ���������������������������Þ������,�������
��������������������.�������������Þ���������Þ��Þ����"��`�
��� � 4	�
; � ������$ � ���� � ������ � �� � �������� � ������� � ���
���Þ�����������������$����������������������Þ����,����������
���"� �`�����&	�
;�
������$��������$�������������1�Þ����,���������$���������������
���������� � � �� ��������� ������������" � ����� ��Þ����������
����������������������������Þ�����������������������������
���������$�,���������ÞÞ������,�����������������������"

��� � ���,�� � ������ � ������ � ��Þ������� � ,������
���Þ����"��-�����������������>������,�������Þ���$������
�� � ��� � ���� � �� � ��� � ��. � � � ;��"�!�¦�§$ � �� � ���� � �� � �Þ������
��,���Þ����$���.�����������������������$�����������������
��������������,���Þ����"� ������������������������
�� ��� ������� ��� � ������������ ����Þ��� ���������������
Þ��Þ������ � ��� � ������Þ���� � ������ � �� � ��Þ��������
�����������������,���Þ����"

;��"� A��������	��	;��������������

1

+

�
����

Þ����

���

,

1

+

�

��������

�+�����

�

;��"�!A�����Þ���������â����
,�

296

â� �� � ������� �����.$ � �����Þ������ �������������� � ���� ��������
��������� ��� � ����� � ��� ���������� � ������� ��� �� � �������
�����������"��;���������������$�����,�����������������������
��������������������������Þ���¦�����������������,����������
�������������§" � �B������$��� ���������������������������
��������Þ��������������������������,���,������������������
������Þ����,��������������"�������������$�������������������
Þ���Þ������ � �� � ��������$ � ���� � ������ � �� � ���� � �� � �ÞÞ����$�
��Þ���������������Þ������������������������.��������������
��������������"��������������������������������������Þ�����
��������������������������ÞÞ����������$��������������������
���������ÞÞ����� �����"� �������������� �������������	�������
���� �� � ��������� ��1Þ��������Þ����������$ �,�� � ���� �������
������������������Þ�����������"� �â���������������������
�������������������,�����������������������"

���������������������������Þ���������������	,�����
��������/!#0"���������>���������������������������������
���Þ�������������������Þ���������Þ��������������,��>����
������" � � ��� � ��1�� � ������ � �� � ���������� � ��Þ���� � � � ����
�Þ����� � ����������� ��� � ��� � ��Þ�����Þ���3 � �"�"$ � � � �������
������ � � � � � ���" � � ��� � ����,�� � ������ � ��� � ����������
����������Þ�����3��"�"$�����������������Þ�����Þ��������
��������������"��à��������������ÞÞ����������+����$���������$�
�� ����,��� � ����� ��� �����$ ������ ����Þ� ��������� ���������
������������������Þ����������������������������¦����
��� � ��������§ � �� � � � Þ�������� � ������� � ¦��� � ������
��������§$������;��"�'�/!�0"������,���������������9��������
��
��ÞÞ���������3��"�"$�Þ�������������� �Þ����������� �24�
������������������"��������������,������������������������
����� � ���� � �������$ � �� � ������ � ���� � �� � Þ������ � ���
�������"

�� �������
���������
à��������� � ������� � ������� � ��� � ���������� � �������" � �â�

��������������������������������������$������������������
��������������������Þ�����������������"� ������Þ������Þ���
����������Þ������,��������������Þ���,������������������������
�1������������>��������������ÞÞ��Þ���������Þ�������������
���� � �� � ,����� � �����" � � `� � ����������� � ������Þ�����
Þ����������� �C�������$D��������������������������������
�� �Þ������� ������� � ���� � �� � ���������� � ������ ��� �,� ��,�� � ���
������" � � ;�� � �1��Þ��$ ���� � � � ����� � �� � �� �Þ������ � �������
Þ����Þ�� � �� � �������� � ����� � ������ � ���� � ��$ � �� � �� � �����
¦����������������§�������������������������Þ������������
�,9��� ������������������������������������ ���������������$����
�ÞÞ������������������������������,������������"����������������
Þ��,�,���$�������"

*���� � ,��������� � ������� � ���� �Þ����� � ������� � �����
��Þ����������,�������������$��������������������.�������
�ÞÞ������� � ���� � �ÞÞ���� � ��� � ���� � ������$ � ������$ � ���
������	�����������"� ����������������������Þ������Þ������
��������������$����������$����,���������������������������������
��������������������Þ�,��.������"� �`����������������������
���� � �� � �� �Þ����,�� � � � ��� � ���� ������$ � ��� � �� � ���� � �� � ,��
�1����� � �� � 9�������� � ���������" � � ������� � ��� � �� � �����
�������� � ���� � �� � 9�������,��:�� � ��� � �� � 9������ � ���
Þ�����������:,������ � ���� � ����� � �������� � � � ���Þ�����
������������Þ�	����������,9�������/ %$!#0"

à��������� �������� ������ ���������������� ��� � ����� � ����
���Þ�����$ � ��������$ � ���� � �� � ���Þ���,�����$ ���������$ � �����$�
�,������$�������$��������Þ������������Þ�������/!80"������
�����������������������������������1��Þ���������������������
���� � � � �����Þ���� � �����" � � ��� � ���� � ������ � Þ������� � ��
�����������������.�������������Þ������������� ��������	
������������	������������������������$�������������Þ�������
�����������>������������������������"��������Þ�����������������
������ � ��� � ���Þ��1��� � �� � ������ � ���������������$�
��������������������������Þ����������Þ��������������������
���������������.���������������"�����Þ�������������������
�������������������������������3�����������������������
�����������"� �������ÞÞ�������������������������������������
Þ��������� � ����������$ � ,�� � � � � �Þ���������� � ��������$�
���������Þ�������������1Þ����������������������Þ�����"�
;����������$����������������������������$������$�����������+��
���������������$���������������������¦����,��������������§�
�����������.������������������"

â�������� � �� �� ������Þ� ����� � ��� � ����� ��� � ����Þ����
����������$ � �� � ���� � �� � ��� � ��,������ � Þ������ � �� � �������"�
)���Þ���� � �� � ,� � ��������� � ���Þ����$ � ������� � ���
���Þ�����¦�"�"$�������������������Þ§$�����������,����������
����������Þ����"� �â��������������������������,�����������
�������������¦�,�����������§���Þ���������������Þ�������
���������A
� �������A��������Þ�����������������������������¦��������
��,��������§ � �� ��� �������������� ������� ���������$�������
�������������������"

� 	

��������
���A���� ����Þ��� ���������� ����� � �� ����
��"������
���������Þ������������������������"

� 	

������	��A���� ����Þ��� ���������� ����� � �� ��������
�����������$�,�������������������,���������������������
�����������������"� �â�������������������������������
����������������������������������.��������1Þ��������
����������������$����������Þ�����������������������������
¦���Þ����,��§���������"��`�������������������������������
��������������������"

� ����
������
	��������A������ ����Þ��� ����������	
�������,���,���������������������$�,������������������
�����"� �������������������������������������$�������
��� ������������������������ ��" � �â �����
�������

	��������� ����������������������$������������������
�����������������Þ���������������,������Þ��.���������
�����,�������������������������������Þ������"

;������'A��;������

����
�����

���

���Þ���

297

� ����
�����������������A����������Þ�������������	
�������,���,�������������������������������,����,���"��`��
���� � ����� � ��� � ����� � ��� � �� � �� � ���� � �� � ����Þ� � ����
������� � ����$ � �� ������ � ���� � ��� � ����� ����� � �������
������� � �� � ������� � ��" � � ` � ��� ��������$ � �� � ����� � �����
��������������������"

� ����
�����������	���A����������Þ���������������	
�����,���,�������������������������������,����,���"� �`��
���������������������������������Þ���������$����������
�����������������������������������	

�����������"
â���������������Þ�����������������������������1���������

����Þ�,�����������"� �`�������������������������$����������
��!�"#�$ ������ � �������� � � � ��������� � �� � ������ ��� � ����
�������������"��`�������1�����������������������Þ���������
��������� � ��������� ����� � � � �.�� � �����$ � �� � Þ��,�,���
���� � ����� � �� � ���� � ����" � ����� � ���. � �� � ,� � ��������� � ���
���������������,����������3�����������A
� `����,��>��������������Þ�������������������$���,���.�
�������������������.��������������������������������
�������Þ����������,���"

� `� � ��,��>��� ����� � �� ��� ���Þ���� �� � ���� ��������$�
�1������ ���� ������� � � �Þ������� ������ � ��� ��.���
������ �����������"� �â�������������� ������Þ� � �� ���������
����������������������,��"
���Þ��������

�������������"��`��������������������������$��������$��������	
����������,�������������Þ�������,��"���������Þ��������������������
���������� � ��������� � ,������ � �������,�� � ��������������
,������� � �� � ������� � ������� � �����	��	������ � �������	
���Þ��������������/ !0"

â��������������,�������������������ÞÞ��������������
�������+���� � ��� � �����$ � ����� � �� � ,� � ������������
Þ��������� � ���.�$ � ��Þ������� � ��� � ����������$ � ����������
����������"�������������������������Þ�����¦����������
;�
�������§������,����,������Þ�����"��`�����������������	�������
������ � ��� ���������������� �,�� ������,�� �������,��" � �;���
�1��Þ��$�������������+����������������������%�����%���������
�������������������������>�������,������������������������
�������������������������Þ����������������������,����������
�������" � � `�������� � �ÞÞ������� � ���� � ���� � �� � ,�+�����
C������������D � ������� � ����� � �����Þ�� � ����� � �Þ����� � �����
���������������������"� ������������������Þ���������������
,��������������,�����,������������$������������,�����������"�
`����������$������Þ����������ÞÞ��������������������������,��
�������������������"��`��������������Þ���������������������
,���%���������������������	����������$ ��� �����������������
������Þ��������������������������������$������������������
��������������������������"� �������������,��������������
��,����,��������Þ��������������������������������������,��
�Þ�����3�����������A
� ���������������������
� ����������������������������
� ����������������������
� ��������������������������������������
� ��������������������$���������	������

`�������1��Þ��$��������������Þ������������,����,�����,��
�Þ����� ��� � ����� ����� � ���� � ������ ���������" � �;�� ������
�Þ����$� �� ������������ �����+������,��!%��������" � �`������
���$ � ���� � �� � �ÞÞ��Þ������� � ��������� � �� � ��� � ������$ �������
�Þ����¦�������§�,������������������"������������Þ�������	
�Þ���,�����$��������$�������Þ��������.���������������$��	
��������,������������/�0"��`�ÞÞ��Þ�����������Þ������������+���
������������,������������������,������������"

�����,��.������Þ����������������Þ������+����Þ�������"�
�������� � ��������$ � ��� � �1��Þ��$ � �� � �1Þ����� � �� � �����
���������"��
������Þ�����������������Þ������Þ�����������
��,����,�"

�� �
���������������
�����������������������������1�������������Þ����$�

�������������������$������,��$���������,��$��������������"�
���������Þ������Þ�$����������$��������$����,�������Þ����������
���Þ����������Þ������������������9�������������.������������
����� � ��������� � �� � ���� ���� � ¦����� � ��� � �Þ������� � ������
����������§ � /!80" � �â��������,��Þ������$ �������� ������$�
����	Þ������$����������Þ������Þ����������$�������Þ�����$�
��������Þ��������Þ�����������������������Þ������Þ����
�1Þ���¦���������
�������,����,�����������������§"������=�5�����������������
���Þ���
� � ����� � � � �,9���	������� � Þ���������$ � �� � � � ���� � ���
��.����� � � � ������ � �� � ��" � � `��������� � �� � ���Þ���� � ���
������ � � � ��,,��	����Þ � Þ������ � ���� ����� � �������� � ¦�"�"$�
����������§$�����,��������������������������������������"�
�����Þ������Þ�������������������Þ������������������������
������������"��`����Þ����������������������Þ��������������������
Þ�����������������$�������������������������������Þ�������
��,��>������������+����"

�� 	����
���������
)������ � '% � ��ÞÞ��� � ������� � Þ������ � � � ������� � ���

������������ � ���Þ�� � ����������� � ��� � ������� � ������
��Þ�����������������������/ $!�0"��*�������������������������
�� � ���������� � ,� ���������� � �� � ��Þ����� ���
 � ��$ � ���������
������� � ������������� � ��ÞÞ���� � ��� � �������� � �����
������� � �Þ�� � � � �������� � ����� � �� � ���� � � � �����
Þ���Þ��������Þ�����������������������$���������1Þ�����������
������ � �����" � � ���� � �1��Þ��� � ��� � ��� ��������� � ���
���������������������$� ��.��Þ����$�����$�Þ����$�,�1��$�
���Þ����$��������������,����$�������������$���������$�
���Þ��������������"� �â������������������������������Þ��
����������������������������1�����������������������������"�
����� � ��������� � ��� � ����$ � ���������$ � �� � ,������
��Þ�������Þ�������$������������,����������������������������,��
��������������������"�

�`��5â�`
(

�������������������������Þ���������������������Þ���������
������������������������������,�����������������������
Þ������������������Þ�����������	����������.�"��`����������������
Þ������������Þ��$�������������������$����������������������
���������$��,��������������Þ�������$������Þ��������" � �����
����������Þ�����������������������������.���������������

298

�1Þ������� � ����$ � �� �Þ��Þ���� � ����������$ � �� � ����������
�������������Þ��������������������Þ����������/ '0"

�������������������������,�������,�������Þ���������"��â�
��"��`�
����Þ����������������������$���������Þ������������������Þ�������
������������"� �`������������$ ���������Þ���$��������������
��,9��������������,��������������������������������������C�����
�����D � �� � ���Þ�� � ���Þ" � � ����� � �� � ������ � � � �,9�������
�����������Þ���������3��������������������������Þ���������
����������������,�������" � ����� ���� ���������� � �� ��Þ�� ���
��������$������������������������"

��� � ���� � ��������� ��������� � ���������� � � �Þ����������
��������Þ���������������������������"��;����1��Þ��$��������
�����ÞÞ���������������������������������������"�������������
���������$�����������Þ����������$��������������>�����������
Þ���������$ �,�� �� �,������. ������� ������ � �� ������� � ����
�������������������"��������������������$�����������������
��Þ���� ������$ ��� ��������� ����� � � ���� � ���Þ���$ � ������� � ��
���������Þ���������"����������������,�����������������,��
�����,�������������������������������������"��`������������
��� � � � ��Þ������� � � � Þ���������$ � ��� � �� � �������� � ��
���9������������������������Þ�������"� �5�.�����$�����������
�� � �����>������ � ����� � �������� � ����� � � � ���������
�ÞÞ�����" � � ���� � Þ������ � �� � ������� � �������� � �������
������� � �� � ��� � ��� � �����	��	������ � ����������Þ� � �� � ������
�������������������"

��� � ���Þ���� � ��� � ��������� � ��������� � ����� � ����
������������������.������������������������������ÞÞ���
�����������������������$�����������������$�����������������������
����.��"���������������������,������������������,�������������
���� � ��� � �� � ����� � ��� � ������ � ��� � ������� � ���
��������������������"���������Þ��1���������������������
���� � ���. � ����� � Þ������� � �� � ������,�� � �1Þ������� � �����
��������������Þ��Þ�����������������������"

?`��â5`Eâ�`
(�â(��â(â5F�`�

�����1��
�����"� �
,����������� ��������������$ �>����������������������
Þ���������A � � � � ������ ���� � ,� � �,�� � �� � ��� � ������������
�����������ÞÞ���������������������������1Þ�������������"�
����������$���,����$������	���������$�������������������+���
���������,���������������������������Þ�������"� �;��"�2�������
��� �,������� ��� � � � ���� � �������� �� �Þ��� ������ � ��������
������������������������"

?�������������������������������,������������������������$�
Þ�������$����������$�����������$�Þ����$��������"��;����������$�
� � ���Þ����� ���Þ � �� � ���� � ��� � �������� � �������������
,����� � ���Þ���� � �� � �����$ � � � ��Þ � �� � ����� � �� � ���
�����������Þ�������������������"�����������Þ�������������1Þ�����
������ ��������� ��.�������$ �����Þ���$ �Þ������$�Þ�������$����
������� � ���� � � � �������� � ��1� � ����" � � ���� � ��Þ�,����� � ���
������,�� � ��� ���������� ������ � ������ � �� ��Þ������$ � ���
������Þ����������,�������.�����Þ��������Þ����������������
���$��������"

�����������������,��Þ��������.���������$�,��������������
�������������� �Þ���" � �?������+���������������� �����������
�������������,�����������������������" � �`����,������
��������������Þ��������������Þ����������$�����������������
���Þ � ������� � ��Þ���� � ����� � ����������� � �.����" � � `� � �����
���Þ� � ���������� � ,������ � ������� � �� � �����,��� � �� � ����
��G��Þ���������"�
;�����$�����������������ÞÞ�������������������������Þ����	
������ � ���������� � �����$ ������ � ���� � ���. � � � C�������D�
��������������������������/ 20"

;�� � >���������� � �������$ � ����� � ��� � ������ ����� � �� � ,��
�1Þ����� � ������� � ��� � ������ � ��,������ � �� � ������
�ÞÞ�����������.��-1���@$��â�5âà@$������Þ������������
�������������"� ���������������������������Þ��������������
�������������$����������$������������G����Þ���,�����"

-?â5�â�`
(

;������� � ��������� � � ��������	��	���������$ � ����	��	
�������������������.���������������������������������Þ������"�
â�������,��$���
����������������������,���������������������������������
������������Þ������������Þ�"��`�Þ���������$��������,������������
��������� ��� � ������� ��������� ��� �� � �����	�������������� � ��
���������,9���	��������������������ÞÞ��	���������������
�������������������"� ����������������������$�������������
�����,���� � �� � ������������ ��� �� ��ÞÞ��	������� ������� � ��
���������������������������������������$�����������������!&�
��������������Þ������.��������������������������������
��,����	�������Þ������"

����������$ � �� � �� � ��� � ������� � ��� � ������ � ������� � ���
������������Þ������������������������������1Þ������"��`������
����$ � �������� � ������� � �� � ������ � ������ � �����������
��������������������,����������������"���������������.����������
���������Þ������������������Þ�����������,����"��(�����������$�
����������������������,��������������������,�������������	
��������Þ�����������������Þ����������������Þ�����"

;���)-�*
)6

����� � ��� � ��� � ������ � �� � ������ � ���. � ���� � ���� � ������"�
*����� �����1��������������.$ ��� �������$ �����������Þ������
���� � ��������� �� ���������" � �������������������+��������
=�5��
���Þ��1�������������������Þ"�������������������������������
����Þ������Þ����������Þ��	Þ������Þ���������"

à����� ��� ��1����� � ��������. ���� � �Þ�	��� ��ÞÞ��������"�
��"� �`��
����� � ,� � �1��������� � ���Þ������� � �� � ����������� � ����;��"�2A��?������+����

299

���������������$����������������,�������������$��������$�
,������ � ���� � ��� � �� � ���� � ����� � ������� � ,������ � ���
Þ��������� � ��,���$ � ��� � �1��Þ�� � / 20" � �
� � �Þ�	��� � �� � ��
���Þ������������������������������$���������������,���������
��,��"��;�����
������� � ������� ������ �,� � ��� � �����$ � �� � ������ � ���������"�
B������$��������������������$���Þ��������������Þ������Þ�����
� � ���Þ������� � ��.� � ��� � ;`)�� � 5��� � 5����� � ��,������
���������$ ��������������������,��Þ��������" � �;����1��Þ��$�
���������������Þ����� ����������������.����� ���,�� � ���
,����"��`�Þ�������$����������������1������������,���������
��"� �`�$�����������������������ÞÞ��Þ��������������������$������
��������ÞÞ���������Þ������������������$�������������������
�����������������������������"

�
(�5��`
(

������������Þ����������Þ�������������������������������
��$�
��Þ�������$�������$����������������������������Þ���	
,����������������������������������Þ��,����"��`�����������
�������������������������������$�����	�������$������	Þ����
����������������Þ��������Þ������������������$������������
�����������������������.�����������������ÞÞ��������"� �`��
���� � Þ������� � ������� � ����� � �� � ������� � ,� � ��>������
����������� � ,����� � ��Þ���������$ � �� � ,� � ��������
���������" � � ` � ������� � ���������$ � ��� � ������ � ��� � ,���
������������ � ������� � ���� � ������� � ��������� � ��� � ������� � ��
�,9���	������� � �����$ � �������� � ��������$ � �� � �����������
����������"��`������,�������	������������������Þ������������
Þ�,������������,���Þ��.�������������������������������"

)-;-)-(�-�

/!0���"���������)"�)�����"�� %%�"�������������������`�A��`��
���������-��������-�������H� ���������������������
â��$������$�?��"�4 $�(�"�'"
/ 0��E"������$�("�7������$�<"��������$�5"�B��Þ��$�����"����	
���"�� %% "��â�(��������������-����������������Þ�����-	
�������A��â��1Þ����������������Þ������ÞÞ�����"��`��
��� �
�
�����
������������������� "
/'0���"�*���������*"�5�"� � %%2"� ����Þ����������������
5����������������������������������
Þ��������-1Þ���	
����$�<���������-��������-�������$�<���"
/20��5"����"�� %%'"��`��������������������������.����������	
����G������������������"��`�����"�!�"�	�� ��#$������	
,���$�(���E�����"
/40���"���ÞÞ�"�� %%�"������,����A��â�����Þ����$���������	

������������������������Þ����	à������������$�`�������	
���<���������-��������-�������$���Þ����"
/&0��)"�`����"� �!���"� �-�����������.��A� ������à�9����
à��������*����������������������â��������$ �5�������
���5������â���������������Þ����$�?��"�'$�(�"� $�ÞÞ"�#'	!% "

/80��7"�B���������*"��������"�� %%!"� ����������$����� �
	�%���
����&����
��&'�������&������������(�&����
"��â�����	
*�����$�)�����$��â"
/#0���"��+�Þ���.�"� � %% "� �����������	�%���
�'��������)*$
+���$)
������ ��
�&
�����&" � � � ��" � �â�����	*�����$ �à�	
���"
/�0��)"�;����$��"�-����$��"�����.�$�����"�â.���"� � %%8"��â�	
Þ���	
����������������������Þ���$�������" �,���-�
.�����
���	�%���
����&����
��&��
���
������%�/��&��&������������� �
(������&���$�?�������$�à�"
/!%0���" �����.� � �� �-" �à�������" � � %%4" � �������$)
�������
����������������&�'��(���(��������
����"��â�����	*�����$�
à����"�
/!!0���"������"��!�8 "��
�����������������à��������������	
Þ������������������������$���������������������â��$�
�����,��$�?��"�!4$�(�"�! $�ÞÞ"�!%4'	!%4#"
/! 0���"�����$�B"�
�����$�*"�B������$�����"������$�<�"��!���"�
(�������� � �� ���Þ������A ������	��������� ���Þ������ � ���
������$�������" �����
�����������%�
��������	�%���
����$
&����
��&$����"
/!'0��"�â.���$�à"���.�������$����5"�à������"�� %%!"������
��1������� ���� ���Þ��������� �������$ � ������" ���))��
-�
.�����������������	���
�������%������
��$�à���Þ���"
/!20��<"�-���"�� %%4"��â��ââG����)?`?-�������Þ�����.���
����"��)�-�
������+��$�â�����"
/!40���"���ÞÞ�����<"�-���"�� %%4"������â��ââ���)?`?-�
�����"��`�����"���	���
���������������
������������	�
$
����*�����	��������$��������$��â"
/!&0���"�<���"�� %%#"� ��
��%����������&����'����	���������$
�
����"��`������������A��B�����$��â"
/!80��-"�7����$�)"�B���$�)"�<����$����<"�?��������"��!��4"�
����&� � �����
��' � � ������� � �% � "����*� �)*+���$)
������ �
	�%���
�"��â�����	*�����$�`����Þ����$�`("
/!#0���"�)�����������"�(�����"�� %%'"� ��
��%����������&����' �
������
�����
����"��������$��ÞÞ����������)����$�(<"
/!�0���" �à���� ����7" ������" � � %%2" � ���� %�
 ��������$
�����
�"��
G)�����$���,����Þ��$��â"
/ %0��)"��������"� � %!%"� �	�%���
����&����
��&'� ����
����$
�����
������
����"����7���	B���$�(���F��."
/ !0��B" �7��������<"���,����."� �!�##"� �������
����������� �
�������
�	��������������������
�� ���������������������$
����	������"��)�����A��â�����	*�����"
/ 0���" � à����" � � %% " � �������� � %�
 � ���� � �������
�"�

G)�����$���,����Þ��$��â"
/ '0��7" �;�����" � � !��4" � ������ � ��
�' � � ��������� � �$
&�
����������������������"��(���F��.A���Þ�����"
/ 20���"�<����"�� %%#"��C������Þ��������������I����G��������
�������$�������HD������������������������$�!8����"

300

An Academia-Industry Collaborative Teaching and Learning
Model for Software Engineering Education

Huilin Ye

School of Electrical Engineering and Computer Science
The University of Newcastle, Callaghan, NSW 2308, Australia

Huilin.Ye@newcastle.edu.au

Abstract

Teaching and learning environment limited only to
classrooms and labs at universities may not suffice for
software engineering students to develop practical and
professional skills that are central to students’ future roles
as industry professionals. It is important to introduce the
state of the arts industry professional practice into
software engineering education program. An academia-
industry collaborative teaching and learning model has
been developed and employed in a capstone software
engineering course for a sustained period. A standard
software development methodology, called Process
MeNtOR, provided by the industry collaborator has been
used to guide student project development. A set of
teaching and learning strategies with strong industry
involvement has been employed to inspire student learning
enthusiasm, to develop student practical professional
skills. As a result, student career prospects have been
enhanced. Formal student surveys, informal student and
industry feedbacks have demonstrated these achievements.

1. Introduction

Software is now ubiquitous − embedded in nearly every
aspect of modern society, both personal and professional.
Businesses and the society as a whole run on software. The
increasingly global business climate has accelerated the
need for business software. The software industry has
experienced great challenges in meeting this demand.
There is a growing shortage of software engineers in
Australia and worldwide. As software engineering
educators we must prepare our software engineering
students for the challenges confronted by the industry, and
for them to work effectively in industry after graduation.

Software engineering is an emerging engineering
discipline that applies a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software [1]. Software engineering focuses
on the study of methodologies that support systematic,
productive, and robust software developments. The
principles of these methodologies may not be difficult to
understand. However, the effective application of these
methodologies in real-world software project development

processes is difficult, especially for novices. It is therefore
important to introduce software industry professional
practices into our software engineering courses to enhance
the practical and professional skills of software engineering
students. The dual challenges of society’s critical
dependence on the quality and cost of software, and the
relative immaturity of software engineering, make attention
to professional practice issues even more important to
software engineering programs than many other
engineering programs. Graduates of software engineering
programs need to arrive in the workplace equipped to meet
these challenges and to help evolve the software
engineering discipline into a more professional and
accepted state [2]. However, teaching and learning
approaches limited only to lectures and labs do not provide
sufficient support for software engineering students to learn
practical and professional skills. It has been recognised that
many software engineering graduates are inadequately
prepared for industry software development and innovative
approaches to teaching and learning should be developed
to solve this problem [3].

This imperative has inspired the creation of a systematic
academia-industry collaborative teaching and learning
model that immerses our software engineering students in
the industry-based themes, issues and problems of software
development. This has been achieved by embedding a
large scale, team-based project based on a world-class
industry development methodology as a major assessment
item in our capstone software engineering course. These
developments were preceded by the identification of a set
of core practical and professional skills and attributes
required for our students to work effectively in industry
after graduation. A set of teaching and learning strategies
was then developed to provide students with opportunities
to work towards these skills and attributes. This teaching
and learning model has successfully motivated and inspired
students to learn in ways that support them to develop
practical and professional skills and attributes, and has
gained recognitions from our software engineering
graduates and the software industry.

The remainder of the paper will be organised as follows.
Section 2 will provide background information about the
teaching and learning model and identify the set of
professional skills that are important for software

301

engineering graduates. Section 3 will discuss a set of
teaching and learning strategies employed to achieve the
set of professional skills. Section 4 will evaluate the
teaching and learning the model. Section 5 will conclude
the paper.

2. Important Professional Skills for Software
Engineering Graduates

The bachelor of software engineering program at our
university is a 4 year degree. A third year core course in
our software engineering program, called SENG3120
Object Oriented Software Engineering, is selected for
employing this academia-industry collaborative teaching
and learning model. In the context of the overall program
the students’ work in SENG3120 functions as a capstone
experience given that all the knowledge and skills learned
in courses taken previously are linked together to develop a
complex, team-based software project. The major problems
of software development projects are not so much technical
as sociological in nature. The industry seems to agree very
much with this statement while the university seems to give
it little importance [4]. Some sociological skills are
considered more important than technical skills for
software engineering graduates to work effectively in
industry. Each year, the American National Association of
Colleges and Employers conducts a survey to determine
what skills employers consider most important in
applicants seeking employment. In 2003, employers were
asked to rate the importance of candidate qualities and
skills on a five-point scale, with five being “extremely
important” and one being “not important.” Communication
skills (4.7), teamwork skills (4.6), interpersonal skills (4.5),
motivation and initiative (4.5), were the most desired
sociological skills [5]. However, it is difficult to develop
these skills using the traditional lecture based teaching and
learning model. Industry professional practice should be
introduced into our software engineering program to
enhance these skills. Furthermore, software products are
among the most complex of man-made systems, and
software by its very nature has intrinsic, essential
properties (e.g., complexity, invisibility, and changeability)
that are not easily addressed [6]. The main challenge of
software engineering education is to prepare students for
the real world software product development, which is
inconsistent, complex and always in a state of change [7].
It is important to expose software engineering graduates to
the common themes of project work that occur within
industry to learn important lessons of real world software
development, and consequently to develop their ability of
coping with uncertainty, complexity, and changeability.

The industry partner for this academia-industry
collaborative teaching and learning model is Object
Consulting Pty Ltd (Object). Object is Australia’s leader in
software development for large-scale business applications.
Object has utilised the best industry practice and
experience to develop a world-class system development
methodology, called Process MeNtOR. This is key to

Object’s ability to create robust, reliable, scaleable and
secure systems and to consistently deliver projects on time
and within budget. Object has specifically created a
simplified version of MeNtOR that can be used in our
software engineering education program. Students in
SENG3120 are required to develop team-based software
projects following the methodology specified in MeNtOR.

It is important to know what the software industry
expects from our SE graduates and what professional skills
are required for graduates to work effectively in industry.
The following skills, identified by both academia and
industry, are considered central to their future role as
professionals in the software industry. The students’
activities and assessment in SENG3120 crystallises their
development of these key skills and attributes.

• proficiency at applying systematic standard
methodologies to guide software development
processes: the principles of software engineering
methodology are not difficult for students to learn. But
how to effectively apply these principles into real-
world software development is challenging. “A
learned concept is much more valuable if we know
how to apply it to a real problem” [8]. This is
extremely true for software engineering discipline. It
is a relatively immature engineering discipline and
costly failures of software developments were
frequently observed. Introducing the state-of-art
industry practice into software engineering program
will enable our graduates to develop software products
following industry standard methodologies to achieve
high quality and productivity in their work.

• an ability to resolve ill-defined situations and
problems: software products are intangible in nature
and always in a state of change, which makes the initial
specifications of software products always ambiguous
and incomplete. How to tackle the ill-defined
situations and problems is an important lesson for our
students to learn.

• working in teams to construct relatively large software
projects: modern software products become very large
and complex. It is impossible for such a product to be
developed by a single person. Team skills are essential
and very important in software development. Group
work also provides an environment that allows most of
the theoretical issues learned in classrooms to be
practised [9 - 10].

• understanding of the importance of employing
feedback to effect improvements: The changeability of
software products makes the software development
process iterative. This iterative development process
occurs in the software industry all the time and is an
unavoidable part of software development. Effectively
employing feedbacks to effect improvements is crucial
to the success of software development.

• an ability to communicate effectively and
professionally within groups and with end customers:
communication skills, both written and verbal, were

302

ranked as the most desired characteristics of university
graduates by industry in Australia [11].

3. Teaching and Learning Strategies
Employed in the Model

This academia-industry collaborative teaching and
learning model embeds a large scale, team-based project
development based on a world-class industry development
methodology in SENG3120. The project given to the
students each year is usually a business software
application, such as network based security management
system, on-line flight booking system etc. The employed
teaching and learning strategies are described below.

3.1 Applying MeNtOR in the Project
Development Processes
Most of the software development tasks completed by

the students before SENG3120 are small pieces of software
coding which are executed in relatively ad hoc ways.
Without a systematic, professional methodology to direct
system analysis and design, simply coding a large software
system will never be successful. Process MeNtOR provides
such a methodology. It divides the whole development
process into three stages. The activities, deliverables, and
document templates for each stage are clearly specified.
Under the guidelines provided by MeNtOR students have
to learn how to partition the whole software development
job into manageable tasks; to estimate the time-effort spent
on each task; to appropriately assign the tasks to team
members; to integrate the components into a complete
software application; and finally to deliver the software
system on time. By following the Process MeNtOR,
students are exposed to the common themes of project
work that occur within software industry and gain hands-on
experience by go through the development life cycle.

3.2 Develop Students’ Abilities to Resolve Ill-
Defined Problems
Transforming a set of ill-defined system requirements

in a precise and complete set of system specifications is
crucial for successful software system development. Every
year the students are given a set of software system
requirements around which they develop their SENG3120
project. These requirements are purposely ill-defined,
ambiguous and incomplete. Students have to learn how to
identify ambiguities, collect outstanding information, and
apply professional methods to revise the requirements.
Students learn that failure to sufficiently define all the
necessary details of the requirements results in the final
delivery of an incorrect and incomplete software system.
They gain the understanding that late corrections of
mistakes made during the early stages of software
development are very costly as these mistakes will have
cascade effects which influence all the following stages.
This is a commonly recurring theme in the software
industry, and an important lesson for students to learn.
Their engagement with clients and brainstorming of

remedial activities with team members also improve their
communication and interpersonal skills.

3.3 Fostering Students in Effective Team
Organisation and Management

Software development has to be executed by teams in
software industry because of the huge amount of effort
involved. A SENG3120 project team consists of three or
four students. Each team has a team leader who is
responsible for keeping log books, regular meeting
minutes, and email communication details. These records
are used as a basis to address team problems should any
occur. The development work is shared by team members,
with each member being responsible for a portion of the
work. The assembly of the portions into a complete and
effective software system is a challenging job as the
mistakes made in discrete portions cannot be easily
discovered until they are being put together. Students have
to learn how to define the interfaces between the portions
appropriately; and to work with their team members to
make decisions to resolve conflicts.

3.4 Providing feedback and comments to students
The deliverables for the three stage project are listed in
Table 1.

Stage Deliverables
Project Plan 1

Requirements Model

Revised Project Plan and Requirements Model

System Model

Component Model

 2

Test Model

Final version of System Model, Component Model,
Test Model

 3

Executable software application and source code

Table 1: Project Deliverables

Early stage deliverables must be reviewed in the
subsequent stage for revision. In addition to the marks
given to the students for each stage’s deliverables, detailed
feedback and suggestions are made available to them. Any
mistakes or inappropriate designs made in earlier stages’
deliverables must be corrected or revised. The updated
work must be re-submitted as part of their project
assessment. This iterative development process occurs in
the software industry all the time and is an unavoidable
part of software development. Having experienced this
iterative process the students understand how to effectively
use feedback to improve their projects.

3.5 Inspiring student learning enthusiasm
through industry recognition
An annual Object Technology Prize (certificate and

$1500 provided by Object) has been established to sponsor
SENG3120 project competitions. Three best teams are
selected every year as finalists and they give a presentation
and a demonstration of their project at the project
competition. A representative from Object Consulting

303

comes to our university to judge the presented projects and
selects one winner for the prize, and then talks to the
students about why the winner’s project is the best one.
Students greatly appreciate having professional engineers
review their work and offer them feedback. The winner, as
well as the other finalists, receives a certificate as
recognition of the excellence of their work. Object also
issues MeNtOR certificates to the students who achieve
Distinction or above in both the project and the MeNtOR
questions in their SENG3120 final exam. These certificates
are recognised by the software industry and the recognition
enhances the employment prospects for the students.

3.6 Sufficient resources are provided to the
students for learning.
Our industry partner provides MeNtOR process as

CD-ROMs for students to borrow at our Discipline office.
User-manuals about MeNtOR are available on short-loan
in the library. Students can also access Object’s web site to
gain a more detailed understanding of MeNtOR. To help
new SENG3120 students understand the project
development, a previous successful student project is
demonstrated at the beginning of the semester. Some
industry guest lectures given by previous SE graduates
were organised to introduce their SENG3120 project
experiences to the new SENG3120 students. Every year
SENG3120 project competition is open all software
engineering students to inspire their interest in the course.

4. Impact and Evaluation

The effective employment of this academia-industry
collaborative teaching and learning model has inspired
student learning enthusiasm, improved student practical
professional skills, and enhanced student career
perspectives. Formal student surveys, informal student and
industry feedbacks demonstrated these achievements. This
model has also contributed to the implementation of our
academic program objectives.

4.1 Inspired student learning enthusiasm and
improved practical professional skills
The challenges of a complex project development, the

stimulation of the project competition, and the industry
recognition of their work have motivated and inspired
students to learn. By experiencing first hand important
industry lessons through the process of their project
development students understand how practical
professional skills relate to their software engineering
program and their career, and how important these are. The
sample survey results shown in Table 2 obtained from
Student Evaluation on Teaching demonstrate this
understanding. The scores shown in the table are the
average scores collected over the last three annual
evaluations. The survey also includes a qualitative element
that includes a question that asked “what is the best thing
about this course?” In response to this question around 85
percent of students considered the real project

development, the experience of group work, and practical
training to be the best things about this course.

Student survey
questions

Survey
result

The course is relevant
to the program

3.95

The course is relevant
to my career

4.0

The lecturer is
professional in attitude

4.0

Implication of
the survey
results:
1: Strongly
disagree;
2: Disagree;
3: Neutral;
4: Agree;
5: Strongly agree

Table 2: Student Survey Results

Student feedback: It is an understatement to say that
this course [SENG3120] was more challenging, more
rewarding and achieved a higher level of student
enthusiasm than any other course.

Students’ enthusiasm to study has resulted in excellent
student performance in their project. Our software
engineering students have excelled in independently
solving problems encountered in the development
processes and have gained valuable experience from
correcting their mistakes and improving their works. Their
oral and written communication and interpersonal skills
have also been significantly improved by working in teams.
Our industry partner has been impressed with the projects
presented at the annual project competitions.

Student feedback: The benefit of learning team based
development, documentation standards and a formalised
software process translate not only into final year projects
but also into industry.

Industry evaluation: We are continually impressed
with the quality of the work, and the quality of the
presentations at the end of this subject [SENG3120].

4.2 Enhanced career prospects of software
engineering graduates

The high quality and competitiveness of our software
engineering graduates have also been recognised by the
software industry and inspired their interest in recruiting
our graduates. For example, Object often sends their job
advertisements to our university to recruit our software
engineering graduates. Our software engineering graduates
employed by Object have been appraised by the company
as “excellent”. The valuable SENG3120 project
development experiences make our software engineering
students more attractive to prospective employers.

Student feedback: I found it was one of the most useful
projects to refer to and discuss with prospective
employers. I strongly believe that the successful
completion of the SENG3120 project made it possible for
me to present myself in a way which was attractive to
employers.

Industry evaluation: The success of this course is
more than demonstrated in the quality of the students and
their preparedness for work in the commercial software
development arena.

304

4.3 Contribution to the implementation of our
software engineering program objectives

The successful employment of this teaching model has
made significant contribution to the implementation of our
software engineering program objectives. Our software
engineering program is currently in the professional
accreditation process. Our discipline has prepared a
document, called Software Engineering Program Objective
Matrix, for the accreditation. The document identifies 42
software engineering program objectives that are the
professional skills and attributes expected to be achieved in
the program. The matrix maps 28 courses offered in our
software engineering program to the objectives achieved
by the courses. SENG3120 achieved the highest mapping.
It has been mapped to 24 program objectives in
comparison with the average 8.8 mapping per course. The
author has extracted from the document the following
sample program objectives mapped to SENG3120 but
rarely mapped to other software engineering courses. The
teaching and learning activities involved in SENG3120
have certainly contributed to the improvement of these
professional skills for our software engineering students.

• Ability to resolve ill-defined situations and problems
through the application of their engineering
specialisation knowledge, skills and attitudes to the
partitioning of a problem and the management of the
problem components

• Proficiency at conducting and managing an
engineering project to achieve a substantial outcome
to professional standards, or as a member of a team
conducting such a project, and ability to demonstrate
a key contribution to the team effort and the success
of the outcome

• Both spoken and written languages to communicate
effectively to both professional and non-professional
groups.

5. Discussion and conclusions

In this paper, we have reported our experience of
developing and employing an academia-industry teaching
and learning model into university software engineering
program. A set of practical professional skills are
recognised important to software engineering graduates but
the teaching and learning environment limited only to
classrooms and labs at universities may not suffice for
students to develop these skills. Therefore, it is important
to introduce the state of the art industry practice into our
software engineering education program through industry
collaboration in teaching and learning.

The effective employment of this collaborative teaching
and learning model has influenced student learning
positively over a sustained period. The practical hands-on
nature of the MeNtOR-based student project, the
application of comprehensive system development
methodology, the team work, the formal project
presentations, and the critical analysis of their work all

make for challenging and stimulating learning experiences
for the students. They have developed a set of practical and
professional skills that are central to their future roles as
industry professionals. Consequently their career prospects
have been enhanced. As software engineering is a
relatively immature engineering discipline professional
practice is even more important than the other traditional
engineering discipline [2]. We believe that industry
involvement in software engineering education is an
important force for promoting quality and competitiveness
of software engineering graduates.

References

[1] IEEE Computer Society, IEEE STD 610.12-1990,
IEEE standard glossary of software engineering
terminology, 1990.

[2] IEEE Computer Society and ACM, Ccurriculum
Gguidelines for Undergraduate Degree Programs in
Software Engineering, 2004, Accessed at
http://sites.computer.org/ccse/SE2004Volume.pdf.

[3] Selic, B., What I Wish I Had Learned in School:
Reflections on 30+ Years as a Software Developer. In
Proc. of 18th Conference on Software Engineering
Education and Training (CSEE&T), 2005.

[4] Teles, V. and Oliveira, C., Reviewing the curriculum
of software engineering undergraduate courses to
incorporate communication and interpersonal skills
teaching. In Proc. of the 16th Conference on Software
Engineering Education and Training, 158-165, 2003.

[5] National Association of Colleges and Employers, Job
Outlook 2003. Accessed at http://www.naceweb.org/.

[6] Brooks, F. P., The Mythical Man-Month, Essays on
Software Engineering, Anniversary Edition, Addison-
Wesley, 2005.

[7] Daniels, M., Faulkner, X., and Newman, I., Open
ended group projects, motivating students and
preparing them for the real world. In Proc. of 15th
Conference on Software Engineering Education and
Training (CSEE&T), IEEE, 2002.

[8] Alfonso, M. and Mora, F., Learning software
engineering with group work. In Proc. of 16th
Conference on Software Engineering Education and
Training, 309 – 316, 2003.

[9] Brereton, P., Lees, S., Gumbley, M., Boldyreff, C.,
Drummond, S., Layzell, P., Macaulay, L., Young, R.,
Distributed group working in software engineering
education. Information Software Technology, 40(4):
221-227, 1998.

[10] Robillard, P., Measuring team activities in a process-
oriented software engineering course. In Proc. of 11th
Conference on Software Engineering Education and
Training, 90-101, 1998.

[11] Keen, C., Lockwood, C., and Lamp, J., A Client-
focused, Team-of-Teams Approach to Software
Development Projects. In Proc. of Software
Engineering Education & Practice, 34-41, IEEE
Computer Society Press, 1998.

305

Data Flow Analysis and Testing for Web Service Compositions
Based on WS-BPEL

Abstract

WS-BPEL is a business process execution language
used to specify the behavior of a business process as
compositions of Web services. As WS-BPEL is widely
adopted as a standard for composing services, it
becomes critical to analyze and test the WS-BPEL
process in order to ensure the correctness of service
compositions. However, most recent researches mainly
focus on the development of WS-BPEL applications.
There is little attention paid to WS-BPEL testing. This
paper identifies and discusses various usages of data
in WS-BPEL. A test model is proposed to capture the
data flow artifacts of WS-BPEL with considerations of
its specific features, such as concurrency and
synchronization. Based on the model, data flow testing
criteria can be used to select test paths for uncovering
the data anomalies of the WS-BPEL process.

1. Introduction

Web service composition has received much
attention recently as it becomes an emerging approach
for business to develop service-oriented applications.
Among various service composition methods, Web
Services Business Process Execution Language (WS-
BPEL) [1] is considered a promising approach to
specify the interactions of multiple Web services since
it is advocated by a group of industry leaders,
including IBM, Microsoft, and SAP, and has been
standardized by OASIS [2].

WS-BPEL is a specification language used to
describe business process behavior based on Web
services. It allows users to specify the activities of a
business process as Web services and to define logical
flow of message exchanges among the Web services in
order to accomplish the process tasks. The WS-BPEL
process then can be executed to orchestrate the

corresponding Web services so as to support business
transactions and process automation.

In particular, WS-BPEL is an XML-like
programming language. It provides a rich set of
constructs to specify a business process, including its
process flow, data manipulation, exception handling,
and compensation. A WS-BPEL process is composed
of a set of interconnected basic and structured
activities. The basic activities, such as receive, reply,
invoke, and assign, mainly describe the elemental step
of a business process. The structured activities, such as
sequence, flow, if, and while, define the control flow
of a process and contain other basic and/or structured
activities recursively.

As WS-BPEL has emerged as an industry standard
and is widely used for composing Web services, it is
important to ensure that the WS-BPEL process is
programmed correctly and the interactions among the
Web services are handled properly. However, the
complex XML descriptions and the WS-BPEL
syntactic constructs can make the WS-BPEL process
difficult to understand and test. Specifically, the
semantics of WS-BPEL, such as concurrency and
synchronization, pose new testing challenges and
requires to be addressed in order to ensure the
correctness of WS-BPEL process.

This paper aims to explore the potential of using
data flow testing techniques to test the WS-BPEL
process. Most specifically, we identify and analyze the
possible data flow test artifacts introduced by WS-
BPEL. A test model is proposed to abstract the data
flow information of various WS-BPEL constructs with
the considerations of the concurrency and
synchronization semantics. Based on the proposed
model, traditional data flow testing criteria can be used
to select test paths for verifying if the data of the WS-
BPEL process are handled properly.

The remainder of this paper is organized as follows.
Section 2 briefly reviews recent work on testing WS-

Chien-Hung Liu
Dept. of Computer Science and

Information Engineering
National Taipei Univ. of Technology

cliu@ntut.edu.tw

Shu-Ling Chen
Dept. of Management and
Information Technology

Southern Taiwan University
slchen@mail.stut.edu.tw

306

BPEL process. Section 3 describes the data flow
analysis of WS-BPEL. Section 4 presents a test model
for representing the data flow artifacts of WS-BPEL
process. Section 5 describes the uses of testing criteria
to derive test paths for a WS-BPEL process based on
the test model. Section 6 provides the conclusion
remarks and our future work.

2. Related Work

Recently, there is an increasing interest in verifying
and testing WS-BPEL process. Several existing
methods, such as model checking, unit testing [3][4],
and flow graph-based approaches, have been adapted
to validate the WS-BPEL process. This section briefly
reviews several WS-BPEL flow graph-based testing
approaches that are related to our work.

Mei et al. [5] describe the possible data implications
introduced by XPath Query in WS-BPEL applications.
They illustrate that the data retrieved by XPath from
XML messages can affect the execution workflow of
the WS-BPEL process. To capture the data interactions
between XPath and WS-BPEL, an X-WSBPEL model
is proposed. The model annotates XPath expressions
on the control flow graph of WS-BPEL. The structure
of each annotated XPath expression is represented
using an XPath Rewriting Graph (XRG) that describes
the paths conceptually defined in the XPath expression.
Based on the X-WSBPEL model, several testing
criteria are proposed to derive test paths for exercising
the data interactions between the XPath and WS-BPEL.

Bartolini et al. [6] address the issues regard testing
Web service compositions (WSC) using data flow
modeling approaches. They outline and classify several
WSC data models which can be constructed from the
requirement specification, BPEL implementation, or
data property specification. The research issues about
how these data models can be used individually or
together to validate the data flow of WSC are
discussed. A case study is also provided to
demonstrate the WSC validation using the data flow
models derived from the requirements and BPEL
descriptions.

Hou et al. [7] present a data flow testing approach
for Web service compositions. In their approach, the
data defining and using information is extracted from
the BPEL and WSDL documents. The data usage
information is then annotated on the control flow graph
of the BPEL process in which a mechanism is
proposed to represent the situation of Dead Path
Elimination (DPE). Based on the flow graph, an
algorithm is presented to generate the test paths for
detecting the data flow anomalies of the process.

Yuan et al. [8] present a BPEL Flow Graph (BFG)
to represent the control flow of a BPEL process by
extending traditional CFG to model the concurrency
and synchronization semantics of BPEL specification.
Based on the BFG, concurrent test paths for the BPEL
process can be derived and their path conditions are
computed using a matrix-based algorithm. The path
conditions are then analyzed using a constraint solver
in order to generate test data for each feasible path.

Yan et al. [9] describe an extended Control Flow
Graph (XCFG) to model the execution flow of a BPEL
process. Based on the XCFG, all the possible
sequential flow paths are generated. These paths are
then combined to form concurrent test paths. The
constraints of the concurrent test paths are computed
using a symbolic execution method. Finally, a BoNuS
constraint solver is used to solve the path constraints
and generate feasible test cases.

Endo et al. [10] propose a strategy for testing Web
service compositions based on the structures of parallel
programs. They present a Parallel Control Flow Graph
(PCFG) to model the data flow and message exchanges
between the parallel BPEL processes by taking into
account the invoke, reply, receive, and pick activities.
With the PCFG model, the intra-process and inter-
process data usages are identified and a set of coverage
criteria for parallel BPEL processes are provided to
guide the test case selection and to analyze test
coverage.

Lertphumpanya and Senivongse [11] describe a
testing method for WS-BPEL processes based on the
basis path testing technique. In their method, a
traditional CFG is employed to represent the execution
flow of WS-BPEL. From the CFG, basis paths for
testing the WS-BPEL process are computed. A testing
tool that supports the proposed method is also
presented. However, they did not describe how to
model the concurrency and synchronization using their
CFG and how to generate basis paths in such cases.

Liu et al. [12] propose a BPEL Control Flow Graph
(BCFG) to represent the control flow of WS-BPEL
process. In particular, the BCFG adapts a subset of
BPMN notations to model different constructs of WS-
BPEL as well as their semantics including concurrency,
synchronization, and dead path elimination. Based on
the BCFG, an algorithm is presented to traverse the
BCFG and to collect the path conditions for deriving
feasible test paths.

3. Data Flow Analysis of WS-BPEL

Data flow testing is a structural testing technique
for detecting improper uses of data. It focuses on how

307

a program variable is defined and used along the
control flow of the program. A variable can be used in
computation (c-use) or in predicate (p-use). Test paths
of a program are selected based on testing criteria [13]
and def-use chains (or def-use pairs) of variables,
where a def-use chain is a path from definition to use
without any other intervening redefinition [14].

To analyze the data flow of a WS-BPEL process,
the characteristics of WS-BPEL need to be considered.
Specifically, in the WS-BPEL process, variables can
hold XML messages that represent a part of process
state to be exchanged with partners. According to the
message type defined in the WSDL document, a
message can consist of one or more logical parts that
hold the content of the message. A WS-BPEL process
can access an entire message through the variable or
extract a certain part of the message using XPath
expressions [15]. For example, as shown in Figure 1,
the variable request holds a message which consists of
three parts: firstName, name and amount.

WS-BPEL document

<variable>
<variable name="request"
 messageType="creditMSG"/>
<variable name="risk"
 messageType="riskMSG"/>
<variable name="approval"
messageType="approvalMSG"/>
</variable>
...

WSDL document
...
<wsdl:message name="creditMSG">
 <wsdl:part name="firstName" type="string"/>
 <wsdl:part name="name" type="string"/>
 <wsdl:part name="amount" type="integer"/>
</wsdl:message>
<wsdl:message name="riskMSG">
 <wsdl:part name="level" type="string"/>
</wsdl:message>
...

Figure 1. An example of WS-BPEL and WSDL
messages

Depending on whether an entire message or a

certain part of the message is defined or used, this
paper denotes a variable as v or v.p, where v represents
the variable name and v.p represents the part name p of
the variable v. Moreover, to simplify the data flow
analysis of WS-BPEL, when a part v.p is already
defined, a use of the variable v is considered as a use
of v.p. However, if a variable v is defined, a use of part
p of v remains as a use of v.p.

In addition, variables in a WS-BPEL process can
only be defined or used within the activities that
exchange messages between the process partners, such
as receive, invoke, reply, and pick, or within the
activities that update data or control process flow, such
as assign, if, and while. The definitions and uses of
variables can vary in different WS-BPEL activities.
For instance, when a receive activity is performed, the
<variable> attribute of the activity (or its equivalent
<fromPart> elements) will be defined with the inbound
message. If a request-response type of invoke activity
is executed, the data in the <outputVariable> attribute
of the activity (or its equivalent <fromPart> elements)

will be used as a request message sent to
corresponding partners. On the other hand, the
<inputVariable> attribute of the invoke activity (or its
equivalent <toPart> elements) will be defined with the
response message.

Table 1 summarizes the activities those can be used
to manipulate the WS-BPEL variables. To facilitate
data analysis, the attributes and associated elements of
each activity those involve data definitions and uses
are also identified.

Table 1 The definitions and uses of variables

in the WS-BPEL activities
Activity definition c-use p-use

receive variable attribute or
<fromPart> element

reply
variable attribute
or
<toPart> element

invoke
outputVariable
attribute or
<fromPart> element

inputVariable
attribute or
<toPart> element

assign <to> element <from> element

wait <for> element
<until> element

if <condition> element
while <condition> element

repeatUntil <condition> element

forEach counterName
attribute

counterName
attribute counterName attribute

pick variable attribute or
<fromPart> element <for> element or

<until> element

flow

<joinCondition>
element and
<transitionCondition>
element

Moreover, WS-BPEL allows synchronization of

concurrent activities. Thus, a variable can be defined
or used by multiple concurrent activities. This can
result in nondeterministic data flow behavior. For
example, as shown in Figure 2(a), the same variable
can be defined in two concurrent activities. This results
in two possible def-use pairs that are exclusive of each
other. In Figure 2(b), the variable can be defined in
one concurrent activity and be used by the other. A
def-use pair can exist between the concurrent activities
only if the activity defining the variable is executed
before the activity using the variable. The
nondeterministic data flow may not appear if
concurrent activities are synchronized using links. As
shown in Figures 2(c) and 2(d), the concurrent
activities are synchronized. In such case, the execution
of parallel activities is restricted to be serial and data
flow analysis for sequential programs can be employed.

Note that the WS-BPEL supports the mechanism of
dead path elimination. If the join condition of a target
activity evaluates to true, the activity will be executed.
If, however, the join condition is false and the

308

<suppressJoinFailure> attribute of the activity is set to
“yes,” the activity will be skipped and all outgoing
links from the skipped activity will be set to false to
avoid deadlocks. This indicates that a variable
definition (or use) can be skipped when DPE occurs.
For example, in Figure 2(e), depending on whether
DPE occurs or not, the activity with definition def2 can
be either executed or skipped. In such a case, we can
derive two possible def-use pairs (def1-use or def2-use).

(a) (b)

Concurrent /
Synchronizatio
n

def1 def2

use

def1 def2

use

(c) (d)

def1

def2

(e)

def use

def use

either data
def1 or
def2 will
be lost

data def
may be

used in the
concurrent

activity

data def1 is
redefined

by def2

data def will be
used in the
concurrent

activity

data def1 may
or may not be
redefined by

def2

skip

use

Link

Activity

Data flow

def: definition of a variable
use: use of the variable
def2: a redefinition of def1

Figure 2. Examples of data definitions and

uses in concurrent WS-BPEL activities

4. WS-BPEL Data Flow Test Model

To facilitate data flow analysis, a test model is
proposed to represent the data flow artifacts of WS-
BPEL process. The test model is an extension of the
WS-BPEL control flow graph (BCFG) in [12] by
annotating with the data flow information. Figure 3
shows the graphical elements that are used to represent
the BCFG constructs. Basically, a basic activity is
represented using a normal node. A structured activity
then can be constructed using normal, fork/join, and
branch/merge nodes. The flow between the activities is
indicated using sequence and conditional edges, where
sequence edges represent execution flow and
conditional edges represent flow paths with condition
expressions, such as transition conditions of links.

Start
Node

Branch/Merge
Node

End
Node

Normal Node
(Activity)

Fork/Join
Node

Sequence
Edge

Conditional
Edge

 Figure 3. The graphical symbols of BCFG

Notice that, according to the semantic of DPE,

when DPE is enabled and a target activity is not
performed, the outgoing links of the target activity are

assigned a false value. This false value will be
propagated along entire paths formed by successive
links until a join condition is reached and is evaluated
to true. To model this semantic statically in the BCFG,
the branch condition for a target activity is defined as
JC�(JC1'�JC2'…�JCn'), where JC is the join
condition of the target activity and JCi', 1�i�n, is the
join condition of the source of the activity’s incoming
link as shown in Figure 4.

Activityi

m

Ci = JCi

Activityi

b
JCi

Ck = JCk &&
 (JCi'|| ... ||JCj')

b: branch node
m: merge node
Ci : branch condition of activity i
JCi : join condition of activity i

b

m

(a) Activity can be skipped
in case of DPE

Activityj

b

m

...

Activityk

b

m

(b) Modeling the propagation
of link status caused by DPE

JCj skip

Figure 4. The static model of DPE in BCFG

To illustrate the proposed test model, we use a loan

approval process that is described in the WS-BPEL
specification [1]. Basically, the loan approval process
receives a loan request from customer and generates
either a “loan approved” or “loan rejected” message
depending on the amount of request and the risk level
associated to the customer. The process will invoke an
assessor service to assess the risk associated with the
customer and invoke an approver service to evaluate
the loan request. For a low-risk customer with a
requested amount less than $10,000, the loan is
approved automatically. Otherwise, the loan needs to
be examined by an approver.

Figure 5 shows the BCFG annotated with data flow
information for the loan approval process. In Figure 5,
there are five normal nodes representing the basic
activities in the process. These basic activities are all
embedded in a flow activity that is constructed using
normal, fork/join, and branch/merge nodes. In addition,
all the basic activities are synchronized with links,
where each link can have an associated transition
condition and is represented by a conditional edge.
Except for the receive activity, all other activities are
targets of the links. Each target activity has a join
condition that is the disjunction of link status of its
incoming links. The join condition is a part of the
branch condition for determining if the target activity
can be skipped in case that DPE occurs.

309

To represent data flow information, the nodes and
edges of the BCFG are annotated with corresponding
definitions and uses of variables. For example, upon
receiving the loan request message, the receive activity
in node n1 will assign a definition to the request
variable (denoted as def(request, n1)). This variable
will be used in node n2 as the request message sent to
the assessor service partner (denoted as c-use(request,
n2)). Notice that a part of the request variable (i.e.,
amount) can also be used in the link transition
conditions associated to edges e3 and e8 (i.e.,
request.amount<10000 and request.amount>=10000).
However, a transition condition simply affects the link
status which will be used in the join condition for
determining whether the target activity of the link can
be executed or an exception (or a DPE) will be raised.
Thus, in the proposed test model, we will annotate the
data flow artifacts of a transition condition in its
associated join condition where two different flow
branches can be introduced. As a result, the predicate
use of the request amount in the transition condition of
edge e3 (or e8) is annotated in the edges e4 and e5 (or
edges e16 and e17).

Start

Receive

Invoke
assessor

Invoke
approver

Assign
approval

Reply

def(request, n1)

C1

C2 C3

C4

def(risk, n2)
c-use(request, n2)

risk.level != 'low'risk.level = 'low'

def(approval, n4)

c-use(approval, n5)

def(approval, n3)

Branch Condition :
C1 := request.amount < 10000
C2 := C1 && (risk.level = 'low')
C3 := (request.amount >= 10000) ||
 (C1 && risk.level != 'low')
C4 := C2 || C3

request.amount >= 10000request.amount < 10000

e1

e2

e3

e4 e5

e6

e7

e8

e9
e15

e12e11

e13

e14 e19

e16 e17

e18

e20

e21 e22

e23

e24

e10

n1

n2

n3 n4

n5

p-use(request.amount, e4)
p-use(request.amount, e5)

p-use(request.amount, e11)
p-use(risk, e11)
p-use(request.amount, e12)
p-use(risk, e12)

p-use(request.amount, e16)
p-use(risk, e16)
p-use(request.amount, e17)
p-use(risk, e17)

p-use(request.amount, e21)
p-use(risk, e21)
p-use(request.amount, e22)
p-use(risk, e22)

End

Figure 5. Test model of loan approval process

Table 2 shows the possible def-use chains for the
loan approval process that are derived from Figure 5.
Beware that the data flow artifacts of Web service
compositions can be analyzed from the intra-process
and inter-process perspectives. Table 2 shows only the
intra-process def-use chains of the WS-BPEL process
because the data flow information of partner Web
services may not be available.

Table 2 The def-use chains of the loan

approval process
Variables Definition-Use Chains
request (n1,n2)
request.firstName (n1,n2)
request.name (n1,n2)

request.amount (n1,n2), (n1,e4), (n1,e5), (n1,e11), (n1,e12),
(n1,e16), (n1,e17), (n1,e21), (n1,e22)

risk (n2,e11), (n2,e12), (n2,e16), (n2,e17),
(n2,e21), (n2,e22)

approval (n4,n5), (n3,n5)

5. Selection of Test Paths

Based on the test model, test paths can be derived

by traversing the BCFG. Traditional data flow testing
criteria [13], such as all-du paths and all-uses, then can
be applied to guide the selection of the derived test
paths to uncover possible defects in data usage during
the process execution.

Table 3 shows the possible test paths for the loan
approval process that are selected based on the all-uses
coverage criterion. The all-uses criterion requires that
there exists at least one path from every definition of
each variable to all possible uses of the variable that
can be reached by the definition. In Table 3, each test
path is represented as a sequence of edges in the BCFG,
where the notations · and || indicate sequential and
parallel flow, respectively.

Moreover, Table 3 also shows the path condition
associated to each test path. The path condition can be
used to decide if a path is feasible. A path is infeasible
if there is a contradiction in its path condition. By
examining the path condition of each path in Table 3,
we can find that test path P4 is infeasible since P4 has
a contradiction in its path condition C1�¬C2�C3�
¬C4. This indicates that the def-use pairs (n1, e21) and
(n2, e21) will not be covered by the selected paths.

6. Conclusions and Future Work

In this paper, we have proposed a data flow testing
approach for Web service compositions based on WS-
BPEL. The characteristics of WS-BPEL variables are
described. WS-BPEL activities that can define and use
the variables are identified. The features of

310

concurrency, synchronization, and DPE those
complicate the data flow analysis of WS-BPEL are
also discussed. A test model that can abstract the data
flow information of WS-BPEL process is proposed.
Based on the model, def-use chains for the variables of
interest in the WS-BPEL process can be obtained.
Traditional data flow testing criteria can be adapted to
guide the selection of test paths for uncovering the data
anomalies of the WS-BPEL process.

We are currently developing a data flow analysis
algorithm for WS-BPEL and are building tools to
support automatic construction of test model and
generation of test paths. In the future, we plan to
extend the test model to abstract the data flow artifacts
of the fault handling and compensation mechanisms as
well as other WS-BPEL specific features.

8. References

[1] Web Services Business Process Execution

Language Version 2.0, OASIS Standard,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html

[2] OASIS, http://www.oasis-
open.org/home/index.php

[3] Z. Li, W. Sun, Z.-B. Jiang, and X. Zhang,
“BPEL4WS Unit Testing: Framework and
Implementation,” In Proceedings of the IEEE
International Conference on Web Services
(ICWS'05), 2005, pp. 103-110.

[4] P. Mayer and D. Lübke, “Towards a BPEL Unit
Testing Framework,” In Proceedings of the 2006
workshop on Testing, analysis, and verification of
web services and applications, 2006, pp. 33- 42.

[5] Lijun Mei, W.K. Chan, and T.H. Tse, “Data Flow
Testing of Service-Oriented Workflow
Applications,” In Proceedings of the 30th

International Conference on Software Engineering
(ICSE’08), May 2008, pp.371-380.

[6] Cesare Bartolini, Antonia Bertolino, Eda Marchetti,
and Ioannis Parissis, “Data Flow-Based Validation
of Web Services Compositions: Perspectives and
Examples,” Architecting Dependable Systems V,

LNCS, Vol. 5135, 2008, pp. 298-325.
[7] Jun Hou, Baowen Xu, Lei Xu, Di Wang, and

Junling Xu, “A Testing Method for Web services
Composition Based on Data-Flow,” Wuhan
University Journal of Natural Sciences, Springer-
Verlag, 2008, pp.40.

[8] Yuan Yuan, Zhongjie Li, and Wei Sun, “A Graph-
Search Based Approach to BPEL4WS Test
Generation,” In Proceedings of the International
Conference on Software Engineering Advances
(ICSE’06), Oct. 2006, pp.14-14.

[9] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang,
“BPEL4WS Unit Testing: Test Case Generation
Using a Concurrent Path Analysis Approach,” In
Proceedings of the 17th International Symposium
on Software Reliability Engineering (ISSRE’06),
Nov. 2006, pp.75-84.

[10] A. T. Endo, A. S. Simão, S. R. S. Souza, and P. S.
L. Souza, “Web Services Composition Testing: A
Strategy Based on Structural Testing of Parallel
Programs,” In Proceedings of Testing: Academic
& Industrial Conference - Practice and Research
Techniques (TAIC-PART’08), Aug. 2008, pp.3-12.

[11] T. Lertphumpanya and T. Senivongse, “Basis
Path Test Suite and Testing Process for WS-
BPEL,” World Scientific and Engineering
Academy and Society (WSEAS) Transactions on
Computers, Vol. 7, No. 5, May 2008, pp.483-496.

[12] C.-H. Liu, S.-L. Chen, and X.-Y. Li, “A WS-
BPEL Based Structural Testing Approach for
Web Service Compositions,” In Proceedings of
the 4th IEEE International Symposium on Service-
Oriented System Engineering, 2008, pp. 135-141.

[13] P. G. Frankl and E. J. Weyuker, “An Applicable
Family of Data Flow Testing Criteria,” IEEE
Trans. Software Eng., Vol. 14. No. 1O, 1988, pp.
1483-1498.

[14] Rapps and E. J. Weyuker, “Selecting Software
Test Data Using Data Flow Information,” IEEE
Trans. Software Eng., Vol. SE-11, No. 4, 1985,
pp. 367-375.

[15] XML Path Language (XPath) 2.0, W3C,
http://www.w3.org/TR/xpath20/

Table 3 Test paths for the loan approval process
No Test Path Path Condition Covered Def-use Chain

P1 1·2·((3·5·6·7)||8)·((9·11·14)||(10·15·17·18·19))·20·22·23·24 C1�¬C2�C3�C4 (n1,n2), (n1,e5), (n1,e11), (n1,e17), (n1,e22), (n2,e11),
(n2,e17), (n2,e22), (n4,n5)

P2 1·2·((3·5·6·7)||8)·((9·12·13·14)||(10·15·16·19))·20·22·23·24 C1�C2�¬C3�C4 (n1,n2), (n1,e5), (n1,e12), (n1,e16), (n1,e22), (n2,e12),
(n2,e16), (n2,e22), (n3,n5)

P3 1·2·((3·4·7)||8)·((9·11·14)||(10·15·17·18·19))·20·22·23·24 ¬C1�¬C2�C3�C4 (n1,e4), (n1,e11), (n1,e17), (n1,e22), (n4,n5)

P4 1·2·((3·5·6·7)||8)·((9·11·14)||(10·15·17·18·19))·20·21·24 C1�¬C2�C3�¬C4 (n1,n2), (n1,e5), (n1,e11), (n1,e17), (n1,e21), (n2,e11),
(n2,e17), (n2,e21)

311

Knowledge-based Software Test Generation

Valeh H. Nasser, Weichang Du, Dawn MacIsaac

Faculty of Computer Science, University of New Brunswick

Fredericton, NB, Canada

{valeh.h, wdu, dmac}@unb.ca

Abstract

Enriching test oracles with a test expert’s mental
model of error prone aspects of software, and granting
control to them to specify custom coverage criteria and
arbitrary test cases, can potentially improve the quality
of automatically generated test suites. This paper re-
ports our investigation on the application of knowledge
engineering techniques in automated software testing to
increase the the control of test experts on test genera-
tion; ontologies and rules are used to specify what needs
to be tested and reasoning is used for identification of
test objectives, for which test cases are generated. An
architecture of the ontology-based approach to testing
is presented and a prototype which is implemented for
unit testing is described with a case study.

1. Introduction

Granting control to a test expert to utilize their
knowledge about error-prone aspects of software and
specify what needs to be tested, can result in genera-
tion of a smaller yet error-revealing test suite. At the
current stage of the research we are focusing on model-
based testing, but the proposed knowledge based ap-
proach can be generalized and applied to white-box and
black-box software testing.

Identification
of test objectives

Generation
of test cases

Specification of what
needs to be tested

Figure 1. Three Concerns of Test Generation

There are three concerns in test generation (Figure
1): specification of what needs to be tested, identifi-
cation of Test Objectives (TOs) based on the specifi-
cation, and generation of test cases for the identified
TOs. These three aspects can be tightly coupled.

The specification of what needs to be tested is ad-
dressed by definition of test oracles and Coverage Cri-
teria (CC), which specify the correct behavior of the
software and requirements on the generated test suite
[21] respectively. This aspect of software testing is cru-
cial, because it determines the quality of the generated
test suite. Zhu et al. [21] categorize CC as struc-
tural, which specify what elements of software should
be tested (such as All Transition Pair coverage [14]),
fault-based, which uses some measurement of fault-
detecting ability of the test suite (such as mutation-
based methods [16]), and error-based, which is based
on error-prone aspects of software (such as boundary
testing [12]).

The second aspect of software testing is identifi-
cation of test-objectives based on the specification of
what needs to be tested. A test-objective delineates a
single test case, and is identified with an algorithm.
This concern can be tightly coupled with the first
concern, because the identification algorithm can be
tightly coupled with the specification of what needs to
be tested. There are several approaches to identifica-
tion of TOs: Explicit identification of TOs by a test
expert [11]; the use of identification algorithms with
the rules implicitly built into them [14]; provision of
a language for defining CC rules and use of identifica-
tion algorithms that rely on the specification language
[8]; and translating CC into temporal logic and have a
model checker to identify TOs [18].

The third concern in automated test generation is
generation of test cases for the identified TOs. The test
cases are generated based on a test oracle with several
approaches: One approach is to use graph traversal
algorithms [14, 4]. Another approach is using model-
checking tools for test-case generation [19]. With this
approach it is asserted that there is no path with the
required specification in the model. The model checker
tries to find the required path and returns it as an out-
put. A third approach is using AI planners to generate
test-cases [16]. AI Planners are used to generate paths

312

to reach identified goals.
Test oracles and CC are used for specification of

what needs to e tested. The knowledge that is conveyed
by test oracles can be at different levels of abstraction
(i.e. code, design, or requirements [15]). An issue with
abstraction is that poor abstraction can be a barrier
to generating high quality test suites [5], if it removes
the knowledge essential for specification of error-prone
test cases. To solve this, Benz [5] demonstrates how
abstraction of error-prone aspects of software can en-
hance test-case generation by defining system-specific
CC. The error-prone aspects, which are also used in
Risk Based Testing [1] are software elements that are
more likely to produce an error and can be domain
specific (such as concurrent methods, database replica-
tions, network connection), from general test guidelines
and experience (such as boundary values), or system
specific and revealed in interactions of testers with de-
velopers and designers (such as use of an unreliable
library). Granting control to test experts to extend a
test oracle with knowledge about error-prone aspects
of the system and specify custom CC rules can in-
crease the control of the test-expert on the automated
test generation and, therefore, potentially enhance the
quality of the generated test-suite.

To exploit a test expert’s knowledge in automated
test generation, the first two concerns of test case gen-
eration, i.e. specification of what needs to be tested
and identification of TOs need to be decoupled. The
decoupling makes the test oracle extensible and enables
it to support specification of arbitrary test cases, im-
plementation knowledge, invariants on model elements,
distinguished states [17], and knowledge about error-
prone aspect of the system. Also the system should
support standard CC which are accepted in literature,
as well as additional CC rules which are based on test
experts’ mental model.

In this work knowledge engineering techniques is
used to decouple the specification of what needs to
be tested and the identification algorithm of TOs and,
therefore, enable a test expert to enrich the test oracle
and specify custom CC accordingly. To achieve this,
the test oracle and expert knowledge (EK) are rep-
resented in ontologies, which are connected together.
The common CC rules and expert defined CC rules
are used to specify what needs to be tested. Reasoning
is used to identify the TOs. Then the test cases are
generated for the identified TOs using model checking,
AI planning, or graph traversal algorithms.

The rest of this paper is organized as follows. Sec-
tion 2 describes how knowledge based approach is used
to deal with the three aspects of software testing. Sec-
tion 3 describes an implementation for unit testing

based on the UML State Machines (SMs). Section 4 il-
lustrates a concrete example of unit test generation and
specification of arbitrary expert knowledge. Section 5
concludes the paper.

2. Ontology based Approach

Our proposed ontology based approach to software
test generation focuses on separation of the three con-
cerns of test case generation as follows.

Specification of What Needs To Be Tested The
knowledge that is used in specification of what needs
to be tested is externalized in ontologies and rules. An
extensible ontology based test oracle is connected to
an expert’s mental model. The mental model ontology
is expert defined and can include knowledge about im-
plementation, error-prone aspects, etc. Based on the
vocabulary defined by the ontologies, CC rules, which
are either standard or expert defined, are specified. CC
rules are in the form shown below. The TO selection
criteria specify a condition that should hold on some
elements for them to be a part of structure of a test
case.

TO :- TO selection criteria

The TOs are specified using the structural proper-
ties of corresponding test cases, which directly or indi-
rectly make them candidates as TOs. For instance, in
unit testing based on the UML SMs, a TO can specify
that transition tr1 of the SM should be traversed imme-
diately after transition tr2 is traversed. This TO can
be directly required because every possible sequence
of two transitions is required to be covered. This se-
quence can be indirectly required because the two tran-
sitions have a definition-use relationship [20], which is
required to be tested.

Identification of TOs Reasoning on the test oracle
and CC rules is used to identify test-objectives. Also,
before a test case is generated for an identified TO,
it is determined whether a test-case that satisfies the
TO already exists in the test suite. This is done by
reasoning on the partially-generated test suite, which
is represented in an ontology. This approach reduces
the number of redundant test cases. To this end, re-
dundancy checking rules for a given TO need to be
generated.

Generation of Test Cases A test-case for a given
TO is generated using a test-case generation method
such as AI planning, graph traversal, model checking,

313

<Rules>
Standard and

Expert-Defined
Coverage Criteria

<Reasoner>
Test Objective

Generation

Test Redundancy
Rule Templates

<Reasoner>
Test Redundancy

Checker

Initialization

Test case
Generation

Ontology
Test Writer

<Ontology>
Test Suite

<Ontology>
Behavioral Model

Test Objective Selected
Test Objectives

Testcases

<Ontology>
Implementation

Khownledge

Executable
Testcases

Test Objective Generation

& Redundancy Checking

Test case

Generator

input

input

input

input

output

<Ontology>
Expert

Knowledge

input

Executable
Test Writer

output

Figure 2. Ontology-based Test Generator

etc. and written in a programming language inde-
pendent test-suite ontology. The executable test cases
are then generated from the test suite ontology, us-
ing a programming language dependent implementa-
tion knowledge ontology. The implementation knowl-
edge ontology, which can be reverse engineered from
the source code and connected to the model ontol-
ogy, conveys information such as name of implemented
methods, state variable setters and getters, etc.

Figure 2 shows the architecture of the system which
has two main processes: TO Generation and Redun-
dancy Checking and Test Case Generator.

The TO Generation and Redundancy Checking is
implemented using two reasoners. One reasoner is used
to generate TOs from test oracle ontology which is con-
nected to expert knowledge ontology, and CC rules.
The other reasoner uses the redundancy checking rules
and the test suite ontology which is generated so far to
check whether a given test-objective is already satisfied
in the test-suite or not. If it is not, the TO is accepted,
otherwise it is discarded. If the TO is accepted, then a
test case is generated for it and added to the test suite
ontology. Then the redundancy checking reasoner con-
tinues to select another test-objective. The Test Case
Generator is in charge of generating test cases for the
selected TOs. The generated test cases are added to
the test suite ontology, which is used to reduce redun-
dant test-cases. The initialization subprocess, initial-
izes the input of test case generation process. Finally
the executable test cases are generated from the test
suite ontology.

An ontology based representation of test oracle, and

<OO-jDREW>
Test Objective

Generation

Test Redundancy
Rule

Templates

<OO-jDREW>
Test Redundancy

Checker

PDDL
Constructor

<planner>
Testcase

Generation

JUnit
Test Writer

<OWL-DL>
Test Suite

Test Objectives Selected
Test Objectives

Testcases

State machine Action Language
{state variables, actions, guards}
and state machine structure

<OWL-DL>
Implementation

Khownledge

JUnit
Testcases

Test Objective Generation

& Redundancy Checking

Test case

Generator

OWLtoPOSL

OWLtoPOSL

Action
Language
Compiler

PDDL

input

input

output

<POSL>
Standard and

Expert-Defined
Coverage Criteria

<OWL-DL>
State Machine

Model

input
input

<OWL-DL>
Expert

Knowledge

input

OWL-DL
Test Suite

Writer

output

Figure 3. Implementation Technologies

rule based specification of CC, promotes separation of
specification of what needs to be tested and identifica-
tion of TOs, and, therefore, form a flexible mechanism
for specification of various CC. The system empowers
the test expert to use knowledge about the system to
control the test-suite by specifying CC.

3. Implementation

The architecture that is discussed in the previous
section is abstract and can be realized using various
technologies. This section describes an implementa-
tion of the system for SM based unit testing and the
technologies which are used to realize the system, in-
cluding OWL-DL, POSL, and OO jDREW, and an AI
planner named Metric-FF [10] (See Figure 3).

The UML SM, expert knowledge, implementation
knowledge, and test suite are represented in OWL-DL
[3]. A TBox ontology specifies different concepts and
relations in them and an ABox ontology specifies a par-
ticular instances of them by importing the TBox ontol-
ogy and instantiating the elements in it. The TBoxes
are reusable while the A-Boxes are for an instance
system. The Ontology Definition Metamodel (ODM),
which is adopted by the OMG, has a section that de-
scribes the UML 2.0 metamodel in OWL-DL. However,
a prototype ontology which is much simpler and less
modifiable is used for the purpose of this work. The
XMI [13] representation of the SM can be converted to
the ontology-based representation automatically. The
implementation knowledge can be automatically im-
ported if the source code of the unit is available. Some

314

parts of the ontologies are visualized in next section.
The TO Genersation and Redundancy Checking

component use OO jDREW [2] for reasoning tasks.
The OWL-DL Ontologies are transformed into POSL
[6] using the mappings presented by Grosof et al. [9].
The CC and the Test Redundancy Rule Templates are
written and converted to POSL respectively. Exam-
ples of CC and Redundancy Checking Rule Templates
are provided in the next section. The TOs are specified
with structure predicates which specify some structural
properties of the test case. Ideally a TO should specify
why it is selected and its structure, to be used by the
redundancy checking reasoner and the Test Case Gen-
erator process respectively. A set of structure predi-
cates, which are used to specify the structural proper-
ties of the test cases are used to compose CC and TOs.
Examples of TOs are provided in the next section.

The Test-case Generator process, uses an AI planner
called Metric-FF [10] for test-case generation. The in-
puts to Metric-FF are the problem and domain descrip-
tion in the PDDL 2.1 language [7], which are provided
by the planner initializer. The compiler-subprocess is
in charge of parsing the state variables, guards and
actions of the SM which are specified in an SM action
language. The inputs of the planner is initialized based
on data from the SM and structure predicates of a TO.
The generated test cases, include methods to be called
at each step, their inputs and the expected values of
the state variables. The generated test cases are then
given to the Test Suite Writer sub-process to be written
back to the Test-Suite Ontology in OWL from which
the JUnit test cases are generated.

4. Case Study

Figure 4 visualizes the SM of a cross road traffic light
controller. The traffic light stays green for at least ‘long
time interval’ on one direction and turns yellow when
a car is sensed in the other direction. Then it remains
yellow for ‘short time interval’ before it becomes red.
There is a correspondance between the SM elements
and class under test: The state variables correspond
to the state variables of the class; The events corre-
spond to the methods; The actions simulate how the
state variables are changed by the methods. The traf-
fic light SM does not have a timer and delegates the
counting responsibility to another class which produces
call events.

Some parts of the ontological representation which
is converted to POSL is visualized in Figure 5. A CC
in POSL for All Transition Pair coverage and the query
that is asked from OO jDREW to generate TOs are as
follows:

road1green

road1yellow road2yellow

road2green

LongTimeInterval() [] /
lti=true;

LongTimeInterval() [] /
lti=true;

SenseRoad2() [lti=true] /
Road1Yellow=true;
Road1Green=false;

SenseRoad1() [lti=true] /
Road2Yellow=true;
Road2Green=false;

ShortTimeInterval() [] /
Road2Green=true;
Road1Yellow=false;
Road1Red=true;

ShortTimeInterval()
[] /
Road1Green=true;
Road2Yellow=false;
Road2Red=true;

lti=false;
Road1Green=true;
Road2Green=false;
Road1Yellow=false;
Road2Yellow=false;
Road1Red=false;
Road2Red=false;

Figure 4. Traffic Light SM

sm:Transition

sm:Call

sm:State

sm:FinalState
sm:StartStatesm:Condition

sm:StateMachine

sm:StateVariable

sm:Behaviour

sm:AbstractState

sm:transitions

sm:vars

sm:guard
sm:to
sm:from

sm:actionsm:event

is-a
is-a

is-a

sm:states
tl:trafficLightSM

tl:Road1Green

tl:LTICondition

tl:SenseRoad2

tl:road1greentoroad1yellow

tl:road1goyellow

tl:road1green

tl:road1yellow

sm:states

sm:states

sm:vars

sm:transitions

sm:guard

sm:event

sm:action

sm:from

sm:to
sm:in
sm:out

sm:to
sm:from

class2 property class1
class1individual1
individual1individual2 property

TBox Definitions:

Instantiation:

ABox Definition:

Figure 5. SM Ontology

Rule: coverage([immediate],[?a,?b]):-transition(?a),
transition(?b),notEqual(?a,?b),from(?a,?state),to(?b,?state).
Query: coverage (?predicates, ?args).

Before generating a test case for a TO, a redundancy
checking rule is generated for it; test suite ontology (see
Figure 6) is translated into POSL; and OO JDREW is
used to check whether the TO is already satisfied. A
TO and the corresponding redundancy checking rule
are shown below:

coverage([immediate],[start2road1gr,road1grtoroad1gr]).
Redundancy Rule: exist(?t,?st1,?st2):-
hascall(?st1,start2road1gr),hascall(?st2,road1grtoroad1gr),
hasstep(?t,?st1),hasstep(?t, ?st2),nextstep(?st1, ?st2).

For an unsatisfied TO, AI planning is used to gen-
erate test cases which are added to test suite ontology
ABox. To generate executable JUnit test cases, imple-
mentation knowledge ontology is used (Figure 7).

315

ts:Testts:Stepsm:Transition

ts:VariableValue

ts:hasStep

ts:Value sm:StateVariable

ts:nextStep

ts:hasCall
ts:outcomets:arg

ts:variablets:value

tltest:test0tltest:test0step0

tltest:test0step1

tltest:test0step0outcome tltest:test0step1outome

sm:starttoroad1green sm:road1greentoroad1green

ts:nextStep ts:hasStep

ts:hasStep

ts:hasTransition

ts:hasTransition

ts:outcome

ts:outcome

Figure 6. Test suite Ontology

sm:Call

sm:StateMachine

sm:StateVariable

imp:ImplementedClass

imp:ImplementedMethod

imp:ImplementedStateVariable

imp:ImplementedGetterMethod
imp:ImplementedSetterMethod is-a

is-a

imp:hasImpCallMethod

imp:hasImpGetterMethod

imp:hasImpSetterMethod

imp:packageName

imp:name

imp:name

imp:classname

imp:hasClass

imp:hasImpStateVariable

tl:seneroad1tlimp:SeneRoad1

tl:road1green

tlimp:road1Green

tlimp:isRoad1Green

imp:hasImpMethod

imp:hasImpGetterMethod

hasImpStateVariable

tl:trafficLightSMtlimp:trafficLightIMPClass
imp:hasclass

imp:ImplementedCallMethod
is-a

imp:hasVar

Figure 7. Implementation Knowledge

4.1. Other Coverage Ciriteria

While some CC such as All Transition Pair coverage
merely depend on the structure of a SM, some other
CC refer to additional expert knowledge which can be
expressed in an ontology and be used to define custom
CC. As an example, a test expert’s knowledge about
use of an unreliable library can be modeled, and CC for
a test suite that tests every call to the library once can
be specified. This knowledge can be attached to the
unit’s SM ontology (Figure 8). A CC can be defined
as it is shown below. The test structure indicated by
this CC is that at a transition t, the state variable sv,
must have value val.

coverage([AtTransitionStateVariableHasValue], [?t,?sv,?val]):-
untestedlib(?l),method(?m), belongsto(?m,?l),behaviour(?b),
uses(?b,?m),transition(?t),action(?t,?a),
variablevalue(?vv), risky (?m,?vv), value(?val),
statevariable (?sv),hasvar(?vv,?sv), hasvalue(?vv,?val).

Another example is a CC that defines if a state vari-
able has a boundary value in a state, then a transition
that has a behavior that uses the value should be tested

ek:Method

sm:Behaviour
ek:uses

sm:Transition
sm:action

sm:StateVariable

ek:risky
ek:VariableValue

ek:hasVar

sm:Value

ek:hasValue

ek:UntestedLibrary ek:belongsto

Figure 8. Use of an Unreliable Library

sm:StateVariable ek:hasUpperBound sm:Value

sm:State

hasVariableValue

ek:VariableValue

ek:hasLowerBound

ek:hasVar ek:hasValue

sm:Transition sm:from

sm:out
sm:Behaviour

sm:action

ek:useVar

Figure 9. Boundary Values

[12]. Figure 9 visualizes the expert knowledge and the
CC can be as follows:

coverage([AtTransitionStateVariableHasValue], [?t,?sv,?val]) :-
state(?s), vaiablevalue(?vv), hasvar(?vv,?sv),
hasvalue(?vv,?val), hasboundary(?sv,?val),transition (?t),
from (?t,?s),behaviour(?b), action(?t,?b), usevariable(?b,?sv).
hasboundary(?sv,?val):-lowerbound(?sv,?val).
hasboundary(?sv,?val):-upperbound(?sv,?val).

Other CC can be implemented by representing the
knowledge in an ontology and defining rules that refer
to vocabulary defined by the ontology. For instance, to
implement all content dependance relationship cover-
age [20], which requires that every use of a variable be
sequenced after every definition of the variable in a test
case, the definition-use relationships among the behav-
iors and guards can be added to the ontology. Another
example is Faulty Transition Pair coverage [4], which
required error states, the transitions to them be mod-
eled in an ontology. Then a rule that generate objec-
tives to go to error states are generated. Implementing
Full Predicate coverage[14] required more effort.

5. Concluding Remarks

This work studies the use of knowledge engineering
techniques in software testing. The benefit that knowl-
edge engineering techniques can bring to automated
testing is specification of extensible test oracles which
can model test experts’ mental model and lend them-
selves to definition of custom CC. In unit testing, a unit
can be large and central to the system. The method
grants control to a test expert to specify what test cases
should be generated and therefore potentially increases
a test suite’s quality. Other benefits of the system are
that the generated test suite ontology is programming

316

language independent and can be translated into dif-
ferent languages, and the expert knowledge TBox on-
tology is re-usable.

Providing for enriching the test oracle with ad-
ditional knowledge, enables blending white-box and
black box testing into gray box testing. While rigid
test oracles and CC hinder a test expert in using their
knowledge to control automated testing, an extensible
CC allows them to add any knowledge to the test oracle
and define CC accordingly. Either arbitrary test cases
can be defined or rules can be used to generate TOs.
Rules can be defined based on a model’s structural
elements and/or generally accepted, domain-specific,
and/or system specific error prone aspects of software.

Although the system is extensible, manipulating
the CC and knowledge required knowledge engineering
skills. Further research into test experts’ mental model,
and a method of presenting the system to a test expert
abstractly, so that it can be easily learnt is required.
Also, the CC which are accepted by literature should
be implemented in the system. Further research needs
to be done into how test experts describe test cases and
a language of structure predicates needs to be devised
accordingly, for the test expert to specify the struc-
ture of test cases using TOs. This work concentrated
on unit testing and the next step is using knowledge
engineering in integration testing and system testing.

References

[1] J. Bach. Risk-based Testing. Software Testing and
Quality Engineering Magazine, 1(6), 1999.

[2] M. Ball. OO jDREW: Design and Implementation of
a Reasoning Engine for the Semantic Web. Technical
report, Technical report, Faculty of Computer Science,
University of New Brunswick, 2005.

[3] S. Bechhofer, F. van Harmelen, J. Hendler, I. Hor-
rocks, D. McGuinness, P. Patel-Schneider, L. Stein,
et al. OWL Web Ontology Language Reference. W3C
Recommendation, 10, 2004.

[4] F. Belli and A. Hollmann. Test generation and min-
imization with” basic” statecharts. In Proceedings
of the 2008 ACM symposium on Applied computing,
pages 718–723, 2008.

[5] S. Benz. Combining test case generation for compo-
nent and integration testing. In Proceedings of the 3rd
international workshop on Advances in model-based
testing, pages 23–33, 2007.

[6] H. Boley. POSL: An Integrated Positional-
Slotted Language for Semantic Web Knowl-
edge. http://www.ruleml.org/submission/ruleml-
shortation.html, 2004.

[7] M. Fox and D. Long. PDDL2. 1: An exten-
sion to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research,
20(2003):61–124, 2003.

[8] G. Friedman, A. Hartman, K. Nagin, and T. Shiran.
Projected state machine coverage for software testing.
In Proceedings of the 2002 ACM SIGSOFT interna-
tional symposium on Software testing and analysis,
pages 134–143, 2002.

[9] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: combining logic programs
with description logic. In WWW ’03: Proceedings of
the 12th international conference on World Wide Web,
pages 48–57, 2003.

[10] J. Homann. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Vari-
ables. Journal of Artificial Intelligence Research,
20:291–341, 2003.

[11] A. Howe, A. Mayrhauser, and R. Mraz. Test Case
Generation as an AI Planning Problem. Automated
Software Engineering, 4(1):77–106, 1997.

[12] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting.
Boundary Coverage Criteria for Test Generation from
Formal Models. In Proceedings of the 15th Interna-
tional Symposium on Software Reliability Engineering,
pages 139–150, 2004.

[13] Object Management Group. XML Meta-
data Interchange (XMI) specification.
http://www.omg.org/technology/documents/formal/
xmi.htm, 2007.

[14] J. Offutt and A. Abdurazik. Generating tests from
UML specifications. In UML’99 - The Unified Model-
ing Language. Beyond the Standard. Springer, 1999.

[15] T. Ostrand and M. Balcer. The category-partition
method for specifying and generating fuctional tests.
Communications of the ACM, 31(6):676–686, 1988.

[16] A. Paradkar. Plannable Test Selection Criteria for
FSMs Extracted From Operational Specifications. In
Proceedings of the 15th International Symposium on
Software Reliability Engineering, pages 173–184, 2004.

[17] A. Paradkar. A quest for appropriate software fault
models: Case studies on fault detection effectiveness of
model-based test generation techniques. Information
and Software Technology, 48(10):949–959, 2006.

[18] S. Rayadurgam and M. Heimdahl. Coverage based
test-case generation using model checkers. In En-
gineering of Computer Based Systems, 2001. ECBS
2001. Proceedings. Eighth Annual IEEE International
Conference and Workshop on the, pages 83–91, 2001.

[19] S. Rayadurgam and M. Heimdahl. Coverage Based
Test-Case Generation using Model Checkers. In Eighth
IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, page 83,
2001.

[20] Y. Wu, M. Chen, and J. Offutt. UML-Based Integra-
tion Testing for Component-Based Software. In Cots-
Based Software Systems: Second International Con-
ference, pages 251–260, 2003.

[21] H. Zhu, P. Hall, and J. May. Software unit test cover-
age and adequacy. ACM Computing Surveys (CSUR),
29(4):366–427, 1997.

317

�
���������	
�������������������	����
�
���

�
����	�������������	�*��	�*��������	��&������

�� �	�������������	���������������������������
����
4��!�	��������)��������*���������
������������4��!�	�������ª�
�+?¢��)������&����'� ���(�

7����	��� ��������	�*� ��������� ��	��	�����8B��������
�
�

����������
��������	
� ���	����	�� �	�
	������������	�		�� �	� 	��
���	�� �	�	
�	�� �
��� ��	�������	�� ���� �	�
� ������� ��
����� ������ ��� �	� ����	�	������ ��� �	� ������ �
��		�����
�
��� �	� ��	�������	�������
	�	�
��� ��
��� ���	� �
��
���	���
�	��	�� ���	�	
�	� 	�� ���	�� ��
�����	
	��������
��� �����
	��
	�����������
��	�� �����	��	�� �	��
��	�
����������� �	� ���	
��	������� �	� 	�� ���	�� �������	
	��
���
�������	�	�����������		������	�������	����������
��
�	���
�� �
���	�����	���
�!����
���������������	��	��

���
��	����
���
������
������ 	������"�������!��!���������������!�������������
����"�	�� �����������������	���������	����!�� 	� ����� �����
��#���� ��	� 	� �	��
� ����� ������ �	��� ���� ��	��� ���
��� ���
����"�	����!��� ����� ���¡ ����������"������	�� 	�!��"���
���������$������������������ � �	��
� �������	��������� �� ����	��$�� ������	�!�� �������������	�
��#���������
	������		�� �����
������	�����������	��������
������#��������������
�������������� �������"������������
����	����������"����������� ���������� ���
����$��������� �����
������� 6���� ����� ��� ����� ���	��� "���� �����
��� "���� ���
 	��������	� '������ ��������� ��� ����	�(�"����� �$�������� ���
������������� ������ ������������
����\��	������� �� ���
���� ���	��������� ��� ����	����!�� �����
���� ���� ����� ����
 ������ �	�� ��������� "���� ������� ����� ���
��� ����� ������
"��������������������$��������
�������������������������
� %���	������	����!������	�����������#����������!�	�
��
�	���	��� ���
��� ����� ������ �	��� ����	� �� ��� ��� ���
	�����
������������!�	�
���	���	������.��	�"����������¡ �'��	�4�*�
��������������	����������
	���(�����������������������������
#������� ��� ���� ����� ������ 	������� "���� ���� �������	�� ���
���¦����������
� ������� �� ������ ������#������ ����*�� ���� �� �	������
��� ������
� �	��� ���� ��
�����
� ��� ����"�	�� 	�������� ���
����
���������������������������������!�	��������������!����
�������� �� �	���� ����� ��"����� ��������� °������
±�� ��� ����
�"�� � ������� ������#���� ��� �	������ �����	�*��� ��	��� �����
�������� ���� 	� �	���������	�����������������"������������
�$�������"������!�	�����������������������!���������
� £�"�!�	�� ��� �����������	� ���� 	���������� � ���"���� ����
#������������ ���������������������	���4�*��	����������� ����
#�������	���������� �����!�	���������������� �����$���������
�������		�� �����
����������	�
������	��������
� ����� � �	� 	�����������	�������	����������� ������������
"���� ���� ��������� ��� ���� #������� ����� ����� ������
���	�����
�	������������������
���������	���������������������	� 	��

������� ���#�
�	�����
�!��� ��������!���	������������� � ����
����� ��� ������ ��� �� ������ ��������� ���� �� ��������������
�	���	�������#����������������
����������� �����������������
������#��������
����������������"�����	�������������������������
���#�����"��������$���������� ��������������� ���������� ���
�!�����������������������	������������!�	�
���	��������"����
��������	���������!������������"�	���	�������������	�����º�
� �����������"�	������������������������	������	�!���������
����� "�	��� ��� ��������������� ���� ����� �����
���	������
�	��������������������� 	�������������������¨������������
�����+�����	������"���������������������������������	�������
���������� #�������� �������� ª� �	�"�� ��	� ������������ ����
����	�����������"�	���

���	���������	��
�����"�	�� �����	�� ��� ���� ��������� ��� ���� ����� ��		�� ���
���������"��������������������������������$�����°����!�
���	��� ������ ��������±�� ��� �������� ��� ���� ��		���� 4�*�
� ������������ �¬ ��#�	� ����������$���#�
�	���� ������	����� ����
"��� �� �	������
� �	���	�� ��� 	���������� �� "����� ��		��
� ����� ��� ���� 	���������� � ���"���� ����)����� ���� ������
��������4�*����������	���¢ ��
� �

���������	
�

��������

��������

����������	
�������������	���	�

����	���

������������������
��	������
���	�

����

�����������	�������	
���	

���
�������	
��

���
�������	
��

�����������������������	���	�

��������������	
��

���������	������	���

�
� !"�#������$#%��&'��$ ��(�&(&��)�

� ���� ��
�	�� ����� ���"�� ����
��������� 	���������� �
���"���� ���� � ��������������� �� ������ '"����� ����!���	� ���
���������� "���� �� �������������(� ���� ���� �� �������������
&������� ��� ����� �	�����������¥�	��	�����®�� �� �= � ����	�
������ ����	���� ��� ��
�	����� ��� �	�������� ������ ���� ������
���������������	���������
� .���	���
� ��� ����	�	������ �������	��������������������
����	��� �	����� ���� 	�������������� ���� �� ���������������
���� �	���������� �	�

�	��� ��� � �	������ ������� "������ ����
��	
������������������ �	��������� ����������������������	�����

318

����������������
��	������������� ����� ����������	��� �	�����
���� 	������������ ��� ���� ����� �!��������	�� ��	���	�� �����
���� �	���������� ���� �������� ���������������� ��� ������ �����
�������� ����	��	� ��� ��		������"	���� ���� 	������������� ���
������ �������� ��� �������� ����� ���� ������ ��������� ��� ��� ���
���� ������������	��	�

�	��
�������	����������
� ��	���������������
�������� ���� ������ ������¦�!������� ��� ��� ����� ���
��� �� ���	���
������ �������������	�������������������������������������
��� ���"� ���� ��������� ������ ��� ��������¥�	��	�����®�� ��
 	� ���� ��������� ������ 	� 	�������
� ���� ������ ��� �����������
"���������� ��� 	������������"���� ���� ��� ���� ����������
�
�����������
��������"����� ���#��	��������	�� �	�

�	��
� ����
�	������������
� #�
�	��¨����"������� ���������
�	��������� �	�������= ��
���
�������������	����������������������������	�������	�����
������ ��� ������ ���� ��		�� �����
�������� ��� ���� ������ ���
��	� ��������������������"�����������	�	��	��'��	���� ���
��
� ���� 	����������� ���� ���� �������� ������(� "����� ���
������ ��� ������������ ��� �� 	�!����� "�	�� 	������� "���� ��
�������	����������	�!�	�����
����	��
����������
���	������
�· �� "�� ������������� ����� ����� !�	�� ����� ��
�	����� ���

���	���� ����� ��	� �������� "����� 	������ �	��� ���������
����������������������������	�	���������� ���	������		����	���
������� ���� ��	��
�� ���� 	���������� ��� ���� ���� ����"�	��
��
����	������������ ������������ ����!���	� ' 	�!����� ���
���� ����(���� ������������"���� �����������������������������
������ ���������������������
�	������� ��������� ������	����	��
����������)������������������������"���������������� ����
����"����#�
�	�����
�

)����²'1�����#�������% �	�������������������(�
� �	�����²'1�������	�����	���&���	���� ������%����������(�
������������²'���������	���������§����������6��∈�������(�
��∈��	���������²')�����\��	���6�����(�
�
���������
��)���#	����'��������)����(�7�
� ∀���∈���������������������	����������7�
� � � ²����������% �	������'������(�
� � �������²��"������'(�
� � ������	����������'�����	�������(�
� � ������	����������'��
��	�)��������(�
� � ���������'��������(�
� � � ����'�(�
� 8�
8�
� !"�#�����*��)!&� �$%�'&��!#*#��� *!��&+#�'�&%���

����#�%��$ *#�
� ��� �����	��� ��� ��� ����	� ������ '�(� ���� ����!���	� ��� ��
������ ���� ��� ��	����������	����� ������������ �� ���������
�����§�����'¨(� ���	�� �������������!�������� ���
���	���� ����
�������		�� �����
� ���������������������"������ ���������
�������
� ����	��	� ������"�"�����	��� ����������� ������#����� ��	�
������
� �� ����"�	�� �	�������� �����������������������	���	��
��!�	�
�� �	���	��� ��	� ����� �� ����� �	������� ��� 	�#��	���� ���
������������£��
���������+ �����%���������������? ���!�� 	��
 ��������������"��
���!�	�
���	���	�����	�����������������

• ��������!�	�
���+ ��.��������������������������	�����
	
��	� ��� ����� ������ ��� ��!�	��� ��������	���	�� �����
��#�������������

• �	����������+���? ��.������������������������������	����
	���� ��� ����� �	��������� ��� �	�!�	���� ��������	���	��
�������#�������������

• #���� 	�������� ��? �� #�	� ����� 	�������� #� ��� �����
�	��������� ���� ����� ����� ������� ��� ��� #�� ������� ���
������ ������ ����� ������ ����� ���������� ���#� �������	�
����� ����!��������#��"��	�� ��� ���� ����� ����!������

�	����� ����	��.� 	�������� ��������������$ 	�������
"�����!�������������	����������	�

�	��
�������	���
���������

• �	��������� ��	���? ��#�	������ ��	��������������	���
��������$��%�$&�����$&�%�$�������������������� ����� �����
�	�!�	����������	���������������� ��	������#�������

•)����
�	������ �+ �� .���	���
� ��� ������ �����	��� ��
�����
�	������ ��� °��$����� ������� ������� ���"����� ��
����������������������������±�����������������������
���������� ������	���	���� �������������
�	������ �����!�
�	�����������	���	�������������������

•)�� ����� ��#������ ��? ��������� �������� ������ �����
�	�!�	���������
������#�����������	�����������������
��������������� °������
���� ��#������±��	���������
��� ���� ����� ��
����	� ������ ��� �$ �	������� �������
���"���
����������	����������������"���
���

� %��������!�	�
���	���	����������������������� ���� ����
��"��
���� � ��� ����
���	��������� �������������� ����� �����
���������������
�	�����"���������
���	�������������� ����
�	���
	� ������	���	����

,��������
����������������	����
�
���
¥����°�	����������±��"��	���	�����������
	����������!�	�
��
	������� ��� �� ����"�	�� �	�����������	����� ��� ��
�!���� ��
��
����	���������!������� 	���	!���"����������	�����������	����
�����������������	��������"�	���!���������"�	����������������
�����	��������������������������	����������������������$����
������ � �������������� ��	�"�����"�� ��!�� ����� �"�� �$ �	��
������� ���� �$�	������ �	��� ����	���	�� ���� ���� "����� ����
����������	�������������

�(������	����������)	�����)���	�����������"���������
����� ����������
�����	��� ��� 	���	������ ��?���� ��
"��	�� ���� ��		�� �����
� ������ �������� ���� ���
�������

¨(���� ������� ���� ��		�� ����� ��� �� ����
�	� �����
����	���� ���� ��
��� ���"� ��� �"�� ���� ��	���� ��� ��
 	������ ��� ��� 	����!��� ��� ��	� ��������� '#�
�	��
+(�� ¥���� ���	�� �	�� ��� �����	������ ��������
�	�
����
��� ���� ��
��� ��� ����� ���� ��	��� '�� ���� �(�
������
� ����� ���� �����	� �!���� �!�	�� �� ��$���
�����	� ��� �������� '¬?�� ¬+�� ¬¬�� =+�� ���� =¬(��
£�"�!�	���� �����	�������� 	�#����� ���� 	��� ��
���
������������������ ��	��������������� ��	��"��	��
	������	�#������������������"��	�	����������
��� �
 ���§�������������
	���������������� ��	�������������
��������
�	������
����� ��������"������	�¨?�����
���������	� ����	�#������	�� ��� ����� �����¨?���������
	������� ��� ����� ������ ��� ���� 	��� ��
��� ��� 	�#�������
���������������	�#�������� ������������

� #�	������������"����!��� �������������	�������������
�	��������� ��	���!�	�
���������'�(������"�����������������

319

� !"�#�,������#�%��$ *#�'&���$#��#%�($&�#-��%�*�!#��#.�%()#�
��!������� �	��������� �������!�� 	�
	���������	���
� ��� ����
���	�������������	����������	������= �����������������������	�
���� ��	��� ��!�	�
�� �	���	��� "�	��
���	����§� '¨(� ���� �����
������"�	�� ����� �	��������� ������$��������� ��!�� �����������
��� ����!�� ���� �������� ��¨�� �+ � ��	����� '"����� �	�� �"��
��������	����������������
(§�'+(�������!�	�
��	��������������
��!���������������������������	��������	�������������������
���	������
�����������¨ ���

,����/#�� *!��$#��&"��#��&+#�
���� ������ ��������� ��!�� ����� ����������� �	��������� �����
��!�� 	�
	���� ����	���
� ��� ���� ��
�	����� 	�������� ���
#�
�	��¨��.������$�� ����#�
�	��ª����"���������	��������
��� ����
	'�	�(��������� ��� ���� ���� ��	��¦�����
�	��
"����� ���������� ����� �	������� ���� ���� ��� ���� ����
�	�
������'����	���
�����������������������#�
�	��+(��������	���
����������������"����
	'�	�(���������������"������ 	�����
�������� "����� 	������� �	��� ���� ��		�� �����
� ���	���
�������������� ��������
��	��������������

,����/#�� *!��$#��#������#��
�����������	��������������������'#�
�	��¡(���!������������
�����"	�������"������ �	��������� ��	���������!�������
���	�
����� "���� �� ��� ��� 	�
	��� �����
���� ��	��
�� ���� ������
���������"�����������������	�����������!�	������� 	�
	���
�	��������������������4����������������������������

,�,��0"�) �1�&'��$#�#.#�"���)#��#������#��
� ��"��
��!��
���	����� �������� "���� ����!��� ��� ������*�� ����

����� ��� ������
�� 	���&� "��� ����� ��� 	������ ���� �������
������� ��� � ����
� ��������	��	���������� ��ª �� ������ ��
���"�����������	������������	��	���������
���	���������
����	���������������$����������������������
������������������
'��� ������������� ���	�(�� ��� ���� ���� ������� ���� 	������� ���
��������	����	��	�������� ���������	���"���������??È��
("�) ��2& +�	�#����&��'���� ��	������ ��	�(�7�
� '�'��
��)���	'(²²)(**+�ÉÉ���
��)���	'(²²)(**+(�7�
� � '�'���� ��	�²²�(�7�
� � �)&*!���		��������������²�$ ��"�����
��)�		��������������'(§�
� � � '�'��		��������������Êª????(��
� � � � �$ ��"����� ��#�	"�	�'ª????(§�
� � 8�#)�#�
� � � � �$ ����	�#����&��'(§�
� 8�#)�#� '�'��
��)���	'(²²)(**+�ÉÉ���
��)���	'(²²(*,(�7�
� � '�'���� ��	�²²�(�7�
� � � �$ ����� �	�������²��"#§�
� � 8�#)�#�
� � � �$ ����	�#����&��'(§�
� 8�
8�

� !"�#�3���&"��#��&+#�&'������������	
������
�

� � �"��� &*���&�#�

)���� �*+�&�+#��
%"��*��� ����#� ���*� � &*� ���*� � &*�

(� ��
)	����)���	��� ¡¬� +¡È� ª¬È� =+È�
����
�	� ª¢� ¬�È� ¬+È� =?È�

���)#����	#�")���&��� *#+� *��$#��4&�#.(#� %#*���

,�3���*�)1� ��&'��#�")���
������ ��!�	�
�� 	�#��	��� ����� ����� ������ ��� ������������ ���
�	�!�	��������� ���������������� �� ����� ����� ������������ ����

320

�	���������� �		�!��
� ���� ������ ��� �$�������������� �$�����
�
�	���������� ��		�� �����
� ��� ����	� �������� ����� �	�� ����
�$�������� ���	���	��� ��� ��	��� ��� ���	��� ����� ��!�	�
���
��������!�	�
������������!����� ������������!�	�
����
� &�
�	���
� �	��������� ��!�	�
��� ��� ������ ����� �����
�	��������� ��� �	�

�	��� ��� ������������"���� �������� �� �����
�����$�������������������������� ������		�� �����
��������
��������!�	�
������	������������ �������!�	�
�������������
� ���� ����� 	���������� �������� ��		�� ���� ��� �	���������
 ��	���!�	�
���.���	���
����������
�	��������"�����#�
�	��
¨��"�������	��������� ��	� ��'!�����	�!�	����������������������
��������������������������������������� 	��������������	����
'� '���
�	� ��	��-� ���
�� ���������(� ��!�� ����� �����������
������������������������$���������������������	���������$����
����� ��� ���� ��		�� �����
�
�	� �
����� ��� ���� ������������
����	������� '��� ���� ���� ��	��¦�����
�	�� ��	� �$�� ���� ��
����� �����
���� �	��� \	����\	���� ���&���C����"�� ���!��
�
C����"�\	����"������	./0!������������������		�� �����
�
��� ���� ����	� �
����� ��� ����
���	����� ��� ���� ��������������
��������������� ��������'�������������$�� ������������
�	�
������� �������"���� ��� ��� ���C����"�\	�������� �����	���	�
�����������	�

�	���"������	≠/0(�����������	��������������
����������� "������ ����
� ������� ��� ������� ������� ��� ����
����������������	������ �����������
����� ������		�� �����
�
�� ������������� ����� �	���	���� �� ����� �	����� .��� �����
��������!�	�
��'.����������������
���"���������������������
�������	������������$�������"����
�	���������	!��
�� �����*� � &*��#������#��'&����
�����������5 !*6 !* � &*7�
��� 26��� 2��#7���86���8#7�+��6+��7��#�6�#�"%#7���6�&&����9�
���"���
����
����
���������#���
��� �
���"���
����
����
���������#��������	���	�����#�� �
���"���
����
����
���������#��������	���	�����	���������#�� �
���"���
����
����
���������#��������	���	�����	���������	���	�����#�� �

³�
�� �����*� � &*��#������#��'&���$#��#%�($&�#�-���������
5��6�#�� %#7��	6�#:"#��	#+7�4���$�!�64���$�!#�� %#7�
/	6/	���9�
���"�����.'�(����
��)���	'(²²\& ������'�(����
��)���	'(²²\& ����'¬?(��
��'¬+(����'¬¬(����'=+(����'=¬(����'¬?(�
���"�����.'�(����
��)���	'(²²\& ������'�(����
��)���	'(²²\& ����'¬?(��
��'¬+(����'¬¬(����'=+(����'=¬(��	&'�(��"�����
�'(Êª???? ����'¬?(�
���"�����.'�(����
��)���	'(²²\& ������'�(����
��)���	'(²²\& ����'¬?(��
��'¬+(�� ��'¬¬(�� ��'=+(�� ��'=¬(�� 	&'�(� �"�����
�'(Êª???? �� 	&'�(�
�"�����
�'(Êª???? ��	&'�(����'¬?(�
���"�����.'�(����
��)���	'(²²\& ������'�(����
��)���	'(²²\& ����'¬?(��
��'¬+(����'¬¬(����'=+(����'=¬(��	&'�(��"�����
�'(Êª???? ��	&'�(��

³�
� !"�#�;���&%#����*� � &*�(� ���#������#��

3�������
������������	����	��
����� � �	����� 	�������������������������������������� ��
�
����������������!�	�
�����"���������	����	� 	���������������
������������������$ 	��������������	��������	���������!�����
��� ���� �������� ��� ����� ��!�	�
�� �	���	��� ��	� ������ ������
��������� ���� ����	� ��		�� �����
� ���	��� ������ ���� ����
������ ����� ��� �"�� ���
�����������������%�!����������	��
�$ �	����������� "���� ����	� �������� ��� 	�#��	���� ���������
������ �$ �	������� ������� ��� ��		��������"���� �������	��
��������� ���������"� �������	�	����	���	�� ����	� ������������
�����$ �	�����������������!�������������	����	��������������
"�� �����!�� #����� ����	�����
� ��� �� �����	� ����	�������
� ���

���� ����� ��� � ����
� !���������� ���� ������
� ������#����
����
�����"�����������������

;����������/������
� ����� "�	�� ��� �	������� �� �	���� ��� ���� �&.*Ë1�
'�	���������*Ì���������	������(� 	������� ��������� ��� ����
\�!�	������ ���)��������*�� ������� ���� ���� 6�	� ����
�������#������������
	���������	��.)?=�?�¨���+¢ª��

<��	���	�����
��� �������	��#����	�������.�������	�������6�'¨??¨(����	�
1��2$��	�3��
�������#������������,	
�������	��$��	��
���4�5�#
�&	����¡�������	���������)����	������������
4��������������
�*��
��
���� 	��
�	�¾�	��
��*1)���
¨�� ����	������	����C*����������\�'¨??¨(���	��������
3�������������4�5�1�����,���
����=����666���� ������
�������"�	�����	�����
+�� £��
�£���*������������������%�'¨??�(��3�������
	���	�	
������
�����	���
�����������	����	�������
#�	����. 	����������������
��������"�	��'#.�6�¿?�(���
.����	
�������	����&�)���������&����	������)�� ���	�
���������
ª�� ����������D��Ã�'�··¬(���	��1��	�)	�	
�������
�
1�����5	�	��6�&	��6
�	�	���	������·�������	���������
����"�	��Í�������¥����������#	���������).��
¡�� .��	�"��.��#	�����&�����\�������'¨??+(���	����	�
'������
�	
�����
�4�5��	��������	��������"�	��������
��
¾�	��������������&������������'�+(�� ��·¡��¨¢��
¬�� %�\�'¨??¡(��4��������������
�*��
��
����� �	�
��	����	��!�	�����¨�?��%����������
������\	�� ���
¢�� %�\�'¨??¡(��4�*�¨�?�%)*�� �������������%������
����
������\	�� ���
=�� ¥�	��	�������®�� ��.�'¨??+(����	�6�&	��1���
�
����5������	��7���	�������.�������¥�������
·�� ��������\�	�Ì��&��	Ì
��*������������������'¨??¢(��3��
�,3����	�����
�������
�������	�
		����		
��������	����
�������"�	��������������É�6!���������&����	��������	���
�������·'¬(�� ��+=+�ª�¢��
�?�� %������.���*������.���	�*���.�����.�������'¨??+(��
)	�	
�����	�������
�����	����	����	������������
����"�	��������
��¾�	��������������&������������'�+(�� ��¨¡�
¡+��
���� %������.�'�···(��\���	����
������������	���	�#��	��
�����Î� �����������������������������	� �	�������������&��
 �	����6��&�··�?����� �	�������������	����������������
"�	��6�
����	��
��\��	
��������4��!�	������#��	��$��¾.��
�¨�� ����������������������������	����'¨??¢(��8�	�
�����
	����'�	�������������
�	�������������������"�	��
������
��¾�	��������������&�������������¢'�(�� ��+�+·��
�+�� ���C����%������������®"���C&�'¨??¡(����9���%����
�����	������������������	�������"�	��������
��¾�	��
�������������&�������������¡'¨(�� ��·¢��++��
�ª�� �����������������������\�	�Ì��&��	Ì
��*���'¨??=(��
,	�
	�������	���������������	����������	������
�	
�
�����������"�	��������
��¾�	��������������&���������������
 	����'�%���?��??¨Î��!	�+·¨(��
�
�

321

Business Modeling for Service Engineering:
Toward an Integrated Procedure Model

Gregor Scheithauer, Stefan Augustin
Siemens AG - Corporate Technology

Information & Communication - Knowledge Management

Otto-Hahn-Ring 6, 81739 Munich, Germany

Email: {gregor.scheithauer.ext—stefan.augustin}@siemens.com

Guido Wirtz
University of Bamberg

Distributed and Mobile Systems Group

Feldkirchenstraße 21, 96052 Bamberg, Germany

Email: guido.wirtz@uni-bamberg.de

Abstract—Business modeling for service engineering aims at flex-
ible transformation of business logic into software code. The ISE
framework is an interdisciplinary approach which embraces this
concept to engineer services. This paper discusses work related to
business modeling, introduces the ISE framework, and examines
three areas for improvements. The first improvement addresses
a firm terminology in that it reduces term ambiguity. The second
improvement proposes additional concepts and meta models
to advance the framework’s semantics. The last improvement
presents an initial integrated procedure model with eleven steps,
which will guide and support the modeler through the service
engineering process.

Keywords: service engineering, procedure model, modeling

I. INTRODUCTION

Business modeling is a discipline which depicts the rela-

tionship between business logic and its realization with in-

formation technology. The idea is to define business logic

in a technology-free fashion and frictionless transform it

into technical blueprints, neglecting traditional expensive and

interminable software engineering projects, and hence, it eases

the alignment between business requirements and IT. Re-

cently, business modeling gained momentum in the domain

of business process automation [20] and service engineering

[8], since globalization and technological change [16] provoke

highly dynamic environments as well as high uncertainties

[15]. As a consequence, organizations need to adapt quickly

and frequently.

In general, business logic is sub-divided into a strategic

and a conceptual layer [20]. The strategic layer describes

what needs to be done, whereas the conceptual layer states

how this is accomplished [5] while still ignoring information

technology which is only considered afterwards.

However, while much efforts were made to explore the

relationship between the conceptual layer and information

technology, few approaches exist which target the relationship

between strategic aspects and their conceptualizations [20].

Kett et al. [8] took these new developments into consider-

ation and developed the Inter-enterprise Service Engineering

(ISE) framework in order to address these new challenges and

to embrace the concept of business modeling.

This work’s contribution is an enhancement of the ISE

framework [8] in that it provides a finely granulated semantics

for both, the strategic and the conceptual perspective. Addi-

tionally, it proposes an initial procedure model to integrate

the various aspects of services, and to guide the service

engineering process.

The remainder of this paper is structured as follows: section

II reviews related work and section III introduces the ISE

framework. Section IV presents available concepts for im-

provement and discusses the final framework, whereas section

V introduces the initial integrated procedure model. Section VI

concludes this work and offers prospects about future work.

II. RELATED WORK

Prior to diving into the ISE framework and the procedure

model, this section discusses available work in the area of

business modeling.

Bergholtz et al. [2] claim that two types of models exist in

the e-commerce domain: business models and process models.

The authors define business models as means to describe actors

and their value exchange, whereas process models define for

each actor how to realize value exchanges. Subsequently, they

analyze the relationship between the two models and propose

a formalization for each model. The findings are that business

models relate to UN/CEFACT UMM and that process models

relate to ebXML BPSS.

Likewise, Andersson et al. [1] distinguish between business

models and process models in the e-commerce domain. They

associate business models with business analysis, and ascribe

process models with low-level activities and their ordering.

Andersson et al. find evidence for a relationship between the

two models and propose a systematic method to generate

process models from business models. The presented formal-

ism for business models refers to the e3 Value approach (an

approach to evaluate e-commerce ideas) [6], whereas process

models are described as patterns which origin in UN/CEFACT

UMM. The outlined routine has five steps: (1) Start with a

e3 Value model, (2) check custody, (3) check evidence, (4)

identify a set of processes, and (5) for each process, select a

pattern from the UMM.

Dorn et al.’s work [5] targets business-related and technical-

related specifications in the business-to-business e-commerce

domain. They acknowledge a relationship between these two

types of specifications. Furthermore, a survey shows available

322

specifications and their possible overlaps. This survey is based

on a refinement of the open-EDI reference model, which

distinguishes two views: (1) Business Operation View (BOV)

and (2) Functional Service View (FSV). They refine the BOV

into business models and process models and the FSV into

deployment artifacts and software environments. This refined

model groups existing methodologies and technologies. Lastly,

they suggest a methodology to design e-commerce applica-

tions, starting with the design of business models, developing

business processes, deriving system architectures, and finally

implementing e-commerce applications.

Likewise to the ISE framework, all these approaches ac-

knowledge the existence of a business model layer and a

conceptual layer, which are both technology-agnostic. The

business model layer comprises strategic aspects and addresses

organizations as well as their suppliers, customers, and com-

petitors, whereas the conceptual layer targets individual orga-

nizations and the internal configuration of the value creation

process. Unlike the ISE framework, all of these approaches

focus mainly on business process automation and are limited

to behavioral aspects. The differences between the proposed

idea in this paper is that it targets on service engineering and

incorporates processes as well as descriptions for rules, data,

human resources, and services’ value.

III. THE ISE FRAMEWORK

Based on a state-of-the-art study of existing frameworks, Kett

et al. [8] argued that existing frameworks for service engi-

neering either address the business perspective or the technical

perspective. To overcome the gap between these approaches

they introduced the Inter-enterprise Service Engineering (ISE)

framework (cf. figure 1), a framework for service ecosystems,

which embraces the Zachman framework [22] and a service

engineering methodology for service products [3].

The horizontal axis shows four perspectives of the engineer-

ing process and is named abstraction layers. Each perspective

relates to a specific role with appropriate skills and offers dif-

ferent sets of tools and methods. It also implies the chronology

of the framework. Additionally, the perspectives are linked to

phases of the service engineering process. The vertical axis

(dimensions) shows five different descriptions of a service.

Each description is valid for each perspective. Any intersection

in the matrix is placeholder for a model, a notation, and a

modeling technique, which is appropriate for the respective

perspective and the modeling aspect.

A. Dimensions

The service description dimension embodies services’ value

proposition toward potential customers. This includes func-

tional, financial, legal, marketing, and quality of service prop-

erties as well as other meta data for service proposition,

discovery, selection, contracting, and monitoring. The work-
flow dimension addresses services’ behavioral aspect, which

include core capabilities and sequence flows. The people
dimension offers means to model and to refine human re-

sources, and to assign tasks. Intangible assets, terms, and

Fig. 1. ISE Framework [8]

concepts as well as their relationships are defined in the

data dimension. The rules dimension addresses structural and

organizational rules. These are defined to elicit and formalize

domain knowledge to guide services’ behavior.

B. Perspectives

The innovation perspective is out of scope of the ISE frame-

work. It marks the interface to service innovation [9] and

defines a first proposal for a new service. Business strategists

pick up new service ideas and focus on requirement analysis

in the strategic perspective. Kett et al. [8] depicted a basic

underlying model for this perspective: the Business Model

Ontology (BMO) [14]. Eventually, a decision is made whether

to implement a new service or not. The conceptual perspective

focuses on operationalizing and implementation of strategic

artifacts from the owner’s perspective. Proposed modeling

notations were Business Process Modeling Notation (BPMN)

[11], Unified Modeling Language (UML), and Event-driven

Process Chains (EPC) [17] to transform domain experts’

perceptual requirements into appropriate models. The final

artifact is a service design which is neither technical nor

platform-specific. Conceptual artifacts are transformed into

abstract technical models during the logical perspective by

IT analysts. This perspective offers a bridge between ser-

vice design and technical service implementation. Finally, the

IT developer transforms the logical artifacts into platform-

dependent software artifacts, e.g., WSDL, SOAP, etc., during

the technical perspective.

IV. A CLEAR SEMANTIC FOR THE STRATEGIC AND

CONCEPTUAL PERSPECTIVE

This section advances the semantic for the strategic and

conceptual perspective in the ISE framework in two aspects

in order to ease the framework’s application. First, new names

are proposed in order to establish term coherence and to

reduce ambiguity. Second, to advance the semantics for the

323

descriptions and for two perspectives, additional concepts are

proposed. Furthermore, for each cell do exist meta-models

which are not shown here due to space restrictions.

The term service description in the ISE framework is revised

into value description in order to avoid ambiguity: a service

is described by the union of all descriptions, whereas the

value description is restricted to services’ propositions toward

potential customers (cf. [6], [18]). The term people description
is revised into actor description to stress the point that this de-

scription includes next to human beings also companies as well

as governmental institutions. The term workflow description
changes into process description which relates to the Zachman

framework. Table I shows the resulting framework together

with its formalization concepts.

A. Strategic Perspective

The strategic perspective utilizes different concepts from BMO

[14], which was already motivated by Kett et al. [8]. BMO is

an ontology with nine abstract concepts to accurately describe

companies’s business models. However, novel in the strategic

perspective is the application of OMG’s Business Motivation

Model (BMM) [10] for the rule description. BMM offers a

coherent scheme to manage and communicate business plans

and a government structure which relates to business rules.

Additionally, the e3 Value approach from Gordijn [6] is also

considered for the value description.

Value Description: Kett et al. [8] proposed the following

concepts from BMO [14]: (1) value proposition, (2) distribu-

tion channel, (3) relationship, and (4) revenue model. However,

considering that the value description is targeted at service

consumers, the target customer concept from the BMO is

added as well, which is also supported by Gordijn [6].

Data Description: A data description depicts a shared

terminology within companies for resources which are input

and/or result of process activities. It is important to note that

the terms data and resources are synonymical in the context of

this work. Kett et al. [8] proposed BMO’s immaterial resource

concept [14]. In contrast to Kett et al., this work considers

also material resources in order to represent a complete

terminology. Relationships between resources, however, are

omitted and firstly considered in the conceptual perspective.

Actor Description: The strategic perspective’s meta model

uses the BMO concepts partnership, actors as well as capabil-

ities. Both, the actor node as well as the capability node em-

body the attributes name and description. Actor and capability

nodes may be linked in order to declare which actors provide

what capability. Yet, the actor node is a general concept and is

refined by the partner node and the role node. The partner node

depicts outside organizations whereas the role node represents

human resources from inside organizations.

Process Description: Kett et al. [8] proposed to use the

value configuration and the capability concept from BMO.

A subtle refinement is made here: capabilities are modeled

within the actor description since the capability concept has a

close relationship with actors. Additionally, the BMO’s activity

concept is added to the process description.

TABLE I
REVISED FRAMEWORK

Strategic Conceptual
Perspective Perspective

Value BMO [14] Service
Description e3 Value [6] Properties [18]
Process

BMO [14] BPDM [12]Description
Actor

BMO [14] Org. Charts [21]Description
Data

BMO [14] ERM [4]Description
Rule

BMM [10] SBVR [13]Description

Rule Description: As aforementioned in this section, the

meta model for the strategic perspective is motivated by parts

of BMM [10]. According to OMG, ends represent anything

organizations seek to achieve, whereas means refer (among

other things) to instruments to realize ends [10]. Hence,

according to the definition by Kett et al. [8], the ends concept

fits into the strategic perspective and the means concept into

the conceptual perspective.

B. Conceptual Perspective

The conceptual perspective takes advantage of existing spec-

ifications and available approaches. Contrary to the strategic

perspective, meta models in this perspective are richer as well

as more expressive for this perspective focuses on information

and its interrelation.

Value Description: Service offers in the conceptual perspec-

tive reflect a firm establishment with concrete values. The

meta model for the conceptual perspective builds on two ap-

proaches. Scheithauer & Winkler [19] investigated properties

to describe services to allow service offering, discovering,

selection, and consumption. Scheithauer et al. [18] propose

a meta model for these properties and their relationships (cf.

table II).

Data Description: In the conceptual perspective a business

terminology is refined into a fact model. A fact model ex-

pands a terminology with resources as well as attributes. As

aforementioned, relationships interrelate resources, which in

turn represent business-relevant knowledge. Zur Muehlen et

al. [23] refer to this knowledge as structural rules whereas

the Business Rule Group defines interrelated resources as facts.

Additionally, it resembles the Entity-Relationship diagram [4].

Actor Description: The conceptual perspective’s meta model

resembles the strategic’s meta model with the difference that

the employee node is added to the model and is similar to

the organizational chart model depicted in [21]. The node

has merely a name attribute and may link to roles in case

an employee matches a role’s profile as well as directly to

capabilities.

Process Description: Evidence for the conceptual process

model can be found in OMG’s Business Process Definition

Metamodel (BPDM) [12], which offers a meta model for

business processes in order to compare and align different

process notations, such as BPMN and EPC [17].

324

Rule Description: Contrary to the strategic perspective, the

conceptual perspective utilizes the means concept, that is

how to accomplish defined goals and objectives. The BMM

specification [10] offers business rules to support objective’s

achievement. The introduced rule concept for the conceptual

perspective is informed by the work of the Semantics of

Business Vocabulary and Rules (SBVR) specification [13]. It

is important to note that the business rule concept relies on the

data description with its resources which relate to the SBVR’s

business vocabulary.

V. INTEGRATED PROCEDURE MODEL

This section introduces an initial procedure model for the ISE

framework. It aims at bridging the strategic and conceptual

perspectives by means of eleven abstract steps that contain

fine-granulated activities (cf. figure 2). This procedure model

is influenced by work of zur Muehlen et al. [23]. They

offered an abstract procedure model for integrated process

and rule modeling. This work is extended for the integrated

procedure model for all descriptions spanning the strategic

and the conceptual perspective. The steps one to five address

the strategic perspective, whereas the steps six to eleven

address the conceptual perspective. The following subsections

elaborate on each abstract step. Likewise zur Muehlen et al.

[23] each step is explained by the triple: activities, challenges,

and results.

A. Strategic Perspective

The first five steps support business strategists when trans-

forming a service idea (service innovation perspective) into a

tangible foundation for business strategists, business analysts

as well as business owners to decide whether to implement a

service or not (predetermined breaking point).

1) Define Value Offer: The first step includes to define

a value offer, which is an abstract service description. All

following steps in this perspective take this outcome as a

requirement document. Activities. The activities for this step

include: (1) Establish exactly one value proposition, (2) de-

termine one or more target customers, (3) determine exactly

one relationship for each target customer, (4) determine one or

more distribution channels, and finally (5) setup one or more

revenue models. Challenges. In order to identify the concepts

for this model, a deep understanding of the business domain

as well as marketing is necessary. Result. The outcome of this

step is an instance of the model described in section IV-A:

a value offer which describes the service from a strategic

perspective. The artifact serves as a requirement for the

following steps in the strategic perspective.

2) Determine Key Business Activities: Once the value offer

artifact is provided, business strategists determine a value

configuration type as well as business activities. The value con-

figuration type implies the nature of the value configuration;

whether the value creation process compares to a value chain,

a value shop, or a value network. Activities. The activities

include to determine all necessary business activities to fulfill

the value offer (cf. [14]). Challenges. Business strategists must

��!"#$%&#!
')*+#!-$$#.

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

��!"#$%&#!
')*+#!-$$#.

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

9�!"#0#.1%&#
2#3!:#5;+.7#5

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

<�!"#0#.1%&#
2#3!4+5%7

-=>#70%8#5

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

?�!"#0#.1%&#
2#3!670;.5!

@!A)�)=%*0%#5

��!"#$%&#!
')*+#!-$$#.

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

B�!C;D#*!
')*+#!

�.;�;5%0%;&

G�!C;D#*!H)705
JK0.+70+.)*

:+*#5�

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

��!C;D#*!
-�#.)0%;&)*

:+*#5

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

L�!C;D#*!
-.M)&%N)0%;&)*

AO).05

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

���!:#$%&#!
2#3!670%8%0%#5

/�!"#0#.1%&#
2#3!4+5%7

670%8%0%#5

���!C;D#*!
-�#.)0%;&)*

670%8%0%#5

��������	

����������

���	����
����������

��!"#$%&#!
')*+#!-$$#.

�.#D#0#.1%&#D
4.#)Q%&M
�;%&0

Fig. 2. Procedure Model for Business Service Modeling

understand the business domain’s value creation process as

well as the own company to determine the value configuration

type and necessary business activities. Result. The outcome of

this step is a value configuration, which determines the process

description from a strategic perspective.

3) Determine Key Resources: After the determination of

crucial business activities, business strategists need to iden-

tify resources which are required and/or produced by these

activities. These resources also serve as a general terminology

for the service to be developed. In the strategic perspective

the terms business object, term, and resource are synonymic.

This step refers to the step Determine Key Objects, Terms, and
Definitions from zur Muehlen et al. approach [23]. Activities.
The single activity for this step is to identify resources which

are needed for determined business activities, to provide each

resource with a name and a textual description, and to specify

whether it is a tangible or intangible resource. Challenges. It

is important to know the scope and the implications of each

business activity in order to determine appropriate resources.

Result. The outcome of this step is a business terminology,

which determines the data description from a strategic per-

spective.

4) Determine Key Business Objectives: Business rules cod-

ify behavioral business knowledge; things companies want

to accomplish. BMM offers three elements: Whereas visions
describe companies’ desired state in the future, goals refer

to a qualified and long-term statement to achieve a vision.

Finally, objectives refer to a quantified (measurable) and short-

term statement to achieve a goal. Activities. The activities to

determine business objectives are a refinement process. It starts

with establishing visions. For each vision one or more goals

must be determined. Finally, attainable, time-targeted, and

measurable objectives need to be derived for each goal [10].

Challenges. Developing business objectives is a non-trivial

part with far-ranging implications. It affects services’ internal

behavior and routes the value creation process. Result. The

outcome of this step is a business objective terminology, which

determines the rule description from a strategic perspective.

325

5) Determine Key Actors & and their Capabilities: It is

necessary to model actors after the process descriptions, for

each business activity needs to be performed by either a partner

or companies’ personnel. Activities. For each business activity

from the process description one or more capabilities need to

be identified in order to accomplish the activity. Following

this, business strategists identify personnel with appropriate

capabilities. Likewise, other organizations must be identified

for crucial capabilities which cannot or rather should not be

achieved internally. Challenges. This step’s peculiarity is to

derive appropriate capabilities for all business activities. Busi-

ness strategists need to be aware of their own personnel and

its capabilities. Additionally, they need to identify appropriate

partners for the service’s realization and decide what kind of

partnership they want to establish. Result. The outcome of this

step is a set of business actors, which determines the actor

description from a strategic perspective.

B. Conceptual Perspective

The last six steps of the integrated procedure model deal with

the conceptual perspective (cf. Figure 2). These steps support

business analysts to conceptualize a service, hence determine

how to implement a service strategy. The outcome of this

perspective serves as a means for communication and a support

for decisions. It is neither technical nor platform-dependent.

Furthermore, it is a starting point for the transformation into

technical specifications [20].

6) Model Value Proposition: In this step the strategic

perspective’s value model is refined. One goal is to opera-

tionalize aspects from the strategic perspective into a value

proposition which is available to potential customers. Hence,

all strategic artifacts with internal knowledge must be revealed,

including the value level, the customer equity, and the revenue

model. Activities. The general order of value modeling is: (1)

Functionality, (2) Quality, (3) Marketing, (4) Legal, and finally

(5) Finance. Table II shows categories and their properties (cf.

[18]). Corresponding to each property are entities from the

strategic perspective’s value model. This light-weight mapping

between the strategic and the conceptual perspective eases

the value description modeling. Challenges. The challenges

involved in value modeling are manifold, since business ana-

lysts need knowledge in the domains of marketing, quality of

services, pricing mechanisms, and legal aspects. Result. The

outcome is an instance of a value model (cf. [18]).

7) Model Facts: Business analysts augment identified re-

sources in the strategic perspective with attributes and rela-

tions. Activities. For each resource business analysts make

out attributes to describe resources sufficiently. Following

this, they model relationships between resources. These re-

lationships are also named facts or structural rules, that is,

knowledge between two or more resources. Finally, meaning-

ful attributes are added to each relationship. Challenges. The

challenge is to ensure completeness for the fact model. Result.
The outcome is an instance of a fact model (cf. [4]).

8) Model Operational Rules: Modeling operational rules

implies to constrain facts in such a way that it guides services’

TABLE II
MAPPING BETWEEN STRATEGIC & CONCEPTUAL VALUE DESCRIPTION

Category Property [18] Influenced by Strategic
Entities [14]

1. Functionality Capability Value Offer
Customer Equity

Classification Value Offer
Target Customer

2. Quality Performance Value Offer
Price Level

Dependability Value Offer
Price Level

3. Marketing Certification Value Offer
Target Customer
Revenue Model
Distribution Channel

Expert Test Rating Value Offer
Target Customer
Revenue Model
Distribution Channel

Benefit Value Offer
Target Customer

4. Legal Right Value Offer
Target Customer
Customer Equity

Obligation Value Offer
Target Customer
Revenue Model
Distribution Channel

Penalty Target Customer
Revenue Model

5. Finance Price Revenue Model
Customer Equity
Target Customer
Value Level
Price Level

Discount Value Level
Price Level

Payment Target Customer
Life Cycle Step

internal behavior according to business objectives (cf. [23]).

Activities. Business objectives as well as the fact model serve

as a basis for this step. Business analysts augment facts

(relations between resources) with constraints in order to cod-

ify (formalize) business knowledge which supports coherent

decision making in business processes. As aforementioned,

SBVR [13] is suitable for this step. Challenges. The gist lies

in transforming business objectives into constraints, and hence

to operationalize them. Result. The outcome of this step is a

fact model augmented with operational rules.

9) Model Organizational Charts: Business analysts refine

the personnel in this step. Activities. The personnel element

from the strategic’s actor description is refined into roles

with capabilities. Available employees (person element) are

categorized into roles according to their individual capabilities.

Challenges. Business analysts need to match required capa-

bilities with employees’ individual capabilities. Result. The

outcome of this step is an organizational chart describing roles

with considered capabilities and assigned employees.

326

10) Refine Key Activities: Activities. Business analysts refine

strategic perspective’s business activities into supporting busi-

ness processes with a lower granularity (cf. [23]). Challenges.
The challenge is to identify completely all necessary processes

as well as to control the granularity level [23]. Result. The

outcome of this step is a set of fine granular business processes

for each business activity.

11) Model Operational Activities: The final step in the pro-

cedure model is to combine actors, rules, data, and processes

by specifying operational activities. Operational activities are

assumed to be atomic, and thus, cannot be decomposed into

fine granulated activities and can either be assigned to a

specific role inside a company or to a partner. Activities. For

each business process, business analysts start by modelling

each actor who is involved in the business process. Following

this, they use operational activities, events, gateways, roles,

conditional flow, sequence flow, and message flow elements to

define services’ internal behavior. Additionally, data flow com-

bines activities and resources and depicts activities’s inputs

and outputs. Challenges. Business analysts need sophisticated

knowledge about operation activities [23]. Result. The final

outcome of this step is a complete set of business processes

combining activities, rules, and data.

VI. CONCLUSION & FUTURE WORK

A recent study [15] shows that existing software engineering

methodologies do not apply to service-oriented design due to

highly dynamic environment, high uncertainty, distributed con-

trol of processes, many different stakeholders, and finally that

decisions cannot be foreseen during design time, which holds

also true for service ecosystems and its peculiarities. There-

fore, the Inter-related Service Engineering (ISE) framework

[8] was introduced, which offers a methodology for service-

oriented engineering. Three areas for improvements were

identified. The first improvement addresses a firm terminology

in that it reduces term ambiguity. The second improvement

proposes additional concepts and meta models to advance

the framework’s semantic. The last improvement presents an

initial integrated procedure model with eleven steps, which

will guide the modeling process.

Business information science benefits from the incorpora-

tion of actual studies in the areas of business service modeling

and service engineering in that it interconnects popular mod-

eling notations. Furthermore, the procedure model reduces the

framework’s complexity and enables industries to apply the

framework.

This work’s major limitation is a missing verification of

the procedure model. This issue will be addressed in the next

step of the Theseus/TEXO research project [7]. Additionally,

future work also includes to advance the procedure model for

the logical and technical perspective. Ideas found [20] present

potential for improvements in this direction.

ACKNOWLEDGMENTS

This project was funded by means of the German Federal

Ministry of Economy and Technology under the promotional

reference “01MQ07012”. The responsibility for the content of

this publication lies with the authors.

REFERENCES

[1] ANDERSSON, B., BERGHOLTZ, M., GRÉGOIRE, B., JOHANNESSON,
P., SCHMITT, M., AND ZDRAVKOVIC, J. From Business to Process
Models - a Chaining Methodology. In BUSITAL (2006), Y. Pigneur and
C. Woo, Eds., vol. 237 of CEUR Workshop Proceedings, CEUR-WS.org.

[2] BERGHOLTZ, M., JAYAWEERA, P., JOHANNESSON, P., AND WOHED,
P. Process Models and Business Models - A Unified Framework. In ER
(2002), S. Spaccapietra, S. T. March, and Y. Kambayashi, Eds., vol. 2503
of Lecture Notes in Computer Science, Springer, pp. 364–377.

[3] BULLINGER, H.-J., FAHNRICH, K.-P., AND MEIREN, T. Service
Engineering – Methodical Development of new Service Products. Int.
Journal of Production Economics 85, 3 (September 2003), 275–287.

[4] CHEN, P. P. The Entity-Relationship Model - A basis for the Enterprise
View of Data. In AFIPS National Computer Conf. (1977), pp. 77–84.

[5] DORN, J., GRUN, C., WERTHNER, H., AND ZAPLETAL, M. A Survey
of B2B Methodologies and Technologies: From Business Models to-
wards Deployment Artifacts. In HICSS (2007), IEEE Computer Society,
p. 143.

[6] GORDIJN, J. E3-value in a Nutshell. Tech. rep., HEC University
Lausanne, Lausanne, Oct. 07 2002.

[7] JANIESCH, C., RUGGABER, R., AND SURE, Y. Eine Infrastruktur für
das Internet der Dienste. HMD - Praxis der Wirtschaftsinformatik
(45:261), 2008, pp. 71-79, June 2008.

[8] KETT, H., VOIGT, K., SCHEITHAUER, G., AND CARDOSO, J. Service
Engineering for Business Service Ecosystems. In Proceedings of the
XVIII. Int. RESER Conf. (Stuttgart, Germany, September, 25 - 26 2008).

[9] MAGLIO, P. P., SRINIVASAN, S., KREULEN, J. T., AND SPOHRER, J.
Service Systems, Service Scientists, SSME, and Innovation. Communi-
cations of the ACM 49, 7 (July 2006), 81–85.

[10] OBJECT MANAGEMENT GROUP (OMG). Business Motivation Model
(BMM), Adapted Specification. August 2006.

[11] OBJECT MANAGEMENT GROUP (OMG). Specification: Business Pro-
cess Modeling Notation (BPMN), Version 1. Feb 2006.

[12] OBJECT MANAGEMENT GROUP (OMG). Business Process Definition
Metamodel (BPDM), version 1.0. November 2008.

[13] OBJECT MANAGEMENT GROUP (OMG). Specification: Semantics of
Business Vocabulary and Rules (SBVR), Version 1.0. January 2008.

[14] OSTERWALDER, A. The Business Model Ontology: A Proposition in a
Design Science Approach. PhD thesis, Universite de Lausanne Ecole
des Hautes Etudes Commerciales, 2004.

[15] PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., AND LEYMANN,
F. Service-Oriented Computing: a Research Roadmap. Int. J. Cooper-
ative Inf. Syst. 17, 2 (2008), 223–255.

[16] PENEDER, M., KANIOVSKI, S., AND DACHS, B. What Follows Tertiari-
sation? Structural Change and the Role of Knowledge-based Services.
The Service Industries Journal 23 Issue 2, 146 (March 2003), 47–66.

[17] SCHEER, A.-W., AND NUETTGENS, M. Architecture and Reference
Models for Business Process Management. Lecture Notes in Computer
Science 1806 / 2000 (2000), 376–389.

[18] SCHEITHAUER, G., AUGUSTIN, S., AND WIRTZ, G. Describing Ser-
vices for Service Ecosystems. In ICSOC Workshops (Sidney, Australia,
December, 1 2008), G. Feuerlicht and W. Lamersdorf, Eds., vol. 5472
of Lecture Notes in Computer Science, Springer, pp. 242–255.

[19] SCHEITHAUER, G., AND WINKLER, M. A Service Description Frame-
work for Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinfor-
matik 78, Bamberg University, October 2008. ISSN 0937-3349.

[20] SCHEITHAUER, G., WIRTZ, G., AND TOKLU, C. Bridging the Semantic
Gap between Process Documentation and Process Execution. In The
2008 Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE’08) (Redwood City, California, USA, July, 1 - 3 2008).

[21] WESKE, M. Business Process Management: Concepts, Languages,
Architectures. Springer-Verlag, Berlin, 2007.

[22] ZACHMAN, J. A. A Framework for Information Systems Architecture.
IBM Systems Journal 26, 3 (1987), 276–292.

[23] ZUR MUEHLEN, M., INDULSKA, M., AND KITTEL, K. Towards
Integrated Modeling of Business Processes and Business Rules. In 19th
Australian Conf. on Information Systems ACIS 2008 (Christchurch, New
Zealand, December, 3–5 2008).

327

A Systematic SOA-based Architecture Process

José Jorge Lima Dias Júnior1, Eduardo Santana de Almeida3, Silvio Romero de Lemos Meira2,3
DATAPREV – Technology and Information Company of Social Security1

Federal University of Pernambuco2
C.E.S.A.R. - Recife Center for Advanced Studies and Systems3

jose.jorge.jr@previdencia.gov.br, esa@rise.com.br, silvio@cesar.org.br

Abstract
During recent years, the notion of software architecture has
emerged as the appropriate level for dealing with software
quality. This sub-discipline of the software engineering has
a several foundations that characterize a set of aspects in the
architecture processes, such as views-oriented description,
quality attributes orientation and architecture evaluation.
Service-Oriented Architecture (SOA) emerged as a type of
software architecture to build systems through the
composition of services. On the one hand, the traditional
architecture processes do not comprise some SOA features.
On the other hand, the available SOA approaches do not
fulfill all the software architecture foundations. In this
sense, this paper proposes a systematic SOA-based
architecture process that complains the main software
architecture foundations and SOA features in order to guide
the architects in the construction of a software architecture
description.
Keywords: Architecture Process, SOA, Software
Architecture.

1. Introduction
Software Architecture has attracted a great attention

from researchers and practitioners since the last decade. The
increasing size, complexity, and demand for quality
software systems are some of the drivers that have increased
interest in this sub-discipline of software engineering [7].

As any activity of software engineering, it is useful to
follow a defined process in order to guide the architect
through the definition of the application architecture [14]. A
complete architecture process can include three main
activities [14], [15]: define the architecture requirements;
design the architecture; and evaluate the architecture.
Moreover, the architecture documentation is part of the
architecture design. However, it is common to find these
activities separated in different methods in the literature.
For example, some methods [2], [20], [25] focus on the
architecture design activities and other methods [18], [19]
focus on the architecture evaluation. The first one is
concerned with the creation of software architecture, and
the second one aims at analyzing a software architecture in
order to identify potential risks and verify if the quality
requirements have been addressed in the architecture.

An architecture design method aids the architects to
design a software architecture description, considering
styles that can be used and different views for several goals,
addressing different quality attributes. Nevertheless,
architecture design methods that were developed in
different domains naturally exhibit domain characteristics
and emphasize different goals [15]. Therefore, none of
these methods [2], [20], [25] alone is comprehensive
enough to cover the design of software architectures for
systems with different sizes on various domains [21].

Currently, a special type of software architecture is being
widely explored by academy and industry: Service-Oriented
Architecture (SOA). A basis of the SOA is the concept of
service as a functional representation of a real world
business activity meaningful to the end-user and
encapsulated in a software solution [26]. In the enterprise
context, SOA allows the organizations, which have a highly
fragmented application infrastructure under management of
different business areas, integrate these applications in the
service level [10].

On the one hand, the traditional architecture processes
do not comprise these SOA features. On the other hand, the
available SOA approaches [1], [11], [12], [17], [23] do not
fulfill all the software architecture foundations, such as
quality attributes orientation, views-oriented description and
architecture evaluation.

In this sense, this paper proposes a new process to create
an SOA-based architecture description. For this purpose,
the main activities in the software architecture processes
and the main features found in the SOA approach were
elicited. Furthermore, an initial evaluation was performed in
order to assess the proposed process, in which the
difficulties of its use, the guidance that it provides to the
architects and the completeness of the architecture
description created were analyzed.

The remainder of this paper is organized as follows:
Section 2 discusses the foundations of the proposed process.
Section 3 presents a new SOA-based architecture process.
Section 4 presents the evaluation performed to assess the
proposed process. Section 5 discusses related work. Finally,
Section 6 presents some concluding remarks.

2. Process Foundations
A software development process can be understood as

the set of activities needed to transform the user’s

328

requirements into a software system. The way it is done can
change from process to process. In this sense, all types of
processes are based on some foundations. In this section,
the foundations used to elaborate the process are presented.

Quality Attribute Oriented. Quality attribute
requirements must be considered early in the life cycle, and
the software architecture must be designed so that their
quality attributes are met [3]. Hence, the process supplies a
specific activity to elicit these requirements in order to
address them through different views.

Views-oriented Description. Software architecture is a
complex entity that cannot be described in a simple one-
dimensional fashion [4]. A view is a “representation of a
whole system from the perspective of a related set of
concerns”, and a viewpoint is a “specification of the
conventions for constructing and using a view” [16]. Thus,
the process proposes viewpoints to represent different
concerns of the SOA.

Architecture Evaluation. Since software architecture
plays a significant role in archiving system wide quality
attributes, it is very important to evaluate a system’s
architecture with regard to desired quality requirements [8].
In this sense, the process proposes a specific activity for
evaluating the SOA in order to verify if the architectural
decisions are addressing the quality attributes. However, an
existent method is suggested in this activity.

Business process oriented. Services provide a better
way to expose discrete business functions and therefore a
good way to develop applications that support business
processes [6]. In this context, the process considers and
analyzes the enterprise business processes in order to
identify the services of the SOA.

Design by contract. An important aspect of the SOA is
that it separates the service’s implementation from its
interface. To successfully use a service, both the consumer
and provider need to understand the contract — what the
implementation agrees to do for the consumer [22]. Thus,
the process enables the definition of the service contract.

Service-orientation principles. The service-orientation
principles are considered in the service interface definition
and other design activities in order to maintain the SOA
foundations.

Multiple development teams. One of the main benefits
of using a SOA is that it allows a high degree of modularity.
This feature permits that the services can be implemented
for different teams [17]. Hence, a SOA-based process must
be organized in order to enable the division of work in
multiple teams to implement the services.

3. The Process
Along this section, how the foundations were attended by

the proposed process will be explained.
The roles involved in the process were divided in two

groups:
• Enterprise business team: Roles of people who have an

overall view of the enterprise. This group is divided in

two roles: Enterprise manager and SOA architect. The
first one is the person who knows the enterprise business
as a whole and manages the integration of business area
teams. The second one is a specialist that knows about
SOA concepts and technologies.

• Business area team: Internal or external people of the
enterprise that are interested on providing or consuming
some service. This group can be divided in two
subgroups: Service development team and Business
specialist team. The first one has the roles related to
services development, i.e., the team that will design and
implement individual services. The second one has the
roles of business specialists of some business area.
Development teams in a SOA-based enterprise project can

be decoupled due to high degree of modularity by using a
SOA. Thus, each team is responsible for implementing a
specific list of services. These teams must focus on the
agreement of service contracts [18].

In order to fulfill the foundation of having multiple
development teams, the proposed process is composed by
two phases: SOA Definition and Service Design. The first
one has activities related to the architecture definition of the
SOA-based enterprise system. The second one aims at
designing the services identified in the SOA Definition
phase. In this case, each service is designed by the team
responsible for providing the service.

Figure 1 shows the two phases of the process, in which
the Enterprise business team participates in the activities of
the SOA Definition phase along with all Business specialist
teams (A, B and C), and in the next phase of Service
Design, in which each service development team is
responsible for designing its own services.

Figure 1. Phases of the proposed process.

This paper focuses on the SOA Definition phase. For this
reason, this paper aims at detailing only this phase. In the
Service Design phase, a traditional architecture process to
design the individual services can be used.

The SOA Definition phase is composed by three
activities. Briefly, the three activities are the following:
• SOA Analysis: The services are identified as well as the

consumers and providers. Besides, the quality attributes of
the SOA and of the specific services are also identified.

• SOA Design: The service contracts are specified and it is
decided if these services will be reused or developed.
Moreover, the views are created in order to address the
quality attributes of the SOA and of the services, and the
SOA documentation is produced.

329

• SOA Evaluation: The architecture is evaluated in order
to verify if it is capable of fulfilling required quality
attributes and to identify any potential risks.
The proposed process defines sub-activities for the first

two activities and it uses an existent evaluation method for
the third one. These activities will be seen in details in the
next subsections.

3.1 SOA Analysis Activity
This activity has the objective to identify the services

and the respective consumers and providers as well as the
quality attributes for each service and for the SOA as a
whole. The next subsections discuss the sub-activities of the
SOA Analysis activity.

3.1.1 Identify Service Interfaces
This is one of the most important concerns in service-

oriented design. This sub-activity aims at uncovering the
services that will compose the SOA. For this purpose, this
work proposes the Service Identification Workshop (SIW).

The SIW provides an opportunity to join the areas to
provide input about their needs and expectations with
respect to services that are of particular concern to them.
Hence, business specialist team and enterprise business
team will achieve meetings in order to identify the service
interfaces. Figure 2 shows the steps of SIW.

Figure 2. Steps of SIW.

Firstly, the SIW must be planned. For this purpose, the
SOA architect analyzes the business areas, studying the
macro characteristics of each one. In this sense, he can
analyze documents available about the business area,
existent systems, and new systems such as business process
models, requirements and use cases. Next, the workshop
can be started with the SIW introduction. In this step, the
SOA architect explains the motivation for the SIW and
describes each step of the technique for the participants.
Moreover, the stimulus to use SOA for the enterprise must
be presented, showing the benefits of this architecture
solution. After that, each business specialist team must
present its business area, showing the main business
processes, responsibilities, functionalities of existent and
new systems, and so on. Besides, each team must take clear
about its business drivers for using services of another
business area. The next step is Create Business Process
Model. The idea of this step is to create new business

processes or remodel the existent ones of each business area
in order to represent them in the most granular
representation of processing steps. This idea is the same
found in the Erl’s approach [11] in which it aims at taking
the business process and breaking it down into a series of
granular process steps in order to identify the services based
on them. In addition, these business processes must
represent the points of integration among the business areas
identified in the prior step. Since the business process
models have been created or refined, the services can be
identified. This step is also conducted by the SOA architect
that along with the business specialist teams will decide
what business activities identified in previous step will be
considered software services. After consolidation of the
services identified, the SOA architect must present them to
all the SIW participants in order to validate the results.

3.1.2 Categorize Service Interfaces
Services have different uses and purposes [26]. Hence,

services can be classified through their operational
characteristics with different granularity levels [24].
Moreover, to categorize the services according to their
purpose, increase the potentiality of reuse [11]. Currently,
diverse service taxonomies are found in the literature [11],
[12], [17], [24]. The SOA architect must choose some
taxonomy and categorize the services identified in the
previous sub-activity. This choice of the taxonomy depends
on how the architect intends to organize the services. In this
sense, the categorization of the services will influence the
organization of the SOA layers in the SOA Design activity.

In this work, the taxonomy presented by Papazoglou [24]
was used. It uses three categories as following:
• Business Services: They automate a generic business task

with significance to the business process.
• Technical Services: They are coarse-grained services

that provide the technical infrastructure enabling the
development, delivery, maintenance and provisioning of
business processes.

• Utility Services: They are fine-grained services that
provide value to business services across the organization,
for example, services implementing calculations,
algorithms, directory management services, etc.
The output of this sub-activity is the service interfaces

categorized in accordance with this taxonomy.

3.1.3 Apply Service-Orientation Principles
It is important that principles be applied to the services

interfaces so that they have characteristics inherent to the
service-oriented approach.

There is no official set of service-orientation principles.
Diverse principles related to service-orientation approach
are found in the literature. Papazoglou and Heuvel [23] and,
Feuerlicht and Lozina [13] list three principles: service
coupling, service cohesion and service granularity.

The service coupling can be seen as the degree of
interdependence among two business processes. Hence, the
objective is to minimize coupling, i.e., to make business

330

processes as independent as possible by not having any
knowledge of or relying on any other business processes.

Cohesion refers to the level of interrelationships among
the elements of a software module. High level of service
cohesion increases application stability as cohesion limits
the impact of changes to a small number of services.

Service granularity refers to the scope of functionality
exposed by a service. Services may exhibit different levels
of granularity. From the perspective of service-oriented
design, it is preferable to create higher-level, coarse-grained
interfaces that implement a complete business process.

The output of this sub-activity is the interfaces refined.

3.1.4 Identify Quality Attributes
After uncovering the service interfaces and their

respective consumers and providers, it is necessary to
identify the quality attributes for each service identified as
well as for the SOA as a whole. Quality attributes could be
missing from the requirements document, and even if
addressed adequately, they are often vaguely understood
and weakly articulated [3]. For this goal, an adaptation of
Quality Attribute Workshop (QAW) [3] is used. QAWs
were elaborated by SEI (Software Engineering Institute)
and provide a method for identifying a system’s architecture
critical quality attributes. For this purpose, QAW generates,
prioritizes and refines quality attribute scenarios before the
software architecture is completed

The output of this sub-activity is the scenarios and a
table with the quality attributes prioritized of each service
and of the SOA as a whole. This prioritization is important
since there are tradeoffs among the quality attributes. For
example, if the system requires security then the
performance is decreased.

3.2 SOA Design Activity
In this activity, the solution of the problem will be

elaborated, specifying the service contracts, applying
different viewpoints for the quality attributes identified and
producing the architecture documentation. This activity was
also subdivided in sub-activities.

3.2.1 Specify Service Contracts
Since the service interfaces with their respective

potential consumers and providers are known, it is
necessary to define the contract among them. A service
contract contains the terms agreed by the service provider
and service consumer for the supplying of the service.

In summary, the service contract must contain the
following information: service interface, service messages
structure, pre- and post conditions, quality attributes,
potential consumers, provider and SLA.

This service contract can be specified with a simple
document or a formal description such as WSDL
specification.

3.2.2 Reuse Existent Services
The idea of this sub-activity is to search the services

identified with their respective quality attributes in order to

verify if they already exist. In this case, the available
services can be reused and the non-existent services will be
developed. The providers for these services can be found in
the internal or external area of the enterprise. Furthermore,
it is necessary to decide how the services will be acquired
(leasing, buying, and so on).

The output of this sub-activity is a table containing a set
of services identified and the information if they will be
reused or developed. In case of the service to be reused,
additional information of the provider must be described,
such as reputation, support, business model, target market,
and so on [10].

3.2.3 Address Quality Attributes
Since the services and quality attributes were identified

in the SOA Analysis activity, they must be addressed
through different views. In this sense, for each identified
service and for SOA as a whole, several views will be
applied to represent these different concerns.

This paper proposes a set of viewpoints to represent the
architecture decisions of the SOA. However, these
viewpoints are not a closed list, and other viewpoints can be
used according to demand of the SOA architect.

Layer Viewpoint. The tiers provide a conceptual
structure at the enterprise level that organizes the services
[18]. The objective of this viewpoint is to represent the
layers of the architecture.

Integration Viewpoint. This viewpoint describes how
the services will be integrated. The two significant options
for a primary integration pattern are direct point-to-point
and hub-and-spoke [5].

Security Viewpoint. Security can be achieved on
different levels in the SOA approach, such as transport layer
and message levels. Hence, the security view should
represent the solution using one of these levels.

Interaction Viewpoint. The implementation alternatives
impact important quality attributes of the system, such as
interoperability and modifiability [5]. This view must
represent how the consumer and the provider will be
interacted.

Physical Viewpoint. Issues about interoperability,
security and reliability can be decided, since it aims at
capturing the distribution of the applications and services
that compose the SOA as well as the transport and message
protocol used in the communication among them.

Registry Viewpoint. This viewpoint aims at addressing
how the services will be published, found and executed. The
decision about the architecture of service discovery will be
represented in this viewpoint.

Publisher Viewpoint. The services can be registered
under diverse technologies such as UDDI, ebXML, P2P
network, and so on. In this sense, this viewpoint must
represent how the service will be published by the provider
in order to turn it available to the consumers.

Consumer Viewpoint. This viewpoint must represent
the following issues: how the consumer can find a service;

331

how the consumer acquires the service; and how the
consumer can bind the service (dynamically or statically).

Technical Process Viewpoint. This viewpoint must
represent the technical business processes that are part of
the SOA, i.e., the business processes in the perspective of
the services identified. These views are useful when it is
necessary to map the technical business process into
Business Process Modeling Language such as BPEL.

None of these viewpoints are mandatory. In this sense,
the SOA architect must decide, according to the project,
what viewpoints to use.

3.2.4 Produce SOA Documentation
After all activities have been realized, it is necessary to

create the architecture documentation. This document is the
main output of the architecture design activity, because it
will document the artifacts produced.

All information that is necessary for the service
development teams must be documented, since this
documentation serves as a guide to them. Dias [9] presents
the complete SOA documentation template.

3.3 SOA Evaluation Activity
Many architecture-centric analysis methods have been

created in the few past years. Due to this variety of
methods, an initial orientation is necessary. In this sense, the
Architecture Trade-off Analysis Method (ATAM) [8] —
developed by the SEI — is used as the basis for defining the
activities for an architecture evaluation. For this purpose,
SEI also produced a technical report about SOA evaluation
[5] aiming at offering practical information to assist the
evaluation of a system that uses the SOA approach.

This evaluation method was chosen because, beyond
being a mature method, it is scenario-based and it can reuse
the scenarios created in the QAW.

In spite of this activity being considered important, it is
not mandatory to be performed. Moreover, other methods
can be used in order to evaluate the architecture.

4. The Evaluation
The goal of the experiment was to analyze the proposed

process for the purpose of evaluating it with respect to the
difficulties of its use, the guidance that it provides to the
architects and the completeness of the architecture
description created from the point of view of the
practitioners in the context of software architecture.

The experiment was run as an off-line project by
professionals of a software development company. This
company develops information systems for a government
department that has five different areas that are responsible
for some strategic business and have its own information
system that helps to perform their business processes.
Hence, this project is composed of five sub-projects running
alongside that need to be integrated. Each sub-project has
the objective to create an information system and each one
has its own development team, with its project manager,
software architect, business analyst, developers, and so on.

In this sense, the project of this experiment is a real problem
of a SOA-based scenario with different development teams.

The experiment had the following results:
Difficulties in the SOA Analysis activity. The sub-

activity Apply Service-Orientation Principles presented the
most difficulty. Only one subject did not have problems to
execute this sub-activity. It is important to highlight that the
lack of experience of the subjects with SOA may have
influenced this result. For example, the subjects considered
difficult to perform this sub-activity because it does not
specify the “step-by-step” to be executed. However, an
expert SOA architect, having familiarity with these
principles, would not have the same difficulty.

The experiment suggested that the SOA Analysis activity
is difficult to be performed. However, it is necessary to
highlight that this value for the null hypothesis was defined
without any previous data, since it was the first time that
this aspect was analyzed. Nevertheless, the next time that
the experiment is performed this value can be refined based
on this experience, resulting in a more calibrated metric.

Difficulties in the SOA Design activity. The main
difficulty mentioned was to elaborate the views. Some
factors can have influenced this result. First, the profile of
the subjects, that had difficulty in this sub-activity, did not
have experience in the software architecture position. Other
factor can be related to the lack of experience in Web
Services of some subjects.

The experiment suggested that the SOA Design activity
is difficult to be performed. However, in the same way as in
the SOA Analysis activity, this value for the null hypothesis
was defined without any previous data.

Guidance for creation of the architecture description.
In spite of all the subjects suggesting that it is necessary to
have guidelines for the sub-activities, they agreed that the
sub-activities defined by the process guides the architect,
since the process directs what must be produced in each
stage of the process in the creation of the SOA description.

Completeness of the architecture description. Seven
of eight quality attributes required were addressed by the
architecture description. Only the quality attribute
Testability was not addressed. In this sense, the creation of a
Test Viewpoint was suggested in which it would contain
information about how the services can be tested.

The experiment has evidenced that the process is useful
in SOA context in order to guide the architect in the design
of an architecture description. However, the experiment
also shows that the process needs to be improved. Besides,
other evaluations in other contexts must be performed to
verify if the process can be applied on them.

5. Related Work
In this section, five known SOA approaches [1], [11],

[12], [17], [23] were analyzed according to defined
foundations elicited in the previous sections.

These approaches aim at supporting the full SOA
lifecycle, including planning, analysis and design,

332

construction, testing, deployment, and governance
activities, while others limit their scope to a subset of these
phases, such as analysis and design [23]. For example, the
Papazoglou’s [23] covers all the development lifecycle and
the Jones’s approach [17] covers only initial planning. On
the other hand, Erl’s approach [11] covers only analysis and
design activities and the SOAF [12] and SOMA [1], beyond
analysis and design, covers the construction of the services.
However, none of these approaches focus on the
architecture activities, since they are not in accordance with
some software architecture foundations.

In spite of all these approaches to consider the quality
attribute aspects, none of them attend entirely and explicitly
the view-oriented description and architecture evaluation
requirements.

Regarding design by contract and service-orientation
principles requirements, only the Jones’s approach does not
cover them. All the other approaches have some way to
identify and to address the service contracts, and apply
service-orientation principles. On the other hand, all of
these approaches are focused in the business processes.

6. Concluding Remarks
A new SOA-based architecture process was proposed in

this paper. It comprises the main important foundations of
the software architecture and service-oriented areas such as
service identification; quality attributes identification;
service categorization; service contract specification;
service reuse; SOA documentation; and SOA evaluation.

Moreover, an experimental study was performed in order
to evaluate the proposed process. It was verified that the
process needs to be improved, mainly in respect to
guidelines to perform the sub-activities.

As a future work, a case study will be applied in practice
to validate and refine the proposed process in a real project.

Acknowledgments
This work was partially supported by the National

Institute of Science and Technology for Software
Engineering (INES1), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08 and Brazilian
Agency (CNPq process number 475743/2007-5).

References
[1] Arsanjani, A. Service-Oriented Modelling and Architecture

(SOMA), IBM developer-Works,
http://www.ibm.com/developerworks/webservices/library/ws-soa-
design1, 2004.

[2] Bachman, F., Bass, L. Introduction to the Attribute Driven Design
Method. IEEE Software,2001.

[3] Barbacci, M. R., Ellison, R., Lattanze, A, J., Stafford, J. A.,
Weinstock, C. B., & Wood, W. G. Quality Attribute Workshops, 3rd.
Edition. Pittsburgh, PA: SEI, Carnegie Mellon University, 2003.

[4] Bass, L., Clements, P., Kazman, R. Software Architecture in
Practice, Reading, Mass.: Addison-Wesley, 2003.

[5] Bianco, P., Kotermanski, R. and Merson, P. Evaluating a Service-
Oriented Architecture. SEI Technical Report, CMU/SEI-2007-TR-
015, September, 2007.

[6] Brown, A., Johnston, S., Kelly, K. Using Service-Oriented
Architecture and Component-Based Development to Build Web
Service Applications. Rational Software Corporation, 2002.

[7] Clements et al. Documenting Software Architecture: Views and
Beyond. Addison Wesley, 2002.

[8] Clements et al. Evaluating Software Architectures: Methods and
Case Studies, Boston, MA: Addison-Wesley, 2002.

[9] Dias, J. J. A Software Architecture Process for SOA-based
Enterprise Applications. MS.c dissertation, Federal University of
Pernambuco, Recife, Brazil, August, 2008.

[10] Dias, J. J.; et al. A XML-based Quality Model for Web Services
Certification, In the 9th Int. Conf. on Enterprise Information
Systems (ICEIS), Madeira, Portugal, 2007.

[11] Erl, T. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, 2005.

[12] Erradi, A., Anand, S., Kulkarni, N. N. SOAF: An Architectural
Framework for Service Definition and Realization, IEEE
International Conference on Services Computing, 2006, 51-158.

[13] Feuerlicht, G. and Lozina, J. Understanding Service Reusability, In
the Proceedings of the 15th International Conference Systems
Integration. Prague, Czech Republic, 2007, 144-150.

[14] Gorton, I. Essential Software Architecture. Springer-Verlag Berlin
Heidelberg, 2006.

[15] Hofmeister, C., et al. A general model of software architecture
design derived from five industrial approaches. The Journal of
System and Software, 2007, 106-126.

[16] ISO/IEC 42010. Systems and software engineering - Recommended
Practice for Architectural Description of Software-Intensive
Systems, IEEE Std 1471-2000. 1st. edition, 2007.

[17] Jones, S., Mike, M. A methodology for service architectures, OASIS
Draft, http://www.oasis-open.org/, 2005.

[18] Kazman, R., Abowd, G., Bass, L. and Clements, P. Scenario-Based
Analysis of Software Architecture, IEEE Software, Nov, 1996.

[19] Kazman, R., Mark, R. and Clements, P. ATAM: Method for
Architecture Evaluation, Technical Report. CMU/SEI-2000-TR-
004. Pittsburgh, 2000.

[20] Kruchten, P. The 4+1 View Model of Architecture. IEEE Software,
vol. 12, no. 6, 1995, 45–50.

[21] Matinlassi, M. and Kalaoja, J. Requirements for Service
Architecture Modeling. In Workshop of Software Modeling
Engineering of UML. Dresden, Germany, 2002.

[22] Meyer, B. Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.

[23] Papazoglou, M. P. and Heuvel, W. Service-oriented design and
development methodology. Int. J. Web Engineering and
Techonology, Vol. 2 No. 4, 2006, pp. 412-442.

[24] Papazoglou, M. P. What’s in a Service?. 1st European Conf. on
Software Architecture. Proc. in Springer. Madrid, Spain, 2007.

[25] Soni, D., Nord, R., Hofmeister, C. Software Architecture in
Industrial Applications. In: Proc. of 17th International Conf. on Soft.
Eng. (ICSE). ACM Press, 1995, 196-207.

[26] Zimmermann, O., Krogdahl, P., Gee, C. Elements of Service-
Oriented Analysis and Design, Available at: http://www-
128.ibm.com/developerworks/webservices/library/ws-soad1/, 2004.

1 http://www.ines.org.br

333

Research and Implementation of Service-Oriented Architecture Supporting Location-
Based Services on Sensor Networks

Bin-Yi Liao1, Wen-Shyang Huang1, Jeng-Shyang Pan1, Hong-Chi Wu3, Yuh-Ming Cheng3,

Jen-Kuin Lee4, Bo-Sian Wang3, E-Liang Chen3 and Mong-Fong Horng1

Dept. of Electronic Department1 and Dept. of Computer Sciences2

National Kaohsiung University of Applied Sciences, Taiwan
Dept. of Computer Sciences and Information Engineering Shu-Te University, Taiwan3

Dept. of Electronic Department, National Taipei University of Technology, Taiwan4
email: mfhorng@cc.kuas.edu.tw

Abstract
In this paper, a service-orient architecture supporting location-
based services on sensor networks is presented. Based on this
architecture, an intelligent home service platform composed of
software and hardware components are constructed to offer
smart living functions and services. Based on SOA, the
developed components communicate with each others through
the interface of web services. Certainly, the system integration
is also rapidly realized due to the interfaces of web services. A
positioning health-care and service is presented through a case
study. Consequently, the SOA approach is beneficial to fast
composition of the target services. The realized system is
helpful to improve the home living quality.

Keywords: SOA, Location-based services, Multimedia,
Health-care service, Face recognition, Sensor networks,

1. Introduction
Digital home is a significant technology affecting deeply
people living in 21 century. There are some critical
technologies involved in digital homes; including information
processing technology, information transportation technology
and ICT hardware design and implementation technology.
Through the technological integration, a location-based home
service system is realized to provide health-care service,
multimedia service and user identifying service. Among these
software components, the interfaces of web services are
introduced to construct a service-of-architecture (SOA)
platform. The benefits of SOA-based approach are (1) to offer
highly feasibility for easy interconnection between software
modules; (2) rapid customization for different user
requirements; (3) open interface to connect Internet. As a
result, the adopted architecture will be able to effectively
collaborate with other web service systems. In this paper, we
will present a SOA-based Location- Based Service (SLSS)
platform. SLSS is composed of multimedia network, sensor
networks, image processing, embedded systems and mobile
devices to develop a service plug and play (SPNP) home
environment. In this environment, home users enjoy (1)
ubiquitous multimedia service on a hand-held device (2)
location-based personalized service to enable specific services
according the user location information detected by sensor

networks (3) user-identifying service based on face recognition
to reliably identify home users. Due to the deployment with
certain sensor nodes, a new ZigBee device compatible with
IEEE 1451 to support XML messaging and software control.
Thus, the developed devices efficiently assist the construction
of the proposed SLSS. Consequently, the proposed SLSS is
developed to prove the concept of a new living style,
particularly in security, health and comfort, in future homes.
The rest of this paper is organized as follows. Section 2
presents the related works to illustrate the technical
background. The design and implementation of the proposed
systems are presented in Section 3. The experimental results to
verify the function and performance of the proposed SLSS are
shown in Section 4. Finally, we conclude this in Section 5.

�������� Related Works��������
As well known, a service-oriented architecture is essentially a
collection of services. These services communicate with each
other [1]. SOA is an architecture comprising (1) Loosely
coupled services, (2) described by platform-agnostic interfaces
(3) discovered and invoked dynamically (4) accessed in real-
time (5) be transparent to users. Thus, a SOA application
development is a collaborative effort from three parties:
application, builders, service developers, and service brokers
[2]. Additionally, Location-based service (LBS) is an
application to provide personal and positional mobile service
information according to user location. Users can access
information and services related to the site at any time LBS has
two basic functions, one is collecting spatial and positioning
information, the other one is providing services according to
user needs [3-4]. LBS [5-6] has been applied widely at this
stage, especially on outdoor services, such as satellite
navigation for automobiles, Google Map and Google Earth by
Google, and PaPaGo and Urmap e-maps. This study aimed to
construct an integrated platform of LBS. The front-end
positioning of this platform uses ZigBee location technology
and room-based location technology for indoor location search.
The information service provided by the backend information
system is added to SPG through the Service Oriented
Architecture (SOA) in Web Service mode, in order to realize
the information flow mechanism of LBS. The introduction of
SOA technique makes heterogonous systems easy to integrate.

334

Thus, in this work, a SOA platform is conducted on the basis
of multimedia gateway, face recognition, ZigBee sensor
networks, embedded system and hand-held devices. In the
developed SOA platform, a service plug-and-play (SPNP)
environment is presented to enable an intelligent home living.
Certainly, typical applications are truly implemented to
demonstrate the benefits of the proposal platform. Besides, in
this intelligent home environment, various sensors are widely
deployed. To solve the problem of connecting heterogeneous
sensors, we will design and realize in the standard of
IEEE1451. The smart ZigBee sensors compliant with IEEE
1451 offer the function of XML software control. Thus, the
proposed SOA-compatible sensors will reduce the complexity
of interfacing sensor with gateway server. �
�

3. SOA Location-Based Service System (SLSS)
3.1 System Architecture and Service Scenarios
The developed SLSS system is composed of four subsystems
as shown in Fig. 1. The four subsystems are (1) SOA
multimedia gateway of network and storage system (SMGNS);
(2) Face Recognition Application and Control (FRAC); (3)
ZigBee information Service (ZBS) and ZigBee Sensor Design
for health-care Application (ZLA). SMGNS is designed as the
home gateway connecting multimedia servers and storage
systems to (1) offer multimedia content (2) store the
information data from sensor networks. FRAC is a subsystem
utilizing the technology of image processing to identify users.
In FRAC, the user face is captured by a front-end camera. The
face picture is analyzed to extract significant features such as
shape and geometry information. Accordingly, the users are
identified. The derived user identification will determine what
services will be either turn on or turned off. ZBA is a Zigbee
system to support the environment context sensing and
relaying to the gateway. Thus, ZBA is an infrastructure of
context-aware services in home. ZLA is a context-aware
service system built on Zigbee network. The front-end of ZLA
senses the signals of blood pressure; heart beat and body
temperature as well as delivers the collected data to the back-
end platform for further applications. The design details are
illustrated as follows. SMGNS is a home gateway connecting
Internet, appliances and sensor networks to construction a
home network. Through SMGNS, home users access Internet
multimedia services with high quality aided by effective QoS
gateway [7-10].

SMGNS gives the following features to support the high-
quality multimedia and home services;
(1) QoS functions including service differentiation,
(2) Remote appliance control
(3) home automation
(4) Load balancing
Since SMGNS has been realized by embedded system
technology, the open and customized architecture benefit the
integration, maintain and cost. FRAC is a user-identification
application based on human face recognition. This application
is also developed on an ARM-based embedded system. FRAC

utilizing Principle Component Analysis (PCA) [11-12] to
extract the face features. The extracted features of human faces
are categorized and maintained in a pattern base. The feature
extraction is shown in Fig. 2.

Fig. 1 SLSS system architecture

There are two kernel-based methods including Fisher Linear
Discrimination (FLD) and Kernel Fisher Discrimination (KFD)
to capture linear features and nonlinear features, respectively.
Then a genetic programming approach is used to find the
optimized category of pattern base. Once the face image is
presented to be identified, the feature extraction is processed to
obtain the features for matching. The pattern from pattern Use
cases of the face-recognition application include house
entrance control and authentication of appliance control.

Fig. 2 Feature extraction of human faces
 ZBS is a customized ZigBee sensor networks. A ZigBee

sensor network is composed of two types of nodes; including
sensor nodes and coordinator nodes. Sense node is responsible
for the data sensing which is delivered through wireless
channels to the coordinator. Each node is designed to relay the
sensed data for its neighbors. The coordinator aggregates the
sensing data from sensor nodes and forwards the context
information to the backend monitor for further applications.
There are two typical applications demonstrated in this works
such as remote monitor and realtime notification. Remote
monitoring enables the remote users to issue a request to the
coordinator to query the sensing data. The sensor node will
send the sensing data according to the request forwarded by
the coordinator. Realtime notification is trigged by a trap
caused by a pre-defined alert condition. Sensor nodes
periodically acquire the context information. Once invalid
context information is encountered, a trap is conducted to
notify the invalid condition.

 Based on ZBS, a smart ZigBee location-based
application (ZLA) health-care service is built up In ZLA, there

335

are mobile sensor nodes to measure physiological data
including blood sugar, blood pressure, heart beat. These
collected data will be delivered to remote data servers on
Internet, through SMGNS gateway. The service scenario is
shown in Fig. 3. Each user wears a sense node to measure the
target signals. The wearable sensor nodes communicate with
the neighbor nodes to forward the measurement through multi-
hop networks to the sensor dongle on the coordinator nodes.
The operational steps of this service scenario are listed as
follows,
Step 1. The sensor node is trigged to measure the target

physiological signals on a sensor node. Then the
measurement is stored in the sensor node for further
query.

Step 2. SMGNS Gateway requests the measurement. The
request is forwarded to the sensor network through
dongle

Step 3. The request is processed by the corresponding sensor
node.

Step 4. Data report is delivered to network routers.
Step 5. The router forwards the data report to the dongle.
Step 6. Gateway receives the requested data report.
Step 7. Data report is uploaded to the data server for further

applications.
In this scenario, the user location information is derivable from
ZBS. Thus, wherever the user is, there is a route established
between the sensor node and the coordinator. Along with the
route, the physiological data is conveyed toward the
coordinator in a manner of multi-hop relay. In other words, the
data relaying is valuable to improve the overage of wireless
sensor networks and to offer a low power consumption data
transport service.

3.2 Service Architecture and Delivery
The presented SLSS is designed as a web service with XML
messaging. The XML services, including multimedia services,
health-care service, and other data services follow the web
service architecture. XML web service is a service-oriented
architecture to offer the functions (1) Service registration, (2)
Service indexing and (3) Service delivery.

Fig. 3 Scenario of health-care services
Software components are encapsulated in the form of .NET
framework. The messaging between clients and server follows
Simple Object Access Protocol (SOAP) and eXtensible
Markup Language (XML). At the client site, to access service

resource, in the front of user application, a service agent is
designed as an interface to web server. This interface functions
(1) Encapsulation and Decapsulation of service messages (2)
access procedure for clients to obtain the service resource.

Typically, there are five parts to constitute web services
follows,
1. Discovery: Accept the service registration from service

providers and offer users with a list of service
registration for service search/discovery

2. Description: Prompt the description of accessible services
including usage illustration and example for
users.

3. Messaging: Define the message format and handsharking
procedure for client and server to correctly
exchange messages and service contents.

4. Encoding: Provide a consistent encoding/decoding to ensure
message validation between client and server.

5. Transport: Convey the encoded and encapsulation service
content from server to the requesting client via
specific transport protocols such as TCP/IP.

SLSS is developed according to the following steps:
1. On the backend platform, the service registration, service

indexing and service locating are implemented according
to UDDI (Universal Description, Discovery and
Integration)

2. Regisrated service is presented according to WSDL(Web
services Description Language). WDSL is an XML-based
description language to illustrate the methods, interface
and return value of web services.

3. SOAP is in charge of the communication format between the
located server and backend platform. By use of SOAP,
the agent at clients knows what service is and how to
retrieve service in a defined message format.

4. All messages exchanged between servers and clients are in a
XML format designed for the specific applications.

5. Hyper Text Transport Protocol is the standard used by
clients and servers to transport messages and service
contents on networks.

Thus, through the above steps, the developed services are
registrated as a web service with its method and interfacing on
the backend platform. The backend platform is service
repository and implements a friendly management console.

4. Experimental Results
A prototype of SLSS has been realized to prove the

operational concepts presented in the previous sections and to
present a series of location-based services such as multimedia,
security and health-care services. The specifications of the
SLSS system and four subsystems are listed in Table 1.
Embedded systems are the dominant approach to establish the
SOA platform because it is advantageous in customization of
hardware/software design and cost reduction. The software
tools of system development are open sources to enhance the
reusability of software components. Besides, the
interconnections between subsystems are based on open

336

system interconnection, such as IEEE 1451, TCP/IP and XML.
There are four LBS implemented in the prototype; multimedia
streaming, face-recognition entrance control, home appliance
control and remote physiological signal measurement. Due to
page limitation, the function and performance evaluations of
multimedia streaming service and remote blood pressure
measurement are demonstrated.

Table 1 SLSS system specification

 (a) (b)
Fig. 4 Comparison of multimedia streaming performance with
(a) /without (b) QoS guarantee

First, the performance of multimedia streaming service
quality with no QoS guarantee is shown in Fig. 6. In traditional
IP networks, the multimedia stream could be corrupted by the
bandwidth insufficiency or instability. There will be packets
lost when the bandwidth is insufficient. Unfortunately, packet
loss causes frame corruption as depicted in Fig. 4(b). In
contrast, when the bandwidth guarantee is enabled to guarantee
the stream bandwidth, the service quality is improved as shown
in Fig. 4(a)

5. Conclusions
In this paper, a prototype of SOA Location-based Service
System is presented. The SLSS system is designed to be a
SOA application on intelligent home living. SLSS makes uses
of wire/wireless networks, Sensor networks, face image
processing, and pattern recognition to construct various
services, including multimedia streaming services, user-
identifying service, and health-care service, for home users.
The locations of users requesting services are available from
the designed sensor network. According to the user locations, a
certain service with proper quality is accessible by the users.
The locating, indexing and delivery of service content are
collaborated by the four subsystems of SLSS. To glue the four
subsystems, a SOA protocol stack, including UDDI, WDSL,

SOAP and XML, are developed to facilitate the
communication between subsystems. The experimental results
indicate the present SLSS is beneficial to smart living for home
users. Also the SOA approach is proved its feasibility and high
efficiency to compose a service from available service
components.

Acknowledgement
The authors would like to thank the partial financial support
from National Science Council, Taiwan under the grant 96-
2218-E-151-002.

References
[1] E Newcomer, G Lomow, “Understanding SOA with Web

Services,” Addison-Wesley Professional, 2004.
[2] W.T. Tsai, Y. Chen, R. Paul, "Specification- Based

Verification and Validation of Web Services and Service-
Oriented Operating Systems", Tenth IEEE International
Workshop on Object-oriented Realtime Dependable
Systems (WORDS 05), Sedona, February 2005, pp.139 -
147.

[3] Sayed Hashimi, “.Service-Oriented Architecture
Explained,” available at http://www.ondotnet.com

[4] Todd Datz, “What You Need to Know About Service-
Oriented Architecture,” available at http://www.cio.com

[5] P. Ordóñez, P. Kodeswaran, V. Korolev, W. Li, O.
Walavalkar, B. Elgamil, A. Joshi, T. Finin, Y. Yesha, and I.
George, “A Ubiquitous Context- Aware Environment for
Surgical Training”, Conference on Mobile and Ubiquitous
Systems: Networking & Services, Aug. 2007, pp. 1-6

[6] Y. Xia, and H. Y. Bae, “General Platform of Location
based Services in Ubiquitous Environment”, International
Conference on Multimedia and Ubiquitous Engineering,
April 2007, pp. 791-795.

[7] Takeshi Saito, Ichiro Tomoda, Yoshiaki Takabatake, Junko
Ami and Keiichi Teramoto, “Home gateway architecture
and its implementation”, IEEE Transactions on Consumer
Electronics, Vol. 46, No.4, pp. 1161- 1166, November
2000.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated services,”
IETF RFC 2475, December 1998.

[9] D. Grossman, “New Terminology and Clarifications for
Diffserv,” IETF RFC 3260, April 2002.

[10] Malik Khan, “Quality of service can also deliver
performance monitoring,” May 2000,
http://www.convergedaccess.com/

[11] Chengjun Liu, Gabor-Based Kernel PCA with Fractional
Power Polynomial Models for Face Recognition, IEEE
Trans. Pattern Ana. Machine Intell., Vol. 26, No. 5, May,
2004, pp 572-581.

[12] P. N. Belhumeur, J. P. Hespanha, D.J. Kriengman,
Eigenfaces vs. Fisherfaces � Recognition Using Class
Specific Linear Projection, IEEE Trans. Pattern Ana.
Machine Intell., Vol. 19, No. 7, July, 1997, pp 711-720.

337

Service Creation and Composition for Realization

On Service-Oriented Architecture

Chi-Lu Yang1,2, Yeim-Kuan Chang1, Chih-Ping Chu1

1 Department of Computer Science and Information Engineering, National Cheng Kung University
2 Innovative DigiTech-Enabled Applications & Service Institute, Institute for Information Industry

1Tainan, Taiwan R.O.C.
2Kaohsiung, Taiwan R.O.C.

stwin@iii.org.tw, ykchang@mail.ncku.edu.tw, chucp@csie.ncku.edu.tw

Abstract - Applying ICT to assist daily activities and
interests is already a worldwide trend. Through software
and network techniques, computers could remotely
provide various services. Up to now, Service-Oriented
Architecture (SOA) has become one of the most popular
techniques to realize these daily services in various areas.
Therefore, we would need systematic methods for
services creation from a service-centric viewpoint. In this
paper, we first illustrated the progress of service
realization. The interoperability of service creation and
realization along its life cycle were carefully explained.
With methodical sequences, domain-specific services can
be well created and designed. The home-care services
were demonstrated in the case study. These services were
verified by a pilot trial in a real environment. The
experimental results showed the usability and
effectiveness. We believe that a successful experience on
service realization is worthy to be shared.

Keywords: SOA design, service creation, service
composition, service verification, digital home-care

1. Introduction

Using Information and Communication Technologies
(ICT) to create innovative services models, many
enterprises have continuously become famous worldwide,
such as YouTube, WRETCH, Google, Amazon, among
many others. Their models have successfully provided
services to promote business values over the Internet.
One of their common features is that they had applied
specific information techniques with the network
techniques.

Applying ICT to assist daily activities and interests,
such as medical care, lifestyle, traffic, education, and
entertainment is already a worldwide trend. Through
software and network techniques, computers could
remotely provide various services. Up to now,
Service-Oriented Architecture (SOA) has become one of
the most important techniques to realize these daily
services in various areas. For example, the SOA-based
system was proven to effectively enhance the homecare
services [5], [11]. With SOA, various stakeholders could

be linked into similar service processes. Moreover, these
processes are closely conjoined with their services.

Therefore, we would like to determine how/what
services would be realized by SOA techniques. The
solutions are inquired from a service-centric viewpoint.
In this paper, we illustrate the progress of service
realization and share our experiences from a case study
at the same time. In Section 2, the SOA principles and
challenges are introduced. In Section 3, the
interoperability of service creation and realization are
proposed along its life cycle. The representations of
service elements are even illustrated, since we need large
communication with various providers during service
creation. A case study on realizing home-care services is
carefully explained in Section 4. A pilot trial of the case
study is set up for verification. The experiments and their
results are discussed in Section 5. The summary of the
study is then given in Section 6.

2. Related Work

Service-Oriented Architecture (SOA) is a software
architectural style for realizing and constructing business
services, which are composed by components as services
[1]-[3]. Service-oriented technology could expand
information and communication technology (ICT) to
provide various services, which frequently require a large
amount of data exchange. SOA also separates services
into distinct units such as components or modules, which
can be deployed over the Internet and can be reused to
compose new applications. By SOA, services can be
delivered to end-users over the Internet.

The architecture of SOA is clearly layered out.
Business services could thus be clearly identified and
layered in SOA. Business services are also created and
composed by various software components by SOA. The
typical layers of SOA are business process layer, service
and application layer, and technical layer [4]-[5].

Furthermore, the general architectural principles figure
out the ground rules of SOA for development,
deployment, and maintenance [4]-[5]. The four ground
rules in this study are service modeling, deliverability,
compliance to standards and reusability. These are
described as follows:

338

• Service modeling - Service definition and creation,
deployment and delivery, monitoring and tracking,
service concept, key performance indicators (KPI)
definition, and so on.

• Deliverability - A service on SOA should be
delivered via the Internet. The charged fee would
be accounted for by the service providers.

• Compliance to standards – A large number of
messages is frequently exchanged through the SOA
platforms. These exchanged messages will extend
the SOA capability and result in significant issues
for standardization, identification, authorization,
security, privacy, and so on.

• Reusability - A segment of the service might be
reusable to compose new services. In other words,
components or modules in SOA would be reused in
various business processes and even mobile
services.

In addition, the specific principles for service design
and creation are categorized into two types. The first type
includes specific design guidelines of SOA for service
providers. The second type deals with the interaction
between the service providers and consumers. They are
described as follows:

• Service abstraction - Services are logically hidden
from the outside world, beyond what is described
in the service contract.

• Service autonomy - Services have control over the
business processes they encapsulated.

• Service encapsulation - Various services in the
Internet are consolidated with Web services under
the SOA platform.

• Service composition - Collections of units of
services can be coordinated and combined to create
services.

• Service discoverability - Services are designed to
be accessible to the public, they can thus be found
and accessed via available discovery mechanisms.

• Service loose coupling - Services maintain a
relationship that minimizes dependencies on one
another.

• Service optimization - High-quality services are
generally considered more than low-quality ones.

• Service contract - Services are attached to the
communicable agreements, and are defined in
service description documents.

Building SOA is not only a technical challenge, but
also a business challenge. In the visions of SOA,
relationships between service consumers and providers
are not tightly stipulated. Their relations are loose
coupling [6]. Thus, consumer services are not forcefully
influenced by the changes made by the providers.
Moreover, consumer service interacts with the service
provider based on the service contract. Thus, negotiating
Service Level Agreements (SLA) is even a critical issue.
The SLA should even satisfy some general and specific
principles.

Fig. 1 Service Development Life Cycle

Another constraint is that SOA applications almost
have to be used in a distributed environment [7]-[8]. That
means end-users and service providers are distributed
geographically. Services in SOA are delivered via the
Internet. Unfortunately, SOA provides an environment
that is convenient for hackers and intruders [9]-[10]. Web
service is one of the most important ways to implement
SOA. The relevant techniques are Extensible Markup
Language (XML) [13], Web Services Description
Language (WSDL) [14], Simple Object Access Protocol
(SOAP) [15], and Universal Description, Discovery and
Integration (UDDI) [16].

3. Service Creation

Service creation is a critical start when we would like
to provide services by SOA. A service is composed of
various elements, which are provided by different
providers. These providers are even geographically
distributed. If they are connected with the SOA platform,
they will have chance to cooperatively create new
services. In order to know how a service is realized, the
life cycle of a service will be explored along business
modeling and component development in the following
sub-section. The representation of service elements will
be also introduced.

3.1 Service Development Life Cycle

A service is intensively related with its business model
since the service will be realized for serving
someone/something in the real world. The life cycle of
services will approach business modeling. These phases
are defined as service concept, service design, service
element development, service composition, and service
deployment. The development life cycle of service is
shown in Fig. 1. Furthermore, the service elements are
closely associated with software lifecycles.

The service concept is initiated by interviewing with
domain experts. Its draft will be used for triggering
internal integration of chief provider, who is the key
provider in the service concept.

The service design, which is constructed by service
designer, will show service scenarios step by step. Each

339

step corresponds to a service element. The service
element would therefore possibly be reused. The service
scenarios are extended based on the service concept and
are adapted by external providers. These providers will
be included and organized if the scenario requires them
to provide specific service elements. The chief and
external providers cooperate by following service level
agreements (SLA). The agreements should at least
include the service elements and charge flow. The regular
routines among these providers will be extremely large
after the business model is executed in a real
environment. Therefore, they need software and internet
to manage these routines.

Service elements are granularly developed to be
components, which are even encapsulated to web
services and are composed to provide services on the
Internet. The service flow and charge flow are hidden in
these components. A tool engine for service management
is also indeed essential.

Since these derived components are analyzed and
designed by object-oriented methods, they could
characteristically be reused to compose new services.
Verification and registration of the components are
necessary before they are discovered and composed. The
interfaces are the most important during service
composition. It’s better to standardize interfaces.

Before these services are actually deployed and
executed upon the business model, they have to undergo
a pilot trial in a real environment. During the pilot trial,
some problems will occur. The providers, especially the
chief provider, must solve these issues for smoothing
future business operation.

3.2 Service Element Representation

A service, which is abstract in the services concept,
would be expanded into a service scenario step by step. A
service is composed of service elements. The types of
service elements include services, roles, proprietors,
devices, transactions, and locations. A service here is
represented as the following figure.

A role in the services stands for an individual who
performs a specific task. The role frequently has
professional knowledge and plays an important part in
this service. For example, the defined roles in home-care
services are doctor, nurse, centre-staff, care-giver, and so
on. A role in the services concept is represented by a
circle with a person within it, such as the following
figure.

A proprietor in the services is responsible for
providing general service. This could be combined and
replaced into the service through SLA. The collaborative
policies are derived from proprietors. For example, the
proprietors are the drug deliverer, the hospital, the
transporter, and the ambulance, among others. A
proprietor is represented by a circle with a service
provider such as a car or a building within it. The
representation is shown as the following figure.

A device in the services indicates a technical system
which could be software, hardware, end-device, system
or platform. The technical systems are created through
ICT, which are especially focused on software techniques
and communication techniques. For example, the defined
devices are the homebox, service platform, and
bio-signal measurable devices. The homebox, which was
developed in our project, is a gateway for collecting and
transferring personal bio-signals in the patient’s house.
Service platform is a software platform for service
integration, delivery, and management. An example of
the device representation is shown as the below figure.

A transaction is represented as a solid line with a
bi-directional arrow. An action(s) on the line is (are) an
executable action(s) between a service and a role (or a
proprietor). An action would be separated into sequential
items in the service scenario. The representation of a
transaction is shown as the following figure.

� An Action(s)

A location is a position where a person or a device is
located. Delivering services to a remote side is an
important action in modern business models. The
services are provided via a communicable network
because the service providers and consumers are located
in different positions; thus a demarcation of the location
is necessary. For example, the defined locations are
home, care center, and hospital. An example of location
representation is shown as the following figure.

Services are controlled and monitored by a specific
role. A dotted line between a service and the role means
that the service is uniformly monitored by that role. The
progress of a service would be monitored if it is
necessary. A service should have features of reliability

Service
Name

340

and efficiency in a real-time system. The services in real
life are frequently complex; we would indeed have to
manage them using a well-defined service platform, such
as service-oriented platform.

4. Case Study

In the home-care services area, patients with chronic
diseases need long-term care at home. If they are
hospitalized for a long time, a lot of costs are entailed,
such as the financial and emotional burden on their
families as well as wastage in hospital resources.
Therefore, one effective solution is to remotely take care
of patients at home. However, that would be a challenge
for both the patient’s family and the hospital. In this case
study, the home-care services are developed by following
service life cycle. The service elements introduced in the
previous section are also included in the home-care
services concept. The services concept in chronic
home-care area is shown in Fig. 2.

The home-care services are derived from the services
concept. By composing the service elements, service
scenarios could be created. Two service scenarios, named
as health status monitor and emergency medical
treatment, are described in the following sub-sections.

4.1 Health Status Monitor

The patient’s health status is regularly monitored by
homebox and bio-signal equipment in the house. This
service is triggered three times every day. First, homebox
sends bio-signals to the SOA-based healthcare platform.
When the platform receives the signals, these will be
automatically judged by inferable components, which are
pre-installed into the platform. If unusual signals are
detected, an alert for the patient will be sent to
centre-staff’s monitor. At the same time, the staff can
obtain the patient’s conditions through a telephone call, if
it’s connected. At the same time, the patient’s EHR and
conditions will be sent to doctor’s computer through the
service platform for getting the doctor’s recommendation.
The centre-staff can then quickly take care of the patient
and process exact actions for him/her. The service
scenario of the health status monitor is shown in Fig. 3.

Fig. 2 Home-care Services Concept

Fig. 3 Health Status Monitor

Fig. 4 Emergency Medical Treatment

4.2 Emergency Medical Treatment

The service for patient’s emergency care is designed
on the service platform. The service will be triggered by
the unusual bio-signals, and while the doctor also
suggests the patient to diagnose emergently. Thus the
centre-staff will immediately call the emergency medical
system (EMS). At the same time, the SOA-based
healthcare platform is notifying patient’s family. While
the patient is being taken to the hospital by an ambulance,
his/her EHR and the unusual signals are also sent to the
hospital (HIS system) through the specific gateway in the
service platform. Finally, the patient’s emergency will be
sent to his/her care-giver PDA. The service scenario of
emergency medical treatment is shown in Fig. 4.

The SOA-based healthcare platform is layered out and
designed by following SOA principles. Its architecture is
in the reference [5]. The service platform can provide
executable environments which support standardized
messages, various interfaces and flexible connections.
Different services techniques and providers could
cooperate on this platform. Those messages among
providers are passed through a specific message gateway
[11]-[12]. The software components are derived from
these service elements and are implemented to build up
the platform. The components are in described by
following Unified Modeling Language (UML) and
programmed by C#.NET language.

341

Main board Display

Homebox

system
Homebox system

+ Manometer

Fig. 5 Homebox system

Fig. 6 Rating Services

5. Experiment – A Pilot Trial

5.1 Experiment Environment

The homebox is an embedded system developed by
our team in 2006. It is a message gateway used for
collecting and transferring patient’s bio-signals with
his/her conditions to a remote server. At the local site, it
could connect bio-signal equipment using RS232 and
USB2.0 interfaces. An Ethernet port is also built in the
box. Its kernel core is PXA270 with 312MHz CPU and
64MB SDRAM. A 512MB SD card and boot ROM are
used to boot the system. Linux kernel version 2.6 is
pre-installed as its operation system. A 7” Widescreen
LCD with 480x234 Resolution is used for its display.
Four user defined hot keys on its surface are used for
pressing Yes, No, Enter, and Display on/off. The
homebox is one of the main devices connected to enable
healthcare services at the client site. The homebox is
shown in Fig. 5.

With our specific components, the homebox installed
in patient’s house is reliably on-line for 24 hours a day.
The message gateway is even pre-installed to remotely
call web services. All components are implemented by
C#.NET language. One hundred homeboxes were set up
in 100 patient’s houses in Kaohsiung City, Taiwan.

The SOA-based healthcare platform is set up in the

home-care service center, where the staffs are. A tool for
controlling service flows is applied in the service
platform. With the tool, centre-staff can be aware of
services’ progresses. The customized components in the
platform are developed by C#.NET language. The users’
profiles and bio-signals are permanently stored in MS
SQL server 2005. The services scenarios mentioned in
Section 4 are experimented in a real environment. One
hundred chronic patents were involved in the trial. The
pilot trial lasted from September 2007 to August 2008 in
Kaohsiung City. The chief medical provider is Chung-Ho
Memorial Hospital.

5.2 Experimental Results

The usability of the health status monitor service was
rated during the pilot trial. The usage rate was below
30% during the first three months. After eight months,
the usage rate increased and reached 80%. This means
that more patients got used to the service in the long run.
The usage rate was stable up to 80% in the last three
months. Patients treat using the service as their daily job.
When their bio-signals are forwarded and stored in the
back-end server, their health statuses are regularly
monitored.

The patients’ unusual rate was close to 30% before
they joined the pilot trial. However, they cannot be
sensibly taken to the hospital when they encounter an
unusual condition. The average time of taking them to
the hospital is between 10 to 15 hours. However, the
medical treatment for them is effective within three hours.
Fortunately, our emergent service of medical treatment is
enabled when unusual condition is detected. This service
could take a patient to the hospital within an average of
35 minutes. Therefore, the variation that a patient will be
saved in a critical condition is fairly significant.

The other services were also validated by the pilot trial
in this study. The care-givers visited patient’s home and
took care of them twice a week. They evaluated and
recorded the patients’ health and life skills. That was why
the unusual rate was reduced to below 10%. The rated
services are shown in Fig. 6.

6. Conclusion

Up to now, Service-Oriented Architecture (SOA) has
become one of the most important techniques to realize
those daily services in various areas. Therefore, we
should explore systematic methods to realize services
from the service-centric viewpoint. In this paper, we
carefully explained the interoperability of service
creation and realization along its life cycle. Using the
methodical sequences, domain-specific services can be
well created and designed. The representations of service
elements were even used for communicating among
providers during service creation. We had validated our
methods by the pilot trial in the home-care case study.
The experimental results had represented its usability and
effectiveness. We believe that a successful experience on
service realization is worthy to be shared.

(%)

Month

342

7. Acknowledgements

This research was supported by the 2th Applied
Information Services Development and Integration
project of the Institute for Information Industry (III) and
sponsored by MOEA, Taiwan R.O.C.

Care-experts and pilot patients were supported by the
Department of Medical Information, Chung-Ho
Memorial Hospital in Kaohsiung, Taiwan R.O.C.

8. References

[1] Thomas Erl, Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall PTR, 2004.

[2] Dave Hornford, Definition of SOA, The Open Group,
October, 2006.

[3] Choudhary, V., “Software as a Service: implications for
investment in software development,” in Proceedings of the
40th Annual Hawaii International Conference on System
Science (HICSS’07), Los Alamitos, CA, USA, 2007, pp.
209-218.

[4] Yvonne Balzer, “Improve your SOA project plans,” IBM
Global Services, July 2004.

[5] Chi-Lu Yang, Yeim-Kuan Chang and Chih-Ping Chu,
“Modeling Services to Construct Service-Oriented
Healthcare Architecture for Digital Home-Care Business,”
in Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering
(SEKE’08), San Francisco, USA, July, 2008.

[6] Eric Newcomer and Greg Lomow, Understanding SOA
with Web Services, Addison Wesley, January, 2005.

[7] Asit Dan, Robert Johnson and Ali Arsanjani, “Information
as a service: modeling and realization,” in Proceedings of
International Workshop on Systems Development in SOA
environments (SDSOA’07), IEEE Computer Society, Los
Alamitos, CA, USA, May, 2007.

[8] Gennaro Cuomo, “IBM SOA on the Edge,” Proceedings of
the 2005 ACM SIGMOD International Conference on
Management of Data, ACM Press, New York, NY, USA,
2005, pp 840-843.

[9] Ned Chapin, “Service Granularity Effects in SOA”, in
Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering
(SEKE’08), San Francisco, USA, July, 2008.

[10] H. Xu, M. Ayachit and A. Reddyreddy, ”Formal
Modeling and Analysis of XML Firewall for Service
Oriented Systems,” International Journal of Security and
Networks (IJSN), Vol. 3, No. 3, 2008.

[11] Chi-Lu Yang, Yeim-Kuan Chang and Chih-Ping Chu, “A
Gateway Design for Message Passing on SOA Healthcare
Platform,” in Proceedings of the 4th IEEE International
Symposium on Service-oriented System Engineering
(SOSE’08), Jhongli, Taiwan, Dec., 2008.

[12] Anthony Nadalin, Chris Kaler, Phillip Hallam-Bakerand
and Ronald Monzillo, Web Services Security: SOAP

Message Security 1.0, Organization for the Advancement
of Structured Information Standards (OASIS), March,
2004.

[13] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler, François Yergeau eds. Extensible Markup Language
(XML) 1.0 (Fourth Edition), World Wide Web Consortium
(W3C) Recommendation, Nov., 2008.

[14] David B., Canyang Kevin L., Roberto C., Jean-Jacques
M., Arthur R., Sanjiva W. et al. Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language.
W3C:http://www.w3.org/TR/wsdl20-primer/, 26 June 2007.

[15] Martin G., Marc H., Noah M., Jean-Jacques M., Henrik
F., Anish K., Yves L. SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), W3C: http://www.w3.org/
TR/2007/REC-soap12-part1-20070427/, 27 April 2007.

[16] Tom B., Luc C. and Steve C. et al. UDDI Version 3.0.2.
OASIS: http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf, 19
October 2004.

343

An Extendible Translation of BPEL to a Machine-verifiable Model

John C. Sloan, Taghi M. Khoshgoftaar, Augusto Varas

Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Raton, Florida USA
taghi@cse.fau.edu

Abstract
Model checking can exhaustively verify if a Business

Process Execution Language (BPEL) program correctly
orchestrates activities amongst a collection of web ser-
vices. We automate construction of a machine verifiable
model given a BPEL program and a set of modeling
assumptions. In particular, we define an intermediate rep-
resentation that is both extendible and supports rule-based
generation of these models. This representation captures
the notion of context in terms of a finite state transducer.
Context enables an analyst to express and confine modeling
assumptions to specific basic or structured activities inside
a BPEL artifact. Finally, we present a subset of production
rules for converting the intermediate representation into a
model in Promela – the language used by the Spin model
checker. We illustrate these ideas with an excerpt from a
case study.

Keywords: web services, BPEL, formal verification,

model checking, Promela, Spin.

I.. Introduction
a) Motivation: Orchestrating web services involves

combining loosely coupled autonomous services, each hav-

ing its own interface, advertised functionality, and specified

behavior. Such orchestration of black-box services frees

developers from low-level concerns involving platform,

implementation, and versioning.

These freedoms render white-box testing techniques in-

effective and, for safety or fiscally critical systems, suggest

the need for exhaustive verification techniques like model

checking. An orchestration will behave unexpectedly if it

is subject to implicit assumptions. Explicitly representing

these assumptions in a machine-verifiable way will help

safeguard against compositions that exhibit undesirable

forms of service interaction.

Recent efforts have been made to automate the gen-

eration of machine verifiable models from web service

artifacts. Such automation seeks to minimize both human

effort and judgment in model capture. These efforts, while

laudable, have resulted in modeling artifacts that are diffi-

cult to understand, troubleshoot, and extend.

b) Contributions: This paper outlines an extendible

approach to automating the translation of BPEL source

code to a machine-verifiable target model. It improves on

earlier approaches, by enabling the practitioner to specify

assumptions intended for only portions of the target model.

Portions of the composition that have been deemed reliable

can be abstracted to models having smaller state spaces,

while newer less reliable portions can be modeled in

greater detail.

c) Overview: A verifiable model must capture what

is both stated and implied by the BPEL artifact. We will

define a translation of a BPEL artifact (i.e., what it states)

into a relation, defining and applying notions of frame,

slot, and context to the translation process. In particular,

this relation will represent a collection of lexically scoped

frames, with each frame comprised of a collection of tuples

known as slots. We make assumptions about the behavior

implied by the BPEL execution model, by adding slots

into certain frames. In the case study, we added modeling

assumptions concerning atomicity and synchrony. Space

did not permit us to discuss assumptions that enable the

verification of more pessimistic models that feature non-

determinism.

Computing the value of a context entry for each slot

enables us to specify the scope and effect of slots that rep-

resent assumptions. We construct a finite state transducer

to compute this context along with the three other content-
related entries that comprise each slot.

Given a representation enriched by a number of assump-

tions, we formulate a set of rules for translating each frame

into an expression in the target modeling language. Each

rule is comprised of atomic propositions, each referencing

a portion of certain slots. As a Boolean expression over

these atomic propositions, a satisfied antecedent will gen-

erate an expression in the target modeling language.

We provide the needed intuition with an excerpt from

a case study. Based on a prototype under development,

we lend practical insights into how this approach is being

implemented.

The rest of this paper is organized as follows: Sec-

tion II describes the translation from a BPEL artifact to

344

frames. Section III presents rules for translating frames to

expressions in the target modeling language Promela, while

discussing the impact of added assumptions. Section IV

examines work related to automated translation of BPEL to

verifiable models. Finally, Section V provides a summary

and brief description of future work.

II.. BPEL to Frames
A BPEL artifact can be regarded as a collection of

nested XML elements forming some tree structure. A

translation must preserve its meaning and nested structure

while simplifying its form. Conceptually, this involves

squeezing the syntactic sugar out of the BPEL artifact,

leaving only a single four column table that captures

what the artifact expressly states. We then add entries to

the tabular form to capture what is implied, particularly

assumptions about how BPEL is executed. As a running

example, we used an abbreviated version 1 of the BPEL

artifact for the Purchase Order Process appearing in the

WS-BPEL Specification [1]. This section defines the trans-

lation into a tabular form that preserves both context and

content.

A. Computation of context
Computing the context of any element in a BPEL arti-

fact, enables us to confine modeling assumptions to some

non-global process scope. We describe this computation

in terms of deterministic finite state transducer M =
(Q, q0, qf , Σ, Γ, δ, φ). For the set of states Q, both initial

state q0, and final state qf are the same. Given alphabets

Σ and Γ, which we describe in the next paragraph, we

define state-transition function δ : Q×Σ → Q, and output

function φ : Q×Σ → Γ in a way suggested by Figure 1.

Central to this construction is how we define input and

output alphabets Σ and Γ.
We abstract the structure and relationships between

BPEL’s basic activities, structured activities, and control

links using input alphabet Σ. Each σ ∈ Σ can represent an

entire BPEL element as in the case of declarations, links,

and basic activities. Each σ can also represent either the

opening or the closing portions of a structured activity. The

left hand side of Table I lists each input symbol, a brief

description, and an example.
Output alphabet Γ bears a 1-to-1 correspondence to Σ

for each symbol γi ∈ Γ retaining the same meaning as

its corresponding symbol σi ∈ Σ, changing only its form.

The right hand side of Table I lists these output symbols

and examples of their output forms. These alphabets will

enable us to preserve the nested structure by using a finite

depth stack.
The end result is the automaton in Figure 1. The left-

hand side of Figure 1 shows a finite state transducer that

1Download from: http://www.osoa.org/display/Main/Relationship+
between+SCA+and+BPEL

translates a BPEL artifact into a sequence of four-tuples,

an example of which appears to its right. Defining this

abstracted alphabet enabled us to construct a finite state

machine that can process nested elements using a stack of

fixed maximum height. In the interest of space, Figure 1

does not show state q0 which would have appeared below

state q1. State q0 is both initial and final and represents the

bottom of the stack.

Fig. 1. Finite state transducer M , and sample
input/output

As the example on the right-hand side of Figure 1

shows, only the top of the stack can process an element

for either a basic activity b or a control link declaration

l. As each opening portion (of a structured activity

is encountered, its location gets pushed onto the stack,

modeled by the transition from state qi to qi+1. Conversely,

each closing portion) pops the stack. From the example on

the right-hand side of this figure, one can discern the value

of context stack 30:36:43:50 which will comprise the

first of four entries in some slot.

B. Computation of content
To discuss the remaining three entries, all of which

relate to content, we must first define the notion of frame.

A frame is a collection of all four-tuples (or slots) that

in some way share the same value of context stack c.

Examples of a frame include the collection of all slots that

represent some declaration or basic activity. Furthermore,

a frame may include slots for all basic and structured

activities nested within a single structured activity or

process scope. More formally, frame F ⊆ R is a subset

of some relation R ⊆ C × T ×A× V in which some

context c ∈ C is subject to the following requirement.

For some context stack value ci ∈ C and prefix c�i � ci,

all tuples in F share the same common prefix, namely

c�i. Since the ordering of R is the same as the ordering

345

σ: Description: Examples: γ: Examples:
d declarations <partnerLink name="pOP".., d′ 01:13 partner plName pOP

<variable name="vPO"../> 01:24 variable vName vPO
(structured activity begin <flow> (′ 01:30:36 struct strucType flowOpen

<sequence> 01:30:36:43 struct strucType sequenceOpen
l control links <link name="xStI"../> l′ 01:30:36:40 link lDecl xStI
b basic activities <invoke partnerLink="pWhs" b′ 01:30:36:43:50 basic pLink pWhs

..>..</invoke> 01:30:36:43:50 ..
) structured activity end </sequence>)′ 01:30:36:43 struct strucType sequenceClose

</flow> 01:30:36 struct strucType flowClose

TABLE I. Input Σ and output Γ alphabets for Transducer M

of its BPEL artifact, by construction of machine M , all

such slots will be grouped together into one equivalence

class, namely frame F . An example of this is shown

in the <sequence> construct starting at line 43 in Ta-

ble II. Here, 01:30:36:43 represents prefix c�i, while

01:30:36:43.44 may represent some ci. Also note,

predecessor c�i−1 of c�i is 01:30:36:41 and successor

c�i+1 is 01:30:36:59.

The second entry in the slot, and first content-related

entry, is a text identifier corresponding to a symbol in the

output alphabet. It denotes the type T of some frame F .

For basic activities and declarations the third and fourth

entries denote attribute A and value V corresponding to

some attribute-value pair appearing in a BPEL element.

For structured activities, the type of activity and its portion

(i.e., open or close) appear in the third and fourth entries.

Table II provides a portion of the BPEL artifact in its upper

half, while its lower half shows its frame representation.

This example pertains to the top two stack entries in

Figure 1. This table also shows supporting declarations

and assumptions. It will serve as an example of how our

prototype performs translations into Promela.

III.. Frames to Promela
The lack of a direct mapping from BPEL to Promela

initially motivated our use of some intermediate form R.

Although we had not yet dealt with specifics, we extended

R with modeling assumptions to obtain R′. From R′ we

produce derivative forms Rd, Rs, and Ro, each suitable

for generating Promela declarations, services, and the

orchestration, respectively. We now discuss each encoded

assumption within the context of this translation.

We generate a three-part Promela model of how BPEL

orchestrates its interaction with its environment. The first

part, Rd, includes declarations of message types, channels,

and variables, each drawn from corresponding BPEL part-

ner link and control link declarations. The second part, Rs,

models each service that interacts with the orchestration,

while the third part, Ro models the orchestration being

verified. Unlike declarations, generating the latter two parts

is more complex, since each Promela expression draws

from two or three separate contexts.

Relation Rs ⊆ R′ can be computed by selecting all

A BPEL code snippet:
..
17 <partnerLink name="pWhs" partnerLinkType="pltWhs"
..
24 <variable name="vPO" messageType="mtPO" />
..
26 <variable name="vShI" messageType="mtShI" />
27 <variable name="vAvl" messageType="mtAvl" />
..
41 <link name="xStI"/>
..
43 <sequence>
44 <assign>
45 <copy>
46 <from>vPO.ci</from>
47 <to>vShr.ci</to>
48 </copy>
49 </assign>
50 <invoke partnerLink="pWhs"
51 operation="checkInventory"
52 inputVariable="vPO"
53 outputVariable="vAvl">
54 <sources>
55 <source linkName="xStI" />
56 </sources>
57 </invoke>
58 </sequence>
59 <sequence>
..
The corresponding relation R′:
01 require basic atomic
..
01:17 partner plName pWhs
01:17 partner plType pltWhs
01:17 assume buffsize 1
..
01:24 variable vName vPO
01:24 variable msgType mtPO
..
01:26 variable vName vShI
01:26 variable msgType mtShI
01:27 variable vName vAvl
01:27 variable msgType mtAvl
..
01:30:36:41 link lDecl xStI
01:30:36:43 struct strucType sequenceOpen
01:30:36:43:44 basic actType assign
01:30:36:43:44 basic operation copy
01:30:36:43:44 basic from $vPO.ci
01:30:36:43:44 basic to $vShr.ci
01:30:36:43:50 basic actType invoke
01:30:36:43:50 basic pLink pWhs
01:30:36:43:50 basic portType pWhsPT
01:30:36:43:50 basic operation checkInventory
01:30:36:43:50 basic inVar vPO
01:30:36:43:50 basic outVar vAvl
01:30:36:43:50 basic source xStI
01:30:36:43 struct strucType sequenceClose
01:30:36:59 struct strucType sequenceOpen
..

TABLE II. BPEL (top) and its relation R′ (bot-
tom)

frames Fp ∈ R′ which for any frame Fp, there exists

some attribute ap ∈ A that denotes partner link name.

This, for example, includes attributes plName and pLink

that appear in declarations or basic activities. Ordering

these frames by their reference to partner link name, will

group their frames together by service, resulting in Rs.

Hence, generating Promela code for each service entails

an in-order traversal of Rs. Generating the orchestration

is somewhat simpler, since it entails traversal of Ro in its

original lexical ordering.

346

A. Formulating rules
Generating Promela code entails applying a number of

rules to R′. Here we describe how rules are formulated.

Each rule is comprised of an antecedent and a con-

sequent. The antecedent is a Boolean expression over a

set of terms, where each term is an assertion involving

one or more slot references. We treat each slot refer-

ence as an atom in a propositional logic, expressing it

as some pair (ti, ai) where ti ∈ T and ai ∈ A. A

primitive assertion may test for the existence of some tuple

rk = (ck, tk, ak, vk) ∈ Fk which evaluates to true only if

(ti ≡ tk) ∧ (ai ≡ ak). A non-primitive assertion may

involve some comparison between the values of two slot

references. In addition to asserting the existence of each

tuple in the comparison, assertion ”(ti, ai) ≡ (tj , aj)”
further implies the equivalence of their values vi ≡ vj in

tuples ri = (ci, ti, ai, vi) ∈ Fi and rj = (cj , tj , aj , vj) ∈
Fj respectively. If the Boolean expression over these

assertions evaluates to ’true’, then the antecedent is said

to be satisfied, and all slots in all matching frames will

become visible to the consequent.

The consequent is comprised of a sequence of slot

references and unquoted string constants that specify the

Promela expression to be generated. For slot references

inside the consequent, our prototype outputs the value

vk ∈ V corresponding to some slot reference (tk, ak). The

following paragraphs describe a set of rules that generate

Promela code from the lower half of Table II. Beneath

each rule, we provide an example of its application.

B. Generating declarations
Promela declarations collectively refer to message

types, channels and variables. Their rules have antecedents

comprised of a single primitive assertion. Rule 1 exhibits

the most interesting consequent and is the one that gener-

ates channel declarations.

A closer look at channel declarations provides insight

into assumptions concerning synchrony. Implied in the

BPEL execution model is that each orchestrated web

service operates asynchronously. We encoded this assump-

tion as the slot 01:17 assume buffsize 1 which

matches slot reference (assume, buffSize) in Rule 1. Re-

lated work [2], [6] identifies the conditions under which

one may model web services as if they operated syn-

chronously. If one or more services in a composition is

synchronizable, and if that portion was observed to be

reliable, then we can realistically model it as a composition

of synchronous rendezvous channels of buffer size zero.

During verification, a model with such zero-place channels

will tend to have a smaller and more tractable state space.

The model in our example was generated under op-

timistic assumptions. Pessimistic assumptions require in-

troducing some notion of non-determinism to simulate

Rule 1: ∃ (partner, plType) ⇒
chan (partner, plType) =

[(assume, buffSize)] of {mtype, byte};

chan pltWhs = [1] of {mtype, byte};

Rule 2: ((partner, plName) ≡ (basic, pLink)) ⇒
active proctype (partner plName)() { do :: {

active proctype pWhs() { do ::{

Rule 2’: (partner, plName) �≡ (basic, pLink) ⇒ } od }
} od }

fault-prone operation. This is needed to model cancellation

of activities in BPEL, be they fault and compensation

handlers or the <terminate> construct. Since cancel-

lation of groups of activities can occur only within some

scope, context must be propagated from BPEL to the

machine verifiable model. At minimum, we must assume

as did [9] that a cancellation requires a two-place buffer

for each activity inside some scope. Additionally, cancella-

tion requires generating Promela code for BPEL’s default

catchAll fault handler. Hence, when listening over its 2-

place channel, a receiving activity must give cancellation-

type messages priority. Cancellation is not the only use

case for non-determinism. The BPEL <pick> activity

requires that all non-selected activities affirmatively receive

a skip message lest they hang [11]. Generating the Promela

code under various sets of pessimistic assumptions is left

for future work.

C. Generating services

A Promela artifact must model how BPEL orchestrates

its interaction with its environment. In the version of

the Purchase Order Process used in our case study, the

environment includes three services: an order processing

service operating via partner link pOP , warehouse service

via pWhs, and payment service via pPay. Each of these

three services are modeled as a separate process (i.e.,

Promela proctype). A Promela process definition modeling

a web service includes a process declaration, followed by

a body that includes pairs of sending (!) and receiving (?)

channel operators. Rule 2 generates the process declaration

at the first frame for which the antecedent is satisfied. Its

closing form, Rule 2’ completes the process definition with

a negated antecedent.

Basic activities like the ones in this case study must

execute atomically [11], [16], requiring us to stipulate tuple

01 require basic atomic. It’s context 01 makes

it applicable to all activities in the composition. Guided

by this requirement, Rule 3 and its closing form produce

the Promela code to model this behavior. As pointed out

by [3], [9], this assumption is not always tenable. Imple-

mentations of middleware layers can permit interleafed

execution of more than one basic activity via the same

partner link. Relaxing the atomicity assumption produces

347

Rule 3: ∃ ((require, basic, atomic) ∧
(partner, plName) ≡ (basic, pLink) ∧
((link, lDecl) ≡ (basic, target) ∨

(variable, vName) ≡ (basic, inVar) ∨
(variable, vName) ≡ (basic, outVar) ∨
(link, lDecl) ≡ (basic, source)

)) ⇒
atomic {

atomic {

Rule 4: ((partner, plName) ≡ (basic, pLink) ∧
(variable, vName) ≡ (basic, inVar)) ⇒
(partner, plType)?(variable, msgType)((variable, vName));

pltWhs?mtPO(vPO);

a more realistic model, but at the expense of a larger state

space. If only one service has been observed to violate the

atomicity assumption, it would be useful to model only its

channel events as not being atomic. Thus we can include

tuples of the form (cj require basic atomic) for

context cj of each basic activity j for which the atomicity

assumption holds.

Rule 4 generates an expression that listens over a

channel (i.e., pltWhs) for a message (i.e., mtPO(vPO))

inside service pWhs. The sending end of this channel

resides in the orchestration. It is generated by a comple-

menting form that is otherwise identical to the listening

end, except that the channel operator in the consequent

is reversed. Notice that input and output variables are

so named from the standpoint of the service rather than

orchestration. Thus, it is the service that listens using the

? operator for input variable inVar.

The remaining two channel expressions within the

atomic scope of the service that supports the basic activity

shown in Table III were each generated by its own rule.

The rule for the first expression generates a send of an

availability message (i.e., mtAvl(vAvl)) over a channel

(i.e., pltWhs) back to the orchestration. The rule for the

second expression generates code for the sending or source
end of a control link (i.e., ltxStI). The control link is

always synchronous and the expression for its source end

is always placed last in any sequence of messages for a

basic activity. Doing so blocks the start of the activity at

the destination or target end until the activity at the source

end completes. Since all three message events occur inside

the same BPEL basic activity, and since we assume atomic

execution, they are all placed inside the scope of the same

atomic construct, as can be seen in the service portion of

Table III.

D. Generating the orchestration
The orchestration is then modeled as a single process

that mediates interaction between these services. Table III

shows the Promela code for both the warehouse service

and the portion of the orchestration that interacts with it.

Our prototype also automatically inserts Promela labels

that support verification-time detection of deadlock and

Service:
active proctype pWhs()
{
do
:: {
atomic
{
pltWhs?mtPO(vPO);
pltWhs!mtAvl(vAvl);
ltxStI!xStI;
}

pltWhs!mtShI(vShI);
}
od

}
Orchestration (portion):
...
/* sequence43 start *//* BPEL assign activity abstracted away */atomic
{
pltWhs!mtPO(vPO);
pltWhs?mtAvl(vAvl);
}

/* sequence43 end */...

TABLE III. Sample Promela output

progress. Declaration and maintenance of variables and

their use in formulating orchestration-specific property as-

sertions still require manual insertion, as is the formulation

of properties in temporal logic. Further automation is left

for future work.

IV.. Related Work
The authors assessed tool support for the formal ver-

ification of safety or fiscally critical service oriented ar-

chitectures (SOA) [14], e-science SOA [15], and use cases

that demand automating the process of conversion [13]. To

date, the most mature conversion tool support is offered

by the WSAT utility [5] for converting BPEL to mod-

eling languages for the Spin and SMV model checkers.

However, the models generated do not make clear the

assumptions used, nor do they appear to be intended for

inspection. Thus, for example, an error trace from Spin

becomes difficult for a human to interpret.

A prototype tool for translating BPEL into Promela was

mentioned in [9]. It supports parameterization by degree

of asynchrony based on a hierarchy of communication

models. It generalizes on earlier work that identifies under

what circumstances can a BPEL composition be treated

as if it were a collection of synchronously communicating

web services [6]. Of interest in [9], is their description

of tool support for identifying the simplest model (i.e.,

in terms of queueing assumptions) that nonetheless retains

some specified property (i.e., boundedness). This work did

not address the atomicity assumption, nor was there a clear

description of how it might be extended to address it.

A means of translating BPEL to Promela via an open

workflow net was described in [10]. As part of the

Tools4BPEL initiative 2, BPEL2oWFN employs a form

of flexible model generation into its intermediate form,

2http://www2.informatik.hu-berlin.de/top/tools4bpel/

348

providing an approach to generate a compact model that

is tailored to the analysis goal. The specifications were

coarser-grained than our approach. Furthermore, the tool

used for translating an open workflow net to Promela

resulted in a single Promela proctype, which made it

difficult to simulate.

Tool support for conversion from BPEL to a process

algebraic formalism is offered by LTSA. LTSA uses an

Eclipse plug-in to do this conversion into their formal-

ism that can thence be compared to that generated from

user-specified message sequence charts [4]. It can model

assumptions concerning the presence or absence of syn-

chrony, atomicity, and determinism but it is not clear

whether their tool supports scoping these assumptions to

specific basic or structured activities.

Conversion of BPEL to workflow type Petri nets can

model a robust set of concerns that involve all three classes

of assumptions using their BPEL2PNML tool [11], [12].

This approach did not seek to exploit the explicit channel

semantics of Promela, nor was it obvious if different parts

of a composition can be subject to different assumptions.

Once in Promela, there are a number of tools for

generating test suites [17] or for converting Promela to

models suitable for other verification environments. One

such tool offered by the VeriTech Project, provides a wide

range of tool choices to manage, reframe, or effectively

sidestep issues like the state space explosion problem [7].

In addition to the widespread use of Spin [8], the VeriTech

tool motivated our choice of Promela by providing a

gateway to other verification formalisms.

V.. Summary and Future work

We described an extendible mapping of BPEL artifacts

to machine-verifiable models written in Promela – the

modeling language used by the Spin model checker. Ex-

tendibility requires retaining the context of each attribute-

value pair appearing in a BPEL artifact. Using a finite

state transducer we described this notion of context, and

by construction, defined the translation from BPEL into

a well-defined intermediate form. This intermediate form

supports inclusion of entries pertaining to assumptions that

can be scoped to a portion of the composition. We then

defined rules that generate Promela code from entries in

the intermediate form. We used an excerpt from a well-

known case study to illustrate these ideas.

Of the fifteen rules we already specified, we presented

four of them along with either their closing or com-

plementing forms. Specifying a rule set that is in some

way complete is left for future work. This also entails

extending our prototype accordingly and applying it to a

suite of BPEL artifacts. Translations involving pessimistic

assumptions will require modeling non-determinism.

References

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,
M. Ford, Y. Goland, A. Guzar, N. Kartha, C. K. Liu, R. Khalaf,
D. Knig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri,
and A. Yiu. Web Services Business Process Execution Language
Version 2.0, April 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[2] T. Bultan, J. Su, and X. Fu. Analyzing conversations of web
services. IEEE Internet Computing, 10(1):18–25, Jan-Feb 2006.

[3] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. S. Rosenblum, and
S. Uchitel. Model checking service compositions under resource
constraints. In I. Crnkovic and A. Bertolino, editors, In Proceedings
of the 6th ESEC/SIGSOFT Symposium on Foundations of Software
Engineering, pages 225–234. ACM, 2007.

[4] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a
tool for model-based verification of web service compositions and
choreography. In L. J. Osterweil, H. D. Rombach, and M. L.
Soffa, editors, Proceedings of the 28th International Conference
on Software Engineering (ICSE’06), pages 771–774. ACM, 2006.

[5] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of
web services. In R. Alur and D. Peled, editors, Computer Aided
Verification, volume 3114 of Lecture Notes in Computer Science,
pages 510–514. Springer, 2004.

[6] X. Fu, T. Bultan, and J. Su. Synchronizability of conversations
among web services. IEEE Transactions on Software Engineering,
31(12):1042–1055, Dec. 2005.

[7] O. Grumberg and S. Katz. VeriTech: a framework for translating
among model description notations. International Journal on
Software Tools for Technology Transfer, 9(2):119–132, 2007.

[8] G. J. Holzmann. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts, U.S.A., 2003.

[9] R. Kazhamiakin, M. Pistore, and L. Santuari. Analysis of commu-
nication models in web service compositions. In Proceedings of
the 15th international conference on World Wide Web (WWW’06),
pages 267–276, New York, NY, USA, 2006. ACM.

[10] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing
interacting WS-BPEL processes using flexible model generation.
Data & Knowledge Engineering, 64(1):38–54, 2008.

[11] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel,
M. Dumas, and A. H. M. ter Hofstede. Formal semantics and
analysis of control flow in WS-BPEL. Science of Computer
Programming, 67(2-3):162–198, 2007.

[12] B.-H. Schlingloff, A. Martens, and K. Schmidt. Modeling and
model checking web services. Electronic Notes Theoretical Com-
puter Science, 126:3–26, 2005.

[13] J. C. Sloan and T. M. Khoshgoftaar. Toward model checking
web services over the web. In Proceedings of the Twentieth
International Software Engineering and Knowledge Engineering
Conference, (SEKE;08), San Francisco, California, pages 519–524.
Knowledge Systems Institute Graduate School, July 1-3 2008.

[14] J. C. Sloan and T. M. Khoshgoftaar. Tradeoffs in testing service ori-
ented architectures. In Proceedings of the 14th ISSAT International
Reliability and Quality in Design Conference, Orlando, Florida,
pages 141–145. ISSAT, August 7-9 2008.

[15] J. C. Sloan, T. M. Khoshgoftaar, and V. Raghav. Assuring timeliness
in an e-science service-oriented architecture. Computer, 41(8):56–
62, August 2008. IEEE Computer Society.

[16] W. M. P. van der Aalst, J. B. Jørgensen, and K. B. Lassen. Let’s
go all the way: From requirements via colored workflow nets to
a BPEL implementation of a new bank system. In R. Meersman,
Z. Tari, M.-S. Hacid, J. Mylopoulos, B. Pernici, Ö. Babaoglu, H.-
A. Jacobsen, J. P. Loyall, M. Kifer, and S. Spaccapietra, editors,
Proceedings of the OTM Conferences (1), volume 3760 of Lecture
Notes in Computer Science, pages 22–39. Springer, October 31 -
November 4 2005.

[17] Y. Zheng, J. Zhou, and P. Krause. A model checking based test case
generation framework for web services. In Information Technology:
New Generations, pages 715–722. IEEE Computer Society, 2007.

349

Generating Test Cases of Composite Services Based on OWL-S and EH-CPN

Bixin Li1,2, Ju Cai1, Dong Qiu1, Shunhui Ji1, and Yuting Jiang1

1School of Computer Science and Engineering, Southeast University
Nanjing 210096, Jiangsu Province, P.R.China Email: bx.li@seu.edu.cn
2Dept. of Computer Science and Engineering, University of California

Riverside, CA92521, USA. Email: lbxin@cs.ucr.edu

Abstract

In web service times, the techniques for composing ser-
vices are the base of service reuse and automatic integra-
tion. A new web service will be generated by composing
some existed web services, these web services cooperate
each other to provide a new more complex function. It is
needed and very important to test the interaction behavior
between any two web services during composition. In this
paper, a kind of enhanced hierarchical color petri-net (or
EH-CPN) is introduced to generate test cases for testing
the interaction, where EH-CPN is transformed from OWL-
S document, and both control flow and data flow informa-
tion in EH-CPN are analyzed and used to generate an exe-
cutable test sequence, and further test cases are created by
combining the test sequence and test data in an XML file.

1 Introduction

Web service technology has got widely and warmly wel-

comed in developing application software based on internet

environment, but it has raised many new challenges for its

testers, where two core challenges will be considered in this

paper are: (1) source code of a web service is invisible to

tester: clients of a web service can have functions provided

by the service but they cannot get the source code of the ser-

vice. It means that structure testing strategies are not able

to be used to test your wanted single services, because it is

impossible for testers who are not service providers them-

selves to generate test cases from source code of a web ser-

vice, some informal specifications are explored to see the

possibility for generating test cases, so both difficulty and

complexity raise. The specifications which are being ex-

plored include WSDL, BPEL, and OWL-S, some necessary

transforms are needed to generate test cases automatically

and precisely; (2) many intermediate states of web service

are also invisible to testers, it is hard to do testing manually,

some automatic test techniques are needed.

In order to solve those challenge problems, researchers

have introduced a variety of useful methods [1, 2, 3]. But

most of these methods are based on WSDL or BPEL spec-

ification that specifies the location of the service and the

operations (or methods), which the service will be exposed

to clients. Test cases generated by these methods are more

suitable for atomic web service or a composite service

within an organization. In a wide composing service envi-

ronment, web service is usually used to interact with other

services from different organizations, it will play a different

role. It is needed and very important to test the interaction

behaviors among different web services when we compose

some existed web services in a certain style to provide new

functions.

In this paper, an EH-CPN based test case generation ap-

proach has been introduced, where EH-CPN is an enhanced

hierarchical color Petri Net. The outline of the approach is

summarized as follows: at first, OWL-S document is trans-

formed to EH-CPN and further the process of web service

composition is displayed by this kind of Petri Net; next,

data flow and control flow information of EH-CPN are ana-

lyzed in detail to find all output-input-define-use chains (or

OI-du-chain); next, OI-du-chain is extended to correspon-

dent executable test sequences satisfying ALL-DU-PATHS
criterion; finally, both test sequences and test data are com-

bined to generate test cases.

2 Primaries

There are three important concepts will be used in this

paper, let’s see how they are defined.

Definition 1 Multiset[4]

A multiset bag is a function from a non-empty set A to non-

negative integer set IN , bag : A → IN . Let set Bag(A) =�
a∈A bag(a) be the set of all the multisets that are defined

in set A.

Definition 2 E-CPN

350

An extended color Petri Net (marked as E-CPN in this

paper) is defined as follows: E-CPN is a 6-tuple <
P, T, C, Cd, Pre, Post >

(1) P is a finite set of places;

(2) T is a finite set of transitions. There are five kinds

of typical transitions in web service composition: (2.1) ser-
vice invoking transition: When this transition is fired, it will

invoke the corresponding web service; (2.2) condition con-
trolling transition: When this transition is fired, it will in-

voke a condition checking function whose return value is

Boolean, and which places the transition will go to depends

on the return value; (2.3) concurrent controlling transition:
This transition is used to assort with synchronization be-

tween transitions; (2.4) interface transition: This transition

will invoke checking function to check whether or not the

output from upper net equals to the input to fire sub net;

(2.5) empty transition: This transition will invoke nothing.

The aim to define this transition is to make the net satisfy

the definition of Petri Net in some special condition.

(3) C is a finite set of colors.

(4) Cd is a color function Cd : P ∪ T → C
(5) Pre, Post ∈ β|P |×|T |, both are Incidence Matrixes,

where Pre is a pre-Incidence Matrix and Post is a post-

Incidence Matrix satisfying following equations:

∀(p, t) ∈ P × T, Pre[p, t] : Cd(t) → Bag(Cd(p)),

Post[p, t] : Cd(t) → Bag(Cd(p));

β is a set of grouping functions in following form:

β : Cd(t) → Bag(Cd(p))

Definition 3 EH-CPN

An enhanced hierarchical color Petri Net (marked as EH-

CPN in this paper) is defined as follows: EH-CPN is a 4-

tuple < S, C, IC, I0 >
(1) S is a finite set of sub nets satisfying following fea-

tures:

(1.1) ∀s ∈ S, s = (E-CPN, Ci, Co), Ci is a finite set

of input colors, Co is a finite set of output colors.

(1.2)∀si, sj ∈ S and si �= sj , (Psi
∪Tsi

∪Asi
)∩ (Psj

∪
Tsj

∪ Asj
) = Φ

(2) C is a finite set of color

(3) IC is an interface checking function which will

check whether or not the output coming from the upper net

equals to the input that can fire the sub net.

(4) I0 is an initialization state

3 Transforming OWL-S to EH-CPN

OWL-S is a web service describing language based on

ontology. OWL-S document contains some useful control

flow and data flow information, but they all are hidden in the

descriptive level document. In order to analyze and capture

some useful information, it is needed to introduce a mech-

anism so as to transform OWL-S document to an EH-CPN

in constructive way. In this mechanism: (1) all input vari-

ables and output variables are represented by color tokens,

where each variable has its own color; (2) the services are

transformed into transitions; (3) all input and output states

are transformed into places containing tokens; (4) the pre-

condition is represented by a condition checking function in

condition controlling transition or a guard function; (5) the

effect is represented by an output arc.

In OWL-S document, some outputs are conditional out-

put, which means the output will contain different variables

according to different conditions. To transform these out-

puts into corresponding places, we use a condition control-
ling transition to follow the place to control different out-

puts. We also change the condition expression to condition

checking function and put the function into the condition

controlling transition. In this way, different outputs will be

dispatched to different places. The control flow and data

flow relations will be captured by connecting arcs, transi-
tions or arc expressions.

In OWL-S specification, the service process is divided

into three kind of forms, where the atomic process and the

composite process can be invoked, but the simple process

can not be, and therefore the transformation of simple pro-

cess isn’t needed. So we only analyze atomic process and

composite process in next sections.

3.1 Atomic process transformation

The atomic process describes the process of single ser-

vice that means it can not be divided again. It also has no

sub-services. When the input satisfies the firing rule, the

process will be invoked and corresponding output will be

produced. The construction of the atomic process of sub

net is more complex than that of the upper net, because sub

net must be connected to its supper net based on some con-

ditions. In order to check whether the input tokens coming

from upper net is conformance to the tokens required by sub

net, we add an interface transition. In this transition there is

an interface checking function used to check the input. But

we do not need this transition in non-sub nets.

In this paper, the atomic processes are divided into four

types according to the input and output: (1) Input coming
from single net. In this case, the input only comes from up-

per net. The transformation refers to Figure 1(a). (2) Input
coming from multi-nets. In this case, the input comes from

the upper net and the local net. The transformation refers

to Figure 1(b). (3) Non-conditional output. The transfor-

mation of the output part is the same as the output part of

Figure 1(a). (4) Conditional output. We add condition con-

351

Interface
checking

Service activity

Interface
checking

Service activity

Local
input

Interface
checking

Service
activity

C ondition
checking

(a)

(b)

(c)

Figure 1. The construction of atomic process

S ervice1 S equence
start

S ervice1

sub service sub service

Figure 2. Sequence structure

trolling transition to dispatch different output according to

the result of condition checking. The transformation refers

to Figure 1(c).

3.2 Composite process transformation

A composite process can be decomposed into some

atomic processes and/or other smaller composite processes.

If we organize atomic processes or composite processes in

a certain order using some control constructs, we will have

new web services for providing new functions. The control

constructs used in composite process include: sequence,

split, split+join, choice, any-order, if-then-else, iterate,

repeat-while, and repeat-until etc. Now we discuss how

to transform composite processes to EH-CPN in detail.

Sequence: The processes contained in this construct

will be invoked sequentially. The transformation refers to

Figure 2

Split+join: In this construct, the concurrent processes

are described too. All the processes have not only the same

precursor but also the same subsequence. When all the con-

current processes end, they enter next state at the same time.

We use a concurrent controlling transition to coordinate this

kind of synchronization. The transformation refers to Fig-

ure 3

If-then-else: Three properties i.e., ifCondition, then and

else, and two kind of services components are contained

S ervice1 S plit + join
start

sub service

C oncurrency1

sub service

C oncurrency2

sub service

C oncurrency
control l ing

Figure 3. Split+Join structure

in this construct; If ifCondition is true, the service in

then branch will be executed; otherwise, the service in else
branch will be executed. In our transformation, we map the

property ifCondition to a condition controlling transition
in EH-CPN to dispatch different states.

Repeat-while: In this construct, one testing condition
and one loop-process are contained. It tests the condition,

then, does the loop-process if the result is true, exits else. So

the loop-process is not executed if the condition is false. In

our transformation, the testing condition is mapped to con-
dition checking function, and then the function is put into a

condition controlling transition to display this construct in

EH-CPN.

Repeat-Until: This construct contains one testing con-

dition and one loop-process, which is the same as Repeat-

While construct. But there is a little difference of the exe-

cution process between them, it executes the loop-process

first, then checks the condition, later the loop continues if

the condition is true, exits else. So the loop-process will

be executed at least once anyway. We also map the testing

condition to a condition checking function and put it into

condition controlling transition to display this construct in

EH-CPN.

Any-order: This construct contains a list of processes

which will be invoked in any order except for concurrency.

All the processes must be executed at least once.

Using the above mechanism, we transform the control

constructs in OWL-S document to EH-CPN in a construc-

tive way. So the EH-CPN can intuitively describe the con-
trol flow of one process. But data flow is not very obvious.

4 Data flow in EH-CPN

In this section, we will discuss how to capture data flow

and control flow in the EH-CPN.

4.1 Notations and definitions

Firstly, we need to clarify some useful notations and def-

initions that will be used in our analysis.

(1) During the transferring process from transition Ti

to place Pj , the transition Ti will send some tokens

(x1, x2, ..., xn) to its subsequence place Pj . In EH-CPN,

these tokens are the interactive output of transition Ti and

are defined in place Pj . We mark this relation as Ti ·
Pj(x1, x2, ..., xn) in EH-CPN.

(2) During the transferring process from place Pi to tran-

sition Tj (non condition-controlling transition), the tran-

sition Tj will receive all needed tokens, which form the

interactive input of transition Tj . Obviously, they are

computation-use (or c-use) in Tj , and this relation is marked

as Pi · Tj(x1, x2, ..., xn) in EH-CPN.

352

(3) If transition Tj is a condition-controlling transition,

it will judge all the tokens (x1, x2, ..., xn) from pre-place

Pi. Obviously, these tokens are predicate-use (p-use) in Tj

and this relation is also marked as Pi · Tj(x1, x2, ..., xn) in

EH-CPN.

(4) If a token (i.e., a variable) x is defined in place Pi

and used in transition Tj (c-use or p-use), we call (Pi, Tj)
a define-use pair of token x and mark it as (Pi, Tj)x in EH-

CPN.

(5) A path segment in EH-CPN is defined as a sequence

which is composed of places and transitions and marked

as PATH = (Pi, Ti, ..., TjPj , ...), where, Pi, Pj ∈ P ,

Ti, Tj ∈ T . If token v is defined in place Pi and used

in transition Tj , we define PATH(v) as a define-use path
segment for v. If token v is defined only in a place Pi of

PATH(v) and no redefinition in any other places, we de-

fine this path as def-clear-path segment for v.

(6) From first three items, we know that all tokens are

the output of their pre-transition, and meanwhile the input

of their subsequence transitions. If a token v is defined in

place P as the output of the pre-transition of P (marked as

O) and is used in transition T as the input of the transition T
(marked as I). Place P and transition T are in the same path

(marked as PATHPT). We define this path as the output-

input-define-use chain (OI-du-chain) for token v and mark

this relation as (O, PATHPT , I).
If a token is used in a transition, it will be consumed,

so a token can be used only once in one process. Different

services will produce different outputs, so every token will

be defined only once according to first item. Therefore, we

can conclude that every OI-du-chain is a define-clear-path
segment.

(7) For a given set of test data, if there is a path in EH-

CPN, each transition in this path will be triggered sequen-

tially according to the order in path and arrive at final des-

ignated position. We regard this path as an executable path.

(8) There are two kinds of special positions in Petri Net.

One is the position that has no output-edges; another is the

position with end label. Both of them are regarded as end
position in EH-CPN.

4.2 Data flow analysis

By analyzing the incidence matrixes of EH-CPN, we will

have some useful data flow information for test case gener-

ation.

(1) we will have the define-use pairs of all tokens. On

one hand, the post-incidence matrix records tokens which

are produced after transitions have been fired. So a token

v is defined at the place where token appears for the first

time and this place should be added in the define-use pair
of token v. On the other hand, the pre-incidence matrix

records tokens which are needed to fire transitions. So the

transition which requires token v for the first time and this

transition should be added in the define-use pair of token v.

(2) After that, we can use those define-use pairs to find

all define-use-paths, further we will have all OI-du-chains
which contain all kinds of data flow information. In the

OI-du-chain, we can see which services are affected by a

certain variable. If we find all the OI-du-chain, we can get

all the interaction influence between services.

In next section, we will discuss how to generate test case

and illustrate how to get OI-du-chain in detail.

5 Test case generation

In EH-CPN based approach, test cases are generated in

three phases: we will discuss how to produce test sequence

in phase 1, then we discuss how to prepare test data in phase

2, finally we discuss how to generate test cases by combin-

ing test sequences and test data.

Phase 1: generation of test sequence Test sequences is

generated according to following steps:

Step 1: Preprocessor of EH-CPN The main work is

to identify the concurrent modules and modify them. In

EH-CPN, the concurrent module is described in split+join
structure. In this structure, there is a transition whose in-

degree is one and out-degree is bigger than one. We call this

transition split transition. There is a synchronization con-
trolling transition whose out-degree is one and in-degree is

bigger than one. Every concurrent module begins with a

split transition and ends with a synchronization controlling
transition. So we take this kind module as a black-box and

use one transition to replace the module whose input is the

input of split transition and whose output is the output of

synchronization controlling transition. The algorithm for

identifying all concurrent modules is omitted because the

space limitation.

Step 2: OI-du-chain generation OI-du-chain is com-

posed of three parts: O, I and PATH . By analyzing inci-

dence matrixes of EH-CPN, we can find all define-use pairs,

and further we can determine the O and I for every token.

The algorithm for computing the PATH of OI-du-chain
consists of two phases: (1) the algorithm is used to find a

sequence that begins with a transition where token v is used

and ends with a place where the token v is defined; (2) the

algorithm is used to reverse this sequence generated in (1).

By this way, we get a sequence which is the path of the

OI-du-chain for variable v.

Step 3: Pre-sequence and post-sequence generation To

let the path of OI-du-chain be an executable path, we need

to extend it with a pre-sequence and a post-sequence.

The computation of pre-sequence is easy, we can use the

algorithm in step 2 to compute it as long as we use the start

node of the EH-CPN and the first node in the path of OI-du-
chain as the two input parameters respectively.

353

P 0
T 0

P 1
T1

P2
T2

P3

T 5

P 4
T3

P5
T4

P6

Figure 4. concurrent module

Post-sequence can be found as follows: firstly, we will

find every subsequence node starting from the last node of

the path of the OI-du-chain until we arrive at end position,

and then, collect all the subsequence nodes orderly and a

post-sequence will be found. If a node has more than one

post-sequence, this way will find all the post-sequences.

Because EH-CPN is a hierarchical Petri-net, it is likely

that a complete path, consisting of the path segment of one

OI-du-chain and its pre-sequence and post-sequence, will

contain some transitions to sub nets. In this case, it is nec-

essary to replace those transitions with a new path in their

sub nets using above steps 1-3. The algorithm will repeat

this replacement process until the path segment of one OI-
du-chain has been found, where transitions do not contain

sub nets. In our EH-CPN based method, the path segment

of OI-du-chain with its pre-sequence and post-sequence al-

together are regarded as a test sequence.

Step 4: Test sequence generation for concurrent module
After steps 1-3, we have got a test sequence, but this se-

quence is generated based on modified EH-CPN in step 1.

where we just regarded concurrent module which includes

many transitions and places as a transition simply for easy

to deal with. If we find a sequence for real concurrent mod-

ules, we will have a complete and precise sequence based

on the primary EH-CPN. In order to get test sequences from

concurrent modules, we can do as follows: (1) we combine

every transition and its pre-places into one node, maintain-

ing relations between transitions unchanged. In this way,

the concurrent module has only one kind of nodes and we

name this net as action graph.(2) we construct test sequence

tree. The tree contains all the concurrent test sequences. (3)

one path which is from root to one leaf is a test sequence.

The following process illustrates how to transfer an ac-
tion graph into a test sequence tree: (1) Make the node

which is composed of split transition and its pre-place be

the root of a test sequence tree; (2) Delete above nodes and

their post arcs in action graph. The nodes which will be

deleted are in a path from root to node i in the kth(k ≥ 0)
level; (3) Find nodes which have no direct precursor and let

them be the children of node i.

Figure 4 shows the concurrent module in EH-CPN and

Figure 5 is an action graph of Figure 4, where we can

see that some transitions and places in Figure 4 have been

N 0

N 1 N 2

N 5

N 3 N 4

Figure 5. action graph

N0

N1 N3

N3 N2

N5 N5 N5 N5 N5 N5

N4 N2 N4 N2 N4 N2

N2 N4 N3 N1 N2 N4

N4 N1

Figure 6. test sequence tree

united as a new node in Figure 5. For example, P1 and T1
are united as node N1.

Figure 6 is a test sequence tree coming from Figure 5.

N0 is composed of split transition and its pre-places. So it

is the root of the test sequence tree. If we delete N0 and its

post arcs, we will find N1 and N3 with no precursor. So

N1 and N3 are children of N0 according to rule 2.

In Figure 6, the test sequence tree has six leaves, so it has

six test sequences. If we map nodes in one test sequence of

test sequence tree into corresponding places and transitions

in EH-CPN, we will get the test sequence of concurrent

modules. For example, (N0, N1, N3, N2, N4, N5) can

be mapped to (P0, T0, P1, T1, P4, T3, P2, T2, P5, T4,

P6, P3, T5). After generating test sequence of concurrent

module, we use these sequences to replace the correspond-

ing modified transitions in step 1. In this way, we will get

test sequences based on primary EH-CPN.

Step 5: Executable test sequence generation If there

are loops in EH-CPN, the test sequence is likely non-

executable. Because it is impossible to know how many

times the loop will execute exactly. In our EH-CPN based

way, we borrow the heuristic method, which is proposed

by C. Bourhfir[7], to solve this problem by finding an ap-

propriate loop and inserting it into the non-executable test

sequence to generate an executable sequence. Now we get

executable test sequences satisfying ALL-DU-PATH crite-

rion.

Phase 2: preparation for test data The main idea

to generate test data is originated from the XPT method

354

(XML-based Partition Testing) method in [8], which is con-

sisting of three parts: (1)map XML Schema which defines

the structures and data types of input and output of all the

web services to Category Partition. In this way, a set of

final instances and intermediate instance frames have been

got; (2) find all the preconditions which are included in the

services in one test sequence and do AND operation on all

those preconditions to get the value domain of the instances;

(3) generate the test data using random methods.

Phase 3: generation of test case Test cases in EH-CPN

based way is the combination of test data and test sequence,

where test sequence can be generated in section 5.1 and test

data can be got using the way in section 5.2. In EH-CPN

based way, the test sequence is only composed of all the

web services contained in a test sequence generated in sec-

tion 5.1. Test cases are coded in an XML file and can be

used as an input of a test tool.

6 Conclusion

There are many methods have been proposed to gener-

ate test cases for web service. These methods can be parted

into two basic categories: one can generate test cases based

on specifications, the other can generate test case based on

model checking, such as [1], [2],[4], [5], [6], [9], [10], and

[11] etc. In this paper, we introduced a method to generate

test cases based on a kind of extended hierarchical colored

Petri Net, where we transform OWL-S to EH-CPN for cap-

turing more control flow and data flow information so that

we can generate more precise test case. But the problem

is if there are too many services in one concurrent module,

the state explosion problem rises, so it is necessary to find

an effective method to solve state explosion problem and

improve our method in future work.

Acknowledgement

Bixin Li is now with University of California at River-

side as a visitor scholar and he thanks Prof. Rajiv Gupta

in University of California Riverside for providing a very

comfortable Lab. This work is partially supported by

the National Nature Science Foundation of China under

No.60773105, partially by the Natural Science Foundation

of Jiangsu Province of China under Grant No.BK2007513,

and partially by National High Technology Research and

Development Program under Grant No. 2008AA01Z113.

References

[1] X. Y. Bai, W. L. Dong, W. T. Tsai, and Y. N.

Chen. WSDL-Based Automatic Test Case Generation
for Web Services Testing. Proceedings of the 2005

IEEE International Workshop on Service-Oriented

System Engineering (SOSE’05).on 20-21 Oct. 2005

Page(s):207-212

[2] Y. B. Wang, X. Y. Bai, J. Z. Li, and R. B. Huang.

Ontology-Based Test Case Generation for Testing Web
Services. Eighth International Symposium on Au-

tonomous Decentralized Systems (ISADS’07).on 21-

23 March 2007 Page(s):43-50.

[3] H. M. Sneed and S. H. Huang. WSDLTest-A Tool
for Testing Web Services. Eighth IEEE International

Symposium on Web Site Evolution, 2006. Sept. 2006.

Page(s):14-21

[4] Y. P. Yang, Q. P. Tan, Y. Xiao, J. S. Yu, and F. Liu.

Exploiting Hierarchical CP-Nets to Increase the Reli-
ability of Web Services Workflow. In: Proceedings of

the 2005 Symposium on Applications and the Internet

(SAINT’06). on 23-27 Jan. 2006 Page(s):7 pp.

[5] Y. P. Yang, Q. P. Tan, J. S. Yu, and F. Liu. Transfor-
mation BPEL to CP-Nets for Verifying Web Services
Composition. Proceedings of the International Con-

ference on Next Generation Web Services Practices

(NWeSP’05). On 22-26 Aug. 2005 Page(s):6 pp.

[6] S. Y. Wang, P. Yu, J. J. Huo, and C. Y. Yuan. Petri
Nets for Systems Engineering. Publishing House of

Electronics Industry.2005.

[7] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico.

Automatic executable test case generation for ex-
tended finite state machine protocols. In Proceedings

of IWTCS’97 [17], pages 75-90.

[8] B. Antonia, J.H. Gao, M. Eda, and P. Andrea. Au-
tomatic Test Data Generation for XML Schema-based
Partition Testing. Automation of software Test 2007.

Second Internation Workshop on 20-26 May 2007

page(s):4-4.

[9] D. Martin, A. Ankoleka. CongoProcess.owl docu-
ment. http://www.daml.org/services/owl-s/1.2/

[10] Y. Y. Zheng J. Zhou P. Krause. A Model Check-
ing based Test Case Generation Framework for Web
Services[. Fourth International Conference on In-

formation Technology (ITNG’07). on 2-4 April 2007

Page(s):715 - 722.

[11] L. Hua, and Y. X. Ming Generation Executable Test
Sequence Based on Petri-net for Combined Control
and Data Flow of Communication Protocol. Interna-

tional Conference on Communication Technology. On

22-24 October,1998 Page(s):S48-02-1 - S48-02-5

355

User Perceived Response-time Optimization Method for Composite Web Services

Junfeng Zhao1,2, Yasha Wang1,2, Bing Xie1,2
1(Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China)

2(Software Institute, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)
E-mail:{ zhaojf, wangys,xiebing}@sei.pku.edu.cn

Abstract

A Composite web service’s response-time is composed by
the response-time of its member web services. In order to
make a composite web service meet its user’s response-
time requirement, the instance of each member web
service should be properly selected and bound. In the
literature, every member web service is treated in the
same way in the composite web service’s response-time
optimization and its different weight on the effect of
user’s satisfaction is not considered. However, in a
certain scenario, some member services are more
sensitive on response-time than others, that is to say, in a
given composite web service, when these sensitive
services delayed, the decline of users’ satisfaction is
remarkably greater than other services delayed. In this
article, a user perceived response-time optimization
method is proposed to reduce the delaying risk of the time
sensitive web services, and thus to improve the user’s
satisfaction of a composite web service. Our experiments
validated the efficiency of the proposed method.

1. Introduction

As for service based application, response-time is one
of the key QoS (Quality of Service) attributes that mostly
affect user’s satisfaction. A composite web service is a
composition of some member web services, and each
member web service often have more than one available
instances which have the same functionality and different
response-time. The response-time of a composite web
service is composed by the response-time of its member
web services. In order to make a composite web service
meet to its user’s response-time requirement, response-
time optimization methods for selecting proper instance
of each member web service should be applied.

In the literature, every member web service is treated
in the same way in the composite web service’s response-
time optimization, but without considering their different
weight on the effect of user’s satisfaction. However, in a
certain using scenario, some member services' response-
time are more sensitive than others’, that is to say, in a
given composite web service, when these sensitive
member services delayed, the decline of users’
satisfaction is remarkably greater than when other
member services delayed. The article will give an
example in section 3 to show this.

In order to reduce the lateness risk of those sensitive
member web services, and thus improve users’
satisfaction of the composite web service, a user
perceived response-time optimization method is proposed
in this article. It identifies the sensitive web services in a
given scenario, and assigns higher priorities on them in
the on-time-assurance mechanism. During the runtime of
a composite web service, the pre-planed selection of
service instances for some member services may be
invalid because of their response-time and accessibility
changing, and thus a replanning for the un-executed
member web services must be performed. Therefore a
simple and fast dynamic replanning algorithm to meet
with its real-time requirement is also given by the article.

The remainder of the paper is organized as follows:
section 2 explains the preliminary of the method that will
be given in the article. Section 3 introduces user
perceived response-time optimization method for
composite web services. Section 4 introduces an
experiment and analyzes the result of experiment. The
related works and their difference with the work in this
article are discussed in section 5. Finally conclusions and
future works are discussed in section 6.

2. Preliminary

The article specifies composite web services as a
group of abstract tasks that linked with control flows and
data flows. Abstract task is called task for short, it’s an
abstract of web service that has specific functions. The
web service that realize some functions of a task are
called a service instance of the task. Each service instance
has same functions but different response-time. At
runtime, response-time of a task is the response-time of
the service instance that is bound with it.

Basically, we adopt the state chart like [1] to represent
business process of composite web services. In order to
make the conditional structure more clear, we add a
lozenge symbol to connect different conditional branches.
In our state charts, transitions represent data flows and
control flows among tasks and can be labeled with events,
conditions, and operations. States include atomic states
and compound states. Atomic states are labeled with the
identifier of the tasks they represent. When a atomic state
is entered, the task it identifies is bound with a specific
service and invoked by the service. Compound states
include OR-states and AND-states. An OR-state contains
a single region whereas an AND-state contains several
regions (separated by dashed lines) which are intended to
be executed concurrently.

356

Figure 1 demonstrates an example of the specification
of an online bookstore composite web service whose
process is simplified for discussion facilitation. At first, a
customer can query books using this service. Then the
result of the query is sorted according to his/her
preferences. After received the query result, the customer
can either add books into a shopping cart or launch
another inquiry. After the last selected book is put into the
shopping cart, a check-out process which includes two
parallel threads will be started. In one thread, the
distribution stores whose repertories have the customer
desired books are found and then a delivery plan, which
includes the information of proper distribution stores, will
be optimized according to the customer and the
distribution stores’ locations. In the other thread, the
discount of each book is calculated according to the
customer’s credit level. Once both threads have been
finished, a detailed order form will be send to the
customer for confirming. The customer can choose to
modify, cancel or confirm the order. Finally, a book-
delivery-notice is sent to the distribution stores according
to the delivery plan.

3. User perceived response-time optimization
method for composite web services

The user perceived response-time optimization method
includes three sequential steps which are time critical
section identification, time critical section decomposition,
and run-time service-instances selection. The two former
steps are performed before composite web service’s
execution, while the last step is performed at run-time. In
order to make the run-time algorithm simple and fast and
thus meet with its real-time requirement, we put most
complex calculations into the two former steps.

3.1 Time Critical Section Identification

Generally, during the execution of a composite web
service, users may interact with the service several times
and wait for its feedback in each interaction. In a given
interaction, the time from a user submits a request to the
composite service till the request is fulfilled or the service
feedback is sent back is called a waiting cycle. In a given
waiting cycle, a fragment of the composite service’s
execution process is performed which includes one or
more tasks. We call this fragment a time critical section
(TCS). One TCS is always relative to a waiting cycle. The
length of a TCS’s related waiting cycle can be called the
response time of this TCS. TCSs have two important
attributes, maximum-acceptable-time(MAT) and sensitive-
level(SL).

Figure 1. State chart of an online bookstore composite
service

MAT describes users’ requirement for response-time of a

TCS in a specific scenario. As for TCS s, its MAT is
denoted as t(s). If the response-time of s exceeds t(s) in a
given execution of the TCS, the users’ satisfaction degree
of the composite service would decline. SL is a non-
negative integer to describe the sensitive degree of a TCS.
The more sensitive a TCS is, the greater its user’s
satisfaction declines when its response time exceeds its
MAT. Here we assign bigger SL to a TCS when it is more
sensitive. MAT and SL can be set by domain experts
according to domain knowledge of the composite service’s
domain.

TCS build a mechanism to combine users’ perspectives
of a composite service to providers’ perspectives in
response-time optimization. Usually, Service users are
only aware of services’ external characteristics of
response-time, i.e. the length of waiting cycles, but don’t
care about their internal details, such as how many and
what tasks contribute the waiting cycle. On the other
hand, service providers know those internal details
including the services’ execution process, tasks, available
service instances and their response-time, but generally
don’t know or don’t use the information of users’ feeling
about services’ response-time in response-time
optimization. As improving users’ satisfaction degree is
the mainly purpose of response-time optimization and
other QoS optimization activities, not only the internal
details but also the information of users’ feeling of a
composite service are important and useful in response-
time management. TCS contains information from both
users’ and providers’ perspectives. Waiting cycles
identified by TCSs, MAT and SLs of TCSs are information
from users’ perspective, while tasks contributing to waiting
cycles, and the relationships among these tasks in the
composite service’s execution process are information from
providers’ perspective. The utilization of TCSs in response-
time management helps increasing users’ satisfaction. By
utilizing identified TCSs and assigning their MAT service,
provider can make individual waiting cycles meet with
users’ requirements by perform management activities in
the scope each TCS’s tasks, thus not only the total
response-time but also all waiting cycles of a composite
service is managed. Furthermore, the SL of TCSs can help
service providers prioritize TCSs according to users’ feeling
in response-time management, and thus reduce the lateness
risks of the more sensitive TCSs.

357

Figure 2 demonstrate the TCS identification of the
online bookstore showed in figure 1. Four TCSs are
identified, and each one has a related waiting cycle. These
four waiting cycles are the query-condition-input till
query-result-gotten waiting cycle, books-selected till
books-added-into-shopping-cart waiting cycle, check-out-
started till order-list-gotten waiting cycle, and the order-
confirmed till book-delivery-notice-received waiting
cycle. In this example, there are three different SLs for
TCSs, which are level 0, 1, or 2. According to domain
knowledge, we set MAT of s1, s2, s3 and s4 as 2s, 2s, 3s and
300s, and set their SLs as 2, 1, 2 and 0 respectively.

Figure 2. TCS identification of the online bookstore
composite web service

To set l(s4)=0 means s4 isn’t sensitive to response-time.
In online bookstore scenario, a book-delivery-notice are
required to be sent to the distribution stores within 300s
after the customer’s confirming of a book order. But
according to domain knowledge we know that the
lateness of the notice’s arrival won’t cause much
dissatisfaction of users. The reason may be the interaction
between delivery-scheduling-men (i.e. the user who is
response for checking the book-delivery-notices in
distribution stores) and the composite web service is
asynchronous. In other words, a delivery- scheduling-man
won’t predict when a notice will arrive, and sit beside a
computer to wait for it. It need to point out that l(s4)=0
doesn’t mean s4’s response-time can exceed its MAT
arbitrarily, but it means the excess won’t cause serious
troubles.

We set higher SLs to s1 and s3 than s2. As s1 is similar to
s3, we only discuss the reason for setting the SLs of s1 and
s2. A customer can’t start checking out until all selected
books are added into the shopping cart successfully, so the
customer is compelled to wait if he/ she checks out before
s2 finishing. If he/she waits too long (the length of the wait
cycle exceeds t2’s MAT), his/her satisfaction degree will
declined obviously. This shows s2 is more sensitive than s4,
and we should set s2 a higher sensitive level. In further
analysis we find that not every time a customer chooses to
check out after selecting books from a query result, instead,
in many cases, he/she launches another inquiry for
searching more books. In these situations, customers may
be imperceptive of the lateness of and the degree of
satisfaction won’t decline. In the contrast with the
lateness of s1 always leads to users’ obvious dissatisfaction,
because users have no choice after submitting their inquiry
request but waiting. In addition, in the example online book

store scenario, after users’ delivering of their check-out
request, the information of books in the shopping cart will
be listed onto users’ screen according to the data in a local
buffer, users can check the book list while s2 is executing.
As a contrast, users can’t receive any feedback and have
nothing to do when they are waiting for query results. So
lateness of s1 leads to more complaint than s2. The above
discussion shows that s1 is more sensitive than s2, so we set
s1 a higher SL than s2

3.2 Time Critical Section Decomposition

A TCS’s response-time is composed by the response-
time of its tasks’. The calculation of a TCS’s response-time
by knowing its tasks’ response-time is complicated because
the execution process of the TCS may include complicated
structures like cycle, parallel and conditional selection etc.
The complexity of the calculation results in the complexity
of run-time replanning algorithms which are applied when
some service instances’ response-time and accessibility
change during the execution of a composite web service. In
order to make the run-time algorithm in our method meet
its real-time requirement, we decompose each TCS into
several sub-TCSs beforehand.

The decomposed sub-TCSs should meet the following
two conditions:

1. A TCS should be decomposed into a set of sub-
TCSs which is a partition of the TCS, that is to say,
every task in the TCS is contained and only
contained by one sub-TCS;

2. The execution time of each sub-TCS is the sum of
response-time of its tasks, that is to say, a sub-
TCS is made up of a set of sequential executing
tasks.

There are three steps to decompose a TCS.
Step one: cycle unfolding. We use the method stated in

[2] to unfold cycles in a TCS. The method first calculates
the average number of rounds that each cycle is executed in
a composite service according to historical data of the
service’s execution, which we denote as n. Then in the
following calculation, response-time of each task in the
cycle is set to n times of its response-time for one-round
execution. In the following discussion, we assumed that
process diagrams of TCS are acyclic.

Step two: sub-TCSs identification. The sub-TCS
identification algorithm is stated in figure 3. Figure 4
shows an example of sub-TCS identification for a TCS
whose process includes selection and parallel structure.
The number on each task is its average response-time.
(The definition of average response-time will be given
later in this article.)

Step three: MAT and SL setting. We just set sub-TCSs
the same SL as the TCS that it belongs to. But it is more
complex to set their MAT. It is accomplished by 4 steps.

1. Inquiring of the service broker about average
response-time of all tasks in a TCS. The average
response-time of a task is the average of all of its service
instance’s response-time recently. The article adopts
JBCLMS [3] as the service broker that developed by

358

Peking University. The formula for calculating average
response-time is as follow:

Where ()ir t is the average response-time of task ti, sij

is a service instance of ti, ()ijr s is the average response-
time of sij (i.e. the average of several recent measuring
values of sij’s response-time). n is the amount service
instances of task ti.

Figure 3. Sub-TCS identification algorithm

2. Calculating average execution time of each sub-TCS.

The average execution time of sub-TCS ssk is denoted as
()ke ss , and the formula for its calculation is as follow:

1
() ()m

k kll
e ss r t

	
	 � � 2�

Where tk1, tk2…tkm, are all tasks in ssk.
3. Generating sub-TCS diagram. Sub-TCS diagram is

an extended net-work diagram[4], where all sub-TCSs are
identified as nodes, the average execution time of sub-
TCSs are weight of nodes, and the transitions between
sub-TCSs are dependences between nodes. We add
selection nodes into the diagram to connect different
condition branches and assign execution probability for
each branch (the probability can be gotten through the
statistic of the composite service’s historical data of
execution, or it can be simply set by domain experts). In
addition, we add fork and joint nodes to illustrate
concurrent structures. Figure 5 shows the sub-TCS
diagram of the TCS in figure 4. The number on edges
represents execution probabilities of condition branches.
The values above nodes are their weights.

Fig.4 An example for sub-TCS identification in a TCS

Figure 5. An example for assigning MAT for sub-TCSs
in a TCS

4. Calculating the MAT of sub-TCSs. The algorithm
for calculating sub-TCSs’ MAT is showed in figure 6. The
algorithm contains two functions. Function
ComputeCriticalPathLen is used to calculate the length of
critical path in sub-TCS diagram. Here, the length of a
path referrers to the sum of all nodes’ weight the path
passes by. The length of critical path is the biggest length
of all paths from the initial node to the final node. In the
calculation of critical–path’s length, as for multi-branches
that connected by the same conditional selection node, we
regard the probability on each branch as the branch’s
weight, and calculate weighted average valued of path
length of all branches. We use the average value as the
path length of all the condition branches. As for those
concurrent threads, we use the longest length of all these
threads as the path length for all of them. Another
function ComputeMAT calculates MAT of each sub-TCS
by using the length of critical path returned by function
ComputeCriticalPathLen. For the nodes (sub-TCSs) in a
critical path, the algorithm makes the sum of their MAT
equals to the MAT of the TCS, and their MAT is

1
()

()
n

ijj
i

r s
r t

n
		

�
� 1�

s�The TCS in which sub-TCS will be identified
SSIdentification(s, FALSE);

function SSIdentification(in ProcSec, Out SSIdentified)
//ProcSec is a process section whose sub-TCSs need to be identified
//SSIdentified is a Boolean variable. It is FALSE by default, and TRUE When a
//new sub-TCS is identified,
 { BEGINNODE�begin node of the process in ProSect;

ENDNODE�end node of the process in ProSect;
NODE�BEGINNODE;
SSIdentified�FALSE;
while (NODE!=ENDNODE){

NODE�next node of the process in ProSect;
switch NODE is type of do{

case conditional node:
for(each conditional branch){

SSIdentified=TRUE;
NewProcSec�this conditional branch;
SSIdentification(NewProcSec,FLAG);
if(!FLAG) mark NewProcSec as a sub-TCS; }

case fork node:
for(each concurrent thread){

SSIdentified=TRUE;
NewProcSec�this thread;
SSIdentification(NewProcSec,FLAG);
if(!FLAG) mark NewProcSec as a sub-TCS; }

 } //switch end
} //while end

} //function end

359

proportional to its weight. For those nodes that are not in
a critical path, their MAT are longer than the nodes in
critical paths with the same weight, and the sum of MAT
of nodes in any paths from the initial node to the final
node equal to the TCS’s MAT.

3.3 Run-time service-instances selection

The identification and decomposition of all TCSs in a
composite web service are performed before the
composite service’s execution. During the execution of
composite services, service broker will select service
instances that possess appropriate response-time for each
task according to MAT and SL of each sub-TCS. The run-
time service-instance selection process includes the
following three steps.

Step one: service execution engine report information
of sub-TCS to service broker. While a sub-TCS start to
execute (i.e. the first task of the sub-TCS is about to
execute), the service execution engine that responsible for
parsing and performing composite service will submit a
request to a related service broker and report run-time
information of the sub-TCS to the service broker. The
information includes the structure of a sub-TCS (i.e. what
tasks are included in the sub-TCS and their execution
sequence), the MAT and SL of the sub-TCS.

Step two: Service broker reserve MAT for sub-TCS
according to its SL on receiving the report from a service
execution engine. The changing of service instances’
response-time and accessibility during the execution of a
composite web service will result in lateness risks of
TCSs and sub-TCSs. In order to reduce the lateness risks
for those sub-TCSs which have higher SLs, service broker
will reserve some time from their MAT, that is to say, the
service broker will deflate their MAT reported by the
service execution engine, and use the deflated ones in
service instance selection. The deflating ratio is decided
by the sub-TCS’s SL. The higher a sub-TCS’s SL is, the
more MAT will be reserved. We denote the deflating ratio
for sub-TCSs whose SLs are 0, 1, … ,n as r0, r1, …,rn 0

r1 … rn<1 .
As for sub-TCS ss, we notified its MAT that is reported

by its service execution engine as nt(ss), and the deflated
MAT as st(ss). The formula for calculating nt(ss) is as
follow:

After reporting information of a sub-TCS to service

broker, the service execution engine starts performing the
first task in the sub-TCS. Every time when a task is about
to perform, the service execution engine submits a
service-instance-selection-request to the service broke.
On receiving this request, the run-time service-instance
selection process comes to step three, service broker
selects response-time of each task in sub-TCS
dynamically.

 Step three: This step can be divided into three
sequential sub-steps:

1) Service broker calculates target response-time for
the task which is about to execute. In response-time

management we always try to make a task’s actual
response-time equal to its target response-time. As for the
sub-TCS ss, we denote the ith task in its task sequence as
tss

i, and we denote tss
i’s target response-time as o(tss

i). The
formula for calculating o(tss

i) is as follow:

� �0

0

(4)
()

() () ()
() ()

ss
ss i
i

r t
o t st ss T T

r ss T T
	 � � �

� �

Where T0 is the starting time of the ss (i.e. the time that
service execution engine report the information of ss to
the service broker), T is the current time. Since tasks in a
sub-TCS are performed sequentially, while the request of
task i is arriving, the former i-1 tasks have been finished
already. The total execution time for the former i-1 tasks
is known as T-T0. The above formula uses this
information to adjust a task’s target response-time
dynamically. That is when the value of T-T0 is bigger than
the sum of objective response-time of the former i-1
tasks, which means the former tasks execute too slowly,
we will try to catch up by selecting faster service
instances. On the contrary, when the value of T-T0 is
smaller than the sum of objective response-time of the
former i-1 tasks, we can select service instances which are
slower but better in other QoS attributes, for example a
slower but cheaper service instance.

2) Service broker selects service instance for the task.
The selection principle is that if there exists at least one
service instance that its response-time is less than target
scheduling time, and then we select the one that process
other best QoS attributes, for example, the service which
has the cheapest price or the highest reliability. Otherwise
we select service instance which has the shortest
response-time.

3) Service broker notifies the selected service
instances to composite service execution engine, and thus
the service instance is invoked.

() (1) ()is t s s r n t s s	 � � � 3�

360

Figure 6. MAT calculation algorithm for sub-TCSs

4. Experimentation
In order to validate the method proposed in this article,

we compiled a composite service that includes one single
TCS as shown in figure 4. The experiment adopts
JBCLMS that developed by Peking University as UDDI
registry and service broker [3] [4]. All PCs that carry the
experiment had the same configuration: Pentium IV 2GHz
with 512M RAM. The reserving ratio of MAT for TCS
and sub-TCS with SL 1, 2 and 3 are 0, 0.1 and 0.2
respectively. Every task has 5 available service instances,
and the average response-time of each service instance is
shown in table 1. We set an assumption that those service
instances have longer response-time are better in other
QoS attributes. This assumption makes our method selects
service instances that have the longest response-time
among those instances whose response-time are less than
the task’s objective response-time.

The experiment is carried out under two conditions:
Condition A: All service instances’ response-time

remain unchanged during the execution of the composite
web service

Condition B: The response-time of each service
instance floats in the range of 20 to 40 percent with a 50

percents probability in every 0.5 seconds, and every
service instance turns into un-accessible for 2 seconds
with a 30 percents probability in every 6 seconds.

Table 1. Average response-time of service instances

in the experiment

task average response-time for service instances (unit:sec)
1 2 3 4 5

t11 0.8 0.9 1.0 1.1 1.2
t12 1.6 1.8 2.0 2.2 2.4
t21 2.4 3.2 4.0 4.8 5.6
t22 0.8 0.9 1.0 1.1 1.2
t31 1.4 1.7 2.0 2.3 2.6
t41 0.7 0.9 1.0 1.1 1.3
t42 0.3 0.5 1.0 1.5 1.7
t43 0.2 0.4 1.0 1.2 2.2

Under these two conditions, we adjust the MAT and the

SL of the TCS. Each case is carried out independently for
10 times. And we adopt the average value as the result of
the experiment. The experiment data is shown in figure 7.

ss�sub-TCS diagram of a TCS whose sub-TCS’s MAT need to be calculated;
t�MAT of theTCS;
ComputeMAT(ss, t);

function ComputeCriticalPathLen(in ProcSec, in P
 Out CPL)
//ProcSec: fragram of a sub-TCS diagram
//P: execution probabilityof ProSec
//CPL: Length of the critical path in ProcSec
{ BEGINNODE�begin node of the process in ProcSec;

ENDNODE�end node of the process in ProcSec;
NODE�BEGINNODE;
while (NODE!=ENDNODE){

NODE�next node of the process in ProcSec;
switch NODE is type of do {
case sub-TCS node:
//NODE.ET: the average execution time of NODE

CPL CPL+P*NODE.ET;
case conditional node:

for(each conditional branch){
NewProcSec�this conditional branch;
//NewProcSec.P: execution probability of NewProcSec
// CBT: temporary variables
ComputeCriticalPathLen(NewProcSec,NewProcSec.P, CBT);
CPL CPL+CBT*P;

}//for end
case fork node:

for(each concurrent thread){
NewProcSec�this concurrent thread;
//TEDT: temporary array, TEDT[i] is the average
//execution time of concurrent thread i

ComputeCriticalPathLen(NewProcSec,P,TEDT[i]);
} //for end
//Max is a function returns the maximum value of each element
// in array TEDT
CPL CPL+Max(TEDT)

} //switch end
}//while end

}//function end

function ComputeMAT(in ProcSec, in MAT)
// ProcSec: fragram of a sub-TCS diagram
// MAT: the MAT of ProcSec
{ BEGINNODE�begin node of the process in ProcSec;

ENDNODE�end node of the process in ProcSec;
NODE�BEGINNODE;
//call ComputeCriticalPathLen to calculate the critical-path-length of Procsec
ComputeCriticalPathLen(ProcSec, 1, CPT);
while (NODE!=ENDNODE){

NODE�next node of the process in ProcSec;
switch NODE is type of do {

case sub-TCS node:
// NODE.MAT: the MAT of NODE
//NODE.ET: the average execution time of NODE

NODE.MAT�(NODE.ET/CPT)*MAT;
case conditional node:

// CBET: temporary variables
CBET�0;
for(each conditional branch){

NewProcSec�this conditional branch;
// NewProcSec.P:the exectution probability of NewProSec
ComputeCriticalPathLen(NewProcSec, NewProcSec.P, CBT);
CBET CBET+CBT; } // for end

MaxCB�(CBET/CPT)*MAT;
for(each conditional branch){

NewProcSec�this conditional branch;
ComputeMAT(NewProcSec, MaxCB);}

case fork node:
for(each concurrent thread) {

NewProcSec�this concurrent thread;
// TEDT: TEDT:array,where TEDT[i] store the average
exectution time of concurrent thread i
ComputeCriticalPathLen(NewProcSec, NewProcSec.P, TEDT[i]);}

//Max is a function returns the maximum value of each element
// in array TEDT
MaxTHD�(Max(TEDT)/CPT)*MAT
for(each conditional branch){

NewProcSec�this concurrent thread;
ComputeMAT(NewProcSec, MaxTHD); }

} //switch end
}//while end

}//function end

361

From figure 7.a and 7.b we can see that under
condition A, when the MAT is less than 6 seconds, the
actual response-time of TCS remains stability with
different SLs. The reason is that even all tasks are bound
to the fastest service instances, the TCS need 5.6 second
to response, so when the MAT is near or less than this
utmost time, the method always selects the fastest service
instances for tasks on the critical path regardless of the
SLs. When the MAT is greater than 6 seconds, the TCS’s
response-time increases along with the increasing of the
MAT but never exceeds its MAT, and because of the MAT
reservation the TCSs with higher SLs have a bigger
difference between their response-time and MAT. This
shows that in a envirment where all service instances’
response-time is stable(i.e. condition A), the mechanism
of MAT reservation is not necessary. But if the service
instances’ response-time changes frequently, e.g.
condition B, which is more like the actual envirement,
things are different. From figure 7.c and figure 7.d we can
tell random floating of TCSs’ response-time under
condition B. Especially In figure 7.d, when the MAT is
less than 7 seconds and the SL is low, TCSs’ response-
time exceeds its MAT. But under the same circumstances,
when the SL is higher, the MAT reservation mechanism
makes the probability of service lateness decline
obviously. This means that setting higher SL for sensitive
TCSs can effectively reduce their lateness risk.

5. Related works

[6][7] studied the optimization and management of
composite web services’ QoS which included response-
time and price, and selected service instances that had
proper QoS. [8] gave weight to different QoS attributes
according to users’ preference, and then it put forward a
normalization method to make different QoS attributes’
value into an overall value according their weight, thus it
facilitated the selection of proper service instances. The
methods mentioned above didn’t consider the relationship
among tasks while selecting service instances for tasks in
composite service. [1][2][9][10] considered the
relationships between tasks in composite service and
adopted methods such as linear programming, genetic
algorithms to perform a global optimization of QoS in the
range of all tasks in a composite web service. Differing
with the above works, the method proposed in this article
performs a simple optimization of service’s response-time
neither in the range of a single task nor all tasks in a
composite service. Instead, our method adopts a
compromising solution in which the optimization is
performed in the range of TCSs which contains subsets of
all tasks in a composite service. TCSs provide a
mechanism to combine users’ perspectives of a composite
service to providers’ perspectives in response-time
management. By using TCSs and its relative MAT and SL,
service provider can manage a composite service’s
response-time according to its users’ feelings, and thus
increases the degree of users’ satisfaction.

In order to cope with the changing of service
instances’ QoS during the execution of a composite
service, [1] [2] [9][10] re-executed their QoS optimization

algorithms in the range of un-performed tasks to replan
the composite service’s execution at run-time. However,
the inheritance algorithm and linear programming
adopted in their replanning methods are too complex, and
it makes the real-time requirements for them are hard to
meet with. In our method most calculation were finished
before composite services’ execution, and the left work
that has to be done at run-time is simple. Our run-time
replanning algorithm simply adjusts later tasks’ speed
according to the sum of finished tasks’ response-time and
the MAT of the current TCS or sub-TCS. The simple run-
time replanning algorithm makes our method more
practicable.

(a) Trends of response-time of TCSs with different SLs under

condition A

(b) Trends of the difference between response-time and MAT of

TCSs with different SLs under condition A

(C) Trends of response-time of TCSs with different SLs under

condition B

362

(D) Trends of the difference between response-time and MAT of
TCSs with different SLs under condition B

Figure 7. Response-time of TCSs with different
MAT and SL under two different conditions

6. Conclusion

Web service QoS includes many attributes such as
response-time, price, successful implementation rate,
accessibility etc [11][12], where response-time is one of
the most important attributes that is studied by many
researchers because it is the key problem when design
and manage business process[13][14]. The structures like
circle, parallel, condition selection make the calculation
of response-time more complicated than other QoS
attributes. The article studied composite web services’
response-time and proposed a using scenario oriented
response-time management method. This method
identified TCSs according to waiting cycles in the
interactions between users and composite web services,
and assigned deferent SLs to TCSs to identify their
different weight on the effect of user’s satisfaction. TCSs
provide a mechanism to combine users’ perspectives of a
composite service to providers’ perspectives in response-
time management. By utilizing TCSs not only the total
response-time of composite services but also waiting
cycles are managed, and thus increased users’ satisfaction
for composite services. Then the method performed a
simple optimization of service’s response-time in the
range of TCSs, and applied a simple and fast service
instances selection and dynamic replanning algorithm for
composite web services at run-time. The simplism of the
run-time algorithms made our method more practicable.
The experiment validated the efficiency of the proposed
method. The future work of the article is to extend the
method to multiple QoS attributes like reliability,
usability, price and so on.

References

[1] Zeng L.Z., Benatallah B. and Dumas M., “QoS-

Aware Middleware for Web Services
Composition”, IEEE Transaction on Software
Engineering, 2004, 30(5):311~327

[2] Canfora G., Di Penta M., Esposito R., Villani
M.L., “Qos-Aware Replanning of Composite
Web Services”, Proceeding of the IEEE
International Conference on Web

Services(ICWS’05), Orlando, Florida USA,
2005, 121~129

[3] Zhao J.F., “Research on feedback management
and run-time application supporting techniques
for software component library”, PhD thesis,
Peking University, Peking PRC, 2005(in
Chinese)

[4] Shao L.S., Li T., Zhao J.F., Wang Y.S., Xie B.,
Mei H., An Extensible Management Framework
for Web Service QoS, Chinese Journal of
Computers, 2008, Vol. 31, No.6:1458~1471

[5] Pinedof M., Scheduling: Theory, Algorithms, and
Systems, second ed. New York, USA: Prentice
Hall, 2001

[6] Georgakopoulos D., Schuster H., Cichocki A.,
Baker D., “Managing process and service fusion
in virtual enterprises”, Information System,
special issue on Information System Support for
Electronic Commerce, 1999, 24(6):429~456

[7] Casati F., Shan MC., “Dynamic and adaptive
composition of e-services”, Information Systems,
2001, 26(3):43~162

[8] Liu Y.T., Ngu H.H. Anne, Zeng L.Z.. QoS
computation and policing in dynamic web service
selection. In: Proceeding of World Wide Web
Conference(WWW’04), New York, New York,
USA, 2005, 66~73

[9] Cardoso J., “Quality of service and semantic
composition of workflows”,PhD thesis,
University of Georgia, Athens, Georgia, USA,
2002

[10] Ardagna D. Pernici B., “Global and local QoS
constraints guarantee in web service selection”,
Proceeding of the IEEE International Conference
on Web Services(ICWS’05), Orlando, Florida
USA, 2005, 806~807

[11] Ran S.P., “A model for web services discovery
with QoS”, ACM SIGecom Exchanges, 2003,
4(1):1~10.

[12] Zhao J.F., Wang Y.S., Xie B., Yang F.Q., “A
management framework of component
supporting QoS of component”, ACTA
Electronica Sinica, 2004, 32(12A):165~168(in
Chinese)

[13] Eder J., Panagos E., Rabinovich M., “Time
constraints in workflow systems”, Advanced
Information Systems Engineering: 11th
International Conference(CAiSE'99), Springer-
Verlag , Heidelberg, Germany, 1999, 286~300

[14] Gillmann M., Weikum G., Wonner, W.,
“Workflow management with service quality
guarantees”, Proceeding of ACM SIGMOD
International Conference, Management of Data,
Madison, USA, 2002, 228~239

ACKNOWLEDGEMENT
This research was sponsored by the National Grand

Fundamental Research 973 Program (SN: 2005CB321805), the
High-Tech Research and Development Program of China (SN:
2007AA010301), the Science Fund for Creative Research
Groups of China (SN: 60821003), and the National Nature
Science Foundation (SN: 60803011) in China.

363

Dynamic Service Composition for Virtual UPnP Device Creation

Sheng-Tzong Cheng1, Chih-Lun Chou1, Jiashing Shih1, Mingzoo Wu2

1Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan,
2IDEAS, Institute for Information Industry, Kaohsiung,

1,2Taiwan, R.O.C.
stcheng@mail.ncku.edu.tw, {mikechou, jason}@csie.ncku.edu.tw, wu.mingzoo@gmail.com

Abstract

UPnP devices and services lack a composition
framework to provide a novel value-added service. This
paper aim at designing and implementing a dynamic
service composition framework and create a virtual UPnP
device in home network environment. Semantic data type
ontology is used to define a communication interface for
UPnP services. The interface matching mechanism is
employed to construct a service graph that describes which
services can be composed together. Finally, the proposed
system travels on the service graph, and a method called
Virtual Application Probing which allows home virtual
applications can be dynamically and semantically
composed from the individual services of home networked
devices and find a suitable execution path to generate a new
device. Home users can invoke this new generated device
through the control point, as if the device is real in the
house. In addition, a virtual UPnP Karaoke device
generated by the proposed service composition system is
demonstrated as well. From the demonstration, it can be
seen that the service composition system is feasible in
practice.

Keyword: UPnP, semantic data type ontology, service
composition, virtual device creation

1 Introduction

With the proliferation of home networked devices, all
sorts of devices could be discovered and controlled by
UPnP protocols [1]. UPnP uses common protocols which
are independent of the underlying physical media and
transports, and ensure every device vendors could follow.
Many industry companies and research initiatives such as
Universal Plug and Play (UPnP), Open Services Gateway
Initiative (OSGi) [2], Digital Living Network Alliance
(DLNA) [3] and Home Audio and Video Interoperability
(HAVi) [4] have tried to understand the communication
protocol between control point and devices. However, up to
now, they are very little to get in touch with composing the
primitive services to create complex value-added services.

UPnP device description includes the vendor-specific,

manufacturer information, and URLs to vendor-specific
Web sites, etc. For each service included in the device, the
device description lists the service type, name, a URL for a
service description, a URL for control, and a URL for
eventing. UPnP service description is provided by a UPnP
vendor. The description is recorded in XML-based syntax
and is usually based on a standard UPnP service template.
A UPnP service template is produced by a UPnP Forum [11]
working committee. And UPnP Forum working committees
have defined standard device architecture for UPnP vendors
to follow so as to build their intelligent devices. UPnP is an
open networking architecture that uses Web technologies to
enable seamless proximity networking in addition to
control and data transfer among networked devices at home,
office, and public spaces.

UPnP protocol includes addressing, discovery,
description, control, event notification, and presentation.
The foundation for UPnP networking is IP addressing. Each
device must have an IP address, which can obtain from a
Dynamic Host Configuration Protocol (DHCP) server or
generated from Auto-IP configuration. Given an IP address,
the first step in UPnP networking is discovery. Control
point can search for the interesting device on the UPnP
network. Besides, a UPnP device can advertise its services
to control points on the network. The UPnP discovery
protocol is based on the Simple Service Discovery Protocol
(SSDP).

In the control step, the control point may send actions
to device’s service. The control URL in the device
description is where control messages are sent. Control
messages are expressed in XML using Simple Object
Access Protocol (SOAP). Service returns the action results
to control point.

To get events, control points subscribe to eventing for
a specific service within a device. Then when the service
has an event, it sends that event to all current subscribers.
UPnP uses General Event Notification Architecture (GENA)
to define subscriptions and event notifications. The final
step in UPnP networking is presentation. A URL for
presentation page is given in the device description. In
summary, UPnP is a Web-based communication protocols
between control point and devices.

364

Fig. 1: The concept of service composition

Web services use Universal Description, Discovery,
and Integration (UDDI) for discovery, Web Services
Description Languages (WSDL) for description and Simple
Object Access Protocol (SOAP) for communication. As
Web services become more and more prevalent, many Web
service composition technologies are proposed and
developed. Business Process Execution Language for Web
Services (BPEL4WS) [5] developed by IBM, Microsoft,
SAP and Siebel supports process-oriented service
composition. It only represents a specific process
composition flow and dynamic service composition is not
supported. So there are many research projects propose
dynamic service composition technologies. CoSMoS [6]
presents a dynamic service composition system using
semantic information. CoSMoS can integrate the services
to construct a semantic graph. Given a user request,
CoSMoS can check the semantics and generate an
execution path. A template-based composition system is
proposed in eFlow [7], in which a composite service is
designed by a template which defines an order of execution
of the services. User can choose an application template
from the repository or by creating a template by himself.
The request application is composed through selecting the
services specified in the template and combining them
according to the structure described in the template. Users
can replace the default services with the one that best suit
their needs. There are some other works [8][9] focused on
service selection issues. Dynamic service selection is an
important issue in Web service composition. Since the Web
environment changes frequently, there are many similar
services for users to choose so that the total quality is the
best. For example, users may choose the best suit service
depending on the network traffic, server loading etc.

In this paper, we aim at designing and implementing a
dynamic service composition system and create a virtual
device in home network environment. We propose data
type ontology to define a communication interface for a
service. And we show how to use semantic descriptions to
aid in the dynamic service composition system. Also, we
present a method called Virtual Application Probing (VAP)
which allows home virtual applications can be dynamically
and semantically composed from the individual services of
home networked devices. We design and implement the
dynamic service composition system using existing

Fig. 2: Semantic data type ontology

technologies such as UPnP, ontology, and XML. Then our
system could create a virtual device that was composed
from the primitive devices in home network environment.

The rest of this paper is organized as follows. Sec. 2
describes the design for our virtual device creation system.
In Sec. 3, we describe the implementation technique. Sec. 4
presents the demonstration of the proposed system. Finally,
conclusion remarks are drawn in Sec. 5.

2 System Architecture

Fig. 1 shows the concept of dynamic service
composition. Through our dynamic service composition
system, these useful services could cooperate with each
other to create a virtual device or a novel application. For
example, virtual Karaoke device is composed from
microphone, speaker, media player and TV. When home
users invoke the virtual Karaoke device from control point
then these primitive devices would be invoked
automatically. It means that the TV would play a music
video from media player, and the microphone would stream
the voice to speaker automatically.

2.1 Data Type Ontology Classification

UPnP forum working committees have defined some
data types for action variables. But in our view point, only
data type is not sufficient for dynamic service composition.
So we extend the service description and add semantics
information to define a service interface. The I/O variables
are classified according to data type at first, such as
Bin.base64, String, Float, Integer, Time, Number, Boolean,
etc. These data types are further classified according to
semantics. For instance, the data type Bin.base64 is the data
format for media transformation and could be subdivided
into video stream, audio stream, text, picture, etc. The data
type Float has the semantics, such as target temperature for
air-conditioner or frequency for radio channel.

The data type Integer may have the semantic

365

representations, such as channel for a TV program. UPnP
control point may retrieve device and service information
with semantics to provide accessible services. If the data
type ontology share and publish the same underlying
ontology of the used terms, then control point can extract
and aggregate the data type and semantic information to do
service matching. The benefit of using data type ontology is
that it is easy for developers to design service interfaces
and is easy for users to understand. After defining the data
type ontology, we use the data type and semantic
information to describe the service interface. The
followings introduce UPnP home networked device
designed with semantics descriptions. Every service has
input interface and output interface. With interface
matching method, we could know whether the service’s
output can be fed into the next service’s input. Fig. 2 is the
data type ontology diagram of the variables for
communication interface of home networked devices. And
it shows that the variables are first classified by the data
types, and then classified by semantics.

2.2 Service Interface Matching

UPnP service description defines actions, arguments,
state variables, data type, range, and event characteristics.
A service interface specifies methods that can be performed
on the service. Service’s interfaces are public for an
external use. A service can hold two sorts of interfaces:
input interface and output interface. Traditionally, UPnP
service description only has data type and input/output
information to describe a service interface. In our view
point, it is not enough to perform dynamic service
composition. For example, the data type of microphone’s
output interface is the same as the printer’s input interface.
Only with data type information, we might think that
microphone’s output could be fed to printer’s input. But the
output of a microphone is an audio stream and the input of
a printer is a text file. Although their data types are the
same, but microphone’s output cannot be fed to printer’s
input.

With the support of data type ontology, semantics of a
service can be freely defined, thus providing high
extensibility. The matching of two services is using the
information in the service interface. If service A’s output
interface is exactly the same with service B’s input
interface. Then service A and service B can be composed
together.

2.3 Create Semantic Interface

After defining the data type ontology, we use the data
type and semantic information to describe the service
interfaces. Every service has two interfaces, one is input
interface and the other is output interface. With interface
matching method, we could know whether the service’s
output can be fed into the next service’s input.

Fig. 3: Directed service graph

Suppose that a TV has four services: SetPower,
GetPower, SetChannel, and Visual. SetPower service can
switch the TV to power on or power off. SetChannel
service can select TV programs. And Visual service can
play a movie from media player or display a TV program.
The input interface of SetPower has two variables, its data
type is Boolean and its semantic is On/Off. Device_Status
is the data type and TV is the semantic for SetPower’s
output interface. The input interface of SetChannel has two
variables, its data type is Integer and semantic is Channel.
Device_Status is the data type and TV is the semantic for
SetChannel’s output interface. The input interface of Visual
service has two variables; its data type is Bin.base64 and its
semantic is Video. Device_Status is the data type and TV is
the semantic for output interface.

2.4 Service Graph Construction

Service graph is an intuitive way to represent
composition concepts. Two types of nodes are defined in a
service graph: Data Semantic Node (DSN) and Service
Information Node (SIN). The links between these nodes
represents their associations. The service graph represents
the composition information.
� DSN: with the aid of data type ontology, we can create
several kinds of DSN. Each DSN represents a pair of data
type and semantic defined by the data type ontology to
represents the service’s interface. In the later discussion, we
briefly write (Data type, Semantic) to represent DSN.
� SIN: Every device may have many services and each
service has input and output interfaces. We take down the
device and service information in the SIN, which has two
kinds of information, the device name and the service name.
We simply write (Device name, Service name) for later
discussion.

When a UPnP device is discovered, our system first
check the service interface’s data type and semantic. If the
DSN’s data type and semantics are the same with the
service input interface’s data type and semantics, then a
link is directed from DSN to SIN. Otherwise, if the DSN’s
data type and semantic are the same with the service output
interface's data type and semantics, then a link is directed
from SIN to DSN. Each time when a device is discovered

366

Fig. 4: Exploration of execution path

by UPnP control point in home networks, our system would
make links between DSN and SIN in service graph
automatically. Fig. 3 shows a directed service graph. After
constructing the directed service graph, we can find an
execution path of virtual device which is composed from
the primitive services.

2.5 Execution Path Exploration

We use Virtual Application Probing (VAP) to find a
composite service path in the directed service graph. VAP
is somewhat similar to Breadth First Search with extra
index information which records the preceding node. To
implement this scheme, we place each visited node into a
linked list and record its preceding node with index
information. Then we use VAP to find a shortest execution
path in service graph. The followings describe the
procedures of the VAP.
Step 0: Check virtual device description. Before finding an
execution path, control point would read the virtual device's
description to know the virtual service’s input and output
interfaces’ data types and semantics. After knowing the
DSN of the input and output interfaces, we would find a
shortest composite execution path between the two DSNs.
Step 1: Put the DSN which represents the virtual service’s
input interface into linked list.
Step 2: Put the SIN whose input interface is the DSN from
step 1 into linked list. And record their indexes as the
number of the preceding nodes in the linked list.
Step 3: Put the DSN which represents the output interface
of the SIN from step 2 into list. And record the index as the
number of the predecessor nodes in the linked list.
Step 4: If we find DSN of the virtual service’s output
interface, stop searching and export the execution path
according to their indexes. Otherwise, repeat Step 2 and
Step 3 until there are no nodes left in linked list. Notice that
a node would not be visited twice in searching procedure.

Once we detect that the output interface of virtual
service, then stop probing and export the path according to
the indexes from the linked list. Fig. 4 describes how to
export the execution path from the linked list. Referring to
the index recorded by (Device_Status, TV), we can find
(TV Device, Visual). And so forth, by the index of (TV
Device, Visual) we find (Bin.base64, Video). By the index
of (Bin.base64, Video) we find (Player Device, PlayFile).
And by the index of (Player Device, PlayFile) we find
(Bin.base64, File). At last the execution path comes out:

Fig. 5: Class overview of service composition system

(Bin.base64, File) Ï (Player Device, PlayFile) Ï
(bin.base64, Video) Ï (TV Device, Visual) Ï
(Device_Status, TV).

2.6 Virtual Service Provision

Once all execution paths of virtual device are explored,
the virtual device with the execution paths will be created
and control point would invoke the services which was
required in the execution path sequentially. We describe
two types of flows: control flow and data flow. Control
flow is used to trigger the required service in execution
path. Then the control point has the ability to integrate two
primitive services to establish a direct data flow.

3 System Implementation

Our device model is refined from CyberLink for UPnP
[10]. CyberLink controls these protocols automatically, and
supports to create your devices and control points quickly.
We append some classes and methods to implement our
dynamic service composition system. Fig. 5 shows that we
added DeviceAdded(), DeviceRemoved(), getDateType(),
getSemantic() methods and VirtualDevice class,
SemanticType class and LinkedList class from the class
diagram of CyberLink for UPnP. The implemented classes
are described as follows.
� ControlPoint Class: We can create an instance of
ControlPoint Class to create a UPnP control point. Use
ControlPoint::start() to activate the control point. The
control point multicasts a discovery message searching for
all devices to the UPnP network automatically when the
control point is active. The control point can send action or
query control messages to the discovered devices. To send
the action control message, use Action::setArgumentValue()
and Action::postControlAction(). In ControlPoint class, we
implement DeviceAdded() and DeviceRemoved() methods.
UPnP control point receives notify events from devices in
the UPnP network, and the devices are added or removed

367

Fig. 6: Creation of virtual Karaoke device

Fig. 7: Semantic service description

from the control point automatically. The expired device is
added or removed from the device list of the control point
automatically. When a UPnP device is discovered by
control point, DeviceAdded() would check whether the
service can be composed with other service by interface
matching. If the added service’s interface exactly matches
another service’s interface then we connect the two service
nodes in service graph. On the other hand, if a UPnP device
is leaving the UPnP network, DeviceRemoved() removes
the links between the service nodes in service graph. We
implement DeviceAdded() and DeviceRemoved() methods
to maintain the service graph.
� SemanticType Class: This class is used to describe the
data structures of service graph. In SemanticType domain,
we define the two nodes in service graph. One is DSN and
the other is SIN. DSN represent the interfaces of a service.
And SIN records the service information including device
name and service name. SemanticType class defines data
type and semantics to represents services’ interface. For
example, Audio, Video and Text can be defined as
semantics. With the aid of semantics, we use “interface
matching” approach to find out what service’s output can
be fed to the next service’s input. Then we use VAP to find
a virtual service in the directed service graph.
� LinkedList Class: The LinkedList class is designed to
find execution path of virtual device. We implement a
linked list to record the service graph nodes in execution
path. And extra index information is used to record the
preceding node’s number in the linked list. Section 2.5
describes how to find an execution path using a linked list
and index information in detail before.
� VirtualDevice Class: Class VirtualDevice is a general
virtual device class inherited from ControlPoint. In the
beginning of VAP process, control point will check the

virtual device’s descriptions first. If the virtual service can
be composed from the primitive services, we create an
instance of virtual device class with the execution path and
user can invoke the virtual device from control point. The
main difference between real device and virtual device is
that the virtual service is not implemented in advance. A
real service for real device performs a specific task
designed by inventor in advance. For example, the Visual
service for TV is designed to play video stream or a TV
program. Unlike the real device, the virtual service/device
is not implemented beforehand. The virtual device can
receive a composite execution path found by VAP. The
virtual service is a composite service composed from the
primitive services. Once the virtual service is invoked,
control point would sequentially invoke the primitive
services involved in execution path.

4 DEMO Scenario

We create a virtual Karaoke device which is composed
from four real UPnP devices: TV, player, speaker, and
microphone. Imagine your intelligent home environment
has four UPnP devices: TV, speaker, player, and
microphone. Each device supports independent services,
such as TV has Visual service to display a TV program or a
video file from player. Player device has PlayFile service to
play any audio and video file from compact disc.
Microphone can convert sound into an electrical signal, and
usually fed into an amplifier, a recorder, or a speaker. And
speaker can play an audio stream. General user without
professional knowledge does not know what complex
applications can be created from these four UPnP devices.
In our system, VAP could create a virtual Karaoke device
from these four UPnP devices but you don’t really have a
real Karaoke device. Fig. 6 shows the creation of virtual
Karaoke device from the four devices using interface
matching.

4.1 Semantic Service Description

At first, we make some description files of devices and
services to create UPnP device. The URLs in the device
description are relative locations from the directory of the
device description file. A service must be able to represent
not only data type, input/output but also the semantic
information of a service. We add a semantic tag in
XML-based service description file. Fig. 7 shows that the
right part is the service description with the semantic tag
and the left part is the device description. SCPDURL in the
device description records the location of service
description. When a UPnP device is plugged into the
network, the control point would retrieve the device and
service descriptions from the discovery message.

4.2 UPnP Devices Simulation

We implement UPnP devices and control point by

368

Fig. 8: Media player

Fig. 9: Virtual Karaoke device

using CyberLink UPnP package [10]. Fig. 8 shows a media
player, which have two services: SetPower and PlayFile.
The input data type of PlayFile is Bin.base64 and its
semantic is File. The output data type of PlayFile is
Bin.base64 and its semantic is Audio and Video.

4.3 Virtual Karaoke Device Creation

If control point finds the TV, player, speaker, and
microphone, service composition system would create a
virtual Karaoke device which is composed from these
devices automatically. A composite path that found by the
VAP is: (Bin.base64, File) Ï (Player Device, PlayFile) Ï
(Bin.base64, Video) Ï (TV Device, Visual) Ï
(Device_Status, TV) and (Bin.base64, Voice) Ï
(Microphone Device, Mike) Ï (Bin.base64, Audio) Ï
(Speaker Device, PlaySound) Ï (Device_Status, Speaker).
Fig. 9 shows that users could view and invoke the virtual
Karaoke device through control point. When we invoke the
virtual Karaoke service, control point would invoke the
required services on the execution path automatically.

5 Conclusions

In this paper, we present how to use semantic tag to
aid dynamic service composition of home UPnP services.
We design the service interface with data type and semantic
information. Data type and semantic ontology is easy to
design service interface for developers and is easy to
understand for users. Service interfaces are public for an

external use. A service can hold two sorts of interfaces:
input interface and output interface. Each interface is
specified by data type tag and semantic tag. With interface
matching method, we could know which the service’s
output can be fed into the next service’s input. We also
present service graph and VAP to find composite execution
paths of virtual device. Service graph is an intuitive way to
represent composition concepts in an understandable way.
Once service graph is constructed, we use VAP to find a
shortest composite execution path in the directed service
graph. A shortest execution path means that we use the least
services to compose a virtual device. Our dynamic service
composition system could create virtual device from the
primitive devices in home environment. And applications
are no longer restricted to designer’s imagination.

Acknowledgement

This study is conducted under the “Applied Information
Services Development & Integration project” of the
Institute for Information Industry which is subsidized by
the Ministry of Economy Affairs of the Republic of China.

Reference

[1] Microsoft Corp., Universal Plug and Play Device
Architecture, v.1.0, Jun. 2000

[2] D. Marples and P. Kriens, “The Open Services
Gateway Initiative: An Introductory Overview,” IEEE
Communications Magazine, Dec. 2001

[3] Digital Living Network Alliance, “DLNA Networked
Device Interoperability Guidelines,” Mar. 2006

[4] HAVi, “HAVi, the A/V digital network revolution,”
White Paper, 1999

[5] F. Curbera, Y. Goland, J. Klein, F. Leymann, D.
Roller, S. Thatte, and S. Weerawarana, “Business
Process Execution Language for Web Services,” Jul.
2001

[6] K. Fujii and T. Suda, “Dynamic Service Composition
Using Semantic Information,” Int’l Conference on
Service Oriented Computing, Nov. 2004

[7] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy1,
M.-C. Shan, “Adaptive and dynamic service
composition in eFlow,” CAiSE, Mar. 2000

[8] William K. Cheung, Jiming Liu, Kevin H. Tsang,
Raymond K. Wong, “Dynamic Resource Selection
for Service Composition in the Grid”, Proceedings of
the IEEE/WIC/ACM International Conference on
Web Intelligence, 2004

[9] Xiaohui Gu, Klara Nahrstedt, “Dynamic QoS-Aware
Multimedia Service Configuration in Ubiquitous
Computing Environments”, Proceedings of the 22nd

ICDCS’02
[10] CyberLink for Java, available online

http://www.cybergarage.org/net/upnp/java/
[11] UPnP Forum, http://www.upnp.org/

369

Using Service-Oriented Architectures
for Socio-Cultural Analysis

David Garlan, Kathleen M. Carley, Bradley Schmerl, Michael Bigrigg, and Orieta Celiku

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh PA 15213 USA
+1 412 268 5056

{garlan, carley, schmerl, bigrigg, orietac}@cs.cmu.edu

ABSTRACT
An emergent domain that raises some unique engineering
challenges is that of software architectures to convert large
bodies of unstructured data to human-usable knowledge,
such as in the domain of socio-cultural information analy-
sis. We report on an architecture based on Service-Oriented
Architectures that we are applying in this domain. We list
the requirements that such an architecture must support,
describe our architecture for addressing them, and outline
what we believe are the important engineering and research
issues that must still be overcome.

1. INTRODUCTION
One of the most striking features of today’s computing
landscape is the exponentially increasing volume of infor-
mation that is becoming electronically accessible. Finding
ways to use this information effectively – to access it in its
myriad forms and formats, to extract insight and know-
ledge, and to update those results as information changes –
is a significant software engineering challenge. While sys-
tems such as search engines provide important capabilities
for accessing and organizing some of this information,
there remains a large gap between the huge corpus of large-
ly-unstructured data and human-usable knowledge.
To address this problem a number of researchers are devel-
oping a new breed of powerful information analysis tools,
called Dynamic Network Analysis, that include capabilities
to do natural language processing on large volumes of data,
techniques for extracting key relations between entities, and
mechanisms for analyzing, filtering, forecasting and visua-
lizing this information as an ecology of evolving networks
including social, knowledge and activity networks [1]
[2][5]. For example, as detailed later, such tools can be
used by scientists to understand change in the Sudan, mili-
tary or intelligence agencies to understand how to interact
with allies, organizational analysts to examine changing
connections among firms and products as evinced by news
stories.

Unfortunately, as implemented today, such tools have a
number of severe limitations.
Stovepiped systems: Current information analysis systems
are often large, monolithic programs that make it difficult
to compose their constituent capabilities with those of other
systems.
Restricted models: Current systems can only work with a
limited set of information models that make interchange
and coordination problematic.
Lack of configurability: Current systems are often tuned
to a specific class of analyses or information abstraction,
and can only be tailored by users having detailed low-level
knowledge of their parameters of operation.
Idiosyncratic interfaces: Each system adopts its own in-
terface conventions, requiring users to learn different inte-
raction conventions for each tool.
Platform restrictions: Current systems often make rigid
assumptions about the specific platform that they can work
on, making it difficult to use them in a distributed setting,
or to balance the need for secure co-location with access to
external capabilities.
Duplicated functionality: Current systems are often engi-
neered to work in stand-alone fashion, requiring each sys-
tem to duplicate functionality also required by others – for
example, in support of graphical interfaces, data manage-
ment, communication, security, etc.
In this paper we describe an approach that addresses these
problems. The key idea is the use of a common integration
architecture, based on service-oriented architectures, that
handles the special requirements for flexible information
analysis. Critical to the success of this approach is the
strong involvement of the community of tool developers
and tool users in identifying standard models and ontolo-
gies to support interoperability, within the service-oriented
context. Focusing specifically on the domain of socio-
cultural analysis, in the remainder of this paper we list
those special requirements, describe our architecture for

370

addressing them, and outline what are the important engi-
neering and research issues that must still be overcome.

2. SOCIO-CULTURAL ANALYSIS
Socio-cultural analysis involves understanding, analyzing
and predicting the relationships in large complex social
systems. Complex social systems are typically represented
as dynamic networks that relate entities in the system (e.g.,
people, knowledge, actions) to each other. The emergent
field of dynamic network analysis (DNA) is centered on the
collection, analysis, understanding and prediction of dy-
namic relations in and among networks, and the impact of
such dynamics on individual and group behavior. DNA
facilitates reasoning about real groups as complex dynamic
systems that evolve over time. Within this field computa-
tional techniques, such as machine learning and artificial
intelligence, are combined with traditional graph and social
network theory, and empirical research on human behavior,
groups, organizations, and societies to develop and test
tools and theories of relational enabled and constrained
action.
The application of DNA techniques to a large complex so-
cial system, such as the US Army or gang networks, entails
a series of procedures. First, one needs to gather the rela-
tional data. One approach for doing this is to extract rela-
tions from a corpus of texts such as public domain items
like web pages, news articles, journal papers, stock holder
reports, community rosters, and various forms of human
and signals intelligence. Second, the extracted networks
need to be analyzed. That is, given the relational data,
identifying key actors and sub-groups, points of vulnera-
bility, and so on. Third, given a set of vulnerabilities, we
want to ask what would happen to the system were the vul-
nerabilities to be exploited. How might the networks
change with and without strategic intervention?
The center for Computational Analysis of Social and Orga-
nizational Systems (CASOS) at Carnegie Mellon Universi-
ty has been engaged in developing methods and tools to
achieve these activities. The tools are interoperable and can
be organized as a chain to extract networks from texts, ana-

lyze these networks, and then engage in what-if reasoning.
 This tool suite takes into account multi-mode, multi-link,
and multi-time period data including attributes of nodes and
edges. This toolset contains the following tools: AutoMap
[4] for extracting networks from natural language texts,
ORA for analyzing the extracted networks [3], and Con-
struct for what-if reasoning about the networks.
Figure 1 provides an example of the way that these tools
are integrated into a tool chain. Each of the tools (Automap,
ORA, Construct) are monolithic programs. They are loose-
ly integrated through an XML format called DyNetML,
which is an interchange format for rich social network data.
While the existing tools are powerful, their interaction in
terms of a tool chain is coarse-grained because the applica-
tions themselves are monolithic. Thus, expert knowledge is
required to use each tool. The information shared amongst
them in terms of traceability or reproducibility is impove-
rished, meaning that conducting analysis when new infor-
mation becomes available, or on entirely new but related
datasets, is difficult. Additionally, linking tools developed
by other members of the DNA community is challenging.

3. ARCHITECTURAL DRIVERS
To overcome the limitations outlined above, we require a
platform and architecture within which socio-cultural anal-
ysis tools can be integrated, configured, extended and pro-
grammed by end users, and tailored to specific domains
without extensive low-level expertise.
Specifically, data collection, analysis and modeling tools
must reside within an architecture that supports six key
requirements [9].
Heterogeneity in data sources, analytical models, analysis
mechanisms, and end-user needs. As the use of these sys-
tems expands, we can assume increasingly diverse sets of
elements that will need to be integrated into future systems.
Flexible configuration to (a) assemble existing compo-
nents (data sources, data coding tools, analysis tools, visua-
lization tools, and simulation models) in new ways depend-
ing on the type of data available and the kind of analysis
needed, (b) add components to support new capabilities,
and (c) allow users to easily experiment with new analysis
paths, workflows, and simulations without detailed technic-
al knowledge of the tools and underlying technologies.
High performance processing and manipulation of large,
diverse, and distributed sources of data to allow interactive
exploration and analysis.
Traceability of analytic output to sources and intermediate
models and records in order of processing, to allow analysts
to compare results of analysis to ground and derived truth,
and to adjust the fidelity and parameters of their models.
Security and privacy of potentially sensitive information
that is used in the analyses.

Figure 1. The Toolchain for socio-cultural analysis
developed by the CASOS group at Carnegie Mellon.

371

What-if reasoning by enabling the analyst to change how
data is coded, what data is coded, what virtual experiments
in the simulations are run, track the impact of those deci-
sions, set up multiple choice paths to run in parallel to faci-
litate rapid assessment making use of data-farming tech-
niques, and replay facilities for desired procedures so that
future data sets can be analyzed.

4. RELATED WORK
A number of modern integration frameworks make services
accessible. One of these is Web Services technologies that
provide standards for interaction, including SOAP [8] and
REST [6]. Although standards for Internet-base invocation
are a first step towards service integration web service in-
frastructure does not support ways to define workflows of
services, web service lifecycle issues, or dynamically locat-
ing of services – capabilities necessary for our domain..

Service-oriented architecture (SOA) [10][11] aims to
address some of these issues by defining standards for
workflows (called orchestrations), policies for governance,
and facilities for service discovery. Many definitions and
implementations of SOAs aim to be applicable for general
business domains. While SOAs provide important capabili-
ties for service coordination, by themselves they have limi-
tations that must be overcome to be applicable to our do-
main: (a) orchestration scripts define low level coordina-
tion, and are not appropriate for use by non-technical users;
(b) support for agile and dynamic workflows is often impo-
verished in existing technologies; and (c) existing technol-
ogies have performance-related issues that make them dif-
ficult to use in context (such as ours) where large flows of
data must be efficiently processed.

As an example of these limitations, consider the stan-
dard methods for defining SOA workflows: the Business
Process Execution Language (BPEL) [12] and Business
Process Modeling Notation (BPMN) [15]. BPEL and
BPMN are graphical programming languages that allow
specification of general business processes. BPEL especial-
ly is intended to be interpreted and therefore requires the
detail of a programming language and the skill of a pro-
grammer. To address this, the SOA community has intro-
duced a more abstract notation for defining orchestrations
called BPMN. The goal is that orchestrations defined in
BPMN can be understood by all business users. However,
business analysts are still required to define orchestrations
in BPMN, rather than non-technical users.

Taking these limitations into consideration, it is neces-
sary to augment SOA technology and concepts to particu-
lar domains. For socio-cultural analysis, this is particularly
relevant because it is necessary that services should be ul-
timately assembled by non-technical field analysts who
have expertise in the domain they are trying to analyze, but
little expertise in programming. Thus, one of the challenges
is identifying the abstractions and protocols that should be
built on top of SOAs, but that are tailored to the needs of

the socio-engineering analysis domain. Furthermore, we
require an easy-to-user approach for service assembly.

Among the other technologies that attempt to provide
general-to-use workflow definition in other domains are
Yahoo! Pipes [18] for defining mashups on the Internet and
uDesign for defining activities in pervasive computing en-
vironments [17]. Our work is similar in spirit to these ef-
forts, but specialized for socio-cultural analysts.

There are also several implementations of infrastruc-
tures that provide an extensible framework for socio-
cultural analysis, particularly in the intelligence analysis
domain. For example, COMPOEX [7] provides an integra-
tion architecture for assisting military commanders and
civilian leaders in selecting models and analyses to plan
and execute military campaigns. The goal of our approach
is to develop a framework that is targeted more generally at
socio-cultural analysis (not limited to military and intelli-
gence activities). Furthermore, COMPOEX is focused on
simulation once models have been developed, whereas our
approach also includes the ingestion of raw data to produce
the models.

5. ARCHITECTURE DESCRIPTION
From a functional perspective, information analysis sys-
tems have a common flow of processing: Data is input into
the system originating from many sources. These sources,
including public news reports and intelligence reports, are
typically written in natural languages. These inputs need to
be processed and marked up to identify key concepts that
are needed for intelligence analysis, and output in a form
that is suitable for simulation and analysis. The concepts, or
entities, of interest in the inputs are mostly fixed for the
domain, and include knowledge and agents. The output
from processing is a model represented as a graph with
relationships among agents and knowledge. Models can
then be analyzed and viewed in a variety of ways. Further,
simulation or what-if analysis may be performed to create a
set of related models. Insight gained is then used to refine
the data processing and analysis. Finally, reports of various
kinds can be generated and stored.
Our architecture naturally follows this decomposition of
activities, while building on best practices in the engineer-
ing of service-oriented architectures and new techniques to
support end-user programming and system configuration.
The basis for the architectures is (a) the use of a multi-
layered system capturing the essential flows of information
and processing, and (b) support for flexible orchestration,
coordination, and transformation.
Multi-layered system. The domain of dynamic network
analysis naturally lends itself to a four-tiered system shown
in Figure 2:
1. Data Layer: a set of heterogeneous data sources. These
include databases, wire feeds, intelligence streams, email
corpuses, web sites, historical documents, etc. These form
the raw inputs to the system, and may be relatively stable

372

(as in the case of historical databases), changeable (as in
the case of web sites), or highly dynamic (as in the case of
wire feeds and intelligence streams).
2. Model Layer: a set of high-level models, which represent
information extracted from the first layer. This layer will be
populated by a variety of models including annotated doc-
uments (e.g., as a result of natural language processing) and
network models (e.g., ORA Meta-Networks 0) representing
relationships between key entities in the domain of dis-
course. Bridging these two layers is a set of model extrac-
tors (e.g., Automap [4], CEMap) that effect the transforma-
tion of raw data into theoretically richer forms for analysis.
3. Analysis Layer: populated by a collection of analysis
tools (including ORA, UCINET, Pythia). Such tools will
reside as semi-independent components, interacting with
models in the second layer and generating input for and
analyzing results from tools in the fourth layer through a
standard set of protocols. This layer also includes simula-
tions, such as Construct, for forecasting and exploring al-
ternative histories and futures. Simulation and analysis
tools will have well-defined interfaces, and be integrated
into a service-oriented framework that enables registry and
lookup in support of dynamic configuration and incremen-
tal reconfiguration.
4. User Layer: the end-user layer, which provides an inter-
face for users to interactively view the analysis results, con-
figure new analyses, trace analysis to sources, and generate
reports. Capabilities in this layer fall into two categories.
One is output of analyses and simulations from the lower
layer (such as ORA reports); this also allows the user to
fine-tune the parameters of these (e.g., specifying whether
reports will be generated for the entire network or key enti-
ties). The other supports orchestration, allowing users to
put together new combinations of processing that determine

both the nature of model generation and
the way in which analysis/simulation
services are assembled.
Orchestration, Coordination, and
Transformation. To enable dynamic
integration and configuration of the com-
ponents into the four layers requires a
number of mechanisms for orchestration,
coordination and transformation.
First is the ability to automatically pro-
duce full analysis pipelines from end-user
descriptions that specify at a high level of
abstraction what kinds of processing is
needed to produce a particular kind of
analysis. Using a combination of graphi-
cal and textual inputs, users will be able
to specify and configure a collection of
data transformation and analyses services
to support their needs. The system auto-
matically assembles these parts, provid-

ing the “glue” for connecting the parts.
Second is the ability to select the appropriate transcoders to
bridge data-mismatch assumptions between components.
Building on earlier research in document transformation,
the platform will include a registry of transcoders and fil-
ters, together with algorithms that find an optimal chain of
transformations (based on information fidelity metrics)
[13][14]. While manual fine-tuning of these transforma-
tions may be necessary in some cases, we expect that the
majority can be done automatically.
Third is the use of a standards-based service-oriented archi-
tecture for the analysis tools. Specifically, the architecture
contains a registry of the services provided by the suite of
existing and newly-developed tools. As users compose da-
taflow paths for analysis, services are automatically se-
lected and composed in appropriate ways (in some cases
requiring the automatic interposition of data transformers).

Assessment/
Reporting/
Recording

User Orchestration,
Collation, and

Feedback

Figure 2. High Level View of SORACS Architecture.

Data
Sources

Transcoders/
Annotators

Annotated
Data

and Models

Analysis/
Simulation

Data Flow
Model Interaction

Control
User Input

Layer 1: Data Layer 2: Models Layer 3: Analysis Layer 4: User

Data
Reduction

Model Updates Data
Requirements

Foundational Services
Data Management
Provisioning and Distribution
Service Invocation

Intelligence Services
Natural Language Processing
Data analysis
Simulation

Configuration Services
Visualization
Orchestration
Reporting
Assessment
Playback

Figure 3. Layered Service Oriented Architecture.

En
te

rp
ris

e
Se

rv
ic

e
B

us

Tr
an

sc
od

er
s

Se
cu

rit
y

373

In addition the integration framework will provide a set of
common services for communication, security, provenance,
and mismatch avoidance.
The organization of these services follows a fairly standard
approach used by modern SOAs. As illustrated in Figure 3,
we organize the services into three groups. At the bottom
are foundational services, including data management, pro-
visioning and distribution, and service invocation. Next are
services that provide the meat of the processing. This is
where tools specific to the data transformation, analysis,
and simulation for understanding and interpreting informa-
tion. At the top are configuration service, which support the
specification and tailoring of computations, as well as cer-
tain visualization services for presenting information to a
user. Communication and coordination is handled by an
Enterprise Service Bus, which supports service discovery,
look-up, enlistment, and interaction.

6. IMPLEMENTATION
The tools described in Section 2 encompass a wide range of
activities required by socio-cultural analysts. They are
therefore good candidates for the initial investigation of an
architecture in this domain. In this section we outline our
current implementation of an initial version of the above
architecture using the existing tools developed by CASOS.
The initial step in our investigation is identifying and im-
plementing the individual services that can be derived from
these tools from which orchestrations can be derived.
Automap analyses textual data. It can process data lexically
(e.g., by removing extraneous white space, splitting sen-
tences) and grammatically (e.g., by identifying and extract-
ing parts of speech, resolving pronouns). Services derived
from Automap can be considered lexical services and
grammatical services or simply a combined textual service.
Service-able functionality also exists within ORA. ORA
contains many different common network science metrics
and grouping algorithms (e.g., CONCOR, Newman, FOG,
Johnson Hierarchical, Attribute based). It also has facilities
for generating, editing, visualizing, and detecting changes

in networks. Construct includes services such as experi-
mental design construction, report generation and simula-
tion. In all cases, the services can be provided at a fine or
coarse grain level in which analysis operations are provided
as a graph analysis service.
Once the services were identified, we entered a rearchitect-
ing phase that involved making the services more de-
coupled in the tools. For Automap, this involved making
available each of the lexical analysis components as inde-
pendent components decoupled from the existing user in-
terface; for ORA it involved decoupling the analyses and
reports desired from the user interface. This process is on-
going, and we present a discussion of the challenges in the
following section.
Once the functions that could be used as services were
identified and isolated in the code, we then implemented
them as services using the standard approach to web ser-
vice definition (WSDLs) and using an open source applica-
tion server to make these available as web services. For this
phase, we used Apache Tomcat as our application server,
and Apache CXF to streamline our implementation of the
existing Java implementations as web services.
Our initial version of the orchestration interface for this
domain has been written as a plug-in to AcmeStudio (see
Figure 4) [16]. We have defined an architectural style for
this domain, detailing each of the services as particular
component types, and defining connector types that are
specific to this domain allowing the components to be
chained together. The orchestration backend of the plug-in
takes architectural specifications and produces BPEL defi-
nitions that can be uploaded and executed by a BPEL en-
gine. We currently use Apache ODE as our orchestration
engine for executing these orchestrations.

7. DISCUSSION & CONCLUSION
In this paper, we have discussed the requirements and de-
sign for an architecture for socio-cultural analysis. We have
also described an initial implementation that provides a
domain-specific approach to defining workflows that is
built upon existing SOA standard technologies. In doing
this, we encountered a number of additional issues and
technological challenges that are imposed by this domain.
What are the appropriate connectors for long-lived service
invocations? While the intent in SOAs is for service or-
chestrations to execute over long periods of time (e.g.,
many years), support for invocation of long running indi-
vidual services is low. BPEL provides a way to deal with
long running services through asynchronous invocation; the
BPEL program then polls for results. The domain of socio-
cultural analysis must support long running services be-
cause the amount of data being analyzed is typically large,
and the analyses complex. However, the simplest model for
analysts is to define call-return type connections between
services. There needs to be a balance between conceptual
ease for analysts and technical detail for developers. Figure 4. The AcmeStudio orchestration interface.

374

Related to this is the issue of control vs. usability. How do
we define services that have the appropriate interfaces for
use in the common case, but still provide enough control
for detail-oriented analysts? For many analyses in this do-
main, there are a set of common or default parameters that
are sufficient in most cases, but we still wish to provide
control for the less common cases.
Traceability and reproducibility is another challenge that
we need to address. SOA platforms provide some coarse-
grained traceability through provenance mechanisms.
However, we require finer grained traceability so that ana-
lysts can query how analysis conclusions were made, and
the reliability of the data that they were based on. Further-
more, we require the ability to rerun orchestrations with
minor changes in data. Currently, there is no mechanism
for providing incremental analysis or data-caching to re-
duce the time these analyses take.
These challenges are areas of future work. Moreover, we
are planning to extend the current prototype in a number of
directions, including: a) providing automated transcoding
between data formats, and b) allowing the definition and
reuse of workflow templates.
Another area of future work evaluating the effectiveness of
the architecture for the socio-cultural domain. The architec-
ture described in this paper matches the way that analysts
think about the problem; we believe that the technical as-
pects balance the needs of users and developers of tools.
We have some confidence that the architecture is correct
through integration of existing CASOS tools. Future work
will involve integrating additional components, and devel-
oping a more functional user interface for analysts to use.

ACKNOWLEDGEMENTS
This work is supported in part by the Office of Naval Research
(ONR), United States Navy, N000140811223 as part of the HSCB
project under OSD. Additional support for the core CASOS tools
was provided by National Science Foundation (NSF) Integrative
Graduate Education and Research Traineeship (IGERT) program,
NSF 045 2598, the Air Force Office of Scientific Research,
FA9550-05-1-0388 under a MURI on Computational Modeling of
Cultural Dimensions in Adversary Organizations, the Army Re-
search Institute W91WAW07C0063, the Army Research Lab
DAAD19-01-2-0009, the office of Naval Research (ONR),
N00014-06-1-0104 the Army Research Office W911NF-07-1-
0060, and CASOS - the center for Computational Analysis of
Social and Organizational Systems at Carnegie Mellon University
(http://www.casos.cs.cmu.edu). The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Office of Naval Research, the Office of the Secre-
tary of Defense, the Army Research Lab, the Air Force Office of
Sponsored Research, the Army Research Office, the National
Science Foundation or the U.S. government.

REFERENCES
[1] Carley, K.M., Dynamic Network Analysis” Dynamic Social
Network Modeling and Analysis: Workshop Summary and Pa-

pers. Breiger, R., Carley, K., Pattison, P. (eds). Committee on
Human Factors, National Research Council, 2003.
[2] Carley, K.M., A Dynamic Network Approach to the Assess-
ment of Terrorist Groups and The Impact of Alternative Courses
of Action. In Visualizing Network Information Meeting Proceed-
ings RTO-MP-IST-063, Neuilly-sur-Seine, France, 2006.
[3] Carley, K.M., Columbus, D., DeReno, M., Reminga, J., and
Moon, I.-C. ORA User’s Guide 2007. Carnegie Mellon University
School of Computer Science Institute for Software Research
Technical Report CMU-ISR-07-115, 2007.
[4] Carley, K.M., Columbus, D., DeReno, Diesner, J., and Sebu-
la, N. AutoMap User’s Guide 2007. Carnegie Mellon University
School of Computer Science Institute for Software Research
Technical Report CMU-ISR-07-114, 2007.
[5] Carley, K.M., Diesner, J., Reminga, J., and Tsvetovat, M,
Toward an Interoperable Dynamic Network Analysis Toolkit,
DSS Special Issue on Cyberinfrastructure for Homeland Security:
Advances in Information Sharing, Data Mining, and Collaboration
Systems, 43(4), p. 1324 – 1347, 2007.
[6] Fielding, R. Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. Thesis, University of Cali-
fornia, Irvine, 2000.
[7] Kott, A. and Corpac, P.S. COMPOEX Technology to Assist
Leaders in Planning and Executing Campaigns in Complex Op-
erational Environments. In 12th International Command and Con-
trol Research and Technology Symposium,, 2007.
[8] Mitra, N., and Lafon, Y. (eds) SOAP Version 1.2 Specifica-
tion (Second Edition). http://www.w3.org/TR.2007/REC-soap12-
part0-20070427, 2007.
[9] Naval Research Laboratory (NRL) Diplomatic, Information-
al, Military, Economic (DIME) Political, Military, Economic,
Social, Information, Infrastructure (PMESII) Modeling Require-
ments Workshop. John Hopkins University, Maryland, 2007.
[10] Newcomer, E., Lomov G. Understanding SOA with Web
Services. Addison Wesley, 2005.
[11] OASIS. OASIS Reference Model for Service Oriented Ar-
chitecture 1.0. http://www.sei.cmu.edu/pub/documents/
05.reports/pdf/05tn014.pdf. 2006.
[12] OASIS. Web Services Business Process Execution Language
Version 2.0, April 2007. URL http://docs.oasis-
open.org/wsbpel/2.0/wsbpelv2.0.html.
[13] Ockerbloom, J. Exploiting Structured Data in Wide-Area
Information Systems, Ph.D. Thesis. Carnegie Mellon University
Technical Report CMU-CS-95-184, August, 1995
[14] Ockerbloom, J. Accommodation: The Key to Making Widely
Adopted Composable Systems. In Proc. Workshop on Composi-
tional Software Architectures, Monterey, CA, 1998.
[15] Object Management Group. The Business Process Modeling
Notation (BPMN) Version 1.2. January, 2009. URL:
http://www.omg.org/docs/formal/09-01-03.pdf.
[16] Schmerl, B., and Garlan, D. AcmeStudio: Supporting Style-
Centered Architecture Development (Research Demonstration) In
Proc. the 26th ICSE, Edinburgh, Scotland, May 2004.
[17] Sousa, J.P., Schmerl, B., Poladian, V. and Brodsky, A. uDe-
sign: End-User Design Applied to Monitoring and Control Appli-
cations for Smart Spaces. In Proceedings of the 2008 Working
IFIP/IEEE Conference on Software Architecture, Vancouver, BC,
Canada, 18-22 February 2008
[18] Yahoo!, Inc. Yahoo Pipes. http://pipes.yahoo.com/pipes.
Accessed March, 2009.

375

A Conceptual Model for Comprehension of Object-Oriented Interactive Systems

Izuru Kume
Nara Institute of Science and Technology
Graduate School of Information Science

8916-5 Takayama, Ikoma,
Nara 630-0192, Japan

kume@is.naist.jp

Etsuya Shibayama
The University of Tokyo

Information Technology Center
2-11-16 Yayoi, Bunnkyo,
Tokyo 113-8658, Japan

etsuya@ecc.u-tokyo.ac.jp

Abstract

Event-driven programming often takes advantage of ef-
fects to implement interactive features. Understanding the
role of objects from the viewpoint of effects is important
to understand the implementation of interactive features.
However, currently no existing methods support compre-
hension of object’s roles in taking advantage of effects.

In this paper, we propose a modeling framework that
becomes the basis of a trace analysis method to compre-
hend the roles of objects in taking advantage of effects in a
feature implementation. The proposed framework provides
maintainers a low-level trace model to represent runtime ef-
fects ‘as is’, and a high-level model to abstract the effects
according to maintainers’ concerns. The framework also
defines analysis commands to construct such abstraction of
runtime effects. Using the analysis commands, we describe
a practical analysis scenario to detect a method execution
that triggers the calculation of an output of a feature using
previous user inputs.

1. Introduction

Object-oriented systems, such as CASE tools manipu-
lated by GUIs and Java servlet applications that respond to
clients’ requests, usually adopt an event-driven program-
ming style to implement their features [1] with multiple
user inputs. In an execution of an event-driven program,
event handlers, which were registered in a framework such
as Java Swing in advance, are invoked from the framework
and process a given input. The event handlers rarely invoke
each other, and thus their execution is mutually independent
from the viewpoint of control-flows.

An effect is a change of runtime state caused by assign-
ing a new value into a persistent variable, which is either
an instance variable, a class variable or an array compo-
nent. Programmers often take advantage of effects to make

an input handling process started by an event handler under
influence of previous input handling processes. Such a use
of effects are necessary to implement a feature that requires
multiple inputs to produce an output.

For example, the drawing feature of an drawing program
requires two user inputs, one for selection of a drawn fig-
ure and another for indication of a drawing place. When we
examine the execution of the drawing program, we can find
that the figure selection is assigned to an instance variable,
which is then referenced when the point indication is pro-
cessed. It is a simple example of coupling by effects, which
enables a kind of data exchange among event handlers. Our
final research goal is to establish a comprehension method
to support understanding of couplings by effect of features
of object-oriented interactive systems.

Understanding the role of objects that participate in an
object collaboration is important for program understand-
ing [10], and several trace analysis methods (e.g. [9]) are
proposed to support the understanding of such roles. Well-
accepted basic object-oriented modeling concepts such as
collaboration and responsibility [11] become the back-
ground of such supporting methods. On the other hand, as
for the understanding of coupling by effects, we have no
theoretical background in spite of the importance to com-
prehend effects in the implementation of interactive fea-
tures, which makes effects comprehension difficult.

To solve the problem, we propose a modeling framework
that supports abstraction of a coupling by effects, and the
roles of the participants of the coupling by effects. Our
framework provides: (1) a model of low-level execution
traces on which couplings by effects are represented ‘as is’,
(2) an abstraction framework to comprehend objects’ roles
in a coupling by effects, and (3) analysis commands to con-
struct high-level abstraction to comprehend objects’ roles.
We also introduce a practical analysis scenario which is use-
ful to detect objects that plays the role of ‘trigger’ of pro-
cessing multiple inputs, and is applicable to various cases.
We demonstrate the expressive power of our proposed ab-

376

straction framework by describing the practical scenario by
our framework.

2. Preliminary

Production of an effect means an assignment into some
persistent variable. Use of an effect means a reference of
the persistent variable whose assignment causes the effect.
For a persistent variable holder H , an effect on H means
the effect caused by one of H’s persistent variable.

An operation is a unit of indivisible execution such as
arithmetic operations. An event is a pair of an operation
and its result. Events are the primitive elements to repre-
sent a program execution. An action is an execution of a
sequence of one or more program statements. Events are so
fine grained that explanation in terms of events is not intu-
itive. Therefore, we often explain our modeling concepts in
terms of actions and method executions.

For a method execution M , the method process under M
is a sequence of method executions triggered by M . When
M is an execution of an event handler for an input I , we
call the method series under M the handling process of I .
For sum condition C on method executions, we say that a
method invocation M is a topmost method execution that
satisfies C if M is included in a method process under M ′

which is not M and satisfies C.

3. Motivating Example

Throughout this paper, we use an existing object-
oriented interactive system that is built on Java Swing
framework, and that provides an interactive feature to ac-
complish an one-on-one battle between two RPG (Role
Playing Game) characters. Readers can find more detailed
explanation in [3].

When the program is started, two panels each of which
represents an RPG character are displayed. Each panel dis-
plays the status of the represented character (the character’s
name, HP value, and etc.), and a button to send a command
to attack the opponent. Clicking only one button produces
no output, but successively clicking the another button trig-
gers an one-on-one battle which includes success-failure
checks of attacks and damage calculation, and results in an
update on the status of the both characters.

The sequence diagram in Figure 1 focuses on the in-
teractions among the main class for initialization, a battle
command receptor battle field, and two attack com-
mand objects (command 1 and command 2) in the whole
process to accomplish an one-on-one battle. Actions that
accompany the process are indicated in the balloons in Fig-
ure 1.

The execution starts with the system initialization by the
main class. In the process of the initialization, the com-

Creation

command_2

Main

battle_field
create

create(battle_field)

create(battle_field)

add(command_1)

start

select command_1

add(command_2)

select command_2

command_1

Set reference
to [battle_field].

Set reference
to [battle_field].

Display
panels.

Set reference to
[command_1]. (c)

Battle start.

Check reference.

(b)

Check reference.

(d)

Display the results.

Obtain
[battle_field]

Obtain
[battle_field]

Initialize. (a)

Figure 1. Sequence Diagram with Actions

mand receptor (battle field) is created and initialized.
All instance variables of the receptor are initialized at this
time. (a) Then two attack commands (command 1 and
command 2) are created and initialized. At their initial-
ization, the command receptor is assigned to their instance
variables. Then two panels are displayed and the system
initialization finishes.

On clicking the button on one panel, a method is invoked
on command 1 which then invokes a method add of the
command receptor (battle field) with itself as one of
the method argument. The command receptor receives an
attack command through the method add. During the ex-
ecution of add, the command receptor performs an condi-
tional branch based on its state (b).

If the state had been changed since the initialization, then
it would obtain the previously received battle command by
referencing the instance variable, and would start the one-
on-one battle which uses the obtained battle command to-
gether with the just received battle command by the method
invocation. At this time, the state remains unchanged since
the initialization, and it assigns the received attack com-
mand (command 1) to one of its instance variable (c).

On the successive clicking on the another button, another
attack command command 2 similarly invokes the method
add on the command receptor. When the command recep-
tor performs the conditional branch again (d), its state is
updated at the assignment (c). Thus the command recep-
tor starts the one-on-one battle and completes the second
input process.

From the above explanation, we can easily see that the
first conditional branch (b) is influenced by the state ini-
tialization (b), and the second conditional branch (d)
is influenced by the instance variable assignment (c). It
means that the command receptor participates in the cou-
pling by effects of the one-on-one battle. Similarly the two
attack commands command 1 and command 2 also par-
ticipate in the coupling by effects, because at the input han-

377

dling processes they use their effects at the system initial-
ization. There are many other participants in the coupling
by effects although they are not depicted in the sequence
diagram.

Let’s assume a situation that a maintainer tries to locate
the code that calculates the success-failure checks of the at-
tacks and damaged based on the two attack commands. The
maintainer only knows that the system starts the calcula-
tion process as a result of one or more conditional branches
somewhere in the source code that checks an attack com-
mand has been sent or not at every input handling process.
The maintainer has to identify the object(s) with the role
of calculation trigger in the coupling by effects, which we
know is the command receptor battle field in the sec-
ond input handling process.

The maintainer can examine by going around many
method executions by applying the omniscient debugger [4]
which tells the execution point where an instance variable is
assigned the current value, for example. However, such go-
ing around means a waste of time and efforts for the main-
tainer who lacks the knowledge to decide the meaning of
the assignment and the reference of the instance variable at
the first glance.

The maintainer really requires a method that efficiently
identifies the attack command receptor as the trigger of the
one-on-one battle calculations by an ambiguous style of
conditions such as “the object that is the method receiver
of the topmost method execution influenced by the first in-
put handling process”, instead of a thorough investigation
of numerous instance variables and conditional branches.
Now it’s a time for us to state our analysis target and out
research challenge.

Analysis Target: A feature with multiple user inputs has
a topmost method execution (1) that produces an output of
the feature, and (2) that contains an action influenced by
previous user inputs. We call such a method execution an
output trigger.

Research challenge: We pursue a systematic analysis
method that enables maintainers to identify output triggers
with as little as prerequisite knowledge and efforts of going
and backing of method executions.

As for our solution to our research challenge, we show
an analysis scenario in section 5 and a conceptual model to
formally define the scenario in section 4.

4. Analysis Concepts

In this section, we introduce (1) a low-level trace model
to represent a coupling by effects at runtime ‘as is’, (2) an
abstraction concepts to understand the role of objects that
participate in a coupling by effects, and (3) analysis com-
mands to accomplish the abstraction of a coupling by ef-
fects. As for the trace model, readers can find a detailed

explanation in [3] and another application for defects locat-
ing problem in [2] for a special case of so called feature
interactions.

4.1. Trace Model

The trace model specifies the data elements and their re-
lationships in the trace of a program execution. A trace
records a sequence of method executions. Each method exe-
cution is divided to basic block executions, each of which is
further divided to a sequence of events. Method executions,
basic block executions, and events (and their operations and
results) are represented as independent elements in a trace,
which are called trace elements. Trace elements have their
own attributes and reference each other.

Resource

ValueEffectControl

Operation

-product 1

-producer *

-influenced

*

-influence

*

Event ExecutedUnit

-trigger

1 -event1

-result

1
-event1

*

*

-location 1

RunTimeMethodRunTimeBlock

1..2
-starter

1

1

-blocks

*

1 -call_p 1-return_p 11

-started

Figure 2. Trace Elements

The class diagram in Figure 2 represents the types of
trace elements and their mutual reference relationships.
Class RunTimeMethod and class RunTimeBlock rep-
resent method executions and basic block executions re-
spectively. Event, Operation, and Resource repre-
sent events, operations, and operation results respectively.
Operation results are categorized into (1) value creation
(Notice that the result is not the value itself but its creation.),
(2) change of control, and (3) effect production. Classes
Value, Control, and Effect corresponds to the classi-
fication of the operation results.

Operations are categorized according to their resulting
types. Value creating operations include constant values,
arithmetic operations, class instance creations, array cre-
ations, value copies (an abstraction of local variable assign-
ments), and persistent variable references. Control chang-
ing operations include method invocations, returns from in-
vocation, and conditional branches. Effect producing oper-
ations include persistent variable assignments.

A method invocation event refers to the corre-
sponding method execution. A return event refers
to the basic block execution from which the execu-
tion continues. Such reference relationships are rep-
resented by a starter-started association among

378

Event and ExecutedUnit that abstracts method ex-
ecutions and the basic block execution. Combina-
tion of the starter-started association with a
event-location association between Event and
RunTimeBlock to show which basic block an event
belongs to, and the decomposition relationship among
RunTimeMethod and RunTimeBlock enables bidirec-
tional navigation between events and method executions.

The trace model defines influences among operations via
their results. For example, the effect of a persistent variable
assignment influences references of the variable because the
assignment decides the value of the variable. A conditional
branch clearly influences the operations contained in the ba-
sic blocks selected by the conditional branch. We can de-
rive influences among events from the influences of their
operations and results. The derived influences constitutes a
coupling by effect in a trace as explained below.

When an event es influences another event ed, we call
the influence-influenced relationship between es and ed an
influence direction from es to ed, and express it by e ⇒
e′. We call a transitive closure of influence directions from
es to ed an influence flow from es to ed, and express it by
es

∗⇒ ed. Let’s {Mi}i be a collection of method executions
in multiple input handling processes. We say that {Mi}i is
coupled if the events in ∪iMi forms a connected directed
graph with their influence directions. Intuitively speaking,
the above condition states that any method execution Mi is
influenced by some of its predecessors (if any).

The union of all existing influence flows among the
events in ∪iMi represents the coupling by effects of the
{Mi}i ‘as is’.

4.2. Comprehension Model

As we saw in section 4.1, a coupling by effects primarily
consists of events and their influence flows. Objects indi-
rectly participate in the coupling through a connection to
participating events. For example, an object connects to an
instance variable assignment as the variable holder, or con-
nect to another event that is executed in the execution of
the object’s method. Therefore, the roles of objects depend
to and can be derived from the connection to participating
events. In the rest of the paper we concentrate on participat-
ing events.

In the following we introduce an abstraction of coupling
by effects. The basic idea of our abstraction is very simple:
Designate a small number of events that has an important
role in the coupling by effects, and abstract out the rests by a
small number of event sets, called event chunks. We regard
actions and method executions event chunks represented by
their contained events.

Given a set of designated events E and a set of event
chunks C, we can derive influence directions among E ∪ C

from the influence directions among events. First, select a
set of influence directions S that connects the designated
events and anonymous events in the event chunks:

S = {e ⇒ e′ | e, e′ ∈ E ∪ (∪C)}
Then we replace each e ⇒ e′ in S with a set of derived
influence directions iflow(E , C) as follows:

iflow(E , C) = {ext(e) ⇒ ext(e′) | e ⇒ e′ ∈ S}
where ext(e) is defined as follows:

ext(e) =

{
{e} if e ∈ E ,

min(e) otherwise.

where min(e) is the set of smallest event chunks that include
e and is formally defined as follows:

min(e) = {C ∈ C | e ∈ C, � ∃C ′ ∈ C[e ∈ C ′ and C ′ ⊂ C]}
Now we can define the abstraction of a coupling by ef-

fects by designated events E and event chunks C as the union
of all transitive closures of the derived influence directions
in iflow(E , C).

Creation

command_2

Main

battle_field
create

create(battle_field)

create(battle_field)

add(command_1)

start

select

command_1

select

command_2

command_1

Check existing

command.

add(command_1)
Check existing

command.

initialization

act_1

act_2battle_core

Check reference.

(d)

add(command_1)

Figure 3. Influences among Event Chunks

Figure 3 shows the abstraction of coupling by effects by
the set of designated events {(d)} and the event chunks
{act 1, act 2, battle core}. Event chunks act 1 and
act 2 abstract out the events in the first input handling
process and in the second input handling process respec-
tively. The only designated event (e) is the very con-
ditional branch that decides to start the one-on-one battle
calculations. The event chunk battle core is the only
output trigger in the one-on-one battle feature, our analysis
target described in section 3.

Abstracting a coupling by effects in terms of actions en-
ables more detailed comprehension of effects and their in-
fluences. Figure 4 shows influence flows among the ac-
tions in Figure 1. The dashed arrows represent influence

379

createcreate

Main

battle_field

command_1

command_2

Initialize.

(a)

Creation

Check reference.

(d)

Check reference.

(b)

Set reference to

[command_1]. (c)

Obtain

[battle_field]

Set reference

to [battle_field].

Set reference to

[battle_field].

Obtain

[battle_field]

Display the
result.

Battle start.

add(command_1)

add(command_2)

Figure 4. Influences among Actions

flows among different input handling processes. We pur-
sue a means of abstracting a coupling by effects in terms of
actions in future.

4.3. Analysis Commands

In this section, we introduce analysis commands to intro-
duce a new event chunk or to derive designated events and
event chunks from existing event chunks.

Introduction of event chunks: Our abstraction frame-
work does not define how to introduce a new event chunk.
A means of introducing event chunks should be provided by
a trace analysis tool, and thus is implementation dependent.
It is desirable that maintainers can introduce event chunks
in terms of program elements such as “a set of assignments
to the instance variable age declared in class Person”. In
[3] we propose to take advantage of a trace querying lan-
guage to introduce event chunks.

Designation: Designating events is also an implemen-
tation dependent matter. It is desirable that a trace analy-
sis tool should provide a way to designate events interac-
tively so that maintainers can check each event contained in
a small event chunks. From our experience, designating not
only events but also method executions is useful. Therefore,
we extend the designation target to method executions. In
[3] we propose a prototype analysis tool that provides GUIs
to manipulate a small event chunk (or a small method exe-
cution set) and contained events (or contained method exe-
cutions).

Coupling extraction: Given a two event chunks E1

and E2, the coupling extraction command derives an event
chunk coupled(E1, E2) defined as follows:

coupled(E1, E2) = {e ∈ E1 | ∃e′ ∈ E2 s.t. e′ ∗⇒ e}

Coverage: Given an event chunk E , the coverage com-
mand derives the least set of method executions cover(E)
that covers all events in E :

cover(E) = {m | ∃e ∈ E s.t. m executes e.}
Topmost Set: Given a set of method executions M, the

topmost command derives a set of the topmost method exe-
cutions top(M) ⊆ M:

top(M) = {m ∈ M|¬∃m′ ∈ M s.t. under(m′, m)}}
where under(m′,m) means m �= m′ and m is contained in
the method process under m′.

Image: Given a set of method executions M , the image
command derives an event chunk image(M) that are cov-
ered by M :

image(M) = {e : Event | ∃m s.t. under(M, m)ande ∈ m}

5. ‘Output Trigger Detection’ Scenario

In this section we define an analysis scenario that sys-
tematically identify output triggers of features in terms of
the analysis commands in section 4.3. It is our solution to
our research challenge stated in section 3. The analysis sce-
nario, called the ‘output trigger detection’ scenario, aims at
locating the topmost method executions that are influenced
by previous input handling processes. For the ease of ex-
planation, we pose a restriction that the analyzed interactive
feature takes two events, although we can easily extend the
scenario for the cases of more than two inputs.

Shortly to say, the ‘trigger detection’ scenario derives the
topmost method executions that are in the second input han-
dling process and that are influenced by the first input han-
dling process. The derivation is accomplished by the four
steps explained below. For each of the four steps, we ex-
plain the result obtained by applying the step to our one-on-
one battle example, and how to implement the step in terms
of our analysis commands.

(1) Introduce two event chunks that abstract out the
two input handling processes. By applying this step to our
example, we obtain two event chunks act 1 and act 2 in
figure 3. To accomplish this step, we first introduce a set
of executions of event handlers1, and designate each execu-
tion of the event handlers. Next, we apply the image com-
mand to each of the designated elements to obtain two event
chunks.

(2) Extract the event chunk from the second input
handling process that are influenced by the first input
handling process. By applying this step to our example, we
obtain an event chunk that contains the conditional branch

1Remember that we regard a set of method invocations as an event
chunk.

380

(d) in Figure 3. This step is accomplished by a simple
application of coupling extraction command.

(3) Obtain the method executions where the events
influenced by the first input handling process are exe-
cuted. By applying this step to our example, we obtain a
subset of the method process under the second execution
of add on the command receptor (battle field). This
step is accomplished simply by applying the cover com-
mand on the result of step (2).

(4) Obtain the topmost method executions that are
in the second input handling process and that are in-
fluenced by the first input handling process. By apply-
ing this step to our example, we obtain the set of method
executions whose only element is the second executions of
method add on the commands receptor (battle field).
You can optionally designate the conditional branch (d)
from the image of this method execution. This step is ac-
complished simply by applying the topmost command to
the result of step (3).

Notice that the steps from (2) to (4) requires no class
names nor no method names. According to the implementa-
tion by our prototype analysis tool[3], only step (1) requires
a knowledge about Java Swing API. As a result, the only
programming knowledge required for maintainers to apply
the ‘trigger detection’ scenario is the API of the framework
on which the system is built on. It is worth noticing that the
little requirement on prerequisite knowledge shows a great
practical merit of the scenario. For more details of the im-
plementation of the ‘trigger detection’ scenario, see [3].

6. Related Work

As for existing analysis methods about effects, object
flow analysis [5] shows a great success on test case man-
agement [6] and feature dependency analysis [8]. However,
because of the difference in th focuses on application areas,
the object flow model does not address conditional branches
[7], and does not provide an abstraction higher than object
aliases. Therefore, it is difficult to obtain a high level repre-
sentation like ours for to construct a trace analysis method
based on the object flow model,

7. Conclusion

In this paper, we discussed the problem to comprehend
the use of effects and their influences to implement features
in a event-driven programming style. As our comprehen-
sion target, we defined output triggers that start a calcu-
lation process to produce a feature output from previously
given user inputs. We introduced a practical analysis sce-
nario to systematically detect output triggers. As for the the-
oretical basis of our approach, we introduced (1) a model of

program execution traces that gives a low-level representa-
tion of effects and their influences, (2) an abstraction model
to comprehend a low-level representation, and (3) analysis
commands to achieve an abstraction. We described the sce-
nario to detect output triggers by the analysis commands.

Acknowledgement

This research was partially supported by the Ministry
of Education, Culture, Sports, Science, and Technology,
Grant-in-Aid for Scientific Research on Priority Areas
18049027. We are deeply grateful for the great support and
encouragement by Toshiyuki Amagasa, Masahide Naka-
mura, Jun Miyazaki, Kenji Hatano, Naoya Nitta, professor
Yasuhiro Takemura and professor Koji Torii.

References

[1] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Transactions on Software Engineering,
29(3):210–224, Match 2003.

[2] I. Kume and E. Shibayama. Feature interactions in object-
oriented effect systems from a viewpoint of program com-
prehension. In International Conference on Feature Inter-
actions, 2009.

[3] I. Kume and E. Shibayama. A trace analysis scenario
to comprehend effects in object-oriented interactive
systems. Technical Report NAIST-IS-TR2009003,
Nara Institute of Science and Technology, 2009.
http://isw3.naist.jp/IS/TechReport/.

[4] B. Lewis. Debugging backwards in time. In International
Workshop on Automated Debugging (AADEBUG), 2003.

[5] A. Lienhard, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Cap-
turing how objects flow at runtime. In International Work-
shop on Program Comprehension through Dynamic Analy-
sis (PCODA), pages 39–43, 2006.

[6] A. Lienhard, T. Gı̂rba, O. Greevy, and O. Nierstrasz. Expos-
ing side effects in execution traces. In International Work-
shop on Program Comprehension through Dynamic Analy-
sis, pages 11–17, 2007.

[7] A. Lienhard, T. Gı̂rba, and O. Nierstrasz. Practical object-
oriented back-in-time debugger. In ECOOP, pages l592–
615, 2008.

[8] A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking objects
to detect feature dependencies. In International Conference
on Program Comprehension, pages 59–68. IEEE, 2007.

[9] T. Richner and Stéphane Ducasse. Using dynamic informa-
tion for the iterative recovery of collaborations and role. In
International Conference on Software Maintenance, pages
34–43. IEEE, 2002.

[10] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, December 1992.

[11] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing
Object-Oriented Software. Prentice Hall, 1990.

381

Arabic Lisp

Hanan Elazhary

Electronics Research Institute

Cairo, Egypt

hanan@eri.sci.eg

Abstract— High-level languages and very high-level languages

have been developed to simplify programming. However,

programming is still not an easy task for everyone. This paper

discusses the concept of facile programming, where programming

languages should be made as easy as possible to be easily learnt,

remembered, and used by people from different disciplines. This

is achieved by trying to figure out all the difficulties that face such

programmers and trying to tackle them. The paper addresses one

difficulty, which is that not every programmer is given the chance

to program in his natural language or at least a language like his

natural language. Thus, it is hard for programmers who do not

speak English to learn, remember, and use English-like

programming languages and understand the English compilation

error messages. Unfortunately, there are very few attempts in the

literature to address this problem and these attempts do not handle

common programming languages and thus, have not been

accepted. To tackle this problem, we developed an Arabic version

of Lisp, namely Arabic Lisp. We also developed Arabic Lispizer,

which not only translates Arabic Lisp to Lisp (and vice versa for

portability), but also detects syntax errors and produces

corresponding error messages in ArabicÐ

I. INTRODUCTION & BACKGROUND

F two persons would like to communicate with each other,

they have to speak the same language. If they do not

speak the same language, one of them should learn the

language of the other or they should use a translator. When

a person attempts to speak a foreign language, in which he

(he stands for he/she in the rest of the paper) is not fluent,

he usually tends to think in his natural language and then

translate his thoughts to the foreign language. This is why

he usually makes some effort to remember the syntax of the

foreign language and the sentences that he pronounces are

not always grammatically correctÐ Besides, it is not always

easy for him to understand this foreign language.Ñ
When the computer systems were invented, programmers

had to learn the language of a computer system (machine

language) in order to be able to communicate with it. Since

machine language includes two letters only that are

represented by zero volt and one volt, learning machine

language is a very hard task. Besides, machine language is a

low-level language that requires knowledge of the

underlying hardware and is machine dependentÐ In other

words, it differs from one family of computer systems to

another. This means that programmers had to learn more

than one machine language. To avoid these problems,

programmers had to use translators to translate programs

from their natural languages to the required machine

language. But, due to the ambiguity of natural languages

[1], no such translators could be easily developed. For this

reason, assembly language [2] had to be developed instead.

Assembly language provides an English-like statement for

each statement in machine language and assembly language

programs are translated into machine language programs

using assemblersÐ Unfortunately, assembly language is a

low-level language and is machine dependent like machine

languageÐ Striving to make programming much easier, high-

level languages and very high-level languages [3]-[6] have

been invented. These languages are more user friendly since

they are not machine dependent and do not require

knowledge of the underlying hardware. Unfortunately, in

spite of this, programming is still not an easy task for

everyone especially programmers from disciplines that are

not computer-relatedÐ
In this paper, we discuss the concept of facile programming,

where programming languages should be made as easy as

possible to be easily learnt, remembered, and used by

people from different disciplines. The goal is to provide

programmers from diverse backgrounds with programming

capability. This is achieved by trying to figure out all the

difficulties that face such programmers and trying to tackle

them. What is noticeable about typical programming

languages (assembly languages, high-level languages, and

very high-level languages) is that they are mostly English-

like. This is because they have been invented by English-

speaking developers and have been intended to be used by

English-speaking programmersÑ[7]. Thus, these

programming languages are not easily learnt, remembered,

and used by programmers who do not speak EnglishÐ
Besides, it is very hard for them to understand compilation

error messagesÐ From the above discussion, it is obvious

that if programming is to be easy for everyone, everyone

should be given the chance to use a programming language

that is like his natural language (or a natural language in

which he is fluent). Developing such programming

languages implies a faster learning phase, better

remembrance of the programming language syntax, easier

programming, less errors, and more programmers.

There have been some attempts in the literature to develop

programming languages that are like natural languages other

I

382

than English [8]-[12]. Similar attempts have been made for

programming environments [13], [14]. But, to the best of

our knowledge, such attempts have not been extended to

cover common high-level and very high-level programming

languages and thus these attempts have not been widely

accepted. For example an Arabic programming language

similar to C has been developed [15], but this language is

not exactly like C. Thus, no translation is possible between

these two languages and hence no portability is possible.

Some other programming languages are partially English or

English-likeÐ For example, Microsoft Access [16] allows

using the Arabic language in specifying names and data

values in database systemsÐ But, unfortunately, SQL (which

is used to access database systems) keywords are English-

like and error messages are EnglishÐ
In an attempt to tackle this problem, we developed an

Arabic version of Lisp [17], namely Arabic Lisp. The

reason for selecting Lisp is that it is more suitable for the

average novice programmers as explained in Section II. The

reason for selecting the Arabic language is that it is the

official language of hundreds of millions of people in the

Middle East and North Africa. If an Arabic version of Lisp

were developed, it is expected that a large number of these

targeted users would be encouraged to learn it and use itÐ
This paper is organized as follows: Section II introduces

Lisp while Section III introduces Arabic Lisp with

examplesÐ This section is well-explained such that even

non-Arabic speakers can understand it. Finally, Section IV

provides the conclusions and directions for future research.

II. LISP

The Lisp language was first proposed in the late 1950s.

Since then, many dialects of Lisp have been developed, but

ANSI/INCITS 226-1994 (R2004) [18] is the official

standard. The Common Lisp HyperSpec™ [19] is the

acclaimed online version derived from this official standardÐ
In Lisp, instructions and data are in the form of lists and

thus it is called Lisp (List processing). Lisp is a general-

purpose programming language that supports a combination

of procedural, functional, and object-oriented programming

paradigms. It does not normally require initial declarations

needed in other general-purpose programming languages

such as CÒÒ and Java. Thus, Lisp is more suitable for the

average novice programmers. Lisp uses the prefix notation

(the function name usually precedes the arguments). Table I

shows some basic Lisp instructions and examples of their

operation.

III. ARABIC LISP

In this section, we present Arabic Lisp, which is the Arabic

version of Lisp. The Arabic Lisp keywords corresponding

to the basic Lisp keywords are as followsÓ
• setf:

��� ���

• list: ��� �	�
����� ��

• append: ��� �	�
����� ��ÑÔÕÕÖÕÕ×ØÕÕÙÚ

• NIL:
�����
 (if it refers to an empty list) or ����� (if it

refers to "false")

• push:
� ���� , pop: � ��� ����

• +: +, -: -, *: *, /: /

• The apostrophe ' : '

• first: �	�
• rest: Ñ��� ���Ñ

• butlast: � ��� ���� ������� , last: ����

• length:
���	

• reverse: ������

• min: ������ , max: ������

• expt: ��
, sqrt:

� !

• equal: ��"�#	�

• T: $�	��

• member: ����	

• listp: %��&��
���� , endp: %��&���'��� , numberp:

%��&���(, zerop: %��&��)�� , evenp: %��&!	��� ,

oddp: %��&��#��
, plusp: �%��&���!	�$, minusp:

%��&"�*��$, boundp: %��&��+�,�

• print:
������

• and: 	 , or: 	�
• if:

*�	

• defun: ��,�

• apply #': '
����-Û

Note that Lisp and Arabic Lisp use some similar keywords

such as +, -, *, and / and same Arabic digits (0, 1, 2, 3 …).

The Arabic Lisp instructions (corresponding to the Lisp

instructions shown in Table I) are shown in Table II. In

these examples, each Lisp keyword is replaced by the

corresponding Arabic Lisp keyword. A character in the

English alphabet (if not a part of a keyword) is replaced by

its corresponding character in the Arabic alphabet.

Accordingly, a is replaced by
�
, b by $, c by ., d by /, e

by 0, f by 1, i by

, l by �, m by 2, n by 3, o by 4, r by

�, s by
�

, t by
,

, u by
-

, x by (, and y by
�

. Note also that

unlike English, Arabic is read from the right to the left. In

example 1 in Table I, setf is replaced by
������

 and x is

replaced by (. The instruction is then written from the right

to the left as shown in example 1 in Table II. The reader can

similarly understand how the other Lisp instructions in

Table I can be replaced by the corresponding Arabic Lisp

instructions in Table II. In examples 26 and 27, the name

"addition" is replaced by the name
����!Ñ and the name

"number_list" is replaced by the name
��
�����&�����(� .

There is no rule that applies to this since the names

"addition" and "number_list" are chosen by the Lisp

programmer, while the name !����� and

 ����&(�����

 are

chosen by the Arabic Lisp programmer.

We developed Arabic Lispizer, which can translate Lisp to

Arabic Lisp and vice versa for portability and to be easily

understood by Arabic Lisp programmers. One of the

problems that faces Arabic Lispizer when translating Arabic

383

Lisp to Lisp (and vice versa) is the translation of names. For

example when attempting to translate example ÜÝ in Table I

to the corresponding example in Table II, it is not clear how

to translate the name “addition” and the name

"number_list". To tackle this problem, as mentioned above,

the character a is replaced by
�
, b by �, d by �, e by �, i by �

, l by �, m by �, n by �, o by 	, r by
, s by
�

, t by
�

,

and u by

. The name "addition" is thus translated intoÑ� ������������Ñ and the name "number_list" is translated

into ������������������� . Note that in Arabic, the

shapes of some characters change slightly when they are

attached to form a word. Although these names are weird

and meaningless in Arabic, they are acceptable since they

are only names. The Arabic Lisp programmer can simply

redefine the function using a suitable name of his choice

without having to rewrite it.

Arabic Lispizer can also detect syntax errors, and produce

corresponding error messages in Arabic to be easily

understood by Arabic Lisp programmers. Table III shows

some example Arabic Lisp errors, the corresponding error

messages detected by Arabic Lispizer (in Arabic), and their

translation:

• In example 1, the instruction
��Ñ is unrecognized since

�� ��, that corresponds to setf in Lisp is expected

• In example 2, the variable � should be bound possibly

by writing (
��� ��� � �����

), which corresponds to

(setf b NIL) in Lisp, before attempting to push anything

to it

• In example 3, a variable name should follow
��� ���

since in Lisp, a variable name follows setf

• In example 4, the instruction ���� , which corresponds

to sqrt in Lisp, expects a number argument. Thus, the

provided argument type is unacceptable

IV. CONCLUSIONS & FUTURE WORK

This paper discussed the concept of facile programming,

where programming languages should be made as easy as

possible to be easily learnt, remembered, and used by

people from different disciplines. This is achieved by trying

to figure out all the difficulties that face such programmers

and trying to tackle them. What is noticeable about typical

programming languages (assembly languages, high–level

languages, and very high–level languages) is that they are

mostly English–like. This is because they have been

invented by English–speaking developers and have been

intended to be used by English–speaking programmers.

Thus, these programming languages are not easily learnt,

remembered, and used by programmers who do not speak

English. Besides, it is very hard for them to understand

English compilation error messages. In an attempt to tackle

this problem, we developed an Arabic version of Lisp,

namely Arabic Lisp. Arabic Lisp covers the basic Lisp

instructions, but due to the space limitations of the current

paper, not all instructions are shown. We also developed

Arabic Lispizer, which not only translates Arabic Lisp to

Lisp (and vice versa for portability), but also detects syntax

errors and produces corresponding error messages in

Arabic.

As a future work, we intend to extend Arabic Lisp to cover

all Lisp instructions. Arabic Lispizer should be also

extended to cover all possible syntax errors so as not to

leave them for Lisp compiler that produces error messages

in English. We also intend to develop the Arabic versions of

more programming languages to attract more Arabic–

speaking programmers. Finally, we intend to continue our

work in facile programming by trying to study other

programming difficulties and problems and trying to tackle

them. Our aim is to make programming easy and facile for

everyone regardless of their background.

REFERENCES

[1] D. Jurafsky and J. Martin, Speech and Language Processing, 2nd

ed., Prentice Hall, 2008.

[2] R. Hyde, The Art of Assembly Language, No Starch Press, Sep.

2003.

[3] R. Hyde, Write Great Code, 1st ed., No Starch Press, March 2006.

[4] T. Gaddis, Starting Out with C++: From Control Structures

through Objects, 6th ed., Addison Wesley, March 2008.

[5] J. Bloch, Effective Java, 2nd ed., Prentice Hall, May 2008.

[6] A. Beaulieu, Learning SQL, 1st ed., O'Reilly Media, August 2005.

[7] http://en.wikipedia.org/wiki/Non-English-

based_programming_languages

[8] W. Maojiang and D. Wei, "Suggestions for adding the ability of

processing of Chinese characters in programming languages,''

Computer Standards & Interfaces, vol. 8, no. 2, 1988-1989.

[9] H. Al-Sadoun, M. Yaseen, A. El-Jallad, and M. El-Jallad, "ARbic

BasIc (ARBI): A new Arabic MS-DOS based programming

language,'' in Proc. of the 12th National Computer Conference and

Exhibition, Oct. 1990.

[10] T. Tamai, "On Japanese-based programming,'' Journal of

Information Processing Archive, vol. 13, no. 1, pp. 49-56, 1990.

[11] M. Amin, "The Arabic object-oriented programming language Al-

Risalh,'' in Proc. of ACS/IEEE Intl. Conference on Computer

Systems and Applications, June 2001, pp. 424-427.

[12] I. Tetsuji, S. Hiroshi, O. Osamu, and U. Shunsuke, "Grammar of a

Japanese-based programming language "Mahoroba",'' Joho Shori

Gakkai Kenkyu Hokoku, vol. 2001, no. 31-(SE-130), 2001.

[13] A. Rafea, D. Soliman, E. Samy, and G. Felfela, "Al-Daleel: An

Arabic interactive programming environment,'' in Proc. of the 3rd

Intl. Conf. and Exhibition on Multi-Lingual Computing, 1992.

[14] A. Al-Salman, "An Arabic programming environment,'' in Proc. of

the 1996 ACM Symposium on Applied Computing, 1996.

[15] http://www.jeemlang.com/documentation/webframe.html

[16] J. Viescas and J. Conrad, Microsoft Office Access Inside Out,

Microsoft Press, April 2007.

[17] P. Seibel, Practical Common Lisp, APress, 2005.

[18] http://www.lispworks.com/documentation/

[19] http://www.lispworks.com/

384

TABLE I

 BASIC LISP INSTRUCTIONS AND EXAMPLES OF THEIR

OPERATION

No. Lisp instruction Result

1 (setf x 5) 5

2 (setf x (list x x)) (5 5)

3 (setf x (append x x)) (5 5 5 5)

4 (setf y NIL) NIL

5 (push 8 y) (8)

6 (+ 5 7) 12

7 (first '(a b c d)) ÞA

8 (rest '(a b c d)) (B C D)

9 (butlast '(a b c d e f) 3) (A B C)

10 (last '(a b c d e)) (E)

11 (length '(a b)) 2

12 (reverse '(a b)) (BÑA)

13 (min 3 5 7 1) 1

14 (expt 2 4) 16

15 (sqrt 9) 3

16 (equal (* 3 3) 9) T

17 (member 3 '(1 2 4)) NIL

18 (listp '(a b c)) T

19 (evenp 4) T

20 (plusp 8) T

21 (boundp 'c) NIL

22 (setf c 5)

(print c)

5

5

23 (and (zerop 0) (plusp -6)) NIL

24 (or (zerop 0) (plusp -6)) T

25 (if (= 4 (+ 3 1)) 7 8) 7

26 (defun addition (number_list)

 (apply #'+ number_list))

ADDITION

27 (addition '(3 4 5)) 12

TABLE II

ARABIC LISP INSTRUCTIONS CORRESPONDING TO THE LISP

INSTRUCTIONS OF TABLE I

No. Arabic Lisp instruction Result

1 ß��� ��� �Ñ5àÑÑ 5

2 ß� ��� ���ß� � �� 	���
��� ���àà (5 5)

3 ß� ��� ���ß��� 	���
��� ���
� � ��������àà

(5 5 5 5)

4 ß����� � ��� ���à
�����

5 ß�����Ñ 8�à (8)

6 (7 5 +) 12

7 ß
��'ß� � � �ààÑÑ

�

8 ß������'ß� � � �ààÑÑ ß� � �à

9 ß	������ ��� ���� �'ß� � � � � �à (3 ÑÑ ß� � �à

10 ß����'ß� � � � �ààÑÑ ß�à
11 ß

�� 'ß� �ààÑÑ 2

12 ß!���"�Ñ'ß� �ààÑÑ ß� �à

13 ß��#�$�
(1 7 5 3 1

14 ß!�Ñ(4 2ÑÑ 16

15 ß%�&�Ñ9àÑÑ 3

16 ß'��(��ßÑ*Ñ3 3Ñà9àÑÑ ���$
17)���"Ñ3Ñ'ß1Ñ2Ñ4à(ÑÑ)� ��
18 ß

��*+	���
���'ß� � �à(���$
19 ß

��*+��%�Ñ4à ���$
20 ß

��*+��%��Ñ8àÑÑ ���$
21 ß

��*+,��-��'�à)� ��
22 ß� ��� ���5à

ß� ���� �à
5

5

23)ß��*+��.�$0àÑ)*��+��%��-6àà)� ��
24)�ß

��*+��.�$0àÑ)
��*+��%��-6àà ���$

25 ß
/�²ßÑÑ4ÒßÑ3 Ñ1Ñàà7Ñ8àÑÑ 7

26 0����% ,��"0	���
���+�����12
 0 3���4

'
5	���
���+�����122

��%��

27 0����%Ñ'ß5 4 3ààÑÑ 12

TABLE III

EXAMPLES OF AÞáRABIC LISP ERRORS, THE CORRESPONDING ERROR MESSAGES IN ARABIC, AND THEIR TRANSLATION

No. Arabic Lisp instruction Error message Translation

1 ß���Ñ5Ñ! ��àÑÑ ��.� ��6 �� ��1 The instruction ��� is unrecognized

2 ß�����Ñ8Ñ�à
,�-� ��6 � ��#7�/ � The variable � is unbound

3 ß��� ���ß! ! ��� 	���
��� ���àà 8��� ��#7� 9��* A variable is missing

4 ß�&�%ßÑ9ààÑÑ
��:� ��6 ���-�/ � �� The argument type is unacceptable

385

The use of reading technique and visualization for program understanding

Daniel Porto Manoel Mendonça Sandra Fabbri
Federal University of São Carlos

São Carlos - Brazil
Federal University of Bahia

Salvador - Brazil
Federal University of São Carlos

São Carlos - Brazil

daniel_porto@dc.ufscar.br manoel.g.mendonca@gmail.com sfabbri@dc.ufscar.br

Abstract

Code comprehension is the basis for many other
activities in software engineering. It is also time
consuming and can greatly profit from tools that
decrease the time that it usually consumes. This paper
presents a tool named CRISTA that supports code
comprehension through the application of Stepwise
Abstraction. It uses a visual metaphor to represent the
code and supports essential tasks for code reading,
inspection and documentation. Three case studies were
carried out to evaluate the tool with respect to
usability and usefulness. In all of them the experiment
participants considered that the tool facilitates code
comprehension, inspection and documentation.

1. Introduction

Code comprehension supports key software
engineering activities like maintenance and inspection
[1]. Software maintenance, the most expensive and
time consuming activity in large software systems, is
heavily based on software comprehension. Neginhal
and Kothari [2] estimate that software engineers spend
approximately 90% of the maintenance time trying to
understand the program. Likewise software inspection
is heavily dependent on the inspector ability to
understand the actual program behavior in relation to
the expected one [3].

With the gradual increase in the complexity and
size of the software currently developed, software
comprehension presents itself as a growing challenge
for software engineers. For this reason, different
approaches to facilitate the comprehension are being
investigated. Among those, one can mention software
reading and visualization techniques.

Reading techniques are a set of steps that supports
the individual analysis of a specific artifact to execute
a specific task [4]. Similarly, visualization techniques
can facilitate the understanding and identification of

information contained in software artifacts.
Another way of facilitating software comprehension

is through the use of automation. Tilley, Paul and
Smith [5] comment that software tools are very
important to help decrease the inherent complexity of
the comprehension process.

Considering this scenario, we developed a tool
named CRISTA (Code Reading Implemented with
Stepwise Abstraction) to support code comprehension
through a visual metaphor and the application reading
by Stepwise Abstraction (SA) technique [6].

This paper shows how CRISTA supports code
comprehension and how it can be applied during
inspection and code documentation activities in a
systematic way. It is organized as follows: Section 2
presents concepts of code comprehension, reading
techniques and code visualization. Section 3 presents
CRISTA tool describing its main characteristics for
code comprehension supporting. Section 4 comments
the case studies that were carried out to evaluate the
use of the tool. Section 5 presents the conclusion and
ongoing works.

2. Code Comprehension

According to Vinz and Etzkorn [7], software
comprehension refers to any activity that uses static or
dynamic methods to reveal software properties.

Software comprehension supports software
engineering activities such as testing, inspection,
maintenance and reengineering [1]. Hence, good
software comprehension is needed to successfully
execute these activities and, consequently, to engineer
and evolve software systems.

Due to its importance several alternatives have been
proposed to improve and facilitate software
comprehension. Good engineering practices such as
standardization, simplicity, good documentation and
encapsulation are good ways to facilitate software
comprehension. However, we are frequently faced
with legacy systems with poor documentation and

386

structure, many times with nothing more than the
source code. Code comprehension is needed and it is
an expensive and complex endeavor in such cases [8].

One needs systematic code comprehension
approaches, especially for parts of the code where the
required cognitive complexity is high [3]. Code
reading is a systematic approach for code
comprehension that uses explicit and systematic
procedures to understand the code.

According to O’Brien [9], there are three strategies
for systematic code comprehension: top-down, bottom-
up and a hybrid strategy. The top-down strategy
suggests that the programmer uses the knowledge of
the domain to construct a set of expectations that
would be expected in the code. The bottom-up strategy
works from the ground up. Small code blocks are read
and abstracted into more generic and larger blocks.
The hybrid strategy combines both. Our work uses
reading by SA [6] a bottom-up strategy.

2.1. Reading by Stepwise Abstraction

Stepwise Abstraction is a reading technique that
supports code comprehension and is used in code
inspection process to help defect detection [6]. Several
experiments that investigate the effectiveness of testing
and inspection activities use this technique for code
inspection [10]. The code functionalities are
determined through abstractions obtained from the
code by reading it from its internal to its external
structures. The reader writes down his understanding
of each code block, building bottom-up his
comprehension of the code as a whole.

If the technique is being applied in an inspection
activity for example, the inspector can compare his
abstractions with the original code specification. The
goal in this case is to identify inconsistencies between
the required and the implemented functionalities.

SA is well known by the software inspection
community, but it is not as widespread in other
software engineering areas. However, it is a systematic
way to understand the code and, as such, can be used
in any other activity in which code understanding is
needed.

2.2. Code Visualization

There are several models proposed in the literature
to understand the code, but regardless of the type
considered, the comprehension is always related to the
transfer and building of knowledge about the software,
from the artifacts available for analysis [11].

According to Tergan and Keller [12], the cognitive
process of human beings is more intuitive, effective

and efficient when supported by visual resources such
as images, diagrams and signs. Thus, information
visualization can be an important resource for software
comprehension. It can support the representation, and
knowledge transfer, of the key aspects of software
artifacts under analysis.

Visual representations of software artifacts are
already used as enablers of software understanding in
several areas of software engineering. Greevy, Lanza
and Wysseier [13], for example, emphasize that
reverse engineering needs high level abstractions and
views that represents different aspects of the software.

The growth of the size and complexity of software
systems has fostered the creation of software
visualization techniques that have introduced many
alternative ways to facilitate software understanding.

Code visualization is the research area that
investigates ways to represent, in a graphical format,
key aspects of the source code, to facilitate its
understanding.

The CRISTA tool, presented in the next section,
uses this principle. It represents the source code blocks
as a set of nested rectangles that facilitates the
execution of the SA reading technique, as explained in
the following section.

3. CRISTA

The Code Reading Implemented with Stepwise
Abstraction (CRISTA) tool was originally
implemented to aid the inspection of Java source code.
However, the tool can be used to aid any source code
comprehension activity.

Figure 1. CRISTA main screen

As seen in Figure 1, CRISTA adopts a visual
metaphor that represents visually the hierarchical
blocks of the code being analyzed (Area A). The visual
metaphor, called Treemap [14], offers a simply way to
look at the code structure. It separates code blocks as

387

nested rectangles in accordance with their hierarchy. It
also works as a visual feedback for the code analysis
process, changing the rectangle colors from red to
green as the reader documents his abstraction of the
blocks under analysis.

The actual code is shown on the bottom left side
(Area B) of Figure 1. This window can be browsed and
it is logically linked to the visualization area. Any
rectangle clicked on the visual screen highlights the
corresponding block in the source code window and
vice-versa.

Once a code block is selected, its abstraction can be
entered, as free text, in the documentation area (Area
C). This comment will be physically associated to the
selected block, and can have a later use to produce
code documentation or pseudo-code, as discussed
ahead. Any time comment is associated with a code
block, the rectangle corresponding to this block turns
green. This allows the reader to easily follow the
progress of the code comprehension process.

By default, the tool enforces reading by SA. In
other words, an external code block can only be
documented if all its internal blocks were documented
first. This procedure can be broken if the reader
explicitly turning off the SA option in the tool menu.

The treemap visual metaphor is very efficient in
terms of space usage. It can represent very large
collections of nested rectangles. This way the reader
can visualize large pieces of code in just one screen.
The current version of CRISTA can represent up to ten
hierarchical levels in one screen and can navigate
across larger hierarchies. This allows the tool to tackle
virtually any size of source code.

3.1. Using CRISTA to Document and Reverse
Engineer the Source Code

Once a few abstractions have been entered,
CRISTA permits to export files in which documented
parts of the source code is substituted with its
abstraction. Figure 2 shows an example of this
functionality in a piece of code. In it, the highlighted
line was already abstracted while the rest of the
printing is raw source code. This printing helps to
synthesize what was already abstracted and can be
used to facilitate the understanding of what is yet to be
abstracted.

Figure 2. Code substituted by abstractions

Once the whole code has been abstracted, the tool
can export a file with all abstractions hierarchically

organized. If the abstraction is written in “structured
English”, this file will look like an algorithm pseudo
code, as seen in Figure 3. This type of structure maybe
facilitates comprehension in activities like software
maintenance and reengineering.

Figure 3. Abstractions as algorithm

In a similar fashion, CRISTA permits to export the
source code together with the user abstractions. In this
case, the tool exports the abstraction as source code
comments. It is possible to choose the types of blocks
in which the user wants to insert the comments. For
example, the user can put a comment for all methods
of the source code. This functionality can thus be used
to systematically re-document the abstracted code.

Another way to present the abstractions is by means
of a functional description report. This option
generates a HTML document that contains a
description of the code structures selected by the user.
In the case of Figure 4, methods were selected as re-
documentation targets. The report contains the method
signature, followed by its abstraction. Moreover, the
code can be seen by clicking on the “+” signs under its
abstraction.

Figure 4. Functional description

3.2. Data Gathering

As code comprehension is a time consuming
activity, it is important that the tool gathers a rich data
set about the time consumed in this activity. CRISTA
collects effort data as the user execute each abstraction
activity. It systematically records the elapsed time
between the selection of a code block and the
completion of its description. This information can
then be used to analyze which pieces of code was most

388

time consuming to comprehend. CRISTA shows the
time information in the graphical format (Figure 5).

Figure 5. Time spent to abstract a Class

Figure 5 example shows the time associated with a
method of a class. Each bar represents a code block
and is split in two colors. The first color (red) indicates
the time spent to abstract only the block structure. The
second color (blue) indicates the time spent to abstract
the code internal structures.

Clicking on a bar of the diagram of Figure 5, it
details the time spent of internal instructions of the
corresponding block. A new graph is shown in the
same way as in Figure 5.

The data gathered by CRISTA helps to identify
which are the more complex (or less readable) pieces
of code. Software engineers can use this information to
identify code blocks that need preventive maintenance,
reengineering, or detailed re-documentation.

3.3. Code Inspections

Aiming to support code inspection, CRISTA allows
the reader to register code discrepancies. The user can
enter a new discrepancy and mark any piece of code he
wants to associate with it.

All lists of discrepancies can be saved and the tool
supports the merging of discrepancies list in order to
aid on inspection group meetings. The tool does that
by keeping a final discrepancy list. This list is
assembled by adding discrepancies from all inspector
lists.

The tool can produce discrepancies reports that list
all discrepancies and associated code blocks found in
the final list.

3.4. CRISTA architecture

Figure 6 shows the works of all CRISTA
components. The tool was implemented as a desktop
application in order to facilitate individual off network

usage. Data persistence is done using a file rather than
databases. It is implemented in Java and does not need
other associated applications. This makes CRISTA
quite portable and platform independent.

Figure 6. CRISTA architecture

The use of a file to save abstractions and
discrepancies facilitates the exchange of information
between software engineers. In the case of inspections,
for example, all discrepancy lists can be easily sent to
the inspection moderator.

The CRISTA visualization engine works over an
abstract syntax tree built by parsing the code under
analysis. JavaCC [15] is used to create the code parser.
Currently the tool supports Java and C++. A Cobol
parser is also being currently developed. The following
steps should be executed to add a new language
capability to CRISTA:
1) Build the language parser in the JavaCC format.
2) Use JavaCC to produce the parser as Java libraries.
3) Bundle this library with the CRISTA executable.

The tool uses the Model, View, Controller (MVC)
pattern to separate the persistence, interface and
business rule layers. The interface layer is
implemented using Java Swing and the libraries
Jwizard [16] and JavaHelp [17] to build the wizard and
help functionalities respectively.

CRISTA uses the Prefuse visualization framework
to create the treemap views [18]. Prefuse is freely
available and it is Java compliant.

The interested reader can download a video that
demonstrates CRISTA main capabilities from the
following web address:
http://www.dc.ufscar.br/~daniel_porto/Crista_ing.wmv

4. Evaluating CRISTA

We executed three case studies to evaluate CRISTA
functionalities as well as its benefits, in the context of
code comprehension and inspection.

In all cases the study involved groups of students
that were trained and prompted to execute a set of
tasks using CRISTA. At the conclusion of the tasks the
students were asked to fill out a questionnaire

389

composed of the following sections: i) characterization
of the study participant profiles with respect to
experience and background; ii) characterization of the
training received by the participants; iii) subjective
evaluation of the tool usability using Nielsen-Molich’s
heuristics [19]; iv) subjective evaluation of tool
functionalities with respect to efficiency and
effectiveness; v) subjective evaluation of usefulness of
the reports produced by the tool; and vi) space for
freely commenting on the tool’s weaknesses and
strengths.

4.1. Case Study 1

The goal of the first study was to evaluate CRISTA
main functionalities and its usability. Twenty junior
undergraduate students from the Federal University of
São Carlos (UFSCar) in Brazil participated in this
study. They were taking the Software Engineering
course and knew all basic concepts of software
inspection and Java.

The study was broken down in three parts. First, we
trained the participants. This involved training on
reading by SA as well as the use of the Nielsen-
Molich’s heuristics for software usability [19]. The
students were then given an exercise to apply SA by
hand on a small piece of code with about 60 lines.

The second part consisted of using the CRISTA tool
for code inspection and was executed on the following
week. The students had to follow the SA technique
using the tool but did not receive any tool training.
They were given two hours to inspect two pieces of
code with 100 lines each. After this, they were asked to
answer the feedback questionnaire. Besides, a
brainstorm about the tool was conducted and the
doubts were solved.

The third part was executed during the following
two weeks. Students were split into two groups and
given a piece of 300 lines of code to review. The first
group inspected the code by hand and the second
group used CRISTA. The following week the students
received another piece of code with the same size and
the procedure was inverted, group 1 used CRISTA and
group 2 did the inspection by hand. After the two week
effort, the students were asked to answer the feedback
questionnaire once again.

The collected data indicated that the students spent
the same time and found a similar number of
discrepancies on the code, when doing the review by
hand and using CRISTA. The time to produce the final
list of discrepancies was smaller with CRISTA. The
subjective feedback indicated that the students found
the tool intuitive and easy to use.

4.2. Case Studies 2 and 3

Case Studies 2 and 3 had the objective of evaluate
tool usability as well as its influence on the application
of the SA technique. The participants were seven
graduate students from UFSCar (case study 2) and
fourteen graduate students from the University of São
Paulo, USP (case study 3).

Both studies followed the same design. Students
were trained in SA and in the CRISTA tool.
Immediately afterwards, they did a procedure identical
to part three of the first case study. They inspected the
same two pieces of code using CRISTA and inspection
by hand in a two week period. Likewise, they
answered the feedback questionnaire after these two
inspections.

Results were similar to the first case study.
Feedback on all studies was gathered to improve
CRISTA. Students suggested that the tool would
benefit from a code search facility. This functionality
was added to the tool as a result of that.

5. Conclusion

Code comprehension is an important activity in
software engineering. It has a strong impact in other
activities such as code inspection, reengineering,
reverse engineering and maintenance.

Code comprehension is difficult and complex in
large legacy systems and can benefit strongly from
tools that support systematic code analysis.

This article presented CRISTA, a tool that supports
code comprehension by the use of SA and visual
metaphors. The tool produces several reports that
facilitate code comprehension. It generates data reports
that permit the identification of the most effort prone
code blocks. It helps code documentation and supports
the recording of code discrepancies as well as the
composition of code discrepancy lists.

The tool was projected so that it can integrate new
language parsers. This way it can be continuously
expanded to support new programming languages. The
standardized and easy to use interface can serve as a
common code comprehension reference in companies
that use several languages to develop software.
Currently, CRISTA works with Java and C++. A
version that also supports Cobol is being finalized
[20].

The tool was evaluated in three case studies with
group students (41 students in total). The studies
indicate that the tool is easy to use and can systematize
code comprehension and documentation. The tool
presented similar results on discrepancy detection
efficiency and efficacy when compared to inspections

390

done by hand, with a few gains on time in the
compilation of discrepancies lists. However, the
studies indicate that the tool usefulness grows with the
size and complexity of the analyzed code.

As future work, we intend to run more realistic
experiments with the tool. We want to evaluate it with
larger pieces of code, preferably in industrial settings.
This will allow us to look at the tool performance on
real world software comprehension activities. Besides,
the tool only allows loading one single file each time.
Hence, we plan to implement the treatment of higher
level of blocks, such as packages, or provide links to
other files that allow understanding more complex
software interactions. Another point to be considered is
how to merge comments from different readers.

We also want to test the tool performance on
different software maintenance activities. This will
help us to evolve the tool with respect to
functionalities to support those new activities, to
improve visualization resources and to expand data
gathering capabilities.

We also intend to explore different forms of
systematic code analysis, ranging from well structured
SA to free ad-hoc code abstraction. By doing that, we
may be able to identify and evaluate new strategies for
code comprehension.

Acknowledge

We thank the financial support from the Brazilian
agencies CAPES and CNPq

References

[1] N. Walkinshaw, M. Roper, and M. Wood,
"Understanding object-oriented source code from the
behavioural perspective." in Proceedings of IEEE
International Workshop on Program Comprehension pp. 215-
224, 2005.

[2] S. Neginhal, and S. Kothari, “Event Views and Graph
Reductions for Understanding System Level C Code,” in
Proceedings of the 22nd IEEE International Conference on
Software Maintenance, pp. 279-288, 2006.

[3] P. Runeson, and A. Andrews, "Detection or isolation of
defects? An experimental comparison of unit testing and
code inspection." in Proceedings of 14th International
Symposium on Software Reliability Engineering pp. 3-13,
2003.

[4] V. R. Basili, S. Green, O. Laitenberger et al., “The
empirical investigation of Perspective-Based Reading,”
Empirical Software Engineering, vol. 1, no. 2, pp. 133-164,
1996.

[5] S. R. Tilley, S. Paul, and D. B. Smith, “Towards a
framework for program understanding,” in Proceedings of
Program Comprehension, pp. 19-28, 1996.

[6] R. C. Linger, H. D. Mills, and B. I. Witt, Structured
Programming: Theory and Practice: Addison-Wesley, 418 p.
1979.

[7] B. L. Vinz, and L. H. Etzkorn, "A Synergistic Approach
to Program Comprehension." in Proceedings of IEEE
International Conference on Program Comprehension. pp.
69-73, 2006.

[8] J. Rilling, and T. Klemola, "Identifying comprehension
bottlenecks using program slicing and cognitive complexity
metrics." in Proceedings of 11th IEEE International
Workshop on Program Comprehension pp. 115-124, 2003.

[9] M. P. O’Brien, Software Comprehension – A Review &
Research Direction, Technical Report UL-CSIS-03-3 UL-
CSIS-03-3, University of Limerick, Limerick, 2003.

[10] V. Basili, G. Caldiera, and F. Shull, “Studies on reading
techniques,” in Proceedings of the Twenty-First Annual
Software Engineering Workshop, pp. 96-102, 1996.

[11] S. Diehl, Software Visualization: Visualizing the
Structure, Behaviour, and Evolution of Software: Springer-
Verlag, New York, Inc., 187 p. 2007.

[12] S. Tergan, and T. Keller, Knowledge and Information
Visualization: Searching for Synergies: Springer, 385 p.
2005.

[13] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing
live software systems in 3D,” in proceedings of the 2006
ACM symposium on Software visualization, New York, NY,
USA, pp. 47-56, 2006.

[14] B. Johnson, and B. Shneiderman, "Tree-maps: A space-
filling approach to the visualization of hierarchical
information structures." in proceedings of IEEE
Visualization Conference, pp. 284 - 291, 1991.

[15] JAVACC. "Java Compiler Compiler," 17/04/2008;
https://javacc.dev.java.net.

[16] JWIZARD. "JWizard," 17/04/2008;
http://flib.sourceforge.net/JWizard/doc.

[17] JAVAHELP. "JavaHelp System," 17/04/2008;
http://java.sun.com/products/javahelp.

[18] PREFUSE. "The Prefuse Visualization Toolkit,"
17/04/2008; http://prefuse.org.

[19] J. Nielsen, and R. Molich, “Heuristic evaluation of user
interfaces,” in Proceedings of the SIGCHI conference on
Human factors in computing systems: Empowering people,
Seattle, Washington, United States, pp. 249-256, 1990.

[20] D. P. Porto, M. Mendonça, and S. C. P. F. Fabbri,
"CRISTA - Code Reading Implemented with Stepwise
Abstraction." in proceedings of Simpósio Brasileiro de
Engenharia de Software - Sessão de Ferramentas, 6 p. 2008.

391

Language Support for Event-Based Debugging

Ziad Al-Sharif, Clinton Jeffery
Computer Science Department

University of Idaho
zsharif@ieee.org, jeffery@cs.uidaho.edu

Abstract
An event-based debugging framework provides high

level facilities for debuggers that observe, monitor, control,
and change the state and behavior of a buggy program.
This paper introduces a set of additions to the Unicon
programming language that enables debuggers to be
written at a high level of abstraction. The extensions
provide in-process debugging support with simple
communication and no intrusion on the buggy program
space. These language extensions have been tested and
refined within a multi-agent debugging architecture called
IDEA, and an extensible source-level debugger called
UDB.

1. Introduction

Unicon [7] is an object-oriented dialect of Icon [3], a
very high level programming language with dynamic and
polymorphic structure types, along with generators and
goal-directed evaluation. Historically, the Icon language
community had no formal debugging tool, only a trace
facility. A rationale for this was that the very high level
nature of Icon reduces the need for conventional debugging
because programs are shorter. However, Unicon programs
are often much larger than was common for Icon, and very
high level languages’ advanced features may introduce
special kinds of bugs and create special needs for
debugging tools.

Icon and Unicon are supported by the Alamo monitoring
framework [6,8,9]. Alamo was originally designed for
passive observation of program execution, suitable for
software visualization tools but not adequate for a source-
level debugger. This paper presents recent extensions that
enable Alamo to serve as a debugging framework. The
result of these extensions is called AlamoDE (Alamo
Debug Enabled). AlamoDE is a framework that 1) includes
debugging-oriented virtual machine instrumentation, 2)
supports additional execution state inspection and source
code navigation, 3) provides debugging tools with the
ability to change the execution state by safely assigning to a
buggy program’s variables and procedures, and most
importantly, 4) facilitates on the fly debugging extensions
and cooperation. Different AlamoDE-based debugging
tools can be written and tested as standalone programs and
then loaded into a debugger to work in concert with each
other.

This paper presents the design and implementation of
AlamoDE and shows the novelty of its debugging support.
Section 2 introduces Alamo’s features that are ideal for
debugging needs. Section 3 discusses AlamoDE, and its
support for classical and advanced debugging techniques.
Section 4 describes technical issues and features added, in
both the Unicon virtual machine and the Alamo framework,
to implement different functionalities for debugging
reasons. Section 5 provides an evaluation, and introduces a
source-level debugger that utilizes AlamoDE’s features.
Section 6 compares Unicon’s debugging support with
related work. Section 7 highlights planned future work. The
conclusion from our experiment is in Section 8.

2. Background

Alamo is a lightweight architecture for monitoring
developed originally to support program visualization.
Alamo provides the Unicon virtual machine with
monitoring facilities, and the capability for a program to
load another program and execute it in a controlled
environment.

The Alamo architecture is based on the thread model of
execution monitoring, where a monitor program and the
monitored program are in separate threads in a shared
address space. Unicon’s threads are called co-expressions.
A co-expression is a synchronous thread inside the virtual
machine. The evaluation of a co-expression requires both
an interpreter stack and a C stack that are separate from the
stacks of the main program. Alamo extended the Unicon
co-expression facility with the ability to load a program,
and sets it up with its own code, static data, stack, and heap,
without linking symbols into the current program. This
execution model provides no intrusion on the monitored
program space, which is ideal for classical debugging, and
simplifies the process of extending a debugger with
external standalone debugging and visualization tools.

Switching between any two co-expressions is done
through a small piece of assembler code that performs a
lightweight context switch. The state of the program is
saved and the control is transferred into the other program
without the involvement of the operating system. Because
they are synchronous, co-expression switches are much
faster than typical thread switches such as those provided
by the pthreads library.

392

3. AlamoDE

Many debugging architectures are based on inter-
process communication which is good for remote
debugging, but imposes an extra layer of operating system
overhead in other contexts. Based on Alamo, AlamoDE
provides an in-process debugging architecture with modest
communication overhead. AlamoDE debugging support is
provided through execution events and high level built-in
functions that allow a debugging tool to inspect, change,
observe, analyze, and control the state and behavior of the
buggy program.

AlamoDE’s goals include: 1) the ability to write
debugging tools at a high level of abstraction, 2) all the
usual capabilities of classical debuggers, 3) support for the
creation of advanced debugging features such as automatic
debugging, and dynamic analysis techniques, 4) the ability
to debug novel language features such as generators, goal-
directed evaluation, and string scanning, and
5) extensibility that allows different standalone debugging
tools to work in concert with each other.

3.1. Debugging Events

Considering the many millions of events produced by
Alamo’s detailed VM instrumentation, which provides 118
kinds of events, an efficient filtering mechanism is needed.
Alamo used a simple bit vector called an event mask to
specify event types of interest. For AlamoDE, the filtering
was extended so that each event type of interest could have
an associated value mask, a set of event values of interest
which further restricts whether an event is reported; see
Figure 1. Both the event mask and value mask are dynamic.
This allows a debugging tool to change and customize the
monitored events on the fly during the course of execution;
any change on either of the two masks will immediately
change the set of prospective events.

For example, placing a breakpoint on one or more line
numbers requires the E_Line event to be part of the event
mask. The value mask provides the ability to limit the
reported E_Line events to those line numbers that have
breakpoints on them. To clear a breakpoint, a tool removes
the line number from the value mask. The E_Line event is
removed from the event mask only if there are no more
breakpoints and no other requests for E_Line events by the
debugging core or any of its cooperative tools.

Even though debugging and visualization serve many
common goals, for AlamoDE, the underlying
instrumentation was extended with two additional event
types that are needed for debugging. The new events are:
1) E_Deref reports when a variable is read (dereferenced).
This event is needed to implement watchpoints on specific
variable(s), and 2) E_Syntax reports when a major syntax
construct such as a loop starts or ends. This event was
inspired by the needs of automatic debugging systems [1,2]
and required that syntax information be added to the

Unicon virtual machine bytecode executable format. See
Section 4.3 for more syntax instrumentation details.

3.2. Debugging Functions

The Unicon language provides some reserved global
names prefixed with ampersand (&) called keywords. Some
keywords are introduced by Alamo for monitoring needs.
For example, &eventsource contains a reference to the
currently monitored program. Other keywords are used for
error reporting and debugging. For example, the keywords
&file, &line, &column, and &syntax report the currently
executed file name, line number, column number, and
syntax name respectively. These keywords can be inserted
directly in the source code of the buggy program for
debugging with print statements and assertions.

These keywords are made accessible to debugging tools
using the keyword() built-in function, which is used to
look up a value of a keyword in the buggy program. For
example, keyword(“&file”,&eventsource,0) returns the
name of the source file that contains the call statement,
which instantiated the activation record currently at the top
of the buggy program’s call stack. Similarly,
keyword(“&line”,&eventsource,5) looks up the buggy
program’s call stack, and returns the line number of the
statement for which the fifth outer most activation record
was instantiated.

Likewise, AlamoDE utilizes a set of functions, some of
which are needed for observing, inspecting, changing, and
controlling the state of the buggy program, while others are
needed to support the ability to employ and incorporate
external standalone debugging tools into another tool. For
example, EvInit() loads and initializes the buggy program
under the debugging tool, EvGet() starts/resumes the
execution of the buggy program and installs/changes the set
of requested events, and EvSend() forwards an event’s
code and value from one debugging tool into another; this
is mostly used to send the most recent event to an external
debugging tool. See Figures 2 and 3.

Figure 1. AlamoDE Architecture

Unicon’s VM

VM
Interpreter
(Thread #1)

Buggy
Program

 Event

EvGet()

VM
Interpreter
(Thread #0)

Debugging
Tool

Co-Expression
Context Switch

events

ev
en

t m
as

k

va
lu

e
m

as
k

ev
en

t r
ep

or
t

393

3.3. Controlling the Buggy Program

In AlamoDE, a debugging tool runs as the main co-
expression inside the virtual machine. A buggy program
and secondary standalone debugging tools can be loaded
into different co-expressions controlled by the debugger. A
debugger transfers control to the buggy program using the
EvGet() function, which performs a lightweight context
switch. After a context switch, the buggy program executes
at full speed until there is some event that is of interest to
the debugger. Instrumentation in the virtual machine
reports an interesting event in the buggy program execution
to the debugger by performing a context switch. The return
value from EvGet() is an event code; each of which
includes an event value that describes its details.

EvGet() requests the next event by resuming the buggy
program that is denoted by &eventsource. A debugging
tool can debug multiple buggy programs in one session.
This can be used to perform advanced debugging
techniques such as relative debugging [16] or delta

debugging [17]. Switching between different programs is
accomplished by changing the value of &eventsource
before the next call to EvGet(). Furthermore, since
different loaded programs are independent in their
execution state, this architecture allows different debugging
tools to be loaded under each other. It is possible for a
debugging tool to debug another tool that is debugging the
buggy program, or for multiple debugging tools to
simultaneously debug the same buggy program during the
same session and same run, see Figure 2.

3.4. Execution State Inspection/Modification

AlamoDE provides facilities to inspect the execution
stack, check a variable state, and acquire information about
the source code of the buggy program. Furthermore, it
provides the ability to control and change the state of the
buggy program by assigning to variables and redirecting
procedures and functions.

3.4.1. Variable State. A variable is either global, or local
including static and parameter variables. A local variable
value can be obtained using the built-in function
variable(name, &eventsource, level), which returns the
current value of the variable name in the frame number
level of the buggy program’s call stack. If name is a global
variable or a keyword, the same function is used without
the level parameter (i.e. variable(name,&eventsource)).

The variable() function is also used to assist a
debugging tool in assigning to variables in the buggy
program space. This mechanism introduces a potential
safety problem if a context switch to the buggy program
occurs between the time the variable reference is obtained
and the time the assignment is complete. This problem is
called inter-program variable safety, and it is solved by
implementing a trapped variable technique, see Section 4.2.

3.4.2. Stack Frames. Activation records (frames) on the
stack are distinguished by a positive integer called level;
the most recent stack frame is at level zero, whereas the
highest level value is for the activation record of procedure
main(). The proc() built-in function was extended for
AlamoDE to allow the debugging tool to identify which
procedure is currently active on a specific stack level. For
example, proc(&eventsource,7) returns a pointer to the
procedure/method, which lives on the seventh outer most
level of the buggy program’s call stack. The depth of the
call stack can be checked using the keyword &level. The
keyword(“&level”,&eventsource) returns the number of
frames currently on the buggy program’s interpreter stack.

Furthermore, the Unicon language allows programmers
to replace a procedure with another procedure during the
execution. This feature is very useful for some debugging
tools. For example, if the buggy program contains two
versions of a sorting algorithm, in different procedures, the
debugger can replace one by the other on the fly during the
execution.

Template of the event-based debugging
EvInit(“buggy program name and its arguments”)

while event := EvGet(eventmask, valuemask) do {
 case event of {
 E_Line : { /* handle breakpoints, stepping, etc */ }
 E_Assign |
 E_Value : { /* Handle assignment watchpoints */ }
 E_Deref : { /* Handle read watchpoints */ }
 E_Spos |
 E_Snew : { /* Handle string scanning environments */}
 E_Error : { /* Handle a runtime error */ }
 E_Exit : { /* Handle buggy program normal exit */ }
 }
 /* Handle other debugging features such as tracing,
 profiling and internal and external debugging tools */
}

Figure 3. An example of AlamoDE debugging loop

Figure 2. An AlamoDE debugging scenario

Unicon’s VM

Event
EvGet()

Buggy Program
#N

Buggy Program
#1

Main Debugging
Tool

Event

Secondary Debugging
Tool #M

Secondary Debugging
Tool #1

EvGet()EvGet()
EvSend()

394

The procedure/method pointer obtained by the proc()
function allows a debugging tool to place a call to that
procedure as an inter-program procedure call. This
mechanism is very useful for interactive source-level
debuggers. For example, the buggy program may contain a
procedure that prints the elements of a linked list, which is
being debugged by the user. The debugger can place a call
to that procedure, from any point during the debugging
session, without modifying the buggy program source code.
Moreover, a source-level debugger may incorporate general
service procedures that can be plugged in to the buggy
program source code on the fly during the debugging
session. For example, the following assignment

variable(“sort1”,&eventsource):=proc(“qsort”,¤t)

replaces the buggy program’s procedure sort1() with the
debugger service procedure qsort(). Of course, the two
procedures’ formal parameters must be compatible in their
order and type.

3.4.3. Executed Source Code. Unicon’s executable
bytecode contains information about the linked source files
including any used library modules. For AlamoDE, a class
library was developed to analyze the bytecode and generate
a list of its source file names, and their static source code
properties such as packages, classes, global variables, and
user defined functions. Another class library maintains a
list of all source files in use. Those library classes provide a
debugging tool with the buggy program’s source code static
information.

Furthermore, the debugging tool can inspect the
currently executed source code. Using functions such as
keyword() as discussed in Section 3.2, and by monitoring
runtime events such as E_Line, and E_Syntax that report
the currently executed line number, and source code syntax
construct respectively.

3.5. Advanced Debugging Support

AlamoDE provides underlying infrastructure for
automatic debugging, dynamic analysis, profiling, and
visualization. It utilizes many kinds of execution events
that cover a wide range of execution behaviors, and gives
the user the opportunity to try new debugging techniques.
AlamoDE puts execution events in the hands of
programmers, who can use events, event sequences, and
event patterns to write their own automated debugging and
dynamic analysis tools.

3.5.1. Loading Secondary Debugging tools on the Fly.
AlamoDE allows advanced debugging techniques to
coexist along with a classical debugger. It provides an on
the fly extension mechanism. The load() function allows a
debugger to incorporate external (secondary) standalone
debugging tools under its control. The debugger
coordinates and plays the role of a central server for other

debugging tools. The debugger and its loaded tools work
synchronously on the same buggy program. For example,
standalone debugging tools can be loaded on the fly during
a source-level debugging session; without previous
initialization. Loaded tools receive execution events from
the host debugger, which multiplexes event codes and
values using the function EvSend(), see Figure 2. Events
are sent based on each tool event mask. An event is sent
only to the tools that request it in their event mask.

For example, the code in Figure 4 shows a toy example
of an AlamoDE-based debugging tool. It captures the
number of garbage collections that happened during the
execution of the buggy program, and finds the total and
average of collected data from the string and block regions.
This provides a rough measure whether the buggy program
is mostly doing string processing or not. This example
program can be used as standalone tool, or loaded into
another debugging tool on the fly without any source code
modification at all.

$include "evdefs.icn"
link evint

class Example (eventMask, gc, lastStr, lastBlk, collectedStr,
 collectedBlk, avgStr, avgBlk)

method handle_E_Collect()
local Storage := []
gc +:= 1
every put(Storage, keyword("storage", Monitored))
lastStr := Storage[2]; lastBlk := Storage[3]

end
method handle_E_EndCollect()

local Storage := []
every put(Storage, keyword("storage", Monitored))
collectedStr +:= lastStr - Storage[2]
collectedBlk +:= lastBlk - Storage[3]

end
method analyze_data()

if gc > 0 then return 0
avgStr := collectedStr / gc; avgBlk := collectedBlk / gc

end
method write_data()

write(" # Garbage Collections : ", gc)
write(" Collected Strings : ", collectedStr,” Avg :”, avgStr)
write(" Collected Blocks : ", collectedBlk,” Avg:”, avgBlk)

end
initially()

eventMask := cset(E_Collect || E_EndCollect)
gc := 0; collectedStr := collectedBlk := 0.0

end
procedure main(arg)

EvInit(arg)
obj := Example()

while event := EvGet(obj.eventMask) do{
 case event of {
 E_Collect: { obj.handle_E_Collect() }
 E_EndCollect:{ obj.handle_E_EndCollect() }
 }

obj.analyze_data()
obj.write_data()
}

end

Figure 4. An AlamoDE debugging agent

395

4. Implementation

This section provides an overview of the
implementation of the most important underlying
extensions. Some of the extensions are general additions to
the Unicon virtual machine and its runtime system, while
the rest are extensions to the Alamo monitoring framework.

4.1. Virtual Machine Instrumentation

Event-based debugging support needs instrumentation,
which can be inserted into the source code, the bytecode, or
implicit in the virtual machine itself. Implicit
instrumentation is attractive to the end user, who needs a
simple mechanism of getting events. However,
instrumentation is always associated with overhead in
space and processing time. Unicon has a small virtual
machine (about 700KB with the instrumentation). A top
priority for Unicon’s implicit instrumentation is the
processing time, which should not be affected for any
unmonitored execution.

Originally, Alamo was an optional extension to the Icon
virtual machine, because Alamo’s instrumentation imposed
a cost even when monitoring was not being performed.
Alamo was integrated in the Unicon language with no
measurable cost (other than code size) in the production
virtual machine. This integration allows the debugger to
run on the virtual machine synchronously along with the
buggy program. The debugger and the buggy program run
in two different co-expressions and the buggy program is
the only one affected by the instrumentation.

AlamoDE maintains two versions of 30 runtime
functions in the binary executable VM that contain
instrumentation. One version is uninstrumented and used in
any unmonitored execution; the other version is
instrumented and used when a program is monitored.
Furthermore, not all of the instrumented functions are used
when the program is under monitoring; a dynamic binding
associates the instrumented or uninstrumented function
with the current execution state based on the current event
mask, which is specified by the debugger. A table maps
event codes into their instrumented functions. Whenever an
event is added to the monitored events (event mask), the
related instrumented function is used. If an event is
removed from the event mask, the original uninstrumented
version of the function is restored.

Inside the Unicon virtual machine source code, the name
of the instrumented function uses the suffix “_1”, whereas
the name of the uninstrumented version of the same
function uses the suffix “_0”. Functions that contain
instrumentation use macros to maintain one copy of the
source code, which simplifies the maintenance effort.

Using this method of dynamic binding, the
instrumentation imposes no cost on the execution time of
the virtual machine until the program is debugged or
monitored, and the only instrumented functions used are
the ones relevant to the currently monitored events, which

are specified by the event mask and customized by the
debugging tool and the programmer.

4.2. Inter-Program Variable Safety

In order for a debugging tool to be able to change the
value of a variable inside a buggy program, the tool must
have access to the state of the buggy program. However,
the debugging tool and its buggy programs are loaded into
different co-expressions inside the Unicon’s virtual
machine.

Giving a co-expression the ability to access and change
another co-expression state is critical. It is possible for one
of the co-expressions to obtain a reference for a variable
that is either in the stack, in the static data section, or in the
heap of the other co-expression. However, while the first
co-expression is trying to change a variable in the second
co-expression, a context switch may allow control to be
transferred to the second co-expression. A memory
violation might occur if the second co-expression executes
further while the first co-expression has a reference to a
local variable; a reference to a variable that lives on the
stack might become invalid. For example this can happen if
the procedure returned and its activation record is popped
off the stack. Since co-expressions are synchronous this is
admittedly an unlikely occurrence that would only be
caused by a deliberate adversary.

The implemented solution is a trapped variable
technique [4]. Whenever one co-expression obtains a
reference to the state of another co-expression, a trapped

Figure 5. Trapped variable implementation

B. The debugger got a
reference to variable x on the
stack of the buggy program

EvGet ()

Event

I Stack

C
on

te
xt

sw

itc
h

Debugger Buggy

I Stack

x

A. The Debugger & the Buggy
program, each inside a separate
thread

EvGet ()

Event

I Stack

C
on

te
xt

sw
itc

h

Debugger Buggy

I Stack

x

EvGet ()

Event

I Stack

C
on

te
xt

sw
itc

h

Debugger Buggy

I Stack

x’

D. The assignment has been
made and x became x’

EvGet ()

Event

I Stack

C
on

te
xt

sw
itc

h

Debugger Buggy

I Stack

x

Trapped x

C. The reference is made through
a trapped variable

396

variable block is allocated and the reference is done
through that trapped variable, see Figure 5. The first co-
expression contains a reference to a trapped variable block,
which references the actual variable in the second co-
expression. This new block holds information about the
current number of context switches between the two co-
expressions. This number is compared to the very recent
one just before writing to that variable. If there is any
difference between the number of context switches when
the reference was obtained and when the reference is
written, then this technique invalidates the assignment and
gives the user a runtime error. This can only happen if a
context switch occurs in the middle of an assignment to a
monitored trapped variable. This new technique produces a
runtime error where a monitor deliberately invokes the
subject program in this way. This critical section can occur
inside an Alamo monitor in unlikely scenarios such as:

1(variable("x", &eventsource, 1), EvGet()) := 5

It is possible this way to call EvGet() and transfer
control to the buggy program between the variable
reference and its assignment, but it is not easy. Not
surprisingly, the code for a normal debugger does not do
any such thing. The safety feature was added to the
language to extend the variable() function to produce
references to local variables while a program is paused.

4.3. Syntax Instrumentation

Unicon’s bytecode executes as a sequence of virtual
machine instructions. Like most binary code formats, the
bytecode formerly contained no information about the
actual syntax of the source code. However, some automatic
debugging facilities need information about the syntax of
the running program. For example, an automated
debugging technique that locates frequently failed loops
needs to know when the execution of the buggy program
enters and leaves a loop and what type of loop it is; such as
a while loop.

The solution is to add a new pseudo instruction that is
managed by the translator and the linker. The new
Op_Synt syntax pseudo instruction extends the
"line#/column#" table with information about the syntax. It
is a reasonable solution because the only cost is a small
increase in the size of the table. The cost of retrieving the
syntax information from the table is paid for only when a
program is monitored and that information is needed.

The "line#/column#" table was transformed into a
"line#/column#/syntax" table without altering its design,
see Figure 6. The table entry is a 32-bit integer; the most 16
significant bits were for the column number and the least
16 significant bits were for the line number. The maximum
possible line/column number is 65535, which is more than
is needed for a column number. We changed the column
number bits to be the 11 most significant bits, and the
remaining 5 bits are used for syntax information. The new

design changed the maximum possible column number to
2048, which is still more than enough for a column number.
The newly added pseudo instruction only appears in the
object files and is used by the linker while generating the
bytecode. The new 5-bit syntax code can hold up to 32
different syntax indicators. AlamoDE presents syntax
information as a new selectable event code E_Syntax and
its related event value is the syntax code, see Table 1. A
library routine was written to translate the syntax code into
its symbolic name.

Table 1. Syntax events

Syntax String Code Integer
Code

unidentified syntax "any" 0
entering case expression "case" 1
exiting case expression "endcase" 2
entering if expression "if" 3
exiting if expression "endif" 4
entering if/else expression "ifelse" 5
exiting if/else expression "endifelse" 6
entering while loop "while" 7
exiting while loop "endwhile" 8
entering every loop "every" 9
exiting every loop "endevery" 10
entering until loop "until" 11
exiting until loop "enduntil" 12
entering repeat loop "repeat" 13
exiting repeat loop "endrepeat" 14
entering suspend loop "supend" 15
exiting suspend loop "endsuspend" 16

5. Evaluation

An AlamoDE-based source-level debugger must use
different approaches to implement features found in
standard source-level debuggers, and faces potential
performance challenges. In compensation, this type of
implementation greatly simplifies the process of
experimenting with new debugging techniques that
probably would not be undertaken if the implementation
was limited to the low-level approaches found in other
debuggers. The AlamoDE debugging framework provides

Figure 6. Unicon’s line/syntax/column table

11-bit
Column
 Number

16-bit
 Line

 Number

5-bit
Syntax
 Code

32-bit
 Interpreter

 Program Counter (IPC)

B. Modified table fields layout

16-bit
Column
 Number

16-bit
 Line

 Number

32-bit
Interpreter

Program Counter (IPC)

A. Original table fields layout

397

high level facilities to customize and reduce the amount of
monitored events and context switches.

AlamoDE was used to build an extensible source-level
debugger called UDB [18], which integrates new automatic
detection techniques that can be found in trace-based
debuggers such as ODB [11,14]. One measurement of the
effectiveness of the AlamoDE is that UDB’s source code is
less than 8K lines of source code. Furthermore, UDB
provides two types of extension agents, externals
(secondary debugging tools) and internals, supported by
IDEA. IDEA is the Idaho Debugging Extension
Architecture, a multi-agent debugging architecture built on
top of AlamoDE and used by UDB. Each extension agent is
a task-oriented program execution monitor. Debugging
agents are standalone tools, which can be loaded on the fly
during a UDB debugging session, or incorporated into its
debugging core as permanent debugging features.
Moreover, UDB’s debugging agents can be enabled and
disabled from any point during the debugging session and
the user can be selective about which suite of agents to use.

 Under UDB, eight different debugging agents were
loaded and tested as external agents, and then adopted to
become part of the UDB’s library of internal agents. The
slowdown imposed by the external agents was at most 3
times slower than the standalone agent mode, and the
slowdown imposed by the migrated internal agents, was at
most 2 times slower than the standalone agents. This suite
of monitoring agents imposes at most 20 times slowdown
on the execution of the buggy program over an
uninstrumented execution mode, but in the general case, the
slowdown depends on the algorithms used by the dynamic
analysis technique implemented by the debugging agent.
To place this in perspective, a debugger such as valgrind
[15] imposes a 20 to 50 times slowdown, and it does not
provide the interactive debugging environment that
AlamoDE-based debugging tools provide, where the user
can be selective about which and where to enable/disable
agents from within a breakpoint based debugging session.

6. Related Work

Programming languages vary widely in their debugging
support. Python provides debugging techniques through a
module (PDB) [14], which maintains the classical
debugging techniques such as breakpoints, stepping and
continuing. It also supports post-mortem debugging and it
can be called under program control. However, since PDB
is a module, it must be imported into the Python program in
order to be used. PDB was not designed with automatic
debugging or extension particularly in mind, but the
interpretive nature and high level of Python make it a good
candidate for research experimentation. PDB’s module
architecture suggests that PDB perturbs application
behavior such as garbage collection due to a shared heap.

The Smalltalk system includes very important tools such
as a browser, workspace, debugger, and inspector. These
tools provide a complete development and testing

environment system that assist in the edit-compile-link-run-
debug cycle. All Smalltalk objects understand special
messages such as doesNotUnderstand and inspect. The
doesNotUnderstand message is produced automatically
by Smalltalk runtime system as a result of a runtime error.
This message causes the Smalltalk system to provide the
user with an error notification, which asks the user if
he/she is interested in a debugging session. During a
debugging session, the programmer is able to modify the
program while it is running. In general, Smalltalk runtime
errors cause the execution thread to be suspended. In some
cases the runtime error can be recoverable. The user may
fix the error and continue in the execution. This simplifies
the process of reproducing the bug. In fact, it is fairly
common for programmers to struggle with this process. In
contrast, the inspect message is produced and sent
intentionally by the programmer; it allows a user to inspect
an object through the inspector window [10].

SmallTalk’s debugger has several similarities and
important differences compared with UDB. The most
important similarity is that both use a thread model of
execution, which provides relatively good, high
performance access to program state. Another similarity is
that most of the debugger is written in the same language as
the program that is being debugged. Compared with UDB,
IDEA, and AlamoDE, SmallTalk’s debugger is less
separate from the program being debugged, and relies more
on manual instrumentation via subclassing and overriding
methods to generate events for dynamic analysis.

A debugging architecture such JPDA, with its latest
lowest level JVM TI [5], provides an event-based
debugging infrastructure and enough events for
conventional debugging, profiling, and visualization. JVM
TI supports about thirty five kinds of events, whereas
AlamoDE incorporates more than one hundred kinds of
events. Unicon programmers use events, event-sequences,
and event-patterns to write their own debugging agents that
detect specific execution behaviors—which some of they
are suspicious behaviors while others are defined bugs.
Furthermore, JVM TI is based on the inter-process
communication for less intrusive on the buggy application.
Unicon debugging support features the in-process
communication with no intrusion on the buggy application.

Both AlamoDE and JVM TI, provide techniques to
inspect the state and to control the buggy program running
in the VM. JVM TI agents must be loaded and initialized at
the start of the JVM, whereas different AlamoDE-based
standalone debugging tools can work in concert with each
other during a debugging session, or be incorporated into
the debugger source code as permanent extensions, with
little or no source code modification.

7. Future Work

Unicon’s classical debugging support for features, such
as breakpoints and watchpoints, is provided through
monitored events and event filtering. Even though these

398

techniques perform well during debugging, improving their
performance can be achieved by further implementation of
common techniques such as trapped virtual machine
instruction for breakpoints, and trapped variable for
watchpoints. Moreover, AlamoDE’s support for multiple
simultaneous debugging tools can benefit from extending
Unicon support with real concurrency, where different co-
expressions can be off loaded onto different core
processors.

AlamoDE’s performance can be improved further by
reducing the number of context switches. At present the
monitor coordinator plays the role of a central server in a
star network. A ring-based architecture where each monitor
forwards events to another monitor instead of having a
central coordinator would reduce context switches by 50%.
Another possible architecture is a broadcasting mechanism
where the buggy program broadcasts events to all
secondary debugging tools. Furthermore, extending
AlamoDE for other languages can benefit from existing
instrumentation frameworks such as ASM for Java and PIN
and ATOM for C and C++ programs.

8. Conclusion

Unicon’s debugging support provides programmers with
high level built-in functions and execution events that allow
them to go beyond the standard debugging techniques.
AlamoDE is designed to simplify automatic debugging, and
dynamic analysis techniques. It allows various analyses to
be used as standalone tools, dynamically loaded into a
debugging coordinator with no source code alteration, or
permanently incorporated into the debugging tool with
minimal modifications. Programmers can utilize execution
events, event patterns, and event sequences to capture
specific behaviors. Some may be considered suspicious
behaviors while others are classified as bugs.

The implementation of UDB proves that the AlamoDE
framework is powerful enough to reduce the development
cost of source-level debuggers and simplify its maintenance
and extension. Previous event-based source-level
debuggers, such as Dalek [12,13] identified performance
obstacles. With this approach, AlamoDE provides usable
debugging support proved in the implementation of UDB
and its multi-agent debugging extension architecture.

9. Acknowledgment

This research was supported in part by an appointment
to the National Library of Medicine Research Participation
Program. This program is administered by the Oak Ridge
Institute for Science and Education for the National Library
of Medicine.

10. References
[1] Auguston, M., Jeffery, C., and Underwood, S. 2002. A

Framework for Automatic Debugging. In Proceedings of the

17th IEEE International Conference on Automated Software
Engineering (September 23 - 27, 2002). Automated Software
Engineering. IEEE Computer Society, Washington, DC.

[2] Auguston, M., Jeffery, C., and Underwood. 2003. A
Monitoring Language for Run Time and Post-Mortem
Behavior Analysis and Visualization. In proceedings of the
Fifth International Workshop on Automated Debugging
(AADEBUG 2003), September 2003, Ghent.

[3] Griswold, R. E., and Griswold, M. T.1997. The Icon
Programming Language. Peer-to-Peer Communications, Inc.,
San Jose, California

[4] Hanson, D. R, Variable Associations in SNOBOL4,
Software-Practice and Experience, VOL. 6, 245-254 (1976)

[5] Java Platform Debugging Architecture,
http://java.sun.com/javase/6/docs/technotes/guides/jpda

[6] Jeffery, C. L., 1999. Program Monitoring and Visualization:
an Exploratory Approach, Springer New York

[7] Jeffery, C. L., Mohamed, S., Pereda, R., and Parlett, R. 2004.
Programming with Unicon. http://unicon.org/book/ub.pdf

[8] Jeffery, C., Zhou, W., Templer, K., and Brazell, M. 1998. A
lightweight architecture for program execution monitoring.
SIGPLAN Not. 33, 7 (Jul. 1998), 67-74

[9] K. Templer and C. Jeffery, “A Configurable Automatic
Instrumentation Tool for ANSI C,” Proc. 13th IEEE Int’l
Conf. Automated Software Eng., pp. 249-258, 1998

[10] LaLonde, W. R. and Pugh, J. R. 1990 Inside Smalltalk: Vol.
1. Prentice-Hall, Inc.

[11] Lewis, B. Debugging Backward in Time. Proceedings of the
Fifth International Workshop on Automated Debugging.
AADEBUG 2003, September 2003, Ghent

[12] Olsson, R. A., Crawford, R. H., and Ho, W. W. 1991. A
dataflow approach to event-based debugging. Software
Practice & Experience. 21:2 (Feb. 1991), 209-229

[13] Olsson, R. A., Crawford, R. H., Ho, W. W., and Wee, C. E.
1991. Sequential Debugging at a High Level of Abstraction.
IEEE Software 8:3 (May. 1991), 27-36

[14] Pothier, G., Tanter, É., and Piquer, J. 2007. Scalable
omniscient debugging. In Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object Oriented
Programming Systems and Applications (Montreal, Quebec,
Canada, October 21 - 25, 2007). OOPSLA ‘07. ACM, New
York, NY, 535-552

[15] Rossum, G. Python Library Reference: The Python
Debugger. Release 2.5, 19th September, 2006.
http://www.python.org/doc/current/lib

[16] Searle, A.; Gough, J.; Abramson, D., "Automating relative
debugging," Automated Software Engineering, 2003.
Proceedings. 18th IEEE International Conference on , vol.,
no., pp. 356-359, 6-10 Oct. 2003.

[17] Zeller, A.; Hildebrandt, R. "Simplifying and Isolating
Failure-Inducing Input," IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 183-200, February, 2002.

[18] Ziad Al-Sharif. Debugging with UDB, User Guide and
Reference Manual. Technical Report #10

399

Pie Tree Visualization

Mireille Samia
Institute of Computer Science

Heinrich-Heine-University Düsseldorf
D-40225 Düsseldorf, Germany
samia@cs.uni-duesseldorf.de

Michael Leuschel
Institute of Computer Science

Heinrich-Heine-University Düsseldorf
D-40225 Düsseldorf, Germany
leuschel@cs.uni-duesseldorf.de

Abstract

Visualizing graphs with a large number of edges and ver-
tices can be cumbersome and ineffective. This is due to the
presence of countless overlapping arrows, which makes a
graph unclear and hard to understand and interpret by a
human. The aim of this paper is to try to address this prob-
lem using a new concept of data visualization, namely pie
tree visualization. We illustrate this technique on the mod-
ule architecture of a real-life development from the project
Deploy. We first describe pie tree visualization, and then,
present its advantages.1

1. Introduction

Visualization is the presentation of information in a
graphical format. It intends to provide the user with a qual-
itative understanding of this information. A comprehensive
visualization should be:

• accurate: the presentation of the data is sufficient for
its correct evaluation.

• effective: the information is easy to interpret.

• efficient: the information is appropriately and clearly
shown.

• aesthetical: the data visualization must not offend the
user’s senses. It should be visually appealing.

Visualizing huge information, such as the structure of a
large software project, can make a graph very confusing and
ineffective, even though it is accurate. A typical example of
such a graph is Figure 1, which depicts the module archi-
tecture of a formal software development from the Deploy

1This research is partially supported by the EU funded FP7 project
214158: DEPLOY (Industrial deployment of advanced system engineer-
ing methods for high productivity and dependability).

project. It is based on a common technique of data visual-
ization of graphs and large software architectures, which is
provided by dot, part of the GraphViz package [1]. In Fig-
ure 1, the original information is accurate; i.e., it remains
unchanged in the visualization. However, due to countless
overlapping arrows the graph becomes unreadable. Con-
sequently, the user sees the information, but cannot under-
stand the information’s contents. Even a zooming into a
portion of the graph of Figure 1 does not solve the problem
(cf. Figure 2). First of all, the overall structure of the graph
is lost. Moreover, Figure 2 shows clearly the overlapping
arrows. More specifically, the nodes of the graph, depicting
different modules, are connected together by unstructured
arrows, which prevent to recognize the connections. Hence,
a user is not able to see and to understand how the informa-
tion of the graph is connected.

To prevent this problem, we propose a new data visual-
ization, namely pie tree visualization. Pie tree visualization
aims at presenting different components in a clear and visu-
ally appealing manner. More specifically, a node of a source
(such as a module) is connected to other nodes using pie
charts. Every slice of a pie chart represents a module. Every
module has a name, a color and a number. By representing
every module by a number, pie tree visualization considers
the visual need of a color-blind user. Other advantages of
pie tree visualization are that the number of connections of
every module is clearly shown, as well as its characteristics.

In this paper, section 2 provides related work. In section
3, we present pie tree visualization by applying an instance
to it, and discuss its advantages. Section 4 concludes this
paper, and points out future work.

2. Related work

Graph visualization is defined as “the problem of con-
structing geometric representations of graphs, networks,
and related combinatorial structures” [2]. There are sev-
eral techniques for visualizing graphs or hierarchies, such
as the classical hierarchical view [6]. Another technique is

400

 acs_as_env_cfg_aiguille.mch

 acs_as_env_typ_aig.mch

SEES

 acs_as_env_typ_aig_config.mch

SEES

 acs_as_env_typ_br_cdv_aig.mch

SEES

 acs_as_env_typ_canton.mch

SEES

 acs_as_env_typ_cdv.mch

SEES

 acs_as_env_typ_t_liste.mch

SEES

 acs_as_env_cfg_atp_is_f.mch

 acs_as_env_typ_pt_arret.mch

SEES

 acs_as_env_typ_secteur.mch

SEES

 acs_as_env_cfg_chemin.mch

SEES

 acs_as_env_typ_chemin.mch

SEES

SEES

 acs_as_env_typ_zone.mch

SEES
SEES

 acs_as_env_typ_emis.mch

SEES

 acs_as_env_cfg_expl_f.mch

 acs_as_env_ctx_pt_arret.mch

SEES

SEES

SEES
SEES

 acs_as_env_typ_ets.mch

SEES

 acs_as_env_typ_itineraire.mch

SEES

SEES

 acs_as_env_typ_rg_tm.mch

SEES

 acs_as_env_typ_rg_tc.mch

SEES

SEES

 acs_as_env_typ_signal.mch

SEES

 acs_as_env_typ_zaig.mch

SEES

 acs_as_env_typ_zaum.mch

SEES

 acs_as_env_typ_zds.mch

SEES

 acs_as_env_typ_zltv.mch

SEES
SEES

 acs_as_env_cfg_ipart.mch

SEES

SEES

SEES

 acs_as_env_ctx_aiguille.mch

SEES

SEES

SEES

 acs_as_env_cfg_iprinc.mch

SEES
SEES

 acs_as_env_typ_pgar.mch

SEES

SEES

 acs_as_env_typ_temps.mch

SEES

SEES
SEES

SEES

SEES
SEES

 acs_as_env_cfg_pt_arret.mch

SEES

SEES

SEES

 acs_as_env_cfg_isaig.mch

SEES

SEES
SEES

SEES

SEES SEES
SEES

SEES

SEES
SEES

SEES SEES

 acs_as_env_cfg_quai.mch

 acs_as_env_typ_quai.mch

SEES

SEES

 acs_as_env_cfg_secteur.mch

SEES
SEES SEES

SEES

SEES

 acs_as_env_cfg_tor.mch

SEES

SEESSEES SEES

SEESSEES SEES

 acs_as_env_typ_tor.mch

SEES
SEES

 acs_as_env_cfg_tor_f.mch

SEES

SEES

 acs_as_env_cfg_vk.mch

SEES

SEES
SEES

 acs_as_env_typ_vk.mch

SEES SEES

SEES

 acs_as_env_cfg_zaum.mch

SEES

SEES

 acs_as_env_cfg_zds_f.mch

SEES SEES

SEES

SEESSEES

 acs_as_env_cfg_zltv.mch

SEES
SEES

 acs_as_env_cst_app.mch

SEES

 acs_as_env_cst_spec.mch

 acs_as_env_cst_gen.mch

SEES

SEES

SEES

SEES

SEES

SEES

SEES

SEES

 acs_as_env_ctx_ipart.mch

SEES

SEES

SEES
SEES

SEES

SEES
SEES

SEES SEES
SEES

 utlb_sec_opel.mch

SEES

 utlb_srv_mrtk.mch

SEES

SEES

SEES

SEES

SEES SEES

SEESSEES

SEES

SEES

SEES

SEES

SEES

SEES
SEESSEES

SEES

SEES
SEES

SEES

SEES

SEES

SEES

SEES
SEES

SEESSEESSEES

SEES

SEES

SEES

SEES SEES
SEES

SEES

SEES
SEES

SEESSEESSEES
SEES

SEES

SEES

SEES

SEES
SEES

 utlb_srv_calcul_f.mch

SEES

 utlb_srv_calcul_i.imp

 utlb_srv_calcul.mch

REFINES

SEES

IMPORTS

 utlb_srv_constantes_i.imp

 utlb_srv_constantes.mch

REFINES

 acs_as_env_typ_mode_ugs.mch

Figure 1. An accurate, but largely ineffective graph visualization.

 acs_as_env_typ_aig.mch

SEES

 acs_as_env_typ_canton.mch

SEES

 acs_as_env_typ_pt_arret.mc

 acs_as_env_cfg_chemin.mch

SEES

 acs_as_env_typ_chemin.mch

SEES

SEES

 acs_as_env_typ_zone.mch

SEES

 acs_as_env_typ_emis.mch

SEES

 acs_as_env_ctx_pt_arret.mch

SEES

SEES

SEES
SEES

 acs_as_env_typ_ets.mch acs_as_env_typ_itineraire.mch

SEES

 acs_as_env_typ_signal.mch

SEES

 acs_as_env_typ_zaum.mch

SEES

SEES

SEES

SEES

 acs_as_env_cfg_iprinc.mch

SEES
SEES

 acs_as_env_typ_pgar.mch

SEES

SEES

SEES

SEES
SEES

SEES

SEES
SEES

 acs_as_env_cfg_pt_arret.mch

SEES

SEES

SEES

 acs_as_env_cfg_isaig.mch

SEES

SEES
SEES

SEES
SEES

SEES

SEES

SEES

SEES SEES

 acs_as_env_cfg_secteur.mch

SEES
SEES SEES

SEES

SEES

 acs_as_env_cfg_tor.mch

SEES

SEESSEES SEES

SEESSEES SEES

 acs_as_env_typ_tor.mch

SEES
SEES

 acs_as_env_cfg_tor_f.mch

SEES

SEES

 acs_as_env_cfg_vk.mch

SEES

SEES
SEES

 acs_as_env_typ_vk.mch

SEES SEES

SEES

 acs_as_env_cfg_zaum.mch

SEES

SEES

SEES SEES

 acs_as_env_cst_app.mch

SEES

SEES

SEES

SEES
SEES

SEES SEES
SEES

 utlb_sec_opel.mch

SEES

 utlb_srv_mrtk.mch

SEES

SEES

SEES

SEES

SEES SEES

SEESSEES

SEES

SEES

SEES

SEES

SEES

SEES
SEESSEES

SEES

SEES
SEES

SEES

SEES SEES SEESSEES

SEES
SEES

SEES

SEES

SEESSEESSEES
SEE

SEES SEES

SEES
SEES

Figure 2. Portion of Figure 1, in a zoomed-in view, shows the countless overlapping arrows.

radial view, where the children of a sub-tree are positioned
in circular wedges [3]. An extension to this technique is
MoireGraphs for visualizing graphs [5]. Another work is
fisheye views [4], which proposes a presentation strategy
for hierachical data structure. In this technique, an area of
interest is enlarged, while other portions of the graph are
shown with less detail. Another visualization technique is
RINGS, a circular view in which all nodes and their chil-
dren are placed in circle [8]. Another example is the vi-
sualization technique provided by dot [1]. The traditional
techniques are accurate. However, as the amount of infor-
mation to be visualized largely increases, they often become
inappropriate. They are more concerned with the accurate
visualization of data, and often do not consider the efficient
visual presentation of information, which makes the data
difficult to understand. They do not meet the visual need
of a color-blind person. The aim of pie tree visualization is
accuracy, but also comprehension. The user is able to find
and access the needed information. Pie tree visualization is
flexible and adaptable. It can adjust to serve multiple needs,
such as the visual requirements of a color-blind user.

3. Pie tree visualization

In this section, we describe the new data visualiza-
tion [7], namely pie tree visualization, by applying it to
an industrial software architecture from the project Deploy.
Then, we discuss its advantages.

3.1. Description of pie tree visualization

Pie tree visualization consists of three main entities: the
nodes of a source (such as modules), their connection(s),

and their corresponding legend.
The main goals of pie tree visualization are to represent

clearly every module and its connection(s), to understand
a module’s characteristics, and to be user-friendly for color
blind people.

Figure 8 illustrates pie tree visualization. It presents pie
tree visualization, in a rotated view. It shows how the mod-
ules and the connections of the large software architecture
of Figure 1 are represented in pie tree visualization. It de-
picts every module, as well as its characteristics.

The legend In Figure 3, every module is presented by
a name, a number and a color. For instance, the module
named “acs as env cst app” has the number 17, and a yel-
low tone color (light yellow).

acs_as_env_cfg_aiguille
acs_as_env_cfg_atp_is_f

acs_as_env_cfg_zds_f
acs_as_env_cfg_zltv acs_as_env_typ_ets

acs_as_env_typ_itineraire
acs_as_env_typ_zds

acs_as_env_cfg_chemin
acs_as_env_cfg_expl_f
acs_as_env_cfg_ipart
acs_as_env_cfg_iprinc
acs_as_env_cfg_isaig
acs_as_env_cfg_pt_arret
acs_as_env_cfg_quai
acs_as_env_cfg_secteur
acs_as_env_cfg_tor
acs_as_env_cfg_tor_f
acs_as_env_cfg_vk
acs_as_env_cfg_zaum

acs_as_env_cst_app

acs_as_env_cst_spec
acs_as_env_ctx_aiguille
acs_as_env_ctx_ipart
acs_as_env_ctx_pt_arret
acs_as_env_typ_aig
acs_as_env_typ_aig_config
acs_as_env_typ_br_cdv_aig
acs_as_env_typ_canton
acs_as_env_typ_cdv
acs_as_env_typ_chemin

acs_as_env_typ_emis

acs_as_env_typ_pgar
acs_as_env_typ_pt_arret
acs_as_env_typ_quai
acs_as_env_typ_rg_tc
acs_as_env_typ_rg_tm
acs_as_env_typ_secteur
acs_as_env_typ_signal
acs_as_env_typ_temps

acs_as_env_typ_tor

acs_as_env_typ_vk
acs_as_env_typ_zaig
acs_as_env_typ_zaum

acs_as_env_typ_zltv
acs_as_env_typ_zone

utlb_srv_calcul_f
utlb_srv_calcul_i

utlb_srv_constantes_i
utlb_srv_mrtk

utlb_sec_opel
utlb_srv_calcul

acs_as_env_typ_t_liste

acs_as_env_typ_mode_ugsacs_as_env_cst_gen

utlb_srv_constantes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

.mch .imp

acs_as_env_cfg_aiguille
acs_as_env_cfg_atp_is_f

acs_as_env_cfg_zds_f

acs_as_env_cfg_zltv

acs_as_env_typ_ets

acs_as_env_typ_itineraire acs_as_env_typ_zds

acs_as_env_cfg_chemin
acs_as_env_cfg_expl_f
acs_as_env_cfg_ipart
acs_as_env_cfg_iprinc
acs_as_env_cfg_isaig
acs_as_env_cfg_pt_arret
acs_as_env_cfg_quai
acs_as_env_cfg_secteur
acs_as_env_cfg_tor
acs_as_env_cfg_tor_f
acs_as_env_cfg_vk
acs_as_env_cfg_zaum

acs_as_env_cst_app

acs_as_env_cst_spec
acs_as_env_ctx_aiguille
acs_as_env_ctx_ipart
acs_as_env_ctx_pt_arret
acs_as_env_typ_aig
acs_as_env_typ_aig_config
acs_as_env_typ_br_cdv_aig
acs_as_env_typ_canton
acs_as_env_typ_cdv
acs_as_env_typ_chemin
acs_as_env_typ_emis

acs_as_env_typ_pgar
acs_as_env_typ_pt_arret
acs_as_env_typ_quai
acs_as_env_typ_rg_tc
acs_as_env_typ_rg_tm
acs_as_env_typ_secteur
acs_as_env_typ_signal

acs_as_env_typ_temps
acs_as_env_typ_tor
acs_as_env_typ_vk
acs_as_env_typ_zaig
acs_as_env_typ_zaum

acs_as_env_typ_zltv
acs_as_env_typ_zone

utlb_srv_calcul_f
utlb_srv_calcul_i

utlb_srv_constantes_i
utlb_srv_mrtk

utlb_sec_opel
utlb_srv_calcul

acs_as_env_typ_t_liste

acs_as_env_typ_mode_ugs
acs_as_env_cst_gen

utlb_srv_constantes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

.mch

.imp

SEES

IMPORTS

REFINES

Figure 3. The legend of pie tree visualization.

We use a range of color tones to represent, for example,
different types of modules. In Figure 3, the different types
that a module can belong to are cfg , cst , ctx, typ, sec and
srv. Every type of a module is given a different color. For
instance, the cst modules, numbered from 17 to 19, have a
range of yellow tones. By giving various types of modules
different colors, we group the modules of similar types.

In the case of Figure 3, a module can be of different

401

kinds: either an abstract machine (.mch) or an implemen-
tation (.imp). An abstract machine, is illustrated visually as
a full rectangle, and an implementation machine (.imp) as a
dashed rectangle.
Using distinct types of rectangles helps to see quickly if a
module is of type “machine” or “implementation”.

Every connection of two modules has a label. In Fig-
ure 3, the labels are SEES, IMPORTS and REFINES. Each
label is represented by a different arrow, which helps to
know quickly the corresponding label of a connection.

A module As stated previously, a machine is depicted by
a full rectangle, and an implementation by a dashed rectan-
gle. In every rectangle of a module, the number of incoming
and outgoing connections are stated by a roman number or
0 (if no connection). The left side of the rectangle shows
the number of the incoming connections of a module; i.e.,
the connections to a module. The right side of the rectangle
shows the number of outgoing connections of a module; i.e,
the connections from a module to different modules.
Figure 4 gives an example of a machine, named
“acs as env ctx aiguille”, having the number 20 and the
color light grey. The number of connections to the ma-
chine “acs as env ctx aiguille”; i.e. the incoming connec-
tions, is the roman number III . The number of connections
from the machine “acs as env ctx aiguille” to other differ-
ent modules; i.e. the outgoing connections, is the roman
number V II . In Figure 5, an instance of an implementation,
called “utlb srv calcul i”, numbered 52 and colored light
violet, is illustrated. The number of incoming connections
is 0. In other words, none of the modules is connected to
the implementation “utlb srv calcul i”. The number of out-
going connections, which represent the connections from
“utlb srv calcul i” to other modules, is III .

The connections of a module The connection(s) from or
to a module is/are depicted by a pie. The upper part con-
nected to a rectangle, which represents a module, shows
the connections from other different modules to this mod-
ule. The lower part displays the connections from a module
(rectangle) to other different modules.

Every slice of a pie chart depicts a module. Its color
is that of the corresponding module. Its number is also of
the corresponding module, and is shown in a circle. If the
outline of the circle is dashed, then the module is an imple-
mentation. Otherwise, the module is a machine. The size of
a pie’s slice represents a characteristic of a module, such as
the total number of occurrences of a module or the size of a
module. The labels of the connection between two different
modules is represented by different arrows, as stated previ-
ously.
In Figure 4, for instance, the connections from other mod-
ules to the machine “acs as env ctx aiguille”, numbered
20, are the machines, represented by full circles numbered

acs_as_env_ctx_aiguilleIII VII20

7

5

21

23

24

40

1

27

26 25

Figure 4. Instance of a machine.

5, 7 and 21. Moreover, the connections from this machine
to other different modules are the machines numbered 1, 23,
24, 25, 26, 27 and 40. The size of every pie slice represents
the total number of occurrences of every module. All the la-
bels of the connections between two different modules are
depicted by a full arrow, which denotes SEES.
Another example is Figure 5, which shows the implemen-
tation “utlb srv calcul i” numbered 52, and having no con-
nection from other modules to it; i.e. no incoming con-
nection. The outgoing connections; i.e. the connections
from the implementation “utlb srv calcul i” to other differ-
ent modules, are to the machines 49, 50 and 51. The ma-
chine numbered 49 has the highest number of occurrences.
The labels of the connections are shown by different arrows,
which represent SEES, REFINES and IMPORTS.

0 IIIutlb_srv_calcul_i52

49

50

51

Figure 5. Instance of an implementation.

The summary of a module A summary provides infor-
mation about a module, such as, the total number of a mod-
ule’s occurrences, the total number of a connection’s label,
the total number of constants or of variables used in this

402

module, the total number of the definitions used in this mod-
ule, the total number of a module’s operations, and so on.
The summary of a module is shown by a mouse click on the
corresponding module, represented by a rectangle or a pie
slice. Figure 6 shows the summary of machine 38, which
has 14 concrete constants, 7 abstract constants, 16 opera-
tions, 22 definitions, 2 labels SEES, and its total number of
occurrences is 7.

acs_as_env_cfg_atp_is_f0 II2

3834

CONCRETE_CONSTANTS: 14
ABSTRACT_CONSTANTS: 7
OPERATIONS: 16
DEFINITIONS: 22
SEES: 2
Nb. of Occurrences: 7

Figure 6. Instance of a machine and its sum-
mary.

3.2. Advantages of pie tree visualization

Pie tree visualization has several advantages, described
below.

The user does not need to follow countless overlapping
arrows. In pie tree visualization, every module is repre-
sented individually (cf. Figure 8). Consequently, even for
large software architectures, pie tree visualization remains
comprehensible. It improves the ease of interpretation of
the information of every module, since in order to find the
corresponding connections to and from a module, the user
does not follow overlapping arrows, as in the visualization
of graphs (cf. Figures 1 and 2).

The legend of pie tree visualization gives an overview
of every module, such as its color, its number and its type.
It also provides the total number of modules. In case of
Figure 3, the total number of modules is 55. This helps to
know how many modules are involved.

The summary of a module gives instantly an informative
overview of a particular module.

The use of different arrows makes it easy to know the
label of a connection. The labels are not overlapped, as in
Figures 1 and 2.

The use of distinct outlines of circles and rectangles (full
or dashed) gives the opportunity to promptly interpret the
type of a module. A user is able to know visually and
quickly, if a module is a machine or an implementation.

Pie tree visualization is user-friendly for color blind
users. By representing a module by a number, a color blind
user can directly identify which module is in question, with-
out the need to identify the module’s color. The text and the
outlines of the shapes used, such as rectangles, arrows and
circles, are colored in black tones. This facilitates to see
well the information of a module.

Giving the same type of modules a similar range of color
tones facilitates to find out to which type a module belongs
to. For instance, in Figure 3, the modules of type ctx can
be directly recognized by their range of grey tones. Another
way to know the type of a module is to check the name
of the modules in the legend, which help to find out the
range of numbers of the modules having the same type. For
instance, the numbers from 20 to 22 have the same type ctx .

The size of every slice can be used to determine a spe-
cific characteristic of a module. In our case, in Figure 8, the
size of a pie slice corresponds to the total number of occur-
rences of a module. By checking the size of a pie slice, we
can easily and quickly visually estimate the corresponding
characteristic of a module.

Pie tree visualization decreases the time of search for
specific modules and decreases erroneous conclusions,
since the user does not need to follow overlapping arrows,
as in Figures 1 and 2. We can find a module easily and
quickly by checking its number or its color. For instance, in
Figure 8, the module “acs as env cfg aiguille” numbered
1 is connected to the machine “acs as env typ aig config”
numbered 24, to the machine “acs as env typ br cdv aig”
numbered 25, and so on.

Pie tree visualization outperforms the visualization pro-
vided by dot, in Figures 1 and 2 for certain complicated
comparisons. The comparison of machines and implemen-
tations is easier with pie tree visualization than with graphs.
If we need to compare which modules have the same con-
nections, we do not need to follow arrows as in graphs. A
user needs to compare the color of a module or its num-
ber which may occur in the other different modules. Then,
the user can quickly identify, for instance, which modules
have the same number of connections or which modules
have similar connections. As stated previously, the upper
connections to a module are the incoming connections of a
module; i.e., the connections from other different modules
to this module. The lower connections are the outgoing con-
nections of a module; i.e. the connections from this mod-
ule to other different modules. For instance, in Figure 7,
machine “acs as env typ chemin” has the same incoming
connection numbered 3, as machine “acs as env typ emis”
and machine “acs as env typ t liste”. The machine
“acs as env typ temps” has no common lower or outgoing
connection with the machines having the numbers 28, 29,
30, 41 and 42. The machine numbered 41 has the highest
number of incoming connections, which is the roman num-

403

ber IX . Note that by checking the number of every module
in the legend, the name of every module is also recognized.

I IIacs_as_env_typ_chemin III IIacs_as_env_typ_emisI II acs_as_env_typ_ets29 3028

III Iacs_as_env_typ_temps IX 0 III IIacs_as_env_typ_toracs_as_env_typ_t_liste40 41 42

3

1

3

3

5

4

7

6

7

6

49

55

55

49

55

49

55

49

15

15
11

11

21

20

13

19

14

17

12

Figure 7. Instances of modules having the
same or different connections.
A comparison between all the modules can be done by

referring to Figure 8. A user is able to see and compare
how all the modules are connected. He/she can easily see,
and also at a glance, which modules have no outgoing or no
incoming connections. For instance, it is also possible to
find which modules have the same number of outgoing or
incoming connections. Afterthat, a user can compare which
connections of the modules are similar, if any.

Providing a user with a qualitative visual presentation of
the information is very important. This helps a user to better
understand how the information interacts with each other.
It also augments his/her comprehension of the data, which
support the interpretation of the information. By using pie
tree visualization, the information is appropriately shown.
We believe that a user can easily and quickly gain informa-
tion, which helps and supports his/her understanding of this
information.

4. Conclusion and future work
Every visualization has its advantages and its disadvan-

tages. The visualization of graphs provided, for instance, by
dot performs well on a small amount of data. However, as
the amount of information to be visualized becomes larger,
its output tends to become confusing and ineffective, be-
cause of countless overlapping arrows. Consequently, the

connections between the modules may be hard to recog-
nize, which makes the information difficult to understand
by a human. Pie tree visualization is not always useful for
a small amount of information. However, as the amount
of data increases, we believe that the use of pie tree makes
sense. The user does not need to follow countless arrows in
order to find the required information and understand it. Pie
tree visualization connects different nodes of a source (such
as modules of a large software architecture) in a structured
and visually appealing manner. A module is connected to
other modules using pie charts, where every pie slice de-
picts a module. The connections to and from a module are
clearly represented. Pie tree visualization is adequate for
complicated comparisons. Due to the use of numbers, text
and a correct combination of different modules’ outlines,
pie tree visualization may be user-friendly for color-blind
persons. We believe that pie tree visualization is visually
informative and comprehensive.

A future work is to add more features to pie visualiza-
tion, such as improving the comparison between modules
by, for instance, giving a more detailed summary of every
module.

Acknowledgements
We would like to thank Jérôme Falampin for providing

us with the industrial example of the large software archi-
tecture from the project Deploy, which is shown in Figure 1.

References

[1] AT&T Labs-Research. Graphviz - open source graph drawing
software. Obtainable at
http://www.research.att.com/sw/tools/
graphviz/.

[2] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Pren-
tice Hall, New Jersey, 1999.

[3] P. Eades. Drawing free trees. Bulleting of the Institute of
Combinatorics and its Applications, pages 10–92, 1992.

[4] G. W. Furnas. Generalized fisheye views. In Proceedings
of the Conference on Human Factors in Computing Systems
(CHI’86), pages 16–23, New York, 1986. ACM Press.

[5] T. J. Jankun-Kelly and K.-L. Ma. Moiregraphs: Radial fo-
cus+context visualization and interaction for graphs with vi-
sual nodes. IEEE Symposium on Information Visualization
2003, pages 59–66, 2003.

[6] E. M. Reingold and J. S. Tilford. Tidier drawing of trees.
IEEE Transactions on Software Engineering, 7(2):223–228,
1981.

[7] M. Samia and M. Leuschel. Towards pie tree visualization
of graphs and large software architectures. In the 17th IEEE
International Conference on Program Comprehension, ICPC
2009. IEEE Computer Society, 2009. to appear.

[8] S. T. Teoh and K.-L. Ma. Rings: A technique for visualizing
large hierarchies. In Graph Drawing 2002, pages 268–275,
Irvine, California, USA, 2002. Springer.

404

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
a

tp
_

is
_

f
0

II
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
c
h

e
m

in
0

V
I

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
a

ig
u

ill
e

V
V

I
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
ip

a
rt

I
V

I
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
e

x
p

l_
f

0
X

V
I

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
ip

ri
n

c
0

X
II
I

1
2

3
4

5
6

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
p

t_
a

rr
e

t
II

I
II

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
is

a
ig

0
X

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
q

u
a

i
0

7
8

9

3
5

II
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
to

r
0

IX
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
s
e

c
te

u
r

0
V

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
to

r_
f

0
II

1
0

1
1

1
2

4
8

3
8

2
5

4
8

3
3

3
0

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
z
a

u
m

0
II

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
v
k

0
V

I
a

c
s
_

a
s
_

e
n

v
_

z
d

s
_

f
0

V
1

3
1

4
1

5
a

c
s
_

a
s
_

e
n

v
_

c
s
t_

a
p

p
0

I
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
z
tl
v

0
II

1
6

1
7

a
c
s
_

a
s
_

e
n

v
_

c
s
t_

g
e

n
0

I
1

8

4
7

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
a

ig
u

ill
e

II
I

V
II

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
ip

a
rt

0
V

II
a

c
s
_

a
s
_

e
n

v
_

c
s
t_

s
p

e
c

I
I

1
9

2
0

2
1

a
cs

_
a

s_
e

n
v_

ty
p

_
a

ig
_

co
n

fig
II

I
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
a

ig
V

III
II

a
c
s
_
a
s
_
e
n
v
_
c
tx

_
p
t_

a
rr

e
t

II
I

II
I

2
2

2
3

2
4

X
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
c
a

n
to

n
V

III
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
c
d

v
a

cs
_

a
s_

e
n

v_
ty

p
_

b
r_

cd
v_

a
ig

II
I

II
2

5
2

6
2

7
I

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
h

e
m

in
II

I
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
e

m
is

I
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
e

ts
2

9
3

0
2

8
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
p

g
a

r
II

II
0

0
a

cs
_

a
s_

e
n

v_
ty

p
_

m
o

d
e

_
u

g
s

V
II

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
it
in

e
ra

ir
e

3
1

3
2

3
3

X
I

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
p

t_
a

rr
e

t
I

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
q

u
a

i
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
rg

_
tc

I
II

3
4

3
5

3
6

9

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
s
ig

n
a

l
II

II
V

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
s
e

c
te

u
r

I
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
rg

_
tm

3
7

3
8

3
9

II
I

I
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
te

m
p
s

IX
0

II
I

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
to

r
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
t_

lis
te

4
0

4
1

4
2

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
a

u
m

II
I

II
II

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
z
a

ig
I

II
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
v
k

4
3

4
4

4
5

IV
II

II
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
d

s
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
z
o

n
e

II
II

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
lt
v

4
6

4
7

4
8

u
tl
b

_
s
rv

_
c
a

lc
u

l_
f

I
I

I
0

u
tl
b

_
s
rv

_
c
a

lc
u

l
X

X
V

0
u

tl
b

_
s
e

c
_

o
p

e
l

4
9

5
0

5
1

0
I

u
tl
b
_
s
rv

_
c
o
n
s
ta

n
te

s
_
i

0
II

I
u

tl
b

_
s
rv

_
c
a

lc
u

l_
i

I
0

u
tl
b
_
s
rv

_
c
o
n
s
ta

n
te

s

5
4

5
2

5
3

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
a

ig
u

ill
e

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
a

tp
_

is
_

f
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
z
d

s
_

f
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
z
lt
v

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
e

ts
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
it
in

e
ra

ir
e

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
d

s
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
c
h

e
m

in
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
e

x
p

l_
f

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
ip

a
rt

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
ip

ri
n

c
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
is

a
ig

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
p

t_
a

rr
e

t
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
q

u
a

i
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
s
e

c
te

u
r

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
to

r
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
to

r_
f

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
v
k

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
z
a

u
m

a
c
s
_

a
s
_

e
n

v
_

c
s
t_

a
p

p

a
c
s
_

a
s
_

e
n

v
_

c
s
t_

s
p

e
c

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
a

ig
u

ill
e

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
ip

a
rt

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
p

t_
a

rr
e

t
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
a

ig
a

cs
_

a
s_

e
n

v_
ty

p
_

a
ig

_
co

n
fig

a
cs

_
a

s_
e

n
v_

ty
p

_
b

r_
cd

v_
a

ig
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
a

n
to

n
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
d

v
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
h

e
m

in

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
e

m
is

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
p

g
a

r
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
p

t_
a

rr
e

t
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
q

u
a

i
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
rg

_
tc

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
rg

_
tm

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
s
e

c
te

u
r

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
s
ig

n
a

l
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
te

m
p
s

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
to

r

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
v
k

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
a

ig
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
z
a

u
m

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
lt
v

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
o

n
e

u
tl
b

_
s
rv

_
c
a

lc
u

l_
f

u
tl
b

_
s
rv

_
c
a

lc
u

l_
i

u
tl
b

_
s
rv

_
c
o

n
s
ta

n
te

s
_

i
u

tl
b

_
s
rv

_
m

rt
k

u
tl
b

_
s
e

c
_

o
p

e
l

u
tl
b

_
s
rv

_
c
a

lc
u

l

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
t_

lis
te

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
m

o
d

e
_

u
g

s
a

c
s
_

a
s
_

e
n

v
_

c
s
t_

g
e

n

u
tl
b

_
s
rv

_
c
o

n
s
ta

n
te

s

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

.m
c
h

.i
m

p

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
a

ig
u

ill
e

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
a

tp
_

is
_

f

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
z
d

s
_

f

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
z
lt
v

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
e

ts

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
it
in

e
ra

ir
e

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
d

s

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
c
h

e
m

in
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
e

x
p

l_
f

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
ip

a
rt

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
ip

ri
n

c
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
is

a
ig

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
p

t_
a

rr
e

t
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
q

u
a

i
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
s
e

c
te

u
r

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
to

r
a

c
s
_

a
s
_

e
n

v
_

c
fg

_
to

r_
f

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
v
k

a
c
s
_

a
s
_

e
n

v
_

c
fg

_
z
a

u
m

a
c
s
_

a
s
_

e
n

v
_

c
s
t_

a
p

p

a
c
s
_

a
s
_

e
n

v
_

c
s
t_

s
p

e
c

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
a

ig
u

ill
e

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
ip

a
rt

a
c
s
_

a
s
_

e
n

v
_

c
tx

_
p

t_
a

rr
e

t
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
a

ig
a

cs
_

a
s_

e
n

v_
ty

p
_

a
ig

_
co

n
fig

a
cs

_
a

s_
e

n
v_

ty
p

_
b

r_
cd

v_
a

ig
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
a

n
to

n
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
d

v
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
c
h

e
m

in
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
e

m
is

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
p

g
a

r
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
p

t_
a

rr
e

t
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
q

u
a

i
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
rg

_
tc

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
rg

_
tm

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
s
e

c
te

u
r

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
s
ig

n
a

l

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
te

m
p
s

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
to

r
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
v
k

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
a

ig
a

c
s
_

a
s
_

e
n

v
_

ty
p

_
z
a

u
m

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
lt
v

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
z
o

n
e

u
tl
b

_
s
rv

_
c
a

lc
u

l_
f

u
tl
b

_
s
rv

_
c
a

lc
u

l_
i

u
tl
b

_
s
rv

_
c
o

n
s
ta

n
te

s
_

i
u

tl
b

_
s
rv

_
m

rt
k

u
tl
b

_
s
e

c
_

o
p

e
l

u
tl
b

_
s
rv

_
c
a

lc
u

l

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
t_

lis
te

a
c
s
_

a
s
_

e
n

v
_

ty
p

_
m

o
d

e
_

u
g

s
a

c
s
_

a
s
_

e
n

v
_

c
s
t_

g
e

n

u
tl
b

_
s
rv

_
c
o

n
s
ta

n
te

s

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

.m
c
h

.i
m

p

S
E

E
S

IM
P

O
R

T
S

R
E

F
IN

E
S

5

6

6

1

1

8

8
1

6

7

7

7

7
6

5

3

4
4

1

1
1

1

3

3

5

4

4

4

7

7

6

7

6

6

4

2

5
2

5
2

4
9

4
9

5
0 5
1

4
9

4
9

4
9

5
4

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
3

4
9

5
5

5
5

5
5

4
9

4
9

4
9

4
9

4
9

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

5
5

4
9

1
5

1
6

1
6

4

4

4

1
1

1
1

4

4

5
5

4
9

5
5

4
9

1
1

2
2

1
0

1
1

1
2

4
4

4 1
5

4

2
4

2
2

1
1

1
0

1
0

2
5

1
1

1
0

1
5

1
5

1
1

6

1
5

1
1

5

6

7

4

6

1
1

7

6

3
4

3
4

3
4

3
4

3
4

2
0

2
0

2
0

7

6
5

5

5

2
1

2
1

2
1

2
1

2
1

2
0

2
0

2
0

4
0

2
1

2
0

2
3

2
4

2
3

2
4

2
3

2
0

1
3

1
3

1
3

1
3

1
3

2
2

2
2

2
0

1
9

1
8

2
0

2
2

2
0

2
2

3
4

3
4

3
4

3
4

3
4

3
4

4
0

4
0

4
0

4
0

4
0

4
0

1
0

4
0

4
0

4
2

4
2

4
2

8

8

1

1

8

1

1

1
3

2
7

2
7

2
7

2
7

2
7

2
7

2
7

2
7

2
7

2
7

2
6

2
6

2
6

2
6

2
6

2
6

1
9

2
3

2
3

2
3

2
3

2
3

3

3

3

3
1

3
1

3
1

3
1

3
1

3
1

3
0

3
0

2
1

3
8

3
8

3
8

3
8

4
1

2
9

4
8

2
8

4
8

4
1

4
1

3
1

2
6

1
4

1
4

2
6

2
5

4
1

4
5

4
5

3
3

4
3

4
6

3
9

3
9

4
6

4
7 4
5 4

4

4
4

3
6

3
7

9

2

1
7

1
2

X
X

II
I

0
u

tl
b

_
s
rv

_
m

rt
k

5
5

2
3

2
4

2
5

2
6

2
7 2

8

2
9

3
0

3
1

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
2

4
3

4
4

4
54
64

7

4
8

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
3

3
4

3
5

3
6

3
7

3
8

4
2

4
3

4
4

4
5

4
6

4
74
8

5
2 3

9

5
1

Figure 8. Pie tree visualization of the graph from Figure 1. (Rotated view).

405

Formal Verification of Scalable NonZero Indicators

Shao Jie Zhang†, Yang Liu†, Jun Sun†, Jin Song Dong†, Wei Chen‡ and Yanhong A. Liu�

† National University of Singapore
shaojiezhang@nus.edu.sg, {liuyang,sunj,dongjs}@comp.nus.edu.sg

‡ Microsoft Research Asia
weic@microsoft.com

� State University of New York at Stony Brook
liu@cs.sunysb.edu

Abstract

Concurrent algorithms are notoriously difficult to design
correctly, and high performance algorithms that make little
or no use of locks even more so. In this paper, we describe
a formal verification of a recent concurrent data structure
Scalable NonZero Indicators. The algorithm supports in-
crementing, decrementing, and querying the shared counter
in an efficient and linearizable way without blocking. The
algorithm is highly non-trivial and it is challenging to prove
the correctness. We have proved that the algorithm satis-
fies linearizability, by showing a trace refinement relation
from the concrete implementation to its abstract specifica-
tion. These models are specified in CSP and verified auto-
matically using the model checking toolkit PAT.

1 Introduction

Concurrent algorithms are notoriously difficult to design

correctly, and high performance algorithms that make lit-

tle or no use of locks even more so. The main correctness

criterion of the concurrent algorithm design is linearizabil-

ity [6]. Informally, a shared object is linearizable if each

operation on the object can be understood as occurring in-

stantaneously at some point, called linearization point, be-

tween its invocation and its response, and its behavior at that

point is consistent with the specification for the correspond-

ing sequential execution of the operation.

Formal verification of linearizability is challenging be-

cause the correctness often relies on the knowledge of lin-

earization points, which is difficult or even impossible to

identify. These proofs are too long and complicated to do

(and check) reliably “by hand”. Hence, it is important to

develop techniques for mechanically performing, or at least

checking, such proofs.

In this paper, we present an approach to verify lineariz-

ability based on refinement relations between abstract spec-

ification and concrete implementation models of a concur-

rent algorithm. Both are specified using an event-based

modeling language, which has formal semantics based on

labeled transition systems. We have used this approach

to formally verify a recent concurrent algorithm Scalable

NonZero Indicators (SNZI) due to Ellen et al. [5], since

the algorithm as a complex and useful implementation

serves a good candidate for automatic verification. Our ap-

proach also builds on earlier work [8] in which we proved

(and in some cases disproved and/or improved) a num-

ber of concurrent algorithms like nonblocking stacks, non-

blocking queues, K-valued Registers and Mailbox prob-

lem. We have made considerable progress in understand-

ing how to model algorithms including specifications and

implementations to allow model checking to scale up and

handle bigger cases. The complete model of SNZI algo-

rithm is built inside a novel model checking tool, PAT [12]

(http://pat.comp.nus.edu.sg).

The rest of the paper is structured as follows. Section 2

briefly introduces the SNZI algorithm. Section 3 gives the

standard definition of linearizability. Section 4 shows how

to express linearizability using refinement relations in gen-

eral. Section 5 gives the SNZI model in our modeling lan-

guage. Section 6 presents the verification and experimental

results. Section 7 discusses related work and concludes.

2 The SNZI Algorithms

A SNZI object behaves similarly to traditional shared

counter. It has one shared integer variable surplus and sup-

ports three operations: Arrive increments surplus by 1 when

a process enters; Depart decrements surplus by 1 when the

process leaves; the only difference from traditional coun-

ters is Query operation: it returns a boolean value indicating

whether the value of surplus is greater than 0. We assume

that each Arrive operation is always followed by a Depart
operation for the same process. Therefore surplus is always

greater or equal to 0. The pseudo code in Fig. 1 gives the

406

shared variable : Surplus : integer ; initially 0

bool Query() : return (Surplus > 0)

void Arrive() : Surplus ← Surplus + 1

void Depart() : Surplus ← Surplus − 1

Figure 1. SNZI specification

specification of a SNZI object.

In [5], the authors propose a rooted tree as the underlying

data structure of the SNZI objects implementation. An op-

eration on a child node may invoke operations on its parent.

An important invariant is used to guarantee the correctness:

the surplus of parent node is non-zero if and only if there

exists at least one child whose surplus is non-zero. Thus,

if the surplus of one node in the tree is non-zero, so does

the root. A process begins Arrive operation on any node

as long as the corresponding Depart will be invoked at the

same node, and Query operation is directly invoked on the

root. Every tree node has a counter X that is increased by

Arrive and decreased by Depart. Since the operations on

hierarchial nodes differ from those on root node, the algo-

rithms are separated for hierarchical nodes and root node.

The code for hierarchical SNZI nodes is shown in Fig 2.

An Arrive operation on a hierarchial node invokes Arrive
operation on its parent node when increasing X from 0 to

1. Otherwise, it completes without invoking any operation.

Moreover, a process which increases X from 0 to 1 should

firstly set X by an intermediate value 1
2 . Any process which

sees 1
2 must help that process to invoke parent.Arrive and

try to change X to 1. If a process succeeds in invoking par-
ent.Arrive but fails in setting X to 1, it will invoke a com-

pensating parent.Depart.
Similarly, a Depart operation on a hierarchial node only

invokes Depart on its parent node when decreasing X from

1 to 0. A version number is added to X to ensure that every

change of X will be detected in both Arrive and Depart op-

erations for hierarchial nodes as well as root node.

The code for root node is shown in Fig 3. In order to

reduce frequent accesses to X by Query, the solution for the

root node separates out an indicator bit I from X. Hence

every process can finish Query only by reading the bit I.

The authors model all accesses to I using Read, Write, Load
Linked and Store Conditional primitives to tolerate spurious

failures when external applications try to modify I.

I is set to true after a 0 to 1 transition of X, and it is

unset to false after a 1 to 0 transition of X. Furthermore, an

announce bit a is added to X to indicate that I needs to be

set. Similar to the intermediate value 1
2 , a process should

set a during a 0 to 1 transition and clean it after setting I
successfully. Any other process will also set I if it sees that

a is set. Once the indicator is set, it can safely clear a to

prevent unnecessary future writes to the indicator.

shared variables:

X = (c, v) : (N ∪ { 1
2
}, N); initially(0, 0)

parent: scalable indicator

Arrive
succ ← false
undoArr ← 0

while(¬succ)
x ← Read(X)
if x.c ≥ 1 then

if CAS(X, x, (x.c + 1, x.v)) then

succ ← true

if x.c = 0 then

if CAS(X, x, (1
2
, x.v + 1)) then

succ ← true

x ← (1
2
, x.v + 1)

if x.c = 1
2

then

parent.Arrive
if¬CAS(X, x, (1, x, v)) then

undoArr = undoArr + 1

while(undoArr > 0) do

parent.Depart
undoArr = undoArr − 1

Depart
while(true) do

x ← Read(X)
if CAS(X, x, (x.c − 1, x.v)) then

if x.c = 1 then parent.Depart
return

Figure 2. Code for hierarchical SNZI node

3 Linearizability

Linearizability [6] is a safety property of concurrent sys-

tems. It is formalized as follows.

In a shared memory model M, O = {o1, . . . , ok} de-

notes the set of k shared objects, P = {p1, . . . , pn} denotes

the set of n processes accessing the objects. Shared objects

support a set of operations, which are pairs of invocations

and matching responses. Every shared object has a set of

states that it could be in. A sequential specification of a

(deterministic) shared object is a function that maps every

pair of invocation and object state to a pair of response and

a new object state.

The behavior of M is defined as H, the set of all possi-

ble sequences of invocations and responses together with

the initial states of the objects. A history σ ∈ H in-

duces an irreflexive partial order <σ on operations such that

op1 <σ op2 if the response of op1 occurs in σ before the in-

vocation of op2. Operations in σ that are not related by <σ

are concurrent. σ is sequential iff <σ is a strict total or-

der. Let σ |i be the projection of σ on process pi, which is

the subsequence of σ consisting of all invocations and re-

407

shared variables:

X = (c, a, v) : (N, boolean, N); initially(0, false, 0)

I : boolean; initially false

Arrive
repeat

x ← Read(X)
if x.c = 0 then x′ ← (1, true, x.v + 1)

else x′ ← (x.c + 1, x.a, x.v)
until CAS(X, x, x′)
if x′.a then

Write(I, true)

CAS(X, x′, (x′.c, false, x′v))
Depart

repeat

1. x ← Read(X)
2. if CAS(X, x, (x.c − 1, false, x.v)) then

3. if x.c ≥ 2 then

4. repeat

5. LL(I)
6. if Read(X).v �= x.v then return

7. if SC(I, false) then return

Query
return Read(I)

Figure 3. Code for SNZI root node

sponses that are performed by pi. Let σ|oi be the projection

of σ on object oi, which consists of all invocations and re-

sponses of operations that are performed on object oi.

A sequential history σ is legal if it respects the semantics

of the objects as expressed in their sequential specifications.

More specifically, for each object oi, if sj is the state of oi

before the j-th operation opj in σ|oi , then the invocation and

response of opj and the resulting new state sj+1 of oi fol-

low the sequential specification of oi. Given a history σ,

a sequential permutation π of σ is a sequential history in

which the set of operations as well as the initial states of

the objects are the same as in σ. The formal definition of

linearizability is given as follows.

Linearizability There exists a sequential permutation π of

σ such that 1) for each object oi, π |oi is a legal sequential

history (i.e. π respects the sequential specification of the

objects), and 2) if op1 <σ op2, then op1 <π op2 (i.e., π
respects the real-time ordering of operations).

In every history σ, if we assign increasing time values to

all invocations and responses, then every operation can be

shrunk to a single time point between its invocation and

response such that the operation appears to be completed

instantaneously at this time point [3]. This time point for

each operation is called its linearization point. Lineariz-

ability is defined in terms of the invocations and responses

of high-level operations, which are implemented by algo-

rithms on concrete shared data structures in real programs.

Therefore, the execution of high-level operations may have

complicated interleaving of low-level actions. Linearizabil-

ity of a concrete concurrent algorithm requires that, despite

of complicated low-level interleaving, the history of high-

level interface events still has a sequential permutation that

respects both the real-time ordering among operations and

the sequential specification of the objects. This idea is for-

mally presented in Section 4 using refinement relations.

4 Verification via Refinement Checking

We model concurrent systems using a process algebra,

whose behavior is described using a labeled transition sys-

tem. Linearizability is then defined as a refinement relation

from an implementation model to a specification model.

4.1 Modeling Language

We introduce the relevant subset of syntax of CSP (Com-

municating Sequential Processes) [7] extended with shared

variables. We choose this language because of its rich set of

operators for concurrent communications.

Process A process P is defined using the grammar:

P ::= Stop | Skip | e{program} → P | P \ X | P1; P2

| P1 � P2 | if (b) {P1} else {P2} | P1 ||| P2

where P, P1, P2 are processes, e is a name representing an

event with an optional sequential program program, X is a

set of events, and b is a Boolean expression.

Stop is the process that communicates nothing, also called

deadlock. Skip = � → Stop, where � is the termination

event. Event prefixing e → P performs e and afterwards

behaves as process P. If e is attached with a sequential

program, the valuation of the shared variables is updated

accordingly. For simplicity, assignments are restricted to

update only shared variables. Process P\X hides all occur-

rences of events in X. An event is invisible iff it is explicitly

hidden by the hiding operator P \ X. Sequential composi-

tion, P1; P2, behaves as P1 until its termination and then

behaves as P2. External choice P1 � P2 is solved only

by the occurrence of an visible event. Conditional choice

if (b) {P1} else {P2} behaves as P1 if the Boolean expres-

sion b evaluates to true, and behaves as P2 otherwise. In-

dexed interleaving P1 ||| P2 runs all processes indepen-

dently except for communication through shared variables.

Processes may be recursively defined, and may have para-

meters (see examples later). The formal syntax and seman-

tics of our language is presented in [11].

408

To model nonblocking algorithms, our language
provides strong support for synchronization primi-
tives, such as compare − and − swap (CAS) and
load − linked (LL)/store − conditional (SC), which are
elaborated as follows.

CAS1 The operational semantics of conditional choice
requires that the condition evaluation and the first event to
be executed of true/false branch be finished in one atomic
step. Hence CAS primitive can be directly modeled using
conditional choices.

/ ∗ The pseudo code of CAS semantics ∗ /

bool CAS(ref addr, val exp, val new) :

atomically {
if (∗addr = exp) {∗addr := new; }
else { }

}
/ ∗ The CSP representation of CAS ∗ /

if (∗addr == old) {τ{∗addr = new; } → Skip}
else {Skip}

LL/SC2 In our model, a shared counter counter is added
to indicate the timestamp when the content of a memory
location X is modified and a counter flag is associated with
each process. When LL is executed by one of the processes,
the content of X is read and the value of counter is stored
in the counter flag. If an external event updates X or the
process executes an operation that may invalidate an atomic
sequence (e.g., an exception), then counter is increased by
1. When the corresponding SC is executed, the counter flag
is checked. If the flag is equal to counter, then SC will be
successfully executed. Otherwise, nothing can be done.

/ ∗ flag[i] denotes the counter flag of process i ∗ /

LL(i) = τ{READ X; flags[i] = counter; } → Skip;

SC(i, v) = if (flags[i] == counter)
{τ{X = v; counter++; } → Skip}
else Skip;

Update(v) = τ{UPDATE X; counter++; } → Skip;

The semantics of a model is defined using a labeled transi-

tion system (LTS). Let Σ denote the set of all visible events

and τ denote the set of all invisible events. Let Σ∗ be the

set of finite traces. Let Στ be Σ ∪ τ . A LTS is a 3-tuple

L = (S, init, T) where S is a set of states, init ∈ S is the

initial state, and T ⊆ S × Στ × S is a labeled transition

relation. Let s, s′ be states in S and e ∈ Στ , we write

s e→ s′ to denote (s, e, s′) ∈ T . We write s
e1,e2,··· ,en→ s′

iff there exists s1, · · · , sn+1 ∈ S such that si
ei→ si+1 for

all 1 ≤ i ≤ n, s1 = s and sn+1 = s′. Let tr : Σ∗

1CAS atomically compares the content of a memory location to an ex-

pected value, and if they are the same, the content of that memory location

is assigned to the new given value.
2LL/SC are a pair of instructions. LL first reads the current content

from a memory location X. A subsequent SC stores a new value to X only

if no updates have happened in between LL and SC; otherwise, it fails.

be a sequence of visible events. s tr⇒ s′ iff there exists

e1, e2, · · · , en ∈ Στ such that s
e1,e2,··· ,en→ s′. The set of

traces of L is traces(L) = {tr : Σ∗ | ∃ s′ ∈ S, init tr⇒ s′}. In

this paper, we consider only LTSs with a finite number of

states. In particular, we bound the sizes of variable domains

by constants, which also bounds the depths of recursions.

Theorem 1 (Refinement). Let Lim = (Sim, initim, Tim) be a
LTS for an implementation. Let Lsp = (Ssp, initsp, Tsp) be a
LTS for a specification. Lim refines Lsp, written as Lim �T
Lsp, iff traces(Lim) ⊆ traces(Lsp).

4.2 Linearizability

This section briefly shows how to create high-level lin-

earizable specifications and how to use refinement relation

to define linearizability of concurrent implementations.

We define the linearizable specification LTS Lsp =
(Ssp, initsp, Tsp)for a shared object o in the following way.

Every execution of an operation of o on a process includes

three atomic steps: the invocation action, the linearization

action, and the matching response action. The linearization

action performs the computation based on the sequential

specification of the object. All the invocation and response

actions are visible events, while the linearization ones are

invisible events. Their complete specification and transition

rules in LTS is formally presented in [8]. We now consider

a LTS Lim = (Sim, initim, Tim) that supposedly implements

object o. Theorem 2 characterizes linearizability of the im-

plementation through refinement relations.

Theorem 2. Traces of Lim are linearizable iff Lim �T Lsp.

The proof of theorem 2 is given in [8]. The theorem

shows that to verify linearizability of an implementation,

it is necessary and sufficient to show that the implemen-

tation LTS is a refinement of the specification LTS as we

defined above. This provides the theoretical foundation of

our verification of linearizability. Notice that the verifica-

tion by refinement given above does not require identify-

ing low-level actions in the implementation as linearization

points, which is the difficult (and sometimes even impos-

sible) task. In fact, the verification can be automatically

carried out without any special knowledge about the imple-

mentation beyond knowing the implementation code.

5 SNZI Model

In order to prove that SNZI algorithm is a linearizable

implementation , we model its specification and implemen-

tation in extended CSP, and then verify that the implemen-

tation refines the specification.

Fig. 4 shows the abstract specification model with P
processes. Process ArriveA and DepartA consist of invoca-

tion event, linearization event τ and response event. Process

409

ArriveA(i) = arrive inv.i → τ{surplus++; }
→ arrive res.i → Skip;

DepartA(i) = depart inv.i → τ{surplus--; }
→ depart res.i → Skip;

QueryA() = query.(surplus > 0) → QueryA();

ProcessA(i) = ArriveA(i); DepartA(i); ProcessA(i)
SNZIA() = (||| x : {0..P − 1}@ProcessA(x))\{τ}

||| QueryA();

Figure 4. Abstract specification model

ArriveI(p, n) = arrive inv.p →
if (n == 0) ArriveR(p) else Arrive(p, n);

arrive res.p → Skip;

DepartI(p, n) = depart inv.p →
if (n == 0) DepartR(p) else Depart(p, n);

depart res.p → Skip;

Process(i) = � x : {0..N − 1}@

(ArriveI(i, x); DepartI(i, x));
Query() = query.I → Query();
SNZI() = (||| x : {0..P − 1}@Process(x))\{τ}

||| Query();

Figure 5. Concrete implementation model

QueryA recursively reads whether surplus is greater than

zero or not. ProcessA models the behavior of a process,

i.e., repeatedly performs an ArriveA followed by a DepartA.

SNZIA3 interleaves all ProcessAs and QueryA and hides the

τ events (i.e., the linearization events).

The basic structure of the implementation (the details

of Arrive and Depart operations are skipped) is showed in

Fig. 5. To initialize the rooted tree in the implementation,

a size N array named node is created to store SNZI objects.

The root is node[0], and for 0 < i < N, the parent of node[i]
is node� i−1

2 �. Since P processes may visit the same node

concurrently, an N × P array is introduced to store the lo-

cal variables within an operation of P processes visiting N
nodes. The full implementation model can be found in the

built-in examples of PAT [12] (http://pat.comp.nus.edu.sg).

A process could visit any node at any time, i.e., which

node a process chooses to visit is decided by external en-

vironment. Thus, external choice � is used to represent a

process visiting a node randomly. ArriveI(p,n) represents

the process p arriving at the node n. If n = 0 (the visit-

ing node is the root), then it starts process ArriveR which

captures how a process enters the root. Otherwise, it starts

process Arrive which captures how a process arrives a hier-

archical node. So does DepartI. Due to space constraints,

we show the resulting code only for Depart operation at the

3||| x : {1..N}@P(x) is same as P(1) ||| .. ||| P(N), similarly for �.

1. DepartR(p) =

2. τ{c[p] = C[0]; a[p] = A; v[p] = V[0]; } →
3. if (c[p] == C[0] && a[p] == A && v[p] == V[0]){
4. τ{C[0] = c[p] − 1; A = false; V[0] = v[p]; } →
5. if (c[p] > 1){τ → Skip}
6. else{τ → DepartLoop(p)}
7. }else{τ → DepartR(p)};
8. DepartLoop(p) = τ{counts[p] = count; } →
9. if (v[p] != V[0]) {τ → Skip}
10. else{
11. if (counts[p] != count){τ → DepartLoop(p)}
12. else{τ{I = false; count++; } → Skip}
13. };

Figure 6. Depart operation on root node

root in Fig. 6. The original algorithm of Depart includes

two-fold loop statements. Each loop is modeled as a recur-

sively defined process. DepartR process models the outer

loop, while DepartLoop models the inner loop. The origi-

nal X and x are both structured variables composed of three

simple variables (represented respectively by (C, A, V) and

(c, a, v)). An atomic and invisible event τ containing the as-

signment statements of c, a and v represents the assignment

of x on line 2. Similar is X on line 4. For line 5, 6 and 7, an-

other τ is added between if/else condition and the first event

of true/false branch to prevent them from executing in one

atomic step. DepartLoop contains a pair of LL/SC prim-

itives. The value of counter is recorded when performing

LL (line 8). Then when the process attempts SC, it checks

whether the recorded value is same as the current value of

counter (line 11). If they are not equal, DepartLoop is re-

peatedly invoked (line 11). Otherwise, the process assigns

false to I and then performs Skip event to return control to

the invoking process (line 12).

6 Verification and Experimental Result

Based on Theorem 2, automatic refinement checking

allows us to verify the linearizability of SNZI algorithm.

PAT [10] supports different notions of refinements based

on different semantics. A refinement checking algorithm

(inspired by the one implemented in FDR [9] but extended

with partial order reduction) is used to perform refinement

checking on-the-fly. The key idea is to establish a (weak)

simulation relationship from the specification to the imple-

mentation. We remark that FDR does not support shared

variables/arrays, and therefore, is not easily applicable. An-

other candidate tool is the SPIN model checker, which sup-

ports verification of LTL properties. Nonetheless, formal-

ization linearizability as LTL formulae results in large LTL

formulae and thus not feasible for verification.

410

We have experimented SNZI on PAT for different num-

ber of processes and tree nodes. The table below summa-

rizes the results, where ‘-’ means infeasible, and ‘POR’

means partial order reduction. The testbed is a PC with

2.83GHz Intel Q9550 CPU and 4 GB memory.

Setting Result without POR Result with POR
#Proc #Node Time(sec) #States Time(sec) #States

2 2 23.3 28163 17.1 23828

2 3 73.6 62753 41.4 52779

2 4 393 376342 157 173694

2 5 1298 712857 322 341845

2 6 - - 496 485156

3 2 - - 6214 8451568

The number of states and running time increase rapidly

with data size, and especially the number of processes.

This conform to theoretical results [1]: model checking lin-

earizability is in EXPSPACE. We have employed several

optimization techniques to improve scalability. First, we

use partial order reduction to effectively reduce the search

space and running time. Second, we manually combined

sequences of local actions into atomic blocks, such as orga-

nizing consecutive events which only cope with local vari-

ables into one single τ event. Third, we specified every op-

eration using a minimum number of processes, in order not

to generate multiple equivalent states as different parame-

terized processes containing the same events. Overall, our

approach is effective to handle big models like SNZI.

7 Related Work and Conclusion

The idea of refinement has been explored by Alur, el

al. [1] to show that linearizability can be cast as containment

of two regular languages. Our definition of linearizability

on refinement is more general, regardless of the modeling

language and knowledge of linearization points.

Formal verification of linearizability is a much studied

research area. There are various approaches in the literature.

Verification using theorem provers is another approach [4],

where algorithms are proved to be linearizable by using

simulation between input/output automata modeling the be-

havior of an abstract set and the implementation. However,

theorem prover based approach is not automatic. Conver-

sion to IO automata and use of PVS require strong exper-

tise. Wang and Stoller [14] present a static analysis that

verifies linearizability for an unbounded number of threads.

Their approach detects certain coding patterns, hence is not

complete (i.e., not applicable to SNZI algorithm). Amit et

al. [2] presented a shape difference abstraction that tracks

the difference between two heaps. The main limitation

of this approach is that users need to provide linearization

points, which is generally unknown. A buggy design may

have no linearization points at all. In [13], Vechev and Ya-

hav provided two methods for linearizability checking. One

method requires user annotations for linearization points.

The other is fully automatic but inefficient (The worse case

time is exponential in the length of the history). As a result,

the number of operations they can check is only 2 or 3. In

contrast, our approach handles all possible interleaving of

operations given sizes of the shared objects.

In this work, we expressed linearizability using refine-

ment relation. By using this definition, we have success-

fully verified the SNZI algorithms for the first time. We

have shown that the refinement checking algorithm behind

PAT allows us to successfully verify complicated concurrent

algorithms without the knowledge of linearization points.

During the analysis, we have faced the infamous state ex-

plosion problem. In future, we will explore how to combine

different state space reduction techniques and parameter-

ized refinement checking for infinite number of processes.

References

[1] R. Alur, K. Mcmillan, and D. Peled. Model-checking of

correctness conditions for concurrent objects. In LICS 96,

pages 219–228. IEEE, 1996.
[2] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav.

Comparison under abstraction for verifying linearizability.

In CAV 07, pages 477–490. Springer, 2007.
[3] H. Attiya and J. Welch. Distributed Computing: Fundamen-

tals, Simulations, and Advanced Topics. John Wiley & Sons,

Inc., Publication, 2nd edition, 2004.
[4] S. Doherty, L. Groves, V. Luchangco, and M. Moir. For-

mal verification of a practical lock-free queue algorithm. In

FORTE 04, pages 97–114. Springer, 2004.
[5] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable

NonZero Indicators. In PODC 07, pages 13–22, 2007.
[6] M. Herlihy and J. M. Wing. Linearizability: A correct-

ness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, 1990.

[7] C. A. R. Hoare. Communicating Sequential Processes. In-

ternational Series in Computer Science. Prentice-Hall, 1985.
[8] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model Check-

ing Linearizability via Refinement. Technical Report

MSR-TR-2009-29, Microsoft Research Asia, March 2009.

http://research.microsoft.com/apps/pubs/?id=79938.
[9] A. W. Roscoe. The Theory and Practice of Concurrency.

Prentice-Hall, 1997.
[10] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revis-

ited: Introducing a Process Analysis Toolkit. In ISoLA 08,

pages 307–322. Springer, 2008.
[11] J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating Spec-

ification and Programs for System Modeling and Verifica-

tion. In TASE 09, 2009. (To appear).
[12] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flex-

ible Verification under Fairness. In CAV 09, 2009. (To ap-

pear).
[13] M. Vechev and E. Yahav. Deriving linearizable fine-grained

concurrent objects. In PLDI 08, pages 125–135, 2008.
[14] L. Wang and S. Stoller. Static analysis of atomicity for pro-

grams with non-blocking synchronization. In PPoPP 05,

pages 61–71. ACM Press New York, NY, USA, 2005.

411

Detecting Defects with an Interactive Code Review Tool Based on Visualisation
and Machine Learning

Stefan Axelsson
Blekinge Institute of Technology

stefan.axelsson@bth.se

Dejan Baca
dejan.baca@bth.se

Robert Feldt
robert.feldt@bth.se

Darius Sidlauskas
dsidlauskas@gmail.com

Denis Kacan
denis.kacan@gmail.com

Abstract

Code review is often suggested as a means of improv-
ing code quality. Since humans are poor at repetitive tasks,
some form of tool support is valuable. To that end we de-
veloped a prototype tool to illustrate the novel idea of ap-
plying machine learning (based on Normalised Compres-
sion Distance) to the problem of static analysis of source
code. Since this tool learns by example, it is trivially pro-
grammer adaptable. As machine learning algorithms are
notoriously difficult to understand operationally (they are
opaque) we applied information visualisation to the results
of the learner. In order to validate the approach we applied
the prototype to source code from the open-source project
Samba and from an industrial, telecom software system.
Our results showed that the tool did indeed correctly find
and classify problematic sections of code based on training
examples.

1. Introduction

An important part of ensuring code quality is code re-

view [11]. Code review, which in effect is a form of manual

static analysis of the code, is important especially when it

comes to finding code that hides problems that are more

difficult to find using some form of dynamic analysis, for

example relating to non-functional requirements such as se-

curity. However, code review is problematic in that human

operators are especially fallible when faced with a repetitive

monotonous task, such as going through reams and reams of

source code [12]. Some form of automatic static code anal-

ysis is then suggested. Static analysis have many inherent

advantages; it can be applied early in the development pro-

cess to provide early fault detection, the code does not have

to be fully functional, or even runnable and test cases do not

have to be developed.

To support manual code review we have developed a

prototype tool—called The Code Distance Visualiser—to

help the operator find problematic sections of code. The

prototype is based on the novel idea of applying a ma-

chine learning technique, using Normalised Compression

Distance (NCD) calculations, to provide the operator with

an interactive, supervised self learning static analysis tool.

This also makes the tool trivially programmer adaptable,

that is, the tool will adapt to the task at hand as a conse-

quence of the applied training. This is important in that

traditional tools that are programmer adaptable (such as

Coverity [8]) seldom are applied in that capacity [7].

Another advantage of machine learning is its capacity for

generalising from a set of examples. Correctly applied ma-

chine learning has the capacity to surprise the operator by

producing results that were previously unanticipated, while

still being relevant and correct. However, machine learners

are notoriously difficult to understand operationally, that is,

they are opaque; it is difficult to understand when they are

operating optimally and why they produce the results they

do. To combat this problem we have applied information

visualisation to the learner.

In the remainder, section 2 present related work, while

sections 3 and 4 present Normalized Compression Distance

and how we parse and represent the source code in order to

apply it. In section 5 our tool and its visualisation capability

are presented briefly. Section 6 present the experiments we

have conducted with the tool and the results we have ob-

tained. In section 7 we discuss the results. Finally, section

8 points to future work and concludes.

2. Related work

The previous work that is closest overall to the work pre-

sented here is probably that of Brun and Ernst [3]. They

implemented a tool that is trained using machine learning

techniques to identify program properties which indicate

412

errors. There are two primary differences between our ap-

proach and their work. First, they use dynamic analysis to

extract semantic properties of the program’s computation,

whereas we use static analysis. Second, their tool uses a

classical batch-learning approach, in which a fixed quantity

of manually labelled training data is collected at the start of

the learning process. In contrast, the focus of our work is

on incremental learning by (potentially a series of) manual

user interactions.

Statistical machine learning techniques (Markov mod-

elling, bootstrapping) were successfully applied on classify-

ing the program’s behaviour by Bowring, et. al. [2]. There

the classifier was trained incrementally to map execution

statistics such as branch profiles to a label of program be-

haviour such as pass or fail.
So far we have not found any static code analyser proper

similar to ours. The one most related is probably the one

by Kremenek, et. al. [14], where a feedback rank scheme

is used. Correlation among reports (errors reported by anal-

yser) is represented in a probabilistic model Bayesian net-

work. Then network is trained during interactive inspection

of reports and probabilities for uninspected reports are re-

calculated. This approach primarily attacks the false posi-

tives problem in static code analysis and learning techniques

are applied just to perform error ranking. In comparison, we

use machine learning explicitly for finding errors and apply

it directly to static analysis.

The successful applications of normalised information

distance to various problem domains are too numerous to

detail here , but it has been previously proposed for software

quality-related tasks [9]. However, probably the closest ap-

plication of normalised information distance to the one pro-

posed here is in plagiarism detection within student pro-

gramming assignments. The Software Integrity Diagnosis
(SID) system [5] uses a variant of the normalized informa-

tion distance (NID) to measure the similarity between two

source code files. The plagiarism detector parses the source

code much as our approach does. However, the SID system

does not provide any interactivity for the user. The process

also acts as a black box. This is not surprising, as the aims

of their technique and ours are completely different. Indeed,

keeping the analysis opaque might be done on purpose to

avoid exposing inner system’s state to the cheaters.

3. Normalised Compression Distance (NCD)

The problem is one of supervised machine learning, i.e.

the operator will select sections of code to train the ma-

chine learner with. Of the several available algorithms we

have chosen to base our machine learner on a fairly recent

algorithm that computes distances between arbitrary data

vectors: Normalised Compression Distance (NCD) [6] as it

is generally applicable [10], parameter free [13], noise re-

sistant [4] and demonstrated theoretically optimal [17]. The

NCD is an approximation to the uncomputable Normalised
Information Distance, that is based on the notion of Kol-

mogorov Complexity.

NCD is based on the idea that by using a compression

algorithm on data vectors (in whatever shape or form these

may be) both individually and together, we will receive a

measure of how distant they are. The better the combi-

nation of the two vectors compress, compared to how the

individual vectors compress on their own (normalised to re-

move differences in length between the set of all vectors),

the more similar they are. More formally, NCD is a metric:

NCD(x, y) =
C(x, y) − min(C(x), C(y))

max(C(x), C(y))

where C(x) is the compressed length of x and C(x, y) the

compressed length of x concatenated with y.

In order to apply this metric as a supervised learner one

selects features of the input data to train on and then cal-

culates the distances from instances in the two (or more)

sets of the selected features. Our tool contains two possi-

ble training sets; one bad containing undesirable features,

and one good containing desirable features. The tool then

calculates distance from all bad and all good features and

presents the results to the operator. The classification is by

the closest example in either set, e.g. a code feature that is

closest in distance to one particular instance in the bad set is

classified as bad, and vice versa, i.e. the machine learning

algorithm proper is k-nearest-neighbour with k = 1.

4. Parsing

The machine learning algorithm could not be success-

fully applied to the source code as is, as usual, feature vec-

tors had to be selected [15]. We run the code under study

through a parser to produce our features. In the prototype

we have chosen the C-language, as parsers (and code with

which to validate our approach) are readily available. How-

ever, besides the particulars of parsing and feature selection

we see no reason that our approach would not be applicable

to other languages, even those dissimilar to C. For the pro-

totype we have chosen the freely available parser Sparse.1

The task of how to do feature selection of source code is

not at all well studied. Based on our—admittedly limited—

experience we have chosen to first parse the code and then

emit an adapted textual representation of the source code

that is fed back to the machine learning step. Based on our

experiences we’ve chosen the following strategies for pars-

ing and presenting the source code.

In order to make the source code amenable to ma-

chine learning, all whitespace and a few other “unin-

teresting” reserved words (such as semi colons, angle

1http://www.kernel.org/pub/software/devel/sparse/

413

brackets etc.) are removed. A stickier problem with

a textual representation, stemming from dealing with

a machine learner that can’t differentiate between dif-

ferent data types, is that longer strings will fool the

learner into thinking they carry more information com-

pared to shorter strings. That means that for example

the_very_long_identifier_that_never_ends, e.g. used as a

variable in the source code, will carry relatively more

weight than a shorter identifier, say foo. The same is true

of reserved words. In order to alleviate this problem the

parser can be set to exchange all variable names with a two

character abbreviation (the same two character substitution

is maintained for the same variable as far as is possible).

A third problem, opposite of the previous, is that certain

C operators are too short and too similar to each other to

be distinct enough in a pure textual representation. Exam-

ples are == and =, which are known from experience to be

difficult to tell apart. In order to remedy this problem these

operators are exchanged with unique textual representations

that are longer and more different from each other to give

the machine learner more to latch on to.

Since our chosen algorithm does not naturally handle se-

quences of varying length we have to address the unit-of-

analysis problem. One approach is to slide a window of a

certain length over the features under study, but this tends

towards a combinatorial explosion that we can ill afford,

and it also performed poorly in preliminary tests with short

but reasonable window sizes. Instead we have chosen to im-

plement a varying level of detail that the user can choose;

the statement (basically a line of source code) and basic

block level (code between curly braces). The basic block

can contain a while/if etc. statement introducing the block.

5. The Code Distance Visualizer

We will now describe how the preceeding pieces were

put together to form a tool that enables a user to select sec-

tions of source code to train the detector on and view the

results of the training on source code (classifying). As de-

scribed in the previous section, the naive NCD classifica-

tion classifies code fragments into faulty or correct. How-

ever, when a training process is being presented as a black
box, it is difficult to ascertain how the classifier is being

trained. In order to be able to judge the quality of the out-

put, the training process has to be transparent. Once the

user has visual access to the internal state of the classifier,

she can more precisely understand what the learner is ac-

tually learning and then interactively guide it by marking

additional code fragments on screen as faulty or correct.

Afterwards, all code fragments must be classified and vi-

sually marked. Unfortunately a lack of space precludes us

from going into more detail on how this is done more ex-

actly, save to say that the selected code fragments are heat-

mapped [16] whereby the code fragment is coloured from

red via yellow to green. The spectrum of colour depends on

the NCD value of a particular code fragment and whether

it is more likely to be faulty (red colour) or correct (green

colour). This approach is inspired by that of Axelsson [1].

In order to present the ideas implemented in the proto-

type we present the user interface in figure 1.It can be di-

vided into a few major parts: the original source view, the

adapted source view, the list of training instances, the rank-

ing view and the code fragment information view.

Figure 1. The main window of the prototype,
no training.

A code fragment can be composed of structures such as

a code block, individual statements, expressions, and mix-

ture of the above. The user has a wide range of choices

available for selecting code fragments of various lengths.

For instance, in figure 1 one can see how the correspond-

ing individual statements are selected in both original (if
(integer = 5)) and adapted views (IF(qe:::1)).

After having trained the analyser on a particular code

fragment the user may call up a list of the top ranked

faulty or correct code fragments as classified by the ma-

chine learner. The user has a choice of which types of code

fragments (individual statements, code blocks and expres-

sion blocks) that will be ranked.

The status of each code fragment depends on the dis-

tance to the closest training instance. Thus, in order to un-

derstand why a particular code fragment was classified as

being faulty or correct, the user has to see how it is related

to all the training instances.

The tool is available under the GPL on sourceforge.

414

Figure 2. The ranking view with the top seven
faulty individual statements.

6. Experimental Validation

A serious problem for researchers wishing to experiment

with software validation techniques is the problem of locat-

ing suitable experimental samples. We even need multiple

versions of the same software (erroneous and error-free).

Obtaining such samples is nontrivial. To empirically evalu-

ate the proposed technique, we applied our prototype to ex-

perimental samples from two real-world sources. Our goal

for the experiments with our prototype was to obtain infor-

mation about the effectiveness of the proposed technique for

fault detection. The question of how effective the visualisa-

tion approach was in conveying information to the users that

she would otherwise not have, will be left for further study.

We analysed a number of open source projects and chose

the open source project Samba, at the time stable release

Samba 3.0.28a, as that had the most accessible defect

database. In addition a closed source commercial telecom-

munications software was selected. Both are server soft-

ware that are written in the C language and each is in the

million lines of source code range. For each project a sub-

set of the source code was selected and analysedApproxi-

mately 20000 lines of code was used during the analysis,

13000 from Samba and 7000 from the commercial product.

The commercial product handles large quantities of network

data and performs extensive computation on that data. Due

to corporate policy the product must unfortunately remain

unnamed, as must the company. The decision of which

freely available project to include was not rigorous in the

sense that we made our choice depending on first impres-

sions, thus other software may also be suitable. The telecom

software was chosen because we already had access to and

are very familiar with it. By using software from two dif-

ferent domains we aim to improve the general applicability

of the results of the experiments.

The experiment was set up as a proof of principle; we ap-

plied the Code Distance Visualiser on code fragments that

were analysed in advance, fragments where we knew what

the answer already should be. We thus trawled the Samba

bug database for defect data. When good experimental data

was available, the prototype was trained by feeding it some

known faulty code fragments and their corrected versions.

We then checked whether the prototype correctly identified

the remaining faults. Since an interactive tool with feed-

back was tested, several possible strategies for (re)training

presented themselves. From our experience, a good strategy

was to start training the prototype with one faulty code frag-

ment and its corrected version, as it then learned the precise

differences between faulty and correct code. We call this

two-instance training initial training as it was the first train-

ing performed in the experiments. Also the ranking fea-

ture was used to improve the analysis process. For exam-

ple, in Samba’s code (tagged as SAMBA-3-0-RELEASE)

a memory leak bug was removed in nine places (revision

21755 of file net_rpc.c). Thus, we retrieved this and

previous revisions, trained the prototype with one of the

faulty code blocks and its corrected version (with the mem-

ory leak removed). Then we used the ranking feature to see

the top nine (as we knew there were nine) faulty code blocks

and checked whether all the remaining memory leaks were

present among them. If some of them were missing, be-

cause of some false positives being present in the top rank-

ing, we continued the training. Additional training involved

marking the false positive at the highest position in the

ranked list as correct. Usually this made the top ranked and

similar false positives disappear from the ranking, freeing

up their positions for other code fragments. From the two

products that were examined, four distinctly different types

of code defects were identified and used during the investi-

gation. They were:

String overflows Defects where during various string op-

erations a target char array overflowed. These defects

very often lead to a security vulnerability. The most

common string overflow is created by using insecure

library functions such as strcpy(). An often used

solution is to perform input validation or using a more

secure function (such asstrncpy()).

Null pointer references These are defects were a pointer

that might be NULL were used without prior checking.

These defects result in segmentation faults or other un-

415

predictable behaviours. The main cause is lack of error

checking or using already freed memory pointers.

Memory leaks These result from dynamically allocated

memory that is not freed. Dynamically allocated mem-

ory needs to be de-allocated before its pointers goes

out of scope. These defects are often introduced by

carelessness but can also arise from special cases when

the program returns unexpectedly from a function.

Incorrect API usage A fault that stems from libraries and

functions that are used correctly on the face of it but do

not perform the task the programmer intended. These

coding defects often occur many times in the code and

a simple textual search could detect them, but instances

of correct usage would drown the true positives in the

search results.

Since we chose to investigate the same types of flaws in

both products we will present the aggregated results. Where

the discussion refers to only one code base that will be

noted. Table 1 summarise the data from the investigation.

The first column states what fault type is examined. The

total column shows how many known faults of that type ex-

ist in the data. The CI are correctly identified faults while

FN are false negatives; faults that were not detected by the

tool. Correctly identified and false negative faults are shown

in two separate columns, after initial training and after ad-

ditional training as described in the previous section. The

improvement column lists the relative improvement in de-

tection rate the tool displayed after additional training com-

pared to the initial training.

Name Total Init Train Addtl Imprvmnt

CI FN CI FN

Str ovfl 8 4 4 8 0 100

Null p ref 44 22 22 29 15 24

Mem-leak 12 7 5 9 3 22

Inc API 14 9 5 14 0 55

Table 1. Experimental results

The string overflows are string copy operations that in

some cases also create a security vulnerability. The known

string overflow bugs had been reported by both testers and

the static code analyser, Coverity Prevent.2

All the Null pointer reference bugs were originally re-

ported from a static code analyser, either KlocWork3 or

Coverity. While they had a bug report none was from a

tester that had experienced a crash (this relates to both tested

products). These defects often propagate and turn up later

during execution as a segmentations fault and are difficult

for the tester to ascribe a particular section of code.

2http://www.coverity.com
3http://www.klocwork.com/

There were two types of memory leaks of different com-

plexity in the projects. The simpler memory leaks were in-

stances were the programmer forgot to free or in this case

call shutdown to free allocated memory.

The incorrect API usage involved four com-

mits with fixes. It was a correction to the caller

unistr2_to_ascii, as the maxlen parameter should

be set to the size of the destination, not to the size of

the source string. The entire procedure took less than 10

minutes.

7. Discussion

Our results show that the tool can be used to effectively

detect security defects in real-world source code. Even the

initial training on a single faulty and correct example lead

to the correct identification of 53.8% of the 78 identified de-

fects. More extensive training, utilising the ranking feature

of our tool, lead to the correct identification of 76.9% of

the total number of defects. Detected defects are not sim-

ple in the way that a traditional find search in the source

code would easily identify the patterns in the defects. For

example, in the incorrect API case, 216 different instances

of the API call was present but only in 14 of them is the

API used incorrectly. With our tool all 14 of these defects

were detected in only 10 minutes and there were no false

negatives.

We focused on following a consistent training strategy

for our results to be comparable across faults and projects

studied. We found that keeping a balance between the ex-

amples of faulty and correct instances worked best. This

relates to the machine learning concept of overfitting where

the learner might pick up on some very specific feature and

become over trained in one category.

The choice of unit-of-analysis (how large a code frag-

ment we train on) affects the size and scope of the defects

we can detect. Defects that depend on an interplay of de-

pendent parts of the code might be hard to detect unless its

individual parts are unique enough that they can be detected

in isolation. But at the same time, isolated defects with-

out the surrounding code do not present enough unique data

to be detected, as was shown by the NULL pointer refer-

ences defects. We could possibly find alternative ways to

extract features that could extend the reach of our proposed

method.

While we have not formally verified the usability of the

prototype, it has had two users who were not part of the

development of the tool. They both spontaneously reported

that the visualisation and interactivity were both worthwhile

additions and made working with the automatic classifier

more pleasant and less opaque, even though there is still

room for improvement in that respect.

416

8. Conclusion and Future work

We have only really scratched the surface of the possi-

bilities of this technique. Obvious future work includes:

study of how to extract features useful for machine learning

from a static representation of source code, as the present

approach is rather naive and no real extraction of semantic

features takes place, investigating the applicability of differ-

ent machine learning algorithms to static analysis, investi-

gating the effect the visualisation has on the usability of the

tool, to name just a few.

Moving further from the area of static analysis; by mod-

ifying the approach we have presented here, the approach

could possibly be applied at even earlier stages of software

development projects. Potentially it could be used on de-

sign, requirements or specification documents to highlight

decisions that might lead to security or other software qual-

ity challenges.

In conclusion: We have developed a prototype tool that

applies the novel idea of machine learning to aid in code re-

view. The tool uses information visualisation techniques to

try to alleviate the problem of machine learning techniques

being opaque to the user, i.e. it is difficult to ascertain why

they perform a particular classification in the manner they

do. While much work still remains to be done in this do-

main, initial results were promising. When we applied the

prototype to two different code bases, the tool successfully

managed to identify problematic sections based on the ex-

amples given, without producing too many false alarms.

Furthermore, during the experiment the tool managed to

generalise from the example of the faulty strcpy opera-

tion so that it detected that a similar strcat fault was also

erroneous. The ability to generalise from given examples

are a prime reason to apply machine learning to a problem.

The tool also managed to identify a situation where features

were missing from the code, which is an important class of

faults.

References

[1] S. Axelsson. Combining a bayesian classifier with visual-

isation: Understanding the IDS. In C. Brodley, P. Chan,

R. Lippman, and B. Yurcik, editors, Proceedings of the 2004
ACM workshop on Visualization and data mining for com-
puter security (VizSec’04), pages 99–108, Washington DC,

USA, 29 Oct. 2004. ACM Press. Held in conjunction with

the Eleventh ACM Conference on Computer and Communi-

cations Security.

[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning

for automatic classification of software behavior. SIGSOFT
Softw. Eng. Notes, 29(4):195–205, 2004.

[3] Y. Brun and M. D. Ernst. Finding latent code errors via ma-

chine learning over program executions. In ICSE’04, Pro-
ceedings of the 26th International Conference on Software

Engineering, pages 480–490, Edinburgh, Scotland, May 26–

28, 2004.
[4] M. Cebrian, M. Alfonseca, and A. Ortega. The normalized

compression distance is resistant to noise. Information The-
ory, IEEE Transactions on, 53(5):1895–1900, May 2007.

[5] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker.

Shared information and program plagiarism detection. In-
formation Theory, IEEE Transactions on, 50(7):1545–1551,

July 2004.
[6] R. Cilibrasi. Statistical Inference Through Data Compres-

sion. PhD thesis, Institute for Logic, Language and Compu-

tation Universiteit van Amsterdam, Plantage Muidergracht

24, 1018 TV Amsterdam, 2007. http://www.illc.uva.nl/.
[7] D. Engler. Weird things that surprise academics trying to

commercialize a static checking tool. Invited talk at SPIN’05

and CONCUR’05, 2004. http://www.stanford.edu/engler/-

spin05-coverity.pdf.
[8] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-

tem rules using system-specific, programmer-written com-

piler extensions. In Proceedings of the 4th Symposium on
Operating System Design and Implementation (OSDI 2000),
San Diego, California, USA, Oct. 2000. USENIX.

[9] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. Searching

for cognitively diverse tests: Towards universal test diversity

metrics. In Proceedings of the First Workshop on Search-
Based Software Testing, pages 178–186, Lillehammer, Nor-

way, Apr. 2008.
[10] P. Ferragina, R. Giancarlo, V. Greco, G. Manzini, and G. Va-

liente. Compression-based classification of biological se-

quences and structures via the universal similarity metric:

experimental assessment. BMC Bioinformatics, 8(1):252,

2007.
[11] M. Höst and C. Johansson. Evaluation of code review meth-

ods through interviews and experimentation. Journal of Sys-
tems and Software, 52(2):113–120, Apr. 2000.

[12] M. Howard. A process for performing security code reviews.

IEEE Security & Privacy, 4(4):74–79, July 2006.
[13] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards

parameter-free data mining. In KDD ’04: Proceedings of
the tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 206–215, New York,

NY, USA, 2004. ACM.
[14] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Corre-

lation exploitation in error ranking. In SIGSOFT ’04/FSE-
12: Proceedings of the 12th ACM SIGSOFT twelfth interna-
tional symposium on Foundations of software engineering,

pages 83–93, New York, NY, USA, 2004. ACM.
[15] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

ISBN 0–07–115467–1.
[16] E. R. Tufte. The Visual Display of Quantitative Information.

Graphics Press, second edition, May 2001. ISBN 0–96–

139214–2.
[17] P. Vitanyi, F. Balbach, R. Cilibrasi, and M. Li. Informa-

tion Theory and Statistical Learning, chapter Chapter 3.

Springer-Verlag, 2008.

417

Dynamic Test Profiles in Adaptive Random Testing: A Case Study

Huai Liu∗, Fei-Ching Kuo, and Tsong Yueh Chen
Centre for Software Analysis and Testing, Swinburne University of Technology, Australia

{hliu, dkuo, tychen}@swin.edu.au

Abstract

Random testing (RT) is a basic software testing
method. When used to detect software failures, RT usu-
ally generates random test cases according to a uniform
distribution. Adaptive random testing (ART) is an inno-
vative approach to enhancing the failure-detection ca-
pability of RT. Most ART algorithms are composed of
two independent processes, namely the candidate gen-
eration process and the test case identification process.
In these ART algorithms, some program inputs are first
randomly generated as the test case candidates; then
test cases are identified from these candidates in or-
der to ensure an even spread of test cases across the
input domain. Most previous studies on ART focused
on the enhancement of the test case identification pro-
cess, while using the uniform distribution in the candi-
date generation process. A recent study has shown that
using a dynamic test profile in the candidate generation
process can also improve the failure-detection capabil-
ity of ART. In this paper, we develop various test pro-
files and integrate them with the test case identification
process of a particular ART algorithm, namely fixed-
size-candidate-set ART. It is observed that all these test
profiles can significantly improve the failure-detection
capability of ART.

1. Introduction
Random testing (RT), a fundamental software test-

ing approach [13], can be used as both a reliability as-

sessment technique [15] and a debug testing method

(that is, a method aiming at detecting software failures

so that program bugs can be removed [11]). In the con-

text of debug testing, RT usually generates test cases
(that is, program inputs for testing) based on a uniform

distribution from the whole input domain (that is, the

set of all possible inputs). In other words, all program

inputs have the same probability to be generated as test

cases.

∗Corresponding author

Although RT has been used in various areas to de-

tect software failures [14, 16], some researchers consid-

ered RT as ineffective because RT simply detects fail-

ures by chance [13]. Many independent studies [1, 10]

have shown that failure-causing inputs (that is, in-

puts that cause the program under test to exhibit fail-

ure behaviors) tend to cluster into contiguous regions

(known as failure regions [1]) in the input domain.

Chen et al. [8] made use of such a common charac-

teristic of failure-causing inputs to improve the failure-

detection capability of RT. They proposed a novel ap-

proach, namely adaptive random testing (ART), where

test cases are not only randomly generated, but also

evenly spread over the input domain. The basic intuition

of ART, that is, the even spread of random test cases, is

essentially a form of test cases’ diversity across the in-

put domain [5]. In fact, the diversity of test cases is the

key concept for most test case selection strategies (such

as coverage-based testing methods [17]). ART has been

used for testing various programs, from software with

numeric inputs [2, 8] to that with complex non-numeric

inputs [9].

Various ART algorithms have been proposed to

achieve the goal of evenly spreading test cases, such

as fixed-sized-candidate-set ART (FSCS-ART) [8], re-
stricted random testing (RRT) [2] and lattice-based
ART [12]. Most ART algorithms consist of two inde-

pendent processes – (a) candidate generation process,

where some program inputs are randomly generated

as test case candidates, or briefly candidates, and (b)

test case identification process, where some test case

identification criteria are applied to identify test cases

amongst these candidates such that the identified test

cases are evenly spread over the input domain. Differ-

ent test case identification criteria lead to different ART

algorithms. Previous studies have shown that ART can

detect failures more effectively than RT in many cases.

Most studies on ART used the uniform distribution

as the test profile in the candidate generation process.

Recently, Chen et al. [4] proposed a new approach,

namely ART with dynamic non-uniform candidate dis-

418

tribution (ART-DNC). In ART-DNC, the candidate gen-

eration process is no longer conducted based on a uni-

form distribution, but on a dynamic non-uniform test

profile. They selected one particular test profile and in-

tegrated such a profile with the test case identification

processes of FSCS-ART and RRT algorithms. Their

simulation studies showed that using the new test profile

can significantly improve the effectiveness of the origi-

nal ART algorithms.

In this paper, we further investigate into various

test profiles that may be suitable for ART, and com-

bine them with the test case identification process of

FSCS-ART. We attempt to see whether and to what ex-

tent these profiles can enhance the failure-detection ca-

pability of ART. The rest of the paper is organized as

follows. Section 2 introduces the background informa-

tion on FSCS-ART and ART-DNC. In Section 3, we

propose different test profiles, and investigate the ef-

fectiveness of ART that uses these test profiles in the

candidate generation process. Section 4 concludes the

paper.

2. Background
Fixed-size-candidate-set ART (FSCS-ART) [8] is a

typical ART algorithm. In FSCS-ART, two sets of test

cases are maintained, namely the executed set E and

the candidate set C. E is composed of all the previously

executed test cases, while C contains a fixed number

of test case candidates that are normally generated in

a random manner according to a uniform distribution.

A candidate in C is identified as the next test case if

its nearest neighbor distance to E is the longest. The

details of FSCS-ART algorithm can be found in [8]. In

our study, the size of the candidate set is set to 10, as

recommended in [8].

ART aims to evenly spread random test cases over

the whole input domain, but no ART algorithm is guar-

anteed to achieve such a goal under all possible sce-

narios [3]. Most previous studies on ART focused on

the enhancement of test case identification process, but

kept using the uniform distribution in the candidate

generation process. Chen et al. [4] recently proposed

ART with dynamic non-uniform candidate distribution

(ART-DNC), which uses a test profile different from

the uniform distribution in the candidate generation pro-

cess. The aim of the new test profile in ART-DNC is to

improve the evenness of test case distribution, and thus

enhance the failure-detection capability.

FSCS-ART algorithm normally has a bias of iden-

tifying test cases from the edge part of the input do-

main rather than from the centre, and such an edge bias
results in a certain degree of uneven test case distribu-

tion. FSCS-ART-DNC [4] was developed to integrate

a new test profile with the test case identification crite-

rion of FSCS-ART algorithm. It has been suggested that

the test profile used in FSCS-ART-DNC should (i) be

dynamic along the testing process, (ii) assign a higher

probability to the candidates from the central part of the

input domain than those from the edge part (namely, the

centre bias); and (iii) have a symmetric probability dis-

tribution with respect to the centre of the input domain.

Readers who are interested may refer to [4] for the de-

tails of how to implement FSCS-ART-DNC algorithm.

The failure-detection capability of ART is normally

measured by F-measure, which refers to the expected

number of test cases required to detect the first soft-

ware failure. Most previous studies of ART [2, 6, 8]

estimated the F-measure of ART (denoted by FART in

the rest of the paper) via simulations. In order to sim-

ulate faulty programs, these simulations first predefine

two basic features of a faulty program, namely failure
rate (denoted by θ , which refers to the ratio between the

number of failure-causing inputs and the number of all

possible inputs) and failure pattern (which refers to the

failure regions together with their distribution over the

input domain). The size and shape of the failure region

can then be decided based on θ and the failure pattern,

and the location of the failure region is randomly chosen

inside the input domain. After setting up these param-

eters, ART is applied until the first failure is detected

(that is, a point is picked from the failure region), and

the number of test cases that ART has generated will be

recorded. Such a process is repeated until we can get a

statistically reliable value of FART . The details of how to

conduct simulations can be found in [6]. The improve-

ment of ART over RT is always evaluated by the ART
F-ratio = FART /FRT , where FRT denotes the F-measure

of RT that is theoretically equal to 1/θ .

3. Effectiveness of FSCS-ART-DNC with
various dynamic test profiles
There exist many distributions that have the fea-

tures mentioned in Section 2 (that is, features (i) to (iii)).
Chen et al. only selected one dynamic distribution pro-

file to illustrate the new ART-DNC approach. In this

study, we propose three other test profiles, namely tri-
angle, cosine and semicircle profiles, for FSCS-ART-

DNC. These profiles are named after the basic shapes of

the curves of their probability density functions (pdf),

which are given in Formulas (1), (2), and (3). Obvi-

ously, the probability distributions of these profiles can

be adjusted by changing the value of the parameter α .

Triangle profile:

fX (x) =

⎧
⎪⎨

⎪⎩

4αx+(1−α) , 0 ≤ x < 0.5

−4αx+(1+3α), 0.5 ≤ x < 1

0 , x < 0 or x ≥ 1

(1)

419

where 0 ≤ α ≤ 1.

Cosine profile:

fX (x) =

⎧
⎪⎨

⎪⎩

α sinπx+
(

1− 2α
π

)
, 0 ≤ x < 1

0 , x < 0 or x ≥ 1

(2)

where 0 ≤ α ≤ π
2

.

Semicircle profile:

fX (x)=

⎧
⎨

⎩
α
√

1− (2x−1)2 +
(

1− απ
4

)
, 0 ≤ x < 1

0 , x < 0 or x ≥ 1
(3)

where 0 ≤ α ≤ 4

π
.

We attempted to integrate the above-mentioned

three test profiles with the test case identification pro-

cess of FSCS-ART, and then get three new ART algo-

rithms, namely FSCS-ART-DNC with triangle, cosine

and semicircle profiles. In these algorithms, α in For-

mulas (1), (2), and (3) is dynamically adjusted along

the testing process. In this paper, we use triangle pro-

file to illustrate how to adjust the value of α . For ease

of illustration, assume that each dimension of input do-

main has the value range [0,1), and is equally divided

into two subranges, namely the centre subrange con-

sisting of [0.25,0.75); and the edge subrange consisting

of [0,0.25) and [0.75,1). For each dimension, succes-

sively after each new test case is identified, the follow-

ing three steps are conducted to adjust α . First, we mea-

sure the ratio (r) of the number of executed test cases

from the edge subrange over the total number of exe-

cuted test cases. Second, we calculate the probability

(p) of an element being generated from the centre sub-

range. From Formula (1), we can get

p = 0.25α +0.5 (4)

Since 0 ≤ α ≤ 1, p is within the value range [0.5, 0.75].

If 0.5 ≤ r ≤ 0.75, we set p = r; otherwise, we set p =
0.75 (if r > 0.75) or 0.5 (if r < 0.5). Finally, α can be

determined from Formula 4.

We conducted a series of simulations to evaluate

the failure-detection capabilities of these new FSCS-

ART-DNC algorithms. In these simulations, the dimen-

sion of the input domain is one, two, three or four;

the shape of the input domain is set as hyper-cube; the

failure pattern is one hyper-cube randomly placed in-

side the input domain; and θ is set from 1 to 0.00005.

The simulation results are given in Figure 1, which

also includes the previous results of the original FSCS-

ART algorithm with uniform candidate distribution (de-

noted by “FSCS-ART” in the figure). The results of

three new FSCS-ART-DNC algorithms are represented

by “FSCS-ART-DNC-tri”, “FSCS-ART-DNC-cos” and

“FSCS-ART-DNC-sem”. In the figure, the x- and y-

axes denote θ and the ART F-ratio, respectively.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem

(a) One-dimension

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem

(b) Two-dimension

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem

(c) Three-dimension

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
F-

ra
tio

FSCS-ART FSCS-ART-DNC-tri
FSCS-ART-DNC-cos FSCS-ART-DNC-sem

(d) Four-dimension

Figure 1. Failure-detection capabilities of
FSCS-ART-DNC with various test profiles

Based on the simulation results, we can observe

that all three FSCS-ART-DNC algorithms outperform

the original FSCS-ART algorithm when the dimension

of the input domain is high or θ is high, and the perfor-

mance improvement increases with the increase in di-

mension or θ . For the cases of low dimension and low

θ , the failure-detection capability of the original FSCS-

ART algorithm is very close to the theoretical bound

that can be reached by an optimal testing method with-

out prior information about the failure region’s loca-

tion [7]. Therefore, it is expected that these FSCS-ART-

DNC algorithms cannot significantly improve the per-

formance of ART when dimension or θ is low. Briefly

speaking, using some proper dynamic test profiles in the

candidate generation process does help to improve the

failure-detection capability of ART, especially for the

cases of high dimension and high θ .

It can also be observed that there are some dif-

ferences in the effectiveness of the three FSCS-ART-

DNC algorithms. FSCS-ART-DNC-tri and FSCS-ART-

DNC-cos always have similar failure-detection capa-

bilities, but FSCS-ART-DNC-sem does not perform as

well as the other two under the conditions of high di-

mension and high θ . For example, when θ = 0.25 and

the dimension is 4, the ART F-ratios of FSCS-ART-

DNC-tri, FSCS-ART-DNC-cos, and FSCS-ART-DNC-

sem are 1.07, 1.10, and 1.23, respectively. Such a phe-

nomenon can be explained as follows. As shown in [3],

420

the original FSCS-ART algorithm has an edge bias,

which becomes higher with the increase in dimension

or θ . The test profiles used in FSCS-ART-DNC all have

a centre bias. From Formulas (1), (2), and (3), we can

calculate that the triangle profile has the highest cen-

tre bias, followed by the cosine and semicircle profiles

in descending order. When the dimension or θ is low,

the test case identification process of the original FSCS-

ART algorithm does not deliver a very high degree of

edge bias. In such a situation, all three test profiles can

provide a sufficient degree of centre bias in the candi-

date generation process to offset the edge bias in the test

case identification process. On the other hand, when the

dimension and θ are high, the low centre bias offered by

the semicircle profile may not fully offset the extraor-

dinary edge bias caused by the test case identification

process. Therefore, it is intuitively expected that FSCS-

ART-DNC-sem does not perform very well under the

conditions of high dimension and high θ . The similar

performances of FSCS-ART-DNC-cos and FSCS-ART-

DNC-tri imply that although the centre bias of the co-

sine profile is lower than that of the triangle profile, the

former is sufficient to offset the edge bias in the test case

identification process.

4. Conclusions
Adaptive random testing (ART) was proposed to

enhance the failure-detection capability of random test-

ing as a debug testing method. Most previous studies

have used the uniform distribution as the test profile for

ART. A recent study has shown that using a dynamic

test profile can further improve the failure-detection ca-

pability of ART. In this paper, we conducted some case

studies on the application of three dynamic test profiles

into ART algorithms. Simulation studies showed that

all these three test profiles help to improve the failure-

detection capability of ART.

Our experimental results also showed that different

test profiles may bring out different failure-detection ca-

pabilities of ART. In the future work, we will analyze

the statistical features of a variety of dynamic profiles

and their impacts on the effectiveness of ART with var-

ious test case identification criteria. These investiga-

tions will provide new guidelines for how to develop

and apply appropriate test profiles for different ART al-

gorithms.

Acknowledgment
This research project is partially supported by an

Australian Research Council Grant (DP0880295).

References
[1] P. E. Ammann and J. C. Knight. Data diversity: an ap-

proach to software fault tolerance. IEEE Transactions
on Computers, 37(4):418–425, 1988.

[2] K. P. Chan, T. Y. Chen, and D. Towey. Restricted random

testing: adaptive random testing by exclusion. Interna-
tional Journal of Software Engineering and Knowledge
Engineering, 16(4):553–584, 2006.

[3] T. Y. Chen, F.-C. Kuo, and H. Liu. On test case distribu-

tions of adaptive random testing. In Proceedings of the
19th International Conference on Software Engineering
and Knowledge Engineering (SEKE 2007), pages 141–

144, 2007.

[4] T. Y. Chen, F.-C. Kuo, and H. Liu. Application of a fail-

ure driven test profile in random testing. IEEE Transac-
tions on Reliability, 58(1):179–192, 2009.

[5] T. Y. Chen, F.-C. Kuo, R. Merkel, and T. H. Tse. Adap-

tive random testing: the ART of test case diversity. Ac-

cepted to appear in Journal of Systems and Software.

[6] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou. On favorable

conditions for adaptive random testing. International
Journal of Software Engineering and Knowledge Engi-
neering, 17(6):805–825, 2007.

[7] T. Y. Chen and R. Merkel. An upper bound on soft-

ware testing effectiveness. ACM Transactions on Soft-
ware Engineering and Methodology, 17(3):16:1–16:27,

2008.

[8] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sam-

pling strategy: a compendium and some insights. Jour-
nal of Systems and Software, 58(1):65–81, 2001.

[9] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. AR-

TOO: adaptive random testing for object-oriented soft-

ware. In Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE’08), pages 71–80.

ACM Press, 2008.

[10] G. B. Finelli. NASA software failure characterization

experiments. Reliability Engineering and System Safety,

32(1–2):155–169, 1991.

[11] P. G. Frankl, R. G. Hamlet, B. Littlewood, and L. St-

rigini. Evaluating testing methods by delivered reli-

ability. IEEE Transactions on Software Engineering,

24(8):586–601, 1998.

[12] J. Mayer. Lattice-based adaptive random testing. In Pro-
ceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2005),
pages 333–336, New York, USA, 2005. ACM.

[13] G. J. Myers. The Art of Software Testing. John Wiley

and Sons, second edition, 2004. Revised and updated by

T. Badgett and T. M. Thomas with C. Sandler.

[14] D. Slutz. Massive stochastic testing of SQL. In Proceed-
ings of the 24th International Conference on Very Large
Databases (VLDB 1998), pages 618–622, 1998.

[15] R. A. Thayer, M. Lipow, and E. C. Nelson. Software
Reliability. North-Holland, 1978.

[16] T. Yoshikawa, K. Shimura, and T. Ozawa. Random

program generator for Java JIT compiler test system.

In Proceedings of the 3rd International Conference on
Quality Software (QSIC 2003), pages 20–24, 2003.

[17] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit

test coverage and adequacy. ACM computing surveys,

29(4):366–427, 1997.

421

A Novel Method of Mutation Clustering Based on Domain Analysis*

Changbin Ji1,2, Zhenyu Chen1,2, Baowen Xu1, Zhihong Zhao1,2

1National Key Laboratory for Novel Software Technology, Nanjing University, P.R. China
2Software Institute, Nanjing University, P.R. China
Corresponding Author: zychen@software.nju.edu.cn

* The work described in this article was partially supported by the National Natural Science Foundation of China (90818027,
60773104, 60803007, 60803008, 60873050, and 60873049).

Abstract
Mutation testing is an effective but expensive

technique. There exists much improvement to help
mutation testing become a wide-used technique. The
main objective is to reduce the number of mutants and
the reduced test sets can still approximate the
adequacy. Recently a new method, called mutation
clustering, is proposed to integrate data clustering and
mutation analysis, such that both mutant sets and test
sets can be reduced dramatically. This paper provides
domain analysis to cluster mutants statically before
test case generation. And then the simplified mutant set
is used to generate a test set. We hypothesize that such
a test set can kill the original mutant set approximately.
The cost of mutation testing will further decrease,
because only a small test set needs to be generated and
executed. A case study shows an encouraging result to
support our hypothesis.

1. Introduction
Mutation testing is testified to be an effective fault

detective method [1]. Initially it introduces some minor
changes of the original program to produce mutants. A
test case is said to kill a mutant if it can detect the
corresponding change of program. A test set has a
mutation score as a label to illustrate its fault detection
ability.

Mutation analysis has many advantages in fault-
based testing [2]. However it is still on the way to be a
commercial testing technique because of some
industrial reasons [3]. One problem of mutation testing
is computational expense. Even a program with 30
lines of codes may generate hundreds of mutants. It
will spend considerable time and resources to execute
so many mutants. On the other hand, there exist some
syntactically different but semantically same mutants,
which are called equivalent mutants. No test case can
kill equivalent mutants so that they must be removed
from the original mutant set. Equivalent mutants are

usually distinguished by hand so far. It will cost too
much human resources in some cases.

Many techniques have been proposed to reduce the
computational expense of mutation testing [3]. There
are mainly three kinds of strategies, including “do
smarter”, “do faster” and “do fewer”, to improve the
performance of mutation testing. A “do smarter”
approach pays attention to compare the intermediate
mutated states. A “do faster” approach reduces the cost
of running mutants in the same environment [4]. A “do
fewer” method is more straightforward than the other
two. A “do fewer” method tries to execute fewer
mutants against fewer test cases [3].

In mutation testing, the mutants are generated based
on some mutation operators. The number of mutants
can be reduced by selecting some key mutation
operators. A. J. Offutt et al. proved that mutation
testing will keep its testing strength with fewer
mutation operators [3]. Wong et al. introduced
selective mutation criterion to choose mutation
operators according to their fault detection abilities [5,
6]. The work in [7] further indicated that ABS, AOR,
LCR, ROR and UOI were five necessary mutation
operators, which provided the same coverage as the
non-selective mutation. Random sampling can also
avoid executing large number of mutants. It randomly
selects some mutants from the initial mutant set and is
testified to be effective in some cases [8]. Chen et al.
used fault class hierarchy to skip some mutation
operators in Boolean specification-based testing [9].
Moreover, some graph contraction strategies were
provided to merge some mutants from a same mutation
operator, such that the test set is reduced [10].

S. Hussain et al. introduced mutation clustering
which could lower the numbers of mutants and test
cases at the same time [13]. They firstly run all
mutants against all test cases. The execution
information was saved as the measurement for every
mutant. And then the distances of mutants were
calculated and some clustering algorithms were used to

422

assemble the similar mutants. However, the
preprocessing of mutation clustering was still
operationally expensive, because all test cases should
be generated and executed before clustering. In this
paper, we present a domain analysis method to measure
mutants without the execution information of test cases.
The measurement information is obtained statically.
Hence the cost of mutation testing decreases to make it
more applicable.

This paper is organized as follows: Section 2
describes relative work of mutation clustering. In
Section 3, some strategies of domain analysis are
proposed to prepare for mutation clustering.
Experimental results and analysis is shown in Section 4.
Some directions in Section 5 will be done in the future.

2. Related Work
Data clustering is usually used in pattern-analysis,

decision making, knowledge discovery and machine
learning situations [11]. It is called a non-supervised
method to collect similar data elements. Using a
suitable clustering algorithm [12], the data items which
satisfy the similarity requirements will be clustered into
a same category. The set of clusters acts as a data set
but has a smaller scale. S. Hussain et al. apply
clustering techniques to minimize the quantity of
mutants [13]. A mutant is represented by the test cases
that kill it and the test cases that do not kill it. The
discrimination between mutants is measured by
Hamming distance. Then they apply K-means and
agglomerative clustering algorithm to turn the large
number of mutants into fewer clusters [14]. Then these
clusters reduce the test cases under the greedy
algorithm. All mutants must be executed against all test
cases before clustering. We propose a more effective
way to divide the mutants before test case generation.
We adopt another method which can be settled
statically to mark every mutant for clustering.

CBT and DDR are two methods that can generate
test cases automatically in mutation testing. Both of
them focus on the domains of variables. CBT takes the
algebraic expressions as constraints [15]. Constraints
are reduced dimension by dimension and the test cases
will be generated to approximate relative adequacy.
DDR takes the initial set for each input [16]. When
executing through the control flow of the program, the
sets of values are modified dynamically. DDR resolves
several shortcomings which CBT suffers. These two
methods use values of variables to generate test cases.
Hence we hope the scales of variables can also be used
to separate mutants.

The application of mutation operators firstly
produces some mutants. According to domain analysis,

one value set corresponds to one mutant. A clustering
methodology is employed here to cluster the mutants.
We select one mutant from each cluster randomly.
These mutants compose the next generation to choose.
The next section will introduce the domain analysis by
which we reduce the domains of variables.

3. Mutation Clustering
We intend to apply a static method to measure all

mutants. The static method does not need to execute
mutants and provides improvement of mutation
clustering.

3.1. Measure every mutant statically
All inputs in one program are picked out. For every

mutant, we use some symbolic execution rules which
will be depicted in subsection 3.3 to reduce the
domains of all variables [17]. The reduced variables
are taken as the representation of a mutant. This
method saves execution cost before mutation clustering.
Basically we apply the static control flow analysis
which has practical cost [18].

3.2. Optional module

Figure 1. Module structure of a simple program

Figure 1 depicts a simple program. The program has
three possible exits under three varying conditions. We
take the clauses which are not affected by mutation
operators and contain no exit statement as a normal
module. For example, one mutant is generated from
one statement in module 4. The module 3 is optional
and the conditions in module 3 will be dismissed. We
try to find a near optimal method and the conditions to
analyze need not to be continuous [19]. Identification
of modules in the program is used to prepare for the
further analysis. The thinking of reused software
information accelerates determining the location of
every mutant [20].

BEGIN
Module 1:
if(condition 1)
return -1;

Module 2:
if(condition 2)
return -1;

Optional Module 3:
if(condition 3)
define or refer some variables;

Module 4:
if(condition 4)
if(condition 5)
mutated statement
return 0;

END

423

3.3. Reduction conditions for domains
The conditions in the non-optional modules are

under consideration. The domains will be reduced
using DDR by the combination conditions. There are
three types of conditions to combine:

1. Exit-against conditions: If one mutant works, the
execution must satisfy the basic condition that the
program would not exit before the mutation point. We
choose mutant path which would avoid program exiting.
As it is shown in Figure 1, the exit-against condition is
(�condition1 � �condition2).

2. Nested conditions: In one module, there may be
some nested conditions. All correlative conditions up
the mutation point will be satisfied. In this example, the
nested condition is (condition4 � condition5).

3. Mutated conditions: Mutants which derive from
the same statement have the equivalent exit-against
conditions and nested conditions. The altered condition
is treated as a mutated condition so that we can tell
differences between mutants generated from the same
statement.

The domains of inputs are bounded dynamically
when the inputs meet the conditional constraints above.
The limitation is that numeric conditions in the
mutation path but not all conditions are collected.

3.4. Clustering method
This subsection will introduce how the mutants are

clustered.
We use hamming distance to calculate the distance

between mutants. Table 1 shows how Hamming
distance works in our analysis. A, B, C and return value
represent M1 and M2. If the domains differ, 1 is
brought in. Otherwise, the distance is 0. The sum of 1
is counted as the distance of different mutants. In Table
1, the distance between M1 and M2 is 3.

Table 1. Calculate the distance between two mutants
A B C Return Value

M1 (-30,30) (-30,15) (-15,0) 1
M2 (-30,30) (-30,30) (-30,30) -1
Dis. 0 1 1 1

We apply a procedure like K-means algorithm to
cluster mutants. Firstly we randomly choose k mutants
as k clusters. In this paper k is the half of total number.
Then we evaluate the distance from the remaining
mutants to these k clusters. One mutant joins the cluster
whose distance is less than the threshold value which is
half of the max distance. K-means algorithm uses the
means of elements in clusters. Due to the specific of the
value of domain, it is difficult to calculate the means of
two or several domains directly. We arbitrarily choose
one mutant to represent the centroid of one cluster.

When clustering procedure is done, the k centroids
form the next generation which will be clustered again.

4. Experimental Result and Analysis
The aim of this section is to evaluate whether the

values of domains can help distinguish the mutants
instead of the execution information. At first, we apply
muJava1 to generate mutants MF for a program P. Some
mutation operators in class are dismissed according to
the feature of the case program [21].Then a test set TF
is designed for MF and evaluated with the mutation
score MSF. We find all inputs in P including return
values and use the same method as DDR to reduce the
domains of inputs dynamically by mutated conditions.
K mutants are selected randomly. We cluster the
mutants whose distances are less than the threshold
value. One mutant is selected randomly to represent
one cluster and these mutants form the new mutant
collection MN. Test cases killing no mutant in MN are
removed from TF. The remaining test cases compose
new test set TN. TN is evaluated with MSN to kill the
MF. The efficiency of TF and TN is compared. MN can
be clustered again.

In this case study, we take the triangle program as
the study object. Table 2 provides the results of
mutation clustering. We manually generate 21 test
cases for M1 which is produced by muJava. M1 are
divided into 73 clusters. 73 centroids of M1 constitute
M2. We remove the test cases that can not kill one
mutant in M2. The test cases are reduced from 21 to 16.
16 test cases are used to kill M1. Significantly, the
number of killed mutants is reduced only by 4, while
the total number of mutants is saved by 50%.
Obviously the computation cost of mutation testing
falls. One more point worth mentioning is that M3 has
only 25% mutants of M1 and 13 test cases filtered by
M3 kill 94% mutants.

Table 2. Results of mutation clustering
1 Number of test cases:21

Mutants Killed mutants MS
M1 147 137 93%
M2 73 68 93%
M3 36 35 97%
M4 18 18 100%

2 Number of test cases:16 filtered by M2
Mutants Killed mutants MS

M1 147 133 90%
M2 73 68 93%

3 Number of test cases:13 filtered by M3
Mutants Killed mutants MS

1 http://cs.gmu.edu/~offutt/mujava/

424

M1 147 130 88%
M2 73 66 90%
M3 36 35 97%

4 Number of test case:9 filtered by M4
Mutants Killed mutants MS

M1 147 117 79%
M2 73 60 82%
M3 36 31 86%
M4 18 18 100%

The number of test cases is reduced by fewer
mutants. Whereas, the reduced test set is still as strong
as the original test set. The descending of M2 and M3
is acceptable. The positive results testify our hypothesis
that values of domains can be used to cluster mutants
instead of the execution information. Clustering
mutants provides an optimal solution, and it makes
mutation testing to execute fewer mutants.

5. Future Work
One challenge of our method is how to rationally

determine the means of domains as the centroid of a
cluster. Another challenge is that this approach is not
appropriate for inter-procedural program and will be
applied to unit testing. We will envision a fully
automatic system to implement the whole procedure of
mutation clustering. Then we can apply our analysis on
other bigger scale programs. We hope it can help
reduce the operational cost and make the mutation
testing to be more practical.

6. References
[1] A. P. Mathur and W. E. Wong. An Empirical Comparison
of Data Flow and Mutation-Based Test Adequacy Criteria.
Software Testing, Verification & Reliability. 1994, 4(1):9-31.
[2] J. H. Andrews, L. C. Brand and Y. Labiche. Is mutation
an appropriate tool for testing experiments?. In Proceedings
of the 27th International Conference on Software
Engineering. 2005, pp.402-411.
[3] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the
Orthogonal. Kluwer International Series on Advances in
Database Systems, Mutation testing for the new century.
2001, pp.34-44.
[4] R. Untch A. J. Offutt and M. J. Harrold. Mutation
analysis using program schemata. In Proceedings of the 1993
International Symposium on Software Testing, and analysis.
1993, pp.139-148.
[5] W. E. Wong, M. E. Delamaro, J. C. Maldonado, and A. P.
Mathur. Constrained mutation in C programs. In Proceedings
of VIII Symposium on Software Engineering. 1994, pp.439-
452.

[6] A. J. Offutt, G. Rothermel and C. Zapf. An experimental
evaluation of selective mutation. In Proceedings of the
Fifteenth International Conference on Software Engineering.
1993, pp.100-107.
[7] A. J. Offutt, G. Rothermel and C. Zapf. An experimental
determination of sufficient mutation operators. ACM
Transactions on Software Engineering and Methodology.
1996, 5(2):99-118.
[8] A. P. Mathur and W. E. Wong. Reducing the cost of
mutation testing: an empirical study. Journal of Systems and
Software, 1995, 31(3):185-196.
[9] Zhenyu Chen, Baowen Xu, Xiaofang Zhang and
Changhai Nie. A novel approach for test suite reduction
based on requirement relation contraction. In Proceedings of
the ACM symposium on Applied Computing. 2008, pp.390-
394.
[10] Zhenyu Chen, Baowen Xu and Changhai Nie. A
detectability analysis of fault classes for Boolean
specifications. In Proceedings of the ACM symposium on
Applied Computing. 2008, pp.826-830.
[11] A. K. Jain, M. N. Murty, P. J. Flynn. Data Clustering: A
Review. ACM Computing Surveys. 1999, 31(3):264-323.
[12] G. Fung. A Comprehensive Overview of Basic
Clustering Algorithms. 2001.
[13] S. Hussain, M. Harman. Mutation Clustering. Master
Thesis, King's College London, UK, 2008.
[14] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko,
R. Silverman and A. Y. Wu. An Efficient k-Means
Clustering Algorithm: Analysis and Implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
2002, 24(7):881-892.
[15] R. A. DeMillo and A. J. Offutt. Constraint-based
automatic test data generation. IEEE Transaction on
Software Engineering. 1991, 17(9):900-910.
[16] A. J. Offutt, Jin Z and Pan J. The dynamic domain
reduction procedure for test data generation. Software:
Practice and Experience. 1999, 29(2):167-193.
[17] Corina S. Pasareanu and Willem Visser. Verification of
Java Programs Using Symbolic Execution and Invariant
Generation. 2004, LNCS 2989:0302-9743.
[18] A. Rountev, O. Volgin and M. Reddoch. Static control-
flow analysis for reverse engineering of UML sequence
diagrams. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools
and engineering table of contents. 2005, pp.96-102.
[19] M. Harman. Search Based Software Engineering. 2006,
LNCS 3994: 0302-9743.
[20] R. Prieto-Díazd. Domain analysis: an introduction. ACM
SIGSOFT Software Engineering Notes archive. 1990,
15(2):47-54.
[21] Y. S. Ma. J. Offutt and Y. R. Kwon. MuJava: a
mutation system for java. In Proceedings of the 28th
International Conference on Software Engineering. 2006, pp.
827-830.

425

Using a mining frequency patterns model to automate passive testing

of real-time systems ∗

César Andrés, Mercedes G. Merayo, Manuel Núñez

Departamento Sistemas Informáticos y Computación

Universidad Complutense de Madrid

{c.andres,mgmerayo}@fdi.ucm.es, mn@sip.ucm.es

Abstract

Testing is one of the most widely used techniques to
increase the confidence on the correctness of complex
software systems. In this paper we extend our previ-
ous work on passive testing with invariants to incor-
porate (probabilistic) knowledge obtained from users of
the system under test. In order to apply our technique,
we need to obtain a set of invariants compiling the rel-
evant properties of the system under test, and this is a
difficult task. First, we present an algorithm to extract
invariants from the specification without assuming any
additional condition. Since the number of obtained in-
variants is huge we study an alternative. Based on the
idea that an invariant is better than another one if it
can be checked more times in the same log, we present
an adaptation of the previous algorithm in order to sort
sets of representative invariants.

1 Introduction

With the growing significance of software systems,
techniques that assist in the production of reliable soft-
ware are becoming increasingly important within soft-
ware engineering. The complexity of current software
systems requires the application of sound techniques.
Among these techniques, testing [13] is the most widely
used in industrial environments. Unfortunately, test-
ing is still a mainly manual activity, prone to errors
that can mask real errors of the tested system. Tradi-
tionally, formal methods and testing have been seen as
rivals. Thus, there was very little interaction between
the two communities. In recent years, however, these
approaches are seen as complementary [9, 8].

∗Research supported by the Spanish MEC project
WEST/FAST (TIN2006-15578-C02-01), the MATES project
(CCG08-UCM/TIC-4124) and by the UCM-BSCH programme
to fund research groups (GR58/08 - group number 910606).

In most cases, testing is based on the ability of a
tester that stimulates the implementation under test
(IUT) and checks the correction of the answers provided
by the implementation. However, in some situations
this activity becomes difficult and even impossible to
perform. For example, this is the case if the tester is
not provided with a direct interface to interact with
the IUT. Another conflictive situation appears when
the implementation is built from components that are
running in their environment and cannot be shutdown
or interrupted for a long period of time. In these sit-
uations, there is a particular interest in using other
types of validation techniques such as passive testing.
Therefore, the main different between active and pas-
sive testing is that in active testing testers can interact,
by providing inputs, with the IUT and observe the ob-
tained result.

Passive testing usually consists in recording the
trace produced by the IUT and trying to find a fault
by comparing this trace with the specification [10, 14,
12, 5]. A new methodology to perform passive test-
ing was presented in [6, 4]. The main novelty is that
a set of invariants is used to represent the most rele-
vant properties of the specification. An invariant can
be seen as a restriction over the traces allowed to the
IUT. We introduced in previous work [3] the possibil-
ity of adding time constraints as properties that traces
extracted from the IUT must hold.

Normally, there are several ways to obtain a set of
invariants. The first one is that testers provide a set
of representative invariants. Then, the correctness of
these invariants, with respect to the specification, has
to be checked. The main drawback of this approach is
that we still have to rely on the manual work of the
tester. If we do not have a complete formal specifica-
tion, a variant of this approach is to assume that the
set of invariants provided by the testers are correct by
definition. In this paper we consider an alternative ap-
proach: We automatically derive invariants from the

426

specification. First, we consider an adaptation of the
algorithms presented in [6]. The problem with this first
attempt is that the number of invariants that we ex-
tract from the specification is huge and we do not have
a criterion to decide which ones are better. We propose
an alternative algorithm to use knowledge extracted
from standard users of the system, so that invariants
can be sorted according to their quality to fit the be-
haviuor of those users.

The rest of the paper is structured as follows. In
Section 2 we present our passive testing framework of
timed systems. In Section 3, containing the bulk of the
paper, we present two algorithms for extracting a set of
correct invariants from the specification. We conclude
with Section 4, where we present the conclusions and
some lines of future work.

2 A formal framework for passive test-

ing of timed systems

In this section we introduce our framework to spec-
ify and (passively) test timed systems. We extend
the well-known Finite State Machines model by adding
time information concerning the amount of time that
the system needs to perform transitions.

Definition 1 A Timed Finite State Machine (TFSM) is
a tuple (S, s0, I,O, T), where S is a finite set of states,
s0 ∈ S is the initial state, I and O, with I∩O = ∅, are
the finite sets of input and output actions, respectively,
and T ⊆ S × I ×O× IR+ ×S is the set of transitions.

A TFSM M = (S, s0, I,O, T) is deterministic if for
all state s and input i there exists at most one tran-
sition (s, i, o, t, s′). We say that M is input-enabled if
for all state s ∈ S and i ∈ I there exists a transition
(s, i, o, t, s′). ��

Let us consider the TFSM depicted in Figure 1 and
the transition (s1, a, x, 3, s2). Intuitively, if the machine
is at state s1 and it receives the input a, then it will
produce the output x after 3 time units. We usually

write s
i/o−−−−→ t s′ as a shorthand of (s, i, o, t, s′) ∈ T .

As usual in formal testing approaches, we assume that
both specifications and implementations can be repre-
sented by the same formalism. In our case, the formal-
ism is the set of deterministic input-enabled TFSMs.

Next we introduce the notion of trace of a system.
A trace captures the behaviour of an implementation.
Traces collect the outputs obtained after sending some
inputs to the implementation and the amount of time
between each input/output pair. The classical notion
of trace, which does not include any time information,
is called a non-timed trace.

s1start s2

s3s4

a/x/3

c/x/4

a/y/6

c/z/4

a/x/1

c/y/2

a/y/2

c/z/1

Figure 1. Example of TFSM.

Definition 2 Let M = (S, s0, I,O, T) be a TFSM.
We say that θ = 〈i1/o1/t1, i2/o2/t2, . . . , in/on/tn〉 is a
timed trace, or simply trace, of M if there is a sequence
of transitions such that

s1
i1/o1−−−−−→ t1 s2

i2/o2−−−−−→ t2 s3 . . . sn−1
in/on−−−−−→ tn sn

We denote the empty trace by 〈〉 and by tr(M) the set
of all traces of M .

If θ = 〈i1/o1/t1, . . . , in/on/tn〉 is a timed trace of
M , then the sequence ω = 〈i1/o1, . . . , in/on〉 is a non-
timed trace of M . We denote by nttr(M) the set of
all non-timed traces of M . ��

For example, if we consider the ma-
chine M depicted in Figure 1, we have that
〈c/x/4, c/x/4, a/x/3, c/z/4, c/z/1, a/x/1〉 is a
timed trace of M . If we remove time informa-
tion, we obtain non-timed traces. For instance,
〈c/x, c/x, a/x, c/z, c/z, a/x〉 is the non-timed trace
associated with the previous timed trace.

Our passive testing approach is similar to other
methodologies since the basic idea consists in recording
traces from the IUT to detect unexpected behaviours.
The main novelty is that a set of invariants is used to
represent the most relevant properties of the specifi-
cation. Intuitively, an invariant expresses the fact that
each time the IUT performs a given sequence of actions,
then it must exhibit a behaviour reflected in the invari-
ant. In order to express traces in a concise way, we will
use the wild-card characters ? and �. The wild-card ?
represents any value in the sets of inputs or outputs,
while � represents a sequence of input/output pairs.

Definition 3 We say that p̂ = [p1, p2] is a time in-
terval if p1 ∈ IR+, p2 ∈ IR+ ∪ {∞}, and p1 ≤ p2.

427

We assume that for all t ∈ IR+ we have t < ∞ and
t + ∞ = ∞. We consider that IR denotes the set of
time intervals.

Let M = (S, s0, I,O, T) be a TFSM. We say that the
sequence ϕ is an invariant for M if the following two
conditions hold:

1. ϕ is defined according to the following EBNF:

ϕ ::= a/z/p̂, ϕ | � /p̂, ϕ′ | i �→ O/p̂ � t̂
ϕ′ ::= i/z/p̂, ϕ | i �→ O/p̂ � t̂

In this expression we consider p̂, t̂ ∈ IR, i ∈ I,
a ∈ I ∪ {?}, z ∈ O ∪ {?}, and O ⊆ O.

2. ϕ is correct with respect to M (formally defined
in [3]).

��

Even though, our machines present time informa-
tion expressed as fix amounts of time, time conditions
established in invariants are given by intervals. This
fact is due to consider that it can be admissible that
the execution of a task sometimes lasts more time than
expected: If most of the times the task is performed on
time, a small number of delays can be tolerated. Con-
cerning the notion of correctness, the idea is that an
invariant is correct with respect to a machine M if M
cannot perform a sequence of transitions that would
contradict what the invariant expresses.

Intuitively, the previous EBNF expresses that an in-
variant is either a sequence of symbols where each com-
ponent, but the last one, is either an expression a/z/p̂,
with a being an input action or the wild-card charac-
ter ?, z being an output action or ?, and p̂ being an
interval, or an expression �/p̂. There are two restric-
tions to this rule. First, an invariant cannot contain
two consecutive expressions �/p̂1 and �/p̂2. In the case
that such situation was needed to represent a property,
the tester could simulate it by means of the expression
�/(p̂1 + p̂2). The second restriction is that an invariant
cannot present a component of the form �/p̂ followed
by an expression beginning with the wild-card charac-
ter ?, that is, the input of the next component must
be a real input action i ∈ I. In fact, � represents any
sequence of inputs/outputs pairs such that the input is
not equal to i.

The last component, corresponding to the expres-
sion i �→ O/p̂ � t̂ is an input action followed by a set
of output actions and two timed restrictions, denoted
by means of two intervals p̂ and t̂. The former is associ-
ated to the last expression of the sequence. The latter
is related to the sum of times values associated to all
input/output pairs performed before. For example, the

meaning of an invariant as i/o/p̂, �/p̂�, i
′ �→ O/p̂′ � t̂ is

that if we observe the transition i/o in a time belong-
ing to the interval p̂, then the first occurrence of the
input symbol i′ after a lapse of time belonging to the
interval p̂�, must be followed by an output belonging to
the set O. The interval t̂ makes reference to the total
time that the system must spend to perform the whole
trace. Next we introduce some examples in order to
present how invariants work.

Example 1 Let us consider the TFSM presented in Fig-
ure 1. One of the most simple invariants that we
can define within our framework follows the scheme
a �→ {x, y}/[1, 6] � [1, 6]. The idea is that each occur-
rence of the symbol a is followed by either the output
symbol x or y and this transition is performed between
1 and 6 time units.

We can specify a more complex property by tak-
ing into account that we are interested in observing
the output x after the input a when the pair c/x was
previously observed. In addition, we include time in-
tervals corresponding to the amount of time the system
takes for each of the transitions and to the total time it
spends in the whole trace. We could express this prop-
erty by means of the invariant c/x/[3, 5], �/[0, 5], a �→
{x}/[2, 4] � [4, 13]. An observed trace will be correct
with respect to this invariant if each time that we find
a (sub)sequence starting with the c/x pair, performed
in an amount of time belonging to the interval [3, 5], if
there is an occurrence of the input a before 5 time units
pass, then it must be paired with the output symbol
x and the lapse of time between a and c must belong
to the interval [2, 4]. In addition, the whole sequence
must take a time belonging to the interval [4, 13]. ��

3 Two approaches for the extraction of

invariants from specifications

Normally, invariants should be supplied by the ex-
pert/tester. Then, the first step is to check that the
invariants are correct with respect to the specifica-
tion. Another approach consists in extracting invari-
ants from the specification, so that their correctness is
ensured. In this section we present two algorithms to
extract invariants from specifications. The first algo-
rithm is based on the adaptation to our framework of
the algorithms given in [6]. The main drawback of ap-
plying this approach is that, in general, we have a huge
set of invariants. The second algorithm, uses extra in-
formation about the users of the system and improves
the first algorithm in two features. The first one is that
the set of invariants is smaller. The second one is that

428

in : M = (S, s0, I,O, T) : TFSM
out: φ : Set of correct invariants
Ω = nttr(M);1

φ = ∅;2

while (Ω �= ∅) do3

Choose ω ∈ Ω;4

Ω = Ω \ {ω};5

φ = φ ∪ generateT(M,ω);6

end7

return φ;8

Figure 2. Algorithm for generating invariants
from a TFSM adapting algorithms in [6].

we can establish a minimum significance degree value
for the set of invariants.

The adaptation to our framework of the algorithms
given in [6] is presented in Figure 2. The next auxiliary
functions are used in the algorithm.

Definition 4 Let M = (S, s0, I,O, T) be a TFSM and
ω = 〈i1/o1, . . . , in/on〉 be a non-timed trace of M . The
function outputs(M,ω) computes the set of all possi-
ble outputs associated with the last input of ω.

outputs(M, ω) =
{
o
∣∣ 〈i1/o1, . . . , in/o〉 ∈ nttr(M)

}

The functions mT(ω, j, O) and MT(ω, j, O) compute
the minimum, respectively maximum, time value asso-
ciated to the pair ij/oj in all the timed traces of M
corresponding to ω, except the last output that must
belong to O, that is,
mT(ω, j, O) =
min

{
tj
∣∣ 〈i1/o1/t1, . . . , in/o/tn〉 ∈ tr(M) ∧ o ∈ O

}

MT(ω, j, O) =
max

{
tj
∣∣ 〈i1/o1/t1, . . . , in/o/tn〉 ∈ tr(M) ∧ o ∈ O

}

The function generateT(M,ω) computes a set of
correct invariants with respect to M corresponding to
the sequence ω.
⎧
⎪⎪⎨

⎪⎪⎩
ϕ

∣∣∣∣∣∣∣∣

ϕ = i1/o1/p̂1, . . . , in �→ O/p̂n � q̂ ∧
O = outputs(M, ω) ∧
∀1 ≤ k ≤ n : p̂k = [mT(ω, k, O), MT(ω, k, O)] ∧
q̂ =

∑
p̂k

⎫
⎪⎪⎬

⎪⎪⎭

��
Next, we briefly describe this algorithm. The input

parameter is the specification of the system, while the
output is a set of correct invariants generated from it.
The algorithm applies the function generateT to all
the non-timed traces Ω of the specification in order to

produce a set of correct invariants φ. The drawback of
this proposal is that the number of possible invariants
is really huge, usually infinite, and most of them have
low significance. Let us note that this set is usually
infinite due to the fact that we compute all non-timed
traces of the specification.

In order to reduce the number of invariants we pro-
pose an algorithm that uses extra information obtained
by the application of data mining techniques to a set
of data recorded from the interaction between different
users and the IUT. First, a selection of data is made and
preprocessed in order to check that there does not ex-
ist any incongruence, that is, the set of data represents
traces of users that have been observed during their in-
teraction with the IUT. We will focus on extracting sets
of relevant behaviors from this set of data, that is, those
sequences of interactions of the users with the system
that appear more frequently. In order to determine
these behaviors we use the usual techniques for obtain-
ing frequent patterns from a database (see, for exam-
ple, [1, 11]). The task of discovering the frequency of
each behaviour in the database is performed by means
of the applications of any of the existing tools. In our
approach we use [7].

In order to determine the knowledge obtained from
the data, we formally define a frequency threshold rel-
ative to a set of sequences. The frequency threshold
represents the degree of relative frequency that a set
of behaviours has with respect to the global set of be-
haviours [15]. Let us note that in order to define the
user behvaiour, we abstract outputs and time values
since the are not relevant for this phase.

Definition 5 A user behaviour is a sequence of input
actions α = 〈i1, i2, . . . , in〉 where n ≥ 0. A database
DB is a multiset of user behaviours.

If α′ is a subtrace of α then we denote it by α′ ≤ α.
The set of all prefixes of α is denoted by tu(α).

We denote by prob(α,DB) the probability of finding
the user behaviour α in the database DB.

The prefix-closed frequency of a set of input se-
quences Σ over the database DB is defined as:

cDB(Σ) =
∑

α∈S
α′∈Σ

tu(α′)

prob(α,DB)

��

We assume that the world is regular. Therefore, if we
have a big number of user behaviours in the database,
we are able to consider that we have an acceptable
percentage of the amount of usual interactions with
the system. Let us note that the idea of being provided
with a knowledge base which contains a representation

429

of an expertise in the domain, that is our database, is
not new; it is a usual assumption considered in a expert
system.

In Figure 3 we adapt the previous algorithm pre-
sented in Figure 2 to include the extra information
that we have obtained by using our data mining pro-
cess. The goal of this algorithm is still to obtain a set
of correct invariants from the specification. The prob-
lem that we had in the previous algorithm, regarding
to the high number of invariants that we generated, is
solved by focusing only on the invariants that represent
a normal behaviour of a user interacting with the IUT.
Let us remember that we abstract the outputs and the
time values.

Next we define a set of auxiliary functions which are
used in the algorithm.

Definition 6 Let DB be a database. The function
msTOs computes the set of user behaviours associated
to a database, that is,

msTOs(DB) = {α|α ∈ DB}
The function moreR computes the most representa-

tive sequence of input actions of a database DB that
does not belong to a set of input sequences Σ, that is,

moreR(DB, Σ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α if ∃α : α ∈ msTOs(DB) \ Σ ∧
∀α′ : α′ ∈ msTOs(DB) \ Σ∧

cDB({α}) ≥ cDB({α′})
〈〉 otherwise

Let M = (S, s0, I,O, T) be a TFSM, and α =
〈i1, . . . , in〉 be a single sequence of input actions. The
function generateT’(M,α) computes a set of correct
invariants with respect to M corresponding to the in-
puts sequence α, that is,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ = h1, . . . , hn−1, in �→ {O}/p̂n � q̂ ∧
h1 = i1/o1/p̂1 ∧ . . . ∧ hn−1 = in−1/on−1/p̂n−1∧
∃ω = 〈i1/o1, . . . , in/o〉 ∈ nttr(M)∧
O = outputs(M,ω) ∧
∀1 ≤ k ≤ n : p̂k = [mT(ω, k, O), MT(ω, k, O)] ∧
q̂ =

∑
p̂k

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

��
Next, we briefly describe the main steps of this algo-

rithm. As input parameters of the algorithm we have
the specification, modelled using a TFSM, the database
DB containing the stored sequences of interactions be-
tween users and the IUT and, the significance degree
over the database that it is required. The results of
our algorithm is a set of correct invariants φ.

in : M = (S, s0, I,O, T) : TFSM
DB: Database.
C : IR+ Grade of relevance.

out: φ: Set of correct invariants.
Σ = ∅; φ = ∅;1

while (cDB(Σ) < C) ∧ (msTOs(DB) \ Σ �= ∅) do2

α = moreR(DB, Σ);3

Σ = Σ ∪ {α};4

end5

// We will enter this loop only if maximum6

// coverage is not reached7

while (cDB(Σ) < C) do8

Choose i ∈ I; Σ′ = Σ; Σ = ∅;9

while Σ′ �= ∅ do10

Choose α ∈ Σ′; Σ′ = Σ′ \ {α};11

Σ = Σ ∪ {α} ∪ {i · α};12

end13

end14

// Loop to generate invariants from stored15

// information16

while (Σ �= ∅) do17

Choose α ∈ Σ; Σ = Σ \ {α};18

φ = φ ∪ generateT’(M,α);19

end20

return φ;21

Figure 3. Algorithm for generating invariants
from a TFSM using statistical information.

We have two different phases in this algorithm. The
first one selects a set of user behaviours Σ which rep-
resents at least the grade of relevance established. Ini-
tially we choose the most significant sequences of user
interactions from the database applying the function
moreR. If the grade of relevance that we obtain af-
ter computing all sequences of user interactions in the
database is less than the one requied, we extend the
traces in Σ until we reach it. The second phase uses
the set Σ and generates a set of correct invariants with
respect to the provided specification, storing them in φ
which will be the set that the algorithm returns. The
function generateT′, given in Definition 6 is used for
generating a set of correct invariants given a sequence
of inputs. Let us remark that this function is differ-
ent form the function generateT used in the previous
algorithm. The new function considers a sequence of
inputs, while the previous one considered a sequence of
input/output pairs.

When we compare the set of invariants obtained
from this second algorithm with respect to the set of
invariants obtained from the first algorithm we see that

430

the cardinal of this new set is always less than or equal
to the obtained with respect to the first one.

4 Conclusions and Future Work

In this paper we have extended our passive testing
framework with two algorithms to generate invariants
from the specification. Our invariants can be seen as
rules that reflect functional and non-functional aspects
of the specification that must be hold by any trace pro-
duced by the IUT. As usual, the set of all possible traces
from an implementation is infinite and we want to gen-
erate a representative set of invariants which reflect
the most often interactions between users and imple-
mentation. We present a methodology based on data
mining from a database which contains the interactions
between users and the system, in order to obtain the
most frequent interactions sequences. We use this ex-
tra information to guide the second algorithm.

As future work we will focus on adapting a formal
framework, such as the one presented in [2], to the
task of representing a user model which reflects the
behaviour of a user. We will use this model to reflect
the probability to perform an action and we will adapt
the second algorithm provided in this paper with this
new formalism.

References

[1] R. Agrawal, T. Imieliński, and A. Swami. Min-
ing association rules between sets of items in large
databases. In 19th ACM Int. Conf. on Manage-
ment of Data, SIGMOD’93, pages 207–216. ACM
Press, 1993.

[2] C. Andrés, L. Llana, and I. Rodŕıguez. For-
mally comparing user and implementer model-
based testing methods. In 4th Workshop on
Advances in Model Based Testing, A-MOST’08,
pages 1–10. IEEE Computer Society Press, 2008.

[3] C. Andrés, M.G. Merayo, and M. Núñez. Pas-
sive testing of timed systems. In 6th Int. Sym-
posium on Automated Technology for Verification
and Analysis, ATVA’08, LNCS 5311, pages 418–
427. Springer, 2008.

[4] E. Bayse, A. Cavalli, M. Núñez, and F. Zäıdi.
A passive testing approach based on invariants:
Application to the WAP. Computer Networks,
48(2):247–266, 2005.

[5] A. Benharref, R. Dssouli, M. Serhani, and
R. Glitho. Efficient traces’ collection mechanisms

for passive testing of web services. Information &
Software Technology, 51(2):362–374, 2009.

[6] A. Cavalli, C. Gervy, and S. Prokopenko. New
approaches for passive testing using an extended
finite state machine specification. Information and
Software Technology, 45:837–852, 2003.

[7] E. Frank, M. Hall, G. Holmes, R. Kirkby, and
B. Pfahringer. Weka - a machine learning
workbench for data mining. In O. Maimon
and L. Rokach, editors, The Data Mining and
Knowledge Discovery Handbook, pages 1305–1314.
Springer, 2005.

[8] R.M. Hierons, K. Bogdanov, J.P. Bowen,
R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe,
M. Harman, K. Kapoor, P. Krause, G. Luettgen,
A.J.H Simons, S. Vilkomir, M.R. Woodward, and
H. Zedan. Using formal methods to support test-
ing. ACM Computing Surveys, 41(2), 2009.

[9] R.M. Hierons, J.P. Bowen, and M. Harman, ed-
itors. Formal Methods and Testing, LNCS 4949.
Springer, 2008.

[10] D. Lee, A.N. Netravali, K.K. Sabnani, B. Sugla,
and A. John. Passive testing and applications to
network management. In 5th IEEE Int. Conf.
on Network Protocols, ICNP’97, pages 113–122.
IEEE Computer Society Press, 1997.

[11] T. Mielikäinen. Frequency-based views to pat-
tern collections. Discrete Applied Mathematics,
154(7):1113–1139, 2006.

[12] R. E. Miller, D. Chen, D. Lee, and R. Hao. Cop-
ing with nondeterminism in network protocol test-
ing. In 17th Int. Conf. on Testing of Communi-
cating Systems, TestCom’05, LNCS 3502, pages
129–145. Springer, 2005.

[13] G.J. Myers. The Art of Software Testing. John
Wiley and Sons, 2nd edition, 2004.

[14] M. Tabourier and A. Cavalli. Passive testing and
application to the GSM-MAP protocol. Informa-
tion and Software Technology, 41:813–821, 1999.

[15] D. Taniar and J. Goh. On mining movement pat-
tern from mobile users. International Journal of
Distributed Sensor Networks, 3(1):69–86, 2007.

431

DeLLIS: a Data Mining Process for Fault Localization

Peggy Cellier, Mireille Ducassé, Sébastien Ferré, Olivier Ridoux
University of Rennes 1/INSA of Rennes/IRISA ∗

Abstract

Most dynamic fault localization methods aim at totally
ordering program elements from highly suspicious to inno-
cent. This ignores the structure of the program and creates
clusters of program elements where the relations between
the elements are lost. We propose a data mining process that
computes program element clusters and that also shows de-
pendencies between program elements. Experimentations
show that our process gives a comparable number of lines
to analyze than the best related methods while providing a
richer environment for the analysis. We also show that the
method scales up by tuning the statistical indicators of the
data mining process.

1. Introduction

A large amount of information can be collected from

program executions, for instance the executed lines, the val-

ues of variables or the values of predicates. We call that

information the events of the execution, they constitute the

execution trace. Dynamic fault localization methods that

compare execution traces, distinguish two sorts of execu-

tions, passed and failed executions. Passed executions be-

have according to their specification, failed executions do

not. These methods are based on the intuition that, firstly,

the events that appear only in the traces of failed execu-

tions are more likely to be erroneous, and, secondly, the

events that appear only in the traces of passed executions are

more likely to be innocent. For instance, the nearest neigh-

bor method, by Renieris and Reiss [11], takes into account

only one failed execution. A passed execution “near” to the

failed execution is then selected. The difference between

the trace of the failed execution and the trace of the passed

execution is presented as the suspicious events. Events are

the executed lines. For the nearest neighbor method, the

lines that appear in the traces of both passed and failed exe-

cutions are innocent. However, many trace events belong to

the traces of both passed and failed executions. The worst

∗firstname.lastname@irisa.fr

case of that method appears when the closest passed execu-

tion executes the same lines as the failed execution; no line

is suspicious.

In order to solve that problem, the Tarantula method,

by Jones et al. [8], considers as suspicious the lines that

are executed “often” by failed executions and “seldom” by

passed executions. The notion of “often” and “seldom”

is measured by a score value. A score, assigned to each

line of the program, takes into account the frequencies at

which the line appears in the trace of failed and passed ex-

ecutions. Lines which are executed together for all execu-

tions have the same score value, for example lines that be-

long to the same basic block. Unfortunately, lines can have

the same score value whereas there is no relation between

them. Conversely, let us assume a conditional statement in

which a branch always fails and the other branch always

succeeds. The condition, the fail branch and the success

branch may have very different scores although they are

closely related. Thus, completely ordering events by their

score may agregate unrelated events and may separate re-

lated events. Nevertheless, most of the fault localization

methods [4, 9, 10, 12, 13] try to give a total ordering of the

trace events based on their score.

In this paper we describe DeLLIS, a process that takes

into account the dependencies between elements of the

traces. Thanks to the combination of two data mining tech-

niques, DeLLIS computes all differences between execu-

tion traces and, at the same time, gives a partial ordering

of those differences. Thus, DeLLIS gives more than a set

of independent lines like the other methods, it also high-

lights the existing relations between them. The data min-

ing details are given in [2]. This article focuses on exper-

imentations, from a software engineering perspective. We

first show on the programs of the Siemens suite [5], pro-

vided by SIR (Software-artifact Infrastructure Repository1)

that our method gives a comparable number of lines to ana-

lyze while providing a richer environment for the analysis.

Then, we show that the method scales up for a program of

several thousands of lines by tuning the statistical indicators

of the data mining techniques.

In the sequel, Section 2 briefly presents two techniques

1http://sir.unl.edu/content/sir.html

432

size sun distance moons
small medium large near far with without

Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×

Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×

Table 1. Context of planets.

Figure 1. Concept lattice of Table 1

of data mining. Section 3 describes how they are used for

fault localization. Section 4 shows the experiments.

2. Background Knowledge on Data Mining

We briefly present the two data mining techniques used

in the sequel: Association Rules (AR) and Formal Concept

Analysis (FCA). AR allows interesting regularities to be

found. FCA allows relevant clusters to be computed and

partially ordered. The input of both techniques is a formal
context, i.e. a binary relation describing elements of a set of

objects by subsets of attributes (properties). Table 1 is an

example of context where the objects are the solar system

planets and the attributes are the properties of the planets.

Each planet is described by its properties.

Association Rules AR is a data mining task with a well-

documented rationale [1]. An association rule has the form:

P → C, where P and C are sets of attributes. P is called

the premise of the rule and C the conclusion. In the con-

text of Table 1, far from the sun → with moons is an

association rule, which means that to be far from the sun

implies to have moons. An association rule is only an asser-

tion; it may suffer exceptions. Statistical indicators measure

the relevance of association rules (see Section 3).

Formal Concept Analysis In FCA [6], the set of all

objects that share a set of attributes is called the extent
of the set of attributes. The set of all attributes shared

by all elements of a set of objects is called the intent of

the set of objects. A formal concept is defined as a pair

Figure 2. Process to build the failure lattice

(set of objects, set of attributes), where the set of ob-

jects is the extent of the set of attributes and the set of at-

tributes is the intent of the set of objects.

The set of all concepts of a context can be represented

by a concept lattice. The concepts are partially ordered

in the concept lattice. X is a subconcept of Y if there

is a path in the lattice between X and Y and X is be-

low Y , it is denoted by X ≤ Y . In the concept lat-

tice, each attribute and each object labels only one con-

cept. Namely, each object labels the most specific concept

(i.e. with the smallest extent) to which it belongs. Each

attribute labels the most general concept to which it be-

longs. Figure 12 shows the concept lattice associated to the

context of Table 1. For example, the extent of concept A

is {Jupiter, Saturn, Uranus, Neptune} and its intent is

{far from the sun, with moons}. Regarding A’s extent,

Jupiter and Saturn label the more specific concept G and

Uranus and Neptune label the more specific concept H. The

attribute with moons labels the more general concept C.

Thus only the attribute far from sun labels concept A.

3. Data Mining and Fault Localization

A Lattice of Failures The whole process is summarized

in Figure 2. It aims at building what we call a failure lattice.

The first step is the execution of the test cases. A summary

of each execution is stored in a trace composed of events. In

addition, we assume that each execution trace contains the

verdict of the execution, PASS (p) if the execution pro-

duces the expected results and FAIL (f) otherwise. The

multiset of all traces forms the trace context. The objects
of the trace context are the test cases. The attributes are all

2This lattice and all the following ones are generated with the ToscanaJ

tool (http://toscanaj.sourceforge.net/).

433

the events and the two verdicts, p and f . Each test case is

described in the trace context by the events that belong to

its trace and the verdict of the execution. Note that the ex-

tent of a set of trace events E, extent(E), denotes all the

test cases that contain all elements of E in their trace. Thus,

the extent of FAIL, extent({f}), denotes all the test cases

that fail. The second step of the process aims at selecting

events that appear often in failed executions and seldom in

passed executions. From the trace context, specific asso-

ciation rules, called fault localization rules, are computed.

The premise of a rule is a set of events and the conclusion

is FAIL: E → f .

We use two statistical indicators to select events that are

involved in failed tests: support and lift. The support of a

fault localization rule E → f is the number of failed exe-

cutions that have in their trace all events of E. It is defined

as3: sup(E → f) = ‖extent(E) ∩ extent({f})‖.

For the fault localization problem, a threshold of the sup-

port, minsup, indicates the minimum number of failed exe-

cutions that should be covered by a rule in order to that rule

be selected.

The lift of rule E → f indicates if the occurrence of the

premise increases the probability to observe a failed execu-

tion. It is defined as:

lift(E → f) =
sup(E → f) ‖All exec‖

‖extent(E)‖ ‖extent({f})‖
.

There are three possibilities. In the first case,

lift(E → f) < 1, executing E decreases the probability to

fail (the premise repels the conclusion). In the second case,

lift(E → f) = 1, executing E does not impact the prob-

ability to fail (E and f are independant). In the last case,

lift(E → f) > 1, executing E increases the probability to

fail (the premise attracts the conclusion).

The computed association rules are partially ordered by

set inclusion of their premise. Let r1 = E1 → f and

r2 = E2 → f be two rules; rule r1 is more specific than

r2 if and only if E1 ⊃ E2. It is denoted by r1 < r2. In order

to display the relations between the events of the program

that have been filtered, the last step of the process builds the

failure context. In that context, the objects are the associa-

tion rules; the attributes are events. Each association rule is

described by the events of its premise. The failure lattice is

the concept lattice associated with the failure context. The

failure lattice highlights the partial ordering of rules accord-

ing to their premises.

Statistical Indicators The concepts in the failure lattice

obey several interesting properties with respect to the sta-

tistical indicators. Firstly, the support of rules that label the

concepts of the failure lattice decreases when exploring the

lattice top-down. Thus, setting minsup equal to one object

3In the following, ‖X‖ denotes the cardinal of a set X.

[3393] int GetReal(double *reale,
struct charac ** tp){

[3396] struct charac *curr,

**curr_ptr = &curr;
[3397] int i = 0;
[3398] char num[MAX_REAL_LENGTH+1];
[3399] char ch;
[3403] *curr_ptr = *tp;
[3412] ch = TapeGet(curr_ptr);
[3416] if ((isdigit(ch) == 0)

&& (ch != ’+’) && (ch!=’-’)
&& (ch != ’.’))

[3417] return 13;
[3419] num[i] = ch;
[3425] i = i + 1;
[3426] ch = TapeGet(curr_ptr);

[3432] while (((isdigit(ch)
|| (ch == ’.’)
|| (ch == ’e’) || (ch == ’E’)
|| (ch == ’-’))
&& ((*curr_ptr) != NULL))) {

[3433] if (i < MAX_REAL_LENGTH)
[3434] num[i] = ch;
[3438] i = i + 1;
[3439] ch = TapeGet(curr_ptr);
[3443] };
[3445] if (i >= MAX_REAL_LENGTH)
[3446] num[MAX_REAL_LENGTH] = ’\0’;
[3447] else
[3448] num[i] = ’\0’;
[3456] *reale = atof(num);
[3464] tp = curr_ptr; // FAULTY LINE
// Correct line: *tp = *curr_ptr
[3466] return 0;}

Figure 3. Excerpt of Mutant 6 of Space

is equivalent to searching for all rules that cover at least one

failed execution. Setting minsup equal to the number of

failed executions is equivalent to searching for a common

explanation for all failures. We call support cluster a maxi-

mal set of connected concepts labelled by rules which have

the same support value.

Secondly, the lift value strictly increases when explor-

ing a support cluster top-down. The threshold of the lift,

minlift, has a lower bound equal to 1, because when

lift < 1 a rule is not relevant. It also has an upper bound,

maxlift, equal to
‖All exec‖
‖extent(f)‖ . In our approach, the lift in-

dicates how the presence of a set of events in an execution

trace improves the probability to have a failed execution.

The lift threshold can be seen as a resolution cursor inside

the support clusters. On the one hand, a low minlift im-

plies a good resolution of the failure lattice, i.e. the events

are separated, but it is costly because more rules are com-

puted and thus more concepts. On the other hand, selecting

a high minlift is cheaper in terms of number of computed

rules and concepts but many events are aggregated.

Example We illustrate our approach on a faulty version of

the Space program from the SIR repository. Space is writ-

ten in C and contains 9126 lines of code (3638 of which

are executable). For the example, events are the executed

lines. An excerpt of the faulty code source is presented Fig-

ure 3. The fault, at line 3464, is related to a pointer. Instead

of assigning the value of the memory pointed by tp to the

memory pointed by curr ptr, both pointers point to the

same memory space.

Figure 4 shows the related failure lattice for minsup =
86.79% and minlift = 1. Each concept of that lattice is

actually labelled by a rule but we have omitted to display

some of them for readability reasons. The failure lattice

contains one support cluster only. The support value of this

support cluster is 86.79% which corresponds to the propor-

tion of failed executions for this case

As already mentioned, the rules are partially ordered

in the failure lattice. For example, rule 1 is more spe-

cific than rule 2 (rule 1 < rule 2). Rule 1 contains

in its premise all events that belong to the premise of

434

Figure 4. Failure lattice for Mutant 6 of Space

rule 2, i.e. all lines that label concepts above concept 2

(3416, 3412, 3403, 4017, ...). In addition, rule 1 contains in

its premise 12 events that do not belong to the premise of

rule 2: 3466, 3464, 3456, and nine others not shown. The

most specific rules to explain the faults are at the bottom

of the failure lattice. That’s why the failure lattice is ex-

plored bottom-up. The faulty line is in the most specific

concept, at the bottom of the lattice. It is grouped together

with eleven other lines. They are always executed together

with line 3464 for this test suite. As can be seen on Figure 3,

they all belong to the same basic block.

4. Experimental Study

We compare DeLLIS with existing methods on the

Siemens suite. Then, we show that the method scales up

for the Space program. DeLLIS uses a set of independent

tools. The programs are traced with gcov4. The association

rules are computed with the algorithm proposed in [3].

4.1. Siemens Suite Programs

In this section, we quantitatively compare DeLLIS to

the methods for which results are available regarding the

Siemens suite. These methods are Tarantula [8], Intersec-

tion Model (Inter Model), Union Model, Nearest Neighbor

(NN) [11], Delta Debugging (DD) [4] and χDebug [12].

There are a total of 132 mutants of 7 programs (Table 2),

4http://gcc.gnu.org/onlinedocs/gcc/Gcov57.html

Program Description ‖Mutants‖ LOC ‖Tests‖
print tokens lexical analyzer 7 564 4130
print tokens2 lexical analyzer 10 510 4115
replace pattern replacement 32 563 5542
schedule priority scheduler 9 412 2650
schedule2 priority scheduler 10 307 2710
tcas altitude separation 41 173 1608
tot info information measure 23 406 1052

Table 2. Siemens suite programs

each containing a single fault on a single line. Let Fm de-

notes the fault of mutant m. Each program is accompanied

by a test suite (a list of test cases). Some mutants do not fail

for the test suites or fail with a segmentation fault. They are

not considered by other methods, thus we do not consider

them. There remains 121 usable mutants.

For the experiments, we set statistical indicator values

such that the lattices for all the debugged programs are of

similar size. We have chosen, arbitrarily, to obtain about

150 concepts in the failure lattices. That number makes the

failure lattices easy to display and check by hand. Nev-

ertheless, in the process of debugging a program, it is not

essential to display rule lattices in their globality.

Experimental Settings We evaluate two strategies. The

first strategy consists in starting from the bottom and

traversing the lattice to go straightforwardly to the fault con-

cept. This corresponds to the best case of our approach.

This strategy assumes a competent debugging oracle, who

knows at each step the best way to find the fault with clues.

The second strategy consists in choosing a random path

from the bottom in the lattice until a fault is located. This

strategy assumes a debugging oracle who has little knowl-

edge about the program, but is still able to recognize the

fault when presented to him. Using a “Monte Carlo” ap-

proach and thanks to the law of large numbers, we compute

an average estimation of the cost of this strategy.

Metrics We use the Expense metric of Jones et al. [7]:

Expense(Fm) = ‖fault context(Fm)‖
size of program

∗ 100
where fault context(Fm) is the set of lines explored be-

fore finding Fm. The Expense metric measures the per-

centage of lines that are explored to find the fault.

For both strategies, the best strategy and the random

strategy, Expense is thus as follows:

ExpenseB(Fm) = ‖fault contextBest(Fm)‖
size of program

∗ 100.

ExpenseR(N, Fm) = 1
N

∗
N∑

i=1

‖fault contexti(Fm)‖∗100
size of program

.

ExpenseR is the arithmetic mean of the percentages of

lines needed to find the fault during N random explorations

of the failure lattice. A random exploration is a sequence

of random paths in the rule lattice. A random path of the

failure lattice is selected. If the fault is found on that path,

435

Figure 5. Frequence values of the methods

the execution stops and returns the fault context. Other-

wise a new path is randomly selected, the previous fault

context is added to the new fault context and so on un-

til the fault is found. In the experiments, if after 20 se-

lections the fault stays unfound, the returned fault context

consists of all the lines of the lattice. We have noted that

between 10 and 50, the computed results are not signifi-

cantly different. Number N is chosen so that the confi-

dence on ExpenseR is about 1%. For any method M ,

ExpenseM allows to compute FreqM (cost) which mea-

sures how many failures are explained by M for a given

cost: FreqM (cost) = ‖{m|ExpenseM (Fm)≤cost}‖
total number of mutants

∗ 100.

Results FreqM (cost) can be plotted on a graph, so that

the area under the curve indicates the global efficiency of

method M . Figure 5 shows the curves for all the meth-

ods 5. The DeLLIS strategies are represented by the two

thick lines. For DeLLIS Best Strategy about 21% of mutant

faults are found when inspecting less than 1% of the source

code, and 100% when inspecting less than 70%. The best

strategy of DeLLIS is as good as the best methods, Taran-

tula and χDebug, and the random strategy of DeLLIS is not

worse than the other methods. We conjecture that the strat-

egy of a human debugger is between both strategies. A very

competent programmer with a lot of knowledge will choose

relevant concepts to explore, and will therefore be close to

the best strategy measured here. A regular programmer will

still have some knowledge and will be in any case much

better than the random traversal of the random strategy.

Whereas χDebug Best has better results, DeLLIS must

be compared to χDebug Worst. Indeed, when the faulty line

is grouped with other lines because they have the same score

or they label the same concept, the faulty line is considered

to be inspected first in χDebug Best, and last in χDebug

Worst and DeLLIS. Therefore, our method is equivalent to

5The detailed results of the experiments can be found on:

http://www.irisa.fr/LIS/cellier/publis/these.pdf

Figure 6. Expense values

Figure 7. Number of concepts

the best methods dealing with fault on a single line, when

comparing the number of lines to explore. Furthermore,

DeLLIS gives more than a set of independent lines, it high-

lights the existing relations between them.

4.2. The Space Program

In this section, we study the behavior of our method on a

program of several thousands lines, the Space program. In

particular, we present how the expense value and the num-

ber of concepts of the best strategy vary with respect to the

minlift value. Space has 38 associated mutants. SIR con-

tains 27 usable mutants and 1000 test suites. For the experi-

ment, we randomly choose one test suite such that, for each

of the 27 mutants, at least one test case of the test suite fails.

In the experiments, the support threshold is set to the

max value of the support. The mutants contain a single

fault. The faulty line is thus executed by all failed execu-

tions. Different values of the lift threshold are set for each

mutant in order to study the behavior of DeLLIS (8 values

from 1 to (maxlift− 1) ∗ 0.95 + 1). We present in the pa-

per two representative threshold values among the studied

ones. The first lift threshold is a value close to the max

value: (maxlift − 1) ∗ 0.95 + 1 (for maxlift see Sec-

tion 3). The second lift threshold is (maxlift − 1)/3 + 1.

436

Results Figure 6 shows the expense values for each mu-

tant when minlift is set to 95% of maxlift (light blue) and

33% of maxlift (dark red). The Expense value is presented

in a logarithmic scale. The expenses are much higher with

the larger minlift. When minlift = 95% of maxlift,
some mutants, for example mutant 1, have an expense value

equal to 100%, representing 3638 lines, namely the whole

program. When minlift = 33% of maxlift, for all but 4

mutants, the percentage of investigated lines is below 10%.

And for most of them, it has dropped below 1%. Note that

1 line corresponds to 0.03% of the program. Thus, 0.03%

is the best Expense value that can be expected. Other ex-

periments on intermediate values of minlift confim that

the lower minlift, the lower the expense value is, and the

fewer lines have to be examined by a competent debugger.

When minlift = 33% of maxlift, DeLLIS, like

Tarantula [8], is much better at detecting the fault than on

the much smaller programs of the Siemens suite. For 51%

of the versions, less than 1% of the code needs to be ex-

plored to find the fault. For 85% of the versions, less than

10% of the code needs to be explored to find the fault.

Figure 7 sheds some light on the results of Figure 6

and also explains why it is not always possible to start

with a small minlift. The figure presents the number of

concepts for each mutant when minlift is set to 95% of

maxlift and 33% of maxlift. The number of concepts

is also presented in a logarithmic scale. For minlift =
95% maxlift, for all but one mutant, either no rule or a

single rule is computed. In the first case, the whole pro-

gram has to be examined (Mutant 1). In the second case,

the expense value is proportional to the number of events in

the premise of the rule. For example, this represents 1571

lines for Mutant 5. When reducing minlift, the number

of concepts increases and the labelling of the concepts is

reduced. Traversing the failure lattice, at each step, fewer

lines have to be examined, hence the better results for the

Expense values with a low minlift.

However, for minlift = 33% of maxlift, for almost

half of the mutants, the number of concepts is above a thou-

sand and for one mutant it is even above 10000. There-

fore, whereas Expense decreases when minlift increases,

the cost of computing the failure lattices increases. Fur-

thermore, when the number of concepts increases so does

the number of possible paths in the lattice. For the best

strategy this does not make a difference. However, in real-

ity even a competent debugger is not guaranteed to always

find the best path at once. Thus, a compromise must be

found in practice between the number of concepts and the

size of their labelling. At present, we start computing the

rules with a relatively low minlift. If the lattice exceeds a

given number of concepts, the computation is aborted and

restarted with a higher value of minlift following a divide

and conquer approach.

5 Conclusion

The DeLLIS process combines two data mining tech-

niques, association rules and formal concept analysis in or-

der to compute a failure lattice that gives clues for fault

localization. The partial ordering of the lattice shows the

dependencies between the code instructions. Experiments

with the Siemens suite simulate a highly competent de-

bugger and a mildly competent one. They show that, in

both cases, DeLLIS quantitatively compares well with other

methods. Experiments with the Space program show that

the method scales up for programs of several thousand lines

by tuning the lift threshold.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associ-

ations between sets of items in massive databases. In Int.
Conf. Management of Data, pages 207–216. ACM, 1993.

[2] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux. Formal con-

cept analysis enhances fault localization in software. In Int.
Conf. on Formal Concept Analysis. Springer-Verlag, 2008.

LNCS 4933.
[3] P. Cellier, S. Ferré, O. Ridoux, and M. Ducassé. A param-

eterized algorithm to explore formal contexts with a taxon-

omy. Int. J. of Foundations of Computer Science, 2008.
[4] H. Cleve and A. Zeller. Locating causes of program failures.

In Proc. of the Int. Conf. on Software Engineering. ACM

Press, 2005.
[5] H. Do, S. G. Elbaum, and G. Rothermel. Supporting con-

trolled experimentation with testing techniques: An infras-

tructure and its potential impact. Empirical Software Engi-
neering: An Int. J., 10(4):405–435, 2005.

[6] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1999.

[7] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in

parallel. In Proc. of the Int. Symp. on Software Testing and
Analysis, pages 16–26, July 2007.

[8] J. A. Jones and M. J. Harrold. Empirical evaluation of

the tarantula automatic fault-localization technique. In Int.
Conf. on Automated Software Engineering, pages 273–282.

ACM, 2005.
[9] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.

Scalable statistical bug isolation. In Int. Conf. Programming
Language Design and Implementation. ACM Press, 2005.

[10] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statisti-

cal debugging: A hypothesis testing-based approach. IEEE
Trans. Soft. Eng., 32(10):831–848, 2006.

[11] M. Renieris and S. P. Reiss. Fault localization with near-

est neighbor queries. In Int. Conf. on Automated Software
Engineering. IEEE, 2003.

[12] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai. Effective fault

localization using code coverage. Int. Computer Software
and Applications Conf., 1:449–456, 2007.

[13] W. E. Wong, Y. Shi, Y. Qi, and R. Golden. Using an rbf

neural network to locate program bugs. Int. Symp. on Soft.
Reliability Engineering, 0:27–36, 2008.

437

Extending AOP to Support Broad Runtime
Monitoring Needs

Amjad Nusayr Jonathan Cook

New Mexico State University New Mexico State University

anusayr@cs.nmsu.edu joncook@nmsu.edu

Abstract—Runtime monitoring, where some part of a pro-
gram’s behavior and/or data is observed during execution, is
a very useful technique that software developers to use for un-
derstanding, analyzing, debugging, and improving their software.
Aspect oriented programming is a natural fit for supporting the
wide ranging instrumentation needs of runtime monitoring, but
so far the limitations of AOP frameworks, namely supporting
only code-based weaving and only a limited set of code feature
joinpoint types, have hindered the application of AOP to many
runtime monitoring needs. In this paper we present ideas for
extending AOP to support weaving on dimensions other than
source code, and for extending code-based weaving to finer-
grained language constructs.

I. INTRODUCTION

Aspect oriented programming is an elegant framework

for constructing and implementing program behavior that

is orthogonal to the underlying program code base. This

type of crosscutting concern historically meant that the code

implementing the behavior would be scattered around in

the program and not localized nor modularized. From the

beginning of AOP, it has been observed that runtime moni-

toring is a natural domain that benefits from AOP, with the

“logging” monitor being the “Hello World” example for AOP.

Instrumentation for runtime monitoring perfectly fits the idea

of a crosscutting concern.

Despite this natural fit and several examples of such use

([4], [6], [9], [14], [20]), runtime monitoring has not seen a

massive shift towards AOP systems. One could pessimistically

say that this is because AOP is not “standard” in the industrial

development toolkit; but even if the shipping product does not

use AOP, AOP could still be used in the development environ-

ment to perform monitoring tasks needed during development.

Rather, we believe this stall is because of two reasons. One,

existing popular AOP frameworks have not offered a great

enough level of weaving detail to be more generally useful for

runtime monitoring (e.g., statement coverage analysis needs

more than just method call and field access weaving, and

indeed the citation [4] above needed to extend the aspect

language). Two, existing AOP ideas and frameworks have

limited the axis of weaving to just the source code, excluding

many monitoring needs that might not be easily translatable

This work was supported by the National Science Foundation under grant
CCF-0541075. Views expressed herein are those of the authors and do not
necessarily represent those of the Foundation.

to code-centric instrumentation (e.g., sampling-based profiling

may need weaving based on execution time intervals rather

than places in the code). We are not the first to note this;

similar limitations were noted earlier in [20].

This paper presents ideas for extending the notions of AOP

to include more detailed code-based weaving, and to include

weaving over other dimensions of a program rather than

just the source code. Others have noted and offered various

unique additions and extensions to current AOP models (see

Sections II and IV); our contribution here is a presentation

of the scope and structure of extensions needed for runtime

monitoring in particular.

II. BACKGROUND

A. Runtime Monitoring

Runtime monitoring is the act of observing an executing

system in order to learn something about its dynamic behavior.

Runtime monitoring generally refers only to the act of mon-

itoring, which is in turn typically employed by some higher

level analysis [2], [11], [21].

Runtime monitoring requires some sort of instrumentation,

which probes the executing system and reports back something

about the data or execution of that system. Instrumentation is

often inserted in-line into a program, so that each time the

program hits a certain point of execution, the instrumentation

is executed. Sometimes, such as with debugger breakpoints,

the instrumentation is hardware-assisted to make it much

more efficient. Some monitoring approaches may use timer-

based instrumentation, such as sampling-based code profiling

(e.g., [16]), while others may use memory page protections to

signal an event (e.g., [22]), and still others use probabilistic

or counter-based sampling (e.g., [15]).

If a monitoring or higher-level analysis computation is

not negligible, the instrumentation may simply record some

minimal information about the event and store it for later

offline processing, or deliver it through a queue to another

thread or process that is performing the more intensive

monitoring computation. Effectively creating the necessary

instrumentation, and making it efficient, are complex and

technologically difficult tasks, often involving the creation of

specialized instrumentation tools by hand.

Monitors span the gamut from “barely noticeable” to “ex-

tremely painful” in terms of their impact on application perfor-

mance. Sampling-based code profilers are extremely efficient,

gathering very simple data periodically while the program

438

executes, and performing offline analysis to construct the

execution profile [16]. Debugger expression watchpoints, on

the other hand, can cause 4-6 orders of magnitude slowdown

if they have no hardware support and thus need to evaluate

an expression after each instruction [18]. Complex analyses

such as the invariant inference of Daikon [8] require heavily

instrumented programs to collect data variable history, and also

use offline analyses to run the inference algorithms.

B. Aspect Oriented Programming

Aspect Oriented Programming frameworks also instrument
an underlying base program, but in AOP this purpose is more

generic, to weave in any crosscutting functionality that should

be factored out of the base program and not be replicated in

the many locations in the program source where it is needed.

A basic AOP model defines some specific fundamental

pointcut designators (PCD’s),1 which are features in the pro-

gram execution where the advice of an aspect can be weaved

in. A composition language allows a pointcut expression to

combine and constrain these to define a pointcut, which is

a set of program joinpoints that satisfy the expression, and

where the advice will be woven in.

In existing AOP frameworks, the fundamental pointcut

designators are chosen somewhat pragmatically: they must be

actually useful to an aspect programmer, but they must also

be relatively practical to implement in the AOP system. Thus,

in existing AOP systems, pointcut designators are typically

points in the program where inserting instrumentation is “not

too hard”; for example, method calls are very often used as

one of the fundamental pointcut designators.

The most popular AOP system, AspectJ, implements AOP

for Java programs. Its pointcut designators include method

calls, method executions, object field accesses, exceptions, and

a few others [13].

III. EXTENDING AOP IN DIMENSION AND DETAIL

There is a clear synergy between the ideas of AOP and

the needs of runtime monitoring, and the only barrier to

allowing AOP to be the unifying framework for almost all of

runtime monitoring is the fact that current AOP frameworks

are far too limited in the level of detail they support weaving

at, and the fundamental style of weaving they support. The

heart of our contribution here is to detail the extensions to

current AOP ideas that will enable AOP to support the vast

majority of monitoring needs. This paper is presenting initial

ideas for these extensions, and thus the tone of this section is

speculative; much more work is needed to experiment with and

refine the specific forms and implementations of the various

proposed extensions. In [17], a short workshop position paper,

we very briefly formulated the idea of extending AOP into

heretofore overlooked dimensions in order to support runtime

monitoring. Here we elaborate and refine those initial ideas.

1Various literature refers to the basic built-in weaving-point designators
of an aspect language as joinpoint types, primitive pointcuts, and pointcut
designators. We use the latter term in this paper.

The general view of AOP thus far has been a one, or at most

two, dimensioned view of aspects: they get woven into a base

program based on joinpoints that are code based or data based.

That is, the built-in set of pointcut designators that can be part

of a pointcut specification are based on programming language

features: method call, field access, etc. By far most pointcut

designators get mapped to code features, and even the data-

access pointcut designators often get mapped to code-based

concepts (i.e., all expressions that access an object field).
We propose a more extensive multi-dimensioned view of

AOP. Aspect weaving should not be limited to only be done

based on code features, and this is especially important for

AOP to support the broad needs of runtime monitoring. We

identify four dimensions of weaving that are needed.

• Code: The traditional weaving over code features.

• Data: Weaving over concepts in data space.

• Time: Weaving based on time constraints.

• Sampling: Weaving that supports sampling-based instru-

mentation.

Each of these is detailed below. In describing the concepts,

we are not concerned at all with whether or not they are

difficult to implement. We only mean to offer the idea, and

justify its potential utility.
1) Code: Code dimension weaving is well understood

already, and most AOP frameworks support a variety of

code-based pointcut designators. We only mention here that,

for monitoring purposes, existing AOP frameworks are still

quite limited in the features that they support; statement level

coverage analysis and many other analyses depend on being

able to instrument down to the statement (or basic block)

level, yet current AOP systems do not support this. Analyses

integrated with various testing methods may need to capture

expression and sub-expression evaluation results, and other

analyses need similar detail in what they can capture; for AOP

to support such monitoring, the level of detail in terms of

program concepts that is exposed to advice weaving must be

much greater than current practice allows.
2) Data: Data dimension weaving has some, but very

limited, support in existing AOP frameworks. For example,

AspectJ has pointcut designators for object field accesses,

but not for accesses to local variables, array elements, or

arguments. Above the basic concepts of individual variables,

the data dimension could support weaving on higher level data-

oriented concepts, such as when a node in a data structure is

accessed, when references to objects have changed, or how

much space an application has allocated. In the allocation

example, garbage collection algorithms that trigger on space

usage could be seen as an aspect in the data dimension: when

the application’s space usage reaches the next triggering level,

the garbage collector is triggered to execute. Thus conceptu-

ally, AOP over non-code dimensions can be a unifying theory

for some current practices such as garbage collection and other

services, which others have already noted [5].
3) Time: The time dimension will weave aspect code not

based on location in code but on timers, either relative or

absolute. An obvious example of the utility of this dimension

439

is profiling, where a timer-based interruption of the program

samples where the program is at that point in time, and

constructs a statistical profile of the execution behavior of

the program. Other time-based uses would be to periodically

check data structure health or application progress. This might

be done over relative time, such as for every 10 minutes of

program execution time, or it might be over absolute time,

such as at 1:00am every Sunday night while the system is

more likely to be idle.

Further refinement of this idea could support specific fea-

tures of the particular programming languages and frameworks

it is deployed on. For example, in Java distinct timers per

thread might be useful, or per class or per object (an aspect

might be “quiescent” until an object has had X amount of

computational time on it, then is triggered and is allowed to

perform a check on the object’s state or deep state).

4) Sampling: The sampling dimension controls whether

or not the aspect is actually executed where woven, or not.

Current AOP assumes that every time a joinpoint satisfying

the pointcut expression is reached, the aspect will execute.

However, research in runtime monitoring has shown the utility

of sampling based approaches, where instrumentation is exe-

cuted probabilistically, either randomly or (more efficiently)

with a countdown/reset approach. AOP system could support

such monitoring needs inherently, by allowing weaving to be

done in this dimension.

Other types of counting are useful for certain runtime

monitoring situations. For coverage analysis without regards

to profiling, only a boolean “hit” flag is needed for each basic

block. Once the flag is set, no more monitoring for that block

is needed. Thus, being able to specify that an aspect execute

on only the first instance (or the first N for other scenarios)

would allow AOP to support this type of monitoring. Similarly,

some applications need to be allowed to start up and get past

an initialization or start up phase before it is useful to monitor

them. In this case, skipping the first N executions of an aspect

would be useful.

Many monitoring needs can benefit from “partial” monitor-

ing, from single sites that just need to control the overhead

of monitoring, to remote monitoring of user sites where small

portions of each user site can be monitored efficiently, and

results accumulated to understand the application as a whole.

The sample dimension would support this.

5) Integrating the dimensions: Each of the four dimensions

above have been shown by the examples given to be useful

axes on which to extend AOP for runtime monitoring. We

believe these dimensions and extensions will also be useful

for other applications of AOP, but we only focus on runtime

monitoring here. The question remains, though, on how they

integrate and interact with each other. As with existing AOP

pointcut designators, not all compositions of new PCD’s in

these dimensions would make sense, and the semantics of

some compositions need to be carefully specified.

The time dimension pointcut designators are usable by

themselves; in this case, the aspect would be executed at a

particular time, regardless of where the program is. This means

that the aspect could not assume some specific program state

or scope, and thus the reflective information available to the

aspect would be limited, or at the very least difficult to access.

Composing the time pointcut designators with others, such as

method invocations, brings in some design decisions because

it is virtually guaranteed that the two pointcut designators,

each designating an “instantaneous” event, would never be

simultaneously satisfied. More work is needed to design useful

semantics, but one approach would be to make the time

domain designator mean “at least this much time” when

composed with other designators.

Data dimension pointcut designators that track space usage

are similar to existing ideas in triggering garbage collection,

heap compaction, and other runtime efficiency services. Notice

that pointcut designators that deal with space usage reaching

a particular level must be edge-triggered rather than level-
triggered. That is, the aspect executes when the condition first

becomes true, and not continuously thereafter.

The sampling dimension is not usable by itself, but would

depend on being composed with other pointcut designators

that provide an underlying “real” joinpoint set over which

to perform the count or the probability. It could naturally be

composed with existing pointcut designators, and with both the

time and data proposed pointcut designators, although some

combinations may not be obviously useful.

IV. RELATED WORK

There is much recent activity and novel ideas for extending

AOP in manners similar to our work here, but we do not find

previous work that specifically laid out the ideas of various

weaving dimensions and types of detailed code weaving that

are particularly useful for runtime monitoring. Rajan [19]

and then Dyer and Rajan [7] are investigating very similar

ideas, explicitly working on arguing for more extensive join

point models (thus allowing more pointcut designators) and

embodying those in an intermediate language and virtual

machine support for weaving. Rajan and Sullivan were, as

far as we can tell, the first to make a clear note that current

AOP models are insufficient to support many monitoring tasks

such as coverage and profiling [20].

Harbulot and Gurd [10] used abc to extend AspectJ with

a pointcut designator for loops, specifically focusing on nu-

merical loops in scientific code. Bodden and Havelund [4]

created a race detection tool, also finding that the existing set

of pointcut designators was insufficient for their monitoring

needs, and implemented their own new pointcut designators

to specifically monitor locks and thus detect potential race

conditions. Khaled et al. [12] used AspectJ for program

monitoring, specifically for supporting program visualization.

Hamlen and Jones [9] used AOP for the security monitoring of

references, where security policies are checked in-line with the

reference access. Bockisch et al. [3] describe VM support for

dynamic join points, and this work may be able to provide

the underlying capabilities needed for supporting time and

data space dimension pointcut designators, and perhaps the

probability/counting dimension as well.

440

A very nice formal framework for Monitor-Oriented Pro-
gramming was detailed in [6]. This work describes the mon-

itoring task in high-level formal notations, and demonstrates

how AOP can be used to provide a rigorous framework for

building runtime verification analyses. However, from the

perspective of monitoring instrumentation, the MOP work in

some sense skipped the hard part, by simply implementing

their ideas on top of AspectJ. This means that all of the

ideas are limited in practice to be usable only at the level of

detail AspectJ provides: method call/return, field access, and

a few other program events. Our contribution in this paper is

relatively orthogonal to the MOP work; enabling MOP to use

our extensions would produce a very powerful monitoring and

verification framework.

V. CONCLUSION

This paper presented ideas for extending the normal AOP

concepts to support the full range of runtime monitoring needs.

We showed that new pointcut designators that operate at a

finer level detail over the base program’s code are needed,

and we proposed that AOP support dimensions of weaving

other than the source code: data, time, and sampling. We

believe that these and other new ideas for aspect weaving

will serve to enable AOP to be used for a large number of

program monitoring tasks. This will move runtime monitoring

from being dependent on highly technical instrumentation

requirements to being generally available to developers who

need particular monitoring tasks. Although not addressed in

this paper, we also imagine that these new dimensions of

weaving, and added detail of code-dimension weaving, will

be useful for other purposes that AOP supports. The ideas

of different dimensions also open up new realms of thinking

about dyanmic weaving and runtime support, and other parts

of “typical” AOP frameworks.

Many of our ideas are still preliminary and need not only

implementation, but also experimentation and refinement. We

are continuing to work on implementing various pointcut

designators, in particular more of the code-based designators.

We are also beginning to experiment with using the designators

to support common runtime monitoring tasks, and using this

experience to refine the designators and to figure out what

types of information are needed in the advice used for moni-

toring. Another direction that needs investigation is improving

the performance of monitoring advice, since controlling the

overhead cost is generally a real concern in program monitor-

ing. Ongoing work (e.g., [1]) that finds new ways to optimize

advice execution may help make detailed runtime monitoring

even more efficient and usable in the future. New mechanisms

for making reflective information easier and faster to obtain in

the advice code will also be needed, perhaps generating more

static data during compilation so that advice can quickly access

the data without costly runtime searches.

REFERENCES

[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Op-
timising AspectJ. In PLDI ’05: Proc. 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 117–128,
New York, NY, USA, 2005. ACM.

[2] T. Ball. The Concept of Dynamic Analysis. SIGSOFT Softw. Eng. Notes,
24(6):216–234, 1999.

[3] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual Machine
Support for Dynamic Join Points. In AOSD ’04: Proc. 3rd International
Conference on Aspect-Oriented Software Development, pages 83–92,
New York, NY, USA, 2004. ACM.

[4] E. Bodden and K. Havelund. Racer: effective race detection using
aspectj. In ISSTA ’08: Proc. of the 2008 international symposium on
Software testing and analysis, pages 155–166, New York, NY, USA,
2008. ACM.

[5] J. Bonér and E. Kuleshov. Clustering the Java Virtual Machine using
Aspect-Oriented Programming. In Proc. AOSD 2007 Industry Track,
2007.

[6] F. Chen and G. Roşu. MOP: an Efficient and Generic Runtime
Verification Framework. In OOPSLA ’07: Proc. 22nd ACM SIGPLAN
Conference on Object Oriented Programming, Systems, and Applica-
tions, pages 569–588, New York, NY, USA, 2007. ACM.

[7] R. Dyer and H. Rajan. Nu: a dynamic aspect-oriented intermediate
language model and virtual machine for flexible runtime adaptation. In
AOSD ’08: Proc. of the 7th international conference on Aspect-oriented
software development, pages 191–202. ACM, 2008.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection of
Likely Invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[9] K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference
monitors. In PLAS ’08: Proc. of the third ACM SIGPLAN workshop on
Programming languages and analysis for security, pages 11–20, New
York, NY, USA, 2008. ACM.

[10] B. Harbulot and J. R. Gurd. A Join Point for Loops in AspectJ. In AOSD
’06: Proc. 5th International Conference on Aspect-Oriented Software
Development, pages 63–74, New York, NY, USA, 2006. ACM.

[11] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A Lightweight Archi-
tecture for Program Execution Monitoring. In PASTE ’98: Proc. ACM
Workshop on Program Analysis for Software Tools and Engineering,
pages 67–74, New York, NY, USA, 1998. ACM Press.

[12] R. Khaled, J. Noble, and R. Biddle. InspectJ: Program Monitoring
for Visualisation using AspectJ. In ACSC ’03: Proc. 26th Australasian
Computer Science Conference, pages 359–368, Darlinghurst, Australia,
Australia, 2003. Australian Computer Society, Inc.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In ECOOP ’01: Proc. of the 15th
European Conference on Object-Oriented Programming, pages 327–
353, London, UK, 2001. Springer-Verlag.

[14] K. Kiviluoma, J. Koskinen, and T. Mikkonen. Run-time monitoring
of architecturally significant behaviors using behavioral profiles and
aspects. In ISSTA ’06: Proc. of the 2006 international symposium on
Software testing and analysis, pages 181–190. ACM, 2006.

[15] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug Isolation Via
Remote Program Sampling. SIGPLAN Not., 38(5):141–154, 2003.

[16] E. Metz, R. Lencevicius, and T. F. Gonzalez. Performance Data
Collection Using a Hybrid Approach. SIGSOFT Softw. Eng. Notes,
30(5):126–135, 2005.

[17] A. Nusayr and J. Cook. AOP for the Domain of Runtime Monitoring:
Breaking Out of the Code-Based Model. In Proc. 2009 AOSD Workshop
on Domain-Specific Aspect Languages, page 4pp, 2009.

[18] M. Palankar and J. E. Cook. Merging Traces of Hardware-Assisted
Data Breakpoints. In WODA ’05: Proc. 3rd International Workshop on
Dynamic Analysis, pages 1–7, New York, NY, USA, 2005. ACM.

[19] H. Rajan. A case for explicit join point models for aspect-oriented
intermediate languages. In VMIL ’07: Proc. of the 1st workshop on Vir-
tual machines and intermediate languages for emerging modularization
mechanisms, page 4, New York, NY, USA, 2007. ACM.

[20] H. Rajan and K. Sullivan. Aspect language features for concern coverage
profiling. In AOSD ’05: Proc. of the 4th international conference on
Aspect-oriented software development, pages 181–191, New York, NY,
USA, 2005. ACM.

[21] B. A. Schroeder. On-Line Monitoring: A Tutorial. Computer, 28(6):72–
78, 1995.

[22] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient
Architectural Support for Software Debugging. In Proc. of the 31st
International Symposium on Computer Architecture (ISCA, pages 224–
235, 2004.

441

Clustering of Defect Reports Using Graph Partitioning Algorithms

Vasile Rus1, Xiaofei Nan2, Sajjan Shiva3, Yixin Chen4

1,3Dept. of Computer Science, University of Memphis, Memphis, TN 38152
2,4Dept. of Computer and Information Science, Univeristy of Mississippi, University, MS 38677

1vrus@memphis.edu, 2xnan@olemiss.edu, 3sshiva@memphis.edu, 4ychen@cs.olemiss.edu

Abstract

We present in this paper several solutions to the chal-
lenging task of clustering software defect reports. Cluster-
ing defect reports can be very useful for prioritizing the test-
ing effort and to better understand the nature of software de-
fects. Despite some challenges with the language used and
semi-structured nature of defect reports, our experiments on
data collected from the open source project Mozilla show
extremely promising results for clustering software defect
reports using natural language processing and graph par-
titioning techniques. We report results with three models
for representing the textual information in the defect reports
and three clustering algorithms: normalized cut, size regu-
larized cut, and k-means. Our data collection method al-
lowed us to quickly develop a proof-of-concept setup. Ex-
periments showed that normalized cut achieved the best
performance in terms of average cluster purity, accuracy,
and normalized mutual information.

1 Introduction

We address in this paper the challenging task of cluster-

ing defect reports. Defect reports are detailed descriptions

in natural language of defects, i.e. problems in a software

product. The proper handling of defect reports throughout

the testing process for various purposes, such as fixing bugs

in the case of developers, could have a great impact on the

quality of the released software product. The defect reports

are currently created and analyzed manually by testers, de-

velopers, and other stakeholders. Manual analysis is te-

dious, error-prone, and time consuming, leading to a less

efficient testing process.

Defect reports are filed by testers (or users) who discover

the defects through testing (or use). Reports include many

details: an id that uniquely identifies the defect, the status
of the defect (e.g. new, verified, resolved), a summary field,

and a description field. The description field is the richest

source of information about the defect. The field describes

details in plain natural language about the defect, including

symptoms and steps to reproduce the defect. The summary

field is a one-sentence description of the problem.

We propose here advanced methods for clustering defect

reports that take advantage of the description and summary

fields of the reports. We regard each defect report as a tex-

tual document and use a well-known technique in informa-

tion retrieval (IR), called the vectorial representation[1], to

represent documents. As clustering algorithms, we applied

the following three algorithms: k-means [4, 18], normalized

cut[15], and size regularized cut [2]. This work extends our

previous work on clustering defect reports in which we only

experimented with the k-means clustering algorithm [13].

Three models were used to represent defect reports, one

based on the summary field alone, one based on the descrip-

tion field alone, and another based on the union of both.

Our experimental data consists of defect reports collected

from the open source Mozilla project (www.mozilla.org).

However, the proposed methods are transferable to defect

reports from other projects, e.g. Eclipse (www.eclipse.org).

The clustering was evaluated based on reports describing

the same underlying problem. That is, defect reports are in

the same cluster if they describe the same underlying prob-

lem.

As a preview of our results, we found that the normalized

cut clustering algorithm [15] proved to be by far the most

successful. Furthermore, using the union of the summary

field and description field for clustering is better than using

either the description field alone or summary field alone.

2. Related Work

There are two major lines of previous research relevant

to our work: research on defect clustering, and research on

using natural language processing (NLP) and information

retrieval (IR) to mine artifacts from software repositories.

Clustering is the unsupervised classification of data

points (usually represented as vectors in a multidimensional

space) into groups (clusters) based on similarity [19]. The

clustering problem has been addressed in many contexts

442

and by researchers in many disciplines. While we are not

aware of any particular work on clustering defect reports,

there is published research related to clustering defects in

the manufacturing of semiconductors [6] and integrated-

circuits (IC; [16]). Karnowski et al. [6] showed that fuzzy

logic can help better cluster defects on semiconductor wafer

maps. Singh and Krishna [16] have shown that using clus-

tering information in optimization testing can significantly

improve the shipped product.

The usage of NLP applications to improve software

development and testing has been around at least since

1990s [14, 10, 11, 3]. More recently, there has been re-

newed interest in applying natural language techniques to

mine useful artifacts from the various repositories associ-

ated with software projects (see the yearly Workshop on

Mining Software Repositories at http://msr.uwaterloo.ca).

We discuss next a series of research efforts that are di-

rectly related to our work on clustering defect reports. Lin-

stead et al. [8] described a framework to automatically mine

developer contributions and competencies from a given

code base, and extract software functions in the form of

topics. Weiss and his colleagues [17] used k nearest neigh-

bor to search for similar historical bug reports and fur-

ther predict the fixing efforts. In other related work, an-

notation graphs have been used to identify bug-introducing

changes [7] and different classification approaches, includ-

ing Bayesian model, support vector machine, classification

trees, and k-nearest neighbor, were tried for classifying soft-

ware maintenance requests by Lucca et al. [9]. The use of

the vectorial representation [1] to address the task of du-

plicate defect report identification has been investigated by

Runeson et al. [12]. In this paper, we use the vectorial

representation for the clustering of software defect reports.

The clustering uses spectral graph partitioning algorithms,

which are described in Section 3.

3. Spectral Graph Clustering

In recent years, spectral clustering based on graph par-

titioning theories has emerged as one of the most effec-

tive data clustering tools. Normalized cut (Ncut; [15]) is

a graph bipartition method that attempts to organize nodes

into groups so that the within-group similarity is high and

the between-group similarity is low. Another graph parti-

tioning method is size regularized cut(SRcut; [2]) which

enables users to incorporate prior knowledge of the size

of clusters into the clustering process and also minimizes

the similarity between two clusters and, at the same time,

searching for a balanced partition. Unfortunately, normal-

ized cut and size regularized cut are both NP-complete

problems. For Ncut, Shi and Malik proposed an approx-

imated solution by solving a generalized eigenvalue prob-

lem [15]. As for SRcut, Chen et al. [2] proposed a relaxed

version of the optimization that finds the largest eigenvalue

of an associated matrix and uses it to bipartition the graph.

These two methods can be recursively applied to get more

than two clusters. In this work, we tested two heuristics

for the Ncut clustering and one heuristic for SRcut clus-

tering. With the first heuristic, used with both Ncut and

SRcut, the subgraph with the maximum number of nodes

is recursively partitioned (random selection is used for tie

breaking). With the second heuristic, the subgraph with the

minimal cut value is bipartitioned.

4. Experiments and Results

In this section, we address in detail the issues of data rep-

resentation, similarity measure, and evaluation metrics. We

also present performance results on clustering defect reports

collected from Mozilla’s Bugzilla, its the defect database.

4.1 Defect Reports Representation

A first issue we must address is the logical view of

the defect reports (see [1] for more information on logical

view). We chose a representation in which we retain all the

words (after applying some preprocessing steps) but no po-

sitional information. Furthermore, we experimented with

three models models for representing reports: using words

in the summary, description, and the union of both. The

advantage of using only the summary would be its relative

small size, usually less than 50 words, which leads to fast

clustering.

Another important issue to address is the formalism used

for the representation. We used the vector space model [1].

A key feature in the vector space model is the weighting

scheme of the words. We used the TF-IDF scheme (TF -

term frequency; IDF - inverted document frequency).

4.2 Evaluation Metrics

Purity, accuracy, and normalized mutual information are

our evaluation metrics. The purity of a cluster is the ratio

of the dominant class size in the cluster to the cluster size

itself. A larger value means that the cluster is a “purer” sub-

set of the dominant class. We assign the dominant class of

the documents within a cluster as the label of that cluster.

A document is correctly clustered if its cluster label is iden-

tical to its class label provided by ground truth. The per-

centage of correctly clustered documents among the corpus

is the accuracy. Purity and accuracy tend to increase with

the number of clusters. However, mutual information is a

measure that avoids this drawback. If normalized, mutual

information values near 1 indicate that the similar partition-

ing, while a value close to 0 implies significantly different

partitions.

443

4.3 Clustering Experiments

In our experiments, we chose to cluster bugs based on

the fact that they describe the same defect. We regard a

bug and its duplicates as a cluster. The data used in our ex-

periments comes from Mozilla’s Bugzilla, where accurate

duplicate information about defects, as entered by human

experts (developers), is available.

To create our experimental data set, we started collect-

ing 20 Bugs from the Hot Bugs List of Mozilla’s Bugzilla

which contains the most filed recent bugs. We chose the

top 20 defect reports from the Hot Bugs List in terms of

largest number of duplicates and retrieved about 50 dupli-

cates for each. We automatically collected the Description
and Summary data of these bugs and stored them locally in

text files. The final data set contained 1003 data points in

50 clusters. Some defect reports out of the 1020 that we

collected initially (20 original defects at 50 duplicates each)

were dropped because the description field was empty or

was simply redirecting the user to another bug, e.g. the field

contained textual pointers such as see bug #123. As such,

the size of the clusters varies from 46 reports to 51 reports,

i.e. we have approximately balanced cluster sizes.

For each report, three vectorial representations were cre-

ated based on the description field, summary field, and the

union of the two fields. The vocabulary size/ dimensional-

ity for the three representations are 4569, 991, and 5128,

respectively.

We applied three clustering algorithms, Ncut, SRcut, and

k-means, to data set. It should be noted that the data set is

balanced. That is, each cluster contains approximately same

number of instances (50) as explained above. For the Ncut

algorithm, two heuristics were tested to iteratively divide

the data set into 20 clusters. In the first heuristic, named

largest first (LF), the largest subgraph was divided in each

iteration. In the second heuristic, named best first (BF), the

subgraph with the minimal Ncut value was divided in each

step. The SRcut used the first heuristic to iteratively gen-

erate 20 clusters. The α parameter of the SRcut algorithm

was chosen to be 0.8.

The three evaluation metrics, average purity, accuracy,

and normalized mutual information are reported in Table 1.

Because the results of k-means depend on the initial choice

of the seeds, we repeated 20 runs of k-means on the data

set and reported the average and standard deviation of each

metric. From Table 1, we can draw the following conclu-

sions.

• Ncut with the largest first heuristic outperforms, on any

evaluation metric given above, Ncut with the best first

heuristic, SRcut and k-means algorithms on all three

vectorial representations. The only exception is the av-

erage purity metric for the summaries data. This proves

that the largest first heuristic Ncut method is suitable for

balanced scenarios.

• The purity metric is biased towards smaller clusters.

This is demonstrated by the k-means results. On all

three vectorial representations, the average purity of k-

means clustering is comparable to or higher than Ncut

clustering. However, the accuracy and normalized mu-

tual information of k-means are significantly lower than

those of Ncut on all three vectorial representations. This

is because k-means tends to generate a large number of

small clusters.

• Using the combination of descriptions and summaries

for clustering is better than using either representation

separately.

• SRcut performed poorly on this data set. This is mainly

due to the fact that the SRcut algorithm is designed for

graph bipartition. When applied iteratively, it is difficult

to find a proper value of the α parameter that works in

all iterations.

5. Conclusions and Future Work

We addressed in this paper the challenging task of clus-

tering defect reports based on their textual descriptions,

summaries, and both descriptions and summaries. Our ex-

periments on defect reports from Mozilla’s Bugzilla and

with three clustering algorithms showed that normalized cut

using a TF-IDF vectorial representation based on a com-

bination of descriptions and summaries of reports leads to

better clustering than using the summary or the description

of defects alone. Our work has been motivated by our belief

that the rich information in software defect reports, which

are generated during the testing phase in the form of textual

reports, can be of great value. For instance, if open defect

reports are clustered and a resulting cluster seems to be large

compared to the others then the testing effort should focus,

during the next testing cycles, on the defects in the large

cluster. The large cluster may be an indication of an ex-

tremely faulty component or connected components which

generate many related defects.

We plan to continue our investigation of clustering defect

reports by using other representations of the defect reports,

e.g. using only the overview section of the description field

of a software report, and other text and knowledge process-

ing techniques, e.g. exploiting knowledge about the particu-

lar software product being developed. As each defect report

has a specific structure, we are also interested in exploring

clustering techniques that take into account the structure in-

stead of treating a report as a bag of words.

ACKNOWLEDGEMENT

The work of Rus and Shiva was sponsored by The Uni-

versity of Memphis under a Systems Testing Excellence

444

Table 1. Comparisons of clustering performance for Ncut, SRcut, and k-means algorithms with bal-
anced class-size. Three vectorial representations (VR) are used: description field (VR1), summary
field (VR2), and the union of description and summary fields (VR3). NcutLF and NcutBF denote Ncut
algorithm with largest first heuristic and best first heuristic, respectively.

Evaluation Metric Average Purity Accuracy Normalized Mutual Information

V
R

1

NcutLF 0.8509 0.8235 0.8225
NcutBF 0.8554 0.7468 0.7778
SRcutLF 0.6448 0.6471 0.6479
k-means 0.8566 ± 0.0240 0.7579 ± 0.0382 0.7710 ± 0.0247

V
R

2

NcutLF 0.7856 0.7677 0.7525
NcutBF 0.8207 0.7069 0.7124
SRcutLF 0.6215 0.6092 0.5938
k-means 0.7934 ± 0.0279 0.6252 ± 0.0250 0.6368 ± 0.0227

V
R

3

NcutLF 0.8864 0.8614 0.8540
NcutBF 0.8665 0.7587 0.7906
SRcutLF 0.6767 0.6800 0.6845
k-means 0.8879 ± 0.0232 0.7899 ± 0.0354 0.8187 ± 0.0201

Program (STEP) project. The work of Nan and Chen was

supported by The University of Mississippi.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[2] Y. Chen, Y. Zhang, and X. Ji. Size regularized cut for data

clustering. In Advances in Neural Information Processing
Systems (NIPS), 18, MIT Press, Cambridge, pages 211–218,

2006.

[3] L. Etzkorn, L. Bowen, and C. Davis. An approach to

program understanding by natural language understanding.

Natural Language Engineering, 5(1):1–18, 1999.

[4] J. Hartigan and M. Wong. A k-means clustering algorithm.

Applied Statistics, 28, 100–108, 1979.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a

review. ACM Computing Surveys, 31(3):264–323, 1999.

[6] T. P. Karnowski, S. S. Gleason, and K. W. Tobin. Fuzzy logic

connectivity in semiconductor defect clustering. In Proc.
SPIE Machine Vision Applications in Industrial Inspection
VI, A. R. Rao; Ning Chang; Eds., 3306, pages 44–53, 1998.

[7] S. Kim, T. Zimmermann, K. Pan, and E.J. Whitehead, Jr.

Automatic idenfification of bug-introducing changes. In

Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 81–90,

2006.

[8] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.

Mining Eclipse developer contributions via author-topic

models. In International Workshop on Mining Software
Repositories, 2007.

[9] G. A. Di Lucca, M. Di Penta, S. Gradara. An approach

to classify software maintenance requests. In Proceedings
of the International Conference on Software Maintenance
(ICSM’02), pages 93–102, 2002.

[10] P. Lutsky. Documentation parser to extract software test con-

ditions. In Proceedings of the 30th Annual Meeting of the

Association for Computational Linguistics, pages 294–296

1992.
[11] P. Lutsky. Using a document parser to automate software

testing. In Proceedings of the 1994 ACM Symposium on
Applied Computing, pages 59–63, Phoenix, Arizona, 1994.

[12] P. Runeson, M. Alexandersson, and O. Nyholm. Detection

of duplicate defect reports using natural language process-

ing. In Proceedings of the 29th International Conference on
Software Engineering, pages 499–510, 2007.

[13] V. Rus, S. Mohammed, and S. Shiva. Automatic Clustering

of Defect Reports. Proceedings of the 20th International
Conference on Software and Knowledge Engineering, pages

291–297, 2008.
[14] J. Schlimmer. Learning meta knowledge for database check-

ing. In Proceedings of the National Conference of the Amer-
ican Association of Artificial Intelligence (AAAI’91), pages

335–340, 1991.
[15] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

[16] A. Singh and C. Krishna. On the effect of defect clustering

on test transparency and IC test optimization. IEEE Trans-
actions on Computers, 45(6):753–757, 1996.

[17] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How

long will it take to fix this bug?. In Proceedings of the Fourth
International Workshop on Mining Software Repositories,

pages 1–8, 2007.
[18] I. H. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, 2005.
[19] R. Xu and D. Wunsch. Clustering. John Wiley & Sons,

2008.

445

� Abstract

Quality attributes become much more important in today's
component-based systems. A well-formed and easy-to-
understand documentation on these quality attributes is
necessary in component-based development. In this paper, we
propose a Quality Attribute Specification (QAS) that utilizes
the Trace Function Method (TFM). There are four parts to
this specification: Quality Attribute Variables, Access
Programs, Quality Attribute Variable Functions, and the
Auxiliary Functions. Each of them addresses precise and
needed details for developers. To demonstrate our approach, a
case study regarding the design description is included. From
our research, the three primary benefits that we attribute to
using this specification are as follows: Firstly, it specifies
what to measure, estimate, or calculate when such a request is
proposed. Secondly, it stipulates the physical limitations of
each quality attribute. Thirdly, it facilitates the description of
qualitative attributes precisely.

Index Terms - Documentation, Quality Attributes.

I.INTRODUCTION
Large software projects usually require many developers to

work together within a period of time. To avoid confusions
between engineers during the development, a precise
document is often necessary [12]. A precise document is not
only used for team’s communication or even a personal
development guide but also to ensure the end product with
good quality. As the modern software systems become more
complex, more functions and requirements make the
development more challenging. Due to the increasing scale of
the system, the communication that involves more developers
and the same level of quality that is asked for more functions
both bring the development difficulties. This trend also
highlights the need for well-defined and precise document (or
design description) to ensure software quality.

Quality attributes, which assess the quality of a software
system, mean the large group of properties; for example,

* Corresponding author
1. This effort is funded by the National Basic Research Program of China

(973) under Grant No. 2005CB321805, and the Science Fund for Creative
Research Groups of China under Grant No. 60821003, and the National
Natural Science Foundation of China under Grant No. 60773151, and the
National High-Tech Research and Development Program (863) of China
under Grant No. 2007AA01Z127, 2008AA01Z139.

dependability, usability, safety and security [21]. To build
systems that deliver their intended quality, it is essential to
systematically take quality attributes into account at design
time and not as an afterthought during implementation. Past
research about the description of the quality attribute do not
have the capability of describing quality attributes precisely in
details so that the description can becomes a good aid to the
system development. For example, when a description says
“average throughput”, unless this term is unambiguous, the
developers can not have clear and sufficient information to
understand the relationships among the programs that realize
it. These drawbacks become more obvious when the
description is for complex software development.

We believe that, for each quality attribute, it needs to satisfy
certain conditions and its implementation detail should be
included in the design description [12]. In this work, we adopt
Parnas’ Trace Function Method (TFM) [11] to propose an
approach, “Quality Attribute Specification (QAS)”. It
facilitates the description of quality attributes in a observable
granularity and also expresses quality attributes in interface
specifications. In our method, the intention, the type and the
name of the quality attribute all can be clearly expressed along
with the definitions of the relationships between the quality
attributes and other interface elements [10].

In the remainder of the paper, we will review the related
work, explore our approach and demo how to use it through a
case study.

II. RELATED WORK
Many studies have been done on the design description of

quality attributes. They can be divided into two categories.
One is service-based and its emphasis is placed on describing
the quality attributes both in terms of the client’s requirements
and service offerings. This category includes the Quality of
Service Modeling Language (QML) that models quality
characteristics of services and defines the quality of service
(QoS) for both client needs and provider offers [1]. The other
one is usage or environment specific. Four approaches belong
to this kind. First one is the Quality of Service on IDL
(QIDL). It is suggested for contract programming and
CORBA IDL [3]. Second is the Quality Description Language
(QDL). It primarily includes the description of contracts,
system condition objects, and the adaptive behavior of objects
[2]. Third is the UML profile for Schedulability, the
Performance and Time Specification (SPT). It extends UML

Documenting Quality Attributes of Software Components1

Wenhui Zhu, Yanchun Sun*, Gang Huang, Hong Mei
Institute of Software, School of Electronics Engineering & Computer Science, Peking University,

Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, P.R.China

E-mail: {zhuwh04, sunyc, huanggang}@sei.pku.edu.cn, meih@pku.edu.cn

446

with basic timing and concurrency concepts to express
requirements and properties for conducting schedulability and
performance analysis [5, 6]. Last is the UML Profile for
Modeling and Analysis of Real-Time and Embedded systems
(MARTE). It provides the ability to model Non Functional
Property (NFP) so the user is allowed to define the Non
Functional Properties [19, 20]. This one can also be thought as
an extension of the SPT method.

III.THE APPROACH
Our Quality Attribute Specification (QAS) approach that

specifies the quality attributes for components learns from
Trace Function Method (TFM) [11].

A. Concept
Trace Function Method (TFM) is the generic method

describes the interface specification based on early algebraic,
axiomatic and trace-based approaches. When TFM is used to
describe the interface of the component, it hides the internal
data structure that should not be mentioned in a specification.
In the TFM, the communication of the component is described
by those global or shared variables that are considered as a
part of its interface with external software or hardware. For
example, when a global or shared variable x is in the
component interface f(x), we should put them in the TFM.
Many successful applications and examples can be found in
[11]. Therefore, when the quality attribute is considered, TFM
can be used to define what should be described in interface
specification and which quality attribute associated variables
should be thought as the global variables.

According to TFM, since those global or shared variables
are considered as a means for component communication,
they contain the relationship to the programs they invoke.
Since they are used to invoke programs that are part of the
interface, the corresponding value changes of the variables
occur. We define an “event” as the value changes of the
variables. As a result, the invocation of the interface
procedure function is also considered as an event. The name
of the procedure being invoked is treated as the value of an
input variable. The value of each output variable of a
component is described as a function of the history of events
in TFM, also called trace.

B. Overview of the Approach
Following the principle of TFM, QAS consists of four

parts: (1) Quality Attribute Variable Table describes the name,
type and range of the attributes that are interpreted from
quality attributes (e.g., quality attribute performance can be
response time or throughput) as variables and we call them
quality attributes variables; (2) Access Program Table
describes the impact of the quality attributes, which is caused
by the function call outside the component; (3) Quality
Attributes Variables Function contains several tables. Each
one contains just one quality attribute and precisely describes
how the access programs affect the quality attribute; and (4)
Auxiliary Function helps to define the abbreviations used in
the Quality Attributes Function Tables. More details will be

shown in the next section.

C. Four Elements in the Specification

1. Quality Attributes Variables Table (QAVT)
In this table, we define the quality attributes as variables for

the component because the input of the component that
influences its behavior could be considered as a variable. Each
quality attribute is described by its name, type and range.
From past studies, most quality description language defines
quality attributes from these three aspects or just the name,
type and value of the quality attributes, yet the three aspects
are insufficient to define the quality attributes.

2. Access Program Table (APT)
This table shows what access programs the quality

attributes will be affected by. It consists of program names,
inputs, and the abbreviated event descriptor. Since an “event
descriptor” in the table is a record of all the values of the
variable before and after the event. The “abbreviated event
descriptor” here only lists the values of variables that are
changed or accessed during the event.

3. Quality Attributes Variables Function (QAVF)
Quality Attributes Variables Function contains a set of

output function and specifies the value of each variable as
function of the trace of the components history. Trace here
means a sequence of event descriptors that begins immediately
after the creation of the specified object. Using traces, one can
not only describe the history of a procedure or an object but
also eliminate representations or models of the internal state
information. For any deterministic component, the value of an
output after an event can be described as the function of the
trace that describes the sequence of the events that affect that
component.

4. Auxiliary Function (AF)
A set of auxiliary function definitions describe the

abbreviation notation that is used in the output function
definitions.

D. Benefits of Using the Specification
Describing quality attributes using TFM has several

advantages. First, the Quality Attributes Variables Function
Table precisely presents how the value of the quality attribute
is affected by the history of the event. In this way, if people
want to evaluate quality attributes by measuring the value
changes which is affected by the event (access program), it
could be easy to know what to measure (or estimate,
calculate). Second, physical limitation, for example, the
maximum memory allocation for the component is no more
than 256 mb (Table 1), is explicitly written in the Quality
Attributes Variables Table. Lastly, it provides a way to
describe the non quantitative quality attributes precisely by
defining the relation between the quality attribute value and
the history of the event.

IV.CASE STUDY
We use a shopping cart component as an example. This

447

component offers programs that can be accessed by others
(three access programs) - “addItem”, “showList” and
“verifyID”. As the names indicate, “addItem” means adding
an item to the shopping cart, “showList” represents showing
all the items in the shopping cart and “verifyID” means
verifying the user’s ID when needed. The quality attributes
which we express in the case are response time, memory, and
security.

Quality attributes can be classified as quantitative and non-
quantitative ones. It should be easy to define quantitative
ones. For example, the response time would be the time value
difference between certain access programs that are called
beforehand and afterwards while we set “time” as a variable.
Non quantitative quality attributes are not easy to define;
however, we can use TFM to describe the behavior.

In our case, we consider three variables - “rTime”, “mA”
and “Sec” (see Table 1). “rTime” represents the response
time, “mA” stands for the memory allocation, and “Sec”
represents the security. Each has a physical limit or the
requirement constraint of the attribute. For example, mA’s
range is between 0 and 256 mb. It represents maximum 256
mb of the system memory that has been allocated for the
component to use. Besides, “Sec” here is defined as an
enumerable variable that uses “low, medium and high” to
show the level of security.

TABLE 1 QUALITY ATTRIBUTES VARIABLES
Variable Name Type Range

rTime <double> {0…1073741824}
mA <int> {0…256}
Sec <enum> {low, medium, high}

 //i.e., the maximum value of time is 3600000000 microsecond (1 hour)
Table 2 should be read from left to right. Each line shows

that the characteristics of the access program. Because the first
two lines are similar, we use “verifyID” as an example. Its
input is “string” data type. After “verifyID” is accessed, the
values of those three quality attributes, “rTime”, “mA” and
“Sec” are changed. However, for “showList”, it does not need
an input variable. It only shows the content of Value which is
“arraylist” type. To note that we do not determine how those
values change in this table. They are described in other
tables(Table 3, 4).

TABLE 2 ACCESS PROGRAM TABLE
Program
Name

‘Value ‘in Abbreviated Event Descriptor

verifyID <string> (PGM:verifyID, ‘in, rTime’, mA’, Sec’)
addItem <int> (PGM:addItem, ‘in, rTime’, mA’, Sec’)
showList <arrayList> (PGM:showList, ‘Value)

To show the differences of the quantitative and non-
quantitative variables in the QAVF table and their related AF,
we use quantitative variable, “rTime”, and non-quantitative
variable, “Sec”, for explanation.

In Table 3, the value of the “rTime” equals to 0 when no
access programs accesses the component, which means, no
time will be spent on the component. The second line needs to
be read along with the AF since the associated expression
showed in the QAVF table is defined in the AF. In this second
line, when there are access programs accessing the component
from outside, we need to check whether current event is a
“noeffect” expression. If we check the precise meaning of

“noeffect” expression in the AF, one kind of the “noeffect”
can be found. It is the input of the access program “addItem”
does not exist in the item list range; that is, PGM (e) =
addItem (‘in(r (e))). If the situation is “noeffect”, the
“rTime” variable value does not change and still equals to the
value before the “addItem” program that is called. The third
line explains the situation that does not belong to “noeffect”.
In this situation, the value of “rTime” changes when the
access program “verifyID” calls from the outside of the
component. This changed value (of the “rTime”) is equal to
the value before the calling by the program “verifyID”. The
last line means similar but only the program “verifyID” is
replaced by the program “addItem”.

TABLE 3 QUALITY ATTRIBUTE “RTIME” FUNCTIONS

T: Trace, history of the events
r(T): the most recent event in the trace

FIG. 1 The Content of Auxiliary Functions

Table 4 describes the relationship between non-quantitative
variable “Sec” and the access programs. The interpretation is
very similar to the quantitative one that we demonstrate in
Table 3. There’s slight difference from the third to fifth line.
The third line indicates that setting the value of the “Sec”
variable should be set to “Medium” if the access program is
“verifyID”. The fourth and fifth lines show that if access
program “verifyID” is not accessed before access program
(i.e., in fourth line, it is “addItem” and in fifth line, it is
“showList”.) is called, the “Sec” value equals to “Low”.

TABLE 4 QUALITY ATTRIBUTE “SEC” FUNCTIONS

r(T): most recent event in the trace
p(T): the past events in the trace
ex(e): the event exists
The example above explicitly shows that engineers can

work out the precise quality attribute information with little
difficulty by using the TFM method. A number of outcomes
are found in the specification. Firstly, if engineers want to
know the limitation of certain quality attribute, they can just
check the “Range” section in the Quality Attribute Variable
Table. The quality attribute range is clearly identified here.
Secondly, when engineers are interested in which variables
affect certain quality attribute, they can check the Access

448

Program Table. For example, when engineers only consider
the value of the variable “Sec”, on the “Abbreviated Event
Descriptors” column in the Table 2, they use “Sec’” as the
keyword to search and the result will be the information they
require. Therefore, the search result of the keyword “Sec”
contains the programs “verifyID”, “addItem”, and “showList”.
They all influence the variable “Sec”. Finally, to find out how
these access programs affect the quality attributes, engineers
just have to look at Output Functions Table. If the attribute
(variable) is quantitative (e.g. rTime) the amount of the value
changes due to the call of the access program would become
the target information; thus, engineers can understand what to
measure (or estimate, calculate) if they want to know the value
for this attribute. However, if the variable is non-quantitative
like “Sec”, by reading the table, engineers should be able to
get the information about a history of access program calls.
The history should explain if the current “Sec” value is
“Medium” or “Low”.

V. CONCLUSION AND FUTURE WORK
The research of the software quality plays a key role in

modern software development due to the need of the stable
running system with the complex functionalities. The
attributes of the system, which are used to describe the related
quality in the design document, are quality attributes. Previous
methods that describe the quality attributes cannot provide
enough information for the developer to guide their
development of the system. Instead, our Quality Attribute
Specification precisely defines the quality associated
relationship between interfaces and their accessing programs;
therefore, giving sufficient information to help developers to
implement the system with the required quality. Our approach
that learns from the TFM provides four tables for the
developer to define their details of the quality attribute. From
QAS, people can evaluate the quality attribute by investigating
the value changes of it after the influence that is caused by the
associated access programs. In this way, it could be easy to
know what to measure (or estimate, calculate) and how to do
it. Besides, the physical limitation of each quality attribute is
explicitly expressed in the Quality Attributes Variables Table.
Furthermore, those non-quantitative quality attributes can by
described precisely by defining the relation between the trace
of the events and the quality attribute value. Those benefits
could be easily understood from our case study above.

Our work currently only focuses on addressing quality
attributes of the component interface. However, when the
components are composed into a system, all the quality
attributes have to be considered as a whole; as a result, the
complex system behaviors may bring a complicated effect on
the quality attributes and is not very clear now. In the future,
we would like to shift our focus to the architectural level, so
we will try to describe the quality attributes on the software
architecture. Therefore, how to express each quality attribute
separately in software architecture precisely needs our future
investigation.

VI. ACKNOWLEDGEMENT
This work receives invaluable inspiration and supports from

Dr. David L. Parnas. We would like to appreciate for his help
and guidance to our research.

REFERENCES
[1] S. Frolund and J. Koistinen, “Quality of Service Specification in

Distributed Object Systems”, Distributed Systems Engineering Journal,
Vol. 5(4), (December 1998).

[2] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. “Specifying
and measuring quality of service in distributed object systems”. In 1st
International Symposium on Object-Oriented Real- Time Distributed
Computing, pages 43 – 52. IEEE Press, April 1998.

[3] C. Becker and K. Geihs. “Generic QoS-support for CORBA”. In Fifth
IEEE Symposium on Computers and Communications (ISCC 2000),
page 60. IEEE Press, July 2000.

[4] M. Born, A. Halteren and O. Kath, “Modeling and Runtime Support for
Quality of Service in Distributed Component Platforms”, Proc. 11th
Annual IFIP/IEEE Workshop on Distributed Systems: Operations and
Management, December 2000.

[5] OMG. “UML Profile for Schedulability, performance, and Time
Specification”. version1.1, formal/05-01-02

[6] OMG. “UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms Specification”. Version1.1,
formal/2008-04-05

[7] OMG. “A Profile for MARTE: Modeling and Analysis of Real-Time
Embedded systems”, Beta2. 2008-06-08

[8] J. Aagedal and E. Ecklund, “Modelling QoS: Toward a UML Profile”,
Proc. UML-2002 Conference, Springer Verlag (2002).

[9] Selic, B., “A Generic Framework for Modeling Resources with UML,”
IEEE Computer, Vol. 33(.6), June 2000.

[10] Wenhui. Zhu and David L. Parnas. “Using Documentation to Build a
Self-Adaptive System”. In International Workshop on Self-Adaptive
Software Engineering at IEEE CSMR 08.

[11] David L. Parnas, Sergiy A. Vilkomir, “Precise Documentation of Critical
Software”, Proceedings of the 10th IEEE High Assurance Systems
Engineering Symposium (HASE'07), Volume 00, September 2007, Page
237-244.

[12] David L. Parnas “Document Driven Disciplined Development of
Software”, Proceedings of the 2005 Australian Software Engineering
Conference, 2005

[13] J. Loyall, R. Schantz, J. Zinky and D. Bakken, “Specifying and
Measuring Quality of Service in Distributed Object Systems”, Proc. 5th
International Symposium on Object-Oriented Real-Time Distributed
Computing, April, 1998.

[14] C. Becker and K. Geihs "MAQS - Management for Adaptive QoS-
enabled Services", IEEE Workshop on Middleware for Distributed Real-
Time Systems and Services, December, 1997.

[15] Praveen K. Sharma, Joseph P. Loyall, George T. Heineman, Richard E.
Schantz, Richard Shapiro, and Gary Duzan, “Component-Based
Dynamic QoS Adaptations in Distributed Real-Time and Embedded
Systems”, CoopIS/DOA/ODBASE 2004, LNCS 3291, pp. 1208–1224,
2004.

[16] Miguel A. de Miguel,”QoS Modeling Language for High Quality
Systems”, Proceedings of The Eighth IEEE International Workshop on
Object-Oriented Real-Time, 2003

[17] ISO. “Software engineering—product quality”, ISO/IEC 9126:2001
[18] Simona Bernardi, Dorina C. Petriu. “Comparing two UML Profiles for

Non-functional Requirement Annotations: the SPT and QoS Profiles”.
UML’2004, SVERTS.2004

[19] Huascar Espinoza,etc. “Annotating UML Models with Non-functional
Properties for Quantitative Analysis”. MoDELS’2005 workshop. 2005

[20] Gruia-Catalin Roman. “Taxonomy of Current Issues in Requirement
Engineering”. IEEE 1985

[21] F. Manola, “Providing Systemic Properties (Ilities) and Quality of
Service in Component-Based Systems,” Object Services and Consulting,
Inc., Technical Report 1999.

449

Taming Inconsistency in Value-Based Software Development

Du Zhang
Department of Computer Science

California State University
Sacramento, CA 95819-6021

zhangd@ecs.csus.edu

Abstract

The main objective in value-based software
engineering is to align value considerations with the full
range of existing and emerging software engineering
principles and practices so as to increase value for
software assets. However, inconsistencies that arise
during software development pose a threat to the
objective, if they are not properly tamed. In this paper, we
review the current landscape of inconsistency
management in the value-neutral software engineering
setting. After examining the dimensions of inconsistency
as a phenomenon in software development process, we
propose some guidelines on how to tame conflicting
descriptions and inconsistencies in value-based software
engineering. The take-home message is that inconsistency
is an issue to be reckoned with in value-based software
engineering.

Keywords: value-based software engineering,
stakeholder value propositions, inconsistency
management.

1. Introduction

Value-based software engineering (VBSE) is to
integrate value considerations into the full range of
existing and emerging software engineering principles
and practices so as to increase the return on investment
for the stakeholders and optimize other relevant value
objectives of software projects [1, 2]. The VBSE
paradigm calls for augmenting the technical activities
with economic, management, and cognitive
considerations when developing successful software
systems. Therefore, the essence in VBSE is to align
software development and maintenance with customer
requirements and strategic business objectives. It offers a
framework where the stakeholders value propositions
(SVPs) are incorporated into the technical and managerial
decisions made during software development and
maintenance [1, 10].

A key concept in VBSE is valuation that ascertains the
economic value of a product, a service, or a process [8].
Value can be: profits (generated from products), strategic
positioning in market share, utility, relative worth,

reputation, customer loyalty, innovation technology, cost
reduction, quality of life, or improved productivity [18].
Value can be created along economical, physical,
emotional, social, cognitive and political dimensions [18].
The goal of the road map in VBSE is to make software
development and maintenance decisions that are better for
value creation [2].

Software engineering research and practice thus far are
mainly conducted in a value-neutral setting where each
artifact is treated equally important during a software
development process. To help bring the economic value
into the software development process, an emerging
agenda of issues in VBSE has been proposed in [2], that
includes the following areas:
• Value-based requirements engineering. The key

objectives include recognition of success-critical
stakeholders, elicitation of SVP, and reconciliation of
SVPs.

• Value-based architecturing. The goals are to iron out
the discrepancy between a system’s objectives and
achievable architectural solutions.

• Value-based design and development. The goals are
to ensure that a software system’s objectives and its
value considerations are embodied in the software’s
design and development practices.

• Value-based verification and validation. The
objectives are to determine that a software solution
meets its value objectives and that V&V tasks are
sequenced and prioritized as investing activities.

• Value-based planning and control. The objectives in
this area are to incorporate the value delivered to
stakeholders into the product planning and control
techniques.

• Value-based risk management. How to factor the
value considerations into principles and practices for
risk identification, analysis, prioritization, and
mitigation is the main focus in this area.

• Value-based quality management. The goals are to
prioritize desired software quality considerations with
respect to SVPs.

• Value-based people management. The tasks involve
building stakeholder team, manage expectations, and
reconcile SVPs.

450

As a result of the essential difficulties (complexity,
conformity, changeability, and invisibility) inherent in
developing large software systems that were eloquently
spelled out in Brooks’ classic paper of “No Siler Bullet:
Essence and Accident in Software Engineering” [6],
inconsistencies or conflicting descriptions are bound to
arise either among different segments of a specification,
or among specifications at various levels of abstraction
during software development. These inconsistencies, if
not properly tamed, would result in value reduction or
destruction for the software asset, thus threatening the
main objective of value creation in VBSE. How to
leverage or manage inconsistency in value-neutral
software development drew significant attention and
research since the nineties [7, 11-17, 19]. It is no
exception that VBSE has to deal with the inconsistency
issue as well. The purpose of this paper is to draw
attention on the issue of how to tame conflicting
descriptions and inconsistencies in VBSE.

The rest of the paper is organized as follows. Section 2
offers an overview of inconsistency management in
value-neutral software engineering. Section 3 examines
the dimensions of inconsistency. In Section 4, we describe
some guidelines on how to augment results obtained in
the value-neutral setting to tame conflicting descriptions
and inconsistencies in VBSE. Finally Section 5 concludes
the paper with remark on future work.

2. Related Work

Since the late eighties and early nineties, there has
been an increased research on the issue of managing
inconsistency in software development process. A number
of journal special issues and conference sessions devoted
their attention to the issue. As a result, various approaches
and frameworks have been proposed. Here we only
highlight some of the reported results.

A framework was described in [13] for managing
inconsistency in software development. The cornerstone
of the proposed framework is a set of consistency rules
that describe some proper relationships that must be
observed between or among a set of descriptions (analysis
models, process models, specifications, design patterns,
test plans, and so forth). A violation of a consistency rule
by a set of descriptions is referred to as an inconsistency.
There are two major components in the framework:
inconsistency diagnosis, and inconsistency handling. The
diagnosis component includes steps to locate, identify and
classify an inconsistency. Measurement of inconsistency
needs to be established to support the tasks. The handling
component offers a number of strategies to resolve,
tolerate, or ignore classified inconsistencies. To tolerate
an inconsistency, there are options to defer, circumvent or
ameliorate it. The handling component has to be
augmented with a feedback loop on analyzing the impact

and risk of unresolved inconsistency during the
development process.

The work in [17] reported results in inconsistency
management in requirement engineering. The approach
attempts to deal with inconsistency at the process
(elaboration), product (requirements) and instance
(running system) levels. A classification of
inconsistencies in requirement engineering has been
proposed that includes: process-level deviation, instance-
level deviation, terminology clash, designation clash,
structure clash, conflict, divergence, competition, and
obstruction. Formal techniques and heuristics were
proposed to resolve conflicts and divergences.

The results in [16] introduced the concept of
overlapped models as the necessary condition for
inconsistency. A framework was proposed that consisted
of the following activities: detection of overlaps, detection
of inconsistencies, diagnosis of inconsistencies, handling
of inconsistencies, tracking, and specification and
application of an inconsistency management policy.
When handling inconsistencies, a course of action is
committed only after possible actions are identified, the
costs and benefits of each of such actions evaluated, and
risks of non-action assessed.

The focus in [12] was to manage inconsistent
specifications. An inconsistency handling approach was
proposed that relied on a particular paraconsistent logic
formalism and allowed continued specification
development in the presence of inconsistency.

The results in [19] address the consistency issue in
UML models. A set of consistency constraints is defined
that establishes conditions the violations of which
constitute inconsistencies in the UML models. The
consistency constraints include the following types: intra-
diagram (defined on a specific type of diagram of a
model), inter-diagram (defined on two or more diagrams
of the same type), inter-model (defined on diagrams of
more than one type), horizontal (defined between
diagrams of the same type at the same abstraction level),
and vertical (defined between diagrams that have
refinement relationship).

3. Dimensions of Inconsistency

As eloquently put by Brooks in [6], “The hardest part
of the software task is arriving at a complete and
consistent specification, and much of the essence of
building a program is in fact the debugging of the
specification.” Inconsistency is an integral part of
software development process and is of multi-dimensional
characteristics. Conflicting descriptions can arise in
different circumstances that are due to different causes,
having different interpretations, manifesting themselves in
different forms or types, of varying significance, detected
through different methods, having different levels of
desirability, and demanding different actions. There are a

451

number of deeper issues we need to contend with before
making the appropriate decisions with inconsistency in
software development process. Figure 1 summarizes the
dimensions of inconsistency in VBSE.

Figure 1. Dimensions of inconsistency in VBSE.

Due to space limitation, we will not be able to
elaborate on issues in each of the dimensions. Instead, we
will focus our attention only on the causes and a
classification of inconsistency based on logical forms.

3.1. Causes

Inconsistency can arise in software development
process in a number of different ways.

Ontology related reasons. These include
circumstances such as: either the lack of explicit or
implicit constraints in the ontology specification (e.g., an
ontology does not specify that animals and vegetables are
mutually exclusive and jointly exhaustive in living
things), or the discrepancy in terminology and its usage in
different agents (e.g., polysemy, or antonymy).

Epistemic conflicts. These types of antagonism stem
from the fact that different agents, developers, or
stakeholders have their beliefs that are incompatible with
each other.

Conflicting defaults. In order to reason about the
application domain a software system is to be deployed
in, some general assumptions need to be made through
defaults and exceptions. Default reasoning is an important
characteristic of software development process, since
defaults are temporary assumptions that can later be
revised as new information becomes available. Defaults
can become conflicting with each other.

Lack of complete information. In default reasoning,
a developer may need to augment the set of base beliefs
with the negation of any ground atom that is not entailed
by the base set. This is what is referred to as the closed-
world assumption (CWA). Thus CWA allows for an
augmented theory about a domain that consists of the

original set of base beliefs plus a set of negative ground
literals.

An agent’s knowledge is complete if and only if for
every sentence � in its vocabulary, either � or ¬� is
known [5]. In general, an agent’s knowledge can be
incomplete. For instance, if an agent’s knowledge
contains the following: P(a)∨Q(a), then the agent cannot
deduce either P(a) or ¬P(a) (neither can it deduce Q(a) or
¬Q(a)). Under CWA, this would result in inconsistency in
the agent’s knowledge. For example, given the sentences
in an agent’s knowledge: {P(x) ∨ Q(x), P(a), Q(b)}, if
there are three constants {a, b, c} in the domain, then
there is inconsistency under CWA in the knowledge
because the augmented theory contains the following:

{P(c) ∨ Q(c), ¬P(c), ¬Q(c)}
Defeasible inheritance induced. Property inheritance

is an important mechanism in dealing with abstracting,
classifying and generalizing knowledge that is organized
in a hierarchical structure. Property inheritance is
regarded as a form of default reasoning [5]. Inheritance
where inherited properties can be overridden is referred to
as defeasible inheritance [5]. Inconsistency may arise in
defeasible inheritance.

Conflict of value propositions. This type of
inconsistency stems from contradictory value propositions
of stakeholders. SVPs tend to be emergent and are not
necessarily compatible with each other.

Assertion lifting. If an agent’s knowledge is
compartmentalized into contexts, lifting or importing
assertions from one context to another may result in
knowledge in a particular context becoming inconsistent.

Concept forming process in description logics.
Inconsistency can arise from the concept forming process
in description logics. There are concept-forming operators
in description logics such as: ALL, EXISTS, AT_MOST,
FILLS, AND. Their use in constructing compound
concepts may result in conflicting conditions. For
instance, the following concept through the AND operator
is inconsistent.
 [AND [EXISTS 3 agent] [AT_MOST 2 agent]]
If a concept d is inconsistent, then conjoining the two
[ALL r d] and [EXISTS 1 r] results in inconsistency [5].

Reliability of information source. When the source
of information is not reliable, or the information is not up-
to-date, inconsistency can arise.

Deliberate act. Inconsistency can also be the result of
some deliberate act as an integral part of an overall
strategy in accomplishing a particular objective.

3.2. A Classification

Definitions are provided below for a list of possible
cases of inconsistency that can arise in software
development process, though the list is not meant to be
complete. The types and notations of those cases of
inconsistency are summarized in Table 1.

452

Table 1. Types of inconsistency.

Inconsistency Type Notation
Complementary L1�L2
Mutually exclusive L1�L2
Incompatible L1�L2
Anti-subtype L1�L2
Anti-supertype L�(�Li)
Asymmetric L1	L2
Anti-inverse L1
L2
Mismatching L�(�Li)
Disagreeing L1L2
Contradictory L1�L2
iProbVal Prob(L)�Prob(�)

Definition 1. Given A1 and A2 as syntactically

identical atoms (same predicate symbol, same arity, and
same terms at corresponding positions), A1 and ¬A2 (or
¬A1 and A2) are referred to as complementary literals. We
denote complementary literals as L1 � L2 where L1 and
L2 are an atom and its negation. For instance,

Resource_agent(agent1)�¬Resource_agent(agent1)
Definition 2. Given two literals L1 and L2 that are

syntactically different and semantically opposite of each
other (the assertion of L1 (L2) implies the negation of the
other L2 (L1)), we call L1 and L2 as mutually exclusive
literals and use L1 � L2 to denote it. For example,

Animal(seaCucumber) � Vegetable(seaCucumber)
For two literals L1 and L2 that are syntactically

different, but logically equivalent, we call them
synonymous, and denoted L1 ≅ L2.

Definition 3. Given L1 and L2 that are a
complementary pair of synonymous literals, we call them
incompatible literals, and denote L1 � L2. For example,

Father(x, john) � ¬ Male_parent(x, john)
For two literals (or concepts as in description logics)

L1 and L2, if L1 is a subtype or a specialization of L2, then
we say that L1 is subsumed by L2 (or L2 subsumes L1) and
use L1�L2 to denote that.

Definition 4. If P1�P2 belongs to the taxonomy of
concepts in a domain but a requirement description yields
P1�¬P2, then we call P1 (L1) and ¬P2 (L2) anti-subtype
literals and use the following to denote it: L1�L2. For
example,

Surgeon(john)�¬ Doctor(john)
If L is a supertype consisting of a list of subtypes

denoted as �Li, we use L��Li to represent the fact that
L corresponds to the subtypes in �Li.

Definition 5. When a description uses �Liå for a
supertype L that is defined by L��Li, if (�Liå)�(�Li),
we say that (�Liå) is anti-supertype with regard to L and
use L�(�Liå) to denote that.

For instance, the supertype Agent in a particular
organization consists of the following subtypes: user

agents, broker agents, resource agents and ontology
agents.

Agent(x)�(�Li) where �Li contains:
 [User_agent(x) ∨ Broker_agent(x) ∨
 Resource_agent(x) ∨ Ontology_agent(x)]
Let �Liå be [User_agent(x) ∨ Broker_agent(x)], then

Agent(x)�(�Liå)
Given two literals L1 and L2 that share the same

predicate, if the predicate in L1 and L2 is a symmetric
relation (i.e., if L1 is p(x, y) and L2 is p(y, x), then

∀x ∀y [p(x, y)�p(y, x)])
L1 and L2 are referred to as symmetric and are

denoted as L1�L2.
Definition 6. When the predicate in L1 and L2 is a

symmetric relation, but L1 and L2 are no longer symmetric
literals, we say that L1 and L2 are asymmetric and use
L1	L2 to denote that. Following is an example of
asymmetric literals (assuming that the “connected”
relation is only discussed with regard to agent1 and
agent2):

Connected(agent1,agent2)	Connected(agent2,agent3)
When two predicates represent relationships that are

opposite of each other, we call them inverse predicates.
Literals L1 and L2, are referred to as inverse literals when
they contain inverse predicates and represent opposite
relationships. We use L1�L2 to denote that.

Definition 7. When predicates in L1 and L2 represent
inverse relationships but L1 and L2 are no longer inverse
literals, we say that L1 and L2 are anti-inverse and denote
it with L1
L2. For instance,

Send_msg_to(agent1, agent2)

 Received_msg_from(agent2, agent3)

When a compound predicate (L) is fully defined
through a logical expression of other predicates (�Li), we
use L��Li to denote it.

Definition 8. When a logical expression �Liå is used
in a model for the compound predicate L that is fully
defined by L��Li, if (�Liå)�(�Li), we say that L and
(�Liå) are mismatching and use L�(�Liå) to denote that.
 Mobile_agent(agent1)�[Executing(agent1, host1) ∧
 Executing(agent1, host2) ∧ host1 ≠ host2]
 Mobile_agent(agent1)�[Executing(agent1, host1)]

Given L1 and L2 for the same proposition and L2 is at
a more concrete level of abstraction than L1, we call them
reified literals and denote it with L1 � L2.

Definition 9. If reified quantities in L1 and L2 are no
longer compatible, we say that L1 and L2 are disagreeing
and use L1 L2 to denote it. For example,
 Memory_capacity(agent1, 2GB)
 Memory_capacity(agent1, 1500MB)

Definition 10. Given literals L1 and L2 with either the
same or different predicate symbols, if they contain
attributes (terms) which violate type restrictions or
integrity constraints, we refer to L1 and L2 as
contradictory and denote it with L1�L2.

453

Created(agent1, 11-1-2007) �
In_service(agent1, 10-1-2007)

When our beliefs about the world are not of a total
commitment, we say that the beliefs are uncertain. In
many real world circumstances, we have to deal with the
issues of how to represent the strength of an uncertain
belief and reason about uncertain beliefs during software
development process. This is quite different from
nonmonotonic reasoning [9]. Inconsistency can crop up in
uncertain belief representation and reasoning.

In probabilistic logic, there is an important issue that
pertains to the probabilistic entailment [9]: given a set �
of sentences and their probabilities, determine the
probability of a sentence � that logically follows from �.
For instance, given � = {A1, A1�A2} and the
probabilities: Prob(A1) and Prob(A1�A2), we would like
to establish a consistent Prob(A2). For the given
sentences, there are four possible interpretations as given
below where each column corresponds to a possible
interpretation:

A1 true true false false
A1�A2 true false true true
A2 true false true false

The consistent truth value assignments are shown
below in the matrix V where 1 represents “true” and 0
denotes “false”.

V = �� � � �� � � �� � � ��
The probability values for the three sentences are

constrained by the following matrix equation [9]:
Π = VP

and by the probability axioms of � �	
�� = 1 and
0���	
���1 for all i.

A geometric interpretation is given in [9] for the
aforementioned constraints. There is a convex region of
consistent probability values specified by the extreme
values of Π. Thus a consistent value for Prob(A2) must be
chosen from within the convex hull of the region.

Definition 11. Given a set � of sentences and their
probabilities, and a literal L that logically follows from �,
if Prob(L) is outside the convex region specified by the
extreme values of probabilities for � and L, then we say
that the assignment of the probabilistic truth value for L is
inconsistent. We call this type of inconsistency as
iProbVal (for inconsistent probabilistic value) and use
Prob(L)�Prob(�) to denote it.

4. Managing Inconsistency in VBSE

Managing inconsistency in VBSE does not have to
start from scratch. We can still define a set of consistency
rules that describe proper relationships that must be
maintained among VBSE descriptions. However, existing

results on inconsistency management obtained from
value-neutral software development should be augmented
in several directions.

First, consistency rules used for detecting and
handling inconsistencies need to be extended according to
the following.
• There should be consistency rules defined for the

most frequently encountered model conflicts among
stakeholders’ success models. Listed in [4] are some
of the most common ones. SVPs can be a major
source of inconsistency as stakeholders tend to have
their value propositions that are emergent and are not
necessarily compatible with each other.

• Since identifying all of the success-critical
stakeholders (SCS) is a necessary condition for the
SCS win-win achievement [3], there should be
consistency rules that account for all the SCSs.

• In the WinWin Negotiation model in [3], there are
agreements that cover win-conditions from
stakeholders. The options adopted by an agreement
address some divergent issues that involve win-
conditions from certain stakeholders. For instance, if
stakeholder A’s win-condition is to select the
Windows platform, whereas stakeholder B’s win-
condition is to select the Unix platform, then the two
conditions are conflicting. If the two agree to have a
middle ground of running the system on Java Virtual
Machine (JVM), then we have an agreement that
adopts the JVM option for the platform issue that
involves the win-conditions from the two
stakeholders. The model will reach an equilibrium
state when all win-conditions are covered by
agreements and there is no outstanding issue left [3].
For the model to work, there need to be consistency
rules that recognize all the inconsistent circumstances
among win-conditions.
Secondly, resolutions to inconsistencies stemming

from either conflicting SVPs or divergent business
objectives should be based on a broader range of
approaches. As delineated in [3], there are utility theory,
dependency theory, decision theory, and control theory
serving as the theoretical underpinnings of VBSE. When
resolving a conflict description, we can resort to various
tenets of decision theory: negotiation theory, game theory,
multi-attribute decision theory, statistical decision theory,
real options theory, and the Theory of Justice [3].

Third, additional inconsistency detection method can
be defined through techniques based on trace
dependencies. To ensure that a system’s objectives and its
value considerations are embodied in the software’s
design and development practices, the software
traceability techniques play an important role in VBSE
[2]. During the software development process, many
artifacts are produced and maintained: documents,
requirements, design models, test scenarios, and so forth.

454

Trace dependencies are to identify relationships among
those artifacts and the quality of the trace dependencies
should reflect the value of the artifacts they attempt to
bridge. This can be utilized for detecting inconsistency as
well as for documentation, program understanding,
impact analysis, reuse, quality assurance, user acceptance,
error reduction, cost estimation, and customer
satisfaction.

Finally, value-based risk management can be used for
assessing the impact and risk of unresolved
inconsistencies.

5. Conclusion

VBSE offers a new software development paradigm
that recognizes the importance of business and
stakeholders value considerations. It tackles the decision
making process in software development and maintenance
from a value-based perspective. However, inconsistencies
that arise during software development pose direct threats
toward the value-based objective, if they are not properly
tamed. In this paper, we reviewed the current landscape of
inconsistency management in the value-neutral software
engineering setting. After examining the dimensions of
inconsistency as a phenomenon in software development
process, we propose some guidelines on how to tame
conflicting descriptions and inconsistencies in value-
based software engineering. The take-home message is
that inconsistency is an issue to be reckoned with in
value-based software engineering.

Future work can be pursued in the following
directions. Specific consistency rules can be defined for
frequently encountered stakeholders’ divergent success
models. An equally important set of consistency rules is
also in order for the WinWin Negotiation model.

Acknowledgements
The author would like to thank anonymous reviewers for
their valuable comments which help improve the paper’s
presentation.

References
1. S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.

Grunbacher (ed.), Value-Based Software Engineering,
Springer, Berlin, 2006.

2. B. Boehm, “Value-Based Software Engineering: Overview
and Agenda,” in Value-Based Software Engineering, S.
Biffl et al (ed.), Springer, Berlin, 2006.

3. B. Boehm and A. Jain, “An Initial Theory of Value-Based
Software Engineering,” in Value-Based Software
Engineering, S. Biffl et al (ed.), Springer, Berlin, 2006.

4. B. Boehm, “Value-Based Software Engineering: Seven
Key Elements and Ethical Considerations,” in Value-Based
Software Engineering, S. Biffl et al (ed.), Springer, Berlin,
2006.

5. R. J. Brachman and H. J. Levesque, Knowledge
Representation and Reasoning, Morgan Kaufmann
Publishers, San Francisco, 2004.

6. F. Brooks, “No Silver Bullet: Essence and Accident in
Software Engineering,” IEEE Computer, Vol. 20, No. 4,
1987, pp.10-19.

7. G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi, “A
Framework for Formalizing Inconsistencies and Deviations
in Human-Centered Systems,” ACM Transactions on
Software Engineering and Methodology, Vol. 5, No. 3, July
1996, pp. 191-230.

8. H. Erdogmus, J. Favaro, and M. Halling, “Valuation of
Software Initiatives under Uncertainty: Concepts, Issues,
and Techniques,” in Value-Based Software Engineering, S.
Biffl et al (ed.), Springer, Berlin, 2006.

9. M. R. Genesereth, and N. J. Nilsson, Logical Foundations
of Artificial Intelligence. Morgan Kaufmann Publishers,
Los Altos, CA, 1987.

10. P. Grunbacher, S. Koszegi and S. Biffl, “Stakeholder Value
Proposition Elicitation and Reconciliation,” in Value-Based
Software Engineering, S. Biffl et al (ed.), Springer, Berlin,
2006.

11. J. Grundy, J. Hosking, and W. B. Mugridge, “Inconsistency
Management for Multiple-View Software Development
Environments,” IEEE Transactions on Software
Engineering, Vol. 24, No. 11, November 1998, pp. 960-
981.

12. A. Hunter and B. Nuseibeh, “Managing Inconsistent
Specifications: Reasoning, Analysis, and Action,” ACM
Transactions on Software Engineering and Methodology,
Vol. 7, No. 4, October 1998, pp. 335-367.

13. B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging
Inconsistency in Software Development,” IEEE Computer,
Vol. 33, No. 4, April 2000, pp. 24-29.

14. W. N. Robinson and S. D. Pawlowski, “Managing
Requirements Inconsistency with Development Goal
Monitors,” IEEE Transactions on Software Engineering,
Vol. 25, No. 6, 1999, pp. 816-835.

15. I. Sommerville, P. Sawyer, and S. Viller, “Managing
Process Inconsistency Using Viewpoints,” IEEE
Transactions on Software Engineering, Vol. 25, No. 6,
1999, pp. 784-799.

16. G. Spanoudakis and A. Zisman, “Inconsistency
Management in Software Engineering: Survey and Open
Research Issues,” in Handbook of Software Engineering
and Knowledge Engineering, S.K. Chang (ed.), World
Scientific Publisher, 2001, pp.329-380.

17. A. van Lamsweerde, R. Darimont, and E. Letier,
“Managing Conflicts in Goal-Driven Requirements
Engineering,” IEEE Transactions on Software Engineering,
Vol. 24, No. 11, November 1998, pp. 908-926.

18. C. Wohlin and A. Aurum, “Criteria for Selecting Software
Requirements to Create Product Value: An Industrial
Empirical Study,” in Value-Based Software Engineering, S.
Biffl et al (ed.), Springer, Berlin, 2006.

19. H. Zhu, and L. Shan, “Well-Formedness, Consistency and
Completeness of Graphic Models,” Proc. of the 9th
International Conference on Computer Modeling and
Simulation (UKSIM 2006), Oxford, UK, April 4-6, 2006.
pp. 47-53.

455

WSTester: Testing Web Service for Behavior Conformance

Bixin Li1,2, Lili Yang1, Shunhui Ji1, Dong Qiu1, and Xufang Gong1

1School of Computer Science and Engineering, Southeast University
Nanjing 210096, Jiangsu Province, P.R.China. Email: bx.li@seu.edu.cn

2Department of Computer Science and Engineering, University of California
Riverside, CA92521, USA. Email: lbxin@cs.ucr.edu

Abstract

In this paper, WSTester is introduced simply to show how
to test behavior conformance between Web services based
on interaction behavior specification and extended Labeled
Transition System, corresponding experiment results analy-
sis show the significance of the tool.

1 Introduction

In Web service times, it is necessary to realize the pre-

cise interaction and rapid integration of heterogeneous ap-

plications. Old independent point-to-point solution is un-

able to satisfy such new application requirement, it must

be replaced with service-guided distributed computing ar-

chitecture. SOA (Service-Oriented Architecture) is a new

paradigm that can be used to satisfy user’s current require-

ment. As a typical application case of SOA, Web ser-

vice has won the wide support from academia and indus-

tries. Web service is a network component over open soft-

ware platform, it supports interactive operation between dif-

ferent machines connected by the internet, it inherits the

merit of XML language, it adapts and supports interna-

tional open technology standards and specifications, where

WSDL (Web Service Definition Language) is used to de-

scribe Web service, UDDI (Universal Description, Discov-

ery, and Integration) is responsible for publishing and regis-

tering Web service in a Register Center so that it is easy for

service requestor to find his wanted service, SOAP (Simple

Object Access Protocol) protocol is used to bind and call it

after a service is found [1].

Since some ideas of Web service are originated from

object-orientation and component technology, they have

some common features. However, the obvious difference

between them is that a COTS component or an object is

physically integrated into application system developed by

the users, while only functions of Web services can be used

in their application by remote calling, the real running of a

service body is performed in the server located on the end of

service provider. Those services interacting each other in an

application are in fact distributed in different organizations

or departments. This reason makes it more complicated and

difficult to test the interactive behavior of Web service.

Next, WSTester is discussed about how to test behav-

ior conformance from the user’s viewpoint based on an ex-

tended Labeled Transition System called xLTS discussed in

[2], Labeled Transition System in [3], and interaction be-
havior specification introduced in [2], which was enlight-

ened by the idea in both [4] and [5].

2 WSTester

WSTester(Web Services Tester) is a conformance testing

experimental tool, which integrates xLTS model and UML

sequence diagram with OCL constraints. WSTester also

provides a set of tools for supporting specification analy-

sis, model transformation and model-based testing, it also

provides an exchangeable format for integrating with other

UML tool since its interface is based on XMI. WSTester has

functional components for generating test case and execut-

ing test process automatically, where xLTS model which is

transferred from UML model is the solid base for generat-

ing test case.

The flowchart of WSTester is described in Figure 1,

which includes four parts:

• Generate formal behavioral model: based on UML

2.0 sequence diagram and OCL constraint, LTS is ex-

tended to be xLTS with semantic information, both

data flow and control flow information can be captured

in xLTS and more rich information can be provided by

xLTS to generate test case.

• Generate test sequences and test cases: based on

xLTS, enough and wanted test sequences and test cases

are obtained.

456

W S T e s t e r I B S

U M L 2 . 0 S e q u e n c e
D i a g r a m

O C L C o n s t r a i n t s

x L T S

1 . G e n e a r a t e x L T S 2 . G e n e a r a t e t e s t
s e q u e n c e

3 . E x e c u t e t e s t
s e q u e n c e

4 . R e p o r t t e s t
r e s u l t T e s t r e s u l t

T e s t s e q u e n c e

W S D L

S e r v i c e P r o v i d e r S e r v i c e R e q u e s t o r
C o n t r o f l o w

D a t a f l o w

Figure 1. Flow chart of WSTester

• Execute test sequence: use test cases to test service by

remote calling and executing related services.

• Output test result: test report is output based on test

process record and final test result.

WSTester has four functional components: xLTS model
transformer, Test case generator, Main tester and wsCaller,

their main functions are introduced as follows:

(1) xLTS model transformer will be used to transfer in-

teraction behavior specification into xLTS so as to generate

wanted test case to satisfy test requirement.

(2) Test case generator is used to generate test case based

on xLTS.

(3) Dominant tester is the center modular for control-

ling test execution process that determines which test ac-

tions will be taken.

(4) wsCaller is used to call service to be tested.

3 CSW: an Illustration Example

Let’s see a sample service CSW (Customer-Supplier-

Warehouse), which is borrowed from [6]. In the CSW ser-

vice, the expected behaviors will be described as follows:

(1) Customer sends Supplier a request message re-
questQuote for inquiring the goods about quote price in-

formation;

(2) Supplier returns a response message requestQuote r
to reply the request

(3) Customer accepts the quote price and sends a mes-

sage orderGoods to Supplier for ordering the goods;

(4) Supplier will send a message checkShipment to Ware-

house after he accepts the order form;

(5) Warehouse checks the repertory to check whether it

is all right to consignment or not;

(6) Supplier will make different decisions according to

the checking result to Warehouse:

• (6a) If it is no problem to shipment now, Supplier

will send an acknowledgement message to Customer

S N . . . I m p l e m e t a t i o n

1 c o r r e c t i m p l e m e n t a t i o n

2 w h e n i n p u t e d q u a n t i t y o f g o o d s i s 0 , q u o t e o f g o o d s c a n b e r e q u e s t e d

3 q u o t e i n f o r m a t i o n o f a n o n - e x i s t e n c e i s r e q u e s t e d

4 t h e r e i s i n c o n s i s t e n c y b e t w e e n r e q u e s t e d g o o d s a n d r e t u r n e d g o o d s

5 a m o u n t o f r e q u e s t e d g o o d s i s l e s s t h a n a m o u n t o f r e t u r n e d g o o d s

6 o r d e r f o r m n u m b e r g e n e r a t e d a u t o m a t i c a l l y i s i n c o n s i s t e n t w i t h o r d e r i n g p r o c e s s

7 a m o u n t o f r e q u e s t e d g o o d s i s b e y o n d b i g g e s t r e p e r t o r y , b u t i t i s o r d e r e d

8 o r d e r f o r m n u m b e r s g e n e r a t e d i n d i f f e r e n t t i m e s a r e n o t i d e n t i f i e d

9 o r d e r i s r e c o r e d i n s y s t e m e v e n i t i h a s b e e n c a n c e l l e d

1 0 p a y m e n t a m o u n t i s c o m p u t e d i n c o r r e c t l y

Figure 2. Different implementation of CSW

for telling him that the order form has been accepted,

and Customer should do a makePayment operation

to make a payment, then Supplier asks Warehouse

to shipment, Warehouse sends Customer the message

getShipmentDetail to ask Customer the shipment de-

tail, Customer sends Warehouse the message con-
firmShipment to confirm this shipment, finally Ware-

house sends Supplier a message to confirm the mes-

sage confirmShipment.

• (6b) If it is impossible to shipment now, Supplier sends

Customer a message cancelOrder to cancel order form.

4 Experiment Result Analysis

For validating xLTS based method, one kind of correct

implementation and nine kinds of error implementations of

sample example CSW are designed in Figure 2 to check the

ability of our method and WSTester. For each implemen-

tation, we generate test case from LTS and xLTS model re-

spectively and observe what differences will happen when

each of them is used independently.

4.1 Evaluation factors

Two important factors needed to be checked to determine

the ability of a test method: error-checking capability and

test expensive. Error-checking capability is usually mea-

sured using test coverage rate(or TCR), while test expen-

sive (or TE) is measured by the length of test sequence(or

LOT). Our test goal is to perform a test with smallest test

expensive and strongest test capability. However the two

aspects are usually contradictory each other, so we pursuit

a strongest test capability when the contradiction can not be

solved. In our method, test coverage rate is computed using

the number of checked out errors (NCE) and the number of

total errors (NTE):

TCR =
NCE

NTE

TE = LOT

457

S N T e s t c a s e L O T

1 m; p a s s [] o t h e r w i s e ; f a i l 0

2
? r e q u e s t Q u o t e ; (! r e q u e s t Q u o t e ; (m;
p a s s [] o t h e r w i s e ; f a i l) [] o t h e r w i s e ; f a i l)) 2

3

? r e q u e s t Q u o t e ; ! r e q u e s t Q u o t e ; ? o r d e r G o
o d s ; (! c o n f i r m O r d e r ; (m; p a s s [] o t h e r w i s e ;
f a i l) [] o t h e r w i s e ; f a i l)

4

4

? r e q u e s t Q u o t e ; ! r e q u e s t Q u o t e ; ? o r d e r G o
o d s ; (! c a n c e l O r d e r ; (m; p a s s [] o t h e r w i s e ;
f a i l) [] o t h e r w i s e ; f a i l)

4

5
? r e q u e s t Q u o t e ; ! r e q u e s t Q u o t e ; ? o r d e r G o
o d s ! c o n f i r m O r d e r ; ? m a k e P a y m e n t ; (m;
p a s s [] o t h e r w i s e ; f a i l)

5

Figure 3. LTS-based test case

Test results SN

TCR (%) T est conclusion

1 0.0 Pass

2 0.0 Pass

3 60.0 Fail

4 80.0 Fail

5 0.0 Pass

6 60.0 Fail

7 60.0 Fail

8 0.0 Pass

9 0.0 Pass

10 20.0 Fail

Figure 4. Test conclusion

4.2 LTS-based test

At first, let’s see what will happen when we use LTS-

based test method proposed by Jiang [3], supposing the

biggest loop times is 1, then five test cases are generated

from xLTS in Figure 3, where m represents empty message

θ. The five test cases are used to test 10 kinds of different

implementations of CSW service, and the test result is given

in Figure 4.

We can see from Figure 4, only five kinds of error imple-

mentations of CSW service have been discovered, which

is caused by the construction of test execution trace with

sequence dependence relation. Because control-flow infor-

mation is considered in LTS-based method, it is easy to

check out the error produced in sequence operation. How-

ever, for LTS-based method, it is needed to add data into test

case manually, which limits the test capability of LTS based

method, added data will affect directly whether more errors

can be checked out or not. The reason for both the 2nd and

5th error haven’t been checked out is that LTS is short of

related data-flow information. It is needed to declare that it

is our limitation to loop times, which causes both 8th and

9th error haven’t been checked out.

S N T e s t c a s e L O T

1 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 1 , 4 0 0 0 >

5

2 ? r e q u e s t Q u o t e < p r o d A , 0 > ! q u i e s c e n c e 2

3 ? r e q u e s t Q u o t e < s u n , 4 0 0 > ! q u i e s c e n c e 2

4 ? r e q u e s t Q u o t e < p r o d A , 1 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 0 0 , 1 0 . 0 , 4 0 0 0 > 2

5 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a t m e n t < 2 , 4 0 0 0 >

5

6 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 5 0 0 > ! q u i e s c e n c e 4

7

? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0
> ? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 1 , 4 0 0 0 > ? r
e q u e s t Q u o t e < p r o d B , 5 0 0 > ! r e q u e s t Q u o t e < 2 , p r o d B , 3 0 0 , 2 0 . 0 , 6 0 0 0 > ?
O r d e r G o o d s < 1 , 3 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 2 , 6 0 0 0 >

1 0

8
? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ? c a n c e l O r d e r < 1 > ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r
e q u e s t Q u o t e < 2 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >

6

9 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 1 , 4 0 0 0 >

5

Figure 5. xLTS-based test case

Real results SN

TCR (%) T est conclusion
1 0.0 Pass
2 11.1 Fail
3 11.1 Fail
4 77.8 Fail
5 77.8 Fail
6 44.4 Fail
7 11.1 Fail
8 11.1 Fail
9 11.1 Fail
10 44.4 Fail

Figure 6. Test conclusion

4.3 xLTS-based test

Now we will observe what will happen when we use our

xLTS-based test method. Test cases are listed in Figure 5,

where test sequences with different lengths are adopted, and

requests with different amounts for requesting quote are in-

put.

As we can see from Figure 6, all the errors included in

the nine kinds of incorrect implementation of CSW service

have been checked out. But the discovering of most of them

is based on the construction of sequence dependence test ex-

ecution trace, such as 6th, 8th and 9th errors. It is very hard

to check out them to use current methods based on single

service operation. In error checking, the check capability

of a tool is affected by length of test trace obviously. In

above example, some errors are easy to find by checking

quote information of goods. For example, the error of in-

consistency between requested goods and returned goods is

checked out easily by checking a trace with length equaling

to 2: observing the response after the quote information is

requested.

However, there are a lot of errors that can not be found so

458

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

No.of Test Cases

N
o
.
o
f

F
a
u
l
t
s

xLTS

LTS

Figure 7. Test comparision

easily, they can only be found in sequence execution process

of multiple operations. For example, to check out the error

that the numbers of two order forms of goods are the same

for twice successful advance booking in different time, it is

needed to run two complete advance booking process where

the length of trace is 10. This shows, for the error existing in

sequence operation process, the longer the test trace is, the

stronger test capability is, but the test expensive for gener-

ating test case is increasing accordingly. To overcome this

shortcomings, we borrow on-the-fly test strategy, i.e., test

action is accompanying with test case generation, stopping

the test process as soon as the error is found, instead of start-

ing test after all of test cases have been generated, which ig-

nores the space explosion problem caused by model-driven

approach and reduces test expensive.

We can see from Figure 7 that the error checking cover-

age rate of xLTS-based method is higher than that of LTS-

based method, the main reason is that data-flow information

has been included in former method. But it is needed to

point that coverage rate 100% doesn’t mean that our method

has 100% coverage for any test. It is no meaning for cov-

erage rate itself, but it can be used as a reference data when

we do a compare between two methods.

5 Conclusion

There are some people who are doing research on be-

havior conformance testing, such as [5], [7] and [8]. En-

lightened by the main idea in these related work, both in-
teraction behavior specification and xLTS are introduced

to generate test case for testing behavior conformance in

this paper and its earlier version [2]. However, there are

still some shortcomings with our method, which encourages

us to do further work in our future time. Two representa-

tive issues are summarized as follows: (1) the inconsistency

caused by synthesizing xLTS from sequence diagrams must

be checked and solved, because the xLTS model generated

automatically from specification is just an approximation

of system, the prototype tool must support user’s manual

modification; (2) the way for combining xLTS model from

many different sequence diagrams must be considered in

next work. Because different sequence diagrams may have

some same or similar behaviors, how to combine and con-

firm these behaviors is a challenge problem.

Acknowledgements

The authors thank Prof. Rajiv Gupta in University of

California Riverside for providing a very comfortable Lab.

This work is partially supported by the National Nature

Science Foundation of China under No.60773105, partially

by the Natural Science Foundation of Jiangsu Province of

China under Grant No.BK2007513, and partially by Na-

tional High Technology Research and Development Pro-

gram under Grant No. 2008AA01Z113.

References

[1] W3C. Web Services Activity. http: // www. w3. org /

2002 / ws /.

[2] B. Li, X. Fan, and L. Yang. Extending Labeled Tran-
sition Systems for Conformance Testing of Web Ser-
vices. Technical Report, Southeast University, 2009.

[3] F. Jiang, Z. Ning. Automatic Test Case Generation
Based on Labeled Transition System. Chinese Journal

of Computer Research and Development, 2001, vol

38, no. 12.

[4] S. Pickin, C. Jard, T. Jeron, J. Jezequel, and Y. Traon.

Test Synthesis from UML Models of Distributed Soft-
ware. IEEE Transaction on software engineering,

April 2007, vol 33, no.4.

[5] E. Cartaxo, F. Neto, and P. Machado. Test Case
Generation by means of UML Sequence Diagrams
and Labeled Transition Systems. In: Proceedings of

IEEE International Conference on Systems, Man and

Cybernetics,7-10 Oct. 2007.

[6] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services: Concepts, Architecture and Applications.

Springer Verlag, 2004. ISBN 3-540-44008.

[7] J. Tretmans. Conformance testing with labeled transi-
tion systems: Implementation relations and test gener-
ation. Computer Networks and ISDN Systems, 1996,

29:49-79.

[8] R. Heckel, L. Mariani. Automatic conformance testing
of web services. In: Proceedings of FASE, Edinburgh,

Scotland, Apr., 2005, 2-10.

459

Robustness Verification Challenges in Automotive Telematics Software

Ali Shahrokni, Robert Feldt
Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden

Fredrik Petterson, Anders Bäck
Volvo Technology AB
Gothenburg, Sweden

Abstract—The automotive industry has always had a strong
pressure of ensuring that only high quality software is allowed
to control the vehicle. The general increase in the amount of
software in a modern vehicle and trends in the industry is
creating more open standards and systems. In particular, the
software architectures used will have to support extension with
3rd party components and extension at run-time during normal
operation of the vehicle. These trends put additional pressure
on the automotive industry to verify and validate the quality of
the systems. Since the software often governs safety-critical
features there are high demands on the robustness of the final
system. It is currently not clear how these robustness testing
challenges should be met and previous research have not
addressed this fully. We outline the challenges and point to
possible solutions that the research community needs to work
together with the automotive industry to realize.

Keywords-software testing; Robustness testing; verification
and validation; automotive industry; open systems; run-time
extension;

I. INTRODUCTION

Robustness is a non-functional property of software
systems. Non-functional requirements (NFR) or properties
have been widely discussed in the automotive industry for
several years. Verification of NFRs is a costly process and
great challenge in many parts of the automotive industry. A
key factor creating this challenge is the fact that many
existing testing and verification solutions are not usable in
the industry. Another factor is the difficulty to specify
testable and measurable NFRs. Since requirements and
verification are deeply interconnected this has caused
difficulties for verification of NFRs in some areas.

Telematics or vehicle communication systems have
grown rapidly in the previous years. A trend that has been
and will be given much attention in the automotive
telematics industry is the movement of the systems towards
more open standards and architectures.

In this paper we identify trends and goals in the
automotive telematics industry when moving towards open
systems. Furthermore, we describe the state-of-practice of
robustness and dependability verification in the automotive
telematics industry. Considering the trends, we have
identified and discussed what future challenges exist in the
field of robustness and dependability verification in the field.
Comparing the challenges with the existing solutions found
in the state-of-art and state-of-practice in other fields we

have suggested ways on how to face and tackle these
problems.

II. BACKGROUND

In this chapter some of the concepts and trends that will
be discussed in this paper are presented and defined.

A. Dependability and Robustness Definition
Dependability is an ‘umbrella’, ‘integrative’ concept

having multiple attributes [1]. Formally it and its basic sub-
concepts are defined as [2]:

“Dependability of a computing system is the ability to
deliver service that can justifiably be trusted. The service
delivered by a system is its behavior as it is perceived by its
user(s);”…”Correct service is delivered when the service
implements the system function. A system failure is an event
that occurs when the delivered service deviates from correct
service.”

Robustness is informally defined as dependability with
respect to erroneous input [2]. However it is clear that it is
not considered a main attribute of dependability, but is
characterized as a secondary and specializing attribute [2];
I.e. dependability with respect to external faults which
characterizes a system reaction to a specific class of faults.

In older texts robustness has been defined as {, #9}:
“The degree to which a system or component can

function correctly in the presence of invalid inputs or
stressful environmental conditions.”

B. Goals and trends in telematics software systems in the
automotive industry
Telematics is typically defined as a combination of

telecommunication and computing, i.e. data communication
between systems and devices. The term automotive
telematics refers to information-intensive applications
combining telecommunications and computing technology in
vehicles [4]. Often it is implied that such systems also
include a Global Positioning System (GPS) unit.

Telematics software or telematics software system (TSS)
refers to a piece of software that is used in a telematics
system. A TSS can be used for many different purposes,
including: managing road usage and collecting road tolls,
pricing auto insurance, tracking fleet vehicle location and
logistics (fleet telematics), car accident prevention, remote
diagnostics to ensure uptime, infotainment applications etc.

Some articles outline general challenges for software
development and engineering in the automotive application
domain [5, 6]. Like in many other industrial sectors, software
is increasingly driving innovation and product development

460

in the automotive industry. The trend that the share of
software in vehicles is steadily rising (some even report it is
rising exponentially [6]) is accompanied by general trends
like rising time and cost pressure and increasing quality
demands. DaimlerChrysler experts in 2003, estimated that
80% of future innovation will be driven by electronics and
90% of that by software [5]. The software is also getting
more complex; instead of isolated systems they now have to
interoperate and communicate with the outside world.

 In particular for telematics, the development cycles are
even shorter than for product development in general [5].
This calls for open and flexible architectures. The vehicles
should support dynamic extensions that might not have been
developed in-house but by 3rd party suppliers. For example,
the core software architecture will need to provide telematics
services. These services can be used by plug-in or third party
components such as vehicle logging and drive management.

The need and will to standardize software components
and use existing commercial software in vehicles is a future
trend in the automotive industry. This trend puts great
responsibility on vehicle companies to provide a robust
platform for this kind of software. The host platform should
make sure that the third party components are compatible
with the rest of the software system and do not interrupt the
function of the system. Furthermore it is important to make
sure that the quality attributes of the software like
availability, dependability and robustness are intact and not
worsened due to the existence of the third party component.

A common view is that future telematics systems will be
a single computing platform that offers many different
applications and services [7].

C. Open standards and architectures
Due to the rising complexity of software systems there is

a need to standardize systems and architectures. This
challenge is sensed significantly in automotive industry. This
standardization will help decrease the development and
customization costs for new systems. It will help integrating
different solutions from different automotive companies
much simpler with more clear communication interfaces. An
example of this is the Autosar [8] standard which is rapidly
becoming a key technology in the next generation of
vehicles.

There have been attempts to create standards for
telematics systems in the recent years. CVIS [9] is one of the
projects trying to establish a standard for the future vehicle
telematics systems. CVIS was started by the Information
Society and Media directorate general in European
commission. The goal of the project is to develop intelligent
co-operative systems based on vehicle to vehicle (V2V) and
vehicle to infrastructure (V2I) communication. An important
purpose of such integration is to increase the safety and
efficiency on roads. Other purposes of CVIS project are to
increase road network capacity, reduce congestion and
pollution, improve traffic safety for all road users, improve
efficiency of logistics and response to hazards, incidents and
accidents.

CVIS in its turn is based on other open platforms like
OSGI [10] to achieve a better grade of standardization and
reusability.

OSGi is a dynamic module system for Java that acts as a
generally useful middleware [10]. OSGi technology provides
a platform for service delivery based on components. It is
used in several different application areas and domains such
as IDEs (Eclipse), application servers (IBM Websphere,
JBoss), industrial automation, mobile phones etc [10].

The claimed benefits of OSGi technology are reduced
complexity by the use of bundles (the OSGi components),
reuse of 3rd party components, dynamic update of bundles
and services, easier deployment by specified install and
bundle management, adaptive mixing and matching of
components, and a useable security model that extends the
one supplied by Java [10]. The core API is a single Java
package comprised of 30 classes/interfaces.

An OSGi bundle is a Java JAR file where all things that
are not explicitly exported by the developer are hidden.
Similarly a user of a bundle must explicitly import the parts
they need.

A bundle can register services (embodied in Java objects)
in the OSGi service registry. It can also get a service and
listen for a service to appear or disappear. A filter language
can be used to ensure that the proper services are detected.
The filtering is based on the properties of the service.
Services can be dynamically withdrawn, added or changed.
Bundles are deployed on an OSGi framework supplying a
runtime environment for executing bundles. Bundles run in
the same Java VM and can share code.

There are several open-source implementations of OSGi
frameworks, such as Knopflerfish and Newton.

III. STATE OF AUTOMOTIVE TELEMATICS VERIFICATION
PRACTICE

The automotive industry is increasingly dependent on
software and needs to develop more effective and efficient
methods to ensure the quality of software. These needs are
even more evident given recent trends towards more open
standards, systems and architectures[5, 6]. Given these facts,
creating useful methods for testing is very attractive and
cost saving.

During the course of this project an extensive literature
study was performed. The purpose was to identify the state
of the art of verification and validation of non-functional
attributes of software systems. A complete summary of the
results found is out of the scope for the present paper.

In summary, the results from the review show that
several tools and methodologies on verification of robustness
and dependability have been presented [11-14]. However,
none of these tools are designed for end-to-end testing of
communications systems used in the telematics industry.
This has made them less interesting for the telematics
industry to use. More information about these tools is given
later in this paper.

Furthermore telematics have been a part of the
automotive industry only for a few years and is only in the

461

early stages of its evolution. Many unexplored opportunities
and applications have been recently pointed out [9].

A. State of Practice
To get more information on the state of practice in

verification of automotive telematics systems we conducted
six semi-structured interviews with practitioners. The goal
was to identify the state of practice in verification of NFRs in
telematics systems at Volvo Technology. Another goal was
to recognize the trends and challenges in eliciting and
verifying NFRs of these systems. The interviewees were all
working on telematics related projects at Volvo 3P and
Volvo Technology in Gothenburg at the time of the
interviews. In this paper these companies will be collectively
referred to as Volvo. Whenever Volvo is mentioned it refers
to the telematics parts of these two companies.

Two more interviews were conducted in another
company. This company will be referred to as company 2 in
this paper. Company 2 develops safety-critical software
systems in a different industrial area which is more mature in
regards to dependability and non-functional properties. Thus,
our goal is to contrast their state-of-practice to the one at
Volvo. Below we summarize the results from these different
interviews; table 1 shows the number and types of roles
involved.
Company Role
1 Volvo Technology System testing
2 Volvo 3P Acceptance testing
3 Volvo Technology Acceptance testing
4 Volvo Technology System testing
5 Volvo Technology Development
6 Volvo Technology Requirement
7 Company 2 Project leader, development
8 Company 2 Product leader, system

testing
Table 1. Roles of the interviewees

To have a better understanding of how the testing and
verification process in general works at Volvo, interviewees
were chosen from different parts and with different roles in
the development process. The interviewees were asked to
explain the general testing process and describe their parts in
the process in more detail. Furthermore they were asked to
explain how the verification of non-functional or quality
requirements and more specifically robustness of the system
works.

At Volvo the verification is mostly done through testing.
The testing is done in the different phases of the system
development.

The first phase is unit testing which is done by the
developer. This test makes sure the functionality for that unit
exists and functions properly.

After the system integration, system tests are conducted.
These tests follow the requirement specification documents.
Earlier the test process has been more scripted and specified.
All the test cases were specified in detail and the tester had to
follow them. However, a new working method has been
introduced where less detailed instructions is given to the

tester which gives more freedom to the tester on how to test
the functionality or the NFRs. In the end the testing is
reviewed and necessary steps are taken if any part of the
testing is wrong or incomplete.

The next step is to deliver the tested system to the
customer which in this case is Volvo 3P. User acceptance
test is run by Volvo 3P at this time. This part includes testing
the system on the vehicle. The system will be installed in the
vehicle and, while driving the vehicle, functionality will be
verified in different situations. The tests are performed
according to the user acceptance test specification which
makes sure that the requirement specifications are fulfilled.

The testing in all of these phases is mainly done
manually today. There are plans for using more automated
testing tools in the future but most of the tools available do
not fulfill the needs of the company. The main problem with
these tools is their incapability to provide an end-to-end
service over the telematics connection. In other words, a
complete testing tool that can initiate the communication on
one side and follow the process on the other side of the link
is not available to the company.

According to the interviews, this fact makes manual
testing still the cheapest, best and in many cases only way to
verify the fulfillment of functional and non-functional
requirements at Volvo.

Parts of the telematics system are however more
developed in the area of non-functional testing. A good
example of this is the communication channels. The
telecommunication field is a mature field and there are more
advanced automated testing tools and verification methods
available for it. Using these tools the quality of the
communication channel is tested with a relatively low cost.

With regards to NFRs of telematics systems the property
receiving most attention is availability. Using the
telecommunication testing tools mentioned above and
simulators this property is tested. Performance is another
property which is tangible and easy to understand. Therefore
it is easier to consider and verify this property during the
testing process than a more complex property like
robustness. Additionally, since the system is currently closed
for 3rd party developers and non-safety critical, validating
properties like dependability and robustness is not highly
prioritized.

At company 2 this looks different. Their systems are
safety-critical. This makes robustness and stability essential
properties of the system and they are considered to be even
more important than availability. Although there is a high
demand on availability it is less disastrous if the system is
out of service than if it operates faulty and misleads the
users. Since the customers have a higher demand on these
properties, they are more clearly specified in the requirement
specification than at Volvo. Thus they put in more effort to
make the non-functional requirements measurable and
testable. The systems should follow certain standards and
should go through safety reviews before they are accepted by
the customer.

Company 2 uses more automated testing tools on the unit
testing level. However, on higher levels like integration and
system tests the tests are still mostly done manually. They

462

use mathematical models and some testing tools for proving
some of the NFRs like availability since these requirements
are mostly specified with probability.

At Volvo, telematics systems are currently closed to
other companies and entirely developed in-house. The
system has clearly specified design and interfaces. There is a
total control on the development and testing process and this
makes the systems more robust and dependable. However,
this fact is changing rapidly. The automotive industry and
especially automotive telematics systems are clearly moving
towards outsourcing parts of the development of their service
applications to other companies. This results in more open
systems. This means that other companies can develop
software running on open platform provided by Volvo. This
challenges the company to find better ways to validate
robustness and dependability of their systems in the future.
Looking into methods used by more mature companies in
related fields, like Company 2, can be an important start.
This matter is further discussed in the next chapter.

IV. CHALLENGES

Given the trends mentioned earlier, there are many
challenges for robustness verification in the automotive
telematics industry today. Below we discuss some of these
challenges in more detail.

A. 3rd party components
According to the results from our interview study the

introduction of components developed by 3rd parties will
increase the need for a dependable and robust platform as
well as new verification methods. Not having control of what
software is running on the onboard telematics system can
introduce great risks if not dealt with properly.

To identify the challenges with such open platform and
the solution proposal for the problems, another set of
interviews were conducted. During these 5 interviews, a
whole new set of employees from the same Volvo companies
were chosen. Another goal with the second set of interviews
was to identify what parts of the system can be outsourced to
3rd party developers.

The interviewees unilaterally agreed that the important
and critical parts of the telematics system should be
developed in-house. A robust and well specified platform
should be provided by Volvo for 3rd party developers.
Furthermore there are requirements from the governments on
some basic parts of the telematics systems that better not be
outsourced to 3rd party developers. Some other parts can be
developed either by 3rd party or in-house and are less crucial.

When introducing externally developed software, it is of
great importance that the 3rd party components do not use all
the system resources or deliberately or accidentally harm the
functionality of more critical parts. The hardware resources
in onboard telematics systems are limited and this makes it
even more important to have robust and reliable resource
management software.

According to most of the interviewees, an important goal
for the vehicle companies should be to agree on standard
interfaces for their telematics systems. This way the 3rd party
components are usable on all vehicles which will increase

the efficiency for the vehicle companies, 3rd party companies
and the end users.

The need for certification of 3rd party components was
another solution proposal that was mentioned by the majority
of the interviewees. Certification will ensure the robustness
and reliability of the component to a certain level. Since the
instability in these components can be experienced as
instability in the Volvo system it is important to ensure the
quality of the components. We will discuss certification
briefly later in the paper.

B. Variation in deployment
Another key challenge and trend is to improve the

dynamic update and installation of services during runtime in
automotive telematics systems. Using this feature the end-
users should be able to download or buy 3rd party software
and install it on the onboard platform. Furthermore there
should be possibility to update existing software.

In order to improve this option there are several
prerequisites. Firstly the platform should be stable and
continue to be stable after the installation. This requires a
great deal of attention to resource management in a way that
the newly installed component should not be able to harm
the rest of the system. The system should even be
functioning while downloading and installing the new
component.

Secondly this puts some restrictions on how the
component should be started and downloaded. Although the
underlying platform should be robust this might not be
sufficient in many cases due to the limited hardware
resources. Careful resource management is needed during
the download, install and start process.

V. TOWARDS SOLUTIONS

In this chapter we will discuss the existing solutions that
can help facing the challenges mentioned earlier.

A. Reviews
Reviews and inspections are generally considered as very
cost-effective verification methods and in recent years
proposals have been made to make it even more so [15, 16].
Reviews are often most effective when focused on a specific
viewpoint or aspect. We see a potential that checklists could
be developed specifically for robustness and dependability
reviews. This would be especially useful since it could help
move robustness verification activities earlier in the
development process. Even though some work has been
done on this a general framework is needed which allows
for company-specific adaptations [17].

B. Certification
Certification is mostly used to show the level of

confidence in a system or component. Most of the
certification models focus on mathematical and test based
models. Using test cases the reliability and robustness of
different components are analyzed to measure a reliability
index for the system or component[18].

463

Using certification different characteristics of systems
can be graded [18, 19]. One of these characteristics is
robustness. This makes certification a good solution to
consider when moving towards more open systems.

C. Alignment of Requirements and Verification
To ensure that the verification activities are aligned with the
requirements previous research has focused mostly on
ensuring traceability. However, there is a lack of results that
are useful for non-functional requirements such as
dependability and robustness. ‘Dependability Cases’ was
developed in part to address these concerns [20]. However,
they only indicate areas of importance and are not directly
used to link the requirements to verification activities. By
extending the non-functional use case idea and developing
patterns for how to specify and test them much would be
gained. Results on formal specification of safety patterns are
related and can be built on [21].

D. Formal methods
Formal methods such as model checking and model-based
specification have a potential to help address automotive
telematics software challenges [22]. However, even though
industrial use is increasing there is still a lack of methods
that can help for whole-system and end-to-end verification.

E. Automated Testing Tools for Robustness Testing
The goal of robustness testing is to activate the design

and programming or vulnerabilities in the system that result
in incorrect operation. The robustness failures can be
classified according to the CRASH scale [23, 24]:
Catastrophic (the system crashes or reboots), Restart (the
process hangs and needs to be restarted), Abort (the process
aborts), Silent (No error signal returned when it should), and
Hindering (incorrect error code is returned).

Robustness can be tested either by testing of exceptional
input against the interfaces of the system or by stress testing
the system with a large amount of valid input [23-26].
Robustness testing is typically either done as a part of the
development process or it is performed after release to
benchmark the robustness and dependability of the system or
compare it to other existing systems [27].

Another use of robustness testing occurs when the system
contains or plans to contain third party application or
commercial off the shelf (COTS). Robustness testing in this
case can help identifying what parts need wrapping. In many
of these cases wrapping is the only solution to obtain higher
robustness [25].

One of the earliest robustness testing methods was fault
injection. The work started from very low level. In the early
days most of the robustness testing tools tried to simulate
hardware faults. More advanced versions of these tools are
still used especially for testing embedded systems [14, 28].

Another low level and simple method based on
generating random data as input for the system. Fuzz [29]
was one of the pioneers in this field. Using Fuzz many
robustness problems in Unix and Windows NT were
discovered. This method became known as Fuzz testing.

Fuzz testing provides random input data to a program in
order to test its robustness [30]. It is also called robustness
testing or negative testing. It has been used to evaluate
dependability and as an effective way of finding security
defects. Recently, advances in symbolic execution and
dynamic test data generation has been combined to create
effective white box fuzz testing tools [30].

Another approach for robustness testing is providing the
interfaces with invalid and out of bound values. Riddle tool
[13] is one among many tools using this method. These tools
usually use a grammar to define the range of valid and
invalid inputs. The results showed a large number of
unhandled exceptions of memory access violation and illegal
instruction in large operative systems and their applications.

One of the most known tools for robustness testing is
called Ballista [11]. Ballista and other testing tools in the
same family are designed to perform more relevant
automatic tests. In this method the valid and invalid inputs
for the different parameters and types present in the system’s
interfaces are specified. The hypothesis and result was that
using these values the automatic tests performed are much
better and more efficient in calculating and improving the
robustness of the software system.

JCrasher [12], Check ‘n’ crash and DSD-crasher are
other tools that more or less use the same principle as
Ballista. However these are especially designed for the
object oriented nature of Java. Using JCrasher different types
and classes will automatically be instantiated to create an
object oriented random input for the interfaces in the system.

Using these and other existing tools can help
significantly towards a solution for robustness testing in
automotive telematics. However developing and finding a
powerful end-to-end testing tool that can initiate the tests
from the onboard telematics system and follow the process
back to the central servers at Volvo still remain an unsolved
challenge.

VI. CONCLUSIONS AND FUTURE WORK

Open telematics systems are rapidly growing in
complexity and demand. Large infrastructure projects have
been started by among others the European commission to
address and guide this development. This has put demands
and challenged the vehicle companies. In this paper we
identified some of these trends and challenges that will have
an impact on the robustness of the telematics systems.
Furthermore we looked at the state of art and practice of
robustness verification and discussed what demands these
new trends would put on the robustness verification process.

A clear trend in automotive telematics industry is moving
towards open systems that allow 3rd party developers to build
components and new services for the system. These
components should be available for the end user for purchase
and installation. The introduction of these components brings
new challenges for resource management and robustness of
these systems.

There are several existing solutions and standards on
such open platforms i.e. OSGI and CVIS. However, the
robustness in these platforms has not been considered
enough.

464

To face these challenges some existing and proposed
solutions were discussed in this paper. An important step is
to develop a robust platform. In order to achieve this goal
there should be clear NFRs and specially robustness
requirements that are measurable and verifiable.
Furthermore, more sophisticated automated testing tools
should be developed. Automated testing should be used in
more extent to decrease the cost and time of verification and
increase its quality. However, for the tools to be real-world
attractive they should be useable for, or at least as parts of,
end-to-end system testing. Another solution that has proven
to increase the quality of software is to use reviews while
developing the telematics platform.

Another step is to consider carefully what risks the 3rd

party components can bring to the system. Using
certification and testing the external components can be one
way to face these risks. However, business concerns are
important and will have to be considered. Working towards
standard platforms and interfaces in the global automotive
telematics industry can simplify this matter significantly.

In conclusion, moving towards more open telematics
systems is inevitable in the automotive industry. In order to
become successful, there is a need for more robust platforms
and in order to verify this robustness, better testing and
verification methods and tools are needed.

REFERENCES

[1] J. C. Laprie, A. Avizienis, and H. Kopetz, "Dependability: Basic
Concepts and Terminology," 1992.
[2] A. Avizienis, J. C. Laprie, and B. Randell, "Fundamental concepts of
dependability," 2001.
[3] "Ieee standard glossary of software engineering terminology Tech.
Rep. Std. 610.12-1990," 1990.
[4] D. Sastry, G. Marco, L. Xuan, M. Paul, P. Ronald, S. Moninder, and
T. Jung-Mu, "Framework for security and privacy in automotive
telematics," in Proceedings of the 2nd international workshop on Mobile
commerce Atlanta, Georgia, USA: ACM, 2002.
[5] K. Grimm, "Software technology in an automotive company: major
challenges," in Proceedings of the 25th International Conference on
Software Engineering Portland, Oregon: IEEE Computer Society, 2003.
[6] M. Broy, "Challenges in automotive software engineering," in
Proceedings of the 28th international conference on Software engineering
Shanghai, China: ACM, 2006.
[7] Z. Yilin, "Telematics: safe and fun driving," Intelligent Systems,
IEEE, vol. 17, pp. 10-14, 2002.
[8] A. GbR, "Autosar: Technical Review R3.1," 2008.
[9] CVIS, "CVIS.1.0 Project Presentation," 2004.
[10] O. Alliance, "Home page for OSGi Alliance and the OSGi Service
Platform," 2009.
[11] J. DeVale, P. Koopman, and D. Guttendorf, "The Ballista software
robustness testing service," in Testing Computer Software Conference,
1999.
[12] C. Csallner and Y. Smaragdakis, "JCrasher: An automatic robustness
tester for Java," Software: Practice and Experience, 2004.
[13] A. K. Ghosh and M. Schmid, "An approach to testing COTS software
for robustness to operating system exceptions and errors," in Software

Reliability Engineering, 1999. Proceedings. 10th International Symposium
on, 1999, pp. 166-174.
[14] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, "Fault
injection experiments using FIAT," Computers, IEEE Transactions on, vol.
39, pp. 575-582, 1990.
[15] A. Porter, H. Siy, C. A. Toman, and L. G. Votta, "An experiment to
assess the cost-benefits of code inspections in large scale software
development," in 3rd ACM SIGSOFT Symposium on Foundations of
Software Engineering, Washington, D.C., United States, 1995.
[16] E. Farchi and S. Ur, "Selective Homeworkless Reviews," in Software
Testing, Verification, and Validation, 2008 1st International Conference
on, 2008, pp. 404-413.
[17] J. d. Almeida, J. B. Camargo, and B. Abrantes, "Best practices in
code inspection for safety-critical software," IEEE Software, 2003.
[18] A. Alvaro, E. S. de Almeida, and S. R. de Lemos Meira, "Software
component certification: a survey," in Software Engineering and Advanced
Applications, 2005. 31st EUROMICRO Conference on, 2005, pp. 106-113.
[19] C. Wohlin and B. Regnell, "Reliability certification of software
components," in Software Reuse, 1998. Proceedings. Fifth International
Conference on, 1998, pp. 56-65.
[20] R. A. Maxion and R. T. Olszewski, "Improving software robustness
with dependability cases," in Fault-Tolerant Computing, 1998. Digest of
Papers. Twenty-Eighth Annual International Symposium on, 1998, pp.
346-355.
[21] F. Bitsch, Safety Patterns - The Key to Formal Specification of Safety
Requirements vol. 2187/2001: Springer Berlin / Heidelberg, 2008.
[22] L. M. Barroca and J. A. McDermid, "Formal Methods: Use and
Relevance for the Development of Safety-Critical Systems," The Computer
Journal, vol. 35, pp. 579-599, December 1, 1992 1992.
[23] P. Koopman and J. DeVale, "The exception handling effectiveness of
POSIX operating systems," Software Engineering, IEEE Transactions on,
vol. 26, pp. 837-848, 2000.
[24] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz,
"Comparing operating systems using robustness benchmarks," in Reliable
Distributed Systems, 1997. Proceedings., The Sixteenth Symposium on,
1997, pp. 72-79.
[25] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, "Automated
robustness testing of off-the-shelf software components," in Fault-Tolerant
Computing, 1998. Digest of Papers. Twenty-Eighth Annual International
Symposium on, 1998, pp. 230-239.
[26] ReSIST, "ReSIST NoE. Resilience-Building Technologies: State of
Knowledge, Deliverable D12," 2006.
[27] D. P. Siewiorek, J. J. Hudak, B. H. Suh, and Z. Segal, "Development
of a benchmark to measure system robustness," in Fault-Tolerant
Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third
International Symposium on, 1993, pp. 88-97.
[28] T. K. Tsai, R. K. Iyer, and D. Jewitt, "An approach towards
benchmarking of fault-tolerant commercial systems," in Fault Tolerant
Computing, 1996., Proceedings of Annual Symposium on, 1996, pp. 314-
323.
[29] B. P. Miller, D. Koski, C. Pheow, and L. V. Maganty, "Fuzz
Revisited: A Re-examination of the Reliability of UNIX Utilities and
Services," 1995.
[30] Godefroid, "Automated Whitebox Fuzz Testing," 2008.

465

A 2D-Barcode Based Mobile Advertising Solution

Jerry Zeyu Gao, Hema Veeraragavathatham, Shailashree Savanur, and Jinchun Xia
Computer Engineering Department, San Jose State University

Contact email: jerrygao@email.sjsu.edu

Abstract
With the rapid increasing use of mobile devices, mobile-
commerce has evolved at a very fast rate and greatly
impacted our everyday lives. Since digital barcodes have
been used extensively in traditional commerce, such as
supply-chain and payment, it is desirable that we can
continue to use the barcode technology in mobile
commerce in advertising, payment, and product validation.
This paper proposes a new mobile advertising solution
based on two-dimensional (2D) barcodes. We report the
design and implementation of our solution using
DataMatrix 2D barcode technology. With this solution,
merchants and manufactures, as well as advertising vendors
can post and transfer barcode-based advertisements on
mobile devices of end users.
Keywords: mobile advertising, mobile advertising system,
mobile commerce, wireless commerce, and 2D barcodes.

1. Introduction

With the wide deployment of modern wireless networks
and mobile technologies, the number of mobile device
users increases sharply, which creates a strong demand for
emerging mobile commerce applications and services.
According the November Issue of Wireless Design &
Development Asia in 2007, wireless networks are deployed
in 224 countries in the world. Informa Telecoms & Media
(http://www.marketresearch.com/vendors/) reveals that
worldwide mobile subscriptions will hit 3.3 billion—
equivalent to 50 percent of the global. Mobile advertising is
an important subject in mobile-commerce. It has received
intense attention in today’s advertising and commerce
world. Informa Telecoms & Media predicts that wireless
advertising revenue will grow from $871 million in 2006 to
over $11 billion annually by 2011. Mobile devices have
become the new frontier and hot targets for advertisers.

As indicated in [17], various barcodes have been used in
the past decades as a very effective means in many
traditional e-commerce systems, supply-chain management,
retail sale-and-buy, as well as tracking and monitoring of
products and goods. The barcode technology has evolved to
2-Dimentional that provides higher data capacity.

This paper reports our pioneer work of integrating the 2D
barcode technology into mobile advertising systems. We
extended our SmartMobile-AD [13] system by adding the
2D barcode technology to support encoding & decoding,
posting & managing barcode-based mobile advertisements
for advertisers, mobile service carriers and publishers.

The Barcode Based Mobile Advertising System proposed
in this paper is a solution which could play a vital role in
promoting finished goods over the mobile platform by

using the 2D barcode as the primary source for
advertisements. This system facilitates advertisers to design
their product advertisement (ad) and supply it to a mobile
ad publisher to generate and publish a 2D barcode ad. The
mobile customers can view and decode these 2D-barcode
ads on mobile phones. They can also obtain 2d barcode ads
from magazines or posters by using a camera-enabled
mobile phone. If the ad is a promotion, then they can
redeem it at the store by scanning the barcode using a
barcode reader at the checkout counter.

This paper is structured as follows. Section 2 reviews the
background of digital barcode technologies and discusses
related work in mobile advertising. Section 3 describes our
Barcode Based Mobile Advertising System, including its
architecture, functionalities, and technologies used. The
implemented workflow processes for advertisers,
publishers, and venders are illustrated in section 4. Section
5 presents several example applications of the implemented
system for system users, including mobile access clients
and online access clients. Finally, Section 6 concludes the
paper and outlines future research directions.

2. Background and Related Work

2.1. Mobile advertising and systems

Mobile advertising provides a new direct way to increase
product sales and the awareness of products and services by
communicating with prospective buyers through mobile
devices. The basic mobile advertising concepts were
discussed in [1][2], including the classification of mobile
ads, business models, challenges and opportunities. Various
communication methods for mobile advertising were
discussed in [4], such as broadcasting (local and global),
ad hoc networking, and dedicated connection. In addition,
peer-to-peer based personalized advertisements can be sent
to users using both push and pull modes.

Among all the papers published recently addressing mobile
advertising, some focused on the effectiveness of mobile
advertising. In [3], the authors drew the lessons learnt from
analyzing the effectiveness of traditional advertising, in
order to understand the same in mobile advertising. The
authors considered a number of variables in order to
develop an empirically validated model to study advertising
through mobile messaging. The comparison between
mobile advertising on mobile devices and conventional
advertising on PCs and other platforms were discussed in
[1]. Pousttchi and Wiedemann discussed the categorization
and objectives of mobile marketing by examining fifty-five
case studies [10]. They standardized mobile marketing into
four types: information standard type (characterized by the
instance information, for example, news and horoscopes),
entertainment standard type (characterized by the instance

466

entertainment, for example, music and games), raffle
standard type (characterized by the instance raffle, for
example, lottery tickets), and coupon standard type
(characterized by the instance monetary incentive, for
example, discounts and trial packs).

Some other papers investigated the consumer’ perspective
and behavior toward mobile advertising and their
acceptance [5][6][7]. In [9], the authors analyzed consumer
behavior and the impact of a preceding advertisement on
the current one. Using an applied research methodology
they carried out an empirical evaluation of the model based
on the data collected from the consumers. Another study
was reported [8] to understand the response rates of
consumers in Korea for the same service provider based on
click rates of mobile advertisements, interviews, and
literature reviews for mobile advertisements. In [15], the
author provided a deep insight into the advertising space
and their studies on the effectiveness of advertising
campaigns for mobile phones. The author proposed a
conceptual model based on the factors affecting the mobile
industry and discussed the applicability of the model.

Different from the work summarized above, some other
researchers devoted to practical solutions for mobile
advertising, which is also the focus of this paper. The
existing works can be classified into the following groups:
- Mobile coupon system [11], which issues and utilizes
mobile coupons (known as mCoupons) on mobile devices.
The system reported in [11] used Near Field
Communication (NFC) technology for the client to extract
the mCoupon from the issuer and interact with the target
machine at the cashier’s desk to cash-in the coupon.
- Location-based advertising system. Bluetooth-Mobile
Advertising system [12], known as B-MAD, which delivers
permission-based, location-aware mobile advertisements
using Bluetooth positioning and Wireless Application
Protocol (WAP) Push. In this system, the location of the
end-user is identified through a Bluetooth Sensor. The Ad
Server looks up any undelivered advertisements for that
location, and then delivers the advertisements in the form
of WAP Push messages. The authors in [14] analyzed the
key issues in developing location-based advertisement for
mobile e-commerce (Ad-me).
- Intelligent mobile advertising system [13], which is a
complete system for both mobile marketing and
advertising. It provides intelligent targeting rules and
workflows to support various types of users including
wireless service companies, ad publishers, and end-users.

2.2. Barcode technology for mobile advertising

The barcodes technology was invented decades ago.
Traditionally, the barcodes stored data in the form of
parallel lines in different widths, which are known as 1-
demensional (1D) barcodes and could only encode numbers
[18]. In the past decade, various barcodes have been used
as a very effective means in many traditional e-commerce
systems, supply-chain management, retail sale-and-buy, as
well as tracking and monitoring of products and goods.
This technology has evolved into 2D barcodes [18] that can
store large amount of data in a small area to support

information distribution and detection without accessing a
database. However, 2D barcodes require sophisticated
devices for decoding, which remained a challenge until
recently. Today, with the advance of the image processing
and multimedia capabilities of mobile devices, they can be
used as portable barcode encoding and decoding devices.

With a much larger data capacity, 2D barcodes were
quickly adopted in different areas. PDF417, Micro
PDF417, and DataMatrix are typical examples of 2D
barcodes. In general, there are two types of 2D barcodes: a)
stacked 2D barcodes, such as Code 49 and PDF417, and b)
Matrix 2D barcodes, such as Data Matrix and QR Code.
Some examples of common 2D barcodes are shown below.

Code 49 QR Code

PDF417 Data Matrix
Figure 1 Four different Types of 2D Barcodes

A 2D barcode can hold up to 3116 digitals, 2355 letters,
and 1556 binary data. As indicated in [17], many people
believe digital barcodes improve mobile commerce
application systems for the following reasons:
� Digital barcodes provide a simple and inexpensive

method to present diverse commerce data in mobile
commerce, including product id and product
information, ads, and purchase/payment information.

� As more mobile digital cameras are deployed on
mobile devices, using digital barcodes can reduce
mobile inputs from mobile users.

Figure 2 Interactions between a 2D barcode and a
Mobile phone (Source:www.quickmark.com.tw)

As shown in Figure 2, the authors in [17] reviewed
different mobile applications using 2D barcodes, in supply
chain, mobile security, product identification and
information tracking. Funk [16] forecasted the future of
mobile shopping in the Japanese market as technology
trajectories with regards to speed of the network. They
include 2D barcodes, mobile browsers, and the integration

467

of mobile sites with other media, such as magazines, radio,
and TV in the Japanese market.

3. 2D Barcode-Based Mobile Advertising

(A) Barcode-Based Mobile Advertising Process

Comparing with conventional advertising approaches,
barcode-based advertising in mobile commerce provides
three distinct advantages:
� Provide present diverse advertisements in small-sized

barcodes with built-in rich marketing and product
information for potential customers.

� Increase the convenience and efficiency of electronic
commerce transactions in purchasing, payment, and
delivery/pick-up for products with bar-coded IDs.

� Improve mobile user experience by reducing user inputs.

Figure 3 shows the business process and workflow for
barcode-based mobile advertising. There are two ways for
advertisers to post barcode-based advertisements. In the
first approach, 2D barcode ads are published in
conventional media (such as posters and magazines) by
publishers. End users discover and capture the 2D barcode
ads using mobile devices with digital camera. The mobile
client software decodes the 2D barcodes and displays the
content to end-users. After that, end users follow-up for e-
commerce transactions.

In the second approach, 2D barcode ads are generated and
posted by mobile ad publishers on mobile sites. When end-
users discover a 2D barcode ad, they can click and access
the advertisement contents decoded by mobile client
software. Meanwhile, all end users reactions and responses
are tracked and processed by the mobile advertising system
for advertisement performance and reporting.

Figure 3. Barcode-Based Mobile Advertising Workflow

(B) Advertising Workflow

According to [2], there are three types of workflows to
support advertising activities. They are: a) the enterprise-
oriented workflow, b) the service-oriented workflow, and
c) publisher-oriented workflow. The workflow process for
mobile publishers consists six phases [1]:
� Ad Space Catalog: The publisher creates and maintains

ad space catalogs. An ad space catalog consists of a
number of pages with ad spaces. Each ad space has
attributes including location, posting size, schedule,
payment method, and current booking status.

� Ad Space Trading: The publisher sells ad spaces to
advertisers following a set of business rules. Advertisers
can select trading models through User Interfaces.

� Ad Space Schedule: The publisher creates and updates
delivery schedules for each ad space based on the
agreements. There are User Interfaces for advertisers to
search, book, purchase and confirm ad schedules.

� Ad Space Fulfillment: The publisher delivers the ads
based on ad delivery schedule and targeting rules.

� Ad Space Measurement: The publisher monitors and
collects ad delivery data used to measure the
performance of the ads.

� Ad Space Payment: The publisher collects payment
from advertisers after the ad is delivered, according to
the ad delivery contract.

Figure 4 A Workflow Process for AD Publishers

Barcode-Based Technology Solution:

We started a project in 2006 to develop a 2D barcode
mobile processing solution for our barcode-based mobile
commerce system. From our literature survey and study
about 2D barcodes, Data matrix symbology is a very
popular technology and standard used in many applications.
Hence, we implemented a 2D barcode framework based on
the standard defined by the Information Technology-
International Symbology Specification-Data Matrix
(ISO/IEC 16022) [20]. The discussion of the algorithms
was presented in [20]. The framework includes three basic
components and one user interface as a barcode generation
tool:

End
User

2D Barcode AD

Poster

Magazine

Advertisement

AD
Publisher

2D
Barcode

Decoding

Captured by
mobile camera

Printing

Mobile AD
Publisher

Mobile AD
Advertiser

2D Barcode
Advertising System

Wireless
Internet

Deliver

Generate/
or Encode

Access Deliver

View

Online
Interface

Middleware

AD Space Catalog

AD Space Trading

AD Space
Fulfillment

AD Space Measurement

AD Space
Scheduling

AD Space Payment

468

� An Application Interface (API), which can be used as
a reusable component for 2D barcode processing.

� An encoding module, which includes two parts: data
encoder and b) image generator. Data encoder
performs data encoding functions. They are: a)
generating encoded data in bit stream format, b)
adding unprotected bit stream, c) calculating a header
and a trailer, and appending them to the unprotected
bit stream to produce protected bit stream, d) pattern
randomization for extended security, and e) module
placement to form the matrix using a special
placement algorithm. Image generator includes the
functions to create the 2D barcode image.

� A decoding module, which provides the decoding
process by the following two parts: a) image decoder,
and b) data decoder. Image decoder recovers the
binary matrix from the given 2D barcode image.

Figure 5 shows the implemented encoding procedure and
decoding procedure, where multi-string encoding and
decoding feature were implemented to support multiple
segment Data Matrix Barcodes.

Figure 5 Encoding and Decoding for 2D Barcodes

4. A Barcode-Based Mobile AD Solution

Since 2005, we have started the research project [13] to
create a wireless advertising system to support wireless
service companies and publishers (or portals) to accept,
deliver, and present mobile ads for mobile advertisers. In
2008, we added the following two major features:

� Support, manage, post, and deliver 2D barcode-based
mobile ads.

� Support, manage, and post location-based ads. Due to
the page limit, this paper only discusses the 2D
barcode-based advertising solutions.

Figure 6 The Mobile Advertising System Architecture

Figure 6 demonstrates the system infrastructure, in which
WAP-based wireless Internet is used to support the
communications between mobile clients and the mobile
advertising server. The system supports three types of
users: mobile advertisers, ad publishers, and mobile users.
As shown in Figure 4, the system supports both online and
mobile functionalities. The function components are
grouped in 3-tier layers.
Tier #1 – A client tier including online user interface and
mobile client interface software.
Tier #2 – The application tier, which contains a set of
functional components and necessary middleware,
including wireless internet server, and internet server, etc.
These functional components support both online and
mobile advertising functions. Details are shown in Figure 7.
Tier #3 – A data store tier, which includes a mobile AD
database program and a MySQL server.

As shown in Figure 7, the functional components in the
mobile advertising server can be classified into two groups:
(a) online functional features, and (b) mobile functional
features. The online features include the following parts:
Ad Space Catalog Manager – It creates, updates, and
maintains ad spaces for a mobile publisher.
Ad Schedule Manager – It creates, updates, and maintains
different advertising schedules for mobile advertisers,
including 2D barcode advertisements.
Ad Submission Manager – It allows advertisers to submit
mobile ads based on their selected ad templates, contents
and spaces. The system allows advertisers to preview any
mobile ads on a mobile emulator from a computer.
Ad Targeting Manager – This component is responsible to
select mobile ads based on the pre-defined targeting rules
and processes, which were explained in [13].

Wireless Internet
Server

DB Server

Wireless
Internet

Internet

Wireless
Gateway

2D-Barcode
Framework

WAP

AD Database

Mobile User

Mobile
Client

2D Barcode Generator

2D-Barcode Framework

Internet Server

Middleware

Mobile AD ServerBarcode Tool

PublisherAdvertiser

2D Barcodes

Administrator

Encoding Workflow

Data String Partition

Creation of 2D
Barcode Data Matrix

Barcode Set
for Different
Sub-Strings

Barcode Conversion
Into Java Byte Array

Java Byte
Array

Combine Bye Arrays
Into A Big Byte Array

Big Java
Byte Array

Big chunk of Strings

A String Set

Decoding Workflow

Convert each Byte Array
into Barcode Images

Barcode Set
for Different
Byte Arrays

Decode each Barcode
and recover the strings

Java Byte
Arrays

Concatenate them to
form the original string

The original String Chunk

Partition of Big
Java Byte Array

A String Set

Big Java
Byte Arrays

469

Figure 7 Function Components in 3-Tier Layers

Online Ad Tracker – This part allows advertisers to track
the posted ads and customer reactions online.
Online Ad Performance –It evaluates and measures posted
ad performance based on different criteria (such as, ad-
impression, ad-click and ad-click-through) and generates
different performance reports.

Compared to the previous version of this Mobile AD
system [13], five mobile components were added. They are
listed as follows.
� 2D Barcode Framework – This component provides

2D barcode related functions and facilities using Data
Matrix standard, including encoding and decoding
functions. It is used as a basic component on the sever
side of the mobile advertising system.

� 2D Barcode Mobile Enabler – This is a barcode
processing component for mobile client software,
which supports decoding, barcode-based information
retrieval, and interactions with mobile users.

� Mobile Ad Delivery Manager – This component
manages and delivers different types of barcode-based
mobile advertisements.

� Mobile Ad Tracker – This function component
provides a primitive tracking for mobile
advertisements. It helps advertisers to check the
current advertising process and posting status for a
selected mobile ad.

� Mobile ad Measurement – This function component
allows advertisers to access a simple ad performance
report for their posted ads.

5. Implementation and Application

The 2D barcode advertising system demonstrates the use of
the barcode ads in various forms namely, large banner,
small banner, icon, text, image and video. Some of the
screen layouts are represented in Figure 8. The application
is launched with a splash screen and a list displaying the
various categories namely, Clothing and Apparel,
Household Items, Personal Care, Electronics, Pet Care, and,
Beverages. Each category has two or three advertisement
links. These links navigate to forms that display ads on
index or home pages of different mobile sites. The user
should click on the View Ad button in order to view the
decoded barcode. The user might have to view videos
before viewing the decoded barcode ad.

Figure 8. Screen layouts for customer to view various
barcode ads

The system provides a means for the advertisers to plan and
generate advertisements that belong to specific categories
and subcategories. The advertiser can also choose
registered publishers, ad templates, ad spaces and ad
schedules as posted by the publisher on his or her ad
catalogs. The advertiser changes the status of the barcode
ad to “contract” as soon as he completes the design. The
publisher receives the barcode ad and then encodes it.
Figure 9 illustrates the online user interface for a mobile ad
advertiser to manage mobile ad categories. Figure 10 shows
the system screen layout to generate a contract for mobile

Internet Comm. Component Wireless Comm. Component

Ad Space Catalog Manager

Ad Schedule Manager

Ad Submission Manager

Ad Targeting Manager

Online Ad Tracker

Online Ad Performance

Mobile Ad Delivery Manager

2D Barcode Framework

Ad Payment Management

Mobile AD Database Access Components

Mobile User Access Control

Mobile Ad Tracker

Online User Access Control

Mobile Ad Measurement

Mobile Location Service

Online User Interface Mobile Client Interface

Mobile FeaturesOnline Feature

MySQLDatabase Server

2D Barcode Mobile Enabler

470

advertising. Figure 11 and 12 demonstrate the online
interface for ad publishers to list/view mobile ads, and track
mobile ads, respectively. In addition, a mobile ad
performance feature is implemented online to allow users
to check the performance of mobile advertisements using
an online interface.

Figure 9 A Screen Layout for Managing AD Categories

Figure 10 A Screen Layout to Generate A Contract

The successful implementation of the barcode based
advertising system illustrates the fact that 2D barcode based
advertisements can be delivered to devices with very small
memory footprints. Encoding the advertisement into a
barcode ensures that more ad content can be delivered to
the mobile devices. Because the customers choose the
categories in which they wish to receive barcode ads, we
can avoid ad spam and ensure that the advertisers generate
more targeted and informational ads.

Implementation Technology
The presented 2D barcode advertising solution was
implemented using J2EE (Java 2 Enterprise Edition) (for
the web client) and J2ME (Java 2 Micro Edition) (for the
mobile client). Netbeans IDE was used to develop the

entire application. JSP pages were developed for the web
client and CSS was used to provide an uniform and elegant
look. Sun Java wireless toolkit for Connected Limited
Device Configuration (CLDC) was used to develop the
mobile application. Java Servlet and EJB technology were
used to develop the business logic. JDBC was used to
connect to a MySQL database.

Figure 11 A Screen Layout for Publishers to List and View
Mobile Barcode Ads

Figure 12. A Screen Layout to Track Information of Mobile
Barcode Ads

The encoding algorithm used by the Publisher was
developed earlier at San Jose State University. The
implementation of decoding for the Data Matrix barcode is
currently based on an open source API, namely the ZXing
Barcode Reader for Java ME which is a part of Google
code. It is recommended that an in-house barcode reader be
used in order to own the entire solution.

The solution currently implements only text-based
advertisements. It is recommended that multimedia based
ads be supported in order to reach a wider range of
customers.

471

6. Conclusion and Future Work

Today, mobile advertising is a hot topic in m-commerce
research and business. As the advance of 2D barcode
technologies, more barcode-based solutions and systems
are needed in mobile commerce. This paper addresses this
demand and reports our research efforts in building a 2D
barcode-based mobile advertising solution for mobile
advertisers and mobile users using modern mobile
technology based on DataMatrix 2D barcode standard.
Compared with other existing mobile advertising
approaches and solutions, the proposed solution has the
unique advantages in increasing mobile AD access
experience for the following reasons:
� Posting small-size 2D barcode-enabled ads on mobile

devices allows mobile users to access and retrieve a
rich set of information, including detailed product
information in a supply-chain.

� Improving mobile commerce experience by reducing
or eliminating mobile user inputs when accessing
mobile ads.

� Creating a new digital channel to leverage the
conventional advertising media (such as posters and
magazines) with mobile advertising solutions.

This paper reports our development effort and experience
in building a new mobile advertising solution based on 2D
barcodes. Initial prototype system and application
experience suggest that this solution is feasible over
wireless Internet using current technologies in 2D barcode
symbology and mobile J2ME. Our experiment results also
suggest that the 2D barcode technology has great potential
in mobile commerce systems, such as mobile payment and
mobile applications.

In the future, we plan to study, implement, and deploy the
2D barcode-based mobile validation solution and tool to
support merchants in product validation & check-out,
product pick-up & delivery, invoice (or ticket) validation
by mobile devices.

7. References

[1] Yunos, H. M., J. Z. Gao, and S. Shim, “Wireless
Advertising’s Challenges and Opportunities”, IEEE
Computer, 36 (5), 30-37. 2003,
[2] Jerry Gao, J., Shim S., Mei H., Su X., “Engineering
Wireless-Based Software Systems and Applications”,
Artech House Publishers, 2006.
[3] D. Drossos and M. G. Giaglis, “Mobile Advertising
Effectiveness: an Exploratory Study”, Proceedings of the
International Conference on Mobile Business, 2006.
[4] R. Bulander, M. Decker, G. Scheifer, and B. Kolmel,
“Comparison of Different Approaches for Mobile
Advertising”, Proceedings of the second IEEE
International Workshop on Mobile Commerce and
Services, 2005.
[5] X. Shen, and H. Chen, “An Empirical Study of What
Drives Consumers to Use Mobile Advertising in China”
Proceedings of the third International Conference on Grid
and Pervasive Computing Workshops.

[6] D. He and Y. Lu, “Consumers Perceptions and
Acceptances Towards Mobile Advertising: An Empirical
Study in China”, Proceedings of the International
Conference on Wireless Communications, Networking and
Mobile Computing, 2007.
[7] H. Komulainen, et al, ”Mobile advertising in the eyes of
retailers and consumers - empirical evidence from a real-
life experiment”, Proceedings of the International
Conference on Mobile Business, 37-37, 2006.
[8] P. Haghirian et al.,” Increasing Advertising Value of
Mobile Marketing – An Empirical Study of Antecedents”,
Proceedings of the thirty-eighth Hawaii International
Conference on System Sciences, 32(c) – 32(c), 2005.
[9] S. H. Lee,, et al, ”Analysis of the Actual Response
Rates in Mobile Advertising”, Innovations in Information
Technology, 1-5, 2006.
[10] K. Pousttchi and D. G. Wiedemann,“ Contribution to
Theory Building for Mobile Marketing: Categorizing
Mobile Marketing Campaigns through Case Study”,
Proceedings of the International Conference on Mobile
Business, 2006.
[11] S. Dominkus, and M. Aigner, “mCoupons: An
Application for Near Field Communication (NFC)”,
Proceedings of the twenty-first International Conference on
Advanced Information Networking and Applications
Workshops, 2007.
[12] L. Aalto et al, ”Bluetooth and WAP push based
location-aware mobile advertising system”, Proceedings of
the International Conference on Mobile systems,
applications and services, 49-58, 2004.
[13] Jerry Zeyu Gao and Angela Ji, ”SmartMobile-AD: An
Intelligent Mobile Advertising System”, Proceedings of the
third International Conference on Grid and Pervasive
Computing Workshops, 2008.
[14] N. Hristova and G. M. P. O’Hare, “Ad-me: wireless
advertising adapted to the user location, device and
emotions”,Proceedings of the thirty-seventh Annual Hawaii
International Conference on System Sciences, 2004.
[15] R. Vatanparast, “Piercing the Fog of Mobile
Advertising”, Proceedings of the International Conference
on the Management of Mobile Business, 2007.
[16] L. J. Funk, “The future of mobile shopping: The
interaction between lead users and technological
trajectories in the Japanese market”, Technological
Forecasting and Social Change, 74 (3), 341-356., 2007.
[17] Jerry Zeyu Gao, L. Prakash, and R. Jagatesan,
“Understanding 2D-BarCode Technology and Applications
in M-Commerce - Design and Implementation of A 2D
Barcode Processing Solution”, Proceedings of the thirty
first International Conference on Computer Software and
Applications, 2007 (COMPSAC2007).
[18] R. C. Palmer, The Bar Code book: Reading, Printing,
and Specification of Bar Code Symbols (3rd ed.), Helmers
Publishing, 1995.
[19] H. Kato, and K. T. Tan, “2D BARCODES FOR
MOBILE PHONES”, Proceedings of the second
International Conference on Mobile Technology,
Applications and Systems, 2005.
[20] ISO/IEC, “INTERNATIONAL STANDARD ISO/IEC
16022 – DataMatrix”, June 2006.

472

Long-term Prediction of Wireless Network Traffic

Zhiwei Xu
University of Michigan

Dearborn, MI 48187
zwxu@umich.edu

Zhou Zhou
Department of Statistics

The University of Chicago
Chicago, IL 60637 USA
zhouzhou@uchicago.edu

Weibiao Wu
Department of Statistics

The University of Chicago
Chicago, IL 60637 USA

wbwu@galton.uchicago.edu

Abstract

We consider the problem of predicting aggregates or
sums of future values of a wireless network based on its
past values. In contrast with the conventional prediction
problem in which one predicts a future value given past val-
ues of the process, in our setting the number of aggregates
can go to infinity with respect to the number of available ob-
servations. Consistency and Bahadur representations of the
prediction estimators are established. A simulation study is
carried out to assess the performance of different prediction
estimators.

1 Introduction

Efficient prediction of network traffic is an important

problem for planning and for Quality-of-service (QoS) im-

provement. Net work traffic can be considered as a time

series. So prediction of future traffic can be modeled as

the prediction or forecasting of future values of a random

process. This is one of the fundamental objectives in the

study of time series. Let (Xt)t∈Z be a stochastic process.

Given the observations X1, . . . , Xn, one is interested in

predicting future values Xn+j , j ≥ 1. If (Xt)t∈Z is sta-

tionary with E(X2
t) < ∞, then one can apply the cele-

brated Kolmogorov-Wiener theory to estimate the condi-

tional mean E(Xn+j |X1, . . . , Xn). Since Cover (1975),

there have been substantial progresses on the estimation the-

ory of the conditional mean E(Xn+j |X1, . . . , Xn), the con-

ditional distribution [Xn+j |X1, . . . , Xn], or their variants;

see for example Ornstein (1978), Ryabko (1988), Algoet

(1992, 1999), Morvai, Yakowitz and Györfi (1996), Morvai,

Yakowitz and Algoet (1997), Györfi, Morvai and Yakowitz

(1998), Györfi, Lugosi and Morvai (1999), Schäfer (2002),

Morvai (2003), Morvai and Weiss (2004, 2005, 2008). Mor-

vai and Weiss (2004, 2005) applied the tool of stopping

times to estimate conditional expectations. Other contri-

butions can be found in Brockwell and Davis (1991), Box,

Jenkins and Reinsel (1994), Györfi et al (1998), Pourahmadi

(2001) and Györfi and Ottucsak (2007) among others.

In this paper, we consider predicting Xn+1 + . . . +
Xn+m, sum of future values, based on the past observa-

tions X1, . . . , Xn. In our setup we allow m = mn → ∞
as n → ∞. Our formulation is attractive in situations in

which one is interested in long-term prediction. For exam-

ple, in telecommunication, engineers may have automati-

cally collected minutely or secondly time series data which

represent number of downloads by users every minute or

second. However, at the management level, people are

more interested in predicting numbers of downloads for

a much longer time scale, say weekly, monthly or even

yearly. Let X1, X2, . . . , Xn be minutely observations and

m = 7×24×60 = 10, 080. Then Xn+1+. . .+Xn+m corre-

sponds to the number of downloads in the upcoming week.

Prediction of Xn+1 + . . . + Xn+m may help implement-

ing price policy of telecommunication services. Recently,

the Time Warner Cable Inc is planning to implement a price

policy which is based on Internet usage and download vol-

umes rather than a flat monthly fee (Adegoke, 2008). To

design a reasonable price policy, one needs to have a good

prediction of Xn+1 + . . . + Xn+m.

As a mathematical framework, we consider the construc-

tion of prediction intervals for Xn+1 + . . . + Xn+m given

X1, . . . , Xn. Specifically, we need to find a random interval

[L,U], where L and U are functions of X1, . . . , Xn, such

that

P(L ≤ Xn+1 + . . . + Xn+m ≤ U |X1, . . . , Xn) = 1 − α, (1)

where 1−α is a pre-assigned coverage level. In practice one

typically uses α = 0.01 or 0.05. Clearly, the problem of

finding such L and U involves the estimation of conditional

distributions of Xn+1 + . . . + Xn+m given X1, . . . , Xn.

With the estimated interval [L,U], one can assess uncer-

tainty of future aggregates and then adopt appropriate price

policies.

In our setting we let m → ∞ as n → ∞. Our frame-

work is very different from the classical one in which one

473

assumes m = 1 as far as the methods of finding L and U
are concerned. If m = 1, then one needs to estimate the

conditional distribution of Xn+1 given X1, . . . , Xn. The

latter problem is closely related to the Value-at-Risk (VaR)

estimation problem; see J.P. Morgan’s (1996) RiskMetrics

Technical Report. In a typical conditional VaR estimation

problem, analogously to (1), one seeks to find a number V
which depends on X1, . . . , Xn, such that

P(Xn+1 > V |X1, . . . , Xn) = α. (2)

It turns out that, interestingly, estimation of L and U
in the framework of (1) with m → ∞ is relatively eas-

ier for certain class of processes. This is due to the so-

called quenched or conditional central limit theory; see

Wu and Woodroofe (2004) for some recent developments.

As argued in Section 2.1, if the process (Xk) is weakly

dependent, then the impact of X1, . . . , Xn on the sum

Xn+1 + . . . + Xn+m is negligible and one has the approxi-

mate relation

P(Xn+1 + . . . + Xn+m ≤ x|X1, . . . , Xn)
≈ P(Xn+1 + . . . + Xn+m ≤ x) (3)

when m is large. Let l < u be two real numbers such that

P(l ≤ Xn+1 + . . . + Xn+m ≤ u) = 1 − α. (4)

In many problems approximate solutions l and u can be ob-

tained asymptotically or empirically; see Section 2. Based

on (3), we can choose L and U as l and u, respectively, so

that they provide an approximate solution to (1).

We now impose structural assumptions on Xi so that we

can interpret in what sense (3) holds and then utilize (3).

In particular, we shall consider the long-term prediction for

the linear model

Xi = wT
i β + ei, (5)

where T denotes the matrix transpose, (ei) is a mean zero

stationary process, β is a p × 1 unknown regression coeffi-

cient vector and wi are known p×1 covariates, explanatory

variables or design vectors.

The rest of the paper is organized as follows. As a pre-

mier, Section 2 concerns the special case of model (5) in

which wT
i β = 0, namely there are no covariates involved.

Prediction of the general linear model (5) is considered in

Section 3. In Section 3.1 we apply our estimation procedure

to a telecommunication network traffic dataset.

2 Quantiles of Sums of Stationary Processes

To illustrate the idea behind (3), we let wT
i β = 0 and

assume that (ei) is a mean zero stationary process with finite

second moment E(e2
i) < ∞. Let Sm = e1 + . . . + em and

Fi = (ei, ei−1, . . .). Under this setting, by stationarity, it

suffices to establish the following version of (3):

P(Sm/
√

m ≤ x|F0) ≈ P(Sm/
√

m ≤ x) (6)

when m is large. Let Φ(u) =
∫ u

−∞(2π)−1/2e−x2/2dx
be the standard normal distribution function. For a ran-

dom variable X , we write X ∈ Lp, p > 0, if ‖X‖p :=
[E(|X|p)]1/p < ∞. For two distributions F and G on R,

define the Levy metric

Δ(F,G) = inf{δ > 0 : F (x − δ) − δ ≤ G(x)
≤ F (x + δ) + δ holds for all x ∈ R}. (7)

2.1 Quenched Central Limit Theory

Wu and Woodroofe (2004) proved the following con-

ditional or quenched central limit theorem: Assume that

E(|ei|p) < ∞ for some p > 2 and, for some q > 5/2,

‖E(Sm|F0)‖2 = O(
√

m/ logq m). (8)

Then we have the almost sure convergence

Δ[N(0, σ2), P(Sm/
√

m ≤ ·|F0)] → 0 (9)

as m → ∞, where σ2 = limm→∞ ‖Sm‖2
2/m is the long-

run variance. Namely, for almost all realizations of F0, we

have

lim
n→∞ sup

x∈R

|P(Sm/
√

m ≤ x|F0) − Φ(x/σ)| = 0. (10)

Convergence in the stronger form of invariance principle is

also valid; see Corollary 3 in Wu and Woodroofe (2004).

As argued in the latter paper, under (8), we also have the

unconditional central limit theorem Sm/
√

m ⇒ N(0, σ2),
or:

lim
n→∞ sup

x∈R

|P(Sm/
√

m ≤ x) − Φ(x/σ)| = 0. (11)

Clearly, (10) and (11) imply that not only (6) holds in the

sense of

lim
n→∞ sup

x∈R

|P(Sm/
√

m ≤ x|F0) − P(Sm/
√

m ≤ x)| = 0. (12)

but also both P(Sm/
√

m ≤ x|F0) and P(Sm/
√

m ≤ x)
can be approximated by N(0, σ2). The latter observation is

in striking contrast with the construction of prediction in-

tervals when m = 1, in which case the conditional and un-

conditional versions are quite different (see Section 7.4 in

Chatfield (2001)). Additionally, (10) and (11) also suggest

an approximate solution of L and U to (1) in the following

form:

L,U = ±σ̂zα/2

√
m, (13)

474

where zα/2 is the α/2-th quantile of the standard normal

distribution and σ̂ is an estimate of σ. A popular estimate

of σ2 is the lag window estimate

σ̂2 =
kn∑

k=−kn

γ̂k, (14)

where kn is the bandwidth sequence sequence satisfying

kn → ∞ and kn/n → 0, and γ̂k is an estimate of γk:

γ̂k =
1
n

n−|k|∑

i=1

(ei − ē)(ei+|k| − ē), ē =
1
n

n∑

i=1

ei. (15)

For details see Anderson (1971) or Brockwell and Davis

(1991).

An interesting and useful feature of the prediction in-

terval (13) is that one does not need to fit the underlying

probability model for the process (ei). On the other hand,

however, the above normal approximation may fail if the

process is strongly dependent or has heavy-tailed distribu-

tions. It is common that telecommunication time series may

exhibit long-range dependence as well as heavy tails; see for

example Mikosch et al (2002). This is one of the major rea-

sons that Internet Service Providers such as the Time Warner
Cable Inc are interested in imposing more charges on users

who download files with very large sizes. To construct pre-

diction intervals for processes with heavy tails, one way out

is to resort to empirically based method which is discussed

in detail in the section below. Our simulation study shows

that the latter approach outperforms the one based on (13).

2.2 Quantile Estimates

Condition (8) ensures the normal approximation (9). For

strongly dependent processes, however, (8) is violated (Wu

and Woodroofe, 2004) and (12) may be invalid. In this case,

we propose to estimate quantiles of Sm by sample quantiles

of
∑i

j=i−m+1 ej , i = m,m + 1, . . ., via a moving window

scheme. Specifically, Let

Ỹi =

∑i
j=i−m+1 ej

Hm
, i = m,m + 1, · · · , (16)

where Hm > 0 is an appropriate normalizing constant

such that Ỹi has a non-degenerate limiting distribution as

m → ∞. Note that (Ỹi), i ∈ Z, is a (triangular array)

stationary time series and we can calculate (Ỹi)n
m. In or-

der to construct a (1 − α) prediction interval for Ỹn+m

based on (Ỹi)n
m, we shall estimate (1−α/2)th and (α/2)th

quantiles of this quantity. More specifically, let Q̂n(α/2)
and Q̂n(1 − α/2) be the (1 − α/2)th and (α/2)th sam-

ple quantiles of (Ỹi)n
m, then [Q̂n(α/2), Q̂n(1 − α/2)] is

a natural (1 − α) prediction interval of Ỹn+m. Therefore

[HmQ̂n(α/2),HmQ̂n(1 − α/2)] is a (1 − α) prediction

interval for
∑n+m

j=n+1 ej . Asymptotic properties of Q̂n for

short- and long-range dependent linear processes are dealt

with in Sections 2.2.1 and 2.2.2, respectively.

2.2.1 Short-Range Dependent (SRD) Processes

To obtain asymptotic properties of Q̂n(α/2) and Q̂n(1 −
α/2), here we assume that (ei) is a one-sided infinite order

moving average MA(∞) process:

ei =
∞∑

j=0

ajεi−j , (17)

where (εj)∞−∞ is an i.i.d. sequence having mean 0, and

(ai)∞0 are real coefficients such that ei exists almost surely.

The almost sure convergence of (17) can be checked by the

well-known Kolmogorov three-series theorem (Chow and

Teicher (1988)).

The innovations (εj)∞−∞ can be either light or heavy-

tailed. More precisely, we say εj is light-tailed if E(ε2
j) <

∞. For heavy-tailed processes, we consider εj which be-

longs to α-stable domain of attraction D(α) for some α ∈
(1, 2), namely the normalized partial sum process of εj con-

verges to a stable distribution (Chow and Teicher (1988),

Feller (1971)). For εj ∈ D(α), it has the following charac-

terization:

1 − Fε(t) = (c1 + o(1))t−αL(t) and

Fε(−t) = (c2 + o(1))t−αL(t) (18)

as t → ∞, where Fε(·) is the cumulative distribution func-

tion (c.d.f.) of εj , c1, c2 ≥ 0, c1 + c2 > 0 and L is a slowly

varying function (s.v.f.), i.e., limx→∞ L(tx)/L(x) = 1 for

all t > 0; see Feller (1971). Clearly, by (18),

gn := inf{x : P(|εi| > x) ≤ 1/n} = n1/αL1(n),

where L1 is also a s.v.f.. Observe that E(|εi|α′
) < ∞ for

all α′ ∈ (0, α), and α is called the heavy tail index, and

E(ε2
i) = ∞.

We shall let the normalizing constant Hm =
√

m if

E(ε2
j) < ∞ and Hm = gm if εj ∈ D(α), 1 < α < 2.

By the central limit theorem of SRD linear processes (see

for example Avram and Taqqu (1984)), we have

Ỹi ⇒ Z as m → ∞, (19)

where Z is Gaussian if E(ε2
j) < ∞ and Z is α-stable if

εj ∈ D(α).
We shall impose the following regularity conditions:

(SRD)
∑∞

i=0 |ai| < ∞.

(DEN) supx∈R
(fε(x)+ |f ′

ε(x)|) < ∞, where fε(.) is the den-

sity of εi.

475

Condition (SRD) is a classic short-range dependence or

stability condition for linear processes (see Box, Jenkins

and Reinsel (1994)). The other Condition (DEN) appears

quite mild, and it holds, for example, the symmetric-α-

stable distributions. Let Q̃q , 0 < q < 1, be the qth quantile

of Ỹi and fm(·) be the density function of Ỹ . Let

F̃n(x) =
1

n − m + 1

n∑

i=m

I{Ỹi ≤ x} (20)

be the empirical distribution function of (Ỹi)n
m. We have the

following two theorems regarding the asymptotic behavior

of Q̂n in the light and heavy-tailed cases, respectively.

2.2.2 Long Range Dependent (LRD) Processes

It is common in the literature to call process (17) long mem-

ory or long range dependent if the coefficients (ai)∞0 are not

absolutely summable or in other words, if
∑∞

i=0 |ai| = ∞.

In this section we shall consider the following decay of the

series (ai)∞0 :

(LRD) ai = i−γ l(i), i = 1, 2, · · ·, λ < γ < 1, where l(·) is

a s.v.f. and λ = 1/2 if E(ε2
i) < ∞ and λ = 1/α if

εi ∈ D(α), 1 < α < 2.

That λ < γ is necessary for the almost sure convergence

of (17) and the other constraint γ < 1 is to guarantee that

(ai)∞0 is not absolutely summable and hence long mem-

ory of the series (ei). An important class of models which

satisfy condition (LRD) is the the fractionally integrated

ARIMA (FARIMA) processes (Hosking (1981)).

In the long memory case, define the normalizing con-

stants Hm = m3/2−γ l(m) if E(ε2
i) < ∞ and Hm =

gmm1−γ l(m) if εi ∈ D(α) for some α ∈ (1, 2). Then cen-

tral limit results of (ei) holds under the above normaliza-

tion in the sense of (19). See Taqqu (2003) and Avram and

Taqqu (1984). We have the following theorems in the LRD

case. The latter theorems are different from the ones in the

SRD case in that γ, the parameter controlling the strength

of dependence, is needed in the condition of m.

3 Prediction of Linear Models

Consider now model (5). We shall predict Xn+1 + . . .+
Xn+m based on X1, X2, . . . , Xn. The latter observations

can be used to estimate the unknown parameter vector β.

Specifically, let W = (w1, . . . , wn)T be the design matrix.

Then the least squares estimate (LSE) of β has the form

β̂ls = (WT W)−1WT X. (21)

When the errors (ei) are heavy-tailed, it is more desir-

able to use robust estimates of the regression coefficient

β (see Huber (1981)). Therefore in this situation we sug-

gest using the least absolute distance (LAD) estimation of

β; namely let

β̂lad = argmin
β

n∑

i=1

|Xi − wT
i β|. (22)

The LAD estimation is equivalent to the median regres-

sion for which fast and stable algorithms are available; see

Koenker (2005).

In both the LSE and LAD cases, the estimated residuals

can be written as

êi = Xi − wT
i β̂, i = 1, 2, · · · , n. (23)

It is hoped that the procedures proposed in Sections 2.1 and

2.2 can be applied to the residuals and hence the prediction

interval for Xn+1 + · · · + Xn+m can be obtained. More

precisely, we propose the following procedure:

(i) Use the LAD procedure to obtain β̂ and êi, i =
1, 2, · · · , n.

(ii) Let Y̌i =
∑i

j=i−m+1 êj , i = m, · · · , n. Obtain the

α/2 and 1 − α/2 empirical quantiles of (Y̌i)n
m, denoted by

Q̌n(α/2) and Q̌n(1 − α/2).
(iii) A (1−α) prediction interval for

∑n+m
i=n+1 Xi can be

constructed as
∑n+m

i=n+1 wT
i β̂ + [Q̌n(α/2), Q̌n(1 − α/2)].

Note the LSE can be used in step (i) when the errors are

light tailed in the hope of gaining more efficiency. Residual

quantile-quantile (QQ) plots can be used to check the tail of

the errors (ei), while more sophisticated methods can also

be adopted for the purpose. Since in the regression case

we have to estimate the errors (ei) by the residuals êi, we

need to investigate whether the consistency property of the

empirical quantiles listed in Theorems ??-?? still hold in

this case.

Let Ȳi =
∑i

j=i−m+1 êj/Hm, i = m, · · · , n, where Hm

is defined as in Section 2.2. Define Q̄n(q) as the qth em-

pirical quantile of (Ȳi)n
m. We have the following theorem

regarding the asymptotic behavior of the Q̄n(q)’s.

Theorem 1. Let Σn = WT W . Assume that (a) there exists
constants 0 < Cs < Cl < ∞, such that Cs < λ1 ≤
λn < Cl for all large n, where λ1 ≤ λ2 ≤ · · · ≤ λn are
the eigenvalues of Σn/n; that (b) there exists a constant
C∗ < ∞, such that max1≤i≤n |wi| ≤ C∗ for all large n;
that (c) fe(0) > 0, where fe(·) is the density function of ei.
Then conclusion (i) in Theorems 1 to 4 holds with Q̂n(q)
therein replaced by Q̄n(q).

Treat the heavy tail index α = 2 in the light tail case and

the long memory index γ = 1 in the SRD case. From the

proof of Theorem 1, we see that under the conditions of the

476

latter theorem β̂lad − β = Op(nv) for all v > 1/α − γ.

Hence
∑n+m

i=n+1 wT
i (β̂ − β) = Op(mnv) = op(1) under

conditions of Theorems ??-??. On the other hand, by The-

orem 1 and the discussions in Remark ??, HmQ̄n(q) −
HmQ̃q = op(1). Therefore we conclude that the lower

bound
∑n+m

i=n+1 wT
i β̂ + Q̌n(α/2) in (iii) is a weakly consis-

tent estimator of the α/2th quantile of
∑n+m

i=n+1 Xi. Analo-

gous conclusion holds for the upper bound.

Remark 1. An interesting and useful feature of our con-

struction procedure (i)-(iii) of the long-run prediction inter-

val is that we do not need to estimate the tail index and long

memory index. Estimation of the latter indices are impor-

tant and highly nontrivial. The simplicity and generality

of the quantile estimation method further justify its use in

practice. ♦
Remark 2. Conditions (a) and (b) in Theorem 1 on co-

variates are general enough for many applications. For

example, they are satisfied under the design wi =
(1, (i/n)a, cos(i/b), sin(i/b))T for a > −1 and b > 0,

which are the covariates chosen for the Motorola telecom-

munication network traffic dataset discussed in Section

3.1. On the other hand, by changing condition (b) to

max1≤i≤n |wi| ≤ C∗ log n for all large n, we allow ran-

dom design (wi) with exponentially decaying tails. In this

case conclusions of Theorem 1 continue to hold as long as

we add an extra factor of log n into the probability bounds

of Q̄n(q) − Q̃q there. ♦

3.1 Prediction of Wireless Network Traffics

In this section we shall apply the quantile estimation pro-

cedure to the Motorola telecommunication network traffic

dataset from a mobile infrastructure network deployed in

Asia and US. The network is designed for mobile users

to conduct voice communication and to download digital

items (ring tones, wall paper, music, video, games, etc) to

their mobile devices. As multimedia cell phones and pocket

PCs become popular, there is an increasing demand for dig-

ital items. However, mobile users cannot download digital

items directly from the third party content provider (TPCP)

network. They need to go through wireless access point

provided by their wireless service provider to access TPCP

websites. The wireless networks that handle both voice and

digital items are more complex, expensive and they require

more bandwidth than traditional networks that handle voice

only. Knowing the traffic trend is critical to the manage-

ment and long-term prediction will be useful for resource

allocation, maintenance plan and price policy.

We collected the traffic data of the eight months period

from 11:00AM July, 2005 to 10:59AM March 8 2006, and

we obtained 5832 hourly transaction counts (see Figure 1

for a plot of the hourly counts). Our purpose is to construct

a 95% prediction interval for the total usage of the week

following the 8-month period. This amounts to predicting

the sum of m = 24× 7 = 168 future values. Figure 1 gives

the time series plot of the hourly counts.

0 1000 2000 3000 4000 5000 6000

0
50

00
10

00
0

15
00

0

Hour

H
ou

rly
 C

ou
nt

Figure 1. Time series plot of the hourly
counts.

It is noticeable from Figure 1 there is an abnormal pe-

riod around hour 1400 (around September 5th 2005) with

consecutive low counts. We checked the system log and

found out it was due to system outage. Other outliers can

be caused by system maintenance, outage, upgrade, etc.

Our LAD regression procedure and the quantile estima-

tion method are resistent to the occurrence of outliers (See

Koenker (2005)).

The hourly data exhibits strong periodicity of 24 as the

wireless usage peaks at about 8pm and minimizes at about

5am every day. There is also an noticeable increasing pat-

tern of the usage. We choose the following regression model

Xi = β1 + β2

√
i/5832 + β3 cos(2πi/24) +

β4 sin(2πi/24) + ei, i = 1, 2, · · · , 5832. (24)

The estimated coefficients β̂1 = 3429, β̂2 = 2811.9,

β̂3 = 3498.7 and β̂4 = −771.1. Figure 2 below shows

the residuals of model (24).

Following steps (i)-(iii) in Section 3, we obtain a 95%
prediction interval for the usage of the following week as

[771714.7, 1297852]. Note again that the latter interval is

not the 95% confidence interval for the mean of usage of the

following week.

4 Conclusion

We propose quantile regression to perform robust pre-

diction of network traffic data. The quantile regression pro-

cedure has several promising features: it is resistent to out-

liers; it reveals distributional information of the predicted

477

0 1000 2000 3000 4000 5000 6000

−5
00

0
0

50
00

Hour

R
es

id
ua

ls

Figure 2. Residual plot of model (24).

values and it gives an accurate long-term coverage probabil-

ities. These features are of essential importance in planning

and QoS improvements.

REFERENCES
Adegoke, Y (2008) Time Warner to test Internet billing

based on usage. Reuters, Jan 16, 2008.
Algoet, P. (1992) Universal schemes for prediction, gam-

bling and portfolio selection. Ann. Probab. 20, 901–

941.

Algoet, P. (1999) Universal schemes for learning the best

nonlinear predictor given the infinite past and side in-

formation. IEEE Trans. Inform. Theory 45, 1165–

1185.

Anderson, T. W. (1971). The Statistical Analysis of Time
Series. John Wiley, New York.

Avram, F. and Taqqu, M. S. (1986). Weak convergence

of moving averages with infinite variance, in: Eber-

lein and Taqqu (Eds.), Dependence in Probability and
Statistics: A Survey of Recent Results. Birkhauser,

Boston, pp. 399-416.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994)

Time series analysis. Forecasting and control. Third

edition. Prentice Hall, Inc., Englewood Cliffs, NJ.

Breidt, F. J.; Davis, R. A. and Dunsmuir, W. (1995) Im-

proved bootstrap prediction intervals for autoregres-

sions. J. Time Ser. Anal. 16 177–200.

Brockwell, P.J. and Davis, R.A. (1991). Time Series: The-
ory and Methods, second edition. Springer-Verlag,

New York.

Chatfield, C. (2000) Time-Series Forecasting. Chapman and

Hall/CRC, Boca Raton, FL.

Chow, Y. S. and Teicher, H. (1988). Probability Theory.

Springer Verlag, New York.

Cover, T. M. (1975) Open problems in information theory,

In: 1975 IEEE Joint Workshop on Information The-
ory, IEEE Press, New York, 1975, pp. 3536.

Dalrymple, D. J. (1987) Sales forecasting practices: Results

from a United States survey Pages. Int. J. Forecasting
3 379-391.

Fan, J. and Q. Yao (2003) Nonlinear Time Series, Springer,

New York.

Feller, W. (1971). An introduction to probability theory and
its applications. Vol. II. John Wiley & Sons, New

York.

Freedman, D. A. (1975). On tail probabilities for martin-

gales. Annals of Probability 3 100-118.

Gnedenko, B. V. (1954). Gnedenko, B. V. A local limit

theorem for densities. (Russian) Doklady Akad. Nauk

SSSR 95, 5–7.

Györfi, L., Härdle, W., Sarda, P. and Vieu, P. (1989) Non-

parametric curve estimation from time series. Lecture

Notes in Statistics, 60. Springer-Verlag, Berlin, 1989.

Györfi, L., G. Lugosi and G. Morvai, (1999) A simple ran-

domized algorithm for consistent sequential predic-

tion of ergodic time series, IEEE Transactions on In-
formation Theory 45, 2642–2650.

Györfi, L., Morvai, G. and Yakowitz, S.J. (1998). Limits to

consistent on-line forecasting for ergodic time series.

IEEE Transactions on Information Theory, 44, 886–

892.

Györfi, L. and Ottucsák, G. (2007). Sequential prediction of

unbounded stationary time series. IEEE Transactions
on Information Theory, Volume: 53, Issue: 5 1866-

1872.

Hahn, G. J. and W. Meeker (1991) Statistical Intervals: A
Guide for Practitioners, Wiley, New York.

Hannan, E.J. (1973) Central limit theorems for time series

regression, Z. Wahrsch. Verw. Gebiete 26 157-170.

Hosking, J. R. M. (1981). Fractional differencing.

Biometrika 68 165-176.

Huber, P. J. (1981) Robust statistics. Wiley, New York.

Ibragimov, I. A. and Linnik, Yu. V. (1971). Indepen-
dent and stationary sequences of random variables.

Wolters-Noordhoff.

Koenker, R. (2005). Quantile regression. Cambridge Uni-

versity Press, Cambridge.

Mikosch, T., Resnick, S., Rootzén, H. and Stegeman, A.

(2002), Is network traffic approximated by stable

Levy motion or fractional Brownian motion? Annals
of Applied Probability 12 23-68.

Morgan, J. P. (1996). Value at Risk, RiskMetrics Technical

Document, New York.

Morvai, G. (2003) Guessing the output of a stationary bi-

nary time series, in: Foundations of Statistical In-
ference. Y. Haitovsky, H.R. Lerche, Y. Ritov (Eds.)

(2003), Physika Verlag, 205–213.

Morvai, G. and Weiss, B. (2004) Intermittent estimation of

stationary time series. Test 13, 525–542.

478

Morvai, G. and B. Weiss (2005) Inferring the conditional

mean. Theory Stoch. Process. 11, 112–120

Morvai, G. and Weiss, B. (2008) On universal estimates for

binary renewal processes. Ann. Appl. Probab. 18,

1970–1992.

Morvai, G., S. Yakowitz, and P. Algoet (1997) Weakly con-

vergent nonparametric forecasting of stationary time

series, IEEE Transactions on Information Theory 43,

483–498.

Ornstein, D. (1978) Guessing the next output of a stationary

process. Israel J. Math. 30, 292–296.

Pourahmadi, M. (2001). Foundations of Time Series Analy-
sis and Prediction Theory. Wiley, New York.

Ryabko, B. Ya. (1988) Prediction of random sequences and

universal coding, Problems of Inform. Trans. 24, 3–

14.

Schäfer, D. (2002) Strongly consistent online forecasting of

centered Gaussian processes, IEEE Transactions on
Information Theory 48, 791–799.

Schmoyer, R. L. (1992) Asymptotically valid prediction in-

tervals for linear models. Technometrics 34 399–408.

Taqqu, M. S. (2003). Fractional Brownian motion and long-

range dependence, in: P. Doukhan, G. Oppenheim and

M. S. Taqqu (Eds.), Theory and Applications of Long-
range Dependence. Birkhauser, Boston.

Wu, W. B. (2005). On the Bahadur representation of sam-

ple quantiles for stationary sequences. The Annals of
Statistics 33 1934-1963.

Wu, W. B. (2007). M-estimation of linear models with de-

pendent errors. The Annals of Statistics 35 495-521.

Wu, W. B., Michailidis, G. and Zhang, D. (2004). Simulat-

ing Sample Paths of Linear Fractional Stable Motion.

IEEE Transactions on Information Theory, Volume:

50, Issue: 6 1086-1096.

Wu, W. B. and Woodroofe, M. (2004) Martingale approx-

imations for sums of stationary processes. Annals of
Probability 32 1674-1690

Vardeman, S. (1992) What about the other intervals? The
American Statistician 46 193-197.

Zagdański, A. (2005) On the construction and properties

of bootstrap-t prediction intervals for stationary time

series. Probab. Math. Statist. 25 133–153.

Zhou, Z. and Wu, W. B. (2007). On linear models with long

memory and heavy-tailed errors. Preprint.

Zhou, Z. and Wu, W. B. (2009). Local linear quantile esti-

mation of non-stationary time series. Annals of Statis-
tics, To Appear.

479

Resource Allocation for a Modular Software System

Lance Fiondella and Swapna S. Gokhale
Department of Computer Science & Engineering

University of Connecticut
Storrs, CT 06269

{lfiondella,ssg}@engr.uconn.edu

Abstract

Most existing software optimization research assumes
advance knowledge of the component parameters. Perfect
future knowledge of fault detection is an unnecessary over-
simplification and greatly diminishes the applicability of the
previously proposed techniques. While efficient resource al-
location is essential, these studies ignore the importance of
components within a software’s architecture. In this paper
we present an adaptive optimization procedure that peri-
odically assesses the testing process and allocates time to
components. Using a case study, we illustrate how our ap-
proach adapts, increasing resources to a component when
more failures are observed during testing. The results sug-
gest that this interactive method is responsive to clusters of
faults encountered during testing and can help to minimize
the time needed to optimize software.

1 Introduction

Predominant software engineering processes rely on

component based development. To improve the reliability

of an application, it is necessary to improve the reliability of

the constituent components. The resulting allocation prob-

lem must divide available resources between components

while considering several practical factors. These include

the criticality of the component within the application archi-

tecture and the amount of time needed to realize component

improvements.

Previous software reliability optimization studies [1, 2, 3]

commonly assume advance knowledge of the parameters of

a software reliability model. This removes the major source

of real world uncertainty and it greatly diminishes the utility

of the proposed techniques. During the software develop-

ment and testing process, resource allocation decisions must

be made based on the limited data available up to that point.

Faults persist and new ones are discovered as testing pro-

gresses. Thus, resource allocation decisions must periodi-

cally adapt by committing time to components most in need

of attention. Another shortcoming of previous approaches is

that many do not consider component interactions.

Our approach acknowledges both software architecture

and uncertainty in the fault detection process, implementing

an iterative test allocation procedure with multiple check-

points. We propose an adaptive optimization procedure

for modular software that periodically assesses and effi-

ciently provisions testing time to components. Time al-

location functions are derived from the conditional relia-

bility expression of a non-homogeneous Poisson process

model. The optimization procedure iteratively applies the

Dale-Winterbottom (DW) [4] procedure. A detailed illus-

tration demonstrates the approach. The results indicate that

periodic allocation accounts for architecture in achieving a

target reliability, while adapting to clusters of faults encoun-

tered during testing. The adaptive DW helps minimize time

needed to achieve a target reliability when the fault detection

processes are not known with certainty.

The layout of the paper is as follows: Section 2 provides

an overview of our modeling approach. Reliability opti-

mization is addressed in Section 3. A detailed illustration is

given in Section 4. Related research is summarized in Sec-

tion 5. Section 6 provides conclusions and future research.

2 Modeling approach

In this section, we present our approach to model sys-

tem reliability in terms of component reliabilities, within the

context of the system architecture. We then present the rela-

tionship between the reliability of a component and its test-

ing time. We conclude the section with a definition of the

time-adjusted reliability importance measure.

2.1 System-level modeling

We consider a terminating application which operates on

demand. It is possible to distinguish between consecutive

runs for such an application. We let n denote the number

of components in the application, and assume that the archi-

tecture of the application is represented by the one-step tran-

sition probability matrix of a Discrete Time Markov Chain

(DTMC) [5]. An analysis of the DTMC representing the

480

application architecture can provide the expected number of

visits to each component during a typical execution of the

application [5]. Let νi and ri denote the expected number of

visits and reliability of component i. The expected system

reliability E[R] is then given by [6]:

E[R] =
n∏

i=1

rνi
i . (1)

2.2 Component-level modeling

Equation (1) suggests that estimates of component reli-

abilities are necessary to compute system reliability. The

reliability of a component, in turn, is determined by the

time-dependent failure behavior. We use the common Goel-

Okumoto (GO) software reliability model [7] to estimate the

reliability of a component based on its observed failure be-

havior as a function of testing time. For component i, the

mean value function mi(ti) of the GO model, which pro-

vides the expected number of failures observed by testing

time ti is given by Equation (2). The parameters αi and βi

respectively denote the number of faults that will eventually

be detected and the fault detection rate of component i.

mi(t) = α
(
1 − e−βt

)
(2)

Based on the mean value function, the reliability of com-

ponent i Component reliability is given by Equation (3),

where tmni
is the normalized mission time.

ri = R(ti + tmni |ti) = e−(mi(ti+tmni
)−mi(ti)) (3)

The normalized mission time for a component i is com-

puted by scaling the total mission time tmn, using the ex-

pected number of visits to the component (obtained from

analyzing the DTMC representing the application architec-

ture) as follows:

tmni =
νi∑n
i=1 νi

× tmn. (4)

For a given mission time tmn, Equation (3) can be used

to compute the present reliability ri based on the estimated

model parameters αi and βi. Increasing the component re-

liability requires additional testing. Solving Equation (3)

the projected time ti for which the component needs to be

tested to achieve a given reliability ri is given by Equation

(5). Thus, Equation (3) directly models the relationship be-

tween the testing time of the component and its reliability.

ti(αi, βi, tmni , ri) =
1
βi

log

⎛

⎝αi

(
1 − e−βitmni

)

log
(

1
ri

)

⎞

⎠ (5)

2.3 Time-Adjusted Reliability Importance

Equation (5) indicates that the extent to which testing

time expended on component i improves its reliability is a

function of its parameters αi and βi. Furthermore, the ex-

tent to which improvement in the reliability of component

i improves system reliability depends on system architec-

ture, which is embodied in the system reliability expression

of Equation (1). In an ideal scenario, large improvements

in component reliability can be achieved by expending as

little time as possible, while small improvements in com-

ponent reliability will lead to large improvements in system

reliability. To consider the complex impact of component

testing times and reliabilities, and system architecture, we

define the time-adjusted reliability importance measure [8]

as follows:

di =
dti(αi, βi, tmni , ri)

dri

[
∂E[R]

∂ri

]−1

(6)

=

(
−riβi log(ri) log(νi)

n∏

i=1

rνi
i

)−1

.

In Equation (6), the numerator is the rate of increase in

time with respect to reliability for component i. This is

modeled by Equation (5), which increases exponentially as

ri → 1. This term in Equation (6) deters from allocating

time to components that are either hard to improve or are

already highly reliable and therefore would require substan-

tial time to make them even more reliable. The denominator

is the Birnbaum importance measure [9], which identifies

component improvements that are most critical to enhanc-

ing system reliability. The system reliability expression of

Equation (1) is used to compute the Birnbaum measure. It is

important to note that improving the reliability of one com-

ponent will change the Birnbaum importance of all com-

ponents due to the complex interactions among the compo-

nents. Preferably, the numerator will be small and denom-

inator large. This situation would indicate that the amount

of time needed for making big reliability improvements is

not increasing very fast and that the realizable gains at the

system level are large respectively. In other circumstances,

the time needed to improve a component’s reliability could

be substantial, yet still be a component to target because it

plays a central role in the proper operation of the application

making it sensitivity very high.

In order to improve system reliability with minimal test-

ing time, intuition suggests that the least amount of time

should be spent on the components that are most responsive

and will produce the greatest gains in system reliability. Fur-

thermore, the components that are rarely used (have a very

small Birnbaum importance), but are very easy to improve

should be avoided. This corresponds to concentrating on

the components with smallest di of Equation (6). The time-

adjusted reliability importance thus provides an objective

measure to select components to achieve the desired system

481

Figure 1. Dale-Winterbotton procedure

reliability target. Such an objective component selection ap-

proach is especially necessary in the later stages when all

the components have a relatively high reliability and require

a significant amount of time to improve. Thus, Equation (6)

should help to identify the optimal T∗ = (t∗1, t
∗
2, . . . , t

∗
n)

such that a reliability objective is achieved while minimiz-

ing the time spent on improving components.

3 Reliability optimization

In this section, we first explain the Dale-Winterbotton

(DW) [4] procedure to achieve the desired system-level re-

liability with minimal time. We then explain why the DW

procedure is not adequate to optimize the reliability of soft-

ware systems. We conclude the section with a presentation

of an adaptive procedure to optimize the reliability of a soft-

ware system, which embeds the DW procedure.

3.1 Dale-Winterbotton Procedure

The DW procedure determines the testing time that needs

to be allocated to each component of a system in order to

achieve the desired reliability target. It only requires a si-

multaneous root finding procedure. For each component i,
the procedure accepts as input the expected number of vis-

its (νi), the normalized component mission times (tmni), the

current testing time (ti), component parameter estimates (αi

and βi), and associated reliability estimates (ri). A step-

wise explanation of the DW procedure, which are also de-

picted in the flowchart in Figure 1, is as follows.

• DW.1 Initialize k to 1.

• DW.2 Compute di using Equation (6).

• DW.3 Sort di in ascending order. Since small dis are

preferable, d1 is identified as the component that can

improve system reliability in the least amount of time.

• DW.4 Formulate a system of k = 1 equations, by set-

ting d1 equal to d2. d1 and d2 respectively denote the

first and the second least time consuming components.

Holding the reliabilities in the n− 1 harder to improve

components, the only unknown in Equation (6) for the

least time consuming component is its reliability. Solv-

ing the equation produces a new higher value of relia-

bility, and substituting it into Equation (5) provides the

new (increased) value of testing time.

• DW.5 Using Equation (1), check if this additional time

used to improve the reliability of the least time consum-

ing component overshoots the system reliability target

E[R]∗.

• DW.6 If the system reliability target overshoots, the

projected time allocated to the least time consuming

component is rolled back and the time of the easiest

component is increased just enough to achieve the sys-

tem reliability target. In this situation, we use the equa-

tions E[R] = E[R]∗, with reliabilities held at their

original values for the remaining harder to improve

n − 1 components. The last projected allocation over-

shot the reliability target, which implies that the target

system reliability can be precisely satisfied by allocat-

ing less time. Equation (1) identifies the reliability of

the easiest component needed to achieve the system tar-

get.

• DW.7 If no overshoot occurred, increment k to 2 and

consider the impact of improving the two most respon-

sive components.

• DW.8 If k < n, then continue from DW.3. The dis will

be sorted again to identify a third least time consuming

component d3 that will serve as a ceiling for worth-

while allocation of time to the two least time consum-

ing components d1 and d2. This process is repeated

iteratively until k = n or reliability overshoot occurs

when improving k < n components. For a general

case when k < n components are to be improved si-

multaneously, the reliability of the n − k components

with the highest di are held constant and a system of

k equations is formulated. These equations are of the

form di = dk+1, where di ∈ {1, 2, . . . , k} are the

adjusted reliability importance of the k easiest to im-

prove components and dk+1 is the importance of the

(k + 1)st least time consuming component. When an

overshoot occurs in the process of improving k < n
components, the previous projected time allocation is

rolled back and the time of the k easiest components

are increased in a manner which satisfies the equations

d1 = di, di ∈ {2, 3, . . . , k} and E[R] = E[R]∗ to

achieve the system reliability target. The ri of the n−k
harder to improve components are held constant.

• DW.9 When k = n, and the system reliability target

is not met, n − 1 of n equations in the system are of

482

Figure 2. Non-adaptive procedure.

the form di = dn, di ∈ {1, 2, . . . , n − 1}, where dn

is the least responsive component. The nth equation

is E[R] = E[R]∗. Solving this system identifies the

vector ti that preserves the equality of di and makes

E[R] equal the target reliability. Intuitively, this last

scenario corresponds to finding the projected time allo-

cation that achieves the target reliability while perfectly

balancing the time adjusted reliability importance mea-

sures.

3.2 Iterative Adaptive Procedure

The Dale-Winterbottom algorithm produces the optimal

testing time allocation vector T∗ in a single iteration only

when the time/reliability functions of the components are

known with complete certainty. Once the testing time is

allocated, and the components are tested for the allocated

time, additional faults may manifest during this testing pro-

cess. The discovery of such additional faults will adversely

alter component parameters increasing the estimated num-

ber of faults αi and decreasing the fault detection rate βi.

As a result, the reliability estimates of the components will

drop due to which the components will need to be tested for

an additional time. This necessitates an iterative test time

allocation procedure that utilizes up to date fault detection

data as it becomes available. The DW is used as a subroutine

within the adaptive procedure. Upon termination, it returns

a suggested time allocation vector to which is then used for

component testing. The adaptive approach is designed to in-

crease the resources allocated to a component depending on

the failure behavior it exhibits during a specific testing pe-

riod. The procedure accepts the DTMC representing the ap-

plication architecture denoted by P, total mission time tmn,

the target system reliability E[R]∗, the initial vector of test-

ing times T0, and the vector of failure times for each com-

ponent observed during these testing times Φi. The steps

involved in adaptive procedure are shown in Figure 2.

• A.1 Compute the expected number of visits to each

component using the matrix P.

Figure 3. Architecture of European Space
Agency Application

• A.2 Estimate the component mission times tmni using

Equation (4).

• A.3 Using the initial vector of testing times and ob-

served failure behavior Φi, estimate component param-

eters αi and βi.

• A.4 Using Equation (3), compute initial component re-

liability estimates, ri.

• A.5 Compute system reliability using Equation (1).

• A.6 If E[R] exceeds the reliability target, the procedure

terminates else go to A.7.

• A.7 Invoke the DW procedure to determine a time allo-

cation vector ti that minimizes the total time needed to

reach the system reliability target E[R]∗.

• A.8 Test each component according to the time indi-

cated by DW. If additional faults are discovered dur-

ing testing, component parameters determined in (A.3)

will be re-estimated using the additional failure data.

The adaptive procedure terminates when no faults are

discovered in any component during the testing applied

during (A.8).

4 Illustration

In this section, we illustrate the adaptive reliability opti-

mization procedure using an example application developed

by the European Space Agency (ESA). The application con-

sists of three components and its architecture is depicted in

Figure 3. The mean number of visits to components are

given by ν1 = 1.1905, ν2 = 0.9524, and ν3 = 0.4762.

We consider the reliability objective of R∗ = 0.8, and

assume that each component has undergone initial testing

for a time period of 10 units. The number of faults ob-

served from each component are 12, 23 and 18 respectively,

and using the observed failure behavior up to this time we

estimate the component parameters using maximum like-

lihood method [5]. These parameters are summarized in

483

Table 1. Assuming a mission time of tmn = 3, the nor-

malized mission times of Equation (4) are tmn1
= 1.3636,

tmn2
= 1.0909, and tmn3

= 0.5455.

Table 1. Component parameters after initial
testing

Component 1 Component 2 Component 3
α1 = 13.719 α2 = 26.257 α3 = 20.954
β1 = 0.220 β2 = 0.211 β3 = 0.219

4.1 Iteration one

The reliabilities of the components computed using

Equation (3) are 0.674, 0.521, and 0.768 respectively. The

system reliability estimate computed using Equation (1) is

0.296. Since the system reliability estimate is less than the

target, we now apply the Dale-Winterbottom method de-

scribed in Section 3.1 to determine how testing time should

be allocated to the components to achieve the reliability tar-

get.

Using the estimated parameters and component reliabili-

ties, the time adjusted reliability importance computed using

Equation (6) is DDW
0 = (32.736, 25.711, 122.704). Com-

ponent two has the lowest time adjusted reliability impor-

tance, and hence, is the first target for improvement. Im-

proving it to match the time-adjusted measure of component

one boosts its reliability to 0.599, and the new time-adjusted

importance measures are 28.648, 28.648, and 107.381 re-

spectively. This boost in the reliability of component two

will be achieved by allocating an additional 1.142 units of

time, and the resulting system reliability would be 0.338.

Since this testing time allocation does not meet the reliabil-

ity requirement, we consider improvements to components

one and two; with lowest time-adjusted reliability measures.

DW suggests that the reliabilities of components one and

two should be improved to 0.900 and 0.872 respectively,

and the resulting time-adjusted measure of 53.174 will be

the same for all three components. As the reliabilities of

components one and two increase, the time-adjusted mea-

sure of component three decreases. This occurs because

as components one and two are made more reliable, subse-

quent improvements to these two components will be costly,

and hence, component three begins to emerge as an attrac-

tive improvement target. The reliabilities of components

one and two is improved by allocating a total of 16.018
and 17.390 units of testing time to these components, bring-

ing the system reliability to 0.683. Since this reliability is

still lower than the target, we now consider simultaneous

improvements to all the three components.

The final iteration of DW raises the time-adjusted impor-

tance measures to a common value, with the corresponding

component reliabilities as 0.940, 0.923, and 0.857, which

will achieve the target system reliability. The projected

time needed to reach these component reliabilities is 18.46,

19.30, and 12.55 respectively. This ends the DW portion of

the procedure, and the control returns to the adaptive proce-

dure. Table 2 summarizes the evolution of the testing time

allocations, time-adjusted importance measures, and com-

ponent reliabilities during the execution of the DW proce-

dure.

Table 2. Dale-Winterbottom procedure, itera-
tion one.

Iter. Measure Com#1 Com#2 Com#3 R
0th Time 10 10 10

Importance 32.76 25.71 122.70
Reliability 0.674 0.521 0.768 0.296

1st Time 10 11.142 10
Importance 28.648 28.648 107.381
Reliability 0.674 0.599 0.768 0.338

2nd Time 16.018 17.390 10
Importance 53.174 53.174 53.174
Reliability 0.900 0.872 0.768 0.683

3rd Time 18.463 19.929 12.455
Importance 77.621 77.621 77.621
Reliability 0.940 0.923 0.857 0.800

4.2 Iteration two

In practice, the components will be tested for the times

suggested by the DW procedure. For the sake of illustra-

tion, we simulate the fault detection processes of the com-

ponents for their suggested times. At the end of these sug-

gested times, the total number of faults detected from the

three components are 17, 34 and 20 respectively. Because of

the newly revealed faults, component parameters and their

reliabilities need to be re-estimated and these revised esti-

mates are summarized in Table 3.

Table 3. Revised parameter estimates.
Component 1 Component 2 Component 3
α1 = 19.086 α2 = 37.090 α3 = 22.838
β1 = 0.153 β2 = 0.126 β3 = 0.194
r1 = 0.809 r2 = 0.678 r3 = 0.815

While component reliabilities have improved, they could

not reach the targets specified by the first iteration of the

DW procedure (last row of Table 2. Consequently, the sys-

tem reliability of 0.487 falls short of its target of 0.8. This

shortfall occurs because of the discovery of new faults dur-

ing the allocated testing time, which increases the amount of

testing necessary to achieve the intended reliabilities. Thus,

a second iteration of Dale-Winterbottom is performed with

the updated parameters.

484

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Iteration

U
ni

ts
 o

f t
im

e
al

lo
ca

te
d

Component #1
Component #2
Component #3

Figure 4. Time allocation by iteration

In the interest of space, we do not go through the step-

wise execution of the DW procedure. The final result pro-

vided by the DW procedure suggests allocating a cumula-

tive time of 26.458, 31.151, and 15.086 respectively. Once

again, if no additional faults were detected during this al-

located time, it would achieve the desired reliability target.

Our simulation, however, indicates that additional faults will

be detected during these times, bringing the total number of

faults detected from each component to 21, 41, and 23 re-

spectively. Again, the fault detection rate of each compo-

nent drops due to the discovery of problems in each module,

and the system reliability at the end of this iteration is 0.591
still short of the expectation.

4.3 Entire procedure

We now briefly summarize all iterations of the adaptive

procedure (including the initial testing and the first iteration

discussed above) that were necessary to achieve the desired

reliability. Figure 4 depicts the amount of time allocated to

each component during these successive iterations.

Component one receives increased resources during the

third iteration, while component two is allocated more time

during the second iteration. This is because the testing time

allocated after the second and first iterations exposed eleven

and four additional faults in these components respectively.

When a cluster of faults is discovered, the reliability esti-

mate drops and additional time is needed. This shows how

the proposed algorithm adapts to the faults detected during

testing, and alters the resources allocated in response.

Figure 5 shows the target and assessed reliabilities of

component one after each iteration. The assessed reliabil-

ity increases in each iteration, but the discovery of faults

impedes it from achieving the desired target determined by

iterations of the DW. The target and assess reliabilities are

equal only in the final iteration when no faults are experi-

enced during the time allocated to testing.

1 2 3 4 5 6
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Iteration

R
el

ia
bi

lit
y

Target
Assessed

Figure 5. Target and assessed reliabilities in
component one

5 Related research

Researchers agree that resource allocation guided by var-

ious factors [8] is important to reliability optimization. Ear-

lier efforts considered software as a monolithic entity [7],

and allocated resources to it as a whole. This approach

proved inadequate as software became more complex and

component-level resource allocation studies [2, 3] were pro-

posed to address this shortcoming. Most of these stud-

ies ignored the architecture, treating components as non-

interacting entities. These attempts made a limited impact

because not all components contribute equally to applica-

tion reliability. The next generation of models [10] consid-

ered architecture, but like previous efforts assumed compo-

nents parameters were known in advance. A control theo-

retic model with multiple checkpoints [11] was developed,

yet it treats software as a monolithic entity.

Our work pushes the state-of-the-art considering compo-

nent based software reliability optimization in the context of

its architecture. The approach eliminates a major drawback

of many previous models, namely assuming knowledge of

component failure parameters. By considering information

as it becomes available, the method adaptively allocates time

resources to components that will increase system reliability

most efficiently.

6 Conclusion

In this paper, we present an adaptive procedure to mini-

mize the time spent testing components of a modular soft-

ware architecture. Unlike previous research, we do not

assume advance knowledge of the component parameters.

The conditional reliability expression of the Goel-Okumoto

NHPP SRM describes the time/reliability relationship in

each component. The Dale-Winterbottom method, a non

adaptive iterative procedure, uses a time adjusted reliability

485

importance measure and serves as the core of our adaptive

time allocation procedure. The illustration demonstrates the

optimization process in detail, showing how it adapts to the

discovery of clusters of faults in different components dur-

ing different iterations.

There are several possible considerations for future re-

search. The amount of time spent in each allocation cycle

is not constant. A practical modification would be to make

the time allocated in each period constant. This could facil-

itate synchronization with code reviews and other software

process related activities that occur at regularly planned in-

tervals.

References

[1] P. Kubat and H. Koch, “Managing Test-Procedures to

Achieve Reliable Software,” IEEE Trans. Rel., vol. R-

32, no. 3, pp. 299–303, aug 1983.

[2] H. Ohtera and S. Yamada, “Optimal Allocation & Con-

trol Problems for Software-Testing Resources,” IEEE
Trans. Rel., vol. 39, no. 2, pp. 171–176, jun 1990.

[3] Y. Dai, M. Xie, K. Poh, and B. Yang, “Optimal Testing

Resource Allocation with Genetic Algorithm for Mod-

ular Software Systems,” The Journal of Systems and
Software, vol. 66, pp. 47–55, 2003.

[4] C. Dale and A. Winterbottom, “Optimal Allocation

of Effort to Improve System Reliability,” IEEE Trans.
Rel., vol. 35, no. 2, pp. 188–191, jun 1986.

[5] K. Trivedi, Probability and Statistics with Reliability,
Queuing and Computer Science Applications, 2nd ed.

New York, NY: John Wiley & Sons, Inc., 2002.

[6] S. Gokhale and K. Trivedi, “Analytical Models for

Architecture-Based Software Reliability Prediction: A

Unification Framework,” IEEE Trans. Rel., vol. 55,

no. 4, pp. 578–590, dec 2006.

[7] A. Goel, “Software reliability models: Assumptions,

limitations, and applicability,” IEEE Trans. Software
Eng., vol. 11, no. 12, pp. 1411–1423, dec 1985.

[8] W. Kuo, V. Prasad, F. Tillman, and C. Hwang, Optimal
Reliability Design: Fundamentals and Applications.

New York, NY: Cambridge University Press, 2001.

[9] Z. Birnbaum, “On the Importance of Different Com-

ponents in Multicomponent System,” in Multivariate
Analysis II, P. Krishnaiah, Ed. Dayton, OH: Aca-

demic Press, jun 1969, pp. 581–592.

[10] J. Lo, S. Kuo, M. Lyu, and C. Huang, “Opti-

mal Resource Allocation and Reliability Analysis for

Component-Based Software Applications,” in Proc.
COMPSAC-2002, Oxford, England, aug 2002, p. 712.

[11] J. Cangussu, R. DeCarlo, and A. Mathur, “A Formal

Model of the Software Test Process,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 782–796, aug 2002.

486

Enhancing Property Specification Tools With Validation Techniques

Salamah Salamah, Matthew Del Buono, Eric Baily, Sarah Printy, Derek Ferris, and Laurel Christian
Embry-Riddle Aeronautical University, Daytona Beach, Florida

salamahs, delbu9c1, baile6d4, print4a4 , ferri91f, chris819@erau.edu

Abstract

Although formal approaches to software assurance such
as runtime monitoring and model checking have been
shown to improve system dependability, software develop-
ment professionals have yet to adopt them. Among the
reasons for this hesitance are the difficulty for clients and
developers to write and validate formal specifications re-
quired by these approaches, and the lack of maturity of tools
that can support the use of formal methods in a software de-
velopment environment. This paper describes the Temporal
Validator (TV) tool that assists in analyzing formulas in Lin-
ear Temporal Logic (LTL), which is one of the most widely
used specification languages. The tool enhances the ability
of users to validate generated formal specifications against
their original intent in order to discover subtle errors. The
paper also describes how the TV tool can be incorporated
into the Property Specification (Prospec) tool to enhance
users’ ability to generate formal specifications that match
his/her interpretations.

1 Introduction

Formal approaches to software assurance require de-

scription of behavioral properties of the software system,

generation of formal specifications for the identified prop-

erties, validation of the generated specifications, and veri-

fication of system’s adherence to the formal specification.

The effectiveness of the assurance approach depends on the

quality of the formal specifications. A major impediment

to the use of formal approaches in software development

remains the difficulty associated with the development of

correct formal specifications (i.e, ones that match the spec-

ifier’s original intent) [5, 6].

Currently, there exists multiple formal specification lan-

guages that can be used in a variety of verification tech-

niques and tools. Linear Temporal Logic (LTL) [10], Com-

putational Tree Logic (CTL) [9], and Meta Event Definition

Language (MEDL) [8] are some of these languages. The

aforementioned languages can be used in a variety of verifi-

cation techniques and tools. For example, the model check-

ers SPIN [7] and NuSMV [1] use LTL to specify properties

of software and hardware systems. On the other hand, the

SMV [2] model checker verifies system behaviors against

formal properties in CTL. MEDL is used by JavaMac in

runtime monitoring of java programs [8].

Formal languages have varying expressive powers, and

as such, require a strong foundation in logic and mathemat-

ics for one to identify what can and cannot be expressed in

a specific language. In addition, formal languages, by their

nature, are hard to write, read, and validate. This problem is

compounded if requirements must be specified in more than

one formal language, which frequently is the case if more

than one verification tool is used. Some research efforts

continue to evolve to address the issue of automatic gen-

eration of formal specification by developers or customers

who are not immersed in logic or the specification language

of preference.

This paper introduces the Temporal Validator (TV) tool

that can be used for validating formal specifications written

in LTL. The tool was developed by students in the intro-

ductory course in Software Engineering at Embry-Riddle

Aeronautical University in Daytona Beach. TV allows users

to examine formal specifications (written in LTL) against

traces of computations that represent different possible be-

haviors of the system being verified. The tool is intended to

be part of the Property Specification (Prospec) tool [4, 12].

The paper is organized as follows; Section 2 provides a

brief description of LTL and the Prospec tool. Section 3

provides the motivation of the work and the TV tool, while

Section 4 introduces the tool and the ways it can be used.

Finally, a summary of the work and future goals are pre-

sented.

2 Background: Linear Temporal Logic

Linear Temporal Logic (LTL) is a prominent formal

specification language that is highly expressive and widely

used in formal verification tools such as the model checkers

SPIN [7] and NuSMV [1]. LTL is also used in the runtime

verification of Java programs [17].

487

Formulas in LTL are constructed from elementary propo-

sitions and the usual Boolean operators not, and, or, imply
(neg, ∧, ∨, →, respectively). In addition, LTL allows for

the use of the temporal operators next (X), eventually
(F), always (G), until, (U), weak until (W), and

release (R).
Formulas in LTL assume discrete time, i.e., states s =

0, 1, 2, . . . The meanings of the temporal operators are

straightforward. The formula XP holds at state s if P holds

at the next state s + 1. P U Q is true at state s, if there is a

state s′ ≥ s at which Q is true and, if s′ is such a state, then

P is true at all states si for which s ≤ si < s′. The for-

mula FP is true at state s if P is true at some state s′ ≥ s.

Finally, the formula GP holds at state s if P is true at all

moments of time s′ ≥ s. Detailed description of LTL is

provided by Manna et al. [10].

A major factor for the hesitance in using temporal logics

in general is that they are hard to write. In addition, once

specifications are written in LTL or CTL, it is hard to read

and validate the meaning of the generated statement. For

example, it is not immediately obvious that the LTL spec-

ification G(a → F (p ∧ F (¬p ∧ ¬a))) represents the En-

glish requirement “If a train is approaching(a), then it will

be passing(p), and later it will be done passing with no train

approaching”. The TV tool aims at providing the means

by which developers and users can validate the meaning of

such specifications as the one above.

2.1 Specification Pattern System and
Prospec

Because of the difficulties associated with develop-

ing formal specifications, the Specification Pattern System

(SPS) [3] developed a set of patterns to assist users in

witting formal specifications in multiple formal languages.

Patterns are high-level abstractions that provide descrip-

tions of common properties that hold on a sequence of

conditions or events in a finite state model. SPS pat-

terns are grouped occurrence and order. Occurrence pat-

terns are universality, absence, existence, and bounded
existence. Order patterns are precedence, response,

chain of precedence and chain of response. Chain pat-

terns define a sequencing of events or conditions. Chain-

precedence and chain-response patterns permit specifying a

sequence of events or conditions as a parameter of prece-

dence or response patterns, respectively. SPS allows the

specification of sequences only to precedence and response

patterns.

In SPS, a pattern is bounded by the scope of computa-

tion over which the pattern applies. The beginning and end

of the scope are specified by the conditions or events that

define the left (L) and right (R) boundaries, respectively. A

study by Dwyer et. al. [3] identified the response pattern

as the most commonly used pattern, followed by the univer-

sality and absence patterns. These three patterns accounted

for 80% of the 580 properties sampled in the study.

In many system properties multiple propositions may

be needed to specify pattern or scope parameters. Mon-

dragon et al. introduced Composite Propositions (CPs) [11]

to handle pattern and scope parameters that represent mul-

tiple conditions or events. This was done as part of the

Property Specification (Prospec) tool [4, 12]. The intro-

duction of CPs supports the specification of concurrency,

sequences, and non-consecutive sequential behavior on pat-

terns and scopes. Mondragon proposes a taxonomy with

twelve classes of CPs. In this taxonomy, each class defines

a detailed structure for either concurrent or sequential be-

havior based on the types of relations that exist among a set

of propositions. The complete list of CP classes and their

LTL descriptions is available in Mondragon et. al. [11].

The original version of Prospec [12] is an automated tool

that guides a user in the development of formal specifica-

tions. It includes patterns and scopes, and it uses decision

trees to assist users in the selection of appropriate patterns

and scopes for a given property. Prospec extends the capa-

bility of SPS by supporting the specification of CP classes

for each parameter of a pattern or scope that is comprised of

multiple conditions or events. By using CPs, a practitioner

is directed to clarify requirements, which leads to reduced

ambiguity and incompleteness of property specifications.

Prospec uses guided questions to distinguish the types of

scope or relations among multiple conditions or events. By

answering a series of questions, the practitioner is lead to

consider different aspects of the property. A type of scope

or CP class is identified at the end of guidance. The soon

to be released Prospec 2.0 generates formal specifications

in Future Interval Logic (FIL), Meta-Event Definition Lan-

guage (MEDL), and LTL. The automatic generation of CTL

specification is left as future work. More detailed descrip-

tion of Prospec 2.0 can be found in [4].

3 Motivation

Although, the soon to be released, Prospec 2.0 sup-

ports the generation of formal specifications in multiple lan-

guages including LTL, it currently does not provide suf-

ficient support for validation of the generated properties.

While Prospec and similar tools and approaches [3, 16] pro-

vide significant support for property specification, there is a

real need to ensure that the generated formal specifications

do, indeed, match the original intent of the specifier. Addi-

tionally, it has been shown that the specifications generated

by these tools, do not always match the natural language de-

scription provided by these tools [15]. Such discrepancies

are easier to find once it is possible to validate the speci-

fications generated by these tools against a user’s defined

488

expected behavior of the system. Section 4.3 provides ex-

amples of how the TV can assist in this validation effort.

Providing the means to validate the generated specifica-

tions is extremely significant, as effective use of these for-

mal specifications (whether in formal verification, design

and code automation, or test cases development) is not pos-

sible if the generated specifications are faulty (i.e., do not

match the developer’s original intent). Indeed, incorrect

specifications could lead to the very mishaps their use is

designed to prevent.

By their nature, formal specifications are hard to read

and validate, and as such, support for validation and un-

derstanding of these specifications is required. For ex-

ample, consider an ATM system with the following prop-

erty: “The response to user approval of a withdrawal trans-

action includes: the user’s account is updated, money

is dispensed, the receipt is printed, and the user’s ATM

card is returned”. This property can be specified in LTL

as follows: “G(user approval → F (account updated ∧
X (F money dispensed ∧ X (F receipt printed ∧ X (F
card returned)))))”. It is obvious that such a description is

hard to validate by those stakeholders who are not immersed

in LTL.

4 Temporal Validator (TV) Tool

The Temporal Validator (TV) tool1 allows for simple val-

idation of formal specifications written in LTL. The tool al-

lows users to test traces of computations that represent sys-

tem behaviors against LTL specifications. A trace of com-

putation is a sequence of states that depicts the propositions

that hold in each state. The user models a state of compu-

tation by assigning truth values to the propositions of the

LTL formula for a particular state. For example, a user

may examine one or more combinations of the following:

a proposition holds in the first state of execution, a propo-

sition holds in the last state, a proposition holds in multiple

states, a proposition holds in one state and not the next.

To clarify the above idea, consider the following LTL

formula: “(F R) → ((¬R) U (P ∧ ¬R))”. this formula

specifies that “If R holds, then P must hold before R”. Pos-

sible traces of computation to validate this formula are:

1. −−−− P −−R −−
2. −−−R −−− P −−

According to the English specification above, the first trace

is consistent with the LTL formula while the second should

fail. Note that in the traces above, the symbol “-” indicates

that none of the propositions of interest is true in that par-

ticular state.

1The current TV tool can be requested from salamahs@erau.edu. Also

a demo of the tool will be performed at the SEKE 09.

Figure 1. The Process of Model Checking

4.1 Model Checking and TV’s General
Approach

The idea behind the TV tool is to use the very formal
verification technique that use the specification language as
input to validate formulas written in that Language. Since

LTL is widely used in model checking, TV makes use of the

NuSMV model checker in performing the validation.

Model checking is a formal technique for verifying

finite-state concurrent systems by examining the consis-

tency of the system against system specifications for all

possible executions of the system. The process of model

checking consists of three tasks: modeling, specification,

and verification.

Modeling. The modeling phase consists of converting the

design into a formalism accepted by the model checker. In

some cases, modeling is simply compiling the source code

representing the design. In most cases, however, the lim-

its of time and memory mean that additional abstraction is

required to come up with a model that ignores irrelevant de-

tails. In NuSMV, the model is written in the SMV language

[2].

Specification. As part of model checking a system, it is

necessary to specify the system properties to be checked.

Properties are usually expressed in a temporal logic. The

use of temporal logic allows for reasoning about time,

which becomes important in the case of reactive systems.

In model checking, specifications are used to verify that the

system satisfies the behavior expressed by the property.

Verification. Once the system model and properties are

specified, the model checker verifies the consistency of the

model and specification. The model checker relies on build-

ing a finite model of the system and then traversing the sys-

tem model to verify that the specified properties hold in

489

Figure 2. Model for LTL Validation

Figure 3. SMV Code for LTL Validation

every execution of the model [2]. If there is an inconsis-

tency between the model and the property being verified, a

counter example, in form of execution trace, is provided to

assist in identifying the source of the error. Figure 1 shows

the process of model checking.

The general idea in TV is based on the work of Salamah

et al., [15, 13, 14], and it consists of the following steps:

1. Create a simple model in SMV

2. map propositions in the formal specification to the

variable(s) in the simple model,

3. run NuSMV with the model, formal specification, and

proposition values as input, and

4. check for consistency.

The SMV model created for LTL validation, consists of

a loop that starts with the value of the variable state equals

1 and continues to increment the value of states until it

reaches 20, at which point it remains at 20. Figure 2 pro-

vides a graphical representation of the model, while Figure

3 provides the actual SMV code for the model.

While the details of the SMV code are irrelevant here, it

is important to note that in each state of the model, the value

of the variable Q.State changes to the value of the state. For

example, in the first state, the value of Q.State is 1, it is 5 in

the fifth state, and it is 20 in the last state. The importance

of the value of the variable Q.State is that it is the value that

propositions in the LTL formula are mapped to. For exam-

ple, if one wants to validate the LTL formula “FP ” (as in

the fourth line in the SMV code) , then the value of P has to

be specified in terms of the variable Q.State. For example P

Figure 4. Specifying an LTL Formula and a
Valid Trace in TV

can be specified as the truth value of the statement “Q.State

= 5” (as in the third line in the SMV code), which is only

true in the fifth state in the model.

4.2 TV Interface

TV allows users to input the LTL formulas to be vali-

dated either by reading from an input file, or by manually

entering the LTL formula and the trace of interest. Figure 4

shows the user input as the LTL formula G(p → F q). The

formula specifies the Response property, i.e., “Anytime p
holds, it must be followed by q”. In addition, the figure

shows the user’s trace of computation as:

−−−−−pq −−−−−−−−−−−−−.

Figure 5 shows the result of the verification (“Evaluates to

TRUE”) as returned by NuSMV, as well as a visual descrip-

tion of the trace.

Figures 6 and 7 show the validation of the same LTL

formula for Response, but with the trace:

−−−−−p −−q −−−−−−− p −−−.

The result of the verification is FALSE, since p holds in the

ninth state and q never holds after that. This is shown in

Figure 7.

4.3 Scenarios

The following scenarios illustrate the use of the TV tool

to validate formal specifications.

490

Figure 5. Results of Validation by TV - Valid
Result

Scenario 1. Sarah is software engineer working on secu-

rity issues in web services. She recognizes that the system

must support the following requirement: “A message recipi-

ent shall reject messages containing invalid signatures, mes-

sages missing necessary claims, or messages whose claims

have unacceptable values.” Since the project team will use

a model checker to verify the algorithms, she needs an LTL

specification. Sarah uses the Prospce tool and generates the

following LTL formula G((invalid sign ∨ miss claim ∨
unacceptable value) → F reject).

Although Prospec allowed Sarah to generate the above

LTL formula, being new to LTL, Sarah is most likely not

sure if this formula actually depicts her original intent. So,

she inputs the generated LTL formula into the TV tool

and then tries to validate her understanding by testing mul-

tiple traces of computations against the formula. Sarah

runs the following traces (symbol i stands for proposition

invalid sign, symbol m for proposition miss claim, sym-

bol u for proposition unacceptable value, and symbol r
for proposition reject):

• - - i - - - r - - - -

• - - r - u - - - - - -

• u - - - m - - - - - -

• (im) - - - - - - - - r

Note that the last trace indicates that the propositions i
and m hold in the same state (first state) of computation.

Sarah observes the results from the TV tool and sees that

Figure 6. Specifying an LTL Formula and an
Invalid Trace in TV

they match her expected results for each trace (first and last

traces are accepted while the others are not).

Scenario 2. Eric is a student in Software Engineering. He

was just introduced to Temporal Logics and was asked to

write some specifications in LTL. One of the properties Eric

is trying to specify is the following “Every request must be

followed by an acknowledgment.” Eric starts by assigning

the symbols “r” and “a” to the propositions “request” and

“acknowledgment” respectively. Eric comes up with the

following LTL formula “G (r → F a)”.

To make sure that his specification matches his under-

standing, Eric runs test the specification against the follow-

ing traces (along with his expected results):

• - - r - - - a - - - - (valid)

• - - a - a - - - - - - (valid)

• - - a - r - a - -r - (invalid)

• - - (ra) - - - - - - (invalid)

Except for the last trace, TV returns the same result as

Eric’s expected result. From this, Eric learns that the “Even-

tually” operator (F) in LTL holds if the operand (in this case

a) holds in the current state. This is the case since the cur-

rent state is part of the future in LTL. As a result of this

testing, Eric now has to reconsider his understanding of the

original property. He talks to his project teammates and in-

structor and comes to the conclusion that the desired prop-

erty indicates that “acknowledgment” must “strictly” fol-

low the “request” (i.e., it has to hold in a future state other

491

Figure 7. Results of Validation by TV - Invalid
Result

than the current state. Eric changes his original LTL for-

mula to “G (r → X F a)”. He runs all the previous traces

using the TV tool. The tool returns validation results that

match Eric’s expected results.

5 Summary and Future Work

The TV tool was developed by students in the introduc-

tory course in Software Engineering at Embry-Riddle Aero-

nautical University. The tool allows users to examine for-

mal specifications against traces of computations that rep-

resent the different behaviors of the software system being

verified. Providing the means to validate formal specifica-

tions is extremely significant, as effective use of these for-

mal specifications (whether in formal verification, design

and code automation, or test cases development) is not pos-

sible if the generated specifications are faulty (i.e., do not

match the developer’s original intent). Indeed, incorrect

specifications could lead to the very mishaps their use is

designed to prevent.

TV can also be used as part of property elucidation as

a way to distinguish accepted and unaccepted behaviors of

the system under consideration. The tool can also be used in

academic sittings in efforts relating to formal methods and

formal specification [13].

Future work includes extending the tool to allow for val-

idation of specifications written in CTL. The foundations of

that work have already been implemented [14] and we plan

to have it included in the future release of TV. Ultimately,

we intend to integrate the TV tool into the Prospec tool and

to link both property specification and property validation

efforts. Finally, an important goal of this work is allow for

the automatic generation of traces of computations and the

expected results (as in Section 5.3) for LTL and CTL speci-

fications. This will relieve the user of the burden of defining

those traces, as well as provide another way of validating

specifications.

References

[1] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M., “NuSMV:

a new Symbolic Model Verifer” International Conference on Com-

puter Aided Verifcation CAV, July 1999.
[2] Clarke, E., Grumberg, O., and D. Peled. Model Checking. MIT Pub-

lishers, 1999.
[3] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C., “Patterns in Prop-

erty Specification for Finite-State Verification,” Proceedings of the

21st Intl. Conference on Software Engineering, Los Angeles, CA,

USA, 1999, 411-420.
[4] Gallegos, A., Ochoa, O., Gates, A., Roach, S., Salamah, S., and

Vela, C., “A Property Specification Tool for Generating Formal

Specifications: Prospec 2.0”. In the Proceeding of the Conference

of Software Engineering and Knowledge Engineering (SEKE), Los

Angelos, CA, July 2008.
[5] Hall, A., ”Seven Myths of Formal Methods,” IEEE Software,

September 1990, pp. 11-19.
[6] Holloway, M., and Butler, R., “Impediments to Industrial Use of

Formal Methods,” IEEE Computer, April 1996, pp. 25-26.
[7] Holzmann, G. J., “The model checker SPIN” IEEE Transactions on

Software Engineering., 23(5):279-295, May 1997.
[8] Kim, M., Kannan, S., Lee, I., and Sokolsky, O., “Java-mac: a run-

time assurance tool for java. In Proceedings of Runtime Verification

(RV’01), volume 55 of Electronic Notes in Theoretical Computer

Science. Elsevier Science, 2001.
[9] Laroussinie, F. and Ph. Schnoebelen, “Specification in CTL+Past

for verification in CTL,” Information and Computation, 2000, 236-

263.
[10] Manna, Z. and Pnueli, A., “Completing the Temporal Picture,” The-

oretical Computer Science, 83(1), 1991, 97–130.
[11] Mondragon, O. and Gates, A., “Supporting Elicitation and Spec-

ification of Software Properties through Patterns and Composite

Propositions,” Intl. Journal Software Engineering and Knowledge

Engineering, XS 14(1), Feb. 2004.
[12] Mondragon, O., Gates, A., and Roach, S., “Prospec: Support for

Elicitation and Formal Specification of Software Properties,” in Pro-

ceedings of Runtime Verification Workshop, ENTCS, 89(2), 2004.
[13] Salamah, S., and Gates, A., “A Technique for Using Model Check-

ers to Teach Formal Specifications” Proceedings of the 21st IEEE-

CS International Conference on Software Engineering Education

and Training (CSEE&T), Charleston, SC, April 2008, 181-188.
[14] Salamah, S., Gallegos, I., and Ochoa, O., “A Novel Approach

for Software Property Validation” Proceedings of the International

Conference for Software Engineering Theory and Practice (SETP),

Orlando, Fl, July 2008
[15] Salamah, S., Gates, A., Roach , S., and Mondragon, O., “Verifying

Pattern-Generated LTL Formulas: A Case Study. Proceedings of the

12th SPIN Workshop on Model Checking Software. San Francisco,

California, August, 2005, 200-220
[16] Smith, R.L., Avrunin, G.S., Clarke, L.A., and Osterweil, L.,J.

“PROPEL: an approach supporting property elucidation.” In Pro-

ceedings of the 24rd International Conference on Software Engi-

neering. 2002, pp. 11-21
[17] Stolz, V., and Bodden, E., “Temporal Assertions using AspectJ”,

Fifth Workshop on Runtime Verification Jul. 2005.”,

492

���������	�@����5������������	������
���	�����������������	��
�

�£���	#��
�����
������������
���)������
��
�
�������������������
��������
���

�����
����������������������
��������±��±��������

��������
	 ��!��
"����#�������������
��
����
��

�
�������������������
��������
���
�����
����������������������

����±��±��������

�������
�

�������������������
����������� �
����
��� ���
� ����
�������������������
��#������������������
�������$���
���������� ��� ���� ��������� �
�� ���� ������������� ��� ����
�������� ������ ��������
���)��� ��� ���� �
������
��
���
�������
����
��
�������#�������������������������
��
�����������������
�����#��
�����������������������������
�������
�� ��������� #������ ���� ������� ���
� ����
�����
��� ���������� %�������� �>�
�� �� ����� �����
�
�������
� ���
��� ���������� �������������� ���� ������ ������
#�����������
��������
�������
����������&���������������
������
���� ��� ���� ���� ���������)����
� ������� ���
����
��'#$��������
������������������
��������������

��� ��������� �� �)�#����� ��������� �����
� �������
&���� ������ ������
�� ���� #����� ��
������ ��� ���������
)����
� ��������
������ ������� �����)�#����� ���������
�����
��������(����������������������
� ����#�
��������
���� ������ ������ �������
� ���������
� ����� �)� �������
#��
���� &�� �������� �� �������
���
�� ��� ���� �� �����
������������������ ���������
��� �������������������
����������#�����
�� ���� ���������
� ���
��������� �����)�
��������&��� �������� ����� ������#�����
�� �����)�#�����
��������� �����
� ������� ���� �����
��� ��
� �����������
��������� ���� �����
� ��� ���� ������ �����
� ������ �
��
��
���
� ����������������
����
�� ���������
� ���������
&���������� ��
� ����� ���#������ ��������� ������� �����
����������������
�
)�
� ;����	� ����"�	��
���������� ������*� ��������	
������*� ����"�	�� ����������*� .+�������� �������
����	��
�
,��-������������
�
��� ���� �������	���� �������*� °������±� ��� ��"���� ��

����	�	������� ��������	������� �	������"����� ����������
�	��� ��������� æ�"���� ��� ������ ��� ��"� ��� ������ ��� ����
���� ��� "���� �� ���������� ������� �� �� ����� ��������	
��������	������������������	��� 	������	���� ���� �������
����������� ������������������������.�	������������������

�����	�����������*���������������������	���������	�������
����������������������������

���� �.�	���� ������� �	������ ��������� �"�� �	���	��
��������������"������	���������������������������������
�������� ��� ��� ��������� �����.��� ����� ��	��� ������ /����*�
����������� ������� �����0� ��������	������� ���� �����	�
����������� ����� ���� ����	� ������� £�"�.�	*� ������� ��
����� ��������� ��� ���� ����������� ������ ��� ���� �����
�������������������	����� ���������	����������������������
��� ��������*� �.��� ������� ���� �������	������� �� �����
��*������"	
��� ������� ���������� ���� ���� ��� ����������� "���� ����
��	��� ����� ���������� 6���������*� ���� ��� ���� ���������
���+���������� ��� ���� ����"�	�� ��.��������� ���� ����
������� ��	���	�� ��������� ��	� ����"�	�� �¬ *� ����� ����
�������	������������	����������������*� ����������������
������ ��� ������+� ������������� ���"������������ �����
���� ����� �	����� ���� ����������� ��� ���� ���������������
�������������	����������1��������������	������������������

��� 	������ ����� ����������*� "�� ������� ��� �+���	
������ ����	�*� �������.+�������� ������� /.�0� �����"���
��.������� ��� 2�� 3�� ���� ��� ���� ����� �·¢4�� �¡ �� ���
��������� ��� �����	���� ����	������� ��� ����	�*� ���� .��
����	�� ����� �� ������� ���������*� ������� °������±*� ���
	��	������ ���� �����	���� ������ ��� ������� �����������
5���	������ ���� �����������*� ���	� ����	��� �������
�������*� �������	*� ����������*� ��������*� ���� �	������
�������� �	�� ���	�������� ¥���� ����� �"�	������������
������	���	����	� ��	����	�*� ���� ����	�� �������� ����
��	�*������ �������� ���	������� ��	���� �"�� ���������
�������� ���� ���� .�	������ �������������� ���	������
��	���� �"�� ��������� ����	��� ��	���� ���� ��	��� �������
�����*� ����� �"�� ������������ ���	������ ������ ����
�������	� ��� ����	���� ���� ��� ���� �"�� ���	�	������ ���
���������������������������������.��"���*���� �������"��
����������������*�����������1����������������������"�����
����������� ���"���� ������ �"�� ������ ��� �������
����������������������	������*� ����.�� ����	���	�.�����
�"�� ������������ ������� �+����*� ������� ����
������������� .+���� ���� ���� ����	������� .+���*� ���
�.����������	���	������������������������	���������	������
������� ������ ������� ��������� ����� ������*��

493

������������������������������������"�����������������
��.������	��
�	��������	����	���������������	���������"�	���������	�
����������� ��� �.������� �������������������� ��� ���� ��	���
���������� �����"��*� ��������"�	����������	��������������
���	�.�����
�������	�����������	*�"�����	�������������������������

��� ���� .�� ����	�§� ��	������	��*� "�� ������ ��� ��"� ���
�.������� ������	��� ��������������	��������������������
���� ����������� ��������� ��	����� ���� �������� ¥�� �����
�	������ ��� .�	������ ����"�	�� ������� ������� �����
������������ %%� ���	����� ���� �+������ ��"� �����
������� ���� "�	�� "���� �� ����	��	����� �	�����	��� ¥��
����������������	�.�	����������"�	���������������� ���
������"�	���	�����*�����	������"�����.�	�������������
������������������	�������������"�	����������������	�.��
�����������	��������
�
6�� ����
� ��������� ����	�� �����
� ���
����������-���������
�
6�,��)�
� �������������������
�
�

��������������������.������	���������������"�������	�
���������������

ç� ������7� ������� ��� .��"��� ��� �� �����������
�����������"���� �"������������������*� ����*��	��� ����
����	���� °"���±� ������� ��� ���� ��"���	���� °��"±�
������*�

ç� .���������7� ���	�	������ 	��	������ °�������
�	��������	�±� �	������ ��� ��������.�� ��������*�������
�	��� ���� ���������� ��.���� /����	�0����������������������
��������*�

ç� 8�	9		��	7�����	��������������	��������*������
���"���� ��������� �������� ���� ����	�*� �����	������ ���
��������������������������������	�����	������"���	����
�������*��������������	��������		��.�������������������
�������"�		��.�������*�

ç� ������7�������� �"�� �������������+����*� ����
������������� .+���� ���� ���� ����	������� .+���*� ���
������ ���� �	������*� �����	����� ���� ���������� ��� �����
������������������	����*��*��������

������� ��� �� ��"� �������� ���	������� ��� ���� .��
����	�� ��� ������	�*�� ���� �����	���� ������ ��� �������
���������� /����*� °"���±� .��� °��"±0�� 4������ �	����������
���	�������"������	���������������������	������������
�������������� /"����� ��+	��� "���� ���� ��"� ����� ��
����������	�	���0*�����*��*��������	������/����*���������
��	�������������������������*�������������	�0��������.��
����	�� �	�.����� �� �"�	������������ 	������� ��� ������
������������������5���	������������������*����	�����	���
��

���� ����
������	� 2���� /
20� ������*� "�����
�����	��� ���� ����	��� �����	��� ��� ���� ���������� ��������
���� ����	� �+������� ��	��	������� ����� �������	�� ��	��
���Î�	��������	��

¨�� ���� #���������� 5�1��	������ /#50� ������*�
"����� ��� ���������� ���� ��� ������������ 	�1��	�������
�������������������	����	�*�Î��������������	������
2���
:��� �����������3�	�����	�/�30�������*�"����� ���

�� ���� ��� ���� ��������� ��	�����	�� ����� ������������ ����
��������������������������������������#5���

ª��� ����3	������¾�	������/3¾0�������*�"����������
�����������.�	�������/�������������.�����0�"�������������
���� ��������� �	������ ���Î�	� 	����	���� 	�1��	��� ��	�
��������������������.�������������3���

���� .+�������� ������� #	���"�	�� ��� ���"�� ���
#���	�����

�

�
��
��
��
�	
�

��
�

�
;�	����,��8�	9		��	�������;��������	���������

�
��	���� ���� *��*������������.�	�� /���� #�����0*� �"��

��	��������� ���	������� �	�� ��	��	����� ���� ��	�*������
°�������±����	������/����*�°*��±����	�����0��	������ ����
°�����	��±� ������������� ���"���� ����������� ����
��������� ��������� ���� .�	������ °��������*�����±�
���	������ "������ ���� ������� �	������ ���� °��	�	��±�
���	�	���§���"�.�	*� �����.�	���������	������������������
��� ������� ��� ����	������� �	��� ���� ����	� ����	�� �	���
���� ��������� ������� /����*� �	��� �3� ��� #50�� ����� ��
����������������	�������	���.�������������������������
���� ��"�� ��.��� ��� ���� °*��±� ���	������� .����������
�������°�����	�����±�/��������¦����.��������������������
������������	0�����������*����	�������������	�����������
	��	������ °������±� ��� ����������� ������� ���������� ���
������ ���� *��*������� �	������� .���	� ���� *��*�������
�	�����*� �"�� ���	�	������� ��	����	��� �	�� �	������ ��� ����
�������������������������������*�	�������.�����

���� .�� ����	�� �	������� ����� ���� ��������� �������
������������������������������������.������*��"���������
�+��������������������������	����� ������������	������
���� ����� �	�� ���� ������������� .+���� ���� ����
����	������� .+����� ���� ������������� .+���� �������
�����������������#5������������������������������������

494

���3����������	�������.+����������� ����������� ������
������� ��������� /����*� ���� #5Î�3� ��������0� �����
���������� ���� ��	��� �+���*� ���� ���� "���� ���� ������
����	���������������������������������.���������.������
�����������������*����������������"�������������������
���������������������������	������������1�������<#5=�
²��. <�3=*�"��	�� �. � ��� ��������������	�+� �. �������
���	�+� ���� ��� ����� ��� ���� �������	� ��� ��.���������
"�����	� ���� ������������� .+���� ���� ����� ����������
��	��������*��*��������	�������

�
6�6�� ¯��������/� ���������� ��� �������
����	�������������
�

�
���� ���� ��� ���� ������������ ��� ����	������ �� �����

������� �	����� �������������	��� ������� ��� ������������ ���
��� �������
���������������������������������#	��� ������	������.��
��� ���� .�� ����	�*� �� ������� ����� ���� ������ �������� ����
������������� ��� ���� #5� ��� ���� ��	���	� ������� ������
���������������������������� ����� ���������������*� ����
����������	�+��. � �����������������������������"����
#5�� ���� �3�� ���� ����� ���� �������	� ��� �+������ ����
����������� ������������� /�	� ������0� ��� ���� ��������
.���	���������������	����	���������������. *� ��	���������
����������*����������*����������������������*����� ���
������� ��� ���� �������	*�	�� ��������� ��� �. � �	������� ���
���� ��������� ��������*� ��� ��� ��� ���������� �������� ����
�������������������������������"�������������������������
��������	��	�������	�����. ��	���1�������*�	���£�"�.�	*�
"���� �. � ��� ���� ���� ���������� �	� ���������� ����*� ���
���
����������#5����������������������������		�����������3§�
��	��+�����*� ���#����¨*�#5����������	������� ����3��/����*�
#5��²�.���3�0������#5� ��� ��������������������� �������
������������������������£�"�.�	*�.������	�������.���
������������������������#5�������������������"���������
�3������ �������	������ �������	������	� ��1�������.����
	�����*� ��� ��	��� ��� ����� ������*� �+����� ����������
�������*��
�

�
;�	����6���#>#�����	�����������¯������������

��������������	���
�

�����. �����������.��������������������	��������	�����
������ ��� �������	��.����������������� ��������������"����
��������		��.���������� �����������?���+�������� ���� �. �

����������.��*���������������������������������	�����������
���� ���	��.��� .�������� ���� ����		��.��� ���*� �� 	��������
/	�	�	����� ���� ��	����	�0� ������� ��� ����� �������� ���
����������� ���� ���	���	�*� ��	����� ����� �� �	�����*� ��
���������������������	���	�����������������	���������
�
6�#���������������������	���������

�
��� ������ �����*�� ���� ������������ ����.�� ����	�*� ��� ���

�������	�� ��� ���"� ��"� ��� ������ ���� .�� ����	�� ���
����"�	�� ��������%�	� ����� ��� ��� ���� ����.�� ����	�� ���
����������� %�����	�	������� /%%0� ������§� ���	���	�*�
���� ����� ����"�	�� ������� ��� ���� ��	��� ������ ���� ���
����	�����*�"�����������������������������	�%%�����"�	��
���������

£�"�.�	*� ���� ������������ �����	������ ���"����
��������� ���� ����"�	�� �������	���� ������ ���� .��
����	�� ���������� ��� ��� ����	������ ��� ���� ����"�	��
����������� ����"�	�� ��� ����������§� ������� ���������
�������*�����"�	����	����	����������������������.�	�����
�	��	���� ��� �������������� "������� ��������� ���Î�	�
������	��� �����	������� ��� ���� ������� ��� ���������
�������*� ����������� 	�1��	������� ���� ����	�
��		���������� �+������� ����.��	�� /����*� #5� ���������0�
�	�� ���� �������	¦�� ����������� ����� �	�� �������������
����	����� ���� �	������ ������ ��� �������	� ������� ����
�3� ���������� ����� �	�� ���� ������� �����1���������� ����
#5�	������ ��� ���������������.��	��� ������������ �������*�
�����+�����������.��	��/�	������������	�1��	������0��	��
��"���������	�����	�������	�������������.��	�§����	���	�*�
��������	���������"����#5������3� ���.�	������	�������
����	������ ��"�.�	� ��� ��������� ��� ����"�	�� ��������
�������� ������	�� ����������� ��� �������������"�	����#�	�
�+�����*�?����¦��%%���������������������������������
���� �+��������� ������������ ���� ������� ����������� /����*�
�����������	�1��	��������	��+�����������.��	�0���������
����������������������/����*�	����������.��	�0���
��� ����"�	�� ������*� ����� #5� ����� 	��	������� ����

�������	¦�� ������� �	� ���������� ��� �������� �������	�
�����*� "����� ���� ��� �	�����	���� ����� ������¦�� �	�
���������¦�� °�+������±� ����.��	��� £�"�.�	*� ���� �3�
����� 	����*��� ���� #5� ��	��� �� ���	�	���� ����� ������ ����
°��	�	��±� 	������������ ��� ���� ��������� �������� �����
���	�	������	����	����������������	��	������������	����	��
����������������	��	�������

6���� ����� ��� ��	� �	������� .�	������ ����"�	��
���������������������	���������"��

� ������� ��������0�����
5�1��	������ ����	�������� ��� ���� ����	��� ����"�	��
�������� �	�� ���������� ��� ����	.��"�� "���� ��������� ���
����	����� ����������¦���������������	����	� �����"���� ����
�������	� �����*� �� 	�1��	������ ������������ ������1��� ���

495

������ ��������� ����*� ������ 	���� �������	������� /
2�0�
�	�����������������������	���������

� ������
�;,�� ����-�� �����	�� �8�	9		��	�
-��������

.�� ����������*���.�����	�� �������� ����#5������ �����3��
��	����� ���� °*��*������±� �	������� .��� ���� #5�� �	��
������ ����
2��� ���� 	���� ��.��� 	��	������� ���� �����
����	������������*���������������������� ����	�����������
���"�� ����������� ��������.�� ���� ����� ��.��*� �����������	�
�������������������������������§�����*��������������������
���� �������� ���� ���� ���������� ����� ��� ������� ���"����
�������� ����� ����� ��� ��� ����	��� ����������� ������ ����
����������	�����������	����	����� ����������*������������	�
���� �	�����	�� ���� °��	�	��±� ���	�	���� /	����	� �����
����	�������	�����������0��������������������	�������	��	�
��� ���"� ���� ������� 	������������ ���"������������� ��	��
������������*� ���	������� �	� ��	�����	�� ����� ��� ���		
�������������������/�������0��	�������������/��������������
����	���	��	��������������#����:0��?��"������������.���*�
����������� �	� �����	� ��.��� �������� /"����� ��������
��"�	� ��.��� �������0� �	�� ������� /��	����� ����
��������*������ ���	������0� ��� �������� ���� �.�	����
�	��������	��� ��	���� ����� ��������*�����*� ���� �������	�
����� ��"���� �������	� ���� ����������� ����	������ ����
������� .�� "���*� ����������� �����	������ �	�� ������
����������� ��	����� ���� °*��±� �	������ �	��� ����	� ��.���
�3������������	��.���#5���������������������	����� �������
�����������	¦����������������������.�����#�	��+�����*����
���� ����	� ��.��� �3� �������� ��� ���� ��	��	���	� ��	����	��
���� ���� ���	�� ���	� ����������������	����	�*� ���� ���	��.���
#5� ���� ������������ �3� ������ ��� �������� ��� ������� ��
����������	����������	��.�	*� ����#5��������������� ���
.�	�� �����	���� �	��� ���� �	���������� �����������
�������������� ��� ���� ��	����	�� ����"�	�� �������� ����
#5�� ��� ���� �����	�� ���� ��1������ ��� ���� ���	������ �	�
��������� ���"������#5���	�� �������������������� ����� ����
������� �	� ���� ���������� ���� ����� ��� ��	��	���
���	���	�*� ��� �����������	� �����*� ����� ���� �.��� ������
�����������1���
���������������������������������
�

�
;�	����#�� ������	�������������	�����-��������-�

����������������(����
�

6.��������� ��� ���� ������� �1������� /�	� ������� ���	�+�
�. 0�������������������	���������*��*��������	�������.��

�������.�����������������������*��"���+������.��������
����� ������ ���� ������� �1�������� #�	��*� ���� ��"�	� ��.���
���������������������� ��� ��� �����������"���� ���� ����	�
��.��� ������ ������*� ���� �������	� �.������� ����� ����
������� ��� ��� ����������� ���� /����*� ���� ������� ��� �����	�
�����������	����������0��������������������.�������*�����
�������	�������������������������������

� �����������������E���������
��� ���� ������� ��	����	�� 	��	����������� ������� ������� ��	�
���� �������	� ��� �+�	���� ���� ������� 	������ �	� ���
����	������ ���� ����������� ��������*� ����� ���� ����� ����
����	���� 	������������ ���"���� �������� ��� �����	����
.��"��������#�	��+�����*� ������1����������	��� �������
��� ���� 4�!� ����	���� ��� %%� ������� ��� ���"� ����
�������� �������� ���"���� ��������� %���	�
	��	������������ ����� ����	������� 	������������� �	�� �����
�+�	���������������������

� ������
� -E�� ����� �-�� �������	� ���
-�������������������������	����

����������������������3¾����.������	�����	��������������
���������	���� �	������� ���	���	�*� ��� ����"�	��
��.��������*�����3¾���������	�������������������������
��������������� ����� ����������� "���� �� ��		����������
�3�� ¥����� ��.�����	�� �������� 3¾�� ��	����� �3�*� ����
����������� ����� ���������� ��� �������	��� ����� ��� ����
���	������ ��������	� �����	��	������� ����������������
��	������� ��� ���������	� ��� ����.������������������������
������	��������*�"������������	���������������	���	�����
������������

�
#�� ��� ����
� ��� ���� ������� ��������
����	���������
�

��������������+���������"�"������ ����.�� ����	�� ���
�����������%%����������������.�����������������������
��	��������������	�������������	���� �������������������
�� ����� ������� ��������*� ����� �� ��	����� ��� ���� "�����
��������������������"���

�
#�,������������������	��-��(�����

�
%�	�������������	��������������������������������������

���� ��� ����	���� ��������*��� ��	���� ��	���*� �������
!���5����	*�����	����� ����� ���������� #���	�� ª� ���"��
���� 	�1��	������� ��� ���� �������� ��� ���� ������*� ����
����"�	���	��	��������� ��� ��������������D�!����������
������� ���� �� ������� ��������� ����� ��� ���������� ��� ����
���	�� ��	����� ���� ������¦�� �	��������*� ���� �������*�
��������� !���5����	� ��	����� �	�� ����	����� ���
���������� D�!� ��������� "���� ���� ��������� ���� �	��
��.��� ��� ���� ���		���������� �����	�� ��� �	��	� ��� ����
�����	���� ���	������ �������� ���� ������*� ���� �������
	�1��	������	�����������	�����	�����/\4�0�������������

496

������������������	���������������	����������	����.���	�
���� �������	� 	�1��	������� �	�� ����	��� �����	��� ����
�������� ����	� ��.�	��� ����	.��"��"���� ��	� �������*� �����
�	�����������������������	�/
20����������4 ���

�

�
;�	����@�������
�����,�1���������������������

�
#�6�����������������	��,������
�

.���+����������.����������*����������	���	���	������
��� ����� ������������������������ ���	�	�������.� ���������
¨¬� �������� /���� ���� ������ �����	� ��� �3� �����0� �	��
���������������������������

�

�
�

;�	����A������;�����������2�-�������������9�����
�
#���	��¡����"��������	�����	�����.���������������*������

	������ ����� ��������� ������������ �	��� ���� #5�� ��� ����
�3�� /����*� ��	�*������ ��	������0*� ���� ���� ����� ��� ����
������� ��� ���� ��������� ������� /����*� ���� 	�������
	���������	0��¥�������������������������	�������	��������
������������	����������������"�������������1�����������
������� ���� �������	� �������� ����� ���������*� ����� ����

�	����� ����� ��������� �3�� ��� �3������ª� /����*� ���� �	���
����� ��� ���� #���� ¡� ���� #���� ¬0� ��� ��������� ��	� ����
�������	���������
�

�
�

;�	����B������;������2�-�������������9�����
�

�������	
�

���������������������
�������������	
������

������������������	
���
���

�����		
�����

���������!"��
����
��

���������!"���
�#������������������!"��
�����������������

$�������
�����

���%��&'�����(���������)
���%��*'�����(���������)
���%��&'������+�������)
���%��&*'�����(���������)

�#�
(�������������&������#,���������������#�������#
�#�
&(�������������&������#�������#

�������
�

�������	
���������#��������������

����
������

�������	
�

���������������������.�����������/
�������������	
������

������������������	
���
���

$�������
�����

���%��&'�����(���������)
���%��*'�����(���������)
���%��&'������+�������)
���%��&*'�����(���������)

�#�
(�������������&������#,���������������#�������#
�#�
&(�������������&������#�������#

�����		
�����

���������!"��
����
��

��������������������
�#����������������������������
�����������������

����
������

�������
�

�������	
���������#��������������

�
;�	����C�� ������	����������-�,�,�,�

497

4���	� �3������ /D�!£�����	0*� ���� ���� ���.��� �	��
�������§� ���	���	�*� ���� ����	�����*� ��	�����	�� ����
���	����������������������	���������	���/����#����¬0�������
������������� ���"���� �������� ���� ��� ���"�� ��� ����
����������	�������������������1�������/����#����¢0��

.���	� "�� ���� ���� ������� �1������� ����� ��� ������ ���
�.�	����.���������	�	��������.�����������������*������3�
���������� ��� ���� ��	��� ��	��� ��.���� �	�� ����������� ����
�	�������������������������������¥������	�����������	��
�������	��� ����"� ���� ���	�� ��.��*� ���� ������� �1�������
���"�� ���� ����������������"���� ��������	� ��.�������� ����
��	���	�����������*�"���	����������������������/����#����
¢0�� ���� �3������:� /��	����	������0� ���� ����
������������� "���� �3������¨� /D�!3�	��	0� ����
�3������ª� /����
���������0� �������� ����� �������� ����
��	����	������� ��� �� 	���	�� ����� ����� ��� ����	���������
£�"�.�	*� ����	����� ��� �������������������� #5������ª*�
��� ��� ���� �������	�� ��� ���� ��	����	������� ��� �� 	���	��
����� ����� �������
���������� ������������
���������� ���
����� 	����������� ��	� ��.���� �������� 	���	������ ��� ����
������� ������.����	�����*� ��� ����������� 	���������������
����� ��.��*�"��������� ���� ����
���������� ���� 	���.��
���� ����������� ���"���� ����
���������� ����
��	����	�������� ���� �3� ��	����	�� ��� ���� ���	��� ��.���
�������� ��� ����������� ���������� ������� /��� .��
����	�� ����������0�� ���� ���������������������	�����	��
���"�� ��"� ���� �������	� ���� ������� ���� �	��	���
��	����	�� /�	� ����"�	�� �	��������	�0� ������ ��� ����
�.��������� ��� ���� ������� �1������� ��� ���� ��	��� �������
�������

�
@�� ����������
�

������������	����������������	�������������������	��
����	����� 	���� ����� ��� ����� ��� ���� 	���� ��� ����
��.��������� ����.������� .� ���	� ����"�	�� �������
��������� ����� �������� ��� ���� ����������� ��	���� �	�����
���� �.�	���� ������������� ��� ���� ����"�	�� ��������
6���������*����� �������������+���������������+�����������
��������"�	��������*���.���������	�������������	�������
	������ ���� ������+���� ��� ����	� ������� ����������� %�	�
.�	������ ����"�	�� ������� ������� ������� ����	�� ��
����������������������4�����������������1�������/�������
���	�+� �. 0�"�����.����������	�������� /����*� ���������*�
���������� ���� �������� ������0� ��� ������ �� �����
��������� ��� ����� ��.��� �������� .�	�� ����� ��� ��	�
�������� ��� ����� "��*� ���� �������	� ���� ���	�.�� ����
1������� ��� ������������ ���� 1������� ��� ���� �������
��������� ����	����� ��� ���� ����� �	���	��� ��� ���� "�����
��.���������� ������ ��������� �	�� ��	���� ������ ��� ����
�	��������������"�	������������������
�����������������*�������"����������	����������������

	������ ��� ���� ����"�	�� �	�����*� "�� �+�������� ��"� ����

�������	������������������1�����������.������������������
���������� ��� ���� ��������� ��� ���	*� ���� �������	� ���� ���
	�������� ��� ��� �	����� �� �����	� �	��������	�§� ����� ��*� ����
��	����	�� ���� ����� ����������� ���"���� ��������
/�	��	���0���������+������������	����������	�����"�	��
�������� � ���� �������	������ ���"�� ������ ��������� ���
��������	�.�	����������"�	��������������������������
�����������	� �������� ���������������	���� ���� ����"�	��
���������������
�
A��,����������
�
�� ��£����*�¾������6��	*�¥�6���)����
�����
��9�^
���������
�
���������������������
��'���
������
�����
��
����
��)����
�
&
�������*�!���������	����		¾�	������··¬���
�
�¨ � !�*� ���
	 �� ���� ���*�2�3�*� °
�����+���� ��� ������� ���
�����������������±*��

���� ��� ���� �^`�*� ¾���� ¡*� DÎ�Î¨44·*�
����¨ª�	¨ª¡*�¨44·�/��������	0��
�
�: �5�����
�����?��	�����£����.���¾����*�°%������������	����
���"����5�1��	�����������.	��������	�±*�E���
�������������
�
����������*���¡ªª	¡¡4*�2�.����	�¨44D��
�
�ª �3��������®	������*�°.��%�����������.	��������	����������
���������� �������"�	�	�������.��������±*�3
��(��>������
�
��������� "����#������ 	�
����
�*� \	�������*� 2!*�
5�������.�	�������\	�������*�¨44ª��
�
�¡ �����*� 2�3�*� ���������)����
9� ����
���� �
��
����������
���%+��	��4��.�	�����3	�����¨44���
�
�¬ �\	����?����*�5���	��.������������*���������¥��6����*�
?�������� ����*�����
������������®�����.��£������*��'#$����
'���
���� �
������� �
��)����
� ����� ����������
��� ���� ��*�
.������	¥�������¨44¢��
�
�¢ ���� ���	�*� 5�� ®�*���*� ��� ®����� ���� ��� .�����*�
ÀÍ����������� ���� ¾����� ��� .	��������	�� ������� �����������
!������� �	��� ���� #����À*� ��������
��� ��� ���� 34���
^
���
����
�����
����
����
�����������
��
����
�*�3�	�����*�
%	����*�����¨44:��
�
�D �����.���!��3�	���*�3����
��
��������������.������¥����*�
°���� ������	� ��	����	�� ��� ������+� �������±*� ^����
&��
������
�� �
� ��������� �
��
����
��� ¾���� �6	���� ���� :��
��	����·D¡��
�
�· � ��������� �
�� ������ `�������
��)���
����
� ���
����F�
������� ���$����� ����9GG����
#����������G����4FFG�
����
�3��5G���$����G�����G�������G��`)����
#�������
�����5#�&�������

498

A Language for Modeling Software Development Life Cycles

Dr. Ernest Cachia, Mr. Mark Micallef
Software Engineering Process Improvement Research Group

Department of Computer Science
University of Malta

ernest.cachia@um.edu.mt, mmica01@um.edu.mt

Abstract

As the profession of software engineering has continued
to mature, a substantial body of work has built up in
the area of software development life cycles. A variety
of generic models ranging from waterfall to agile have
appeared over the past few decades, all claiming to address
prominent issues in software engineering.

In this paper, the authors make an argument for de-
veloping a unifying language with the capabilities of
defining and modeling any software development life cycle.
The concept is similar to the way UML is a language that
can be used to model any conceivable object oriented
software solution. A number of reasons are provided as
to why this would be a useful contribution to software
engineering. The authors also discuss work which they
have been carrying out in this area and outline the main
features and semantics of such a language.

1 Introduction and Motivation

Software development life cycles have been around for

decades. Over the years, they have evolved so as to cater

for different circumstances, system types, organisational

structures, time scales and so on. When Royce proposed

what was to (somewhat mistakenly) become known as the

waterfall development life cycle in 1970[1], he attempted

to propose a structured approach to software development.

However, by his own admission, the ideas in the article

were personal views and prejudiced by his own personal

experiences[1]. If one reads articles about more recent

approaches such as agile practices [2] [3], they are based

on a number of conceived best practices which have been

observed to work in projects with particular characteristics.

As such, software development life cycles tend not to have

a scientific basis to them. To date, there is no way to ’prove’

that if one set of practices is followed in a development

project a particular outcome will occur. Indeed, one might

argue that it is unrealistic to expect otherwise.

The authors of this paper argue that the state of develop-

ment process management today presents practitioners with

a number of problems. Firstly, it is difficult to formally

reason about development life cycles. Since they are

effectively a number of best practices wrapped up in stages

and work flows, it is not a straight forward task to fully

comprehend what effects a particular life cycle will have

on one’s projects. There have been attempts at providing

guidelines for practitioners in this area, most of which seem

to occur in the industrial sector. One such attempt is the

D3 cube [4] which recommends a development life cycle

based on three factors: the project’s time scale, budget and

stability of functional requirements. However, these are not

the only factors which should be taken into account when

choosing a development life cycle. Arguably, development

life cycles are an over simplification of what is in reality,

a truly complex task. Consider the following statements:

“This project needs to produce a highly secure product”.

“Our company will reduce its workforce by 10% by the
time the project ends”. “This website needs to be available
in 50 languages”. These are examples of typical real-life

situations which will effect the way a product is developed.

In most cases, an organisation will need to mould its life

cycle to its particular needs.

Another problem with life cycles today is the lack of

prediction and modeling capabilities. It is difficult to give

an accurate estimate of how long a project will take, what

will be delivered and what level of quality deliverables will

exhibit. Even with meticulous planning, it is inevitable

that projects will come up against unplanned situations

which hamper progress. It would be useful to have a way

of modeling a development process such that scenario tests

could be carried out on it prior to project commencement.

For example, if there is a risk that a 3rd-party vendor will

not deliver on time, how would the development process

499

handle it? Similarly, a model could help in selecting

corrective measures when something has gone wrong.

If there are multiple ways to approach the solution of a

problem, a model could help select the best one.

Finally, there is no common way to represent and

compare different development life cycles. Life cycles are

usually proposed in articles or papers as textual descriptions

supported by diagrams to help clarify the author’s ideas.

It would be useful to have a common way of representing

development life cycles so as to make it easier to compare

and reason about them.

In this paper, the authors are proposing a language

for modeling software development life cycles. It is

claimed that such a language will address the issues

discussed here and also give the management of software

development life cycles a more scientific basis from which

to operate.

1.1 A note on scope

The work discussed here refers to a language definition

which has not yet been fully defined. The authors are us-

ing this paper as a platform for sharing their research ideas

and progress made thus far so as to be able to incorporate

feedback into a final version of the language being proposed

here. Consequently, the scope of this paper is to make a case

for the development of a life cycle modeling language and

highlight key features, semantics and mechanisms within

such a language. It is the goal of the authors to publish a full

specification of the language within the next few months.

As one may appreciate, it is difficult to publish a language

specification within the constraints of a conference paper.

2 Desirable Language Characteristics

This section discusses what desirable characteristics a

development life cycle modeling language should exhibit.

Knowing these properties will help shape the language

itself as well as provide a measuring stick for analysing the

language.

As an initial requirement, it would desirable if the

language was sufficiently expressive to model any software

development life cycle, be it an standard or one which is

customised to a particular organisation. As such, it would

also be advantageous if the langage were extensible. It is

proposed that the language aims to explicitly model the

‘lowest common denominator’ characteristics of software

development life cycles whilst providing a way to allow

practitioners to plug in any other concepts. That is to say

that it should not seek to explicitly provide syntax and

semantics for concepts particular to any existing life cycles.

Rather, it should provide syntax for generic concepts which

apply across all life cycles. Therefore syntax will be

provided for a concept such as a life cycle stage but not for

the agile-specific activity of pair programming. This makes

sense because it is impractical to implement all known

life cycle activities, concepts and their variants. Also, this

approach will make it possible for the future integration of

concepts which may have not yet been invented without the

need to change the language itself.

Another desirable characteristic is for the language to

be easy to learn and intuitive to use yet formal enough

to provide analytical capabilities to practitioners. This

will allow intuitive creation of models which could easily

be understood by all stakeholders with minimal training.

The language should also facilitate reasoning a deduction

capabilities in order to allow users to carry out scenario

testing on any models they build.

Finally, a user would typically want to quickly build

a coarse model in order to get started and then refine

appropriately over a period of time. Therefore, it would

be desirable for the language to allow for varying levels of

abstraction within models.

The next section will look into generic characteristics

of software development life cycles in order to clarify

decisions which have been made with regards to the

structure of the language presented here.

3 Software Development Life Cycles

Prior to proposing a language to model software devel-

opment life cycle, it is useful to analyse the entity being

modeled with a view to identify generic characteristics

about software development life cycles. Although all life

cycles propose different activities and work flows, there

are a number of characteristics which are common across

all development life cycles. As discussed in section 2, the

proposed language aims to explicitly model the ‘lowest

common denominator’ characteristics whilst providing a

way to allow practitioners to plug in any life cycle-specific

concepts.

Having surveyed a number of life cycles [1][5][6][7][8], the

authors propose the following unifying view. A software

development life cycle is an entity which accepts inputs

from external entities and ultimately delivers a number

of artefacts as outputs. All software development life

cycles have the concept of stages. A stage, sometimes

also referred to as a phase is a coherent body of activities

targeted towards completing one or more tasks which

usually fall into one genre (e.g. design, coding, testing, and

500

so on). Most tasks involve the production of one or more

artefacts but this need not always be the case.

Stages are composed of a one or more processes. These are

also coherent bodies of work contribute to the achievement

of their parent stage’s goals. Processes may also produce

artefacts as deliverables. Strictly speaking, the concept of

stages is not essential because they usually act as a wrapper

around a number of processes. Removing this wrapper

should not alter the overall workings of a development life

cycle. However, the concept of stages provides a useful

abstraction tool which makes it easier for practitioners to

model and understand development life cycles.

Processes are enabled through actors. The term actor
refers to any entity which contributes work to the project.

Actors could refer to actual human entities such as Joe
or Jane. They could also refer to roles without the need

to specify the individual who fulfills that role. Examples

of role actors include client, test analyst and review team.

Finally, an actor could also refer to non-human entities

which somehow contribute to the process. A typical

example of this might be a software system provides a

service within the process.

The concepts discussed here are depicted in the figure

below.

4 Language Definition

This section explains the core concepts, rules and seman-

tics behind the proposed language.

4.1 Overview

The proposed language has its foundations in second-

order logic and models life cycles which fit into the generic

view discussed in section 3. The decision to base the

language on second-order logic was made because at the

end of the day, life cycle modeling will turn out to be a

knowledge-base problem. That is to say, one will store

knowledge about development life cycles, resources, cir-

cumstances and so on with a view to eventually query that

knowledge and use it for modeling purposes. Second-order

logic is ideal for this kind of work and forms the basis of

deduction-based knowledge management systems.

The core vocabulary of the language is be defined as

follows:

SDLC := {C, S,Ar}
S := {C, Ar, P}

P := {C, Ar,Ac, M, If}
where:

SDLC refers to the software development life cycle being

modeled.

C is a set of input and output criteria. These are discussed

in section 4.4.

S refers to a set of stages within the software development

life cycle.

Ar refers to a set of artifacts. Artefacts are discussed in

section 4.3.

P refers to a set of processes. Processes are discussed in

section 4.5.

Ac refers to a set of actors. Actors are discussed in section

4.2.

M refers to a process model. These are discussed in section

4.5.1.

If refers to a set of interface functions.

4.2 Actors

Actors are entities that participate in the development

life cycle or have a stake in it. Due to the central role the

actions of these stakeholders play in the success or failure

of a project, they are a core element of the proposed lan-

guage. An actor is defined using the actor() statement. One

could define actors to be actual people or the roles the ac-

tors will be taking in a project. A few examples include

actor(Joe), actor(Developer) and actor(Client). The

following statements are defined for actors:

Statement Description

actor(x) Establishes x as an actor

within the model.

actorInProcess(x, p) Establishes x as a participant

in process p.

The language also provides a number of functions which

help to reason about the model. The following are a few

examples:

501

Function Description

ActorInStage(x, s) true if actor x participates

in a stage s.

ActorInSDLC(x) true if actor x participates

in the SDLC.

ActorInStage(x, s) = true ⇔
∃p • (Process(p) ∧ ProcessInStage(p, s)

∧ActorInProcess(x, p))

ActorInSDLC(x) = true ⇔
∃s • (Stage(s) ∧ ActorInStage(x, s))

4.3 Artefacts and Quality Attributes

The ultimate goal of a software development life cycle

is to deliver a software solution and related artefacts such

as deployment plans and training manuals. However, the

life cycle also produces a number of intermediate artefacts

which are used internally to produce the final outputted arte-

facts. Certain artefacts may also be provided as input to the

life cycle from external sources. Artefacts exhibit quality

attributes which when measured, can be helpful in the deci-

sion making process.

Statement Description

Artefact(x) Establishes x as

an artefact.

QualityAttribute(x) Establishes x as

a quality attibute.

InputArtefactToProcess(x, p) x is an input

artefact to process p.

InputArtefactToStage(x, s) x is an input

artefact to stage s.

OutputArtefactToProcess(x, p) x is an output

artefact of process p.

OuputArtefactToStage(x, s) x is an output

artefact of stage s.

It is the intention of the authors to incorporate quality

prediction capabilities into the language. As discussed in

section 4.8, a vast amount of research has been done in this

area and it would be useful to combine this with simulated

scenarios so as to predict the quality of artefacts early on

the the development life cycle.

4.4 Entry and Exit Criteria

A common way of controlling work flow in a develop-

ment process is by having entry and exit criteria in place.

In our context, this means what conditions need to be met

before a process, stage or even the whole life cycle can

start or end. In most cases, criteria may be a simple “the
preceding process must terminate” or “the code must pass
all unit tests with a minimum coverage of 80%”). However,

it is possible the have more complex scenarios. One may

choose to include factors such as contractual obligations,

quality of artefacts, financial situations and so on.

The language presented here provides a mechanism

through which entry and exit criteria can be incorporated

into the life cycle model. However, when it comes to

expressing criteria, the choice was made to incorporate

an existing language called the Contract Language (CL).

CL is a deontic language which was designed with the

formalisation of electronic contracts in mind. It is beyond

the scope of this paper to go into the details of CL but it

suffices to say that CL allows one to specify obligation,

prohibition and permission. In our context, criteria could

say things like “a process is must (is obliged) produce a
requirements document”, “code cannot (is prohibited) be
deployed if it does not pass all unit tests” and “one may
ignore performance issues during prototyping the stage”.

This kind of expressive power is ideal for use in entry and

exit criteria.

4.5 Processes

Processes are sub-components of stages and are meant to

aid their parent stage in achieving its goals. In section 4.1,

a process was formally defined as:

P := {C, Ar,Ac, M, If}
That is to say, a process is a collection of input and out-

put criteria (C), internal and external artefacts (Ar), actors

(Ac), a process model (M) and a set of interface functions

(If). Since criteria, artefacts, and actors have already been

discussed in preceding sections, this section will focus on

the process model and interface functions.

4.5.1 Process Models and Interface Functions

A process model defines the actual inner workings of

its process. The level of detail of this model can vary

depending on one’s modeling requirements. The more

detailed a model is, the more meaningful and accurate the

analysis that can be carried out. Practitioners can build a

process model using any language or notation which best

suits the needs of the process being modeled. For example,

if a process was a sequential set of steps, one might model

it as a finite state machine or flowchart. On the other hand,

if a process had concurrent aspects which needed modeling,

one might choose to model it as a petrinet. The plugability

502

of these models into the language being proposed in this

paper is achieved through the concept of interface functions.

Regardless of a process model’s inner workings, there

are a finite number of which one would ask of it. For

example, one might be interested in whether a process is

currently active or not, whether the process is on schedule,

and so on. Similarly there is a finite set of control actions

which one might want to assert over a process. Examples

of these include suspending and resuming a process. The

table below lists a number of example interface functions.

Since it is impractical to list all interface functions in a

conference paper, a representative sample of different types

of interface functions has been selected.

Function Description

isActive() Returns true if the

process is active.

isComplete() Returns true if the

process is complete.

idleActors()
Returns a list of actors

who are currently idle

within the process.

statusDescription() Returns a human

readable description

of the process’ status.

unsatisfiedCriteria() Returns criteria which

have not yet been satisfied.

expectedCompletionT ime() Returns the process’

expected completion time.

Practitioners should implement these functions in second

order logic and link them to their own process models.

The authors are conscious that the difficulty of this may

vary depending on the choice of modeling language for

the process model. As a result, it is being proposed

that bridging mechanisms be developed at a future stage

which facilitate easier integration with common modeling

language such as UML, petrinets and flow charts. This is

discussed in section 4.8.

Interface functions are also expected to satisfy a num-

ber of conditions. These are meant to preserve the sanity

of the model being built and server as means by which

inconsistencies or any other problems could be flagged

up. The following is a sample list of sanity conditions for

interface functions.

isComplete(P) →∼ isActive(P)

isActive(P) →∼ isComplete(P)

isComplete(P) → unsatisfiedCriteria(P) = ∅

4.6 Stages

A stage consists of a group of processes which work to-

wards achieving a particular goal within the life cycle. A

stage is mainly useful as a way of abstracting away from

potentially complex interactions between processes so that

it is easier for a life cycle to be modelled and understood.

In section 4.1, a stage was defined as:

S := {C, Ar, P}
This definition simply establishes a state as being a col-

lection of entry and exit criteria (C), a set of input and

output artefacts (Ar), and a set of processes (P). The ac-

tual sequences in which processes are executed and how

they communicate with each other will be jointly dictated

by each individual process’ entry and exit criteria which in

turn may depend on input and output artefacts. All the con-

cepts mentioned here have already been discussed in previ-

ous sections.

4.7 Querying and controlling the model

The discussion has thus far focused on how to actually

define a model of a particular software development life cy-

cle. Once the model is built, one would typically interact

with it in three ways: static queries, dynamic queries and

control instructions. This sections looks at each of these in

turn.

4.7.1 Static Queries

Static querying involves querying the static structure of the

model. This is usually done when one needs to understand

how the model works. Typical examples in this class of

queries include ‘what stages does the life cycle contain?’,
‘what is a exit criteria of process P?’, ‘which actors are
involved in stage S?’, and so on. Since the foundation of

the language is second order logic, a large number of these

queries are provided automatically. However, for the sake

of usability and convenience, a number of functions were

defined so as to allow the user to avoid writing non-trivial

logic queries. The following example illustrates a prede-

fined function which allows the user to find out which actors

participate in a particular stage.

actorsInStage(S) = A • x ∈ A ⇔ isActor(x)∧
∃p ∈ processesInStage(S) ∧ isActorInProcess(x, p)

4.7.2 Dynamic Queries

Dynamic queries are not concerned with the actual structure

of the life cycle but rather with the state of an instance

503

of the life cycle. Examples of dynamic queries include

‘has artifact A been delivered?’, ‘what part of process
P ’s exit criteria has not been met yet?’, ’given the current
circumstances, what is the predicted quality of artefact
A?’, and so on. If an instance of the model reflects

real-life events, it can be used to monitor an actual running

project. However, one could create scenario models which

simulate events that might occur. Users can then query the

simulation model to find out what would happen if those

events occurred in real life. One can appreciate that this is

a powerful concept which would improve the accuracy of,

and confidence in decision making processes.

Although these queries differ from static queries, their

actual implementation is similar. The difference is that

instead of querying structural information, functions

provided in this area query state information.

4.7.3 Control Instructions

Control instructions are designed to modify the state of a

model instance. A small number of these instructions are

predefined but since they largely depend on the process

models and process models can be defined by a variety of

notations (see section 4.5.1), it is impossible to determine

what functions will be needed in advance. As such, it is

left up to the user to define control functions for custom-

built models. Examples of control functions include actions

such as marking an artefact as delivered, generating an even

which drives a process whose model is represented by a fi-

nite state machine, suspending a process, and so on.

4.8 Conclusions and Future Work

It is the believe of the authors that once expanded

into a fully fledged language, the concepts discussed here

will lead to a language which provides a powerful way

of defining life cycle models and using them to monitor

progress and simulate scenarios for problem solving and

risk management. The work presented here is by now

means complete and a number of issues still need to

be addressed. One such issue involves the facilitation

of defining process models in any language. This is a

bold feature in the sense that it requires sophisticated

mechanisms to link any arbitrary language into the one

discussed in this paper. It is the authors’ intention to fully

specify these mechanisms and also utilise them to provide

inbuilt support for popular languages such as UML, flow

charts and petrinets.

The authors would also like to explore the area of

software quality prediction. A substantial body of work

has amassed in this area and it is the opinion of the authors

that it is useful to be able to predict quality of artefacts

albeit to varying degrees of accuracy at any point during

development.

The next few months will see ongoing work in this

area as the authors flesh out the remaining syntax and

semantics and encapsulate it in a language specification

manual. This manual should also include examples of the

language being used to model and simulate real-world life

cycles. It is the ambition of the authors to be in a position

to publish findings from such work by the end of the year.

References

[1] Royce W., “Managing the Development of Large Soft-

ware System”, Proceedings of the IEEE Western Con-

ference, 1970

[2] Beck K., Extreme Programming Explained: Embrace

Change, Addisson-Wesley, 1999

[3] Takeuchi H., Takeuchi I., The New New Product De-

velopment Game, Harvard Business Review, January

1986

[4] PM Solutions, White Paper: “Selecting a software de-

velopment life cycle methodology”, 2003

[5] Beck K., Fowler M., et al, “The Agile Manifesto”,

http://agilemanifesto.org/principles.html, 2001

[6] Kiczales G., et al, “Aspect-Oriented Programming”,

Proceedings of the 11th European Conference on

Object-Oriented Programming, 1997

[7] Boehm B. W., “A Spiral Model of Software Develop-

ment and Enhancement”, IEEE Computer, pages 61-

72, May 1988.

[8] Smith J., Technical Report: “A Comparison of RUP

and XP”, Technical Report, IBM Library, 2003

504

Weaving Process Patterns into Software Process Models

Xiao-yang He, Ya-sha Wang*, Jin-gang Guo, Wu Zhou and Jia-kuan Ma
Institute of Software, School of Electronics Engineering and Computer Science,

Peking University, Beijing 100871, China;
Key laboratory of High Confidence Software Technologies (Peking University),

Ministry of Education, Beijing 100871, China

Abstract Defining an appropriate software process model
is a knowledge-intensive, time-consuming and laborious
work. However, practitioners have already accumulated
abundant process knowledge in the form of solutions to
recurrent problems within software development. Process
pattern is a good way to capture and represent such
knowledge. Most of current research leverages natural or
semi-formal languages to describe process patterns. In
order to apply the knowledge represented by those patterns,
users have to understand the pattern knowledge in person,
and then modify the process model manually, which is
unefficient and error-prone. To solve this problem, a
precise meta-model for process pattern is proposed, and an
approach to weaving process patterns into software process
models is provided. �

1. Introduction

Defining an appropriate process model for software
development project is knowledge-intensive. The process
developer should have clear impression on project
characteristics as well as abundant process knowledge. The
knowledge here means general solutions to recurrent
problems in software process. For facilitating reuse of such
knowledge, process pattern is adopted to structurally
represent and document the knowledge recently.

A process pattern describes a general solution to the
development problem which occurs in different project
environments [1]. Some approaches [1, 2] use natural
language to describe process pattern. It may produce
ambiguous and inexact expressions, and is hard to be
processed by machine. Some approaches[3-5] describe
patterns by workflow-graph-alike languages which are
derived from traditional process modeling languages and
just suitable for expressing complete, elaborated and
detailed process models. They regard patterns as

* Contract Author: Ya-sha Wang (wangys@sei.pku.edu.cn)
This work is funded by the National Basic Research Program of China
(973) under Grant No. 2009CB320703, the High-Tech Research and
Development Program of China under Grant No. 2007AA010301, and the
Science Fund for Creative Research Groups of China under Grant No.
60821003.

black-boxes which can be combined together to construct
the process model by interfaces. As a result, they could not
make any adjustment of patterns to the specific project
where patterns are applied. Therefore, the reusability of
black-box pattern is very limited.

In our eyes, the essential elements of the pattern
solution(such as activities, artifacts, roles, relationships,
constraints, rules, etc.) always remains the same; however,
when the pattern is adapted to specific requirements of
each project, the general solution may take on different
shapes in resulting processes. For successful reuse among
different projects, intrinsic characteristics of the common
solution should be separated from those of the project
environments where pattern are applied. Based on this idea,
a process pattern only specifies essential elements of the
solution in this paper. It may describe a set of incomplete,
loose process fragments, which will be supplemented by
concrete process elements from the existing process.

Our approach consists of two parts: (1) representing a
process pattern as a minimal set of essential elements; (2)
weaving the pattern into existing processes automatically
based on process structure analysis.

2. Process pattern representation

In our meta-model for process pattern (Fig.1), pattern
solution is an ExecutableNode set to represent the essential
activities and their temporal/logical relationships. Each
ExecutableNode is either an Activity or a StructedActivity.
Activity is the work definition performed by certain Role
which uses and produces some WorkProduct. A
StructuredActivity groups its subordinate nodes (low-level
ExecutableNodes) by their collaborative way. Classified by
the collaborative ways of subordinate nodes, there are five
kinds of StructuredActivity:
� Sequence: The subordinates are executed in order.
� Parallel: The subordinates are executed concurrently.
� Choice: The subordinates are chosen exclusively.
� Cycle: The subordinates are executed in order again and

again until the stopping condition is satisfied.
� And: There is a loose temporal/logic relationship among

505

the subordinates. The subordinates should have the same
predecessor and successor. Apart from this, there is no
other restriction among them. After applying the pattern
to some existing process by way of weaving, And will be
replaced by other determinate relationships (Sequence,
Parallel, or Cycle) for reason of pattern adaptation.

Figure 1 Meta-model for Process Pattern
The ExecutableNode set is presented by a tree structure

called after Process Pattern Structure Tree (PPST) in this
paper. Each leaf node in PPST is an Activity. Every
sub-tree is a StructureActivity defining how its subordinate
nodes are coordinated. The root node of the sub-tree is
decided by the StructuredActivity type (Sequence, Parallel,
Choice, Cycle or And which is represented with the symbol
of , , , or accordingly). The sub-trees do
not refer to those only consisting of one leaf node. Every
Activity belongs to a SubstructureActivity and is not shared
with any other SubstructureActivity, except for nesting.

Fig. 2 is the PPST of Pattern “Feasibility Analysis" in [1].
which means: (1) The pattern consists of six activities; (2)
Activity “Determine operational feasibility”, “Determine
economic feasibility”, “Determine technical feasibility” and
“Identify risks” make up of a StructuredActivity whose type
is so their execution sequence is not appointed in the
pattern; (3) Activity “Identify alternatives” should start to
execute before the others and “Choose an alternative”
should start to execute after the others.

Identify alternatives

Determine
operational feasibility

Determine
economic feasibility

Determine
technical feasibility Identify risks

Choose an alternative

Figure 2 PPST of Pattern “Feasibility Analysis”

3. Process pattern application

The application of a process pattern to an existing
process means merging two control flow structures and
related activities into one. We provide an approach to

weaving process pattern with existing process
automatically. Here, the existing process is called source
process while the process after applying pattern is called
target process.

In our approach, three important principles should be
followed:
Principle1 It should be ensured that all constraints in the
pattern are satisfied in target process.
Principle 2 It should be ensured that the original behavior
of source process is preserved in target process on
condition of Principle 1.
Principle 3 It should be ensured that unnecessary
precedence relationships are not introduced in target
process.

3.1 Overview of the pattern application approach

The pattern application approach is clarified as follows.
Phase 1: Parse the source process to a Process Structure
Tree (PST).

The control flow of a process model (for example, UML
activity diagram, EPC, BPMN) can always be modeled as a
workflow graph. Parse the workflow graph into a Process
Structure Tree (PST)[6] is very useful to simplify the
complexity of process analysis. The PST is so much alike
PPST defined above except that PST does not have And
relationship.
Phase 2: Compare the pattern solution with the source
process.

Establish a mapping between the elements of the process
pattern and those of the source process. To make a possible
mapping, the process developer is responsible for
determining similar behaviors from both namespaces.
Without loss of generality, we assume that the “Behavior”
namespaces are already synchronized.
Phase 3: Weave the pattern solution into source process.

Based on process structure analysis, the pattern solution
is weaved into source process seamlessly. The activities
and temporal/logical relationships in source process which
are divergent from the pattern are rectified, and others
information are kept untouched. In addition, the incomplete
parts in the pattern may also be complemented by the
pertinent information embodied in the source process.
Phase 4: Simplify the PST.

If necessary reformate the PST to eliminate redundant
nodes and edges brought by application operations. For
example, the node “parallel” has only one child node A,
then the node “parallel” is removed from the PST and its
father node is linked to A directly.
Phase 5: Restore the PST to the target process.

Preorder traverse the PST and convert it to a workflow
graph of target process.

In our approach, Phase 1 can be implemented based on
existing research and Phase 2 can be solved by synonyms
or process ontology. It is easy to handle Phase 4 and 5 so
that they are omitted for the space limitation. Phase 3 is the

506

focal point of this paper because of its importance and
pivotal role.

3.2 Change modes

Weaving the pattern into existing process means certain
application operations will be put on the process. Here,
seven change patterns are discovered to solve the problem
of how to change the process when pattern applied. For
avoiding confusion, the change pattern is named as change
mode.

In order to describe the change modes clearly, the
variables to be used are defined in advance. Let PP be the
PPST of the process pattern, and PS be the PST of the
source process. MN denotes the set of nodes both in PS and
PP. x, y and z are all node variables. MinCommA (x, y,
PS/PP) returns the minimal common ancestor of x and y in
PS or PP. MinCommTree (x, y, z, PP/PS) is the PP/PS’s
minimal sub-tree which x, y, z belongs to. IsBrother (x, y,
PS/PP) is used to judge whether y is x’s brother node in
PS/PP or not.

We also define the hierarchy and temporal relationship
between the nodes in the tree. If node y is node x’s
offspring, it is called y « x. If node y is node x’s right
brother or in the sub-tree which root is x’s father right
brother, and so on, y is called After x. Conversely, x is
called Before y.

Figure 3 Relation Conversion Table
By following Principle 1 and 2, Relation Conversion

Table (RCT) (Fig. 3) is defined to determine the
transformation of control dependency when pattern is
applied. Suppose x, y MN. The row and column denote
the parent of x and y in PP and PS respectively. The cross
units represent the parent of x and y in the target process
after applying pattern. ‘K’ means that node in PS are kept
while ‘R’ means that node in PS will be replaced by the
node in PP. R# is a special situation that the stop condition
of the node in target process should get the intersection set
from that of PP and PS. ‘è¦é�������é��é����������é��	�
	���ê
Change Mode 1 Disposition in couples
Problem How to change the control flow in PS?
Context x, y �MN, and IsBrother (x, y, PP) is true, and
there does not exist z (z�MN, IsBrother(y, z, PP) is true,
and MinCommA (x, z, PS) « MinCommA (x, y, PS)).
Solution Dispose the pair of MinCommA (x, y, PS) and
MinCommA(x, y, PP) according to RCT.
Change Mode 2 Order transposition
Problem How to change the control flow in PS?
Context x, y �MN, and IsRBrother (x, y, PP) is true, and

y is Before x in PS, and MinCommA (x, y, PP) = or ,
and (there does not exist node z, z�MN and z is After x and
Before y).
Solution Move y to the place of x’s left brother.
Change Mode 3 Monolithic permutation
Problem How to change the control flow in PS?
Context x, y, z�MN, IsBrother (x, y, PP) is true and
IsBrother (x, z, PP) is false, and MinCommA (x, z, PS) «
MinCommA (x, y, PS)).
Solution Check the relation of each pair among x, y and z
in RCT. Keep PS untouched if each return value is ‘K’, or
else replace MinCommTree (x, y, z, PS) by MinCommTree
(x, y, z, PP) monolithically.
Change Mode 4 Parsing group
Problem How to change the control flow in PS?
Context x, y, z �MN, and IsBrother (x, y, PP/PS) is true
and IsBrother (y, z, PP/PS) is true.
Solution Lower the depth of x, y in PP/PS and create a
new node as the father node of x and y. Then dispose them
like Pattern 1, 2 or 3.
Change Mode 5 Single node permutation
Problem How to change the control flow in PS?
Context x�MN and there does not exist node z (z�MN,
IsBrother (x, z, PP) is false and IsBrother (z, x, PP) is
false)).
Solution Compare x’s father nodes both in PP and PS. If
they are not same and x. parent = or in PP, insert
x’s father node in PP into PS, or else keep PS untouched.
Change Mode 6 Add an activity
Problem How to insert an activity in PS?
Context z is a leaf node, z�PP and z� PS.
Solution Find z’s left brother node x (if z has no left
brother, x is left brother node of z’ father, and so on) and
right brother node y (if z has no right brother, y is right
brother node of z’ father, and so on). z may be inserted into
any position in the path from x to y in PS. Choose the best
candidate by Principle 3.
Change Mode 7 Delete an activity
Problem How to delete an activity in PS?
Context PP has a rule “NOT Require Activity x”.
Solution Remove x if it exists in PS.

A weaving algorithm based on process structure analysis
is proposed to facilitate merging the pattern into the
process. The compliance of source process with pattern is
checked, and then the corresponding changes modes are
applied to those incompliant parts in source PST. Because
of space limit, the detail of weaving algorithm could not be
shown in this paper.

4. Illustrating example

One application of our approach is to ensure a qualified
process. Process pattern can be used to define the necessary
constraints to ensure a process with high quality, and then

507

verify whether all the constraints in the pattern are satisfied
in existing process. If not, those unsatisfied parts will be
added, deleted or corrected.

1. Identify alternatives
2. Determine economic feasibility
3. Determine technical feasibility
4. Determine operational feasibility
5. Identify risks
6. Choose an alternative
7. Delete alternatives with high risks

1

2

3

4

6 1

2

3

4

6

5

71 5
No

alternative
left?

2

3
N 6

Y

71 5
No

alternative
left?

6

Y

2

3

4

N

1

3 4 5

6

2

(a)

(b) Source Process (c) Target Process

PP

Case 1

Case 2

(d) Source Process

(e) Target Process

Figure 4 Example of “Feasibility Analysis”
Pattern “Feasibility Analysis” has already been described

in Section 2. Now it is applied to two cases. In Case 1(Fig.
4(b)), the alternatives are identified firstly, and then
economic feasibility, technical feasibility and operational
feasibility are determined parallel to choose an alternative.
Case 2 (Fig. 4(d)) is a little different from Case 1. After
identifying alternatives, risks of each alternative are
evaluated and those with high risks are discarded. If there
is still any alternative left, make a choice after assessing the
economic and technical feasibility. Compared with the
pattern, Case 1 does not have the activity of identifying
risks while Case 2 lacks the activity of identifying
operational feasibility. The resulting processes of Case 1
and 2 are shown in Fig. 4(c) and Fig. 4(e) respectively, and
they demonstrate totally different shapes. The activity
“Identify risks” is parallel to “Determine economic
feasibility” in Case 1 but before “Determine economic
feasibility” in Case 2. Moreover, Case 2 keeps the activity
“Delete alternatives with risks” and its logic relationships
which are not occurred in the pattern.

From the example, it is can be seen that the pattern
described by our approach is capable of providing high
reusability and feasibility. Since the pattern only defines
the essential activities and relationships, the applied
process can keep itself activities and relationships as long
as it does not violate pattern’s constraints.

5. Related work

The expected interests of reduced development time and
improved process quality make pattern approach attractive.
However, this concept still remains difficult to be exploited
in practice due to the lack of formalization and supporting
methodology [4].

Some research regards process pattern as a black box

which may combined together to construct a process, such
as [3-5]. They do not break away from the concept of
process component; consequently, they can only provide
small-grained reuse. All of these process pattern
descriptions are short of flexibility and hard to incorporate
into tool support. Tran etc. [7] broaden the use of process
patterns and begin to concern with the pattern's effect on
process structure, but their approach can only be done
manually. Foster[8] introduces a method to represent the
variabilities in the pattern, but he still does not solve the
problem of merging pattern with existing process either.

The problem of parsing workflow graph is deeply
discussed in business process community. A parsing
algorithm is proposed in [6] to ensure obtaining a unique,
modular parsing, which lays the foundation of our work.

6. Conclusions and future work

Process pattern is a useful means of capturing and
reusing process knowledge. Our approach only describes
everything that is elementary for the pattern so it may
enable high flexibility when pattern is applied. We also
provide an application approach to automatically weaving a
pattern into processes. In particular, the notion of process
structure tree is adopted to simplify the complexity of
process analysis.

We are now developing the supporting tool for pattern
representation and automatic weaving. Further work is also
concerned with how to identify the correspondences
between process pattern and source process automatically.

7. Reference

1.Ambler, S.W., Process Patterns: Building Large-Scale Systems
Using Object Technology. 1998: Cambridge University Press.
2.Coplien, J.O., A Generative Development - Process Pattern
Language, in The Patterns Handbook: Techniques, Strategies, and
Applications.1996, Cambridge University Press. p. 243-300.
3.Gnatz, M. Modular Process Patterns Supporting an
Evolutionary Software Development Process. in PROFES 2001.
2001.326-340
4.Hagen, M., V. Gruhn. Towards flexible software processes by
using process patterns. in Software Engineering and Applications.
2004.436-441
5.Störrle, H., Describing Process Patterns with UML Software
Process Technology, 2001. LNCS 2077:173-181.
6.Vanhatalo, J., H. Völze, J. Koehler. The Refined Process
Structure Tree. in BPM 2008. 2008: Springer-Verlag Berlin
Heidelberg
7.Tran, H.N., B. Coulette, B.T. Dong. Modeling Process Patterns
and Their Application. in International Conference on Software
Engineering Advances. 2007
8.Förster, A., G. Engels, T. Schattkowsky, et al. A Pattern-driven
Development Process for Quality Standard-conforming Business
Process Models. in VL/HCC 2006. 2006.135 - 142

508

Assessing Workflow Ability of ERP and WfM Systems

Lerina Aversano, Roberto Intonti and Maria Tortorella

(aversano/intonti/tortorella@unisannio.it)

Department of Engineering, University of Sannio
Via Traiano, Palazzo ex-Poste – 82100, Benevento, Italy

Abstract - Automation of a business process can be
obtained by using a workflow management system or an
ERP system embedding workflow functionalities. The
wider diffusion of ERP systems tends to favorite this
solution, but there are several limitations of most ERP
systems for automating business processes. Actually,
there is a lack of empirical studies aiming at achieving an
evidence of these limitations. The work proposed in this
paper goes in this direction. It reports an empirical study
aiming at assessing the “workflow ability” of ERP
systems and comparing it with that of Workflow
Management Systems

1. INTRODUCTION

Fast changing business requirements forces
enterprises to support their business processes with
appropriate software applications in order to effectively
execute the related business activities. The software
systems mainly considered from enterprises with this
purpose belong to the following two categories:
Workflow Management Systems (WfMS) and Enterprise
Resource Planning (ERP) systems.

The two different solutions deal with the processes by
using different approaches. ERP systems essentially
represent multi-module applications integrating activities
across functional departments, from product planning,
purchasing, inventory control, product distribution, to
order tracking [14, 15]. They are designed around the idea
of applications that need to be configured with appropriate
setting for achieving the solution most adequate to the
enterprise requirements. Of course, higher the possibility
for configuration is, more flexible the support for the
business process is. On the other side, WfMSs are a new
kind of information technology designed for automating
business processes by coordinating and controlling the
flow of work and information between participants.

When a WfMS is used, a workflow model is first
defined for the specific requirements of the enterprise and,
then, workflow instances are created for performing the
actual activities described in the workflow model.

The paper reports an empirical study aiming at
assessing the “workflow ability” of ERP systems and
comparing it with that of Workflow Management
Systems.

The paper is organized as follow: Section 2 gives
some background on the study and presents related work;
Section 3 describes what is meant for workflow ability
and introduces the approach used for the empirical study;
Section 4 describes the used systems and the main results
achieved; finally, conclusions are discussed in Section 5.

2. THEORETICAL BACKGROUND AND RELATED WORK

Workflow Management System is a technology
mainly focused on the automation of business processes.
It is widely adopted to support production activities of
people in enterprises [1, 2]. ERP systems, viceversa,
mainly address the need of having an integrated database
that serves different functional modules. In the literature,
there are several definitions of ERP systems [4, 5, 13].

Basically, ERP systems overcome the data separation
of multiple functional applications by allowing individual
modules to share the same data. Moreover, most of them
contain functionality to model, deploy and manage
workflows. The ERP “embedded” Workflow System is a
module which is a part of the core ERP architecture.

Works related to the study presented in this paper
mainly focus on the differences existing between ERP
systems and WfMSs and/or definition of frameworks and
approaches for facilitating their integration. A strategy
proposed for their integration consists in the use of a
WfMS as a mean for implementing a workflow
controlling the ERP functionalities [6]. The problem of
this approach was highlighted in [5] and mainly deal with
the difficulties of managing inconsistencies between the
two systems.

Several other strategies address the problem of the
integration by considering the WfMS as a “middleware”
orchestrating legacy applications and ERP systems.
Newmann and Hansmann [7] developed an architecture
for integratiing WfMS and the planning functionality
embedded in ERP systems. Brehm and Gomez proposed

509

an approach for federating ERP systems exploiting an
architecture based on a WfMS enacting Web Services
implementing the ERP functionalities [8]. Tarantilis,
Kiranoudi and Theodorakopoulos presented an ERP web-
based system allowing the management of supply chain
embedding a workflow engine for managing the control
flow of the enterprise [9]. Szirbik and Wortmann
proposed an agent based architecture for integrating ERP
and WfMS. The agent was a bridge able to access relevant
global information from the ERP transaction database and
reason about the situation in the workflow [10]. Namin
and Shen proposed a Web services agent based model for
inter-enterprise collaboration [11].

3. EVALUATION CONTEXT

In this paper, Workflow ability is intended as the
capacity of a software system of effectively and efficiently
supporting the modelling, execution and monitoring of a
business process. It has to include also the easy interaction
with external software systems for executing the
activities. On the basis of this definition, an evaluation
framework has been defined with a set of Workflow
ability characteristics to measure in both ERP and WfM
systems.

3.1. EVALUATION FRAMEWORK

The framework is based on four parameters:
Process Modelling Complexity, which represents the
capability of the system of modelling complex business
processes.
Modelling Tool Usability, considering how easily the
software system permits to model business processes.
Process Execution Support, evaluating the capability of
the software system of managing the business process
after its modelling and during its execution.
Software System Interoperability, which analyses how
easily the software system interacts with the software
systems supporting business process activities.

High values of the parameters indicate that a system
owns high workflow ability. Using the GQM paradigm,
the following four goals were defined:
GOAL 1: Analyze an ERP/WfMS software system with the
aim of evaluating its Process Modelling Complexity Level
from the point of view of the business process analyst.
GOAL 2: Analyze an ERP/WfMS software system with the
aim of evaluating its Modelling Tool Usability Level from the
point of view of the business process analyst.
GOAL 3: Analyze an ERP/WfMS software system with the
aim of evaluating its Process Execution Support from the
point of view of the software engineer.
GOAL 4: Analyze an ERP/WfMS software system with the
aim of evaluating its Software System Interoperability from
the point of view of the software engineer.

Id Questions Description
Goal 1: Process Modelling Complexity
Q1.1 Which kind of languages is

used for process modelling?
The language can be proprietary, object
relation model, Script, XML.

Q1.2 Which dept level can be
considered for process
models?

A process can be expressed through
sub-processes, sub-activities and tasks.

Q1.3 Which is the completeness
level for defining a business
process?

Each business process component can
be described indicating data flow,
allocated resources, relations with other
components.

Q1.4 Is it possible to validate a
business process before its
execution?

Validation tools are usually available in
advanced systems specific to WfM

Q1.5 Is it possible to design the
Enterprise Organization?

Organization design tools usually
available in advanced systems

Q1.6 Which type of control
structure does the software
system manage?

A business process can include cyclic,
concurrent, complex, splitting and
joining activities

Goal 2: Modelling Tool Usability
Q2.1 In which format are displayed

the process to the user?
The process can be shown in graphical,
formal, semi-formal, textual format

Q2.2 How can the definition
and/or modification of the
business process executed?

A process can be defined and/or
modified through a graphical and
textual editor, or its formal
representation can be interpreted

Q2.3 Do the system include default
predefined process models?

A predefined process can exist
described at process, activities and/or
task level

Q2.4 How easily understandable is
the software system interface?

Terms used for indicating the available
functionalities, their grouping and the
existence of help supports are
investigated at the interface level

Q2.5 How easy is to perform the
definition of a business
process ?

The functionality for defining a
process, its activities and tasks, and
assigned resources should be easy to be
performed

Q2.6 How easy is to remember how
to use the system?

The needed functionalities should be
easily identifiable and their nesting
dept should not be high

Goal 3: Process Execution Support
Q3.1 Which functionalities are

available for the workflow
execution at process level?

Definition, activation, suspension, and
termination functionalities available for
managing the execution of processes
are identified and evaluated

Q3.2 Which functionalities are
available for the workflow
execution at activity level?

Definition, activation, visualization,
and termination functionalities
available for managing the execution of
activities are identified and evaluated

Q3.3 Which functionalities are
available for the workflow
execution at task level?

Definition, activation, visualization,
and termination functionalities
available for managing the execution of
tasks are identified and evaluated

Q3.4 Does the system permit to
monitor the business process
execution?

Monitoring services such as production
of reports regarding state of an
executed process activities, quality
attribute of a process are evaluated

Q3.5 How are acquired the
simulation information?

Process simulation tools should be
included for managing processes

Q3.6 Does the system manage the
alerts?

Mechanism alerting for unexpected
execution should be considered

Q3.7 How flexible is the system for
modifying a business
process?

A business process can need to be
dynamically changed with its resources
even at run-time

Goal 4: Software System Interoperability
Q4.1 Which import and export

formats for data exchange
does the system support?

The format (XML, PDF, MSOff, ecc
…) for data exchange provided by the
systems are analysed

Q4.2 In which language the process
has to be formally described
for being exported?

The format (XML, BPEL, Defjdl,
XPDL, ecc …) for exporting model
process are investigated

Q4.3 Which databases are
supported by the system?

The databases the software system
supports are listed and evaluated

Q4.4 Does the software system
support the use of Web
Services?

The existence of a support of Web
services for managing the process
activities is detected

Table 1 - Workflow ability Evaluation framework

510

The achievement of each goal requires its
characterization and identification of the aspects to be
considered and evaluated. In conformance with the GQM
paradigm, the characterization is obtained through the
formulation of a set of questions aimed at understanding
the level each parameter could reach. Table 1 reports the
characterization of the goals in terms of the set of the
investigated questions. The third column of the table
contains a short description of each question with an
indication of the investigated metrics. For brevity, just the
investigated parameter is indicated for each goal.

QUESTIONS AND METRICS

Goal 1

Q1.6 Which type of control structure does the software system
manage?

M1.15 Management of business processes with cyclic sub-processes
or activities

M1.16 Management of business processes with splitting and joining
sub-processes

M1.17 Management of business processes with concurrent activities

M1.18 Management of business processes including with arbitrary
complex rules

Goal 2
Q3.6 Does the system manage the alerts?

M3.18 Generation of alerts for overcoming the predefined end time
of a task

M3.19 Generation of alerts for overcoming the predefined end time
of a process

M3.19 Generation of alerts for indicating that there are task without
users assigned

M3.20 Generation of alerts for indicating that there are tasks with
too many users assigned

…

Table 2 - Fragment of the evaluation framework

Table 2 contains an example of the defined

measurement framework. In the interest of brevity, it
includes just two fragments: one refers to the Business
process models control structuring, chosen for answering
Goal 1; and the other one refers to the Business process
execution monitoring needed for evaluating the Goal 3.

Almost all the parameters are evaluated in a scale
ranging from 0 to 4. Only the parameters of Goal 2 are
evaluated in a scale ranging from 0 to 3. Answering each
question considers an average of the parameters values. In
the same way, evaluating the goals considers an average
of the results obtained for each question.

3.2. ASSESSED SYSTEMS

Six software systems were evaluated: three ERP
systems and three WfMSs. They are the following:
1. Openbravo ERP (http://www.openbravo.com/): a Web

based ERP for SME, built on proven MVC & MDD
framework that facilitate its customization.

2. Compiere ERP/CRM (http://www.compiere.com/): an
open source ERP and CRM business solution for the

Small and Medium-sized Enterprise (SME) in
distribution, retail, service and manufacturing.

3. OpenERP (http://openerp.com/product.html): an Open
Source enterprise management software. It covers and
integrates enterprise needs and processes: accounting,
sales, CRM, purchase, stock, production, services and
project management, marketing, and so on.

4. Ultimus BPM Suite (http://www.ultimus.com/): a
solution for automating essential business processes. It
handles order processes, purchase requisitions, claims
processes, document reviews, and so on.

5. JBoss jBPM (http://www.jboss.com/products/jBPM): a
system for creating business processes coordinating
people, applications, and services. It brings process
automation to business problems from embedded
workflow to enterprise business process orchestration.

6. ProcessMaker (http://www.processmaker.com/): an Open
Source business process management and workflow
software including It includes tools to enable
management of operational processes across systems
including finance, human resources and operations.

4. EVALUATION RESULTS

The next four subsections discuss the results obtained
for the four goals.

4.1. PROCESS MODELLING COMPLEXITY

Figure 1 shows that the WfMS permits to achieve a
higher level of complexity in the Business Process Models
parameter. In particular, Ultimus is the WfMS more
efficient from this point of view, while OpenBravo and
Open ERP obtain better values among the ERP systems.

The table in the Figure 1 evicts that the ERP systems
obtained the worst results compared with the WfM
systems as they lack any support for defining complex
rules, mechanisms of split/join processes (with the
exception of OpenERP) and task management.

Similar results were reached with reference to the
business process structure complexity, Q1.2. In fact, only
two WfM (JBoss JBPM and Ultimus) systems support the
process decomposition in sub-processes, activities and
tasks. The other ERP systems do not support such a kind
of decomposition, while Process Maker does not include
the task management without a prior implementation
effort. With reference to Q1.3, it is possible to notice that
only the WfMSs allow to specify details regarding
inputs/outputs of activities/tasks. Finally in Q1.4, it is
possible to observe that only Compiere includes the
validation functionality. While, just Ultimus permits the
designing of the organization, Q1.5,.

The better results obtained for the WfMS are justified
by the fact that the main scope of WfMS is the automation
of business processes. Then, they were specifically

511

0

0,5

1

1,5

2

2,5

3

3,5

Openbravo
ERP

Compiere
ERP/CRM

OpenERP JBoss jBPM Ultimus BPM
Suite

ProcessMaker

designed for flexibly capturing and representing all the
process characteristics.

Figure 1 – Results per questions regarding the Process Modelling
Complexity

4.2. MODELLING TOOL USABILITY

Figure 2 shows that regarding the modelling tool
usability, both ERP and WfM systems provide the same
performance from a general point of view. The main
differences can be evicted when the analytical data are
analysed. In particular, the table in Figure 2 highlights
that the main differences regard the availability of
predefined templates and use of the user interface. More
precisely, with reference to Q2.3, predefined process
models are more available in ERP systems than WfMSs
that, on their side, include more flexible definition tools,
in fact they exhibit easier process model definition (Q2.5)
and functionality remembering (Q2.6).

Regarding the other questions, it can be evicted that
the achieved values are equal for the ERP systems,
highlighting their similarity from the point of view of the
analysed characteristics. In particular, regarding Q2.1, all
the analysed systems consider similar format for
representing business processes. JBoss JBPM makes an
exception, as it uses different mechanisms. An similar
evaluation is reached for ERP and WfM systems with
reference to Q2.2. The differences are evicted by
analysing the systems implementation. In particular, the
ERP systems perform the definition and modification of
business processes through the filling of forms were
activities, tasks and resources are specified. OpenERP
provides also a graphical modeller, but it is very complex
to use. WfMSs allow the definition and modification of
business processes by using a graphical modeller that
permits to compose a business process through drag and
drop operations. Finally, regarding Q2.4, the ERP systems
appears to be more user-friendly than WfMSs.

Also these data confirm that the characteristics closer
to the process modelling activities are better observed in
WfMSs. On the contrary, ERP systems encourage the use

of predefined solutions. For reaching richer and more
flexible business processes, WfMSs may require expert
users and implementation activities.

GOAL 2
QUESTIONS

OPENBRAVO
ERP

COMPIERE OPEN
ERP

JBOSS
JBPM

ULTIMU
S BPM
SUITE

PROCESS
MAKER

Q2.1 1 1 1 3 1 1
Q2.2 1 1 2 1 1 1
Q2.3 2 2 2 2 0 0
Q2.4 2,33 2,33 2,33 1,33 2,33 1,66
Q2.5 0,33 1 1 1,66 2,33 3
Q2.6 1,5 2,5 2,5 3 2,5 3

Figure 2 – Results per questions regarding the Modelling Tool
Usability

4.3. PROCESS EXECUTION SUPPORT

Figure 3 shows results achieved for the process
execution support. It is possible to note that overall the
WfMSs have better results. This is mainly due to the poor
support for managing multiple instances of a process
(Q3.1 and Q3.2). In detail, among the ERP systems with
the best performance are OpenBravo (for its flexible
management of alert and report) and Compiere (for its
flexible management of alert and simulation).

Ultimus BPM Suite achieved the better result among
the WfMSs, because it is the only system providing
facilities for process simulation (Q3.5) and provides
functionality for flexibly obtaining and customizing
process execution report (Q3.4).

Figure 3 – Results per questions regarding the process execution
support

With regards to the alert management (Q3.6), systems
that provide the user with a flexible management of alert
are Openbravo, Process Maker and Compiere. Alert

GOAL 1
QUESTIONS

OPENBRAVO
ERP

COMPIERE OPEN
ERP

JBOSS
JBPM

ULTIMUS
BPM SUITE

PROCESS
MAKER

Q1.1 1 1 1 1 1 1
Q1.2 2 2 2 3 3 2
Q1.3 2 2 2 4 4 4
Q1.4 0 2 0 0 0 0
Q1.5 0 0 0 0 4 0
Q1.6 1 1 2 4 4 4

GOAL 3
QUESTIONS

OPENBRAVO
ERP

COMPIERE OPEN
ERP

JBOSS
JBPM

ULTIMUS
BPM SUITE

PROCESS
MAKER

Q3.1 2 1 2 4 4 3
Q3.2 1 1 2 4 4 3
Q3.3 0 0 0 4 4 0
Q3.4 2 0 2 0 4 2
Q3.5 0 3 0 0 3 0
Q3.6 4 4 0 4 0 4
Q3.7 2 2 2 4 4 4

0

0,5

1

1,5

2

2,5

3

3,5

4

Openbravo
ERP

Compiere
ERP/CRM

OpenERP JBoss jBPM Ultimus BPM
Suite

ProcessMaker
0

0,5

1

1,5

2

2,5

3

Openbravo
ERP

Compiere
ERP/CRM

OpenERP JBoss jBPM Ultimus BPM
Suite

ProcessMaker

512

management with JBoss JBPM requires a significant
programming effort for the user.

Figure 4 – Results per questions regarding the software system

interoperability

4.4. SOFTWARE SYSTEM INTEROPERABILITY

Figure 4 shows the results obtained for the software
system interoperability. From the figure emerges that
JBoss JBPM is the workflow system with an higher value
of interoperability. Indeed, it supports different languages
for the export of the process model and, in addition,
interacts with multiple databases (Q4.3).

The systems having the lower value for the
interoperability are Compiere, mainly due to the poor
support for web service technology, and ProcessMaker,
due to the use of proprietary language for process model.

5. CONCLUSIONS

Both WfMSs and ERP systems play a major role in
the automation of enterprise’s process. However, some
research makes a comparison among these systems and
concludes that ERP systems present some limitations for
business process management. This conclusion does not
have any quantitative evidence.

This paper presents a framework for assessing the
workflow ability of both WfMSs and ERP systems.
Results of the study confirmed the formulated hypothesis
and WFMSs highlighted a major workflow ability for
Process Modelling Complexity, Process Execution
Support and Software System Interoperability. Similar
results between the two kind of systems were obtained for
Modelling Tool Usability, even if ERP systems obtained
better values in those aspects regarding the peculiar way
they manage the business processes that does not
contribute to improve the workflow ability.

In the future, the authors will investigate the
execution of further experiments concerning the workflow

ability evaluation in a larger set of systems, even
analysing additional parameters.

REFERENCES
[1] David Hollingsworth, “Workflow Management Coalition – The

Workflow Reference Model”, Document Number TC00-1003, 19
Gennaio 1995:
http://www.wfmc.org/standards/docs/tc003v11.pdf.

[2] Layna Fischer, “Workflow Handbook”, Future Strategies Inc.,
2002,

[3] Hans Wortmann, Nick Szirbick, “ERP and Workflow Systems –
Do they work together?”

[4] Alshawi, Sarmand; Themistocleous, Marinos; Almadani,
Rashid, “Integrating diverse ERP systems: a case study”, The
Journal of Enterprise Information Management Volume 17,
Number 6, 2004, pp.454-462, http://www.emeraldlibrary.com/
Insight/viewContentItem.do?contentType=Article&contentId=1
529220.

[5] Liaquat Hossain, Jon David Patrick, M.A. Rashid, “Enterprise
Resource Planning: Global Opportunities & Challenges”,
pubblicato da Idea Group Publishing, 2002, pp. 16-17;

[6] Jorge Cardoso, Robert P. Bostrom, Amit Sheth, “Workflow
Management Systems and ERP Systems: Differences,
Commonalities, and Applications”,
http://www.terry.uga.edu/~ekarah/cardoso.pdf.

[7] Stefan Neumann, Holger Hansmann, “WORKFLOW-
INTEGRATED ERP: AN ARCHITECTURE MODEL FOR
OPTIMIZED COORDINATION OF INTRA AND
INTERORGANIZATIONAL PRODUCTION PLANNING AND
CONTROL”, ECIS 2002 • June 6–8, Gda�sk, Poland.

 [8] Nico Brehm, Jorge Marx Gómez, “Service-oriented
Development of Federated ERP Systems”, Proceedings of the
SEMSOA Workshop 2007 on Software Engineering Methods
for Service-Oriented Architecture, Hannover, Germany, May
10-11, 2007.

[9] C.D. Tarantilis, C.T. Kiranoudis, N.D. Theodorakopoulos, “A
Web-based ERP system for business services and supply chain
management: Application to real-world process scheduling”,
European Journal of Operational Research, 2008, vol. 187, issue
3, pages 1310-1326

[10] N.B. Szirbik and J.C. Wortmann, “Bridging the gap between
ERP and WFM in Planning using Agents”, Proc. of the Intl.
IMS Forum 2004, Como, Italy, 17-19 May,

[11] Akbar Siami Namin and Weiming Shen, “WEB SERVICES 1
AGENT-BASED MODEL FOR INTER-ENTERPRISE
COLLABORATION”, IFIP International Federation for
Information Processing, Springer Boston, Volume 159/2005.

[12] APICS (2001). American Production and Inventory Control
Society (APICS), http://www.apics.org.

[13] Davenport, T. H., “Putting the enterprise into the enterprise
system. Harvard Business Review”, 76(4), 121-131.

[14] Kumar, K. and Van Hillsgersberg, J, “ERP experiences and
evolution. Communications of the ACM”, 43(4), 23-26.

[15] O’Leary, “Enterprise Resource Planning Systems : Systems, Life
Cycle, Electronic Commerce, and Risk. UK: Cambridge
University Press”.

GOAL 4
QUESTIONS

OPENBRAVO
ERP

COMPIERE OPEN
ERP

JBOSS
JBPM

ULTIMUS
BPM
SUITE

PROCESS
MAKER

Q4.1 0 0 0 3 4 1
Q4.2 0 0 2 4 1 0
Q4.3 2 1 1 3 4 1
Q4.4 4 0 4 4 4 4

0

0,5

1

1,5

2

2,5

3

3,5

4

Openbravo
ERP

Compiere
ERP/CRM

OpenERP JBoss jBPM Ultimus BPM
Suite

ProcessMaker

513

Mining Objective Process Metrics from Repository Data

Michael VanHilst, Shihong Huang

Florida Atlantic University
777 Glades Road

Boca Raton, Florida
(mike, shihong)@cse.fau.edu

Abstract

The configuration management repository includes
abundant data not only on configuration items, but about
the process itself. But meaningful information about the
software process is often hidden. This paper presents a
method of extracting software process metrics from
software repositories. More specifically, the metrics
presented use data from the bug or task tracker and from
the configuration management event log. The metrics are
presented in graphic forms common to traditional and
lean project management practices. The metrics
presented here are empirical – not subject to bias in
reporting or interpretation, and focused on measuring the
process itself - not the developers and artifacts. They are
derived from data that commonly exist in project software
repositories, and thus can be collected with little or no
cost. The metrics are illustrated with real software
development repository data collected from a large
industry project over a time span of several years.

Keywords: software process improvement, process
metrics, information visualization, data analysis, and
software repository

I. INTRODUCTION

Today, many software organizations make disciplined

use of artifact management tools. These tools and
practices create a unique source of development metrics.
The metrics are objective – tied to actual process events,
and non-invasive – extracted without additional developer
input or effort [1]. The likelihood that any organization
that is interested in metrics already uses tools and
disciplined practices is high. In this paper we present a
collection of software process metrics using only the
event logs from two common development tools: bug/task
tracking and configuration management.

This paper focuses on the collection and visualization
of metrics that characterize the process itself. Our
original interest was motivated by recent literature on
process improvement. Common notions of process
improvement address uncertainty and failure, and focus
on conformance to best practices and improving estimates
of time and effort. This earlier work gives us a range of

metrics to measure the complexity of code and the
behavior of developers. More recent literature on process
improvement, has been motivated by Agile and Lean
practices and the application of Six Sigma to software It
shifts the focus to reducing cost and improving time to
market. Improvement requires changes to the process.
The measurements we present here support such change
with baseline and comparison metrics. The metrics we
use for progress, throughput time, and effort are not new.
But the approach of deriving them non-invasively and at
low cost from repository event logs is new.

We validated our approach on data collected from
several large multi-month commercial projects involving
hundreds of developers, thousands of artifacts, and tens of
thousands of events. We illustrate the examples in this
paper with graphs produced from one of those project.

Section II presents motivation and related work,
Section III explains how the data is extracted from the
repository and regrouped for analysis. Section IV presents
several different graphical views of the process. Section V
concludes with a brief comment on future work.

II. MOTIVATION AND RELATED WORK

Often metrics that are described as ‘process metrics’

actually measure individual developers or properties of
specific artifacts [2]. This is especially the case where
software process improvement is viewed as improving
conformance to existing practice. By measuring only
how well developers are working, regardless of the
problem being defined, the solution is for developers to
work harder or with greater care. Our developers are
already working overtime. We wanted to complement the
data with measurements of how the process itself is
working, independent of developer behavior.

We feel that with today’s competing development
methodologies, there is more need for more metrics, and a
greater variety of metrics, than ever before. Boehm and
Turner, for example, list traditional engineering
measurements as a significant barrier to implementing
agile processes [3]. Their conclusion identifies the need
for metrics data to validate value and capture lessons
learned as “most important.” But no specifics are given.

514

 [4][5] and others have surveyed the literature on
software process improvement. The emphasis seems
always to be on process adoption with little mention of
improving business performance. [4] goes so far as to say
that the current problem is a lack of effective strategies to
implement process standards and models.

Process metrics that do exist often use questionnaires.
The data is necessarily subjective and costly to collect.
Overheads range from tens of person hours for CMMI
Class C or ISO 15504 appraisals, to hundreds of person
hours for a full CMMI Class A appraisal [6][7]. A
supposedly light weight software process assessment
describe in [8], recently spent 979 and 1376 hours in
interviews.

[9] presents measurement models that are perhaps the
closest to those presented here. But the ‘repository’ data is
actually from manual reporting tools and is used not to
assess the process, but how well individuals conform to it.

Hartmann and Dymond [10] provide guidelines and
criteria for metrics emphasizing business value for use
with agile and lean methodologies. But no actual metrics
are described. The metrics presented here are consistent
with those criteria.

The Poppendiecks [11] include measurement models,
such as value stream maps and pareto charts, in their
discussion of lean software development. But they don’t
discuss how to collect the data. Their mention of Little’s
Law, to estimate queue waiting and completion times,
inspired us to investigate its use further. Little’s Law is
described with more detail in [12].

Johnson et al. describe collecting data automatically
from sensors in various development tools [13]. While
this work complements our own (i.e. Johnson’s daily
build metrics). But, like the others, they focus either on
efficiency as a characteristic of individuals or improving
the accuracy of predictions within a given process. Work
with repositories often use data from open source project.
Results from such data may not apply to industry
practices. Fix times in [14], for example, were 200 days.
Fix times in our data are typically less than 5 days.

Earlier tools designed to collect data from integrated
development environments, such as TAME [15],
AMADEUS [16], and APSE [17], assumed the existence
of a process model. They would then measure and analyze
how well the process plan was being executed. In
practice, this approach yielded little value and eventually
died. We don’t assume a process model. The model is
revealed in the data. Ultimately, we are not as interested
measuring plan execution as assessing process design.

III. DATA COLLECTION AND REDUCTION

A software development project is made up of work

pieces called tasks. Tasks divide a large project into small
manageable units of work. Tasks are assigned to specific

developers, they trace specific work to a specific
deliverable, and their completion represents tangible
progress. A task can represent a changed or added piece
of functionality, or a defect to repair. While useful as a
management unit, different tasks can differ in both effort
consumed and value produced.

A task begins with an initial request and ends with final
integration into the product. As they make their way
through the development process, tasks are under active
development and undergo testing. They also often wait in
queues. We can track their progress.

In a disciplined development organization, every code
change is associated with an identified task. Tasks may
be requests to implement or change a feature, or defect
reports needing resolution. Both kinds of tasks are
tracked with task or bug tracking tools, for example
Bugzilla or ClearQuest. A task tracker records the
submission date of the request or defect report, the date
work began, and the date of completion. Other
information may also be recorded, such as estimated
hours of effort. But for our purposes, we only use the task
ID, the task classification (new requirement or repair) and
the date of submission. As discussed below, we prefer to
use other, more objective sources for the remaining dates.

Code development in a disciplined development
organization depends on configuration management. No
code change occurs without artifacts being checked in to
the configuration management system. Each check-in
event identifies an artifact, the date and time, and a
developer. When a developer starts work on a new task,
he or she checks in artifacts associated with that task. As
work progresses, more check-ins occur. When work is
completed, no more artifacts are checked in for that task.
In order to correlate events, and for us to reconstruct the
development history, the event record must include a
reference to the associated task.

While some configuration management tools do not
require, or directly support task ID’s, task correlation is
important to requirements traceability and should be
common practice. The ID can be included within the
comment, or within the name of a branch. In the latter
case, all task work occurs in its own branch. In the future,
we expect configuration management tools to better
support correlation with tasks.

To produce process metrics, we extract the task tracker
and configuration management event logs, clean them to
correct misspellings and remove unimportant events and
information, and deposit the result into a database. We
then construct a table of artifacts and tasks, where each
record represents a single artifact’s involvement in a
single task. The record’s fields include the artifact and
task identifiers, and the dates of first and last change. We
find task begin and end dates by grouping all records by
task ID, and taking the dates of earliest and latest change.

515

These dates are combined with the task tracker
submission date to get a complete history.

For defect repair tasks, we are also interested in the
date when the defect was created. To assign a date, we
use the following assumption: the defect was created by a
change to an artifact that was later edited to correct the
defect. Using this assumption, for each artifact involved
in the repair task, we look at all prior changes for all other
tasks that were completed prior to the defect’s submission
date. Taking a conservative approach, we choose the
latest date from the set of candidate changes – the date
nearest to the defect report. This approach could be
refined with additional information, such as line numbers
involved. But for our purposes, this simple conservative
approach produces a usable result.

Using this repository data, for each repair task, we
know how long it took between when work first began
and work finally ended, we know how long the task spent
in the defect queue between the time it was reported and
work first began, and we infer how long it took between
the time the defect was caused and when it was found,

Since we know the events we used as defect causes, we
can associate defects with prior tasks. For a given feature
task, we not only know the time it took to complete the
task, we also have the defects that were caused, how long
it took to resolve those defects, and even dates of later
defects created in the first round of defect repair work.

We measure effort in developer days. A developer is
assumed to be active on a task on every day between the
first and last change events that associate that developer
with that task. We then count each developer as active on
any day on which they are active on at least one task.
They are counted as actively developing features if they
are active on a request task, and they are counted as
actively repairing defects if they are active on a repair
task. It is possible that the same developer is active on
two or more tasks on the same day, and even on one task
of each kind on the same day. Our data takes this into
account. On the projects for which we have collected
data, both situations do occur, but not very often.

IV. VISUALIZATION

A. Effort.
Figure 1 shows an idealized graph of effort over time. In
an ideal world, a team of programmers is assigned to a
project and starts working as soon as requirements are
available. Work then continues at a steady pace until all
of the requirements are completed, with minimal taper at
the beginning and the end. The graph would essentially
have a boxcar shape. Real projects, of course, do not look
like the graph in Figure 1. They look, instead, more like
the graph in Figure 2. Developers must be freed from
other projects or hired new at the beginning. Some tasks
are likely to drag out at the end, keeping smaller numbers

of developers busy beyond the end. Defects are found as
the product takes shape and new effort must be devoted to
fixing these defects. Testing itself takes time. Some
defects require more testing than others before they are
found. As depicted in Figure 2, effort ramps up as
developers become available and peaks somewhere in the
middle. A second later hump of effort addresses rework
after tests. The overall effort may not have as pronounced
a second hump as depicted in Figure 2, since the later
efforts reflect both the rework and requirements that
either dragged on or were started late.

Figure 1. Projects effort vs. time in an ideal process

Figure 2. Project effort vs. time with repairs and delays.

Figure 3. Effort vs. calendar day from real data

TimeD
ev

el
op

er
s A

ct
iv

e

Start Ideal
Release

Time
Start

D
ev

el
op

er
s A

ct
iv

e

Actual
Release

516

Figure 3 shows the real graph of effort vs. time for a
project that lasted more than a year.. The vertical axis
shows the number of developers active on any given day.
The horizontal axis shows the day, counted in number of
days from the beginning of the project. The project
followed a waterfall process; we indicate the dates of the
waterfall milestones for requirements freeze, alpha testing
release, beta release, and first customer release. The thin
line on top shows overall effort, while the two thicker
lines show effort separately for requirements and repairs.

Total project effort, measured in developer days, is the
area under the curve. We compute it by summing the
developers active on each day. The X axis in Figure 3 is
actually calendar day. We exclude weekends and
holidays from the sum. While total effort differs from
one project to the next, the ratio between requirements
effort and repair effort is more constant and can be used
as a baseline for comparison in process improvement. In
this project, 33% of the total effort is devoted to repair. In
comparison with other waterfall projects in published
literature, and our own experience, 33% is common, and
actually better than average.

At a more detailed level, we know that developers do
more than code on any given day. But in aggregation,
differences in activity pattern of one developer from one
day to the next average out and appear the same from one
project to the next.
B. Cumulative Progress

For measuring progress, we use task as a unit of
progress. A project is 50% complete when 50% of the
tasks have been completed. We use 5 separate metrics for
measuring progress: number of requirements tasks begun,
number of requirements tasks completed, number of
defects found, number of repair tasks begun, and number
of repair tasks completed. From the dates we derived for
when each defect was caused, described earlier, we can
construct a sixth progress metric: number of defect
created.

Figure 4. Progress curves from real data

We can plot proportional completion by dividing the
number of tasks completed by the total number of tasks in
the project. We plotted all 6 curves on the same graph in
Figure 4. From left to right the curves are percent of
requirements tasks begun, percent of requirements tasks
completed, percent of defects created, percent of defects
found, percent or repairs begun, and percent of repairs
completed. The plots are classic S-curves.

Our conservative estimate of the defect creation events
probably puts the “defects caused” curve to the right of
where it should be. The left two curves in Figure 4 are
measured in terms of requirements tasks, while the
remaining four curves on the right are measured in terms
of repair tasks. We must be careful not to give meaning to
the distance between the two groups – between the 2nd
and 3rd curves. They may in fact cross.

The slope of a curve indicates the rate of progress at
that point in time. Variations can indicate events or
problems. We don’t see a significant uptick in defects
being found until day 205 – 4 weeks after alpha testing
supposedly began. .A significant number of requirement
tasks were completed around day 210, which corresponds
to a time of developers being released in Figure 3.
C. Little’s Law

From queuing theory, Little’s Law tells us that the
vertical distance between two curves in the progress graph
is a good indicator of the amount of work, or in our case
the number of tasks, currently in that phase of the process.
This measure is called work-in-process. The vertical
distance between the ‘defects found’ curve and the
‘repairs started’ curve is an indicator of the number of
defect tasks waiting in the defect queue. The vertical
distance between the ‘defects caused’ curve and the
‘defects found’ curve is an indicator of the number of
defects in testing waiting to be found.

0%

5%

10%

15%

20%

25%

30%

35%

1 51 101 151 201 251 301 351 401

queue
testing
repair
making

pe
rc

en
t o

f w
or

k
in

 p
ro

ce
ss

project day
Figure 5. Little’s Law work in process

Figure 5 shows the Little’s Law distances for work-In-

process plotted in Excel as an area chart. The area at the
bottom is work on requirements, which is distance from
the requirements ‘requirements started’ curve to the

517

‘requirements finished’ curve. Above that we show work
on repairs, computed as the distance from the ‘repairs
started’ curve to the ‘repairs finished’ curve. Above the
repair work we show the defects undergoing test, from the
distance between the ‘defects caused’ and ‘defects found’
curves. The area at the very top is for defect reports
sitting in queue, measured between the ‘defects found’
curve and ‘repairs begun.’ The order, bottom to top, was
chosen to put the most productive activities on the bottom
and the least productive phase at the top.

In Lean and Agile practices, it is considered good to
minimize the amount of work in process at any given
time. It is hard to make changes when much of the work
is midstream in process. A project will be more agile if
there is less work in process to better accomodate change.

Little’s Law also tells us that the horizontal distance
between two curves in the process graph is a good
indicator of the amount of time it takes a piece of work to
make it through phases of the process. This measure is
called time-in-process. The horizontal distance between
the defects found curve and the repairs started curve tells
us defect reports commonly spend 5 to 10 days in the
defect queue. Since we have the actual dates for every
repair task, we were able to confirm that that is true.

Figure 6 show the Excel area chart for Little’s Law
time in process. It is common for work that takes the
longest to be completed at the end.

0
10
20
30
40
50
60
70
80
90

100

1 11 21 31 41 51 61 71 81 91 101

queue
testing
repair
making

Figure 6. Little’s Law time in process.

By Little’s Law, the entire distance from the top to the

bottom is the time it takes a piece of work to make it all
the way through the process, from when work initially
started to when the defects are repaired and it is ready to
be in the finished product. This measure is called
throughput time. The shorter the throughput time, the
more responsive the process can be to new or changing
demands.

From the repository event data, not only were we able
to extract dates for every requirement task and defect
repair, but also to link downstream defects to prior tasks.

For a given requirement task, we can assign the repairs it
took to get it right. Thus we have real process time for
every requirement request. Since there is little uniformity
among tasks, the real plot is a lot noisier than that
produced by Little’s Law. Because the data is from an
industry project and contains proprietary information, we
cannot publish the real per-task graph. But the average
thoughput time, computed directly from the per-task data,
was 45 days. This value is consistent with the Little’s
Law time in process graph.
D. Progress Path

Vanderwall recently presented a graph of progress that
he calls the Project Progress Viewer [18]. The PPV plots
completed functionality, on the X axis, against tests
passed, on the Y axis. The resulting graph shows the
process’ path history. The points along the path have time
values which also give velocity, and can be used to
project future progress.

da
ys

 in
 p

ro
ce

ss

percentile of work

Figure 7. Progress path of requirements vs. repairs.

The shape of the curve in Figure 7 is classic waterfall.
Requirements make early progress while defect repair
lags significantly behind. In a Lean or Agile process, the
graph will present more of a straight line. The project
here made good mid-period progress, but slowed
considerably towards the end. Not that if the project isn’t
done, actual numbers can be used in place of percentages,
as Vanderwall does.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a method of extracting

process metrics from common repository data. The data
was collected without questionnaires, without adding
instrumentation to tools, and without asking developers to
provide any information other than what is already
provided as part of normal practice. We also showed six
basic process analysis graphs that can be drawn from that
data. Our intention is to show how objective process
metrics can easily be obtained and to draw attention to the
opportunity to analyze the process itself. An actual

518

analysis will depend on the goals of the organization and
the types of improvements being considered. We leave
that discussion for another paper.

We have done in-depth analyses of several processes
including the one shown here. Additional graphs and
numerical analyses, beyond those shown here, were used
in the analyses. Some details revealed and further
investigated in those analyses are visible in the graphs
shown here, but are not discussed. We hope to publish
that work soon.

The work presented here was started for the purpose of
doing Six Sigma analyses for process improvement[19].
We also have related work on the role of artifact and
architecture hotspots in process issues, using the same
repository data [20].

BIBLIOGRAPHY

[1] S. Huang, S. R. Tilley, M. VanHilst and D. Distante,

Adoption-centric software maintenance process
improvement via information integration. 13th IEEE
International Workshop on Software Technology and
Engineering Practice (STEP 2005), 2005, pp. 25-34

[2] R. Dumke, E. Foltin, R. Koeppe, and A. Winkler,
Softwarequalität durch Meßtools: Assessment,
Messung und instrumentierte ISO 9000. Vieweg
Press, 1998.

[3] B. Boehm and M. Turner. Management challenges to
implementing agile processes in traditional
development organizations. IEEE Software, 22(5)
2005, pp. 30-39

[4] M. Niazi, D. Wilson, and D. Zowghi. A maturity
model for the implementation of software process
improvement: an empirical study. Journal of Systems
and Software, 74(1) January 2005 pp. 155-172.

[5] A. Rainer and T. Hall, A quantitative and qualitative
analysis of factors affecting software processes,
Journal of Systems and Software, 66(1) April
2003,pp. 7-21.

[6] S. Zahran. Software process improvement: practical
guidelines for business success. Addison-Wesley.
1998.

[7] K. El Emam and L. Briand. Costs and benefits of
software process improvement. Technical Report
ISERN 97-12, Fraunhofer Institute for Experimental
Software Engineering Engineering, 1997

[8] F. Pettersson, M. Ivarsson, T. Gorschek, and P.
�hman. A practitioner’s guide to light weight

software process assessment and improvement
planning. The Journal of Systems and Software. 81(6)
June 2008, pp. 972-995.

[9] Y. Zhang and D. Sheth. Mining software repositories
for model-driven development. IEEE Software,
(23)1:82-90.

[10] D. Hartman and R. Daymond. Appropriate agile
measurement: Using metrics and diagnostics to
deliver business value. IEEE Agile Conference, 2006,
pp. 126-134.

[11] M. Poppendieck and T. Poppendiech. Implementing
lean software development: From concept to cash.
Addison-Wesley, 2007.

[12] D.G. Reinertsen. Managing the design factory: A
product developer’s toolkit. The Free Press, 1997.

[13] P. Johnson, H. Kou, M. Paulding, Q. Zhang, A.
Kagawa, and T. Yamashita. Improving software
development management through software project
telemetry, IEEE Software, 22(4) July 2005, pp. 76-
85.

[14] S. Kim and E.J. Whitehead, Jr. How long did it take
to fix bugs? International Workshop on Mining
Software Repositories, 2006, pp. 173-174

[15] V. R. Basili and H. D. Rombach. The TAME project:
Towards improvementoriented software
environments. IEEE Transactions on Software
Engineering, 14(6, June 1988, pp. 758-773.

[16] R. W. Selby, A. A. Porter, D. C. Schmidt, and J.
Berney. Metric-driven analysis and feedback systems
for enabling empirically guided software
development. International Conference on Software
Engineering, 1991, pp. 288-298.

[17] The Perfect Consortium. APEL abstract process
engine language. Perfect Handbook Booklet,
European Esprit Project, 1997.

[18] R. Vanderwall. The chart that saved the world.
Software Test and Performance. (6)1 January 2009,
pp. 8-1.

[19] M. VanHilst, P.K. Garg, and C. Lo. Repository
mining and Six Sigma for process improvement.
International Workshop on Mining Software
Repositories, 2005, pp. 1-4.

[20] S. Huang and C. Lo. Analyzing configuration
management repository data for software process
improvement, IEEE International Conference on
Software Engineering and Knowledge Engineering
(SEKE) 2007.

519

Collaborative Development of System Architecture - a Tool for Coping with
Inconsistency

Peter Henderson
Electronics and Computer Science

University of Southampton
SO17 1BJ, UK

p.henderson@ecs.soton.ac.uk

Matthew J. Henderson
Mathematics and Computer Science

Berea College
Berea, KY 40404, USA

matthew henderson@berea.edu

Abstract

Very large systems have an architecture that is designed
to allow them to evolve through a long life. Such systems
are developed by teams of architects. One of the �rst things
the architects do is make a model of their architecture. This
model constitutes the formal architecture description based
on which software engineers will eventually build the real
system.

The architecture model is normally governed by a spe-
cialised metamodel whose rules determine the consistency
and completeness of the description. The development of
a system architecture is carried out cooperatively but inde-
pendently by team members. Consequently it is quite nor-
mal for the architecture description as a whole to be both
incomplete and inconsistent. The architects strive to even-
tually produce a complete overall (i.e. merged) description
and to eliminate the inconsistencies.

By means of an example, we show how and why the ar-
chitecture model and the metamodel must co-evolve. We de-
scribe a design tool that we have developed to support this
process of co-evolution. The tool allows a team of architects
to detect inconsistencies in their separate and merged mod-
els. The tool tolerates inconsistencies. It produces reports
of inconsistencies which then become targets for removal as
the whole architecture description evolves.

1. Introduction

Very large systems have an architecture that is designed to
allow them to evolve through a long life. The usual way
in which such large systems are developed is by �rst mak-
ing a model of their architecture. The language chosen for
the architecture model is usually a mixture of diagrams (in
UML or SysML, for example) and lots of documentation of
requirements and of interfaces to the components that are to

be either procured or built. The model is thus a semi-formal
architecture description.

The architecture is normally developed incrementally
and independently by a team of system architects working
collaboratively. While each may strive to keep their part-
model of the evolving architecture consistent, there will
be inconsistencies between their independent descriptions.
These inconsistencies will need to be detected and resolved
when, from time to time, the models of independent archi-
tects are merged.

The more formal the architecture description, the more
likely we are to be able to determine incompletenesses and
inconsistencies at an early stage. A formal architecture
model is governed by a specialised metamodel whose rules
determine the consistency and completeness of the descrip-
tion. During development of a system, it is quite normal
for the architecture description to be both incomplete and
inconsistent. The architects strive to produce a complete
description and to eliminate the inconsistencies.

We describe a method of formalising the rules for the
development of a new architecture, in a metamodel that the
architects team can agree on, and which can co-evolve with
the architecture description itself.

By means of an example, we show how architecture de-
scriptions formalised in this way can aid the iterative pro-
cess of architecture development and how the model and
the specialised metamodel can co-evolve.

We then describe a design-support tool, WAVE, that
we have developed to support this process of co-evolution.
This tool will calculate inconsistencies within individual
and merged models. It does not insist on the architecture
model always being consistent. Rather it produces reports
of inconsistencies. These inconsistencies are targets for the
architects to eventually remove. This means of tolerating
inconsistency supports both incremental and collaborative
working, essential to the development of large systems by
teams of engineers.

520

2. Background

System Architecture is an essential aspect of the design
of large system. It forms the overall structure within which
the components of the system interact with each other [19,
20, 23, 29] and consequently the basis on which architects
negotiate with each other about how the system as a whole
will eventually work.

There have been many approaches to the description of
System Architecture, both formal and semi-formal. We
have been in�uenced by both, but in particular the more
pragmatic methods [1, 16, 17, 18], in particular those that
combine familiar semi-formal methods with an element of
evaluation [5, 10, 28, 30].

We are particularly concerned with methods that scale
up to be applicable to very large systems [2, 12, 14, 20,
22], by which we mean those that will eventually require a
large team of software engineers working over an extended
period of time. Such methods necessarily involve a great
degree of collaboration [8, 21, 25].

Large systems and collaborative development include
long periods when the design is both incomplete and in-
consistent. The inconsistencies arise when separate parts
of the architecture description are developed independently.
Many others have worked on the issue of ensuring consis-
tency [6, 9, 26, 27], while others have addressed the issue of
tolerating inconsistency [2, 22]. This work has been funda-
mental in our development of the method and tool that we
propose here.

We have also been in�uenced in the development of our
tool, by the tools developed by others, in particular those
based on a relational model of architecture [3, 4, 11, 17].
The relational algebra [7, 17, 18] is an ideal formal language
for giving structural architecture descriptions and goes a
long way towards being appropriate for behavioural de-
scriptions. This, we believe, is because at the level at which
architecture description needs to be performed (suf�ciently
detailed but appropriately abstract) a relational model intro-
duces just the right level of formality. Note that UML (and
SysML) have metamodels which are described relationally.
This perhaps explains why relational models are a good �t
to the task of architecture description.

In the discussion at the end of the paper we mention ad-
ditional areas of application, including documentation [15]
and modular reasoning [24, 13], both of which require ar-
chitectural support. But �rst, we illustrate our method using
familiar examples from software engineering.

3. A Method of Architecture Description

System Architects, building software intensive systems,
start from a mixture of user requirements, system require-
ments and legacy components and devise an architecture

1.
The architects agree a preliminary metamodel,
including entities, relationships and consistency
rules.

2.
Each architect develops their part of the model,
obeying as nearly as possible the current meta-
model.

3.
Each architect strives to drive out inconsistencies
in their part of the model.

4. Periodically, models are merged so that cross-
model inconsistencies can be eliminated.

5.
Periodically, the metamodel is evolved to encode
the architects’ evolving understanding of the prob-
lem domain.

Table 1. Architecture Development Method

that meets the requirements while making effective use of
existing components. They will describe the architecture
using a mixture of diagrams and natural language that is ef-
fective as a means of communication among them and their
customers

Diagrams are most effective at indexing a description.
The reader uses the diagrams to get an overview of the (part
of the) architecture in which they are interested and then
refers to a natural language description to learn the details.
The reader will expect to �nd redundancy in the descrip-
tions and consistency between related parts. For example, in
the next section you will see (Figures 2 and 3) diagrams that
exhibit redundancy and consistency - in this case, a class di-
agram and an apparently consistent sequence diagram .

An essential adjunct to the diagrams-plus-natural-
language presentation are the consistency rules that the ar-
chitecture will obey. A judicious use of formal language
can complement these necessary aspects of presentation. So
the language we choose, to describe a proposed architec-
ture, needs to be suf�ciently formal that some consistency
checking can be done but not so detailed that the work of de-
scribing the architecture is as costly as building the whole
system.

Hence many system architects use diagrammatic nota-
tions such as those that constitute UML and SysML and
specialise them to their speci�c needs. This specialisation
can be represented by a specialised metamodel which enu-
merates the entities that will be used to describe the archi-
tecture and de�nes the constraints that instances of these
entities must obey.

The architecture development process that we advocate
is shown in Table 1. It comprises an iterative co-evolution
of the architecture model and the specialised metamodel.
The architects use the “language” de�ned in the metamodel
to capture the architecture description. Since they work as
a team, working independently on parts of the description

521

Component Association

source

target

Message

senderreceiver

Operation
method

operations

Figure 1. A simple metamodel.

and then merging their efforts, they will introduce inconsis-
tencies that eventually they will strive to remove. In particu-
lar, inconsistencies arise when separately developed model-
parts are merged. Sometimes, it in not the model that needs
to change to eliminate inconsistencies, but the metamodel.
The method of Table 1 covers all these aspects. It is of
course an iterative process.

This process is supported by our tool, described in a later
section, but can be carried out by a disciplined team using
their normal development tools, checking the consistency
manually by reading each others’ contributions when mod-
els are merged. Mechanical checking of consistency re-
quires a more formal approach, such as that supported by
our tool. Before introducing that, we will develop a simple
example showing an architecture model being developed
collaboratively and its metamodel being evolved.

4. An Architecture Example

We consider a team of architects developing a large soft-
ware system. The system is to be built from components
that send messages to each other (probably by a mecha-
nism such as RPC). The �rst thing the architectural team
must determine is their metamodel. Let us assume that
they are going to construct a model comprising Class dia-
grams (or Component diagrams) with associations between
the classes recording client/server (i.e. uses) relationships.
Let us also assume that they are going to record scenarios
(e.g. details of Use Cases) in Sequence diagrams where
messages are exchanged between components. The kind
of consistencies they might wish to maintain are that mes-
sages may only pass from clients to servers and that every
operation of a Component will be exercised by at least one
scenario.

Examples of the Class diagrams and Sequence diagrams
that might be developed are shown in Figures 2 and 3 re-
spectively. In practice we expect such diagrams to contain
many more entities than this trivial example and to be split
across many separate diagrams. This is why consistency
becomes an issue. The full-scale examples that we have
used to evaluate our tool have contained on the order of

consistency rule description

no invalid messages

For each Message from one
Component to another there is
a corresponding Association in
some class diagram.

no untested messages

For each Association from one
Component to another there is
a corresponding Message in at
least one scenario.

no unde�ned methods

For each Operation appearing
on a Message there is a cor-
responding de�ntion in the re-
ceiving Component.

no untested methods

For each Operation de�ned on
each Component there is at
least one Message in some sce-
nario that uses it.

no cycles

For the purposes of loose-
coupling, there should be no
cycles in the Associations es-
tablished across all Class dia-
grams.

Table 2. Some Consistency Rules.

�fty classes and comprised a few dozen independently de-
veloped diagrams.

We will use a relational model to develop the formal as-
pects of our architecture description as, we have discussed,
many others have done before us [4, 11, 17, 18, 27].

The metamodel that the architecture team constructs at
the outset might look like that shown in Figure 1 and have
the consistency rules enumerated as in Table 2.

The metamodel says that the entities appearing on the
diagrams will be Components, Associations, Messages and
Operations. The Components and Associations will appear
respectively as boxes and arrows on Class diagrams, such
as in Figures 2 and 4. The Messages and Operations will
appear on Sequence diagrams, such as in Figures 3 and 5.
The diagrams record relational information about these en-
tities. For example, the Class diagrams record the fact that
each Association has a source and a target, both of which
are Components. Similarly, the Sequence diagrams record
the fact that each Message has a sender and a receiver (both
Components) as well as a method, which is a operation of
the receiver. The metamodel which captures these relation-
ships, also assumes that we have an enumeration of the Op-
erations of each Component.

Table 2 shows an initial set of consistency rules that we
assume the architecture team have enumerated. These rules
are simple, but typical of the structural consistencies that
the team will be trying to achieve. Basically, the rules state

522

C1 C2

C3

Figure 2. Architect 1’s Class Diagram.

:C1 :C2 :C3

op2

op3

Figure 3. Architect 1’s Sequence Diagram.

that every Message should be from client to server, that
every Message should be tested in some scenario and that
(for loose-coupling) cycles in the Class diagrams are to be
avoided. We will see that, while these rules can be obeyed,
the architectural team eventually chooses to relax them (and
consequently evolve the metamodel).

5. Consistency

Having agreed the metamodel and its rules, the team then
begins independent development of separate parts of the ar-
chitecture. Suppose Architect 1 comes up with the Class
diagram in Figure 2 and the Sequence diagram in Figure 3.
These two diagrams almost satisfy the �ve rules of Table 2.
In fact, our tool notes that there is an operation of C1 which
is not tested (op1), but that is the only problem. Architect
1 is satis�ed with this, because it is someone else’s task to
exercise C1.

In practice, when an individual architect is working on
a part of an architecture, they may be dealing with a few
dozen Components and developing (say) a dozen or more
scenarios. Arriving at an acceptable level of internal con-
sistency will be an iterative process. Residual inconsisten-
cies will be (the architect hopes) resolved when their part
is combined with the other parts being developed concur-
rently.

Architect 2 has, we imagine, concurrently developed the
Class diagram shown in Figure 4 and the Sequence diagram
shown in Figure 5. They receive much the same report as
Architect 1 - all is consistent, except there is an operation of
C2 that has not been tested (op2).

C1 C2

C3

Figure 4. Architect 2’s Class Diagram.

:C1 :C2 :C3

op1

op3

Figure 5. Architect 2’s Sequence Diagram.

However, when the two architects combine their models
and run consistency checking again, they encounter a little
dif�culty.

While the inconsistencies that they knew about when de-
veloping independently are resolved by the combination of
models (now, all known Operations are tested), the com-
bination of the Class diagrams has unfortunately created a
loop in the Associations between C1 and C2. This is some-
thing that will need to be resolved, either by one of the ar-
chitects making modi�ctions to their contribution, or by a
change to the metamodel.

The reason we are so concerned with inconsistency is
that, for large systems, many components and many sce-
narios will be de�ned and it will considerably improve the
quality of the description if these individual descriptions are
eventually made consistent, while for pragmatic reasons we
must tolerate inconsistency during development.

In our example we have a choice of the remedial action
to take. It may be possible for one architect to change their
model. If not, the team will consider if the metamodel needs
to be evolved.

In fact, here, we have probably made the loose-coupling
constraint too strong. We might allow “local” loops within
well de�ned subgraphs of the whole architecture. Here
for example, it would be suf�cient to allow loops between
Components which are of length no greater than two. If A
uses B, then allowing B to use A does not really damage the
coupling, we could argue (a common feature in implemen-
tations that use some form of callback).

In practice, we will wish to construct more complex rela-
tions than those that we have exempli�ed here and for which

523

we will require more expressive forms than the simple rela-
tional diagrams used in this section. In the next section we
describe how we have based our tooling on the relational
algebra, and how this both simpli�es the encoding of the
consistency rules and the evolution of the metamodel.

6. A Design Support Tool

The WAVE tool has been implemented to support the way
of working outlined in Table 1 and illustrated in the previous
section. The architects work concurrently on separate (over-
lapping) parts of the architecture, recording their progress in
a local copy of a “database”. In practice, we generate this
database from whichever diagramming tool the architects
choose to use, by dumping it as an XMI �le and importing
it into the WAVE tool.

In the implementation we shall describe here (available
from http://ecs.soton.ac.uk/˜ph/WAVE) the database is held
as a set of relational tables and the consistency rules are
implemented is scripts that compute new tables recording
discovered inconsistencies.

The use of a relational model and of scripts to de�ne the
consistency rules makes the co-evolution of the metamodel
particularly adaptable and straightforward.

For example, the script that computes the �rst consis-
tency rule in Table 1 is written

invalid_messages =
diff(join(invert(sender),receiver),

join(invert(source),target))

Here, join is the relational join of two (binary) relations.
The relations are those recorded in the metamodel (Figure
1) and the data in them records that displayed on the actual
model diagrams. The operation invert takes the inverse
of a (binary) relation and diff computes the set difference.
So the above calculation constructs a relation which relates
any two Components between which there is a Message (on
some sequence diagram) but between which there is no cor-
responding Association on any Class diagram. This com-
puted relation is effectively an inconsistency report - listing
those places where rule 1 is disobeyed.

The fact that WAVE is scripted and stores its data in re-
lational tables (exportable as tables or as XML) means that
generating reports of inconsistencies is also straightforward.
Architects can thus work with independent copies of the
database and work to extend their view of the architecture
and to remove inconsistencies that are reported.

When databases are merged in WAVE the simplest, and
apparently most effective, merge is simply to take the union
of each copy of each relational table. WAVE has been
speci�cally designed so that for most purposes this is the
most effective merge. It does mean however that, if an entity
appears in two copies of the database and is deleted by only

one of the architects, it will reappear on merge. If it was
required that deletes by one architect would propagate on
merge, then a more elaborate (diff3-like) merge is required.
Since all operations on the database are scripted, including
merge, making a domain-speci�c merge is as straightfor-
ward as any metamodel evolution.

We have used WAVE on a number of small projects and
a couple of fairly large ones. The largest has about �fty
classes (actually, components) spread over about a dozen
class diagrams and another dozen sequence diagrams. In the
current version of the architecture described in this largest
example, WAVE lists about twenty inconsistencies that are
genuine inconsistencies between model-parts developed by
different architects and a smaller number that are proba-
bably going to require the metamodel (which includes the
metamodel shown here as a subset) to be co-evolved. Run-
ning the WAVE scripts against the XMI �les for this archi-
tecture (dumped, as it happens, from Sparx Systems’ En-
terprise Architect) takes a few seconds. We have tested
performance on an arti�cial example with around 1000
entries in each of the relational tables that are generated
as intermediate structures in WAVE, to persuade ourselves
that WAVE’s performance will scale to realistic large-scale
models. These tests have shown that WAVE can process
such tables with constraints such as those listed in Table 2
in seconds rather than minutes. A more comprehensive per-
formance analysis will be completed soon.

7. Conclusions

We have described a method of developing architecture de-
scriptions based on giving a suf�ciently precise metamodel
that consistency can be checked during architecture devel-
opment.

Rather than insist that the architecture description is kept
consistent at all times, we advocate a method of iterative
and cooperative development that allows the description to
be periodically inconsistent.

We have shown how the metamodel can be captured for-
mally as a relational model and argued that this method is
particularly appropriate to this style of development, not
least of all because it encourages the architects to embrace
the whole architecture at all times and to keep in mind
how far from internal consistency the description may have
drifted.

The tool we have described supports this method of
working, where model and metamodel are co-evolved and
where inconsistency is tolerated during development. For
large scale systems, where iterative and cooperative work-
ing is the norm, this tolerance of inconsistency is essential.

The method has been applied so far only to software in-
tensive systems. It also seems appropriate to other domains.
We have in hand experiments with metamodels for docu-

524

mentation [15], for reasoning [24, 13] and have an ambi-
tion to extend the method to a broader range of systems, in
particular those that have physical as well as logical struc-
ture. Ultimately our plan is to combine these domains so
that describing an architecture, documenting it and reason-
ing about it will all be supported within the same frame-
work.

References

[1] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A platform independent
component modeling language for distributed real-time and
embedded systems. J. Comput. Syst. Sci., 73(2):171–185,
2007.

[2] B. Balzer. Tolerating inconsistency. In ICSE ’91: Proceed-
ings of the 13th international conference on Software engi-
neering, New York, NY, USA, 1991. ACM.

[3] D. Beyer. Relational programming with CrocoPat. In ICSE.
IEEE, 2006.

[4] D. Beyer, A. Noack, and C. Lewerenz. Ef�cient relational
calculation for software analysis. Transactions on Software
Engineering, 31(2):137–149, 2005.

[5] K.-N. Chang. Consistency checks on UML diagrams. In
International Conference on Software Engineering Research
and Practice, SERP07. IEEE, 2007.

[6] K.-N. Chang. Model checking consistency between se-
quence and state diagrams. In International Conference
on Software Engineering Research and Practice, SERP08.
IEEE, 2008.

[7] C. Date. Database in Depth - Relational Theory for Practi-
tioners. O’Reilly Media Inc., Sebastopol, CA, 2006.

[8] U. Dekel and J. D. Herbsleb. Notation and representation in
collaborative object-oriented design: an observational study.
In SIGPLAN Notices, Volume 42 , Issue 10. ACM, 2007.

[9] A. Egyed. Instant consistency checking for the UML. In
ICSE ’06: Proceedings of the 28th international conference
on Software engineering, pages 381–390, New York, NY,
USA, 2006. ACM.

[10] A. Egyed. Fixing inconsistencies in UML design models. In
ICSE ’07: Proceedings of the 29th international conference
on Software engineering, New York, NY, USA, 2007. ACM.

[11] A. Egyed. UML/analyzer: A tool for the instant consistency
checking of UML models. In ICSE ’07: Proceedings of the
29th international conference on Software engineering, New
York, NY, USA, 2007. ACM.

[12] S. Fickas. Clinical requirements engineering. In In ICSE 05:
Proceedings of the 27th International Conference on Soft-
ware Engineering, pages 28–34. ACM Press, 2005.

[13] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh. Ar-
guing security: Validating security requirements using struc-
tured argumentation. In in Proceedings of the Third Sympo-
sium on Requirements Engineering for Information Security
(SREIS’05), co-located with the 13th International Require-
ments Engineering Conference (RE’05, 2005.

[14] P. Henderson. Laws for dynamic systems. In International
Conference on Software Re-Use (ICSR 98). IEEE, 1998.

[15] P. Henderson and N. de Silva. System architecture induces
document architecture. In 20th International Conference on
Software Engineering and Knowledge Engineering (SEKE
2008). IEEE, 2008.

[16] P. Henderson and J. Yang. Reusable web services. In 8th
International Conference on Software Reuse (ICSR 2004).
IEEE, 2004.

[17] R. C. Holt. Binary relational algebra applied to software
architecture. In CSRI Technical Report 345. University of
Toronto, 1996.

[18] D. Jackson. Software Abstraction. MIT Press, Cambridge,
MA, 2006.

[19] P. Kruchten. Architectural Blueprints - the 4+1 view model
of software architecture. IEEE Software, 12(6):42–50, 1995.

[20] M. W. Maier and E. Rechtin. The Art of System Architecting,
2nd Ed. CRC Press LLC, Boca Raton, FL, 2002.

[21] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave. Matching and merging of statecharts speci�cations.
In In 29th International Conference on Software Engineer-
ing (ICSE07), pages 54–64, 2007.

[22] B. Nuseibeh, S. Easterbrook, and A. Russo. Making incon-
sistency respectable in software development. Journal of
Systems and Software, 58:171–180, 2001.

[23] N. Rozanski and E. Woods. Software Systems Architecture.
Addison-Wesley, Upper Saddle River, NJ, 2005.

[24] J. Rushby. Modular Certi�cation. SRI International, Menlo
Park, CA, 2002.

[25] M. Sabetzadeh and S. Easterbrook. View merging in the
presence of incompleteness and inconsistency. Requir. Eng.,
11(3):174–193, 2006.

[26] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik.
Global consistency checking of distributed models with
tremer. In In 30th International Conference on Software En-
gineering (ICSE08), 2008. Formal Research Demonstration
(To Appear.

[27] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and
M. Chechik. Consistency checking of conceptual models
via model merging. In In RE, pages 221–230, 2007.

[28] M. Shaw and P. Clements. The golden age of software ar-
chitecture. Software, March/April:31–39, 2006.

[29] M. Shaw and D. Garlan. Software Architecture - Perspec-
tives on an emerging discipline. Addison-Wesley, Upper
Saddle River, NJ, 1996.

[30] W. Shen, K. Compton, and J. Huggins. A toolset for support-
ing UML static and dynamic model checking. In In Proc.
16th IEEE International Conference on Automated Software
Engineering (ASE, pages 147–152. IEEE Computer Society,
2001.

525

BITS: Issue Tracking and Project Management Tool in Healthcare Software
Development

Ayşe Tosun, Ayşe Bener, Ekrem Kocaguneli
Software Research Laboratory, Computer Engineering Department, Boğaziçi University, Turkey

ayse.tosun@boun.edu.tr, bener@boun.edu.tr, ekrem.kocaguneli@boun.edu.tr

Abstract

Healthcare information management systems
(HIMS) are critical in day-to-day management of
large healthcare institutions to provide timely and
accurate patient/diagnosis/treatment information, to
improve the quality of service and to lower the costs.
Poor implementation of such systems may cause
critical failures, such as inaccurate patient records,
wrong treatments. It is necessary to prioritize software
quality and process management activities during
implementation of HIMS. We have worked with a
medium size enterprise, which has a HIMS product, to
build an in-house Issue Tracking and Project
Management Tool. Using this tool, we have managed
to a) collect customer requests automatically, b) plan
the projects, c) implement software processes, and d)
manage the projects in terms of bug tracking, version
control and reporting. We have observed that software
development effort per a given task has decreased by
82%. Improvements in the quality of service in HIMS
have led to increase in customer satisfaction.

1. Introduction

According to U.S. Labor Statistics, healthcare
industry is massive and the fastest growing for the last
10 years, providing 13.5 million jobs to professionals
in healthcare [6]. Similarly, a recent report published
by Turkish Statistical Institute indicate that healthcare
sector has been growing by 11.8% in Turkey, which is
the largest growth among other industries in 2008 [5].

Information management in healthcare systems is
vital to improve quality of service, to ensure about the
accuracy of critical information and to maximize the
efficiency across various units of institutions, while
lowering the healthcare expenses [2, 4]. In software
development, the ultimate goal is to develop well-
defined information management systems that provide
efficient workflows, easier processes and reduced
errors [1, 2]. However, such systems in healthcare

should be designed even more carefully in order to
prevent incorrect information in patients’ diagnosis,
treatments and major problems in financial records [2].
Implementation of these systems in healthcare needs
rigorous effort to control software processes and assure
high quality in the software.

Bilmed is a medium size enterprise in healthcare
industry in Turkey for 20 years. The company has a
fully integrated Hospital Information Management
System (HIMS), which manages patient records, their
diagnosis, treatments, lab records, medical stocks,
financial services and personnel records in hospitals
and medical institutions. Their product has been
frequently updated due to the changes in government
regulations. They need to respond to those changes as
quickly as possible to meet deadlines. They need to
preserve product quality in terms of reduced defect
rates, improved efficiency and customer satisfaction.

A report on performance evaluation of healthcare
institutes and process automation in Turkey includes
records from 55 hospitals and 14 field studies from
public and private healthcare institutes [3]. Among
them, only two hospitals, which are using the HIMS,
were able to pass the performance evaluation on stock,
medical device and information management, and
process automation. In ‘Hospital Automation’ part,
these two hospitals are presented as pioneers to realize
the benefits of process automation in terms of
prevention in loss of income, decrease in total
expenses, quick return on investment, improved quality
of service, i.e. average waiting time, and access to
information.

In 2008, Bilmed decided to measure, manage and
evaluate their software development. The company was
aware of the fact that they need an issue tracking and
project management system to improve the efficiency
in development and healthcare processes. We have
decided to focus on software processes via an
automated issue tracking and project management tool.
We have defined the company’s needs from this tool as
follows:

526

Figure 1. Overall architecture of BITS

� To decrease the documentation effort
� To collect customer requests easily and

immediately
� Requirements gathering and analysis
� To monitor the status of a new project
� Project planning, analysis and management
� To control the latest versions at different

healthcare institutions
� Traceability of new requests/ failures

Although there are modeling and design tools to
complete requirements analysis activities and to trace
those with the customer requests [8], senior managers
of Bilmed needed a comprehensive issue tracking and
project management system that could also be fully
integrated to their ERP product. They envision that a
system would work as an integral part of HIMS so that
nothing changes at the customer side. The aim was to
capture faults and new requirements automatically as
the doctor/ nurse would be on-line on HIMS. Such a
system would also solve on-site problems and perform
version control without assigning field support
personnel to every customer unit. Therefore, we have
initiated the implementation of an in-house tool,
namely Bilmed Issue Tracking and Project
Management System (BITS). In this paper, we will
explain the motivation behind the development of
BITS, present fundamental features of BITS and
discuss the benefits in terms of software development
effort spent per task.

2. BITS: Issue Tracking and Project
Management System

BITS consists of four different modules: collecting
customer requests, project planning, application of
software processes and project management. It has
been developed in 15 weeks, i.e. (7, 3, 5) weeks for
requirements analysis, coding and testing, respectively
[7]. It is a web based application that lets the user log
into the system through a website (Figure 1). Although
software team use a web based application for process

Figure 2. List of customer requests opened in BITS
(Details are shaded for security reasons in all figures.)

automation in BITS, customers use the existing user
interfaces from HIMS. BITS works behind the modules
of HIMS to trace unexpected failures automatically and
to get requests and feedbacks from customers. It
operates seamlessly under the generic structure that
customers get used to in their healthcare institutions.

2.1. Customer Requests

Previously, customers of Bilmed used various ways
of communication including e-mail, telephone or

separate to-do lists to request their needs. The company
tried to identify and classify these requirements via

several phone calls or meetings both internally and with
the customer. However, users at the hospitals (doctors,
nurses, lab managers, support personnel, etc.) have a
busy daily routine that requirements gathering and

clarification becomes a challenge.
Clarification of ambiguities and misunderstandings

cause more effort, time and defects to the customer and
software team. Automated tools help customers to
express their requests exactly and help us to decrease
the complexity of the problem. We have designed
BITS such that customers share screenshots or other
documents through the system. We have also used
BITS to get new requests from the customer who
actively uses their HIMS product. When a new
functionality is needed or a problem is occurred in the
HIMS, the customer, i.e. doctors, nurses or field
support personnel, immediately opens a new job on the
BITS using the same interface from HIMS (Figure 2).
They roughly categorize their request in terms of
maintenance, development or bug fixing to help
managers for estimating the scope of the work

2.2. Project Planning

Managers in Bilmed intend to control time, schedule
and man-hour efforts for a project using BITS. They
often assign a new job to the developers and then it is
shared by development team based on their workload

527

Figure 3. Sample screenshot for project planning

Figure 4. Schedule of a person from software team

and job complexity. Although they somehow plan time/
effort for that job, it is hard to control and measure
estimation accuracy and personnel performance. Using
BITS, it has become easier to plan required tasks,
observe if sub-tasks are shared by developers, observe
their progress and evaluate estimations.

When a new job is opened by a customer or
software manager, it is categorized as either “software
development” or “service support”. If possible,
software development tasks are classified as “new
requirement”, “failure/bug”, “customer misusage” and
“deployment request”. If the job is a service support, it
is further classified as “database support” or “version
support”. An opened job can be planned by adding the
estimated time (in hours), required number of
personnel from software team (Figure 3). The system
provides the user to see the current workload of each
personnel, the scope of his/her past projects and the
results of these projects for a specific time period, in
terms of either finished on time or delayed (Figure 4).
Project manager can decide which person from the
team has the capability of doing that job by looking at
those statistics. After planning, the situation can be
controlled day by day from BITS.

2.3. Implementing Software Processes

Previously, software team in Bilmed manually
followed requirements gathering, design and
implementation stages. However, these are not well-
documented and deliverables were completed by heroic
efforts of few people. Any process during software
development could not be monitored and evaluated.

Process automation was inevitable for the company
to decrease the documentation effort, make project and
process information available to all users and keep all

Figure 5. Requirements management activities

activities up to date. We have used a commercial UML
design and modeling tool, Enterprise Architect [8],
inside BITS. Enterprise Architect (EA) is not only a
modeling and design tool, but it also provides complete
traceability from requirements analysis to design,
implementation and deployment [8]. We have used this
tool for adding customer requests as requirements,
designing UML diagrams, generating use cases,
scenarios, and data diagrams. Then, we have integrated
the outputs of EA to BITS. Figure 5 represents detailed
requirements and use case diagrams for a specific
module of HIMS product. When the job is an
enhancement or a change request of an existing
product, its completed use cases, diagrams can be
accessed over BITS. Using previous information,
developers can see the effects of the change on other
parts of the system and implement accordingly. They
update diagrams to match these with the latest version
of product. As a result, we have managed to complete
major steps of requirements management. This
improved the quality of HIMS, since requirements and
possible problems are precisely defined and analyzed
before deployment. So, project tracking would be more
efficient for the managers.

2.4. Project Management

Project management module consists of three parts:
automated bug tracing, version control and reporting.
Automated Bug Tracing: Some bugs in the HIMS
product may not cause interruption or availability of
the system. Most of the time, customers ignore such
small errors. We have designed BITS to provide for an
automated bug tracing mechanism for the bugs that
were not traced by the company so far. Whenever an
exception in HIMS is occurred, it is automatically
written to BITS log. Then, an e-mail is sent to
development team with the exact error message
including module name and current version of the
system. Each personnel in development team can
examine BITS logs and resolve that specific problem.
Developers in the company state that the automation
for finding software bugs or failures in the system has

528

been very effective to decrease defect rates, to improve
software quality and customer satisfaction. They fix
problems in a shorter time and avoid further risks in a
seamless manner to their customers.
Version Control: Version control property is used to
show the functionality contents of versions, to control
different modules of HIMS that are actively used by
various hospitals, and to control database versions that
vary across different versions of HIMS. Using this
property, we can search all changes which are already
deployed or the ones at the implementation stage for a
specific version.
Reporting: Measurement and analysis is essential for
effective management of product quality, planning
objectives, estimating costs and taking corrective
actions [9]. We have not fully implemented the
practices of this process area. However, we have
automatically collected essential information, i.e.,
failures in the system, and stored project attributes such
as planned vs. actual time/ effort for a given job and
people who actively involved from beginning to end.
To analyze this data, we plot the number of “software
development” tasks between September and December
2008 (period when BITS is actively used by all
customers) and the efforts (man-hours) spent per each
task during that period. Results (Figure 6) show that the
number of completed software development projects
increases except the last month. This shows that
customers collaborated with the software team via
BITS and they actively used the tool for their requests.
On the contrary, the effort spent for each task reduces
linearly. In other words, developers spend fewer hours
to complete a job and complete more projects monthly.

3. Conclusion

We have shared our experience on software process
improvement practices in a medium size enterprise that
operates in healthcare industry. We have implemented
an issue tracking and project management system
(BITS) for their company. Using BITS, managers have
been able to plan processes, control them and measure
some characteristics of projects. They have managed to
gather large amount of data related to software
processes inside the company and customer requests
and feedbacks from the hospitals. Activities such as
bug fixing and deployment of latest versions are done
invisible to customers. Although there are more issues
to be dealt with, BITS presents a successful application
of process automation in fundamental software
engineering practices in healthcare. Both the software
team and customers in healthcare institutions have seen
tangible benefits in terms of effort spent for software

0.00

50.00

100.00

150.00

200.00

250.00

Sept Oct Nov Dec

M
an

-h
ou

rs

Software Development
Tasks

Figure 6. Software development tasks vs. effort

development, deployment and maintenance. These
benefits lead efficient and fault-free service in
information management systems. Going forward, we
would like to further extend BITS to include an
intelligent oracle to predict defects and meet resource
allocation needs.

4. Acknowledgment

This research is supported in part by Turkish
Scientific Research Council, TUBITAK, under grant
number EEEAG108E014, and Bilmed A.Ş.

5. References

[1] Francisco, J.R., Health Care Software Engineering: A
Review of Selected Literature. Software Engineering in
Health Care, Working Paper, University of Phoenix, March
2004, available at SSRN: http://ssrn.com/abstract=607446.
[2] Glickman, S.W., Baggett, K.A., Krubert, C.G., Peterson,
E.D., Schulman, K.A., Promoting Quality: The Health Care
Organization From a Management Perspective. International
Journal for Quality in Health Care, 19(6): 341-348, 2007.
[3] T.R Court of Accounts, Performance Audit Report,
March 2005.
[4] Haux, R., Winter, A., Ammenwerth, E., Brigl, B.,
Strategic Information Management in Hospitals: An
Introduction to Hospital Information Systems. Springer,
2004.
[5] Turkish Statistical Institute, Industrial Growth Report for
the First Quarter of 2008, 2008.
[6] Bureau of Labor Statistics, U.S. Department of Labor,
Career Guide to Industries. 2006-07 Edition, www.bls.gov.
[7] Tosun, A., Turhan, B., Bener, A., The Benefits of a
Software Quality Improvement Project in a Medical Software
Company: A Before and After Comparison, Invited Paper in
International Symposium on Health Informatics and
Bioinformatics, 2008.
[8] Enterprise Architect UML Modeling Tool, available at
www.sparxsystems.com.au, 2008.
[9] CMMI for Development, Version 1.2, Carnegie Mellon
Software Engineering Institute, August 2006.

529

Privacy-Preserving Clustering of Data Streams

Ching-Ming Chao and Chih-Chin Shen

Department of Computer Science and Information Management
Soochow University, Taipei, Taiwan

Abstract

Recently, data streams are emerging as a new data type. Tradi-
tional privacy-preserving data mining techniques are not suitable
for data streams. Most studies on privacy-preserving data stream
mining focus on association analysis and classification. In this
paper, we propose a method called PPCDS for privacy-preserving
clustering of data streams. PPCDS is composed of two phases:
rotation-based perturbation and cluster mining. In the first phase, a
rotation transformation matrix is applied to rapidly perturb data
streams in order to preserve data privacy. In the second phase,
perturbed data first establish micro-clusters through optimization
of cluster centers, then apply statistical calculation to update mi-
cro-clusters, as well as using geometric time frame to allocate and
store micro-clusters, and finally obtain mining results through
macro-cluster generation. This process reduces repeated calcula-
tion time to enhance mining efficiency without losing mining
accuracy.

1. Introduction
Nowadays it is important to find out useful information

from massive amounts of data. Consequently, various data
mining techniques have been developed. Besides, the rapid
advance in Internet and communications technology has led
to the emergence of data streams. Therefore, the study of
data mining techniques has transformed from traditional
static data mining to dynamic data stream mining.

In recent years, many companies enhance competition
through strategic alliance or information sharing. They ex-
pose private data while engaging in data analysis activities,
which leads to great threat to data privacy. Therefore, how
to preserve data privacy and also obtain accurate mining
results becomes a challenge, which leads to the develop-
ment of privacy-preserving data mining techniques [1].
Traditional algorithms for privacy-preserving data mining
are not suitable for the data stream environment. Therefore,
privacy-preserving data stream mining has become one of
the important issues in the field of data mining.

However, most of the studies on privacy-preserving data
stream mining focus on association analysis and classifica-
tion. Only a few studies focus on clustering [2,3,4]. In this
paper, therefore, we propose a method called PPCDS for
privacy-preserving clustering of data streams. PPCDS is
composed of two phases: rotation-based perturbation and
cluster mining. In the first phase, a rotation transformation
matrix is employed to rapidly perturb data streams in order
to preserve data privacy. In the second phase, perturbed
data first establish micro-clusters through optimization of
cluster centers, then apply statistical calculation to update
micro-clusters, as well as using geometric time frame to

allocate and store micro-clusters, and finally obtain mining
results through macro-cluster generation. Two simple data
structures are added in the macro-cluster generation process
to avoid recalculating the distance between the macro-point
and the cluster center. This process reduces the repeated
calculation time in order to enhance mining efficiency
without losing mining accuracy.

2. The PPCDS Method

The PPCDS method is mainly composed of two phases:
rotation-based perturbation and cluster mining.

2.1 Rotation-Based Perturbation
When a data stream is incoming, data is represented in an

m × n data matrix , in which each row represents one
entry and each column represents an attribute of data. Sub-
sequently a rotation transformation matrix R(�) is collo-
cated to perturb data, with the data on the coordinate axis is
rotated clockwise in a � angle in order to perturb data. Fig-
ure 1 shows the process of rotation-based perturbation with
parameters defined below:

mnD

� mnD represents the pre-perturbed data, while '
mnD

represents the post-perturbed data.
� T represents the number of unperturbed attributes.
� represents the perturbing angle set up by the user.
�)(R represents the rotation transformation matrix

for perturbing angle set up by the user.
� jA and kA (1 � j, k � n , kj �) represent the attrib-

utes selected from mnD for perturbation.

�),(kj AA represents the data with pre-perturbed

attribute, while),(represents the data
with post-perturbed attribute.

V
'

kj AAV

Detailed steps are described below:
Step 1: Set the initial value of unperturbed attribute number

T as the attribute number n of data matrix . mnD
Step 2: Determine the existence of any unperturbed attrib-

ute, if affirmative then execute the loop.
Step 2.1: In the event of more than one unperturbed attrib-

ute, randomly select two attributes, Aj and Ak,
from Dmn to perform rotation perturbation on se-
lected attributed data , using Rota-
tion Transformation Matrix

),(kj AAV
)(R and to reduce

T value by 2.
Step 2.2: In the event of only one unperturbed attribute,

530

randomly select an already perturbed attribute Aj
and the remaining last attribute Ak to perform per-
turbation, and reduce T value by 1.

Input , mnD

Output '
mnD

1. T� n;
2. While (T > 0) do
{ 2.1 If (T > 1)

{ Randomly select Aj and Ak from ; mnD
),(' kj AAV � �)(R ;),(kj AAV

T�T-2;}
2.2 Else // T = 1

{ Randomly select an already distorted attrib-
ute Aj with the last attribute Ak from ; mnD

),(' kj AAV � �)(R ;),(kj AAV
T�T-1;}}

Figure 1. Rotation-based perturbation process.

2.2 Cluster Mining
2.2.1 Micro-Cluster Generation

A micro cluster is an extension of cluster feature vector,
with a main purpose of recording statistical information of
data points after rotation perturbation. Assume one mi-
cro-cluster represents n number of multidimensional
data 1X ... nX , each multidimensional data is represented

by iX = (...), and each multidimensional data has
its proprietary timestamp T1...Tn. Each micro-cluster has
(2�d + 3) numbers of data items, with d as the attribute
number and expressed as {

1
ix d

ix

SS ,TS , SST, ST, n}. Among

which, SS ={SS1,SS2,…,SSp,…,SSd}, SSp = ,

, which is the total square sum for data value of

p-th attribute;

2

1
)(� 	

n

i
p

ix

dp �1�
TS

p�

= {TS1,TS2,…,TSp,…,TSd}, TSp

= , , which is the sum of data values

of p-th attribute; SST = is the sum of the

squares of timestamp T1...Tn; ST =� is the sum of

timestamp T1...Tn; while n is the number of data points.

� 	

n

i
p
ix

1
d�1

�	

n

i iT
1

2)(
n

i	 iT
1

Figure 2 shows the micro-cluster generation process with
parameters defined below:
� P = { ix | 1 � i � n } represents the data after pertur-

bation.
� Q represents the micro-cluster number set by user.
� M represents the input micro-cluster.
� q represents the current number of cluster centers, 0 �

q � Q .

� ix and jx (1 � i � n , 1 � j � n, ji �) represent two
randomly selected data points, n is the data point
number.

�),(2
ji xx represents the squared Euclidean dis-

tance between ix and x .
d

d
j

� D = {),(2
ji xx | 1 � i � n, 1 � j � n, ji � } repre-

sents the set of the squared Euclidean distance be-
tween any two arbitrary data points, with an initial
value of .

� s represents a cluster center, 1 � k � q. k
� S = { ks | 1 � k � q} represents the set of current clus-

ter center, with an initial value of .
2�),(ki sx represents the squared Euclidean dis-

tance between ix and s .
d

d
k

� Di = {),(2
ki sx | 1 � i � n, 1 � k � q} represents the

set of the squared Euclidean distance between data
point ix and each of the cluster center, with an ini-
tial value of .

Input P, Q
Output M

1. For each xi, do D D { };jx �),(2
ji xxd

2. S �S {x, y} s.t. = Max[D]; q),(2 yxd � q+2;
3. While (Q) do q

{3.1 For each ix � do S
k � { 3.1.1 For each do s S

Di�Di { d };), s(2 x ki
3.1.2 Dmin�Dmin {Min[Di]};}

3.2 S�S { x } s.t. Min[Di] = Max[Dmin]; i
q� q+1;}

4. Use K-means to generate M ;

Figure2. Micro-cluster generation process.

Detailed steps are described below:
Step 1: Calculate the squared Euclidean distance

 between each data point xi and xj.),(2
ji xxd

Step 2: Find the two data points that have the longest dis-
tance, store the distance to the cluster center set S and
add the cluster center number q by 2.

Step 3: Determine if the current cluster center number q
equals to the micro-cluster number Q set by the user,
if affirmative then execute Step 4, if not execute Step
3.1 and Step 3.2.

Step3.1: Execute Step 3.1.1 and Step 3.1.2 on each data
point xi outside of the cluster center.

Step 3.1.1: Calculate the squared Euclidean distance
 between the data point xi and the cluster

center sk for each cluster center sk.
),(2

ki sxd

Step 3.1.2: Find the minimal value of the squared Euclidean
distance between each data point and each clus-
ter center.

ix

Step 3.2: Find the maximal value of Dmin , set the data point
xi as the new cluster center. Then add the cluster cen-
ter number q by 1, return to Step 3.

531

Step 4: Set Q number of cluster center as the initialized
cluster center and generate Q number of micro-cluster
M using K-means algorithm.

When a new stream data which has been rotated and
perturbed incoming, calculate the squared Euclidean dis-
tance between each data point and each micro-cluster center
(the cluster feature vectorTS inside the micro-clusters is
divided by n) to find out the nearest micro-cluster from
each data point. Then using cluster feature vector, deter-
mine if the new stream data is smaller than the maximal
boundary value t of the nearest micro-cluster. The so-called
maximal boundary value is the root mean square deviation
from the data point inside the micro-clusters to the mi-
cro-cluster center, as shown on formula 3. If the data num-
ber of the nearest micro-cluster is 1, the maximal boundary
value is set as � times more than the root mean square de-
viation of the second nearest micro-cluster, with the � value
set by the user. When the new stream data is smaller than
the maximal boundary value, then the new stream data
should be absorbed by the existing micro-cluster and the
statistical information inside the micro-cluster is updated,
with the steps described below:

2

1
)(�	

n

i
p
ix = + ;

2

1
)(�	

n

i
p
ix 2

1)(p
ix

� 	

n

i
p
ix

1
 = � + ;

	

n

i
p
ix

1
p
ix 1

� 	

n

i iT
1

2)(= � + ;
	

n

i iT
1

2)(2
1)(
iT

�	

n

i iT
1

 = + ; �	

n

i iT
1 1
iT

n = + 1; n
If the new stream data is not smaller than the maximal

boundary value, then establish a new micro-cluster.
When establishing a new micro-cluster, due to limited

memory space, an existing micro cluster must be reduced in
order to free a memory space, which is done through delete
or join the existing micro-cluster to achieve this purpose.
First check for the existence of any micro-cluster consid-
ered as outlier by estimating the average timestamp of the
most recent data point m from each micro-cluster, delete the
micro-cluster with the minimal average timestamp. How-
ever in a data stream environment, it is unlikely to store the
most recent data point m of all micro-clusters. To solve this
issue, assume timestamp as normal distribution and proceed
with the following procedures. When the data quantity n
inside the micro-cluster is smaller than , directly use
the timestamp of the micro-cluster to calculate the time-
stamp mean, , which is used as the average time-
stamp for the data point of each micro-cluster. Otherwise
use the timestamp mean, standard deviation

m�2

nST /

2)(nSTnSST � and the Z-score calculated from the
timestamp data from the micro-cluster, and through formula
4 to estimate the average timestamp for)2 n/(m � % of
the data point in each micro-cluster, thereby obtaining an

estimated value of recent stamp. If the smallest recent
stamp of all micro clusters is smaller then the boundary
value � defined by the user, then that particular mi-
cro-cluster should be deleted. If all recent stamps are
greater than the boundary �, then combine the two nearest
micro-clusters. Assume micro-cluster A and micro-cluster B
are combined as micro-cluster AB, the statistical informa-
tion for updating micro-cluster are described below:

ABn

i
p
ix))((

2

1�	
 = + ; An

i
p
ix))((

2

1�	
Bn

i
p
ix))((

2

1�	

� 	

n

i
ABp

ix
1

)(= � 	

n

i
Ap

ix
1

)(+ ; � 	

n

i
Bp

ix
1

)(

�	

n

i
AB

iT
1

2))((= �	

n

i
A

iT
1

2))((+ ; �	

n

i
B

iT
1

2))((

� 	

n

i
AB

iT
1

)(= �	

n

i
A

iT
1

)(
B

 + ; �	

n

i
B

iT
1

)(
AB An = + ; n n
The combined micro-cluster id is the union of the id for

both micro-clusters.

2.2.2 Geometric Time Frame Allocation
The updated micro-clusters are stored using geometric

time frame allocation through snapshot form. In compari-
son with the traditional pyramidal time frame, geometric
time frame has solved the redundancy resulted from py-
ramidal time frame, enhancing more efficiency for memory
use. Geometric time frame allocates snapshots to different
frame numbers, with the number lying between 0 and

, with T referring to the longest time length of
data stream, while the allocated frame numbers for snap-
shots refer to the degree of granularity for the stored snap-
shot. The snapshots stored in frame number i whose mo-
ment must meet the condition of divisible by , therefore
the snapshots stored in frame number 0 will have
odd-numbered moments. In addition, assume max_capacity
is the maximum stored snapshots for each level, and the
limit for the maximum frame number should not exceed

 from the previous information, and from here
we know that the maximum snapshot numbers stored start-
ing from data stream to time unit T is (max_capacity)

)(log2 T

)(log2 T

i2

�
. The proceeding is the principle for snapshots of

geometric time frame allocation: Assume s is the new
snapshot, when s enters the geometric time frame, it is re-
quired to determine if s is divisible by , and if s is divisi-
ble by and not divisible by , then s is inserted into
the level of frame number i. Due to each level contains a
maximum storage quantity, if assuming level i has reached
its maximum storage quantity, then the snapshot of the ear-
liest moment of that level will be removed and stored into
storage and inserted with the snapshot of the latest moment.

)(log2 T

i2
i2

12
i

2.2.3 Macro-Cluster Generation
Macro-cluster generation has become a process for

re-clustering on stored micro-clusters with reference on
user demand. Due to micro-cluster reflects the overall time

532

information since the start of data streams, therefore the
subtractive characteristic of feature vector is used according
to the micro-cluster id to find out the time scope of mi-
cro-clusters set by user. Assume the current time is tc, users
would like to mine on the data during the period h from
current to period of past experiences in order to obtain K
clustering result. Under the condition given, we will need to
find the snapshots stored before time tc-h. We take S(tc-h’)
to represent the micro-cluster set for time tc-h’, take S(tc) to
represent the micro-cluster set for time tc , whereas h’ refers
to the tolerance for error for time tc-h previously set by user.
For each micro-cluster in S(tc), find out the micro-cluster
that conform to S(tc-h’) according to its individual id, and
reduce the cluster feature vector what conforms to the mi-
cro-cluster of S(tc-h’). This approach will ensure the mi-
cro-cluster generated during the period h set by user will
not influence the mining result. Then, use the micro-cluster
center as the macro-point in conformity with the period h
for user observation, then take the data point quantity con-
tained in the macro-point as weight to select K number of
the data points as the cluster center for macro-clustering,
using macro-cluster generation process shown in Figure 3
to cluster for generation of K number of macro-clusters,
with parameters definitions described below:
� W = { im | 1 � i � Q} represents the macro-point set

for the observation period h for user.
� C = { js | 1 � j � K } represents the set of current

cluster centers, with the initial value selected from the
K number with the largest value according to the data
number n of each macro-point im .

� K represents the macro- cluster number set by the
user.

� Gj represents a macro-cluster, 1 � j � K.
� mi represents a macro-point, 1 � i � Q.
� ni represents the data number in macro-point mi, 1 � i

� Q.
� sj represents a cluster center, 1 � j � K.

2�),(ji sm represents the squared Euclidean dis-
tance between im and js .
d

({ 2 mdD 	� }Kjjii � represents the set
of the squared Euclidean distance between
macro-point m and each cluster center sj .

1 |), s �

i
� Pointdis[i] is used for storing the Squared Euclidean

Distance between macro-point im and the nearest
cluster center, 1 � i � l.

� CenterM[i] is used for storing the current cluster cen-
ter for macro-point m , 1 � i � l. i

� imd (2 , CenterM[i]) represents the squared
Euclidean distance between the macro-point im and
the current cluster center CenterM[i].

Detailed steps are described below:
Step 1: Calculate the squared Euclidean distance

 between each macro-point and
each cluster center sj.

),(2
ji smd im

Step 2: Find the minimal value of the squared Euclidean

distance between each macro-point i with each
cluster center sj, store the value to Pointdis[i] while
store the current cluster center sj to CenterM[i].

m

Input W, C, K
Output C, Gj
1. For each mi, sj do Di�Di { };),(2

ji smd
2. For each mi do Pointdis[i]�Min[Di];
 CenterM[i]� sj s.t. = Min[Di];),(2

ji smd
3. For each sj do

 sj �
�

� �

i

ii

n
mn s.t. CenterM[i] = sj;

4. For each mi, sj do Di�Di { };),(2
ji smd

5. For each mi do
CenterM[i]� sj s.t. sj = Min[Di];),(2

ji smd
6. While � i [Point-

dis[i]] do
� �, iCenterM) (2 mid

{6.1 For each mi s.t. , CenterM[i])
Pointdis[i] do

imd (2

{6.1.1 For each mi, sj do Di Di { }; �),(2
ji smd

6.1.2 For each mi do Pointdis[i] Min[Di];�
CenterM[i]� sj s.t. = Min[Di];),(2

ji smd
6.1.3 For each sj do

sj �
�

� �

i

ii

n
mn s.t. CenterM[i] = sj;

6.1.4 For each mi, sj do Di Di { };�),(2
ji smd

 6.1.5 For each mi do
CenterM[i]� sj s.t. sj = Min[Di];}}),(2

ji smd
7. For each mi do

Gj�Gj { mi } s.t. CenterM[i] = sj;

Figure 3. Marco-cluster generation process.

Step 3: For each current cluster center sj, calculate the
weighted mean inside the cluster and store the re-
sult to sj.

Step 4: For each macro-point recalculate the squared
Euclidean distance ji between the
macro-point and each cluster center sj.

im
2d),(sm

Step 5: For each macro-point , store the current cluster
center sj to CenterM[i].

im

Step 6: Determine if the distance d2(mi, CenterM[i]) be-
tween any arbitrary macro-point i and the cur-
rent cluster center is greater than the distance stores
for mi stored in Pointdis[i], if affirmative then exe-
cute Step 6.1, or else execute Step 7.

m

Step 6.1: For the squared Euclidean distance d2(mi, Cen-
terM[i]) between the current clusters is greater
than the distance Pointdis[i] stored at each
macro-point , execute Step 6.1.1 to Step 6.1.5. i

Step 6.1.1: For each macro-point i , recalculate the
squared Euclidean distance
between the macro-point and each cluster

m
m

im
),(2

ji smd

533

center sj .
Step 6.1.2: Find out the minimal value of the squared

Euclidean distance between each macro-point
i and each cluster center sj, then store the

value to Pointdis[i] and store the current clus-
ter center sj to CenterM[i].

m

Step 6.1.3: Calculate the weighted mean of the cluster for
each current cluster center sj and store the re-
sult to sj.

Step 6.1.4: Recalculate the squared Euclidean distance
between each macro-point

and each cluster center sj.
),(2

ji smd
mi

Step 6.1.5: Store the current cluster center sj for each
macro-point to CenterM[i]. i

Step 7: Store each macro-point to its belonging
macro-cluster Gj.

m
im

3. Performance Evaluation
3.1 Accuracy Evaluation of PPCDS

In the experiment of accuracy evaluation, we use the av-
erage of the sum of square distance, also known as the Av-
erage SSQ to evaluate accuracy, whereas the smaller the
value of the Average SSQ, means the higher the accuracy.
The data source is the real datasets KDD-CUP’98, with
experimental parameters set to n = 2000 and t = 2. The
so-called Average SSQ consists of the following definitions:
Assume there are W number of macro-points in the period h
before the current moment Tc, find the cluster center with
the nearest distance to each macro-point and calculate
the squared Euclidean distance i between i
and j , consequently the Average SSQ of period h before
the current moment Tc is equal to the total sum of the
squared Euclidean distance between the cluster centers and
all W number of macro-points in period h, divided by the
macro-cluster number K, as shown on formula 5. Figure 4
shows the circumstance of changes in mining accuracy in
different period h and data stream rate SP, with SP = 200
referring to data streams flow in at the rate of 200 data
points per every time unit. The horizontal axis represents a
different time unit quantity, while the vertical axis repre-
sents the Average SSQ. It is noted from the figure that de-
spite the data must undergo a privacy-preserving treatment
through rotation perturbation during the mining process,
nonetheless due to rotation perturbation contains character-
istics of isometric transformation, and consequently it will
not cause much impact on the accuracy of mining results. In
addition, in the micro-cluster generation Process, the qual-
ity micro-cluster generated through optimization of cluster
center will further enhance the mining accuracy.

im
), js(2 md m

s

3.2 Scalability Evaluation of PPCDS
In the experiment of scalability evaluation, the primary

test emphasizes on the data stream processing capability of
PPCDS, with data sources from real datasets, and experi-
mental parameters set to n = 2000, t = 2 and SP = 2000 re-

spectively. Figure 5 shows the processing capability of
PPCDS on stream data, with the horizontal axis referring to
the elapsed time in unit of second to data processing, while
the vertical axis referring to the data point quantity proc-
essed in each second. As shown in the figure, due to
PPCDS start performing rotation perturbation on data and
establishing micro-cluster with incoming stream data. Con-
sequently it causes a poor efficiency on the initial data
processing, with the time approximately at 20 seconds. Due
to the generation of micro-clusters allows the data under-
going rotation perturbation treatment to directly cluster
stream data, gradually stabilizing process efficiency.

(a) h = 4, SP = 200

 (b) h = 16, SP = 200

Figure 4. Comparison of mining accuracy.

Figure 5. Stream data processing efficiency.

Furthermore, through setting different number of dimen-
sions and number of cluster, we observe the time required
for PPCDS in stream data processing. In the experiment of
testing the impact of number of dimensions on scalability,
we use three artificial datasets of B400C20 (representing
400K data points and 20 clusters), B200C10 (representing
200K data points and 10 clusters) and B100C5 (represent-
ing 100K data points and 5 clusters) respectively, with

534

number of dimensions variation from 10 to 80. Figure 6
shows the execution time of PPCDS in different number of
dimensions, with the horizontal axis indicating the different
number of dimensions and the vertical axis indicating the
execution time in units of seconds.

In the experiment of the impact of testing the number of
cluster on scalability, similarly we use three artificial data-
sets of B400D40 (representing 400Kdata points and 40 di-
mensions), B200D20 (representing 200K data points and 20
dimensions) and B100D10 (representing 100K data points
and 10 dimensions), with the variation of number of clus-
ters from 5 to 40. Figure 7 shows the variation of execution
time for PPCDS in different number of cluster, with the
horizontal axis indicating the different number of clusters,
while the vertical axis indicating the execution time in units
of seconds.

Figure 6. Impact of variation on number of dimensions.

Figure 7. Impact of variation on number of clusters.

3.3 Sensitivity Evaluation of PPCDS
In order to obtain a high accuracy mining result, the

number of micro-cluster must far exceed the number of
macro-cluster, however excessive micro-cluster will reduce
the execution efficiency and the memory use benefits,
therefore how to strike a balance between mining accuracy
and storage benefits becomes relatively significant. In this
experiment, we use KDD-CUP’98 datasets as the data
source, and through controlling the number of micro-cluster,
using micro-cluster ratio and the Average SSQ to evaluate
the impacts of the number of micro-cluster on mining ac-
curacy. The so-called micro-cluster ratio refers to the num-
ber of micro-cluster divided by the number of macro-cluster.

Figure 8 shows the impact of micro-cluster ration on accu-
racy, with the horizontal axis indicating different mi-
cro-cluster ratio, while the vertical axis indicating the Av-
erage SSQ. We fix the number of time unit as 200, SP =
200 and h = 16. It is noted from the figure, if the number of
micro-cluster used equals to the number of macro-cluster,
then we will obtain a poor mining accuracy, mainly resulted
from the number of micro-cluster used is too small. How-
ever when the micro-cluster ratio increases, the mining ac-
curacy will increase accordingly. When the micro-cluster
ratio increases to 15 approximately, the mining accuracy
will turn to stabilized. The result indicates that it is not re-
quired to set the number of micro-cluster with a large num-
ber to obtain a good mining accuracy, provided that the
numbers of micro-cluster and macro-cluster reach to a cer-
tain ratio.

Figure 8. Sensitivity analysis on micro-cluster.

4. Conclusion
This paper proposes PPCDS for privacy-preserving clus-

tering of data streams. Experimental results show PPCDS
only requires a reasonable amount of memory to obtain a
good mining accuracy. Besides, PPCDS not only can pre-
serve data privacy but also can efficiently and accurately
mine data streams.

Acknowledgment
The authors would like to express their appreciation for the fi-

nancial support from the National Science Council of Republic of
China under Project No. NSC 96-2221-E-031-001-MY2.

References
[1] Agrawal, R. and Srikant, R., “Privacy-Preserving Data Mining,” Proc.

of 2000 ACM International Conference on Management of Data,
Dallas, Texas, U.S.A., pp. 439-450 (2000).

[2] Ordonez, C., “Clustering Binary Data Streams with K-means,” Proc.
of 8th ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, San Diego, California, pp. 12-19 (2003).

[3] Aggarwal, C., Han, J., Wang, J. and Yu, P. S., “A Framework for
Clustering Evolving Data Streams,” Proc. of 29th International Con-
ference on VLDB, Berlin, Germany, pp. 81-92 (2003).

[4] Yang, C. and Zhou, J., “HClustream: a Novel Approach for Cluster-
ing Evolving Heterogeneous Data Stream,” Proc. of 6th IEEE Inter-
national Conference on Data Mining, Hong Kong, China, pp.
682-688 (2006).

535

FiGD: An Open Source Intellectual Property Violation Detector

Carson Brown, David Barrera, Dwight Deugo
The School of Computer Science, Carleton University

Ottawa, Ontario, Canada
carson@ccsl.carleton.ca, dbarrera@ccsl.carleton.ca, deugo@scs.carleton.ca

Abstract: FiGD (Fingerprint Generator/Detector) is an
open source Java application capable of detecting
intellectual property violations in compiled Java
programs without requiring access to the original source
files. FiGD uses a modification of the n�gram method
which is very accurate in discovering everything from
blatantly copied source, to more advanced attempts of
obfuscation (such as variable refactoring or white-space
insertions). Our improvements to the algorithm allow us
to increase the speed of detection and create small
fingerprints which can be stored for future comparisons.

1. Introduction
In recent years, Open Source Software (OSS) has

seen a surge in popularity. It is now common to find OSS
running on a variety of systems ranging from web servers
[14] to super-computers to mobile phones. There are
currently numerous OSS projects which have reached a
level of maturity sufficient for use by governments and
large corporations [15]. As this software makes its way
into more areas, legal concerns begin to emerge. It is
unclear who is at fault when an open source library in a
commercial product fails. Open source licenses [12] can
also be incompatible with each other, creating legal
problems for companies developing OSS. These are
legitimate concerns, but they are difficult to address if the
origins of the code are unknown.

1.1 Problem
The problem we focus on in this paper is clone

detection for software. We define a software clone as
source code in a unknown project that has been copied
(either fully or in part) from a known project. Clone
detection is useful for pinpointing code theft, as well for
general code auditing. Although clone detection has
already been extensively researched, this paper focuses
only on a small part of the problem which applies to
software written in the Java programming language. We
assume a black-box (A device or system whose workings
are not understood by, nor accessible to, the user and is
thus viewed in terms of its input and output characteristics)
approach where we generally do not have access to the
source code of the projects we are analyzing.

1.2 Motivation
The main motivation of this paper is to contribute to

the Open Source philosophy. When open source software
is stolen, any changes, improvements or otherwise, made
by the intellectual property (IP) thief are unlikely to make
it back into the community. Since the open source
software development cycle relies heavily on developers
contributing, IP theft can prove to be a dangerous threat to
this particular ecosystem.

Another motivation is cost: we would like to make it
affordable for companies or developers to audit their code
for the existence of other OSS. As of October 2008, there
are no known open source tools that (easily) allow this.
Some available software packages allow source code
comparison through simple string-matching, and others
are designed to work with only specific programming
languages. There are two commercial solutions, [13, 10],
costing between $50,000 to $250,000 for annual
subscriptions. Both of these companies also allow the end
user to pay by the megabyte (Mb), but still at prices
ranging from $3,000 to $25,000 for less than 100 Mb.
Prices this high could prove to be a significant barrier of
entry for small and medium-sized businesses.

1.3 Goals
Our goal is to write an application that will have the

following functions:

• Generate a unique signature (fingerprint) from
a Java ARchive (JAR) file.

• Search for similarities between a previously
generated fingerprint and a new, unknown JAR
file.

• Output relevant information regarding the
matches found and percentage of certainty.

1.4 Objectives
Given the goals described in Section 1.3, our

objectives are to focus not only on accuracy, but also on
performance and system resources. The current string-
matching approaches found in other projects [3, 4, 16]
tend to be very precise but extremely slow, on the order of
O(n2). These approaches also assume access to the

536

original source code which is not always provided. Our
objective is also to avoid using large amounts of memory
while generating our fingerprints or performing a
comparison. These concerns are of particular importance
when fingerprinting large files (i.e., >5Mb).

As another improvement, we will also avoid looking
at source code. We believe that since the source code is
not always packaged within JAR files, it would be better
to work without relying upon it, and base our comparison
on compiled Java byte-codes (Java byte-codes are what
the Java Virtual Machine (JVM) actually executes. It is
the compiled version of source code, where each byte-
code instruction is exactly one byte in length [7].).

The final objective is to make our fingerprint-detector
immune to variable refactoring (to change all references to
a variable, for example, to a different name). It is in this
manner that our algorithm will still detect a match based
on functionality, but not on semantics. Our algorithm is
thus resistant to changing variable names, method names,
or class names.

In order to generate small fingerprints, we will find
and store parts of the JAR file which are highly
representative of that file only. In essence, this technique
closely resembles what is done in the anti-virus industry
(and, in fact, in any signature-based detection environment)
where the smallest matching string of a virus is used as a
signature. Anti-virus software programs are able to rapidly
look for thousands of signatures in a given file. We have
created software that achieves similar behaviour at the
Java method level.

1.5 Outline
The remainder of the paper is structured as follows:

Section 2 describes certain basic concepts and
terminology, as well as look at related projects that
attempt to solve a similar problem. Section 3 explains our
design strategy, including decisions that had to be made in
order to reach our objectives. In Section 4 we present our
results. Section 5 provides a conclusion and elaborates on
future work.

2. BACKGROUND
Clone detection can usually be done either by string-

matching the source code or looking at binary file
signatures. The string-matching technique requires
looking at small sub-strings in the file (called n-grams,
where n is the number of characters in the string, or gram)
and then try to identify those strings in a different file.
This obviously requires a large amount of memory and
processing, especially if a sliding window of the entire file
is taken. For example, if the original file has 1000
characters in total (including white spaces and line
termination), using n-grams of size 10 without a sliding
window would give us 100 10-grams. If a sliding window
were used, we would have 991 10-grams (1000�10+1).
Continuing this example, we would need to search for
occurrences of 991 strings in a new file.

Binary file signature matching provides the added
benefit that the original source code is not required. This
is useful, for example, in the anti-virus industry, where
viruses and worms are packaged and distributed globally.
There is a slight difference that prevents us from using
this approach directly: source code may be slightly
modified and rebuilt, producing a completely different
binary file. For example we take the (extremely simple)
method in Listing 1:

int method() {
 int i=10;
 return i;
}

Listing 1: Simple Method

This method would have a certain binary signature

once compiled. However if we were to change its source
to the following, Listing 2:

int method() {
 int i=10;
 i--;
 i++;
 return i;
}

Listing 2: Modified Simple Method

The binary signature may be completely different,

even though the method has no changes in functionality
(i.e., it still returns the value of i=10). This problem is of
serious concern when considering OSS fingerprinting, as
the source code is almost always easily available and can
be changed and compiled by any software recipient.

2.1 JAR files and Class files
Our software will take as input any valid JAR file [5].

A JAR file is a file-type based on the popular “ZIP” file
format. It was developed by Sun Microsystems, and it
allows many files to be aggregated into one, with optional
compression. JAR files contain the Java resources
necessary to run Java programs. For this paper, we are
interested in one set of resources called “Class” files [8].

Class files are Java’s compiled files. A source file
(usually ending in .java) will be compiled to produce one
or more class files which are (for the most part) platform
independent (excluding platform-specific system
functions). Class files contain byte-code groups of Java’s
instruction sets that will be run (or interpreted) inside a
JVM.

2.2 Related Software
Although there are countless papers on clone

detection [2], software products that can detect clones of
compiled Java programs are difficult to find. Many papers
describe early prototypes of their algorithms and therefore
have not yet released their software. Other papers describe

537

the best ways of comparing strings, but generally require
access to source files. Software such as Simian [6], Clone
Digger [3], CCFinderX [1] and Clone Doctor [4] are
readily available, but also work only source files. The
advantage of these tools, however, is that they should
work on any type of source code (C, Python, Java,
assembly, even plain text) since they are performing basic
string matching techniques.

3. APPROACH
In this section describes at a high level our approach.

We provide the main algorithms for FiGD as well as what
decisions had to be made in order to achieve our goals.

3.1 Design
Rather than create a general purpose fingerprinting

program, this project has the particular distinction of
comparing JAR files. These have a known composition,
both in compression and file structure. For the purposes of
this project, we are looking for code reuse from one JAR
to another. Thus, we have distilled our approach from the
general case considerably: our fingerprint generator and
detector considers only Java class files, and more specific
still, considers only the byte codes of each method
contained in these class files.

We have made this decision based on what we feel is
representative of the uniqueness of a JAR file. When
considering JAR files, we cannot guarantee the inclusion
of source code (Java or otherwise), nor can we guarantee
that any part of the comparison JAR file retains similar
naming or folder structure of Java packages. What we can
consider, however, is that the essence of a Java method
will be retained, regardless of moving the method to
another class or changing its name. That is to say, the
method will still do the same thing.

This section has been broken down into two sections,
comparing the two components of the project: the
fingerprint generator, and the detector.

3.1.1 Fingerprint Generator
The fingerprint generator must first open the JAR file

to be compared. All JAR files are created with the ZIP
standard, and can be decompressed rather easily. In the
Java API, the java.util.jar package contains many useful
objects, including the JarFile and JarEntry classes. It is
then possible to compute a listing of all files contained in
the JarFile object, and a simple file type check allows for
a complete listing of all class files.

The decompressing of the JAR file contents into class
files is done through the JarResources class, adapted from
a Java-World article [9]. We have modified the class to
only decompress the JAR’s class files into memory. Our
fingerprint generator can then iterate over all class files,
by requesting each class file individually from the
JarResources object. This is done by writing the class out
to a temporary file, which is later deleted upon the

program’s exit. FiGD incurs in a slight memory overhead
due to the extensive utilization of objects as opposed to
programming in a structural language such as C. This,
however, proves to be a negligible performance limitation,
since the JAR files we are testing usually fall within the
0Mb-50Mb file size range.

With the Java class file written out to a temporary file,
we made use of another open source library to access the
necessary methods. The org.netbeans.modules.classfile
package [11] allows for direct access to the class file byte-
codes, by loading the file as a ClassFile object, part of the
NetBeans package. It is then possible to iterate through all
methods of the ClassFile object, which are available as
instances of the Method class. Each method can then be
extracted as a list mof Java byte-codes using other classes
found in the NetBeans package.

Rather than use the byte-codes for a whole method
(which would increase the size of our fingerprint
considerably), we decided on only storing a single n-gram
per method. We first compute all n-grams of each method,
then the most unique n-gram is selected to represent that
method in the JAR file’s fingerprint. The uniqueness of n-
grams differ based on the size of n, but our testing has
shown that using n a gram size of 10 (i.e., 10 byte-codes)
strikes a good balance between accuracy and fingerprint
size. Also, using larger values for n did not improve
accuracy. By using this approach, the fingerprint size is
linearly dependent on the number of methods found in the
JAR file. It is this list of unique n-grams, as well as some
statistical information—such as the number of methods, n-
grams stored and total n-grams—that form the fingerprint
of a JAR file.

3.1.2 Detector
Detection requires an original fingerprint as well as a

comparison JAR file. The result returned from our
detector contains both our certainty percentage that code
from the fingerprinted JAR file is contained in the
comparison, and also our calculation of how much of that
original code appears. This is calculated by opening the
JAR in much the same way as the fingerprint generator,
save that our generator does not throw away non-unique
n-grams but instead compares these to the representative
n-grams of the fingerprint. This is done by first generating
a list of n-grams for a given method in a class file. These
are then compared to the n-grams in the fingerprint which
have not already been matched by n-grams in the
comparison JAR file. The list of n-grams generated by the
detector are not stored for later use: the only n-grams
stored in working memory are those that are being
compared to the fingerprint. When a match has been
found between the fingerprint and the comparison JAR
(i.e.: both JAR files contain the same method) the next
method in the comparison JAR is considered for detection.

The number of matches is stored, and used in the
calculations of the detector’s final result. The number of
matches divided by the total number of n-grams in the

538

original fingerprint yields the percentage of the original
JAR file in the comparison JAR file. The certainty of the
final result is calculated by the percentage of the n-grams
included in the original fingerprint divided by the total
number of n-grams created from the JAR file.

3.1.3 Summary
The algorithms in Listing 3 and 4 detail the

fingerprint generation and detection approaches from
Sections 3.1.1 and 3.1.2.

Algorithm Generator
Input: Jar File
Output: Fingerprint
1. G � { 	 }
2. C � {c | � Class File c
 Jar File }
3. for c
 C
4. do M � { m | � Method m
 c }
5. for m
 M
6. do compute n-grams
 from byte-codes of m
7. s � n-gram of lowest count
8. add s to G
9. add G to Fingerprint
10. return Fingerprint

Listing 3: Generator Algorithm

Algorithm Detector
Input: Fingerprint
Input: Jar File
Output: FingerprintResult
1. count 0
2. C � { c | �Class File c
 Jar File }
3. for c
 C
4. do M � { m | " �Method m
 c }
5. for m
 M
6. do consider each n-gram gc of m:
7. if gc
 Fingerprint
8. then count � count + 1
9. remove gc from considered
 Fingerprint entries
10. continue to next Method m
11. certainty � count / Fingerprintsize * 100%
12. add certainty to FingerprintResult
13. return FingerprintResult

Listing 4: Detector Algorithm

3.2 Decisions Made
Over the course of creating the fingerprint generator

and detector, we made a variety of design decisions. Our
first implementation for creating fingerprints at the Java
method level involved computing simple hashes of every

method, which significantly reduced our accuracy when
situations such those described in Section 2. This inability
to catch “useless” modifications to the code in a method
led us to desire a way of capturing the uniqueness of a
method. We then implemented the n-gram implementation,
and extracted only the first n-gram of lowest frequency.
This involved some loss in accuracy, but it is our belief—
proven through testing— that this loss is negligible when
compared to the large decrease of the generated
fingerprint’s footprint.

Our experiments also show that using n-grams where
n is 10 have shown to be the most representative. When n
is set to lower values, accuracy of the algorithm suffers, as
the n-grams represent very little of a method’s structure.
This loss of accuracy can be attributed to false positives
when comparing the fingerprint to another JAR file.
Similar to the method hashing described above, having
large values of n leads to loss of accuracy, where truly
equivalent methods are no longer detected as such. As the
size of n increases, the algorithm approaches behaviour
similar to the method hashing described above.

Our implementation of generating fingerprints and
detecting similarities between JAR files compares based
on the contents of class file methods. This means that
“empty” or unimplemented methods are not considered.
We are aware that our implementation cannot properly
deal with interface classes, or the non-implemented
abstract methods found in abstract classes. We do not
believe this to be a fault in our design, as interfaces are by
definition public, and abstract classes are still considered;
only the abstract methods are ignored.

4. RESULTS
This section documents the results of testing FiGD on

various, representative JAR files. The subsections below
describe testing in both accuracy and performance during
the implementation’s construction and as a completed
product in “real world” use cases.

4.1 Accuracy
For testing the accuracy of FiGD, we used two

random JAR files found in the Eclipse JAVA IDE
installation. We created fingerprints for each one, and then
compared them to themselves using the detector. Both
fingerprints were generated in under 3 seconds, and the
output claiming a 100% match was displayed immediately
after. A 99.999% certainty was also displayed in both
cases, confirming that with high confidence, the files are
fully identical.

One of the features of FiGD is that as soon as the first
n-gram is matched for a given method, no further n-grams
are compared for that method, since we assume we have
found a cloned code segment. This greatly speeds up the
detection phase when we know a priori that there is some
kind of similarity between two files. If the files are
completely different (i.e., zero matching methods), then
our detector has to compare every single n-gram to the

539

fingerprint, which takes timeO(n · m), where n and m
represent the number of methods in each JAR file.

Although false positives have not been extensively
tested, we believe the chance of them occurring is small,
since our n-grams are large enough to make each method
signature reasonably unique.

4.2 Performance
For performance testing, we used a large JAR file

(about 10Mb) and a small JAR file (about 300Kb). We
saved copies of both JAR files with slight modifications.
The modifications were simply to remove a random
number of class files from each one. We then compared
the original unmodified file to the modified variations. We
obtained results in less than 5 seconds with FiGD
reporting between 70% and 80% matches between the
JAR files. This seems correct, as only ma small number of
Class files were removed. The certainty percentage
reported was still high at over 80% for both test cases,
confirming that our algorithm is not only fast, but correct
as well.

4.3 Real World Testing Results
Our various tests over the course of developing FiGD,

made use of a variety of JAR files, including many from
the Eclipse 3.4 Classic IDE plugin directory, chosen due
to Eclipse’s popularity. Two JAR files have been included
in Table 2 from this software: org.eclipse.jface.text
3.4.0.v200806032000.jar and org.eclipse.jdt.ui
3.4.0.v20080603-2000.jar (abbreviated in the table due to
file name length). The third JAR file used, commons-
attributes-api-2.2.jar, is from the Apache Commons
library. These three JAR files include mcompiled Java
class files and are three representative sizes, mthe largest
being included for “stress” testing. The tests have been
performed on a Toshiba Satellite PSM40-SF300E laptop,
with an Intel Pentium M processor (1.86GHz, 533MHz
FSB, 32KB of L1 cache, 2MB of L2 cache), 1 GB of
memory (2 x 512 PC2700 DDR SODIMM) running
Ubuntu 8.10 GNU/Linux.

The JAR files used in Table 1 have been created
especially for testing FiGD, and include small, easy to
manage Java class files used in first-year programming
assignments. These class files have been modified and
compiled into various JAR files, as described in the table.
“Original” is in reference to an original set of Java class
files serving a particular purpose. For each of the test
cases where files were modified, a significant number of
changes were made—for example, more than 60% of all
variable names were changed for the second test in Table
1. These tests show that FiGD is insensitive to aesthetic
source-code changes such as variable name refactoring or
source code comments.

Table 2 demonstrates more “real world” testing,
involving real world JAR files. These files were
deliberately chosen because they are not obviously related
by purpose or content. The certainty percentages

calculated are entirely dependent on how well FiGD can
form a representative fingerprint on a given JAR file,
while the inclusion percentage (Inc %) relies on the
number of matched methods. These tests confirm our
suspicions: that the JAR files are convincingly different.
The only non-obvious data set is the last pair of tests
comparing the two Eclipse-based JAR files. We believe
these inclusion percentages to be correct, as both of these
JAR files share a common Eclipse plug-in architecture,
and likely do share similar code bases in this respect.
These tests also confirm the worst-case running time
calculated above, as these files have very few similarities,
causing near quadratic run-times, executing over a few
minutes on the test machine.

Table 1: Accuracy Testing

Description Certainty Inc (%)
Original compared to copy
where method names were
changed

100% 100

Original compared to
copy where variables were
renamed and comments added
or removedÊ

100% 100

Original compared to copy
where additional class files
were added

100% 100

 Previous test in reverse 100% 61.6
Original compared to copy
with methods and class files
removedÊ

100% 83.8

Above text in reverse 100% 100

Table 2: Performance Testing
Description Certainty Inc

(%)
Time
(ms)

commons-attributes-
api-2.2.jar (35.9Kb)
compared to itself

93.6%

100

220

org.eclipse.jface.text.jar
(922.7Kb) compared to
itself

88.5%

99.9

2137

org.eclipse.jdt.ui.jar
(9.2Mb) compared to
itselfÊ

97.6%

99.9

19304

commons-attributes-
api-2.2.jar compared to
org.eclipse.jface.text.jar

93.6%

0

3333

Previous test in reverse 88.5% 0 3643
commons-attributes-
api-2.2.jar compared to
org.eclipse.jdt.ui.jar

93.6%

0.6

28203

Previous test in reverse 97.6% 0 37660
org.eclipse.jface.text.jar
compared to
org.eclipse.jdt.ui.jar

88.5%

22.7

719561

Previous test in reverse 97.6% 3.0 820536

540

5. CONCLUSION
In this paper we have presented FiGD, an algorithm

and implementation for detecting clones in compiled Java
projects. Even when access to the source code is not
available, FiGD is able to produce very accurate results in
shorts periods of time by using a combination of previous
approaches as well as custom optimizations. Source code
for FiGD is released under the BSD license and is
available by request. Included with the source code is full
Javadoc documentation describing all methods and classes.

5.1 Review Goals and Contributions
Our main goals discussed in Section 1.3 are achieved

with the design and implementation of our algorithm. We
believe we are the first to approach the clone detection
problem for software through a black box approach,
giving the OSS community another tool for detecting IP
violations.

5.2 Future Work
While we have shown that we are able to compare

fingerprints quickly, there are still some possible
optimizations that could be made in terms of generating
each fingerprint. Making use of an advanced data structure
(such as heaps) would provide us with faster searching
than the current array-based implementation. This could
theoretically reduce our worse-case running time for
computing fingerprints to O(n · logn). Together with
stored pre-computation of all the known JAR files
previously fingerprinted and stored offline, we believe
that FiGD would operate significantly faster. We would
also like to do more work on finding optimal n-gram sizes
and how they impact the accuracy of the detector. Finally,
we would like to expand the fingerprint to also include
source code and plain text files as opposed to only
considering Class files, and include these findings into a
more advanced detection schema.

6. REFERENCES
[1] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue:

CCFinder: A Multilinguistic Token-Based Code Clone
Detection System for Large Scale Source Code. IEEE Trans.
Software Eng. 28(7): 654-670, 2002.

[2] Clone Detection Literature - University of Alabama at
Birmingham.
http://students.cis.uab.edu/tairasr/clones/literature/).
Accessed November 3, 2008.

[3] Clone Digger. http://sourceforge.net/projects/clonedigger/.
Accessed November 3, 2008.

[4] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de
Moura, Marcelo Sant'Anna, Lorraine Bier: Clone
Detection Using Abstract Syntax Trees. ICSM 1998: 368-
377. 1998.

[5] JAR File Specification.
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html.
Accessed November 3, 2008.

[6] Simian - Similarity Analyzer.
http://www.redhillconsulting.com.au/products/simian/index
.html. Accessed November 3, 2008.

[7] Wikipedia - Bytecode.
http://en.wikipedia.org/wiki/Bytecode. Accessed November
2, 2008.

[8] Wikipedia - Class File.
http://en.wikipedia.org/wiki/Class_(file_format). Accessed
November 3, 2008.

[9] Arthur Choi. Java tip 49: How to extract java resources
from jar and zip archives.
http://www.javaworld.com/javaworld/javatips/jw-
javatip49.html. Accessed October 30, 2008.

[10] Black Duck Software.
http://www.blackducksoftware.com/protex. Accessed
October 30, 2008.

[11] NetBeans.org. Classfile reader java documentation.
http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-
classfile/. Accessed October 30, 2008.

[12] Open Source Licenses - Free Software Foundation.
http://www.fsf.org/licensing/licenses/. Accessed October 31,
2008.

[13] Palamida Software. http://www.palamida.com/products.
Accessed October 25, 2008.

[14] HTTP Server Project. http://httpd.apache.org/. Accessed
October 25, 2008.

[15] Apache Tomcat. http://tomcat.apache.org/. Accessed
October 25, 2008.

[16] P. Bulychev, M. Minea, Duplicate code detection using
anti-unification, in: Spring Young Researchers Colloquium
on Software Engineering, SYRCoSE 2008, 2008, p. 4

541

Integrating Privacy Requirements into Security
Requirements Engineering

Saeed Abu-Nimeh
Websense Security Labs

San Diego, CA 92121

sabu-nimeh@websense.com

Seiya Miyazaki
Panasonic Corp.

Tokyo, Japan

miyazaki.seiya@jp.panasonic.com

Nancy R. Mead
Carnegie Mellon University

Pittsburgh, PA 15213

nrm@sei.cmu.edu

Abstract—Security quality requirements engineering
(SQUARE) is a structured methodology to address software
security issues in early stages of the development lifecycle.
It is possible to apply parts of this methodology to address
privacy issues. This study presents the integration of privacy
requirements into SQUARE. In addition, case studies are
demonstrated to evaluate the efficiency of the modified
model. Furthermore, alternatives to the existing security risk
assessment techniques in SQUARE are suggested to make the
model applicable to privacy.

I. INTRODUCTION

Software developers often ignore security and privacy re-

quirements or consider them to be a lower priority in the

software production lifecycle. The highest priority during soft-

ware production is typically given to functional requirements.

However, nowadays with the ubiquity of online applications

and other client-based software, protecting the privacy of users

raises the need for systematic approaches designed solely for

such purpose.

Security requirements engineering [1] aims to identify soft-

ware security risks in early stages of the design process.

Privacy requirements engineering [2] serves to identify privacy

risks early in the design process. Recent research studies [3]

have shown that privacy requirements engineering is less ma-

ture than security engineering and that underlying engineering

principles give little attention to privacy requirements.

In addition, in [4] the authors claim that most of the privacy

disclosures happen due to defects in the design, and are not

the result of an intentional attack. Therefore, although security

and privacy risks overlap, relying merely on protecting the

security of users does not necessarily imply the protection

of their privacy. For instance, health records can be secured

from various types of intrusions; however, the security of such

assets does not guarantee that the privacy of patients is secure.

The security of such records does not protect against improper

authorized access or disclosure of records.

A. Security Quality Requirements Engineering

Security quality requirements engineering (SQUARE) is a

structured methodology to address software security issues in

the early stages of the development lifecycle. The technique

consists of nine steps and generates categorized and prioritized

security requirements [1].

1) Technical definitions are agreed upon by the require-

ments engineering team and project stakeholders.

2) Business and security goals are outlined.

3) In order to facilitate full understanding of the studied

system, artifacts and documentation are created.

4) A security risk assessment is applied to determine the

likelihood and impact of possible threats to the system.

5) The best method for eliciting security requirements is

determined by the requirements engineering team and

the stakeholders.

6) Security requirements are elicited.

7) Security requirements are categorized.

8) Security requirements are prioritized.

9) The security requirements are inspected to ensure con-

sistency and accuracy.

The contribution of the present study is three-fold. First,

we introduce the integration of privacy requirements into

SQUARE. Then, we demonstrate case studies to evaluate the

efficiency of our new model. Finally, we suggest improvements

to the modified model by replacing the existing security

risk assessments with privacy risk assessments, which we

conjecture to be more suitable to address privacy issues.

The organization of the rest of the paper is as follows. In

section II we discuss the related work. Section III describes the

integration of privacy requirements into SQUARE. In section

IV we demonstrate case studies to evaluate our new model.

Section V illustrates the limitations of the risk assessment

techniques in the current model and suggests alternatives that

are more applicable to privacy. We conclude and motivate

future work in section VI.

II. RELATED WORK

As we mentioned earlier, privacy requirements engineering

is less mature than security engineering [3]. In the following,

we summarize studies that discuss security requirements as

well as privacy requirements.

In [5], the authors introduced an approach hinging on the

Common Criteria standard to handle security requirements

at the early stages of software development. The approach

relied on providing a security resources repository as well

as integrating Common Criteria into the software lifecycle.

The approach proposed a nine-step security requirements

542

engineering process that integrated well into other existing

approaches.

In [6], the author developed a privacy risk management

tool (PRMT) to investigate privacy risks in personal elec-

tronic health records (PEHR) and centralized electronic health

records (CEHR). A qualitative privacy risk assessment ap-

proach was used in the study. The study showed how privacy

risk assessment can be reduced to simple set of questions using

qualitative methods.

In [7], the author summarized resources of privacy risk

assessment approaches, namely web-based and association

resources, that are related to the compliance with the Health

Insurance Portability and Accountability Act (HIPAA). How-

ever, the list in the study is not comprehensive and is con-

sidered a starting point for healthcare organizations regarding

conducting a privacy risk assessment.

In this study, we modify a security requirements engineering

model (SQUARE) and introduce steps in the model that en-

ables it to elicit privacy requirements. In addition, we suggest

alternatives to the existing security risk assessment techniques

in SQUARE to make it applicable to privacy. The following

sections discuss the process in more detail.

III. PRIVACY REQUIREMENTS INTEGRATION INTO

SQUARE

We propose a privacy requirements elicitation technique

(PRET) [8], which is based on SQUARE. The tool helps

software engineers and stakeholders elicit privacy require-

ments using a computer-aided approach. PRET uses a ques-

tionnaire to elicit information that the requirements engineers

and stakeholders complete. The tool contains a database of

privacy requirements that is searched to utilize the input from

the questionnaire and provides results. Figure 1 depicts the

integration of PRET into SQUARE. The first four steps in

SQUARE remain the same. In the fifth step, when elicitation

techniques are chosen, PRET can be selected to elicit privacy

requirements. Here the PRET process starts; the question-

naire is answered and the privacy requirements are elicited.

Finally, the privacy requirements are verified and fed back to

SQUARE. In SQUARE, the privacy requirements are catego-

rized, prioritized, and inspected in the seventh, the eighth, and

the ninth steps respectively. In the following subsections, we

describe the questionnaire design, discuss the various sources

used to identify privacy requirements, and illustrate the process

involved in requirement elicitation.

A. Questionnaire Design

Privacy Seal Programs [9] and the OECD Privacy Statement

Generator [10] are used to prepare the questionnaire. The

OECD generator is a tool that provides users with useful

input in the development of a privacy policy and statement.

Using the generator and other privacy seal policies, such as

TRUSTe and PrivacyMark, 10 questions are included in the

questionnaire as shown in Table I.

Fig. 1. Integration of PRET into SQUARE

B. Identification of Privacy Requirements

Privacy requirements are collected from multiple sources,

which are generally various publicly available privacy laws

and principles. In addition, we apply misuse cases to identify

privacy requirements. The following outlines each of these

approaches:
1) Privacy laws and principles: To identify privacy re-

quirements, six privacy principles and laws are studied, from

which a subset of privacy requirements are selected. Due to

space constraints, the interested reader can refer to [8] and

the references therein for a detailed overview. The laws and

principles are as follows:

• OECD Guidelines on the Protection of Privacy

• The European Commission’s Directive on Data Protection

• Japan’s Personal Information Protection Act

• Privacy laws in the US

– Privacy Protection Act

– Video Privacy Protection Act

– CA–SB–1386 (California)

– Family Educational Rights and Privacy Act

– Health Insurance Portability and Accountability Act

– Children’s Online Privacy Protection Act

• Common Criteria

• W3C Web Services Architecture Requirements

2) Misuse cases: Misuse cases are used to elicit require-

ments. The idea behind them is to document and decide how

software should act proactively to malicious activities. First, a

normal use case is assumed. Then, malicious parties and activ-

ities are added to the use case. Afterwards, the relationships

among the use cases and the misuse cases are linked. This

whole process has proven to be useful in mitigating future

attacks.

C. Decision Process

A decision tree of requirements is built to traverse mul-

tiple combinations of question paths. The introduction of

543

TABLE I
QUESTIONS INCLUDED IN QUESTIONNAIRE

Question Response
1. Does the service provider process personal information? Yes / No
2. In which country or area is the service provided? USA / EU / Canada / Japan / Other
3. What type of service provider? Industrial / Governmental / Academic / Other
3.1. If Industrial, does the service provider belong to any of
these fields?

Medicine / Communication / Education

3.2. If Governmental, does the service provider belong to any
of these fields?

Military branch / Non-military branch / Research Body

3.3. Is the purpose of the service related to journalism, lit-
erary work, academic studies, religious activities, or political
activities?

Yes / No

4. What kind of personal information does the service
provider process?

Point of Contact / Social Identification / Personal Identity
Data / Demographic Information / Age, Education / Health
Information / Financial Information / Personal Information of
Children / Other Sensitive Personal Data

5. How does the service provider obtain personal information? Provided by users / Provided by third parties / Collected
automatically from users / Collected automatically from third
parties

6. Where does the service provider store personal informa-
tion?

Client Side / Server Side / The Third Party Client Side / The
Third Party Server Side

7. How long does the service provider store personal infor-
mation?

Does Not Store / One Transaction / Certain Period of Time /
Forever

8. Does the service provider use personal information for
another purpose?

Yes / No

9. Does the service provider share personal information with
others?

Yes / No

10. What privacy protection level does the service provider
set?

High / Mid / Low

subsequent questions is based on the answers to the current

question. While the user goes through different nodes in the

decision tree, a different set of questions is introduced. Several

constraints are checked to ensure that privacy requirements

dedicated to certain areas, (e.g., in the US or the EU), are

met. In addition, each one of the requirements is assigned a

priority based on its source. For instance, requirements derived

from laws have higher priority than requirements derived from

principles and misuse cases.

IV. EVALUATION CASE STUDIES

We evaluate our model using two pseudo-software devel-

opment projects; an auto insurance service and a health care

ring. In Table II, we show the answers to the questionnaire for

the auto insurance service. Then, we show the corresponding

privacy requirements elicited by PRET in Table III. Similarly,

the health care ring’s answers to the questionnaire are shown

in Table IV and the elicited privacy requirements are shown

in Table V.

We evaluate the tool’s results based on its requirement

achievement against several functional and non-functional

requirements. Further, we compare the tool with nine other

elicitation techniques using various measures reported in [11].

Moreover, we seek privacy experts’ opinions on the quality

of the results. PRET outperforms all rivals with a few minor

changes requested by experts (see [8]).

V. SECURITY RISK ASSESSMENT LIMITATIONS

The same security risk assessment techniques used in

SQUARE are applied to privacy in PRET (see Figure 1). We

TABLE II
AUTO INSURANCE SERVICE QUESTIONNAIRE

Question Answer
1 Yes
2 USA
3 Industrial
3.1 –
3.2 –
3.3 No
4 Point, Social, Demographic, Age
5 Provided by users, Provided by third parties
6 Server side
7 Forever
8 No
9 No
10 Mid

TABLE IV
HEALTH CARE RING QUESTIONNAIRE

Question Answer
1 Yes
2 Japan
3 Industrial
3.1 Medicine
3.2 –
3.3 No
4 Point, Demographic, Age, Health
5 Provided by users
6 Server side
7 Certain Period of Time
8 No
9 Yes
10 High

believe that this is a limitation in PRET, as security risk assess-

544

TABLE III
AUTO INSURANCE SERVICE RESULTS

Privacy Requirements Derivation Explanation Priority Level
The service architecture shall describe privacy policy
statements and enable a user to access them.

W3C–AR020.1,20.3 Personal data usage(Q1,
Q2)

Mid

Before collecting personal data, the data controller
shall specify the purpose.

OECD–PP–P9 Personal data usage(Q1) Mid

The service provider shall limit the collection of
personal data and obtain such data by lawful and
fair means.

OECD–PP–P7 Personal data collection
(Q6)

Mid

The system network communications must be pro-
tected from unauthorized information gathering
and/or eavesdropping.

Misuse–case–1 Personal data collection
(Q6)

Mid

The system should have functional audit logs and us-
age reports without disclosing identity information.

Misuse–case–2 Personal data collection
(Q6)

Mid

The system shall have strong authentication mea-
sures in place at all system gateways and entrance
points.

Misuse–case–3 Personal data storage (Q7) Mid

Personal data should be protected by reasonable
security safeguards against such risks as loss, unau-
thorized access, destruction, use, modification or
disclosure of data.

OECD–PP–P11 Personal data storage (Q7) Mid

Personal data shall be accurate, complete and kept
up-to-date, if it is possible.

OECD–PP–P8 Personal data storage (Q7) Mid

The system shall provide a mechanism by which
users can verify their data.

OECD–PP–P13 Personal data storage (Q7) Mid

The system shall provide a data backup mechanism. Misuse–case–4 Personal data storage (Q7) Mid
The system shall have a verification process to check
whether there is a disclosure agreement between the
third party and the person.

Misuse–case–5 Personal data collection
from the third party (Q5)

Mid

The service provider shall report to all the customers
if the privacy information is breached.

CA–SB–1386 Breach report in JP, USA
(Q1,Q2, Q3)

High

ment cannot substitute for privacy risk assessment. Although

security risk assessment and privacy risk assessment overlap,

they are different. Security protects systems’ resources, includ-

ing software, storage, networks, and users. However, privacy

concentrates on data protection, which includes the application

of various policies and procedures to collect and protect data.

The goals of a security risk assessment include the imple-

mentation of authentication and authorization systems, which

can be done by building firewalls, enforcing levels of authority,

and generating audit trails and logs. In addition, security risk

assessments ensure the protection of network security, physical

security, and system security.

However, the goals of a privacy risk assessment relate to

policies and procedures. The focus is on the nature of data

collected, the purpose of data collection, and the procedures

for obtaining an individual’s consent. Further, the privacy

risk assessment takes into account the necessity and accuracy

of data, and compliance to regulations. Also the assessment

ensures that standards exist for development projects and

auditing compliance. Furthermore, the assessment checks au-

thorization and authentication requirements, risks of theft,

modification, or disclosure and mitigation procedures, third

party vulnerabilities, and disclosure incident procedures [12].

SQUARE relies on two risk assessment techniques in step 4,

namely the Risk Management Guide for Information Technol-

ogy Systems (NIST SP 800-30) [13] and Yacov Haimes’s Risk

Filtering, Ranking, and Management Framework (RFRM)

[14]. The RFRM approach contains eight phases, some of

which were found to be out of scope. As such, only two

relevant two phases of RFRM are included in SQUARE: phase

III, Bicriteria filtering and ranking, and phase IV, multicriteria

filtering and ranking.

NIST’s model for risk assessment is broken into nine steps,

each with an output that serves as the input to the next

step. SQUARE excludes steps 1, 8, and 9 in NIST, as they

are irrelevant or redundant. Therefore, the steps included in

SQUARE are: threat identification, vulnerability identification,

control analysis, likelihood determination, impact analysis,

and risk determination. Apparently, the risk assessment in

SQUARE corresponds to the system under analysis. Most im-

portantly, the risk assessment should categorize the likelihood

and impact of the major threats to the system [1].

Based on the above discussion between security and privacy

risk assessment, we conjecture that the quality of the privacy

requirements elicited by PRET will improve if the existing

security risk assessment techniques are replaced with, or com-

bined with, privacy risk assessment techniques. Consequently,

we suggest the introduction of privacy impact assessment

(PIA) in PRET.

According to [15], “PIA is a comprehensive process for

determining the privacy, confidentiality and security risks

associated with the collection, use and disclosure of personal

information. It also defines the measures used to mitigate

and, wherever possible, eliminate the identified risks. The PIA

process ensures that measures intended to protect privacy and

ensure the confidentiality and security of personal information

are considered at the outset of any new program or service

delivery initiative. A PIA also communicates to the public

545

TABLE V
HEALTH CARE RING RESULTS

Privacy Requirements Derivation Explanation Priority Level
The service provider shall describe privacy policy
statements and enable a user to access them.

W3C–AR020.1,20.3 Personal data usage(Q1,
Q2)

Mid

Before collecting personal data, the service provider
shall specify the purpose.

OECD–PP–P9 Personal data usage(Q1) Mid

The service provider shall obtain prior consent of the
person, except for following cases; (1) handling of
personal information is based on laws; (2) handling
of personal information is based on necessity for
the protection of the life, body, or property of an
individual; (3) handling of personal information is
based on necessity for improving public hygiene
or promoting the growth of children; (4) handling
of personal information is based on necessity for
cooperating with a state institution, a local public
body, or an individual or entity entrusted by one in
executing the operations prescribed by laws.

PIPA–Article–16 Personal data usage in JP
(Q1, Q2, Q3)

High

The service provider shall handle personal informa-
tion within the scope for the purpose of usage.

PIPA–Article–16 Personal data usage in JP
(Q1, Q2, Q3)

High

The service provider shall limit the collection of
personal data and obtain such data by lawful and
fair means.

OECD–PP–P7 Personal data collection
(Q6)

Mid

The system network communications must be pro-
tected from unauthorized information gathering
and/or eavesdropping.

Misuse–case–1 Personal data collection
(Q6)

Mid

The system should have functional audit logs and us-
age reports without disclosing identity information.

Misuse–case–2 Personal data collection
(Q6)

Mid

The system shall have strong authentication mea-
sures in place at all system gateways and entrance
points.

Misuse–case–3 Personal data storage (Q7) Mid

Personal data shall be accurate, complete and kept
up-to-date, if it is possible.

OECD–PP–P8 Personal data storage (Q7) Mid

The system shall provide a mechanism by which
users can verify their data.

OECD–PP–P13 Personal data storage (Q7) Mid

The system shall provide a data backup mechanism. Misuse–case–4 Personal data storage (Q7) Mid
The service provider must take necessary and proper
measures for the prevention of leakage, loss, or
damage, and for other control of security of personal
data.

PIPA–Article–20 Personal data storage in JP
(Q2, Q7)

High

The service provider shall disclose personal data only
with the consent of data subject or by the authority
of law.

OECD–PP–P10 Personal data sharing (Q9) Mid

The service provider shall enable delegation and
propagation of privacy policy to the third parties.

W3C–AR020.5 Personal data sharing (Q9) Mid

The service provider shall gain consensus from users
what data they are sharing.

PIPA–Article–23 Personal data sharing in
JP (Q2, Q3, Q9)

High

The service provider shall report to all the customers
if the privacy information is breached.

CA–SB–1386 Breach report in JP, USA
(Q1,Q2, Q3)

High

The system should provide anonymity. Anonymity
means other users or subjects are unable to determine
the identity of a user bound to a subject or operation.

CC–FPR–ANO Privacy enhancing tech-
nology usage (Q10)

Low

The system should provide pseudonymity.
Pseudonymity means a set of users and/or subjects
are unable to determine the identity of a user bound
to a subject or operation, but that this user is still
accountable for its actions.

CC–FPR–PSE Privacy enhancing tech-
nology usage (Q10)

Low

The system should provide unlinkability. Unlink-
ability means users and/or subjects are unable to
determine whether the same user caused certain
specific operations.

CC–FPR–UNL Privacy enhancing tech-
nology usage (Q10)

Low

The system should provide unobservability. Unob-
servability means users and/or subjects cannot deter-
mine whether an operation is being performed.

CC–FPR–UNO Privacy enhancing tech-
nology usage (Q10)

Low

The system should provide unobservability, which
requires that users and/or subjects cannot determine
whether an operation is being performed.

CC–FPR–UNO Privacy enhancing tech-
nology usage (Q10)

Low

546

how their privacy is protected and their information kept

confidential and secure from unauthorized access.”

A very well known PIA tool is the one used by the US

Internal Revenue Service (IRS) [16]. Comparing the NIST

security risk assessment procedure with the IRS PIA clearly

shows that the latter is more applicable to privacy. The

following lists summarize a few of the procedures in both

approaches.

1) NIST security risk assessment

• Threat identification

• Vulnerability identification

• Control analysis

• Likelihood determination

• Impact analysis

• Risk determination

2) IRS privacy impact assessment

• Data description

• Data sources

• Data collection process, data accuracy, data com-

pleteness, and data currentness

• Data comprehensiveness and documentation

• Data access description, access procedures, access

controls, and access responsibilities

• Access levels and restrictions

• Authorized access misuse

• Shared data restrictions and controls

• Data relevancy and necessity

• Possibility of data derivation and aggregation

• Protection and control of consolidated data

• Data retrieval

• Equitable treatment of users

• Data retention and disposal

• User monitoring and protection against unautho-

rized monitoring

Previous research [17] proved that PIA works well in com-

bination with other risk assessment techniques. PIA helped

to identify the data sensitivities of vote verification systems,

while other risk assessments were used to identify the full

spectrum of threats to these systems. This demonstrates that

both security and privacy risk assessments assess risk from

different perspectives, hence one cannot substitute for another.

VI. CONCLUSIONS AND FUTURE WORK

The present study discussed the integration of privacy re-

quirements into an existing security requirements engineering

model SQUARE. SQUARE a is structured methodology to

address software security issues in early stages of the devel-

opment lifecycle. The study proposed a tool, namely PRET,

to address privacy issues in the development lifecycle.

PRET relies in some of the steps on SQUARE, but in-

troduces extra steps to be applicable to privacy issues. We

evaluated our model using the pseudo-software projects of an

auto insurance service and a health care ring. In addition, we

compared the tool with nine other elicitation techniques. PRET

outperformed all rivals with a few minor changes requested by

consulted privacy experts.

Furthermore, based on previous research, we showed that

existing security risk assessment techniques are not suitable

for privacy. Therefore, we suggested replacing, or combining,

current risk assessment techniques in PRET with a privacy

impact assessment model, such as the IRS PIA. We conjunc-

ture that the quality of privacy requirements will improve with

these changes. We intend to report case studies in subsequent

publications.

The future work will explore the integration of the IRS

privacy impact assessment into SQUARE. We will compare

the quality of the results by replacing the current risk assess-

ment techniques with the IRS PIA and then combining them

with IRS PIA. Further, case studies will be explored to gauge

efficacy of the modified model.

REFERENCES

[1] N. R. Mead, E. Hough, and T. Stehney, “Security quality requirements
engineering (SQUARE) methodology,” Software Engineering
Institute, Carnegie Mellon University, CMU/SEI-2005-TR-009, 2005,
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html.

[2] A. Chiasera, F. Casati, F. Daniel, and Y. Velegrakis, “Engineering
privacy requirements in business intelligence applications,” in SDM ’08:
Proceedings of the 5th VLDB workshop on Secure Data Management.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 219–228.

[3] S. L. Pfleeger and C. P. Pfleeger, “Harmonizing privacy with security
principles and practices,” IBM Journal for research and development,
accepted.

[4] A. Adams and M. A. Sasse, “Privacy in multimedia communica-
tions: Protecting users, not just data,” in Proceedings of IMH HCI’01.
Springer, 2001, pp. 49–64.

[5] D. Mellado, E. Fernández-Medina, and M. Piattini, “A common criteria
based security requirements engineering process for the development of
secure information systems,” Comput. Stand. Interfaces, vol. 29, no. 2,
pp. 244–253, 2007.

[6] M. Madsen, “EHR privacy risk assessment using qualitative methods,”
in HIC 2008 Conference: Australia’s Health Informatics Conference,
2008.

[7] J. C. Dennis, “Leading the HIPAA privacy risk assessment,” in AHIMA
Convention Proceedings, 2001.

[8] S. Miyazaki, N. Mead, and J. Zhan, “Computer-aided privacy re-
quirements elicitation technique,” Asia-Pacific Conference on Services
Computing., vol. 0, pp. 367–372, 2008.

[9] B. K. Markert, “Comparison of three online privacy seal programs,”
SANS Institute, Tech. Rep., 2002.

[10] OECD and Microsoft Corp., “OECD privacy statement generator,”
2000. [Online]. Available: http://www2.oecd.org/pwv3/

[11] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead, Soft-
ware Security Engineering: A Guide for Project Managers. Addison-
Wesley, 2008.

[12] T. Mitrano, D. R. Kirby, and L. Maltz, “What does privacy have to do
with it? privacy risk assessment,” in Security Professionals Conference,
2005, presentation.

[13] National Institute of Standards and Technology, “Risk management
guide for information technology systems,” 2002. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

[14] Y. Y. Haimes, Risk Modeling, Assessment, and Management, 2nd ed.
Wiley-Interscience, 2004.

[15] Statistics Canada, “Privacy impact assessment,” 2008. [Online]. Avail-
able: http://www.statcan.gc.ca/about-apercu/pia-efrvp/gloss-eng.htm

[16] Internal Revenuse Service, “Model information technol-
ogy privacy impact assessment,” 1996. [Online]. Available:
http://www.cio.gov/Documents/pia for it irs model.pdf

[17] R. R. Heckle and S. H. Holden, “Analytical tools for privacy risks:
Assessing efficacy on vote verification technologies,” in Symposium On
Usable Privacy and Security, 2006, poster.

547

iPass: An Integrated Framework for Educating,
Monitoring and Enforcing Password Policies for

Online Services
Dhananjay Kulkarni∗, Diana Ciric† and Fernanda Zulkarnain∗

∗Boston University, Department of Computer Science - Metropolitan College
808 Commonwealth Avenue, Boston, MA, USA

†Faculty of Organization Sciences - Department for Information Systems and Technologies
Jove Ilica 154, Belgrade, Serbia

Abstract—Creating an account (with username and password)
is the first line of defense for any online service. Though the
process for specifying passwords has been around, not much has
been done in implementing policies so that users can satisfactorily
create a strong, yet easy-to-remember password. Users prefer
simple passwords, but they are at a risk of being guessed
by hackers. On the contrary, companies may prefer a strong
password policy so that their resources are protected from
unauthorized access. Usability and security become conflicting
goals while implementing password policies, since there is a risk
of losing customers if the process if too cumbersome. We propose
a novel framework, called iPass, that takes multiple objectives
into account, and is tunable to customer satisfaction. Our goal
is to guide users in creating secure passwords, and remind
them to update passwords based on password strength and
usability. Our approach emphasizes on ‘education’, ‘monitoring’,
and ‘usability-aware’ enforcement of passwords. We also provide
appropriate feedback, and acknowledge user efforts in creating
passwords. The prototype we have developed is simple, practical,
and effective in addressing the problem.

I. INTRODUCTION

As part of conducting their business, online services such
as banks [1], auction sites [3], stock trading portals [12], and
news agencies [9] require users to create a username and
password before using their services. Usually the username
and password is the first line of defense against unauthorized
access to the company’s ‘resources’, while providing the
flexibility of allowing the user to access their accounts online.
However, this flexibility of accessing information and using
services online comes with a cost. The cost for the user is the
time that he/she has to spend in creating and remembering
the username and the password. The cost for the online
service provider includes implementing the password policy,
and educating the users about password usage.

Most services also require users to provide additional per-
sonal information (birthdate, sex, address, etc.) or service-
specific information (bank account details, shipping address,
SSN). Login and password, thus not only protect hackers
from obtaining personal or financial information, but also
information that a legitimate user would access and trans-
actions that could be made using that account. This means
that users should be using a password that is hard to guess,
and those that are resistant against various types of attacks.

A strong password is one that is very difficult to guess, or
hack. A simple password is one that is easy to remember,
but has a possibility of being too easy to guess. In general,
passwords should be such that they are easy to remember,
but also consistent with the password policy defined by the
organization. A secure password is one that is both, simple

and strong.
Although using usernames and password has been around

since the inception of online services, not much has been
done in providing a practical framework that can addresses
education, usability and implementation of password policies.
As we will see in the next section, this is a very ambitious
goal because it requires balancing customer satisfaction (or
usability) of the systems and security of the system – which
are often conflicting goals.

A. Motivation
Majority of Internet users have to manage on average

about 5-7 passwords [11]. Since remembering all passwords
is challenging, most users prefer to create passwords that
are simple. Also, creating a simple password is less time
consuming for the user. When accessing the service, the user
can quickly type the username and password, rather that refer
to a password written on paper (which has it’s own security
risks). Hence, at one spectrum, users have a valid reason to
choose a simple password.

Online service providers would like to enforce a strong

password policy, because systems providing these services are
vulnerable to various types of attacks [15]. It is obvious
that unauthorized access to it’s resources poses a big security
risk related to confidentiality and integrity of information. For
example, if a someone hacks into a customer account and
transfers a larger amount of money to his off-shore account,
the bank may be liable for not doing enough to protect
it’s customers. There is also the risk of a hacker using a
compromised account (for example a root account) to obtain,
or disable other valid user accounts. To mitigate such risks,
the service provided has valid incentive to impose a strong

password policy. For example, eBay [3] provides a hyper-link,
which directs the user to a help page creating a password.
Google [5] provides a ‘password meter’ that shows the strength
of a password string.

548

Since the above two motivating examples lead to conflicting
goals, there are risks involved in forcing, or not forcing a
password policy. So, what are the risks involved if the service
provider forced all users to use create a strong password,
which may be time-consuming to create, and hard to remem-
ber? We argue that customer satisfaction to using the online
service is at a risk, since most users prefer using a service
that is user-friendly. There is also a risk of losing customers
to competitors, for example, online bidding sites eBay [3] and
uBid [13]. Customers also may feel annoyed or challenged, if
several of their password choices are rejected.

This brings us to the problem of risks involved in not

forcing a password policy. Allowing users to create simple
passwords for example, is vulnerable to a dictionary attack [2],
or just guessing. Although the usability (and complexity of
remembering a password) will be improved, the security risks
involved outweigh the advantages.

B. Challenges

With more than 1.5 billion Internet users [6] it is a daunting
task to address the problem of password policies. We see this
as a 2-wall problem [14]. First, the user does not know what
is a strong password and the risks involved in not using
one. Second, the user does not know how to create a strong

password. We will discuss the challenges below.
Education: Users are unaware of the risks, and use of

simple passwords. We argue that the education should be
consistent with the password policy of the company, and allow
a user to fully understand the risks and conditions that can
make the account insecure. Second, the education should be
not as complicated to understand. For example, the use of a
password meter [5] is useful, but the user does not know why
the meter says that the password is weak or strong. Examples,
and user-assisted learning is a better approach to educate the
user on why a change in the password string may strengthen
or weaken the password.

Monitoring: Although education is the first step, the
users may still create passwords that will be easy to guess
or prone to some kind of dictionary attack. It should be
the responsibility of the online service provider to monitor
passwords, including any modifications in the future. The
challenge lies in implementing the tools, and making sure
that the tools can identify potential vulnerabilities in user
passwords. With appropriate feedback, such vulnerabilities can
be eliminated by the user by modifying the password.

Balancing customer satisfaction and security goals: Us-
ability of the system (in terms of the customer satisfaction)
and the security policy of a company are conflicting goals.
The challenge is to create a balanced environment, where a
user will learn, and in this process the user will be willing to
take measures to secure the password. Mere forcing a policy
has disadvantages as we have pointed out earlier. We believe
that the security goal can be achieved by combining education,
monitoring and providing appropriate feedback to the user to
improve the usability of the system.

Fig. 1. The iPass Framework

II. OUR APPROACH

Figure 1 shows the conceptual model of our iPass frame-
work. Many Internet users are unaware of the meaning or
need for strong passwords, so the first step toward successful
implementation of password policy is education. Through
education, and display of the policy and relevant guidelines
conveniently to the user, we try to make users aware of how
passwords can be secured. Our goal would be to guide a user
to creating a secure password - one that is strong and easy to
remember. Monitoring the password and reporting potential
vulnerabilities is also important, since hackers are known
to stay one step ahead in guessing passwords. Our goal in
monitoring is two fold, making sure that the passwords comply
with the policy, and giving a feedback to the user based on the
current strength (and vulnerabilities) of the password. Since
this framework addresses multiple conflicting goals (usability
and the security of passwords), we extend the approach to
make it tunable to user satisfaction level. Thus, our framework
can control user satisfaction and help maintain system security
simultaneously. We describe the details in following sections.

A. Educating Users about Password Policy
As shown in the iPass framework, the display of policy,

guideline and standard all are the educational part of our
approach. The password policy and the standards remain static
and can be developed off-line. In many organizations, the
policy development is done is various stages. It is important to
display the main parts of the policy (the objective, audience,
approvals, and definitions) on the registration page itself. This
would help not only insiders, but also outside users to know
that the company is serious about the password policy.

549

The guidelines are the most important part of helping a
user to create a secure password. In our approach, we first
display a default guideline, which may include examples of
some bad, simple, and strong passwords. It will also included
2-3 examples of secure passwords that are consistent with the
password policy. At least 1 such password is just consistent
with the standard, which means that it is sufficiently strong

and also meets the standard shown to the user.
It also worth noting that the guidelines are not static,

they are updated as a function of the user input. We dy-
namically update the guidelines to ‘guide’ the user towards
creating a secure password. For example, if the user tried
to create an initial password (say ‘tylayhw’) which has
all the requisite characters, but misses a digit or a special
character, then we update the guidelines page. In this up-
dated guidelines, we display possible choices for a secure

password which are derived from the user-input pwd (for
example, ‘tylayhw19@’,‘t2ylayhw@’). We believe that
this technique, recognizes the user’s efforts in creating pass-
words, contrary to the approach where a password maybe just
rejected since it did not meet the standards. By observing our
updated guidelines, the user can easily pick one of the secure
passwords, or construct one in his or her mind that will be
simple, yet secure.

B. Monitoring Password Strength
Since our goal is to assure that all user passwords are

secure, monitoring them and validating that they conform
to the password standard becomes a necessity. The goals of
a password validator used to monitor user-created passwords
are many. First, it must check if the given password has the
minimum number of characters, digits, and special characters.
Second, the validator should check if any substring is a
dictionary (or colloquial word), since all such passwords are
vulnerable to dictionary attacks. Third, the validator may
also check if the password includes other information that is
provided by the user, for example last name, social security
number, or place of birth. Such information, though not
available in a dictionary, may very well be obtained by social-
engineering techniques and later used to hack passwords. Only
when the given password passes all these tests, pwd can be
labeled as secure.

The secondary goal of the monitoring process is to de-
termine the strength of a password. Any scheme, such the
one developed at Microsoft [10] or one used by Google
Accounts [4] may be used. The objective is to rate the user
password on a scale, say 1-10 that indicates how difficult
it is to guess the password. In our work, 10 indicates the
maximum strength. As we explain in the next section, this
rating or strength is used to assist in two ways. First, if the
password strength is below a certain threshold (say τ) then
the password in not secure. In this case we allow to user to
update the password string as explained above, and guide the
user towards a more secure password. Secondly, this rating can
be used for the continued security of the passwords, even after
they are successfully created. For example, passwords that are
secure but not rated high enough can be considered potential

passwords that should be updated by users in the recent future.
Stronger passwords (for example those rated as 10) may be
allowed to be retained for a longer duration of time. Our work
is the first in providing such flexibility in updating passwords.

C. Usability-aware Enforcement
As discussed earlier, security of a system and usability

(or customer satisfaction) are conflicting goals. Most services
that a relatively secure have additional levels of security,
just to make sure that only legitimate users are accessing
their resources. For example, Bank of America [1] employs
‘passcode’, a security ‘image’, and a ‘security question’ for
user authentication. Discussion of their scheme is beyond the
scope of our work, but it is easy to see that a user needs
to spend additional time every time he needs to use the
service. We use such user-interaction time and experience as an
abstract measure of customer-satisfaction level. Other metrics,
such effectiveness of user-computer interaction may also be
used.

After establishing the strength of a secure password, we
wish to estimate when is the next time that the user should
update the password. This estimation is important for two
reasons. Firstly, we want to keep the passwords secure, and
update them as often, so they can remain resistant against
guessing or brute-force attacks. Secondly, we want do not
wish to request the users to update passwords too often. Re-
questing passwords to be updated, especially using a elaborate
framework is cumbersome and will only result in lowering
the customer-satisfaction. For this reason, we let the user
participate in how often they should be reminded. In current
work, we just estimate that the user be reminded of password
change after K× (σ/C) days, where K is a constant, σ is the
strength of the password, and C is the user-specified customer-
satisfaction. We allow the user to specify C at the end of
creating his or her new account. Our implementation section
makes this process more clear.

For example, assuming K = 100, a user who created a new
password with σ = 5 and C = 10, will be reminded after
50 days that the password needs to be updated. Another user,
who created a password with σ = 5 and C = 5 would be
reminded after 100 days.

This technique is in lieu with our goals, since we do not
wish to annoy users (especially users that have shown low
customer-satisfaction) by requesting password updates often.
Remember that online service providers are at a risk of losing
the customers if they are dissatisfied, and more often than not,
the competitors are happy to accept new users. Our technique
is simple, yet effective in balancing the security and usability
of the system.

We also allow the user to override the above estimate, and
specify the number of days that he or she should be reminded
for updating passwords. For example, some users may know
that their password is secure enough, yet, they would like to
update it often. In this case the user would ignore the estimate,
and just specify the number of days after which a reminder
will be set out. This makes the job of the framework even
easier, since the user himself has determined the current and
future usability of the system.

550

III. DESIGN AND IMPLEMENTATION

We have designed and implemented a prototype imple-
mentation of our iPass framework. Currently, this service is
hosted at [7], and we encourage you to browse the service.
You will notice that the 5 parts of the framework: (a) the
policy, (b) guidelines, (c) standard, (d) the explanation of
a strong password, and (e) the registration form are all on
the same page. As stated earlier about iPass framework, we
wish to educate the user while the password is being created.
This simple approach of displaying, and providing appropriate
feedback is effective. The question: ‘Why is it good to have
a strong password?’, is just to make the user aware of the
meaning, and the risk involved if a strong password is not
used. Though our current implementation is very basic, we
foresee that one can include other details here, but not limited
to the following: a link to statistics about how many people
use strong or weak passwords, what is the average rating of
the passwords used, or an explanation of dictionary attack.

We used the following standard:
• Password must be between 8-15 characters
• Password must have 1 or more symbols: @, #, $, %, &
• Password cannot have 3 consecutive number such as

‘123bu’, ‘angel678’, etc.
• Password cannot contain white spaces
Our sample policy, guidelines and standards are also dis-

cussed on the webpage [7]. Apart from the guidelines, we
also dynamically generate a set of possible secure passwords
(only if the first password entered by the user does not qualify
as being secure). For example, if the first password entered
is ‘qijwaethe’ then we display the guideline: ‘You can make
your password secure by adding a digit or a special symbol,
example ‘qijwaethe@’ will make it secure’. Passwords that
do conform to a given standard are also given appropriate
feedback. For example, if the user provided ‘abc123hij456’
then we display the guideline: ‘Consecutive characters or digits
are not allowed. Please consider revising the password string.
For example, ‘a1b2c3h4i5j6’ would be a secure password’.

Currently, we have developed a validator that checks that
the given password meets the standard, or not. The validator is
also able to perform sanity checks to ensure that the password
does not contain personal information, such as last name, first
name, social-security number or the credit-card number. Our
validator is extendable, and we plan to add more rules to check
for if passwords contain commonly obtainable information,
such as spouse’s name or city name. Another possibility is to
use our framework along with LC5 [8], which is a popular
password auditing and recovery application.

Once we accept the password, we take the user to a page
that lists the password strength, ranging between 1-10. We
also ask the user the question: ‘What is the satisfaction level
during the account registration phase?’ The user is allowed to
enter a number between 1-10, where a higher value indicates
better satisfaction. Once the user clicks the submit button,
we estimate the number of days after which we would like
to remind the user about changing the password. The user
may over-ride this estimate by directly specifying the number
of days. If the user specifies, then we assume that the user

indicates his choice based on the experience he has had during
the registration process. Customer with good satisfaction-level,
for example, would not mind getting reminded after 6 months.
Customers who do not wish to go through this process more
often, would opt for a longer (for example, 365 days) as a
reminder option. We plan on using some survey statistics, and
techniques in human-computer interaction to derive a more
accurate estimate.

As stated above, a password is accepted only if it meets the
standards. This we believe is a very important requirement
for any online service, and hence iPass enforces the policy
by default. Our framework does more than this, because we
continually monitor and remind users to update passwords, not
when they forget the password, but based on iPass estimation.
Since we include user-satisfaction as well as password strength
in sending the reminders, we also reduce the possibility
of brute-force attacks. As passwords are changed more fre-
quently, it becomes harder for the hacker to guess a target
string. Hence, iPass does balance the security requirements as
well as the customer-satisfaction by what we call usability-
ware enforcement – we do not enforce too strictly if we feel
that the usability might be affected. Our study shows that this
is indeed a better model than forcing users. We are conducting
another survey in this direction, and the results will be posted
online, which the new users can also consult. For example,
average customer-satisfaction of users who have chosen a
secure password.

IV. CONCLUSION

It is important to enforce policies that will make it manda-
tory to use strong passwords, and hence mitigate the risks of
dictionary or brute-force attacks. However, the process needs
to provide satisfactory customer satisfaction (or usability),
else there is a risk of losing valuable customers. We have
developed a novel framework, called iPass, which can balance
usability and security goals. Our approach emphasizes that
‘education’, ‘monitoring’ and selectively ‘reminding’ the users
is an effective way to enforce password policy. By encouraging
user participation, and acknowledging their efforts in the
password creating process, the users would be more consistent
in creating and maintaining secure passwords.

REFERENCES

[1] Bank of america, http://www.bankofamerica.com.
[2] Dictionary attack (wikipedia), http://en.wikipedia.org/wiki/dictionary attack.
[3] ebay, http://www.ebay.com.
[4] Google accounts, https://www.google.com/accounts/newaccount.
[5] Google, http://www.google.com.
[6] Internet world stats, homepage, http://www.internetworldstats.com/stats.htm.
[7] ipass project, http://www.geocities.com/ipass.project/.
[8] L0phtcrack (wikipedia), http://en.wikipedia.org/wiki/l0phtcrack.
[9] The new york times, http://www.nytimes.com/.

[10] Password checker,http://www.microsoft.com/protect/yourself/password.
[11] Password research, http://passwordresearch.com/stats/statistic246.html.
[12] Td ameritrade, http://www.tdameritrade.com.
[13] ubid, http://www.ubid.com.
[14] S. Greene. Security Policies and Procedures: Principles and Practices

(Prentice Hall Security Series). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2005.

[15] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

551

Improving Natural Language Specifications with
Ontologies

Sven J. Körner
Institute for Programming and Data Structures

University of Karlsruhe

76128 Karlsruhe, Germany

Email: koerner@ipd.uka.de

Torben Brumm
Institute for Programming and Data Structures

University of Karlsruhe

76128 Karlsruhe, Germany

Email: brumm@ipd.uka.de

Abstract—User requirements are usually written in textual
form. Dealing with natural language textual specifications is
complex. Analysts 1 have to cover all aspects of the requirements
engineering process when working with the customer, such as
work flows, psychological issues, and linguistic problems. We
show how analysts can be supported during requirements elici-
tation and documentation. We present an approach to improve
natural language requirements specifications using ontologies.
We demonstrate by several examples from real requirements
how an ontological reasoner called RESI 2 can uncover gaps,
inaccuracies, ambiguities and ask the user to clarify them. In
many cases, it supports the analyst by giving a small number
of reasonable suggestions to choose from. The implementation of
RESI is currently in progress.

I. INTRODUCTION

Natural language helps to align the user’s understanding

of the requirements with the analyst’s own viewpoint. What

the requirements originator really meant and the "facts" that

can be derived from the statements that were given are

not always congruent [1]. Incomplete and faulty requirements

emerge not only during the elicitation of requirements, but also

during requirements analysis and modeling [2]. Requirement

specifications often need to be revised and rewritten during one

of the many iterations in the software development process.

Focusing on the improvement of requirements in the first

stages of the software development process saves time and

improves the final results of a software [3]. So far, this is

an inter-disciplinary and human centered process. Improving

and accelerating the manual processes with machine support

is desirable.
This paper represents the concept of a machine supported

tool which helps the analyst to improve natural language

specification during the authoring process. We present as

proof of concept that the automatic creation of UML models

from natural language specifications can be enhanced with

“common sense” from an ontology. Since natural language will

stay the predominant kind of requirements notation for some

time [2], [4], Natural Language Processing (NLP) is a valid ap-

proach for the requirements engineering process. The deficits

1A requirements analyst is a person who knows how to ask questions
for different stakeholders, has experience in working with customers and the
management of existing requirements, etc. The characteristics a perfect analyst
should have are explained in [1].

2Requirements Engineering Specification Improver

of NLP are the understanding and processing of semantics and

their correlating side effects. Therefore, including ontologies

for semantic knowledge integration into the NLP process is

an obvious improvement. Every ontology contains a structure

of world knowledge (or domain knowledge) which can solve

some of the problems in the requirements engineering process

as listed in Section V.

We are currently developing a generic solution called RESI

to query various ontologies such as WordNet [5], Research-

Cyc [6], and ConceptNet [7] in the correct context during NLP.

This approach supports the analyst while examining a large

number of requirements.

Preliminary results show that ontologies can improve the

authoring and elicitation process of natural language require-

ments specifications [8], [9]. As requirements specifications

are mostly huge document bundles which sometimes take

days, weeks, or months to examine, a system that supports

the analyst during the requirements engineering process could

be a real problem solver. This paper describes a tool which can

improve natural language requirements during the automatic

modeling process.

The following Section II covers the related work. Some

problems that occur and need to be solved during the manual

requirements elicitation process are explained in Section III

via examples. Section IV shows how RESI works and demon-

strates how certain issues can be solved. An abstract discussion

about well-known problems in requirements engineering is led

in Section V. We point out how we plan to answer these

problems with RESI. A case study follows in Section VI and

the paper ends with the conclusion in Section VII.

II. RELATED WORK

Requirements engineering is concerned with the elicitation

of high level goals. These goals are to be achieved by the

envisioned system [10]. Requirements engineering includes

the refinement of such goals and their operationalization

into specifications of services and constraints. Today, several

approaches use domain specific ontologies to cope with the

problems that occur in the requirements engineering pro-

cess [11], [12], [13], [14], [15]. Some of these projects research

the application of formal specifications. They use ontology

based systems to correctly classify textual information that has

552

been delivered from stakeholders. Other projects for example

make sure that the correct (domain specific) wording is used

when the specification documents are elicited from different

stakeholders. Some projects have a narrow field of application

and are specified for certain conditions and use cases [16], [7].

Until today, real world applications as listed in [17] have not

yet adopted many of the research approaches.

In 2000, Nuseibeh and Easterbrook [4] drafted a road map

which shows future research areas to cope with the problems

in requirements engineering. They enumerate especially the

development of new techniques and the bridging of the gap

between contextual inquiry and formal representations.

In 2007, Cheng and Atlee [2] wrote a detailed summary

about the requirements engineering’s state of the art. They

categorize the various topics and try to predict the future of

requirements engineering research. Since requirements engi-

neering consumes a lot of time during the software engineering

process and has long-term effects to every following stage

of the development process, focusing on its improvement is

desirable.

Complex and time consuming manual tasks have not yet

pervasive tool support [2]. Automating parts of this procedure

could not only speed up the processing times of requirements

but also decrease error rates.

Cheng and Atlee conclude that it is important to realize that

requirements define the problem, not the software itself. They

show that requirements engineering activities – in contrast

to other software engineering activities – are more iterative,

involve more players who have more varied backgrounds

and expertise, require more extensive analyses of options,

and call for more complicated verifications of more diverse

components (e.g. software, hardware, human).

As a possible solution, formal representations of natural

language formalize the semantics of statements. This is im-

possible without a loss of usability or information. Formal

specification languages are often perceived as difficult to

use by practitioners [18]. Formal approaches need especially

trained and skilled analysts to formalize natural language

requirements [19]. Also after the formalization, it is hard

for stakeholders to take part in further discussions about

the requirements. They are not trained to think, act, and

talk in formal representations like predicate logic or similar

techniques [20]. So far, there is almost no evaluation of how

well requirements engineering research reflects in industrial

applications.

On the other hand, Fantechi et al. [21] explain that natural

language is the perfect vehicle to represent use cases. No other

language is as expressive as natural language. The use of

natural language is also encouraging to end users who can

easily follow and validate the use cases.

Robinson and Pawlowski [22] present empirical studies that

show the difficulties and communication breakdowns that re-

quirements engineering processes are frequently experiencing.

Requirements inconsistency is a critical driver of the complete

requirements engineering process and the requirements dialog.

Therefore, many projects focus on the disambiguation of

natural language specifications [23], [24]. As Kiyavitskaya et

al. mention, synonyms in specifications are mostly detected

through the human analyst’s domain knowledge [25].

III. EXAMPLES OF ONTOLOGY IMPROVEMENTS

Domain and world knowledge help humans to process

requirements, but understanding requirements is still complex.

Problems occur not only when there is a lack of domain

specific knowledge, but also when special knowledge and

expertise overlap. Then stakeholders misunderstand each other

without even noticing.

A. The Meaning of a Sentence

Consider the following sentence for example:
� �

The gain should be doubled.
� �

This sentence includes three major problems within five

words.

1) Exceptional Case: The modal operation does not cover

the exceptional case. The sentence does not describe what

needs to be done if the gain is not doubled.

2) Homonyms and Polysemy: The word gain does have

several meanings. Depending on the context and the stake-

holders involved in the requirements elicitation process, it

could mean gain as in “financial revenue” (this is how an

MBA would interpret it) or gain as in “tube voltage” (as an

electric engineer would interpret the sentence). This is called

lexical ambiguity. Depending on background and education,

the analyst might realize the knowledge gap and the fact that

gain does mean something entirely different in this case. But

what happens if not? It is important to distinguish the use of

such words and realize their meaning.

3) Quantity: The sentence brings in the quantity double.

It is not correctly quantified since we cannot decide whether

it means exactly 2.0, that is a 100% increase. Maybe double
also applies when next quarters revenue numbers reach any-

thing from 180% to 220% of the comparison value.

B. Disambiguation with Semantics

A short example:
� �

(1) Tom saw the plane flying.
(2) Tom saw the mountains flying.

� �

Sentence (1) states the fact that the plane is flying while

being seen from a spectator on the ground. Sentence (2)

resembles exactly the same structure as its predecessor. The

sentence bears several ambiguities which need to be resolved

when working with requirements. Ontology knowledge can

enhance this process by suggesting the user which aspects

are more relevant and by reformatting the sentence. In the

first sentence, the object plane is flying and the subject Tom
seeing. In the 2nd sentence, the verb flying (most likely)

references the subject Tom and not the object mountains.

In this case, distinguishing the difference using parsers does

not work. Instead, ontologies know that mountains do not fly,

but planes do.

553

+fly()

Plane

+see()

Human Tom : Human

Mountain

+see()
+fly()

Human Tom : Human

* 1

sees

* 1

sees instance
Of

instance
Of

vs.
A
B

Fig. 1. Class Diagram

When modeling the above sentences in UML, the resulting

class diagram of the first sentence looks like Figure 1A com-

pared to the 2nd sentence in Figure 1B. Finding the meaning of

words in their sentence structure is vital to software projects,

especially when the analyst is not a domain expert. This is

often the case, especially in times of offshoring.

C. Types of Ambiguity
As listed in Ceccato [26], there are many different types

of ambiguities: Syntactic ambiguity occurs when grammatical

structures lead to a different meaning of a sentence.
� �

Porcelain egg container.
� �

Does this describe an egg made out of porcelain, or is it the

container that is made from porcelain?
Semantic ambiguity occurs when a sentence has more than

one way of reading it. Take the the following sentences for

example.
� �

(1) Every man loves a woman.
(2) I saw a man on the hill with a telescope.

� �

Does sentence (1) mean that all men love the very same

woman or that each man loves “his” woman. And who carries

the telescope in sentence (2)? Who is standing on the hill?

There are many possible meanings (permutations) for each of

the above sentences.

D. Coherence Checking
Other problems arise with references that stem from context

knowledge. Checking coherence for example looks like this:
� �

Tom is a man.
Larry is a cat.
He lifts him up and puts him in his basket.

� �

The meaning of who he is becomes instantly clear to a

human observer. This is due to the background information

humans gather from their own world ontology. A query to

an ontology such as ResearchCyc [6] would result in the

information that human beings weigh anything between 10

to 250 times as much as regular domestic cats. Therefore it is

not possible for the cat to lift the human, but vice versa. Of

course the supporting system would have to ask the user to

specify what kind of cat the text is referencing to. It makes

a number of suggestions about the most likely case from what

it already knows from the ontology. If the cat is a tiger, this

might result in a different interpretation.

TABLE I
THEMATIC ROLES AND THEIR MEANING

Thematic Role Explanation
AG The acting person or thing executing the action.

ACT The action, executed by person or thing.

PAT Person or thing affected by the action or on

which action is being performed.

HAB Possession or belonging; person or thing being

received or passed on by person or thing.

POSS The (current) owner of an element.

The “possessor”.

Write Spec Examine
Specs

Document
as Specs

Discuss
Specs

Requirement
Model

Requirements Documentation Analysis

Adjust
Specs

Elicitate
User Needs

Fig. 2. Manual Requirements Engineering Process

IV. THE RESI PROCEDURE

As shown in related work, it is important to “formalize

the process without formalizing it”. This enables users to still

understand the specification while machines can process the

input. We use semantic annotation to enrich the specification

with additional information [8], [9].

A. Formalizing Textual Specifications through Annotation

Semantic annotation is done by using thematic roles [9].

Thematic roles describe the role of each element 3 in a

phrase. A short excerpt of the 70 thematic roles [27] we are

working with can be found in Table I. This additional semantic

information can also be used to query the ontology with its

domain or world knowledge. The results support the analyst

during the requirement creation process.

The manual process depicted in Figure 2 shows the stages of

a requirements documentation process as it is today: First the

user needs are elicitated. Then they are converted into require-

ments, documented as a specification, and later examined. The

analysis most likely leads to adjustments in the requirements

and their documentation. The process is iterative and after

the requirements pass the quality gate, they go back to stake-

holders where they need to be discussed and approved. These

requirements form the basis of the requirement models which

are passed on to other branches involved (e.g. development,

quality assurance).

3In linguistics, this is called a constituent. A constituent is a word or a
group of words that functions as a single unit within a hierarchical structure.

554

Write Spec Annotate
Specs

Elicitate
User Needs

Generate
UML

Requirement
Model

Requirements Documentation Ontology

Adjust Specs
Gr

ap
h

Re
pr

es
en

ta
tio

n

RE
SI

Re
qu

ire
m

en
ts

 E
ng

in
ee

rin
g

Sp
ec

ifi
ca

tio
n

Im
pr

ov
er

OntologyA

OntologyB

OntologyC

OntologyD

Examine Specs

Fig. 3. Requirements Engineering supported by Ontologies

The new improved process that RESI uses is shown in

Figure 3. It is semi-automated and uses the text as well as

the semantic annotation of the specification. The semantic

annotation leads to an altered specifications which is enriched

with additional information. The specification is then compiled

into a graph system which makes the specification machine

readable. RESI has an interface to the graph system and is

able to communicate bidirectionally.

B. Ontology as Magic Box

We are currently implementing RESI to run natural language

queries on several ontologies simultaneously (see Figure 3).

Depending on whether a domain specific knowledge base

or a certain lexical ontology is necessary to retrieve the

corresponding information, RESI will query the respective

sources and take the corresponding action. For example, this

could be a change in the sentence structure or a replacement

of a certain term or subject. Depending on the type of the

results, it is possible that the system cannot decide which

action to take. User interaction via a graphical user interface

is necessary. A collection of the type of queries that can be

solved with RESI is listed in Section V.

C. Closing the Loop

The results RESI gathers from the different ontologies

lead to changes in the graph. These improvements are fed

back to the graph system (see Figure 3). The altered graph

represents an improved specification which is more likely to

support the development team in the software creation process

since many standard obstacles of the requirements engineering

process have been removed already. After the text has been

formally represented in the graph, it is possible to create UML

specific XMI files from this graph [28]. This ensures the direct

connection between the natural language specifications and

their model representations.

V. CHALLENGES AND SOLUTIONS

There are many challenges when supporting the human

decision making with ontologies. According to Rupp [29], the

most important problems with natural language specifications

lie in:

A. Nominalization

Processes are sometimes hidden in a nominalization which

needs to be explicitly specified for a correct requirement. E.g.

the noun notification from the verb notify. This nominalization

could be replaced by the explicit phrase send message from A
to B which includes information XYZ.

B. Incomplete Process Words

Process words (such as verbs) need to be written in active

voice. If passive voice is used, an actor (thematic role AG,

see Table I) needs to be specified. Also all participants and

circumstances involved in the process need to be stated. RESI

checks the valency and ensures that all possible configurations

are given indeed. It checks that n-ary predicates have all their

n references.

C. Nouns without Reference Index

Not only process words, but also nouns need to be refer-

enced and specified completely so that they do not represent

super groups or sub groups of certain sets. The focus is

especially on the articles a and the which are replaced with

specific declarations like every, five, nobody, none, ...

after involving the user via the graphical interface.

D. Incomplete Specified Conditions

When using conditional branching, the system needs to

make sure that every condition does have its full set of possible

branches to consider. It needs to check that every if-branch has

an else-branch. Correctly specifying these conditions elimi-

nates the problem of implicit knowledge which could lead to

fatal assumptions and errors.

E. Modal Operators Expressing Necessity

Modal operators express conditions which ought to happen.

These condition must not appear without the definition what

to do in the exceptional case when the desired behavior cannot

be met.

F. Implicit Assumptions (Presumptions)

Conducting the requirements elicitation and engineering

process often confronts the analyst with the curse of
knowledge. It leads to implicit assumptions on requirements

and their aspects which are followed by misinterpretations.

Finally, it could lead to omitting valuable information during

the requirements description. RESI needs to make sure

that relations between objects are adequately specified. For

example: Every property (thematic role HAB) must have an

owner (thematic role POSS) assigned.

All the above challenges can be addressed by RESI.

For evaluation purposes, the system would also have to

fulfill other functions. Since the system makes changes

on the natural language specifications itself (or its model

representation, to be precise), the changes need to be

traceable. The specification needs to be legible after the

improvements to the model have been made. This ensures

555

Subject

Hardware Human

«interface»
Role

implements

SubjectHardware Human

«interface»
Role

implements

A B

Fig. 4. Partial UML Representation of OMG’s “Actor”

the usability for the stakeholders. The queries deliver results

from various ontology sources to one specific problem. The

results of these queries need to be combined and presented to

the analyst in a fast and easy way. This turns into a problem

if the results contradict each other. When using ontology

systems with different degrees of generality, this behavior is

not uncommon. A meaningful and sensible set of parameters

for the treatment of queries and their results is required.

VI. CASE STUDY

This section shows examples from real world specifications.

For an evaluation of the concept proposed in this paper, we

took several freely available software specifications and dis-

cussed them in a group of requirements analysts. We realized

that there are various viewpoints to certain aspects. We argued

about the meaning of the terms in the sentences and monitored

the decision making mechanism used in our discussions. After

the specifications had been reviewed, we checked our list of

decisions and compared them to the information we retrieve

from various ontologies. By applying the correct queries, many

question can be answered with ontologies. Exemplary abstracts

of the used specifications are listed below.

A. Object Management Group UML Specification
The Object Management Group’s UML specification [30]

describes the figure “Actor” in the class description of use

cases (see paragraph 16.3.1) as the following:
� �

(1) An Actor models a type of role played by an
entity that interacts with the subject [...],
but which is external to the subject (i.e.,
in the sense that an instance of an actor is
not a part of the instance of its
corresponding subject).

(2) Actors may represent roles played by human
users, external hardware, or other subjects.

� �

The first sentence has the verb interact. It is not

clear whether it is type of role that interacts or the

entity. RESI asks the user which role to denote to the

corresponding objects. The second sentence mentions the

other subjects. It is not clear whether human users
and external hardware are also subjects. If they are,

Figure 4A would be a correct UML representation. Otherwise

Figure 4B could be a correct solution. The user has to be asked

which deduction is feasible.

B. W3C HTML Specification

The W3C 4 states the following in the HTML specifica-

tion [31]:
� �

(1) An HTML form is a section of a document
containing normal content, markup, special
elements called controls (checkboxes, radio
buttons, menus, etc.), and labels on those
controls.

(2) Users generally "complete" a form by modifying
its controls (entering text, selecting menu
items, etc.), before submitting the form
to an agent for processing (e.g., to a Web
server, to a mail server, etc.)

(3) Users interact with forms through
named controls.

� �

The verb contain in sentence (1) could reference

section or document. When reading this in a specifica-

tion, RESI has to ask which reference to take. The specification

has a quote “complete”. Its preposition by denotes that

the term modifying its controls specifies the term

complete in more detail. Quotes are non-specific and ought

not to be used for the sake of precision in sentences. RESI

points out this flaw to the user.

C. Ludo Specification

The textual specification of the game Ludo can be found

in [32]. We list a short excerpt of the specification here:
� �

(1) There are four players in a cyclic order:
red, blue, yellow, and green.

(2) If one of the following moves is possible,
the player must choose one

� �

Humans realize that the colors in sentence (1) could be

modeled as a single attribute (e.g. color) with an enumeration

of values (red, blue, yellow, green). Ontologies know colors.

Therefore RESI does not model four different attributes but

recommends to group these attributes. The approach is obvious

in this case, but becomes a lot more valuable once the analyst

is not a domain expert. This disadvantage could be alleviated

with a system that reads ahead and hints to conceptual

relatedness as shown in [8].

The second sentence states If one [...] is possible
and shows a familiar problem that most specifications possess:

incomplete conditions. We worked out the details of incom-

plete conditions in Section IV-C and Section V-D. RESI should

raise the question “What happens if none of the moves are

possible?”.

VII. CONCLUSION

The area of requirements engineering is important to any

project. Until today, research focuses on improving the error-

prone and complex manual processes that humans have to

carry out. The elicitation of requirements and the review of

the results still lie in the hands of the analyst.

Software systems have huge requirement collections that

span hundreds if not thousands of pages. The probability that

4World Wide Web Consortium

556

facts are overlooked, misunderstood, or not completely spec-

ified is high. Many projects tend to go over time and budget

because requirement specifications are faulty or incomplete.

Most of the times these errors emerge at a later stage in the

software development process and lead to immense costs for

change requests. Formal approaches try to deliver a solution,

but turn out to be quite complex to use.

User adaption is very important: all kinds of stakeholders

with different levels of background knowledge need to interact

during the requirements elicitation and engineering. Require-

ments are the interface between the expert and the customer.

If we want to make sure that the customer can understand the

requirements, we need to provide textual specifications which

can be revised by the customer yet provide the requirements

analyst and the development team with the necessary informa-

tion for their work. Speeding up and improving this procedure

by using ontology based recommender systems such as RESI

seems a logical consequence. Our studies have shown that

this solution is feasible and we are already implementing the

software system that addresses the issues listed in this paper.

RESI also supports the analyst by asking questions which

limits the risk of overseeing aspects of the specification.

In the future, research in artificial intelligence will improve

the algorithms for deduction as well as the speed and coverage

of ontologies. The number of semantic applications increases

and storage space and memory needed for the successful

application of ontologies and their functions become more

affordable.

ACKNOWLEDGMENT

AUTOMODEL is funded by ec4u expert consulting ag,

Germany in cooperation with the University of Karlsruhe,

Germany.

REFERENCES

[1] C. Rupp and R. Goetz, “Psychotherapy for System Requirements,”
Proceedings of the Second IEEE International Conference on Cognitive
Informatics (ICCI ’03), 2003.

[2] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements
Engineering,” in Proc. Future of Software Engineering FOSE ’07, 23–25
May 2007, pp. 285–303.

[3] C. Rupp, “Requirements and Psychology,” IEEE, May/June 2002, vol.
IEEE SOFTWARE, 2002.

[4] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a road-
map,” in ICSE ’00: Proceedings of the Conference on The Future of
Software Engineering. New York, NY, USA: ACM Press, 2000, pp.
35–46.

[5] G. A. Miller, C. Fellbaum, R. Tengi, P. Wakefield, H. Langone, and B. R.
Haskell, “WordNet.” [Online]. Available: http://wordnet.princeton.edu/

[6] Cycorp Inc., Cyc / ResearchCyc, Cyc.com. [Online]. Available:
http://cyc.com/

[7] C. Havasi, R. Speer, and J. Alonso, “ConceptNet 3: a Flexible,
Multilingual Semantic Network for Common Sense Knowledge,”
in Recent Advances in Natural Language Processing, Borovets,
Bulgaria, September 2007. [Online]. Available: http://web.media.mit.
edu/~jalonso/cnet3.pdf

[8] S. J. Körner and T. Gelhausen, “Improving Automatic Model Creation
using Ontologies,” in Proceedings of the Twentieth International Confer-
ence on Software Engineering & Knowledge Engineering, Knowledge
Systems Institute, Ed., Jul. 2008, pp. 691–696.

[9] T. Gelhausen and W. F. Tichy, “Thematic Role Based Generation of
UML Models from Real World Requirements,” in Proc. International
Conference on Semantic Computing ICSC 2007, 2007, pp. 282–289.

[10] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing conflicts
in goal-driven requirements engineering,” vol. 24, no. 11, pp. 908–926,
Nov. 1998.

[11] H. Kaiya and M. Saeki, “Ontology Based Requirements Analysis:
Lightweight Semantic Processing Approach,” in Proc. Fifth Interna-
tional Conference on Quality Software (QSIC 2005), 19–20 Sept. 2005,
pp. 223–230.

[12] ——, “Using Domain Ontology as Domain Knowledge for Require-
ments Elicitation,” in Proc. th IEEE International Conference Require-
ments Engineering, 11–15 Sept. 2006, pp. 189–198.

[13] M. Saeki, “Ontology-Based Software Development Techniques,” ERCIM
News, vol. 58, pp. 14–15, 2004.

[14] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “An ontology-based
approach for traceability recovery,” 2006.

[15] W. Meng, J. Rilling, Y. Zhang, R.Witte, and P. Charland, “An On-
tological Software Comprehension Process Model,” 3rd International
Workshop on Metamodels, Schemas, Grammars, and Ontologies for
Reverse Engineering (ATEM 2006). October 1st, Genoa, Italy, 2006.

[16] H. Liu and P. Singh, “ConceptNet - a practical commonsense reasoning
tool-kit,” BT Technology Journal, vol. Vol 22, 2004. [Online]. Available:
http://larifari.org/writing/BTTJ2004-ConceptNet.pdf

[17] Volere, “List of requirement engineering tools,” 2009. [Online].
Available: http://www.volere.co.uk/tools.htm

[18] S. Konrad and B. H. Cheng, “Facilitating the Construction of Spec-
ification Pattern-based Properties,” IEEE International Conference on
Requirements Engineering, pp. 329–338, 2005.

[19] A. Pease and W. Murray, “An English to Logic Translator for Ontology-
based Knowledge Representation Languages,” IEEE 0-7803-7902-0/03,
pp. 777–783, 2003.

[20] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated Con-
sistency Checking of Requirements Specifications,” ACM Trans. Softw.
Eng. Methodol., vol. 5, no. 3, pp. 231–261, 1996.

[21] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of Linguis-
tic Techniques for Use Case Analysis,” IEEE International Conference
on Requirements Engineering, p. 157, 2002.

[22] W. N. Robinson and S. D. Pawlowski, “Managing requirements
inconsistency with development goal monitors,” vol. 25, no. 6, pp.
816–835, Nov.–Dec. 1999. [Online]. Available: http://www.cis.gsu.edu/
~wrobinso/papers/TSE99.PDF

[23] L. Goldin and D. M. Berry, “AbstFinder, A Prototype Natural Language
Text Abstraction Finder for Use in Requirements Elicitation,” Automated
Software Engg., vol. 4, no. 4, pp. 375–412, 1997.

[24] C. Denger, D. M. Berry, and E. Kamsties, “Higher Quality Requirements
Specifications through Natural Language Patterns.” Los Alamitos, CA,
USA: IEEE Computer Society, 2003, p. 80.

[25] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications,” Requir. Eng., vol. 13, no. 3, pp. 207–239,
2008.

[26] M. Ceccato, N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry,
“Ambiguity Identification and Measurement in Natural Language Texts.”
[Online]. Available: http://eprints.biblio.unitn.it/archive/00000727/

[27] T. Gelhausen, B. Derre, M. Landhäußer, T. Brumm, and S. J.
Körner, “SaleMX Project Website - the Thematic Roles of SALE,”
2008. [Online]. Available: http://svn.ipd.uni-karlsruhe.de/trac/mx/wiki/
MX/SALE/ThematicRoles

[28] T. Gelhausen, B. Derre, and R. Geiss, “Customizing GrGen.NET
for Model Transformation,” in GRaMoT ’08: Proceedings of the 3rd
International Workshop on Graph and Model Transformation. Leipzig,
Germany: ACM, May 2008, pp. 17–24. [Online]. Available: http://www.
ipd.uka.de/Tichy/uploads/publikationen/180/gramot2-gelhausen.pdf

[29] Chris Rupp & die SOPHISTen, Requirements-Engineering und Manage-
ment, 4th ed. Carl Hanser Verlag, 2006.

[30] Object Management Group, “Unified Modeling Language:
Superstructure Version 2.1.1 16.3 Class Description 16.3.1 Actor,” PDF,
February 2007. [Online]. Available: http://www.omg.org/docs/formal/
07-02-03.pdf

[31] W3C, “HTML 4.01 Specification, 17 Forms,” December 1999. [Online].
Available: http://www.w3.org/TR/html401/interact/forms.html

[32] M. Kroll and R. Geiss, “A Ludo Board Game for the AGTIVE
2007 Tool Contest,” 2007. [Online]. Available: http://www.informatik.
uni-marburg.de/~swt/agtive-contest/Ludo-Karlsruhe.pdf

557

A Knowledge-Based Retrieval Model

Fabio Silva, Rosario Girardi, and Lucas Drumond
UFMA – Federal University of Maranhão

Avenida dos Portugueses, s/n, São Luı́s, Brazil

Abstract

Several techniques for extracting meaning from text in
order to construct more accurate internal representations of
both queries and information items in retrieval systems have
been already proposed. However, there is a lack of seman-
tic retrieval models to provide appropriate abstractions of
these techniques. This article proposes a knowledge–based
information retrieval model that explores the semantic con-
tent of information items. The internal representation of
information items is based on user interest groups, called
“semantic cases”. The model also defines a similarity mea-
sure for ordering the results based on the semantic distance
between semantic cases items. An initial experiment evalu-
ating the model is also described.

1. Introduction

The effectiveness of keyword–based processes models is

limited by the phenomenon known as ”keyword barrier”,

i.e. the internal representation of an information item based

on a set of words extracted from texts through statistical

and / or syntactic techniques does not allow a considerable

improvement of the effectiveness of information retrieval

results [6].

These limitations have stimulated the development of

several techniques trying to extract meaning from texts,

such as semantic analysis, to obtain more accurate inter-

nal representations of information items [6][12]. However,

there is a lack of semantic retrieval process models pro-

viding appropriate abstraction representations of the activi-

ties, products and techniques involved in such retrieval pro-

cesses.

With a semantically structured representation of infor-

mation items, retrieval systems can use semantic–based

techniques in order to improve their effectiveness like docu-

ment annotation, knowledge–based search, query expansion

and ontology–based similarity measures.

This work proposes a retrieval process model which uses

ontology–based structures to represent information items

and semantic case–based similarity measures. Upon this

model, new systems can be built applying different tech-

niques to find the best configuration for domain retrieval

tasks.

The paper is organized as follows. Section 2 formal-

izes the ontology and knowledge base concepts used in

this work. Section 3 introduces the main components of

a generic information retrieval model, describing the se-

mantic case strategy and detailing the components of pro-

posed model. Section 4 describes an experiment developed

for evaluating the proposed model. Section 5 discusses

related work on semantic–based information retrieval sys-

tems. Section 6 concludes the article and suggests direc-

tions for future work.

2. Ontologies

Ontologies are defined as formal specifications of do-

main conceptualizations [7], providing a shared vocabu-

lary for representing knowledge. In order for the meaning

of their expressions being machine readable, ontology lan-

guages were created with a formal logic–based semantic.

An ontology is defined as the 5-tuple [15]:

O := (C, HC , R, rel, AO) (1)

where:

• C is the set of ontology concepts. Concepts represent

entities of a specific domain. They are designated by

one or more natural language terms and have also a

unique identifier inside the ontology;

• HC ⊆ C × C is a set of taxonomic relation-

ships between the concepts. Such taxonomic relation-

ships raise a hierarchical structure, denoted as HC =
{(Ci, Cj)|Ci, Cj ∈ C ∧ Ci � Cj};

• R is set of non-taxonomic relationships between con-

cepts;

• rel is a function rel : R → C × C that maps relation

identifiers to their respective relations. This can be de-

558

noted as rel(r) = (c1, c2) or as r(c1, c2) where r ∈ R
and c1, c2 ∈ C;

• AO is a set of axioms described by a logic language.

Axioms can be used for checking ontology consistency

and deduce new knowledge from ontology through

some inference mechanism.

Ontologies define the vocabulary of an application do-

main through concepts, a general or intensional knowledge.

Specific or extensional knowledge about the concrete world

is described through instances of concepts. For instance,

a concept City represents a general city while the instance

New York refers to the real American city. A knowledge

base which contains these two kinds of knowledge in a sin-

gle model is defined as the 4-tuple [14]:

KB := {O, I, instc, instr} (2)

where:

• O is an ontology;

• I is a set of instances;

• instc is a function instC : I → C that maps the in-

stances to their associated concepts;

• instr is a function instR : I → R that maps the in-

stances to their associated relations.

3. The Proposed Retrieval Model

In this work, we adopted the definition of an information

retrieval model provided in [2]. An information retrieval

model is a quadruple:

(D,Q,F , R(d, q)) (3)

where:

• D and Q are sets with, respectively, the internal repre-

sentation of documents and queries;

• F is a framework for modeling document representa-

tions, queries, and their relationships;

• R(d, q) is a ranking function for ordering documents

with regard to the query q.

Documents and queries are represented as ontology in-

stances. The model is composed of a knowledge base, a

semantic case–based representation strategy and a similar-

ity measure between concepts. The knowledge base stores

the information items and provides an uniform representa-

tion for documents and queries since metadata share a com-

mon conceptualization. A semantic case–based representa-

tion strategy defines how the metadata is organized into the

internal representation of documents. The similarity mea-

sure used by the ranking function obtains a numeric value

from the semantic distance between concepts. This ranking

function also uses a semantic case–based strategy for order-

ing results.

3.1. Semantic Cases

A semantic case represents a characteristic of an infor-

mation item through which user interests can be specified

[5]. User interests in the proposed model are topics, with

each topic being described by an ontology sub-hierarchy.

Thus, a topic comprises a general concept, root of the re-

spective sub-hierarchy, and its sub-concepts. Each topic

is called a “semantic case”. These general concepts - also

called as semantic case root concepts - have characteristics

that represent different and independent aspects of the do-

main. These characteristics are preserved by specializations

of the general concepts. These general concepts can be se-

lected with the help of a domain specialist. A semantic case

is a pair defined by:

S = (Cr, T) (4)

where Cr is the root concept and T is a set of sub con-

cepts of Cr, T = {Ci|Ci � Cr}.

An information item refers to a semantic case if a sub-

concept of the semantic case root concept, also called

“semantic case terms”, appears in its internal represen-

tation. An example of a semantic case can be seen in

Figure 1, where the concepts Person, Content and Lo-
cation can be considered as general concepts of a do-

main. For instance, the semantic case created from

the root concept Location is given by SLocation =
(Location, {Location, City, Country}).

3.2. Internal Representation of Information Items

The internal representation uses a semantic case-based

representation strategy to organize elements, i.e. concepts

and instances, present in a document with regards the

semantic cases. As defined in section 3.1, an ontology

concept, c ∈ C, is a term of the semantic case represented

by Sj if c ∈ Tj . An internal representation instance,

i ∈ I , also can be a term of a semantic case Sj if its

most specific concept is a term of the semantic case, i. e.,

msc(i) ∈ Tj . Once defined the criteria to classify concepts

and instances, the internal representation can be obtained

from the following definitions:

Definition 1: Let Cd the set of concepts, n the total

of instances and Id the set of instances, all present in a

document d. The set of concepts that are referenced by

instances is Ci = {msc(i1), ...,msc(in))}. The set CRd

559

Figure 1 . A newspaper ontology example

of all representative concepts from d is given by the union

of the both set of concepts, CRd = Cd ∪ Ci.

For example, consider a document containing the concepts

City and Article, and the instance Thomas Friedman of

the concepts Author, Person and Columnist, in the do-

main shown in Figure 1. The sets obtained from the defini-

tion 1 are Cd = {City, Article} and Ci = {Columnist},

since msc(Thomas Friedman) = Columnist.

Definition 2: Let SS = {S1, ..., Sm} the set of se-

mantic cases in a domain. The document dk is represented

by a set of pairs, each pair P associated with a semantic

case, dk = {Pk1, ..., Pkm}. The pair Pkj contains the set of

representative concepts and the set of instances present in

dk associated to the semantic case Sj , Pkj = (CRkj , Ikj).

The internal representation of a document according

to the definition 2, is given by:

dk = {(CRk1, Ik1), ..., (CRkm, Ikm)}
For example, consider the sentence ”Thomas Friedman

wrote an article about New York...” and the ontology shown

in Figure 1. The elements extracted from the sentence are

shown in the Table 1.

Table 1 . Example of the internal representation of an item

Components Values
Instance Thomas Friedman

Instance New Y ork

Concept Article

Concept msc(Thomas Friedman)

Concept msc(New Y ork)

The elements are arranged in pairs with respect their se-

mantic case, in the example domain: Person, Content or

Location. The internal representation of the document is

the following set:

d = {({Columnist}, {Thomas Friedman}), ({Article}, {}),
({City}, {New Y ork})}

3.3. Matching Process

In an ontology context, relevant documents can refer to

super- and subconcepts of the searched concepts. The set of

all super- and subconcepts of a given concept Ci is called

“semantic cotopy” of Ci [15], defined as:

SC(Ci, H
C) = {Cj ∈ C|HC(Cj , Ci) ∨ HC(Ci, Cj)} (5)

The matching strategy uses the concepts in the internal

representation of document. In order to decrease the cog-

nitive distance between a query and an information need,

the retrieval function selects concepts appearing in the doc-

uments with similar semantic content of query concepts. In

other words, document concepts must belong to a “semantic

cotopy” of query concepts.

The retrieval function is given by:

RF (q, d) :=

{
1, if∃cicj |
(ci ∈ CRq) ∧ (cj ∈ CRd) ∧ (cj ∈ SC(ci, H

C))

0, otherwise
(6)

where CRq and CRd are sets of concepts in the query

and document pairs.

Consider as an example the following user query q: au-
thors writing about New York, which internal representation

is:

d = {({Author}, {}), ({}, {}), ({City}, {New Y ork})}

560

When trying to compute the retrieval function for q and

the document of Table 1, called d, one must search for the

concepts in d (i.e. Columnist, City and Article) that are also

in the semantic cotopy of the concepts in q (i.e. Author and

City). The “semantic cotopy” of each concept in the query

is the following:

• SC(Author, HC) =
{Root, Person, Author, Reporter, Editor, Columnist};

• SC(City, HC) = {Root, Location, City}.

The concepts Columnist and City appear both in the se-

mantic cotopy of the concepts in q and in the internal repre-

sentation of d. Therefore the value RF (q, d) is 1.

3.4. Similarity Analysis

In an information retrieval model, similarity analysis es-

timates the relevance of each document regarding a given

query. The matching strategy described above ensures that

retrieved items always have some relevance. Thus, the pro-

posed similarity model aims at defining an ordering for the

retrieved documents. This ordering is represented by the

function R(d, q) as stated in the generic retrieval model de-

scription.

In the proposed model, the internal representation of an

information item d is a set of pairs, according to definition

2. In order to determine the relevance of a document for a

given query, comparison criteria for the pairs in the query

and in the document representation are needed. The pro-

posed similarity analysis uses an approach similar to the one

in [5][6]. In these approaches, possible groups of interest in

a domain are represented as semantic cases. The proposed

similarity function matches the pairs in the document with

the ones in the query that refer to the same semantic case,

i.e. that have the same semantic case index i. The elements

of the sets CRi and Ii of the matching pairs are compared

according to some semantic similarity measure. The rele-

vance of the document is the normalized sum of the simi-

larity between the matching pairs. Additionally, a weight ω
can be associated with each semantic case meaning its rele-

vance for the user query. The similarity function is defined

as:

R(d, q) =
1

m∑

i=1

ωi

∗
m∑

i=1

ωi ∗
Sim(CRid

, CRiq) + Sim(Iid
, Iiq)

NCRiq
+ NIiq

(7)

where:

• i is the semantic case index;

• m is the total of semantic cases;

• CRid
and Iid

are sets of concepts and instances from

internal representation of the document with regards a

semantic case i;

• CRiq
and Iiq

are the corresponding sets of the query;

• NCRiq
and NIiq

are, respectively, the number of con-

cepts and instances extracted from query with regards

a semantic case i.

The similarity between concepts sets in equation 7 is

given by:

Sim(CRd, CRq) =
∑

j∈CRq

max Simc(cqj , cdk
) (8)

where:

• cqj
is the element j of the set CRq;

• cdk
is the element k of the set CRd;

• Simc is a similarity measure between two concepts.

• max obtains the maximum similarity value between

the element indexed by j, computed over all elements

of CRd.

The similarity between instances sets in equation 7 is

given by a function similar to the one in the equation 8.

The similarity model uses a similarity measure between

concepts/instances from the sets present in the internal rep-

resentation of the query and the document. Such similarity

measure is not described or suggested here. Several mea-

sures for this purpose have already been proposed in the lit-

erature [5][13][16], and can be adapted in an instance of the

retrieval model proposed in this work in order to compare

elements of the sets.

4. Evaluation

A preliminary evaluation of the proposed retrieval

model effectiveness was performed by instantiating it in

a knowledge-based retrieval system and by comparing it

with a retrieval system based on the vector space model

created using the Apache Lucene 1 API. The system was

developed in the tax law domain, using a document collec-

tion composed by normative instruments instantiated in a

semi-automatic way. The system knowledge base was built

through the instantiation of these instruments in the ontolo-

gies ONTOJURIS and ONTOTRIB [1]. ONTOJURIS clas-

sifies the different legal branches and describes the struc-

ture of normative instruments. ONTOTRIB represents con-

cepts of the tax legal branch, where were found the fol-

lowing semantic cases: tributary normative instrument

1http://lucene.apache.org/

561

that maps the user interests in specific instruments, tribute
that describes all tributes and taxes, juridical application
that determining the tribute scope (federal, state or munici-

pal) and tributary concepts that describe the elements of a

juridical-tributary relationship. The similarity measure used

was proposed in [5] extended in this work for calculating the

similarity between instances of the knowledge base. Identi-

cal weights for semantic cases (ω = 1) were considered in

the experiment. 8 queries, proposed by a domain specialist,

and a pre-defined set of results for each query were spec-

ified. The precision values, for different recall measures,

were computed and the results are shown in Figure 2.

Figure 2 . Comparative graph of recall x precision

The conducted experiment revealed that the system

based on the proposed model achieved higher precision

rates between 20% and 40% of recall values than the sys-

tem based on the vector space model. The retrieval system

based on the proposed model achieved high effectiveness in

the selected domain. The experiment has been performed

with a small set of queries and information items because,

currently, the internal representations of queries and infor-

mation items are just semi-automatically created. For an

exhaustive evaluation of the proposed model, internal rep-

resentations should be constructed automatically through

ontology population techniques, which is our next research

aim.

5. Related Work

SIM-DL [10] presents a similarity measure for descrip-

tion logic concepts and uses a discourse context, based on

subsumption reasoning, to select comparable concepts. In

despite of the semantic cases are pre-selected in the model

proposed here, the definition of context concepts occurs in

a similar way in both works. However, the proposed model

here defines steps for information retrieval in documents,

including the matching process, while the SIM-DL frame-

work focuses on the comparison of concepts.

Other Semantic Web search systems have been created

using different strategies from our approach. The possibil-

ity of processing formal queries is explored in several of

these systems. One of the first proposals for an informa-

tion retrieval system based on metadata was SHOE [9]. In

this system, queries are created through a form with KB ele-

ments generating a formal query. Vallet et al [19] presented

an ontology–based information retrieval model which takes

as input a formal RDQL query for instance retrieval in KB.

However, none of these systems provides a similarity mea-

sure based on the semantic content of documents.

The metadata obtained from the document annotation

process are also used for query expansion. DOSE [3] is

a system that evaluates the results and, based on heuristics

such as taxonomic relationships, extracts new elements of

the knowledge base for query expansion. KIM [11] is a sys-

tem that focuses the process of creation of metadata from

documents. The retrieval process performs full-text index-

ing and search for terms and metadata. OWLIR [18] uses a

representation mechanism and similarity analysis that com-

bines keyword with structured data. In this second group

of systems, document retrieval is still based on the vector

space model.

Finally, some systems exploit RDF graphs created from

knowledge bases. The existing relationships lead to a se-

mantic network. TAP [8] retrieves an initial set of nodes

from search terms. The query is expanded by specifying

the desired properties and exploiting the sub graphs of the

initial set of nodes. Rocha et al [17] propose a seman-

tic network in which relations have both a semantic label

and numerical weight. Query terms are mapped to seman-

tic network nodes. A spread activation algorithm is used

to discover concepts closely related to the initial concepts.

Beagle++ [4] maintains a RDF graph with weights assigned

manually to the concepts links in the pre-existing knowl-

edge base. The result combines keyword frequency ranking

and an object algorithm ranking. These systems provide ad-

ditional relevant data extracted from metadata.

6. Conclusion and Further Work

This article described a knowledge-based information re-

trieval model built using semantic components and services

like ontologies and inference rules.

The proposed model uses a semantic case strategy for

organizing concepts and instances into the internal repre-

sentation of both queries and documents with respect to a

pre-defined information context. This context is considered

into retrieval and similarity analysis stages in order to ap-

ply semantic similarity measures. The model avoids noisy

results using a semantic representation, i.e. concepts and

ontology instances, rather than keywords, for representing

information items. Queries are expanded using ontologi-

cal inferences, allowing new documents to be discovered.

562

Finally, the context defined by semantic cases provides a

way to specify and quantify user interests in a ontology sub-

hierarchy.

Future work should explore ways to enrich the internal

representation through others inference types such as transi-

tivity and inverse relationships. The model application also

depends on metadata from documents annotation. More re-

search work for the evaluation of the proposed model is

needed through its instantiation with various corpus using

ontology population techniques.

References

[1] I. Araujo, L. Drumond, R. Mariano, and R. Gi-

rardi. ONTOJURIS e ONTOTRIB: ontologias

para a modelagem do conhecimento jurı́dico.

SEMINÁRIO DE PESQUISA EM ONTOLOGIA NO
BRASIL UFF, IACS - Departamento de Ciência
da Informação, Niterói 08/2008, Disponı́vel em

http://www.uff.br/ontologia/artigos/314.pdf. Aces-

sado em 27/10/2008.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press, 1999.

[3] D. Bonino, F. Corno, and F. Farinetti. Dose: a

distributed open semantic elaboration platform. IC-
TAI’03, page 580, 2004.

[4] P. Chirita, S. Costache, W. Nejdl, and R. Paiu. Bea-

gle++: Semantically enhanced searching and ranking

on the desktop. The Semantic Web: Research and Ap-
plications, 2006.

[5] L. Drumond, R. Girardi, and F. Silva. A similar-

ity analysis model for Semantic Web information fil-

tering applications. In Proceedings of the Twenti-
eth International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE 2008), pages

638–642, Redwood City, California, USA, 2008. Ed.

Knowledge Systems Institute Graduate School.

[6] R. Girardi and B. Ibrahin. Using English to Retrieve

Software. The Journal of Systems and Software, vol-

ume 30, No. 3:pages 249–270, 1995.

[7] T. R. Gruber. Toward principles for the design of on-

tologies used for knowledge sharing. International
Journal of Human-Computer Studies, volume 43 Is-

sue 5-6:pages 907–928, 1995.

[8] R. Guha, R. McCool, and E. Miller. Semantic search.

In WWW ’03: Proceedings of the 12th int. conf. on
World Wide Web, 2003.

[9] J. Heflin and J. Hendler. Searching the web with shoe.

Artificial Intelligence for Web Search. Papers from the
AAAI Workshop. WS-00-01, 2000.

[10] K. Janowicz. Sim-DL: Towards a semantic similar-

ity measurement theory for the description logic alcnr

in geographic information retrieval. In SeBGIS 2006,
OTM Workshops 2006, ser. Lecture Notes in Computer
Science, R. Meersman, Z. Tari, P. Herrero, and e. al.,
Eds, Springer, volume 4278:pages 1681–1692, 2006.

[11] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and

D. Ognyanoff. Semantic annotation, indexing, and re-

trieval. Journal of Web Semantics: Science, Services
and Agents on the WorldWideWeb, volume 2:pages

49–79, 2004.

[12] C. Leacock and M. Chodorow. Combining local con-

text and wordnet similarity for word sense identifica-

tion. In Ed. C. Fellbaum, editor, WordNet: A Lexical
Reference System and its Application, pages 265–283,

Cambridge, MA: MIT, 1998.

[13] D. Lin. An information–theoretic definition of simi-

larity. In Proceedings of the International Conference
on Machine Learning (ICML) Morgan Kaufman, San
Francisco, pages 296–304, 1998.

[14] A. Maedche. Ontology Learning for the Semantic
Web. Kluwer Academic Publishing, 2002.

[15] A. Maedche and S. Staab. Measuring similarity be-

tween ontologies. In Proceedings of the 13th Inter-
national Conference on Knowledge Engineering and
Knowledge Management. Ontologies and the Seman-
tic Web, pages 251–263, 2002.

[16] P. Resnick. Semantic similarity in a taxonomy:

An information-based measure and its application to

problems of ambiguity in natural language. Journal of
Artificial Intelligence Research, pages 95–130, 1999.

[17] C. Rocha, D. Schwabe, and M. Aragao. A hybrid ap-

proach for searching in the Semantic Web. In Pro-
ceedings of the 13th int. conf. on World Wide Web
(WWW), pages 374–383, 2004.

[18] U. Shah, T. Finin, and A. Joshi. Information retrieval

on the Semantic Web. In CIKM ’02: Proc. Of the 11th
int. conf. on Information and knowledge management,
pages 461–468, 2002.

[19] D. Vallet, M. Fernández, and P. Castells. An ontology–

based information retrieval model. Proc. Second Eu-
ropean Semantic Web Conf. (ESWC ’05), pages 455–

470, 2005.

563

TRIple Content-Based OnTology (TRICOt) for XML Dissemination

Mirella M. Moro1, Deise de Brum Saccol2, Renata de Matos Galante3

1 Depto Ciência da Computação, UFMG, Brazil
2 Universidade Federal do Pampa, Brazil
3 Instituto de Informática, UFRGS, Brazil

mirella@dcc.ufmg.br, deisesaccol@gmail.com, galante@inf.ufrgs.br

Abstract

As Internet and distributed systems evolve, content dis-
semination systems become a hot topic for researchers in
those areas. In such systems, users define profiles (queries)
that must be evaluated over incoming messages (docu-
ments), usually on streams. Given the high number of pro-
files and the considerable flow of incoming messages on
such systems, research problems reach new levels of com-
plexity on databases and software engineering perspectives
as well. For example, those features make distributed query
evaluation even more complex. In this context, we propose
to expand the use of ontologies to this new context of stream
processing. Our initial evaluation shows that such solution
is viable and opens new possibilities for using the whole
potential of ontologies in a very diverse set of applications.

1. Introduction

In traditional request/reply systems, users submit a query
to the system, which evaluates it over the stored data and
returns the results back to the users, individually. As In-
ternet and distributed systems evolve, a new paradigm ag-
gregates the concept of content dissemination to such ap-
plications. Besides answering to the queries considering
the stored data, the system also keeps those queries stored.
Then, the system evaluates those queries every time new
data is added through the application. In this case, the re-
sults are disseminated to the users a posteriori.

This form of querying is widely employed in content-
based information dissemination services, or simply con-
tent dissemination. Such approach can also be instantiated
as publish-subscribe services. This new paradigm of evalu-
ating data has created opportunities for new types of appli-
cations. Such applications are used by notification systems
to inform users about new products on the market, updates
on stock values, currency variation, and deal offers, for ex-

ample. Also, as Web services spread all over the Internet,
new dissemination applications are frequently created.

Since XML is recognized as the standard for data ex-
change, content-based dissemination services that are spe-
cialized on handling XML data become necessary [6]. In
XML-based dissemination services, there is a continuous
stream of XML messages (usually, an XML message con-
tains an XML document) from producers to consumers [13].
The message transmission is performed by a sophisticated
overlay network composed of content-based routers (XML
routers). Those routers evaluate profiles over messages (or
queries over documents) and forward them to their recipi-
ents, such as users or other routers. This task of evaluating
profiles over messages is called message filtering.

It is important to notice that content-based dissemina-
tion services are in constant evolution. New queries are re-
quested and new data are added to the system. The amount
of queries being processed easily reaches the thousands.
The volume of data in a period of time may surpass the
gigabytes. Therefore, one key feature of such a system is
scalability in terms of amount of queries and volume of data
that can be processed at the same time.

Besides scalability, another central feature is the ability
to efficiently evaluate thousands of query. Note that such
query evaluation is in filtering style. In other words, it is
necessary to identify the queries that are satisfied by incom-
ing documents. Usually, efficiency is achieved by perform-
ing multi-query processing.

In addition to query and data processing mechanisms,
the network architecture also influences the system perfor-
mance as a whole [16]. An option is to use peer-to-peer
(P2P) networks [17]. Among the possible choices, a P2P
network has the advantages of reducing network traffic,
minimizing routing depth, and preserving those features in
case of network updates and failures.

However, documents from the same application domain
are usually spread over the P2P network, which can influ-
ence the message filtering performance. These shortcom-
ings may be overcome by using ontologies to cluster doc-

564

uments from the same domain into specific peers [4]. This
clustering may also be coordinated with the specification of
super peers that keep the information about ontologies and
the respective documents

Contributions. Previous work on XML dissemination
systems (e.g. [6, 8, 11, 14]) focus on different aspects of the
dissemination. This paper focuses on the aspects of docu-
ment dissemination, query grouping, and query evaluation
on XML content-based dissemination services. These three
tasks employ an homogeneous mechanism based on ontolo-
gies, called TRICOT (TRIple Content-based OnTology).
This is the first time that such an uniform treatment is pro-
posed to an XML dissemination service. While the state-
of-the-art work try to improve individual aspects, our work
considers a global improvement of the system. Another fun-
damental aspect is that the query evaluation algorithms may
also use information from the ontologies in order to improve
their performance. The contributions of this paper are:

• We discuss some recent scenarios that show the ver-
satility of dissemination systems - Section 2. Those
scenarios may serve as use cases to TRICOT. They
also present important, unique requirements that can
be further explored.

• We define an ontology-based approach for grouping
and evaluating queries - Section 3. The goal is that
a document be evaluated considering only the queries
defined in its domain, instead of considering the uni-
verse of queries. Such approach improves scalability
in terms of number of queries.

• We specify a P2P-based architecture for using as the
network topology for XML routers - Section 4. Specif-
ically, the dissemination system clusters documents
from the same domain into peers. Such approach
solves the scalability problem in terms of volume of
processed data.

An initial case study was performed to demonstrate the
viability of TRICOT and its advantages. Furthermore, the
results also show the potential of our solution for using on-
tologies in dissemination services over P2P networks - sec-
tion 5. Finally, section 6 overviews related work, and sec-
tion 7 presents our concluding remarks.

2. Content-based Dissemination

Content-based dissemination systems use an interaction
model based on events that work in a reverse way to tradi-
tional request/reply systems. The communication is started
by the data provider, and not by its consumer. The roles of
queries and data are reversed. Specifically, in request/reply
systems, the queries are processed over the data in order

to identify which parts satisfy the query. In dissemination
services, a set of queries is evaluated over a dataset (i.e. a
message, a document) in order to identify which queries are
satisfied by the data.

We present a list of applications where content-based
dissemination services may be (or are already) applied. This
list of applications is not limited.

Insurance industry. Insurance companies are usually
composed of different branches that are spread over a re-
gion, a country or even the world. The company offices may
be linked by an overlay network of content-based routers,
which can disseminate new clients (to the employees) and
new deals (to the clients) [8].

Security alerts. A recent work on automatic contain-
ment of worm spread has proposed approaches that func-
tion on the network level [3]. The central idea is to ana-
lyze network traffic, identify worm features on the network
packets, and avoid that such contaminated packets spread
to the users. Such scenario may be defined as a “reverse
dissemination system” in which the identified messages are
not delivered to the users or are simply put on quarantine in
a specific machine.

Air traffic control. Another application is air traffic
control [13]. In such services, a traffic control system re-
ceives the aircraft situation feed that provides detailed in-
formation about the state of airspace. The messages that
are disseminated may include information on flight plans,
departures, flight location, and landings.

Our work is ideal for disseminating content over all those
systems. Since each scenario may have one (or more) spe-
cific, distinguished feature, it is possible that some arrange-
ments need to be done. Nevertheless, this set of such diverse
scenarios illustrates the potential uses for TRICOT.

3. TRICOT Overview

In content-based dissemination systems, queries and data
are in constant update. New queries are requested an new
data are added frequently. Therefore, the main feature of
such a system (from the databases point-of-view) is scala-
bility in terms of number of queries and volume of data that
are processed at the same time. In this context, this sec-
tion introduces TRICOT, a mechanism based on ontologies
for disseminating documents, grouping queries, and evalu-
ating queries in XML content-based dissemination services.
The main advantage of TRICOT is to provide an homoge-
neous mechanism for a system of high complexity. More-
over, TRICOT leads the way to integrating dissemination
services to other ontology-based services (such as those for
integration systems).

565

In content-based dissemination systems, query evalua-
tion is performed through filtering, in which the queries that
a document satisfies are identified. Usually, multi-query
processing is performed (a set of queries is evaluated at the
same time). Definition 1 presents the message filtering op-
eration that is considered in our work.

Definition 1 (Message Filtering). Let D be a set of XML
documents received through an infinite stream of documents
di, i = 1, ... Let Q be a set of queries qi, i = 1..n. The
message filtering operation identifies a sub-set of Q, de-
nominated Q’, that contains all the queries satisfied by a
document di.

The first step in designing a dissemination system is to
choose the base architecture for the routers (network units
that will filter documents). Choosing the right architecture
is important because it will affect the global performance of
the system. Given the size of such systems, a centralized ar-
chitecture is not enough. Hence, a better option is to employ
the structure provided by P2P networks [17]. The advan-
tages of such architecture for the system are: the distributed
processing reduces network traffic; usually, he depth of the
routing path is also usually reduced; it preserves its features
in case of failure and changes on the network. Once the
architecture is defined, it is necessary to decide how to eval-
uate the queries over the documents.

The filtering operation is the central procedure in
content-based dissemination systems. Therefore, this paper
focuses on the aspects of disseminating documents, group-
ing queries and evaluating them over the documents. The
ultimate goal is to improve the performance of the system as
a whole. Those three tasks employ TRICOT, whose main
operations are summarized as follows.

TRICOT is formed by the following three operations
(which add the Triple to TRICOT’s name):

1. Document distribution. Incoming documents are
spread over the peers based on the matching between
those documents and the ontologies within the super
peer.

2. Query grouping. Each peer in the network has a set of
queries, which will be evaluated over incoming docu-
ments. That set of queries is clustered according to the
peer’s ontology (detailed in the next section).

3. Message filtering. Once the peer has its set of queries
clustered, it processes each incoming document with
the right set of queries (i.e. the queries that belong to
the same ontology domain as the documents), accord-
ing to Definition 1.

Notice that even though different peers may belong to
the same domain, those peers can still have different sets

of queries. Moreover, any XML filtering algorithm may
be used for processing the queries within each peer. With
TRICOT, the distinguished advantages are twofold: the fil-
tering algorithm will have less queries to process over less
documents; and it will process documents over queries of
the same domain.

4. Documents and Queries with Ontologies

In this section, we detail how TRICOT operates for
grouping documents and queries according to ontologies.

4.1. Ontologies and Documents

Once a document has arrived, TRICOT needs to iden-
tifies its domain ontology or generates a new one (in case
no appropriate ontology exists). To do so, each super peer
has an ontology manager for providing information about
existent ontologies and shared documents.

There are three main processes on the ontology manager:
(i) the file/ontology matcher - identifies the ontology for
a document (which also verifies if there is already an on-
tology for that file); (ii) the ontology generator - for those
documents with no associated ontology; and (iii) the query
matcher - identifies an ontology for a query. The first two
relate to documents and ontologies, and are explained next.
The latter relates to queries, and is presented in section 4.2.

Process 1. Document and Ontology Matching. The
matching task defines the ontology that best describes
an XML document, by measuring the overall similar-
ity between both representations. Specifically, given an
XML document d and a set of n ontologies O (O =
o1, o2, o3, , on), the matching document-ontology proce-
dure computes the similarity score sim(d, O). Then, it
chooses an ontology om (0 < m ≤ n) with the high-
est score (greater than a threshold t) to represent the cor-
responding file domain application. It is important to no-
tice that in order to evaluate the similarity between files,
two types of perspectives are considered: (i) the lexical per-
spective evaluates the relations between terms by compar-
ing the strings; and (ii) the semantic perspective focuses on
the meaning and conceptual correlation among terms. For
the similarity analysis, we consider both types, as detailed
in [4].

Process 2. Ontology Generator. The ontology gener-
ator defines the ontology that describes the concepts and
relationships in a certain application domain. This process
is necessary when an XML document does not have an as-
sociated ontology. The ontology is created from the schema
integration process, as follows. First, we generate the XML
schema (XSD file) from the shared file. The XSD schema

566

is then translated to the OWL format.By applying several
integration rules, an integrated schema is created, also rep-
resented in OWL format. The complete process is described
and implemented by our tool named Ontogen [5].

4.2. Ontologies and Queries

The main idea of TRICOT is to process queries of a do-
main over documents of the same domain. Hence, besides
matching documents and ontologies, it also needs to match
queries to ontologies. This way, the queries are grouped
based on one specific domain in its respective peers.

For matching queries and ontologies it is important to
notice that one XML query is a path expression composed
of structural constraints. Those constraints include XML el-
ement (attribute) names and their relationships (parent/child
and ancestor//descendant1). Furthermore, this path expres-
sion may define constraints on values or predicates, i.e.,
constraints on the values of the XML elements (attributes).

Structural constraints of an XML query (using XPath for
example) may be represented by a query tree, which forms
a partial representation of an XML document. Also, the
relationships ancestor//descendant are considered a special
case of parent/child (i.e. the requirement that the child be at
the parent’s next level is relaxed, making any element at any
lower level acceptable). In this case, the matching between
query and ontology may be considered as a special, reduced
case of the matching between an XML document and an
ontology. Specifically, given an XML query q and an on-
tology o, this matching returns the percentage of similarity
between q and o (where ancestor//descendant is considered
a special case of parent/child relationship).

With TRICOT, each query is received by the super peer
that performs the matching against its set of ontologies.
Once the query domain is defined, the super peer forwards
the query to all peers of same domain. For example, con-
sider a super peer SP connected to peers P1, P2, and P3.
Each peer has its own set of domains: P1 has domains d1
and d4; P2 has domains d2, d4, and d5; and P3 has do-
mains d2 and d6. Given that SP matches query q to do-
main d2. Then, it will forward q to all peers that have other
queries from the same domain, i.e., peers P2 and P3.

With such query grouping process, it is guarantee that
the peer contains only the sets of queries that refer to its
documents domains. Therefore, the number of queries to
be evaluated is considerably reduced. Instead of the peer
evaluate its whole set of queries over each document, now,
it can process only the sub-set of queries that belong to the
same domain as is documents. Any XML query evaluation
algorithm may be employed.

1Other relationships, such as next-sibling, may be reduced to combina-
tions of parent/child and ancestor/descendant (following the specification
of XPath, http://www.w3.org/TR/xpath20)

5. TRICOt in Practice

We have implemented the basic algorithms for TRICOT
and performed some experimental evaluations in order to
show that TRICOT is a viable mechanism. Here, we analyze
the quality of the matching between ontologies and XML
documents.The implementation is based on a content-based
dissemination system simulator. This system simulates the
super peer and peers behaviors. We do not consider any
network aspect, such as availability and transmission time,
since they are not the focus of our work.

Quality of the Matching Ontology/XML Document.
In order to evaluate how the documents are distributed over
the network, we prepared a case study on the quality of the
matching between ontologies and XML documents. The in-
put parameters are documents XML, an ontology (defined
in OWL) and a minimum similarity threshold (70% - note
that, according to some previous experiments [5], we no-
ticed that such number guarantees good precision and re-
call). The output is the similarity level between two docu-
ments2.

The ontologies employed define distinct domains, in-
cluding touristic packages, curriculum and wines. This
study considered a total of 10 thousand XML documents.
Those documents belong to three datasets: one thousand
documents were generated from different taxonomies to
describe tourism activities, called Tour dataset; one hun-
dred documents describe curricula in the Brazilian Lattes
plataform 3, called CV dataset; the other documents were
randomly created from bibliography catalogs, called BIB

dataset.
We use the similarities measures defined by OntoGen in

order to simulated how a super peer will distribute its doc-
uments. Therefore, the higher the similarity rate, the higher
the probability of the super peer correctly identifying the
domain for a document. The results showed a level of simi-
larity of 96.14% to the one thousand documents on tourism
and its ontology. In other words, all documents in the Tour

dataset are lexically similar. The other XML documents
(100 from CV and 8900 from BIB), presented similarity
practically null in relation to the touristic ontology – which
was very expected.

In order to verify the contrary situation (i.e. when the
system does not find an ontology to the documents), we
considered the curriculum ontology. The result was no sim-
ilarity to all documents. That is justified because the Lat-
tes curriculum employs terms that are completely different
from the industry curriculum taxonomies. Finally, no docu-
ment matched the wine ontology, as expected.

2The models for ontologies were obtained in
http://protegewiki.stanford.edu/index.php/Protege Ontology Library,
may 2008.

3Plataforma Lattes, CNPq: http://lattes.cnpq.br/

567

Discussion To the dissemination systems, this result of
identifying 96.14% of the documents correctly, means that
those documents will be forwarded to the correct peers
(those that contain the queries of the same domain). The
remaining 4% presented a threshold less than 70%, which
indicates that new ontologies need to be defined. The re-
sults for matching ontologies and queries were similar. The
only difference is that queries are represented as small XML
documents. As future work, we intend to study how to get
an ideal threshold.

6. Related Work

Recent research on XML content-based dissemination
has investigated problems related to different parts of the
system [6, 8, 11, 14, 16]. The main goal of those works
is scalability in relation to the number of queries evalu-
ated, which is achieved by multi-query processing methods
[6, 14] as well as early pruning [11]. We refer to [12] for a
more recent, complete overview. While the aforementioned
works try to improve an aspect or the other, our work con-
siders a global improvement of the system. Specifically,
it focuses on aspects of document dissemination, query
grouping, and query evaluation on XML content-based dis-
semination services. These three tasks employ TRICOT, an
homogeneous mechanism based on ontologies.

There are techniques based on similarity for matching
schemas and ontologies, for example system COMA++4.
Also, [1] proposes a data model to represent semantic in-
formation that matches ontology features to a description,
while [15] proposes TIQS, an approach to integrate data
that employ semi-authomatic matching of schemas based
on a pre-defined global conceptual schema. Our concern
is to match documents/queries to ontologies as correctly as
possible. Given that the documents are written in XML
format, we have employed our previously developed tool
(called Ontogen) for the matching [5].

7. Conclusions

This paper presented TRICOT, an ontology-based mech-
anism for evaluating queries on content-based XML dis-
semination over a P2P network. Its main contribution is
to provide an homogeneous structure to distribute queries,
disseminate documents, and process queries on XML dis-
semination systems. As future work, we plan to study how
to adapt TRICOT to the unique requirements of the men-
tioned applications, such as the insurance industry.

4http://dbs.uni-leipzig.de/Research/coma.html

References

[1] J. Broekstra, M. Ehrig, and P. Haase. A metadata model for
semantics-based peer-to-peer systems. In Work. on Semantics
in Peer-to-Peer and Grid Computing., 2003.

[2] X. Chen, Y. Chen, and F. Rao. An Efficient Spatial Pub-
lish/Subscribe System for Intelligent Location-based Services.
In Procs. of DEBS, pages 1–6, 2003.

[3] M. Costa et al. Vigilante: End-to-End Containment of Internet
Worms. In SOSP, 2005.

[4] D. de Brum Saccol et. al. An Ontology-based Approach for
Semantic Interoperability in P2P Systems. In ICEIS, 2008.

[5] D. de Brum Saccol et. al. Managing Application Domains in
P2P Systems. In IRI, pages 451–456, 2008.

[6] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-
Scale XML Dissemination Service. In VLDB, pages 612–623,
2004.

[7] W. Fenner et. al. XTreeNet: Scalable Overlay Networks for
XML Content Dissemination and Querying. In WCW, pages
41–46, 2005.

[8] G. Li, S. Hou, and H.-A. Jacobsen. Routing of XML and
XPath Queries in Data Dissemination Networks. In ICDE,
pages 1400–1404, 2007.

[9] H. Liu, V. Ramasubramanian, and b. . I. y. . . p. . . Emin Gün,
title = Client Behavior and Feed Characteristics of RSS, a
Publish-Subscribe System for Web Micronews.

[10] C. Meghini and N. Spyratos. Computing Intensions of Digi-
tal Library Collections. In ICFCA, pages 66–81, 2007.

[11] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early Profile
Pruning on XML-aware Publish-Subscribe Systems. In VLDB,
pages 866–877, 2007.

[12] M. M. Moro, Z. Vagena, and V. J. Tsotras. Open and
Novel Issues in XML Database Applications: Future Direc-
tions and Advanced Technologies, chapter Recent Advances
and Challenges in XML Document Routing, pages 136–150.
IGI Global, 2009.

[13] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-Based
Content Routing using XML. In SOSP, pages 160–173, 2001.

[14] Z. Vagena, M. M. Moro, and V. J. Tsotras. RoXSum: Lever-
aging Data Aggregation and Batch Processing for XML Rout-
ing. In ICDE, pages 1466–1470, 2007.

[15] L. Xu and D. W. Embley. A composite approach to automat-
ing direct and indirect schema mappings. Inf. Syst., 31(8):697–
732, 2006.

[16] Z. Xu, N. Seliya, and W. Wu. An adaptive neural network
with dynamic structure for software defect prediction. In SEKE,
pages 79–84, 2008.

[17] Y. Zhu and Y. Hu. Ferry: A P2P-Based Architecture for
Content-Based Publish/Subscribe Services. IEEE Trans. Par-
allel Distrib. Syst., 18(5):672–685, 2007.

568

An Ontology-Based Approach to Portable Embedded System
Development

Feng Chen, Hong Zhou, Jianzhi Li, Ruimin Liu and Hongji Yang

Software Technology Research Laboratory
De Montfort University, Leicester, UK

fengchen, hongzhou, jianzhli, rliu, hyang @dmu.ac.uk
Han Li, He Guo and Yuxin Wang

Dalian University of Technology, Dalian, China
han.li, guohe, wyx @dlut.edu.cn

Abstract

There is no doubt that portability of software

application is becoming crucial in industrial distributed
and embedded software environment. With respect to the
ever increasing requirement of system integration,
software should be implemented on as many different
platforms as possible. Following the basic principles of
knowledge-based perspectives, this paper proposes an
ontology-based portable software development approach.
Firstly, portability technique is discussed. Secondly, the
framework and implementation of an ontology-based
VRTOS is presented. Thirdly, a selected case study has
been conducted, which helps evaluate the proposed
approach. Finally, conclusion is drawn and further
research directions are advocated.

Keywords: Ontology, Software Portability, Virtual Real
Time Operating System (VRTOS), Embedded System,
Portable Operating System Interface (POSIX)

1. Introduction

With the ever increasing complexity of embedded
systems, it is desirable to employ Real-Time Operating
System (RTOS) to fulfil the requirements of stringent
timing and resource constraints of different real-time
applications. Even though the embedded system
development is supported by RTOS, the general
development environment is In-Circuit Emulator (ICE)
that has some disadvantages for software development:

(1) Software and hardware development can not be
paralleled.

(2) ICE is very expensive and does not support multi-
users.

(3) Hardware errors and software errors can not be
separated easily during the development.

(4) ICE is a proprietary system without full-featured
testing and debugging tool support.

To meet the needs of developing embedded systems, it
is an advantage that the software can be developed on
general platform, like Windows platform, and be ported to
the specific RTOS after the development. Software
portability is hence one of the most important issues
during embedded system development.

The advantages of portable software have been
recognised for many years. As an inherently knowledge
intensive activity, software development requires a great
number of knowledge, covers from expertise to
experience in the application domains [26]. In general, it
is expected to reduce the development and maintenance
costs and delays through a relative general domain-
specific pattern or architecture, which will push the
development to goals in adaptability, reusability, and line-
product [3, 17]. Since ontology can provide a vocabulary
of terms and relations to model such domains, it will
therefore facilitate the construction of the domain-specific
solutions by introducing ontology-based approach. This
paper follows the basic principles of knowledge-based
perspectives and proposes an ontology-based portable
software development approach, focusing on development
of Virtual Real Time Operating System (VRTOS).

2. Software Portability

Portability of applications across different platforms is
a subject that has attracted a lot of attention for some time.
Software portability refers to how easy a software
program can be moved between different
environment/platform. H. Kaindl describes portability of
software by two definitions [13]:

Definition 1: An Environment E is a triple ({l1,..., li}, o,
m), where {l1,...,li}, i N, is a set of language processors,
o is an operating system and m is a machine.

Definition 2: A port is a mapping (P, E({l1,..., li }, o,
m))� (P’, E’({l1’,..., li’ }, o’, m’)), where P is the program

569

to be ported, P’ the resulting program after the port, E the
original and E’ the target environment. The following
condition must hold: ({l1,..., li }�{l1’,..., li’ }) v (o�o’) v
(m�m’).

J. Mooney [15] uses the following as a working
definition for the attribute of portability:

A software unit is portable (exhibits portability) across
a class of environments to the degree that the cost to
transport and adapt it to a new environment in the class is
less than the cost of redevelopment.

Portability does not mean the same thing as porting.
Porting involves simply making an existing application
run successfully on a new platform and can often result in
replacing one set of system dependencies with another.
The term portable implies that the software was intended
for several platforms from the beginning and that this
factor was considered throughout the design and
implementation [1].

A very important aspect of software application related
to portability is its standardisation. Open standards
support software portability by providing high level
programming models and abstractions. Two levels of
standardisation are applied to ensure software portability.
One is the standardisation of high-level languages, which
are supported across different systems. Another is to use a
standard set of application programming interfaces (API)
and services which are available on all the target
platforms, for example, POSIX interface is itself designed
to be portable and POSIX standard contains most of the
standard UNIX compatible system call interface.

3. Virtual Real Time Operating System

There are a wide variety of options available for the
development of portable software applications. The
essence of such development has always been related to
standardisation, normally implemented by abstraction and
isolation. In this research, a Virtual Real Time Operating
System (VRTOS) affecting the portability of embedded
software application development across different
platforms were investigated. A VRTOS here refers to a
layer of interfaces and services that resides between the
application and the operating system to facilitate the
development, deployment and management of embedded
system.

The VRTOS is able to handle a wide range of profiles
supported in different RTOSs. From the developer’s
viewpoint, VRTOS provides one RTOS programming
environment on another operating system. VRTOS utilises
whatever services offered by the underlying operating
system to provide uniform services to embedded system.
Different implementations of the VRTOS provide the
same service interfaces so that software applications
become independent from the operating system. Hence,
software applications based on VRTOS are portable to

different operating systems environments on the same or
different hardware.

A

B
R

TLinux

Software Application

M
em

ory M
anagem

ent

Asynchronous I/O

P
rocess S

cheduling

C
locks and Tim

ers

O
ther AP

Is

Th
re

ad
X

Software Application

M
em

or
y

M
an

ag
em

en
t

A
sy

nc
hr

on
ou

s
I/O

P
ro

ce
ss

 S
ch

ed
ul

in
g

C
lo

ck
s

an
d

Ti
m

er
s

O
th

er
 A

PI
s

Application Migration

R
TL

in
ux

Software Application

M
em

or
y

M
an

ag
em

en
t

A
sy

nc
hr

on
ou

s
I/O

Pr
oc

es
s

Sc
he

du
lin

g

C
lo

ck
s

an
d

Ti
m

er
s

O
th

er
 A

PI
s

W
indow

s O
S

POSIX

POSIX

V
R

TO
S

Windows APIs

VOS APIs

Software Application

Software Development
Environment

Figure 1. Software Portability and VRTOS

Figure 1 demonstrates basic scenarios of the VRTOS

that supports portability.
In Figure 1A, software application is ported from one

RTOS to another one, translation of the system APIs will
be the crucial part of this porting process. Different
RTOSs provide different APIs. Developers can transform
software application based on their knowledge of different
platform APIs.

In Figure 1B, Virtual Real-Time Operating System
(VRTOS) plays a role as a middleware which is running
on Windows. VRTOS supports different RTOS
applications so that application software developed on
VRTOS can be ported to target RTOS platform directly
without any change.

4. RTOS Ontology

It is desirable to investigate portability and reusability
of platform specific software, during which a great deal of
knowledge covering different platforms will be required.
To manage such a large number of knowledge, and to
utilise it to provide portable software, an ontology-based
approach will therefore be introduced that can relieve the
burden of application developers from collecting,

570

classifying and processing information across different
platforms.

Ontology defines the kinds of things that exist in the
application domain [19]. Providing a shared and common
understanding of some domain that can be communicated
between people and application systems [6]. In this
ontology-based approach, ontology will play a role as
RTOS domain knowledge base. Consequently, gathering
the knowledge about RTOS from domain experts, and
then building the ontology according to this knowledge
will be the basic part of the proposed approach.

The RTOS ontology plays the core role for the
development of portable software applications with the
following reasons:

� RTOS ontology provides semantic meaning of the
RTOS functions and properties.

� RTOS ontology enables knowledge sharing and
further knowledge analysis of different platform.

� RTOS ontology defines a set of common system
services which will be used as a standard for
portable software development.

� RTOS ontology provides guidance for software
porting via knowledge acquisition.

Ontology design is considered as one of the most
difficult parts in the proposed approach due to the lack of
standard methodologies in ontological engineering
domain. A prototype of the operating system ontology
was presented in previous work OPTIMA [25, 26], where
eight design principles for operating system ontology
development has been concluded (Table 1).

Principle Name
Principle 1 Atomic Concept Definition
Principle 2 Application Concept Recognition
Principle 3 API Based Classification
Principle 4 Service Based Categorisation
Principle 5 Cardinality Restricted Relations
Principle 6 Understanding Aimed Naming
Principle 7 Requirement-Oriented Refactoring
Principle 8 Multi-Layered Structure.

Table 1. Principles for RTOS Ontology
Development

The RTOS ontology is designed with Protege [20] and
stored in RTOS ontological repository. Ontological
repository provides ontological knowledge representation
as well as small and flexible pieces of code that can be
adapted and used to build the RTOS. Feature location
technique [2] can be used to build the links of ontology
concepts and related source code. Figure 2 demonstrates
part of a conceptual structure of RTOS ontology, whose
design follows the eight proposed principles.

Figure 2. Conceptual Structure of RTOS Ontology

5. Realisation of VRTOS on Windows
Platform

As mentioned in previous sections, to meet the needs
of developing embedded systems, it is desirable that
software could be implemented on a general platform and
be ported to the specific RTOS after the development. In
this Section, how to utilise RTOS ontology to guide the
development of VRTOS on Windows platform is
discussed.

5.1. VRTOS Definition
When the VRTOS is being defined, system analysis

will be performed based on knowledge acquisition. With
the knowledge retrieval provide by RTOS ontology, the
concepts, design policies and mechanisms of RTOSs will
be extracted. Such information will be used as guidance
for defining programming interfaces of VRTOS.

In Figure 3, each system service could be found in
RTOS ontology as an instance. Windows NT system
provides system service to create a thread, the API for this
service is CreatThread(), it is a NON POSIX, the return

571

type is HANDLE, the parameter for this API is a pointer
for the new thread. Furthermore, ThreadX system provide
the creating thread service as well, it is invoked by
thread_create(), it is a NON POSIX, the return type is
unsigned int, the parameter for it is also a pointer for the
new thread.

Figure 3. Rules for Retrieval of System Service

By system analysis, the VRTOS needs to provide

following standard virtual system service and features:
� VRTOS provides application layer a set of uniform

system services to perform threading and
scheduling, aiming to make the differences among
the different target operating systems become
transparent for the developers. VRTOS also provide
different scheduling policies and priorities.

� Memory management is one of the crucial features
for the application layer. Currently, memory
allocation and free are available, memory usage
tracking is provided as well.

� Message queue, mutex and semaphore services are
developed as system independent part, which is not
related to system API on target platform. In
addition, timer service is also provided for
application layer.

POSIX could be the substructure for the standard
services that VRTOS provides. In order to implement
VRTOS on Windows Platform, Windows APIs on related
POSIX standard are examined. In this scenario, all the
APIs in both Windows platform and POSIX standard are
queried with proposed RTOS ontology.

5.2. VRTOS Implementation
The VRTOS is implemented on Windows 2000 to

provide standard virtual system service to manage system
resources such as memory, thread, mutex, semaphore,
message queue, timer etc., and to provide debug and

exception handler as well. The architecture of the VRTOS
on Windows platform is shown in Figure 4.

Figure 4. Architecture of a VRTOS on Windows

Platform [23]

VRTOS provides a Kernel API Layer, which supports

the real-time POSIX Standard [10]. An Interface Layer is
designed that can be extended for different RTOSs, such
as ThreadX [5] or RTLinux [18]. VRTOS supports the
pre-emptive schedule policy of the First-Come-First-
Served (FCFS) style and simulates many kinds of system
resources. A visual debug tool that enables external
environment simulation facilitates the debugging of
embedded software greatly [23].

In order to develop VRTOS fast, an open source
project, RTLinux, is chosen as the main reference since
RTLinux is fully POSIX-compatible. RTLinux is analysed
to construct the ontology repository so that the source
code of RTLinux can be reused. Meanwhile, the windows
APIs on related POSIX standard are examined. All the
APIs in both Windows platform and POSIX standard are
queried with proposed RTOS ontology. If some POSIX
features are not supported by Windows, it means
corresponding development is required.

5.3. VRTOS Testing
In current VRTOS version, there are 3 system

simulation functions, 30 thread functions (10 of them are
mutex related function), 2 memory management functions,
7 message queue functions, 6 semaphore related functions
and 9 timer related functions. Due to the classification of
the system APIs, five sets of 30 testing cases are designed
for the VRTOS testing, (i.e. message queue, memory
management, mutex, semaphore and timer). Each case
includes using thread and scheduling. The testing result
shows that the test cases with VRTOS are running

Thread_api(?x)
Thread_service(Thread_service_create)

Windows(Windows_windowsNT) definedInOS(?x,
Windows_windowsNT) provideService(?x,

Thread_service_create) API_standard(?y)
Data_type(?z) hasAPI(Windows_windowsNT, ?x)

hasAPIStandard(?x, ?y) hasReturnType(?x, ?z)

Thread_api(?x)
Thread_service(Thread_service_create)

Windows(ThreadX) definedInOS(?x, ThreadX)
provideService(?x, Thread_service_create)

API_standard(?y) Data_type(?z)
hasAPI(ThreadX, ?x) hasAPIStandard(?x, ?y)

hasReturnType(?x, ?z)

572

properly on Windows platform and the VRTOS design
and development are successful.

6. Development of Portable Communication
Protocol Stack

To evaluate the proposed approach, the VRTOS has
been used for the development of a portable WCDMA
3GPP Protocol Stack, which has been supplied to a
number of international mobile phone manufacturers.

WCDMA 3GPP Protocol Stack was designed for
several common used RTOSs and has been ported on
ThreadX and RTLinux. The whole system was developed
by 50 persons for one year. All the development tasks
were debugged and tested on VRTOS platform, and only
in the final stage, ICE was used for the physical board
testing. The experiment result shows that:

(1) Software can be ported to different platforms
directly without any migration task.

(2) Software can be developed before the hardware
development.

(3) Multi-developers can work in a parallel way.
(4) Software errors can be separated easily during the

development.
(5) Full-featured testing and debugging tool can be

used during the software development.

7. Related Work

Portability of software application has been studied for
decades of years. In [1, 13, 21], software portability
research has been proposed from many aspects, such as
program, data, user interface (UI) and documentation, etc.
Many factors which hinder software portability have been
indicated ranging from hardware platforms to operating
system platforms.

Janka [12] presents a new development framework
PeakWare for RACE (PW4R), which provides the ability
to manage software and hardware libraries which supports
software reuse and portability. Vuletic et al. [22] propose
a transparent, portable and hardware agnostic
programming paradigm to achieve portability and uniform
programming by reconfigurable computing. Mosbeck et al.
[16] describe software portability in open architectures.
They argue that standardised interfaces and a set of
common services must be provided to facilitate
application portability in open architectures, which are
known as abstraction and isolation methods. All of these
three researches are similar that they all abstract a set of
standard services and create a virtual layer to provide such
standard services, leading to the improvement of software
portability. However, none of these works indicates or
utilise the knowledge intensive features to improve
software portability.

Ontology based software development focuses on how
ontology can be used to facilitate system analysis, design,
coding, implementation, verification and documentation
as well. Zimmer and Rauschmayer [27] present a way of
enhanced ontology-based software modelling. Their tool
TUNA aims to combine XP and MDA by giving MDA
rich means for integrating modelling concepts with the
source code. Furtado et al. [7] propose a universal user
interface design approach which is separated into three
levels of abstraction. The creation of the domain ontology
is the conceptual level, the elaboration of models is the
logical level, and the code transformation is the physical
level. Ontology has also been used for program
comprehension. Yang et al. [24] suggests that ontology
have a great potential for legacy software understanding
and re-engineering.

Many researches have been carried out on portability
of software applications based on modelling and
standardisation of Operating System. Gauthier et al. [8]
propose a methodology for automatic generation of
application specific operating systems and automatic
targeting of application code. Gerstlauer et al. [9] present
a RTOS model built on top of existing system level design
languages which, by providing the key features typically
available in any RTOS, allows the designer to model the
dynamic behaviour of multi-tasking systems at higher
abstraction levels to be incorporated into existing design
flows. Madsen et al. [14] present a modelling framework
consisting of basic RTOS service models including
scheduling, synchronization and resource allocation, and
task model that is able to model periodic and aperiodic
tasks as well as task properties. Many world-famous
software research institutes are doing research to facilitate
porting between Windows and UNIX-like operating
systems, e.g., Microsoft Interoperability and Migration
Centre, AT&T Labs Research, Cygwin [4] , Interix [11] ,
etc.

8. Conclusion and Future Work

This paper proposes an ontology-based approach to
developing a VRTOS to enhance the portability of
embedded system applications across different RTOSs,
which fits in the knowledge-based engineering contexts.

Through the RTOS ontology and knowledge
representation techniques, the functional equivalence of
different operating systems has been established by
defining a set of common system services and
implementing as a VRTOS. VRTOS has successfully
disentangled computing environments from their
underlying operating system. Hence, the underlying
operating system becomes totally transparent to the
software applications, which therefore improves the
portability of software applications.

Several advantages have been shown by building and

573

utilising OS ontology in this paper. However, there are
two types of extra costs incurred when using this
ontology-based approach to developing portable software
applications:

� The costs of developing RTOS ontology. This
process is undoubtedly time-consuming endeavour,
since a large amount of domain knowledge will be
analysed and represented by ontology. However,
RTOS ontology is reusable and expandable.

� The costs of implementing VRTOS. Although the
effort to develop a VRTOS is large when compared
to the effort required when migrating a single
program, it is incurred once for different target
operating systems within the application domain.

Currently, the RTOS ontology mainly focuses on the
programming interface. In the future, this ontology should
be expanded from different aspects, and furthermore, it
should be published in interactive Semantic Web
Community, which enable more experts and specialists
working together to contribute to this ontology
development.

References

[1] A. Bell, "Software Portability," Tessella Support Services
PLC Jul. 1998.

[2] F. Chen, S. Li, and H. Yang, "Feature Analysis for
Service-Oriented Re-engineering," presented at 12th IEEE
Asia-Pacific Software Engineering Conference
(APSEC'05), Taiwan, Dec. 2005.

[3] F. Chen, H. Guo, L. Dai, et al., "An Application
Framework for Ontology-based Data Mining," Journal of
Dalian University of Technology, vol. Suppl., 43(S1),
China, pp. 143-145, Oct. 2003.

[4] CygnusSolutions, "Cygwin," http://cygwin.com/.
[5] ExpressLogic, "ThreadX User Guide,"

http://www.expresslogic.com, Express Logic, Inc.
[6] D. Fensel, Ontologies: Silver Bullet for Knowledge

Management and Electronic Commerce: Springer-Verlag,
Berlin, 2000.

[7] E. Furtado, J. J. V. Furtado, W. B. Silva, et al., "An
Ontology Based Method for Universal Design of User
Interfaces," presented at Workshop on Multiple User
Interfaces over the Internet: Engineering and Applications
Trends, Lille, France, Sep. 2001.

[8] L. Gauthier, S. Yoo, and A. A. Jerraya, "Automatic
Generation and Targeting of Application Specific
Operating Systems and Embedded Systems Software,"
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20(11), pp. 1293-
1301, Nov. 2001.

[9] A. Gerstlauer, H. Yu, and D. D. Gajski, "RTOS Modeling
for System Level Design," presented at Design,
Automation and Test in Europe(DATE'03), Messe Munich,
Germany, Mar. 2003.

[10] IEEE, "The Open Group Base Specifications Issue 6. IEEE
Std 1003.1-2001," The IEEE and The Open Group, 2001.

[11] InteropSystems, "Interix," http://www.interix.com/.

[12] R. Janka, "A New Development Framework Based On
Efficient Middleware for Real-Time Embedded
Heterogeneous Multicomputers," presented at IEEE
Conference and Workshop on Engineering of Computer-
Based Systems (ECBS '99), Nashville, USA, Mar. 1999.

[13] H. Kaindl, "Portability of Software," ACM SIGPLAN
Notices, vol. 23(6), pp. 59 - 68, 1988.

[14] J. Madsen, K. Virk, and M. Gonzales, "Abstract RTOS
Modelling for Multiprocessor System-on-Chip," presented
at International Symposium on System-on-chip(SoC'03),
Tampere, Finland, Nov. 2003.

[15] J. D. Mooney, "Technical Reports: Bringing Portability to
the Software Process," West Virginia University 1997.

[16] R. A. Mosbeck, L. C. Reeve, and J. R. Thedens, "
Software Portability in Open Architectures," presented at
IEEE/AIAA 20th Digital Avionics Systems Conference
(DASC'01), Daytona Beach, USA, Oct. 2001.

[17] D. C. Rine and R. M. Sonnemann, "Investments in
Reusable Software: A Study of Software Reuse
Investment Success Factors," Journal of Systems and
Software, vol. 41, pp. 17-32, 1997.

[18] RTLinux, "RTLinux V3.0 Source Code,"
ftp://ftp.rtlinux.com/pub/rtlinux/v3/.

[19] J. F. Sowa, Knowledge Representation: Brooks/Cole, an
imprint of Thomson Learning, 2000.

[20] Stanford, "Protete," http://protege.stanford.edu/.
[21] M. Tanaka, "A Study of Portability Problems and

Evaluation," presented at 8th International Conference on
Software Maintenance (ICSM'92), Orlando, USA, Nov.
1992.

[22] M. Vuletic, L. Pozzi, and P. Ienne, "Programming
Transparency and Portable Hardware Interfacing:Towards
General-Purpose Reconfigurable Computing," presented at
15th IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP'04),
Galveston, Texas, Sep. 2004.

[23] Y. Wang, F. Chen, L. Xu, et al., "An Implementation of a
Multi-Interface Virtual Real-Time Operating System on
Windows Platform," Journal of Dalian University of
Technology, vol. Suppl., 43(S1), pp. 100-102 (in Chinese),
Oct. 2003.

[24] H. Yang, Z. Cui, and P. O'Brien, "Extracting Ontologies
from Legacy Systems for Understanding and Re-
Engineering," presented at 23rd Annual International
Computer Software and Applications Conference
(COMPSAC'99), Phoenix, AZ, Oct. 1999.

[25] H. Zhou, F. Chen, and H. Yang, "Developing Application
Specific Ontology for Program Comprehension by
Combining Domain Ontology with Code Ontology,"
presented at the 8th International Conference on Quality
Software Oxford, 2008.

[26] H. Zhou, J. Kang, F. Chen, et al., "OPTIMA: an Ontology-
based PlaTform-specIfic software Migration Approach,"
presented at 7th International Conference on Quality
Software (QSIC'07), Portland, Oregon, USA, Oct. 2007.

[27] C. Zimmer and A. Rauschmayer, "Tuna: Ontology-Based
Source Code Navigation and Annotation," presented at
Workshop on Ontologies as Software Engineering
Artifacts, Vancouver, Canada, 2004.

574

An Integrated Ontology Framework for Health Information Exchange

S. Demurjian, R. Saripalle, and S. Berhe
Department of Computer Science & Engineering, University of Connecticut,

U-2155, 371 Fairfield Road, Storrs, CT, USA
Email:{steve,rishikanth,solomon.berhe}@engr.uconn.edu

Abstract

As we approach 2010, health information technology
(HIT) - electronic medical records (EMRs) by providers and
personal health records (PHRs) by patients - has begun to
pervade all aspects of health care. Moreover, there is an
emergent need for health information exchange (HIE) to
link disparate data sources that contain medical informa-
tion in support of efficient and effective patient care. The
ability to support HIE across a multitude of sources (EMRs,
PHRs, databases, etc.) without widely accepted standards
is a difficult, if not monumental task. Issues to be ad-
dressed include: maintaining a master patient index, in-
suring HIPAA-compliant privacy and security, reconciling
ontologies at syntactic and semantic levels, assuring data
quality and consistency, etc. In this paper, we compare and
contrast frameworks and architectures for health informa-
tion exchange, and based on our assessment, propose a hy-
brid ontology-based architecture that provides both syntac-
tic integration and semantic unification.

1 Introduction

In the next 5 to 10 years, the adoption and usage of health

information technology (HIT) systems will be pervasive in-

cluding: electronic medial record (EMR) to manage health-

related information for each patient; practice management
system (PMS) to handle financial, demographic, and billing

information; electronic prescribing (eRx) to write and trans-

mit prescriptions; provider sponsored patient portals (PP)
to access lab results, request refills, make, cancel, and con-

firm appointments, etc.; and, personal health records (PHR)
that place the control of health-related information directly

into the hands of patients (e.g., Google Health [7], Mi-

crosoft HealthVault [18], WebMD PHR [27], etc.). From

large research hospitals to small physician practices, across

all support services (e.g., laboratories, scans, pharmacists,

insurers, etc.), there is an emergent need for health infor-

mation exchange (HIE) to link multiple data sources for ef-

ficient and effective patient care. In fact, the American Re-

covery and Reinvestment Act of 2009 includes $2 billion for

the Office of the National Coordinator for HIT [21] and up

to $36 billion to states (5 to 1 federal/state match) focused

on HIT adoption including EMRs, PHRs, PMSs, PPs, and

HIE. All of these systems must adhere to stringent Health

Insurance Portability and Accountability Act (HIPAA) reg-

ulations [9] for the security, availability, transmission, and

release of a patient’s medical information.

The movement to a massively linked health information

network, will be accompanied by dramatic changes in the

way that health care providers (e.g., physicians, nurse prac-

titioners, nurses, rehab centers, hospitals, therapists, etc.)

communicate with one another, and patients and their fam-

ilies [1, 2]. Since patients move from provider (internist)

to provider (cardiologist) and from their home to a hospi-

tal to a rehab center and back home again, communication

and workflow are key issues [8, 11, 25], with HIE facili-

tating remote access to information distributed among mul-

tiple EMRs, PHRs, and PPs. To accomplish HIE, each of

these individual systems are likely to maintain their own on-
tologies to capture the meaning of stored information. As a

result, HIE must consider the merging of ontologies, from

syntactic and semantic perspectives, since the same term in

two different ontologies (from two different systems) may

be interpreted differently. The intent is to create a con-

sistent, complete, and historically accurate patient medical

record, known as a virtual chart (VC) [13], shown in Figure

1.

In this paper, we explore issues and approaches for HIE

that unifies information into a VC, by addressing both syn-

tactic integration and semantic unification across EMRs,

PHRs, PPs, etc., as given in the top portion of Figure 1.

Specifically, we propose an ontology-based framework that

can serve as a blueprint for HIE, which has been influ-

enced by a comparison and analysis on the work of other

researchers [24, 26, 28, 29]. By examining and contrasting

these approaches based on various criteria, we are able to

understand their deficiencies, and leverage this understand-

ing to propose an ontology-based framework. In the re-

575

Figure 1: HIE and the Virtual Chart.

mainder of this paper: Section 2 details HIE requirements;

Section 3 presents, compares, and contrasts the four alterna-

tive architectures against a set of evaluation criteria; Section

4 proposes a hybrid architecture that provides an extensible,

integrated ontology framework for HIE; and, Section 5 of-

fering concluding remarks and details planned work.

2 HIE Requirements

This section explores various requirements for health in-

formation exchange (HIE). As shown in the bottom of Fig-

ure 1, stakeholders access required information via a vir-
tual chart (VC) [13]. Such information is gathered from

different repositories (e.g., a physician’s EMR, a hospital

EMR, a patient’s PHR, a pharmacy system, etc.) by HIE.

In a futuristic health care scenario, consider Mr. J. Smith,

a 78 year old patient with diabetes and a history of smok-

ing who presents to the ER with shortness of breath and

wheezing for the first time. Mr. Smith will be treated by in-

dividuals who are both in person and located remotely: ER

physician, ER nurses, patient’s primary care physician, ra-

diologist, cardiologist, hospitalist (if the patient is admitted,

manages day-to-day care), in-hospital pharmacist, insurer

(who is in the loop to determine/approve length of stay), dis-

charge planner (to arrange care and give instructions on dis-

charge), external pharmacy (medications after discharge),

and visiting nurse (in-home services). Each stakeholder, at

different points in time, need access to the VC. The chal-

lenge with HIE is to integrate medical data across all of

these different systems. Note that all of the previously indi-

cated systems used by the stakeholders are available and in

place, often in isolation and with limited HIE.

Second, syntactic unification must be supported for data

integration in HIE, in approaches such as: Global-as-View
(GaV) and Local-as-View (LaV) [16]. In LaV, the concepts

in the local schema (e.g., from an EMR) are mapped to a

global schema (e.g., for the VC) via queries that operate

as mapping rules between the two schemas. The LaV ap-

proach favors the extensibility of HIE: adding a new source

simply means enriching the mapping with a new assertion,

without other changes. In GaV, each concept in the global

schema has a corresponding query or mapping rule over the

local schema, indicating the method needed by the sources

to retrieve data. Adding new sources may have an impact

on elements of the global schema requiring redefinition.

Third, in the above scenario, multiple stakeholders com-

municate on J. Smith and analyze his data to determine the

cause and treatment via the VC. Since the data formats of

the sources may follow various standards (e.g., HL7 [10],

HIPAA [9], ICD9/ICD10 codes [12], etc.), both the struc-

tural and semantic data from heterogeneous sources must

be unified to represent the data in the VC, as shown in the

top of Figure 1. The VC provides customized access based

on each stakeholder for both viewing and modifying of this

unified data set. To illustrate, consider Figure 2 that has a

medical file from a hospital in an HL7 XML format that fol-

lows the semantics of the hospital and a second file from a

medical center also in an HL7 XML format which instead

follows ICD codes. This data doesn’t need syntactic unifi-

cation, but must be semantically unified; the dashed arrows

are semantic equivalences (e.g., A to ICD10, C to ICD11,

etc.). Note that documents with different formats (relational

table and HL7) must be first syntactical unified.

Figure 2: Semantic Unification Example.

Fourth, privacy, security, and consent for the VC must be

addressed, including: who has the right to access informa-

tion, the extent of patient control over their own data, and

the way data is stored or linked to other data sources. These

decisions must be guided by law [9] and security models

such as the National Institute for Standards and Technol-

ogy role-based access control (RBAC) [19]. HIPAA per-

mits hospitals and medical centers to share protected health

information for treatment, payment, and research (quality

improvement) with patient authorization; however, it is un-

clear if the current authorization process is sufficient to sup-

port wide-scale regional and/or national HIE.

Finally, workflow, akin to a virtual office setting [3],

must be addressed in a medical context, since future pa-

576

tient care must be handled in a different manner than cur-

rent practice [14]. Traditional workflow systems lack meth-

ods to define relationships among objects in service and the

logics of services, to differentiate between the responsibil-

ities and actions providers. Most workflow systems have

predefined flows that cannot be dynamically changed. As

indicated in [14], medical cases cannot be anticipated; J.

Smith’s history and symptoms are unique. As a result,

workflow for the VC must adapt to changing medical sit-

uations, domain knowledge, and medical treatments.

3 HIE Candidate Architectures

Health information exchange (HIE) combines data

sources in order to provide a unified view to end-users, ap-

plication components, etc. In this section, we explore, com-

pare, and contrast four candidate architectures [24, 26, 28,

29] to achieve HIE integration via a global schema approach

(recall GaV and LaV [16] from Section 2). To assist in this

process, we define five evaluation criteria: Syntactic Inte-

gration, Semantic Unification, Ontology Support, Adapt-

ability, and Extensibility. Syntactic Integration considers

the ability of the architecture to unify multi-structural in-

formation into a global structural format. Semantic Unifi-
cation represents the ability of the architecture to identify,

from heterogeneous data sources, semantically equivalent

concepts, properties, etc., which can then be grouped to-

gether. Ontology Support considers the degree that a given

architecture supports semantic interpretations and seman-

tic domain knowledge representation via ontologies; this is

important since many of the systems to be integrated utilize

ontologies that must be reconciled. Adaptability, refers to

the ease in which the architecture can handle changing and

emerging health care standards and regulations; additions

to HL7 [10] or to HIPAA [9] may have significant impact.

Finally, Extensibility refers to the degree that the architec-

ture can be extended with new data sources and its ability to

handle emerging requirements. For the latter, this includes,

new standards for HIE, support for collaboration and work-

flow, new security models, semantic reasoning, etc.

The first alternative architecture [26] in Figure 3 is an

XML and XSLT based heterogeneous database integration

scheme using a GaV approach. When a user poses a global

query, it is decomposed into subqueries to the various sites

(bottom of Figure 3) which are processed with data re-

turned in an XML format. XSLT and metadata from each

local database are used to transform local results into the

global schema format. The middle layer collects the trans-

formed data from all sources and integrates into a consol-

idated view. The global schema is generated by unifying

structurally equivalent XML schema’s; this is full support

of Syntactic Integration. This architecture uses metadata,

and local/global schema information for a limited semantic

Figure 3: Alternative 1: Tseng.

interpretation of database attributes, but this does not ex-

plicitly satisfy Semantic Unification and Ontology Support.

Adaptability is supported in a limited sense; the key for data

integration is in the XSLT files that specify the mapping at

the XML level. These files essentially contain the mapping

(e.g., say from HL7 version 1 in Site A to HL7 version 3 in

global sphere), and if there are changes, then these XSLTs

must be changed. Finally, Extensibility to add new sources

requires a new XSLT for each source; however, more com-

plex extensions such as collaboration, semantic reasoning,

etc., are not supported.

The second alternative architecture [28] in Figure 4 uni-

fies heterogeneous databases using a semi-automatic tech-

nique for semantic integration using schemas, data types,

constraints, etc., augmented by a multi-step process of pars-

ing, classification (grouping of similar attributes), and train-

ing of the neural network to identify similar attributes. To

accomplish these tasks, database concepts and schema are

input to a self-organizing mapping algorithm to categorize

attributes with the output of classifier used as the training

data (to determine similarity of attributes) for a category

learning and recognition algorithm. This architecture is

very similar to alternative 1, with Syntactic Integration fully

supported. However, the assumption is that the database ar-

chitect provides the meaning of full names and metadata for

the databases attributes, thereby supporting only a limited

degree of Semantic Unification by grouping similar terms

and properties. There is no usage of Ontology Support,

and limited Adaptability and Extensibility. The difficulty

in this approach, is that in practice, with 10s or even 100s

of data sources, the ability to parse, classify, and train be-

comes computationally prohibitive.

The third alternative architecture [29] in Figure 5 is an

ontology-based approach using GaV for integrating XML

resources via mappings between the local source schemas

and global ontology. The global ontology is expressed

in terms of the Resource Description Framework Schema

(RDFS) [23], a general purpose language for represent-

ing information on the web, including ontologies. In the

approach, heterogeneous XML sources are transformed

577

Figure 4: Alternative 2: Li & Clifton.

Figure 5: Alternative 3: Huiyong & Cruz.

into local RDFS ontologies, and then merged, via a semi-

automatic process, into the global ontology. As discussed

in Section 2, generating a global view results in a mapping

between concepts in the global ontology and concepts in the

local ontologies; this is full Ontology Support. This archi-

tecture also fully supports Adaptability, since the ontology

mappings deal with both Syntactic Integration and Semantic

Unification. As a result, limited Extensibility is supported;

including additional data sources is a straightforward pro-

cess, with more complex extensions problematic.

The final alternative architecture [24] in Figure 6, based

on GaV, is the evolvable view environment (EVE), which

allow views on heterogeneous data sources to survive

schema changes of their underlying data sources while also

adapting to changing data in those sources. EVE adapts

to the changing data source schema by: view synchroniza-
tion that applies view query rewriting algorithms; and, view
adaptation in an incremental manner for view definition

changes. Unlike other systems, in EVE, query rewriting

was relaxed as a means of retaining the validity of a data

warehouse in a changing environment. This is achieved via

an extension to SQL, that allows a differentiation among

Figure 6: Alternative 4: Rundensteiner, et al.

attributes in a query. Similar to Alternative 3, there is full

Syntactic Integration and Semantic Unification, limited On-

tology Support, full Adaptability, and limited Extensibility.

To summarize, Table 1 contrasts the architectures against

the criteria, where: None means no support, Full means

(near) complete support, and Limited (Ltd.) means a de-

gree of support. The final two alternatives are comparable

to one another and superior to the first two. The problem

Table 1: Architectural Comparison.

Alt. 1 Alt. 2 Alt. 3 Alt. 4

Synt. Int. Full Full Full Full

Seman. Unif. None Ltd. Full Full

Ontol. Supp. None None Full Ltd.

Adapt. Ltd. Ltd. Full Full

Extens. Ltd. Ltd. Ltd. Ltd.

with all four approaches is that they are incomplete; for

HIE, the data sources will include databases, EMRs, PHRs,

PPs, etc. Alternatives 3 and 4, while showing promise, are

only solving a part of the problem. Generalized information

exchange and interoperability transcend database interac-

tions; event-driven architectures, service-oriented architec-

ture, edge-servers for data sharing, etc., must be considered

in conjunction with the ideas for the architectures given in

this section to arrive at an acceptable solution for HIE.

4 Proposed Hybrid Architecture

This section presents a proposed hybrid architecture for

health information exchange (HIE) that is centered around

578

an integrated ontology framework. As shown in Figure 7,

the proposed architecture integrates an EMR, PP, and PHR

with an Ontology Engine via an Event-Driven Architec-

ture (EDA) [4]. An EDA provides mechanisms to com-

pletely decouple event sources (EMR, PP, and PHR) from

event sinks (Ontology Engine) and these interactions can

occur asynchronously. EDA facilitates the inclusion of new

sources and supports replication for continued operation

during failures. The Ontology Engine comprise one facet

of the Virtual Chart (bottom middle), which in turn has a

Service Oriented Architecture (SOA) [6] to provide access

to VC to the intended user base. SOA complements EDA

to provide a set of accessible services for use by developers

who are constructing applications for health care providers

against the virtual chart (VC).

The specifics of the proposed architecture are as fol-

lows. First, each of the data sources (right side of Figure

7) are in control of the information to be published from

their database, and provides a Local Ontology (terms of the

data source) as indicated by OPHR, OEMR, andOPP. The

alternative architectures discussed in Section 3 focused on

a global ontology that is obtained by integrating multiple

local ontologies. However, generating a single global on-

tology can be tedious and error prone, with a result that is

inconsistent, inaccurate, and difficult to browse or edit [17].

The Ontology Engine collects the Local Ontologies (e.g.,

XML schemas) and processes them through the Syntac-
tic Unifier to yield similar structural organization and the

Semantic Unifier to reconcile the meanings resulting in a

Global Ontology, OGO, shown on the left hand side of Fig-

ure 7. Similarly, the ontologies associated with each portion

of the VC (e.g., OBT, OHH, etc.) which contain standard

medical and supportive ontologies (e.g., UMLS, GALEN,

BFO, WordNet, ICD, etc.) are glued together through a set

of mapping ontologies (e.g., OM1, OM2, andOM3) to gener-

ate a combined ontology OVC. These two resulting ontolo-

gies, OGO and OVC, are mapped between one another to

form OGO−VC; the Semantic Unifier is utilized to reconcile

meanings as necessary. The resulting ontology, OGO−VC,

contains all of the relationships among the concepts in the

local source ontologies (from PHR, EMR, and PP) as well

as those from the VC. While these ontologies are similar to

the alternatives in Section 3, our approach proposes to store

the mapping rules in an ontology to leverage automatic rea-

soning capabilities.

Finally, the hybrid architecture given in Figure 7 is

highly geared towards extensibility. At an architecture

level, this is achieved via EDA and SOA. But there are other

levels of extensibility. Consider that each of the sources

(PHR, EMR, PP, etc.) could be augmented with the inclu-

sion of a Local Security Policy document which allows a

data source to set its security requirements. Figure 7 would

then be augmented with a Security Engine (akin to the On-

tology Engine), where the local polices are combined into

a Global Security Policy that is enforced against the VC.

This pair of Local Security Policy and Security Engine is

a blueprint for extensibility. For instance, recall in Section

2, that one of the HIE requirements was support for collab-

oration. Since collaboration in health care is increasing in

importance, it will be vital to provide a Local Collabora-

tion Policy for each data source and a Collaboration Engine

with a unifier, Global Collaboration Policy, and Workflow

Mechanism to interface to the VC.

5 Conclusion/Ongoing Work

Health information exchange (HIE) is a complex prob-

lem that will require the interaction of researchers and prac-

titioners from multiple disciplines as one seeks to integrate

EMRs, PHRs, PPs, databases, and other systems, into a vir-

tual chart for use by health care providers. In this paper, in

Section 2, we detailed HIE requirements, including a health

care scenario, syntactic/semantic unification, and other is-

sues. Using this as a basis, Section 3 reviewed, compared,

and contrasted four architectures based on evaluation crite-

ria. Our analysis led us to propose a hybrid architecture that

is ontology-based in Section 4, that includes an Ontology

Engine to integrate local ontologies into a Global Ontology.

The work presented herein is an initial step on a long

path. A workable solution for HIE will need to consider

generalized architectural paradigms. While we used event-

driven and service-oriented architectures, we are consider-

ing other possibilities (e.g., edge-servers for data sharing,

cloud computing, etc.). As a result, our ongoing work is in

two directions. First, we are exploring a larger-scale archi-

tectural view with an emphasis on identifying other facets

of HIE (e.g., security, collaboration, decision support, etc.)

that are critical for health care. Second, we are focusing

on semantic integration and reconciliation for ontologies, to

model dependencies within and across ontologies that may

simplify this process.

References

[1] J. Abraham and M. Reddy. “Moving Patients

Around: A Field Study of Coord. Between Clinical

and Non-Clinical Staff in Hospitals.” Proc. of ACM
2008 Conf. on CSCW.

[2] R. Agrawal, et al. “Enabling the 21st Century Health

Care Information Technology Revolution.” Comm.
of the ACM, 50(2), 2007.

[3] R. Carbon, et al. “Mobility in the Virtual Office: A

Document-Centric Workflow Approach.” Proc. of 1st
Intl. Workshop on Software Architectures and Mobil-
ity, 2008.

579

Figure 7: A Hybrid Architecture for Integrating Heterogeneous Sources using Ontologies.

[4] M. Chandy, et al. “Event Driven Architectures for

Distributed Crisis Management.” Proc. 15th IASTED
Intl. Conf. on PDCS, 2003.

[5] S. Demurjian, et al. “Emerging Trends in Health Care

Delivery: Towards Collaborative Security for NIST

RBAC,” submitted to 23rd IFIP WG11.3 Conference

on Data and Applications Security.

[6] Erl, T. Service-Oriented Architecture: Concepts,
Technology & Design, Prentice Hall, 2005.

[7] Google PHR, www.google.com/intl/en-

US/health/tour/index.html

[8] L. Hassell and J. Holmes. “Modeling the Workflow

of Prescription Writing.” Proc. of 2003 ACM Symp.
on Applied Computing, 2003.

[9] HIPAA, www.hhs.gov/ocr/hipaa

[10] Health Level 7, www.hl7.org

[11] K. Hoshi and J. Waterworth. “Effective Collabo-

ration for Healthcare by Bridging the Reality Gap

across Media-Physical Spaces.” Proc. of 1st Intl.
Conf. on PErvasive Technologies Related to Assistive
Environments, 2008.

[12] ICD 9/10 Codes, www.cdc.gov/nchs/icd9.htm

[13] P. Kenny, et al. “Virtual Humans for Assisted Health

Care.” Proc. of 1st Intl. Conf. on PErvasive Tech-
nologies Related to Assistive Environments, 2008.

[14] M. Kobayashi, et al. “Work Coordination, Workflow,

and Workarounds in a Medical Context.” Ext. Absts.
on Human Factors in Computing Systems, 2005.

[15] A. Koeller. “Integration of Heterogeneous

Databases: Discovery of Meta-Information and

Maintenance of Schema-Restructuring Views.”

Ph.D. Thesis. UMI Order No.: AAI3030945, 2001.

[16] M. Lenzerini. “Data Integration: A Theoretical Per-

spective.” Proc. of the 21st ACM SIGMOD-SIGACT-
SIGART Symp., 2002.

[17] E. Mena, et al. “Observer: An Approach for Query

Processing in Global Information Systems Based on

Interoperation Across Preexisting Ontologies.” Proc.
of First IFCIS Intl. Conf.on Cooperative Information
Systems,1996.

[18] Microsoft PHR, www.healthvault.com

[19] NIST RBAC, csrc.nist.gov/rbac/sandhu-ferraiolo-

kuhn-00.pdf

[20] OASIS XACML: xml.coverpages.org/xacml.html

[21] Office of Natl. Coordinator, www.hhs.gov/healthit

[22] P. Patel-Schneider and J. Simeon. “The Yin/Yang

web: XML syntax and RDF semantics.” Proc. of
the 11th Intl. Conf. on WWW, 2002.

[23] W3C RDFS: www.w3.org/TR/rdf-schema

[24] E. Rundensteiner, et al. “Evolvable View Environ-

ment (EVE) : Non-Equivalent View Maintenance un-

der Schema Changes.” Proc. of 1999 ACM SIGMOD
Conf.

[25] W. Tolone, et al. “Access Control in Collaborative

Systems.” ACM Computing Surveys, 37(1), 2005.

[26] F. Tseng. “XML-Based Heterogeneous Database In-

tegration For Data Warehouse Creation.” Proc. of
Pacific Asia Conf. on Information Systems, 2005.

[27] WebMD PHR, www.webmd.com/phr

[28] Wen-Syan Li, and Chris Clifton “Semantic Integra-

tion in Heterogeneous Databases Using Neural Net-

works.” Proc. of the 20th VLDB Conf., 1994.

[29] H. Xiao, and I. Cruz. “Integrating and Exchang-

ing XML Data using Ontologies.” Proc. of 8th Intl.
Database Engineering & Applications Symp., 2004.

580

Modeling user interpersonal stances in affective dialogues with an ECA

Nicole Novielli, Enrica Gentile
Dipartimento di Informatica, University of Bari

Via Orabona, 4 – 70125 – Bari (BA) - Italy
{ novielli, gentile }@di.uniba.it

Abstract. Since several forms of anthropomorphic behavior
of users towards technologies have been demonstrated,
ongoing research on intelligent interfaces aims at developing
adapting conversational systems which tailor their behavior
according to both cognitive and affective features of users.
We present an approach for combining results of our
previous experience in detecting and modeling interpersonal
stances in advice-giving dialogues with an ECA. We sketch
an algorithm for adaptation of the behavior of the agent
according to the user social attitude and level of engament.

1. Introduction

Ongoing research on intelligent interfaces aims at
developing adaptive conversational systems that can both
adjust to individual differences among users and track and
adapt to changes in key features of users’ language and
behavior during conversations. Embodied Conversational
Agents (ECA) are one of the forms in which this ‘intelligent’
kind of interaction promises to be effective [1], if the
hypothesis that ‘characters contribute to more sociable and
user-friendly interfaces’ is taken for granted [2].
Our long term goal is to build an ECA which employs social
and affective skills to engage users in natural dialogues
about advice-giving [3]. In the scenario we investigate, the
ECA plays the role of an advice-giver in the domain of
healthy eating.
Building an effective dialogue strategy is a complex task in
which knowledge of the user characteristics is of primary
importance. This knowledge may be acquired by observing
the user behaviour during the dialogue to build a dynamic,
consistent model of her mind. This model can be used for
adaptation purposes and should combine both affective and
cognitive ingredients [4].
In this paper we present an approach for combining results
of our previous experience in detecting and modeling
interpersonal stances1. In particular, we sketch an algorithm
for dialogue adaptation in which we combine: (i) a method
for modeling the user social attitude, which integrates
consideration of the context with language analysis of
individual dialogue turns [23]; (ii) a method for detecting the
user engagement, which uses Hidden Markov Models
(HMMs) for dialogue pattern modeling [26].
The paper is structured as follows: in Section 2 we describe
which attitude aspects could be considered as relevant in
advice-giving dialogues adaptation and we provide
definition for both, the user social attitude and level of
engagement; in Section 3 we provide a brief description of
the corpus used for defining the interpersonal stance
modeling methods; these methods are then described in
details in Section 4; Section 5 provided an example of how
we intend to combine knowledge about the user social
attitude and level of engagement in dialogue adaptation;

1 To Scherer, interpersonal stance is “characteristic of an affective style that
spontaneously develops or is strategically employed in the interaction with a
person or a group of persons, coloring the interpersonal exchange in this situation
(e.g. being polite, distant, cold, warm, supportive, contemptuous)”:
http://emotion-research.net/deliverables/D3e%20final.pdf

conclusions and directions for future work are provided in
Section 6.

2. Which attitude aspects?

In the recent years, several projects aimed at classifying the
user dialogue turns according to a set of either continuous or
discrete ‘emotional states’ or to the estimated value of some
basic components of affective states (such as valence or
intensity) [7,8,9]. Other studies aimed at recognizing some
personality traits of the users from monologs (e.g.
extraversion in emails [10]).
Rather than considering emotions, we look at two aspects of
affective interaction, the social attitude and level of
engagement, which we assume to be key factors for a
successful adaptation of advice-giving dialogues.

2.1 Social Attitude

Affective states vary in their degree of stability, ranging from
long-standing features (personality traits) to more transient
ones (emotions). ‘Interpersonal stance’ are in a middle of this
scale. This general concept was named differently in recent
research projects: Paiva [11] and Vaknin2 talk about
‘empathy’; e-learning researchers investigate the concept of
‘social presence’ [12] which received several definitions,
from the general one “the extent to which the communicator
is perceived as ‘real’” [13] to the more ECA-specific one
“the extent to which individuals treat embodied agents as if
they were other real human beings” [14].
In referring to the social response of users to ECAs, we will
employ the term social attitude. To distinguish warm from
cold social attitude, we refer to Andersen and Guerrero’s [15]
definition of ‘interpersonal warmth’ as “the pleasant,
contented, intimate feeling that occurs during positive
interactions with friends, family, colleagues and romantic
partners [and] ... can be conceptualized as... a type of
relational experience, and a dimension that underlines many
positive experiences”.
Recognizing the social attitude of the user is essential for
adapting the agent interaction style and behaviour.
Adaptation may be beneficial if the user characteristics are
recognized properly (as shown in the examples 1a and 1b)
but detrimental in case of misrecognition (as in the example
1c).
Researchers proposed a large variety of markers for social
stances. In Section 4, we describe a method for social
attitude detection based on a combination of results of
linguistic analysis and contextual information.

Example 1a
System: Hi, my name is Valentina. I’m here to help you to improve
your diet.
User: What should I do? (neutral attitude)
S: To start, I’m going to ask you some information about your eating
habits. What did you eat for dinner, yesterday?
 (the system reacts with a neutral move as well)

2 S. Vaknin: On empathy: http://samvak.tripod.com/empathy.html

581

Example 1b:
S: Hi, my name is Valentina. I’m here to help you to improve your diet.
U: Hi Valentina, my name is Carlo and I’m happy to interact with you
 (U shows a warm social attitude by friendly introducing himself)
S: Hi Carlo, good to hear your interest! I hope you’ll find our dialogue
useful. I’ll, first of all, ask you some information about your eating habits.
(S reacts accordingly by adding ‘warmth’ to his move using some small talk)

Example 1c:
S: I think your diet is completely wrong.
U: Oh thanks, Valentina! You’re so nice! (with Ironic intonation)
S: Thanks! (By smiling)

2.2 Engagement

To be effective, advice-giving cannot be the same to all
interlocutors. The Likelihood Model [5] suggests that in
different situations of attention and interest, peripheral or
central processing channels should be followed, with more
or less affective features. Hence, knowledge of the users is
essential to increase their information processing ability and
interest, and therefore the effectiveness of advice-giving. In
this sense, recognition of engagement is of primary
importance for adaptation.
Engagement is a concept to which researchers attach a wide
range of related but different meanings [16,17,18], which are
meant to be coherent with application domain and adaptation
purposes.
In our definition of engagement, we take into account the
two main task addressed in the advice-giving dialogues: the
information provision and the actual advice-giving process.
In particular, we consider users to be ’highly engaged’ when
the system succeeds in involving them in the Advice-Giving
process (AG users). A lower level of engagement is
experienced by users who are mainly interested in the
information-giving task (Information Seeking users or IS).
Finally, we classify as ‘not engaged’ (N) users who don’t
show any interest in the conversation and give a passive and
barely reactive contribution to the interaction, by mainly
answering the system’s questions, very often with general
answers (e.g. ‘yes’ or ‘no’).
Distinguishing among these three levels of engagement is
relevant for adaptation: IS users might be either helped in
their information seeking goal or leaded by the system to get
involved also in the advice giving task; AG users might
perceive an increased satisfaction if the agent is believable in
playing the role of artificial therapist; N users represent a
real challenge for the system: their attitude might be due to a
lack of interest in the domain or to their being in the
‘precontemplation stage’ [19].
Basing on the assumption that the level of involvement
affects the dialogue pattern, we describe, in Section 4, a
methods which exploits conversational analysis techniques
for engagement detection and modeling.

3. A WoZ corpus of persuasion dialogues

In defining approaches for the recognition of the affective
ingredients of the user’s state of mind, we integrated
psycholinguistic theories with results of empirical studies on
natural data [23,26].
In particular, we observed how people actually behave when
experiencing different levels of social attitude and
engagement in advice-giving dialogues with an ECA.
We performed a set of Wizard of Oz studies in which the
ECA played the role of an artificial therapist in the healthy
eating domain [20]. The corpus includes overall 60 dialogues

(overall 1700 adjacency pairs of system-user moves) with
graduated students in the 21-28 age range. The study was a 2
(written vs. spoken input) by 2 (background in humanities vs
in computer science) between-subjects design, balanced for
gender.

4. Modeling interpersonal stances

Defining a method for affect recognition and modeling
requires dealing with several issues: the characteristics of the
phenomenon being analyzed, the adaptation purposes, the
intended use of the inferred knowledge about the user, the
available source of information (also accordingly to the
media used for the interaction). Our approach, built in
previous research [23,26], is based on a combination of
empirical analysis of the corpus of natural dialogues,
described in Section 3, and theoretical background about
how interpersonal stances affect the interaction.

4.1 A dynamic model of the user social attitude

Social attitude is a mid-term affective state which smoothly
evolves during the interaction: users may establish with the
agent an initial attitude which mainly depends on their
personality, background and expectations from the agent
herself. This attitude may then gradually change, in valence
and intensity, during interaction, according to the agent’s
behaviour (e.g. how ‘pleasant’ and ‘engaging’ the agent is).
This change cannot be assumed to be monotonic: both
‘negative’ and ‘positive’ events may occur during the dialog,
causing variations in the user attitude, in opposite directions:
overall, the user attitude in a given phase of the dialog will
be a function of the user’s stable characteristics, of the dialog
history, and of what the agent just did.
Changes in this attitude reflects on the interaction style of
users, mainly on their verbal and non-verbal behaviour.
Hence, to estimate the level of social attitude, at every time
of the interaction, our approach combines both (i) linguistic
analysis of the user move and (ii) consideration of contextual
information, as well as the dialogue history [23].
The envisaged methodology is the Dynamic Belief Networks
(DBNs) formalism, which allows us to deal with uncertainty
in the relationships among the variables involved in the
social attitude evaluation.
Linguistic analysis of user moves. Researchers describe a
large variety of markers for social attitude: Swan [21]
proposes a coding schema for analysing social
communication in text-based interaction which employs
affective, cohesive and interactive indicators in online
teaching; similar indicators have been suggested by
Polhemus et al [13] and Andersen e Guerrero [15]: personal
address and acknowledgement (using the name of the
persons to which one is responding, stating their name,
agreeing or disagreeing with them), feeling (using
descriptive words about how one feels), paralanguage
(features of language which are used outside of formal
grammar and syntax), humor, social sharing (sharing of
information non related to the discussion), social motivators
(offering praise, reinforcement and encouragement), value
(set of personal beliefs, attitudes), negative responses
(disagreement with another comment), self-disclosure
(sharing personal information), sense of intimacy (use of a
common jargon), benevolent or polemic attitude towards the
system failure, interest to protract or close interaction.

582

According to these theories and to a preliminary analysis of
our corpus, we defined a mark-up language [22] (see Table
1) for the corpus annotation whose categories correspond to
the ‘signs’ of social attitude we aim at recognizing. We
employed the results of annotation studies [22,23] as a gold-
standard in defining the recognition method.
Recognition of linguistic signs of social attitude is performed
by using Bayesian classification and can be enriched with
acoustic analysis of user move, as described in [22]. A user
move is categorized as ‘showing a particular sign of social
attitude’ if it contains some word sequences belonging to
semantic categories which are defined as ‘salient’ for the
considered sign (e.g. expression of greetings or farewell for,
respectively, the friendly self introduction and the friendly
farewell categories or expression of agreement/disagreement
for positive/negative comments).

Tab. 1: Our mark-up language for signs of social attitude

Linguistic
cues

nodes

DBN
node

Signs of social attitude
with their definition

Pfsint Fsint Friendly self-introduction: The subjects introduce
themselves with a friendly attitude (e.g. by giving their
name or by explaining the reasons why they are
participating in the dialogue).

Pfstyl Fstyl Colloquial style: The subject employs a current
language, dialectal forms, proverbs etc.

Pperin Perin Talks about self: The subjects provide more personal
information about themselves than requested by the
agent.

Pqagt Qagt Personal questions to the agent: The subject tries to
know something about the agent's preferences, lifestyle
etc., or to give it suggestions in the domain.

Pcomm Comm Positive or negative comments: The subjects
comment the agent's behavior, experience, domain
knowledge, etc.

Pffw F-fw Friendly farewell: This may consist in using a friendly
farewell form or in asking to carry-on the dialogue.

Dynamic modeling of Social Attitude. After every user
move is entered, during the interaction, linguistic analysis is
performed, producing a set of evidences about linguistic
cues of signs of social attitude. The overall value of social
attitude is a function of these evidences on signs as well as
evidences about context information.

Fig. 1: User model for the social attitude, a generic time-slice

DBNs [24] are local belief networks (called time slices)
expanded over time and connected through temporal links.
We applied results of the corpus annotation to learn from the
annotated data a model of the user social attittude which

includes the dimensions of interest for dialog adaptation
[23]. In particular we learnt the temporal part of our DBNs,
by considering every single user move in the corpus as an
independent observation, using the K2 algorithm [25].
In our DBN (Figure 1) the social attitude is the hidden
variable, that is the variable we want to monitor (Satt node).
It depends on observable ones, such as the ‘stable’
characteristics of the users (their background and gender),
the context (previous agent move, Ctext, and the user move
type, Mtype) and the linguistic cues recognized (leaf nodes
of our DBN, first column in Table 1). Intermediate variables
are the signs of social attitude listed in Table 1, column two.
Links among variables describe the causal relationships
among stable characteristics of the users and their behaviour,
via intermediate nodes. DBNs, as we employ them, are
‘strictly repetitive models’ in which the Markov property
holds, that is the past has no impact on the future given the
present. In our simulations, every time slice corresponds to a
user move, the stable user characteristics stay unvaried (this
is why we omitted the nodes representing the user
background and gender from the figure) and temporal links
are established only between dynamic subject characteristics
in two consecutive time slices.

4.2 Modeling engagement with HMMs
The engagement recognition method is based on the
assumption that such affective phenomena influence the
dialogue dynamics [16]. Hence, we model user categories,
by looking at differences in the dialogue pattern [26]. The
corpus was labeled so as to classify both system and user
moves using categories of communicative acts. These
categories are a revision of those proposed in the SWBDL-
DAMSL (Switch Board Corpus - Dialogue Act Markup in
Several Layers) [27] and are independent from both the task
and the domain of the dialogues and only reflect the
communicative intention of the move (see Table 3).

Tab. 2: Categories of Wizard and User moves

Tag Description
 Wizard
OPENING initial self-introduction by the ECA
QUESTION question about the user’s eating habits
OFFER-GIVE-INFO generic offer of help or specific information
PERSUASION-SUGGEST persuasion attempt about dieting
ENCOURAGE statement enhancing the user motivation

ANSWER provision of generic information after a user
request

TALK-ABOUT-SELF statement describing own abilities, role, skills
CLOSING statement of dialogue conclusion
 User
OPENING initial self-introduction by the user
REQ-INFO information request
FOLLOW-UP-MORE-
DETAILS

further information or justification request

OBJECTION objection about an ECA assertion/suggestion
SOLICITATION request of clarification or attention

STAT-ABOUT-SELF generic assertion or statement about own diet,
beliefs, desires and behaviours

STAT-PREFERENCES assertion about preferences (e.g. food liking)

GENERIC-ANSWER provision of generic information after an ECA’s
question or statement

AGREE acknowledgment or appreciation of ECA’s
advice

KIND-ATTITUDE-SYSTEM statement displaying kind attitude towards the
system (e.g. jokes, polite sentences, etc.)

CLOSING statement of dialogue conclusion

To model the differences in the dialogue patterns, we adopt
the formalism of Hidden Markov Models (HMMs) [28]. In

583

our HMM model of a dialogue, the observables are the
dialogue act (DA) categories while the path through the
hidden states describes interaction evolution. In particular,
states represent aggregates of system or user moves, each
with a probability to occur in that phase of the dialogue,
while transitions represent dialogue sequences, ideally, from
a system move to a user move type and vice versa, each with
a probability to occur (although in principle, user-user move
or system-system move transitions may occur).
The three HMMs representing the three levels of
engagement are learnt using, once again, results of an
annotation study [26] on the WoZ corpus: two independent
raters were asked to annotate the overall attitude of every
user by using the labels N, IS and AG. According to the
annotation experiment, the corpus was divided into three
classes of dialogues, with respect to the label received (N,
IS, or AG). Each class is then used for training the
corresponding HMM (HMM_N, HMM_IS, HMM_AG),
using the Baum-Welch algorithm [29].
When a new dialogue (or dialogue fragment) is entered, it is
coded as a sequence of dialogue acts [30]. Then, it is
compared with each of the three models to establish which
one is more likely to produce such a sequence d of DAs. The
algorithm used for classification is the forward-backward
[29], which computes the loglikelihoods: (a) Loglik_N= log
P(d | HMM_N), (b) Loglik_IS = log P(d | HMM_IS) and
(c) Loglik_AG = log P(d | HMM_AG).
The maximum value among (a), (b) and (c) is selected and
the case d is classified as belonging to the corresponding
class.
Figure. 2 shows two example HMMs for IS and AG
dialogues, respectively. Every dialogue phase is named
according to the semantic of the exchanges occurring during
the phase itself. ‘S’ and ‘U’ are states in which, respectively,
the System and the User hold the initiative.
Differences in the probability distributions for both,
transitions and dialogue acts observation, describe the
differences in the behavior of users belonging to different
classes of engagement. In particular, IS and AG users mainly
differ in the way they initially approach the dialogue and in
the persuasion stage. In the IS model there is an higher
probability of directly entering the persuasion phase because
of a user request of information. Also, IS users have higher
probability of mainly performing a request of information
during the persuasion phase, without providing any kind of
personal information (‘information seeking’ phase). On the
contrary, in AG models, users are involved in an advice-
giving phase. Hence the probability of information requests
is lower, in favor of the variety of reactions to system
suggestions, according to the users’ goal of either enhancing
the construction of a shared ground of knowledge about
healthy eating, or giving a positive feedback to the ECA.
The likelihood of entering the persuasion phase, core of the
advice-giving process, after the initial question answering, is
high in both models. For a more detailed discussion about
modeling attitudes with HMMs, please refer to [26].
The following is a short excerpt from a coded dialogue, in
which the systems interact with an IS user.

T(S,1)= Hi, my name is Valentina. I’m here to suggest you how to
improve your diet. Do you like eating?
T(U,1)= Hi, my name is Simone and I’m very happy to interact with
you.
T(S,2)= Good, let’s start then. Do you like eating?
T(U,2) = Yes, I like very much sweets. Are they dangerous?

T(S,3) = Sweets are not particularly healthy and should be limited to
special occasion.
T(U,3)= I see…. And what about vegetables?
T(S,4)= Ideally, you should have at least four or even five portions of
fruits and vegetables per day.
T(U,4)= That’s it? What else should I eat to be in a good shape?

The dialogue is coded as follows: d = (OPENING, OPENING,
QUESTION, REQ-INFO, PERSUASION-SUGGEST, REQ-INFO,
PERSUASION-SUGGEST, REQ-INFO).
The forward-backward computes the values Loglik_N=-90
Loglik_IS=-75 Loglik_AG=-78, hence the dialogue is
correctly classified as IS).
According to the IS model in fig. 2, the dialogue d goes
through a very short opening phase to directly enter the
information seeking phase, right after the second dialogue
turn.

Fig. 2 - HMM models for IS and AG users

5. Exploiting interpersonal stances for
dialogue adaptation

We sketched an algorithm which describes the dynamic
recognition process we intend to implement in our future
research. The algorithm is repeated every time a new user
move is entered and includes the following steps:

1. A new user move is entered and treated as input for both:
(i) a module which implements linguistic analysis to
extract linguistic cues for each of the signs of social
attitude [22], (ii) a module which classifies the move
according to DA taxonomy [30];

2. The attitude model manager sets and propagates linguistic
and contextual evidences into the social attitude DBN. The
probability of signs of social attitude are evaluated and
stored in the agent model of the user state of mind, as well
as the overall P(Satt) value [23]. In the meanwhile, the DA
tagging module updates the dialogue history by adding the
DAs correspondent to the system and user move at time t.
The HMMs classifier estimates the user level of
engagement, using the forward-backward algorithms [26];

3. The agent employs the new knowledge inferred at time t in
order to: (i) plan the content and style of her next move
(using the new probabilities for the signs of Social
Attitdue) and to (ii) revise the overall interaction style and
behavior (using the overall value of P(Satt)). The new
estimation for the level of engagement is also employed to

584

define/revise the overall dialogue strategy according to the
inferred user goal (of either asking for information or
being involved in a cooperative process of advice-giving
for, respectively, IS and AG users).

The example shown in tab. 3 demonstrates the adaptation
algorithm functioning, in particular it shows the two level of
analysis we perform at every time slice and how they
contribute to the progressive building and updating of the
picture of the user state of mind, in terms both of overall
value of social attitude and engagement and evidences about

the signs of social attitude detected in the user move and the
associated communicative intention.
In the example we simulate the behavior of an empathic
agent which reciprocates the user social attitude. We also
simulate the condition in which the agent successfully leads
an IS user to the AG level of engagement. Though, the
correct strategy to employ in adaptation is still an open
problem on which we plan to do further investigations in the
future research.

Tab. 3: Progressive updating of the system’s image of the user mind (Social Attitude and Level of Engagement) during the dialogue

t Dialogue turn Signs of Social
Attitude (SA) P(SA) Dialogue History update Engagement

1
A: Hi, My name is Valentina: I’m here to suggest you how to improve your diet.

U: Hi Valentina: my name is Giulia, and I’m happy to interact with you.

Friendly Self
Introduction;

1 S-opening

U-opening

(IS)

2
A: Good, I’m glad to hear this from you! Let’s start, then. Did you already eat something for
breakfast today?
U: No

 .7 S-question

U-Generic Answer

N

After a ‘neutral’ moves, the probability of social attitude decreases, due to the decay simulated by the temporal link in the DBN

3
A: And for lunch? What do you plan to eat today?
U: I’m planning to prepare some meat with rice and vegetables.

--- .55 S-question

U- stat about self

N

4
A: What did you have for lunch yesterday?
U: I went to a wedding where I ate a lot of fantastic food!!

Talk ab. self,

Familiar style

.88 S-question

U-stat about self

N

 Evidences of linguistic signs of social attitude cause an increase in the overall level of social attitude

5

A = Ok, now please tell me: is there any particular aspect of dieting you are interested in?
I could try to give you some information or suggestion.

U: Well… yes… I would like to know what do you mean by ‘balanced diet’

--- .6 S-offer-information

U-req-info

N

6
A: In a well balanced diet, the 50% of the calories should be taken from carbohydrates.

U: I didn’t know this, that’s interesting Valentina, thanks! And… why are carbohydrates so
important?

Pos. comment

Familiar style

.9 S-pers-suggest

U-follow-up

AG

7
A: Carbohydrates help you to you control your weight.

U: Really? I thought carbohydrates were not helpful when trying to loose some weight...

--- .7 S-pers-suggest

U-objection

AG

The dialogue goes on until the user asks for information about sweets

8
A : Sweets are not particularly healthy and should be limited to special occasion.

U: But I eat them sometimes, I could not live without sweets, at least once a week!

Friendly Style .88 S-pers-suggest

U- stat about self

AG

9
S: Of course! The pleasure of good eating is important you should not be too rigid in
following your diet!

U: Good, Valentina! I definitely agree with you!

Familiar Style

Pos. Comment

1 S-encourage-sorry

U-stat about self

AG

The subject in the dialogue is a female student of humanities,
hence the initial probability of observing a warm social
attitude is P(Satt = Warm) = .61.
After the agent self introduction, the user performs a friendly
self-introduction in her turn, causing an increase in the
overall social attitude. The initial estimation of the
engagement is IS, which is the default class, according to our
corpus distribution. Due to these evidences, the agent
decides do reciprocate the warmth shown by the user, using
some small talk in her next move (‘Good, I’m glad to hear
this from you!’) and to start the initial assessment phase of
the user situation by asking for information about user’s
habits and preferences.
The dialogue goes on with the agent reciprocating the user
social attitude and the user mainly providing general answers
or personal statements, which cause an estimation of a low
level of engagement (N). To increase the user engagement,
the ECA decides to check her preferences and goals by
performing an offer-information move (dialogue turn n. 5).
From this point on, the recognized level of engagement

increases (AG), due to the variety of the user behavior
(information requests, statement about self and objection)
which indicates an high involvement in the advice-giving
process (probably because the user is particularly interested
in how to balance her diet, which is the topic being
discussed). Also, she shows a warmer social attitude as a
consequence of a successful dialogue adaptation of the ECA
interaction style and overall behavior.

6 Conclusions and future work

In this paper we sketch an algorithm for adapting advice-
giving dialogues to the user interpersonal stances.
We ground our approach on a combination of methods for
social attitude and engagement modeling defined in previous
research [23,26]. These methods aim at inferring knowledge
about user affective states, basing on the observation of user
behavior during the interaction. Linguistic, contextual and
conversational features are exploited to infer knowledge
about cognitive and affective ingredient of the user state of

585

mind. In particular, on one hand we employ Dynamic Belief
Networks for the dynamic modeling of the user social
attitude evolution during the interaction; on the other hand,
Hidden Markov Models are employed for the classification
of users according to their level of engagement in the advice-
giving task.
The recognition methods discussed in this paper have been
validated in our previous research with quite satisfying
results [22, 23, 26].
Though, open problems still remain. In particular, more
research is needed on how to define and adapt the dialogue
strategy to the inferred user goal, according to the
engagement she shows during the interaction. An ongoing
set of evaluation studies will suggest us how to refine the
behavior and interaction style adaptation rules of our ECA
[31], according to the social attitude shown by the user.
In our future research we plan to conduct evaluation studies
to further investigate on how the knowledge inferred from
the observation of the user behavior can be successfully
employed to adapt the interaction in a successful way.

References

1. J. Cassell, and T. Bickmore, Negotiated collusion:
modelling social language and its relationship effects in
intelligent agents. User Modelling and User-Adapted
Interaction, 13, 1-2, 2003.

2. Lee, E-J., and Nass, C., 1999. Effects of the form of
representation and number of computer agents on
conformity, in: Proceedings of CHI, 238-239.

3. F. de Rosis, N. Novielli, V. Carofiglio, A. Cavalluzzi and
B. De Carolis, 2006. User Modeling And Adaptation In
Health Promotion Dialogs With An Animated Character.
International Journal of Biomedical Informatics, 514-531

4. Bickmore, T., Cassell, J. (2005) "Social Dialogue with
Embodied Conversational Agents" In J. van Kuppevelt, L.
Dybkjaer, & N. Bernsen (eds.), Advances in Natural,
Multimodal Dialogue Systems. New York: Kluwer
Academic.

5. R. E. Petty and J.T. Cacioppo. The Elaboration Likelihood
Model of Persuasion. In L. Berkowitz (Ed.), Advances in
Experimental Social Psychology. New York: Academic
Press, 19, pp. 123-205, (1986)

6. A. Batliner, S. Steidl, C. Hacker, E. Noth, and E. Niemann,
Private emotions vs social interaction: towards new
dimensions in research on emotions. In the Proc. of the
Workshop on “Adapting the interaction style to affective
factors”. S. Carberry and F. De Rosis (Eds), July 2005.

7. W. Bosma, and E. André, Exploiting emotions to
disambiguate dialogue acts. Proceedings of the
International Conference on Intelligent User Interfaces.
Island of Madeira, 2004.

8. C.M. Lee, S.S. Narayanan, R. Pieraccini, Combining
acoustic and language information for emotion recognition.
Proceedings of ICSLP, 2002.

9. D. Litman, K. Forbes, S. Silliman, Towards emotion
prediction in spoken tutoring dialogues. Proceedings of
HLT/NAACL, 2003.

10. A.J Gill, and J. Oberlander, Taking care of the linguistic
features of extraversion. In Proceedings of the 24th Annual
Conference of the Cognitive Science Society, 2002.

11. Paiva, A. (Ed), 2004. Empathic Agents. Workshop in
conjunction with AAMAS.

12. Rettie, R., 2003. Connectedness, awareness and social
presence, in: Proceedings of PRESENCE, online
proceedings.

13. Polhemus, L., Shih, L-F and Swan, K., 2001. Virtual
interactivity: the representation of social presence in an on
line discussion. Annual Meeting of the American
Educational Research Association.

14. Blascovich, J., 2002. Social influences within immersive
virtual environments, in: R. Schroeder (Eds.), The social
life of avatars. Springer-Verlag, London, 127-145.

15. Andersen, P.A. and Guerrero, L.K., 1998. Handbook of
Communication and Emotions. Research, theory,
applications and contexts, Academic Press, New York.

16. C. Sidner and C. Lee. An architecture for engagement in
collaborative conversations between a robot and a human.
MERL Technical Report, TR2003-12 (2003)

17. A. Pentland. Socially Aware Computation and
Communication. Computer, 38, 3, 33-40 (2005).

18. M. G. Core, J. D. Moore, and C. Zinn, The Role of
Initiative in Tutorial Dialogue, in: Procs of 10th
Conference of the European Chapter of the Association for
Computational Linguistics, Budapest, Hungary, April
(2003)

19. J. Prochaska, C. Di Clemente and H. Norcross. In search of
how people change: applications to addictive behavior.
Americal Psychologist, 47, 1102-1114, 1992.

20. G. Clarizio, I. Mazzotta, N. Novielli and F. de Rosis:
Social Attitude Towards a Conversational Character. In
Procs. of the 15th IEEE International Symposium on Robot
and Human Interactive Communication. RO-MAN 2006.

21. Swan, K., 2002. Immediacy, social presence and
asynchronous discussion, in: J. Bourne and J.C.Moore
(Eds.): Elements of quality online education. Vol3,
Nedham, MA. Sloan Center For Online Education. 5.

22. F. de Rosis, A. Batliner, N. Novielli and S. Steidl, ’You are
Sooo Cool, Valentina!’ Recognizing Social Attitude in
Speech-Based Dialogues with an ECA. In A. Paiva, R.
Picard and R. Prada (Eds): Affective Computing and
Intelligent Interaction, Springer LNCS, 179-190, 2007

23. V. Carofiglio, F. de Rosis and N. Novielli: Dynamic User
Modeling in Health Promotion Dialogs. In J. Tao, T. Tan
and R. W. Picard (Eds): Affective Computing and
Intelligent Interaction, Springer LNCS 3784, 723-730,
2005

24. Jensen, F.V.: Bayesian Networks and Decision Graphs.
Springer (2001).

25. Cooper, G.F. and Herskovitz, E.: A Bayesian method for
the induction of probabilistic networks from data. Machine
Learning , 9 (1992).

26. A. Martalò, N. Novielli and F. de Rosis: Attitude display in
dialogue patterns. In Proceedings of AISB’08, Symposium
on ‘Affective Language in Human and Machine’, 2008

27. A. Stolcke, N. Coccaro, R. Bates, P. Taylor, C. Van Ess-
Dykema, K. Ries, E. Shriberg, D. Jurafsky, R. Martin and
M. Meteer. Dialogue act modeling for automatic tagging
and recognition of conversational speech. Computational
Linguistics, 26, 3 (2000)

28. E. Charniak, Statistical language learning, MIT Press (1993)
29. L. R. Rabiner. A tutorial on Hidden Markov Models and

selected applications in speech recognition. In: Procs of the
IEEE, 77,2, 257-286 (1989)

30. N. Novielli, C. Strapparava. Supervised and Unsupervised
Recognition of Dialogue Acts, in press

31. V. Carofiglio, B. De Carolis, I. Mazzotta, N. Novielli, S.
Pizzutilo. Towards a Socially Intelligent ECA, submitted

586

Capturing Users’ Preferences and Intentions in a
Semantic Search System

Caio Stein D’Agostini, Renato Fileto
Post-Graduate Program in Computer Science, Federal University of Santa Catarina

PO Box 476, Florianópolis, SC, 88040-900, Brazil
e-mail: {csd,fileto}@inf.ufsc.br

Abstract—A shared representation of knowledge, such as an
ontology, cannot capture the viewpoints and preferences of
individual users. Praesto is a semantic search system that keeps
track of the the user’s preferences from his interactions with the
system and uses this information on trying to capture the user’s
intentions in subsequent searches. The user’s preferences are
represented as his or her context relative to a shared knowledge
base (KB), which is used to describe the contents to be searched
for. Praestro uses this contextual information to estimate the
probable users’ intentions, for disambiguating and semantically
expanding keyword based searches, in order to provide results
that are relevant for the evolving user’s interests.

Index Terms—context, ontology, semantic search, disambigua-
tion.

I. INTRODUCTION

Keyword based search is an essential feature of many in-
formation retrieval (IR) systems. Traditional implementations
of IR systems retrieve resources (text, images, etc) whose
descriptive metadata or contents lexically match the keywords
provided by the user. However this process is fundamentally
flawed when applied to large numbers of users [1], because
it does not consider differences among users’ vocabularies,
neither takes into account semantic relations in these vocabu-
laries, such as synonym, homonym, holomym, and meronym.
Limitations can arise even in systems using ontologies and
knowledge bases (KBs) to deal with semantic issues, since
they do not address how individual users organize their sub-
jective knowledge and how the user interests evolve with time.

While objective information is used to define the parts of
the knowledge that are shared by all users [5] (such as
common concepts, instances and their semantic relationships
described in an ontology and an associated KB), the subjective
information includes aspects that are specific to each user,
such as individual preferences, cultural background or previ-
ous knowledge [3], [1], [2], [5]. In other words, subjective
information depends on how a user perceives the objective
part of the knowledge and what are his interests in a given
time. Ontologies are not suitable for representing subjective
information, because they compromise with the majority of
the users to represent their objective information.

This work presents a proposal for Praesto, a semantic search
system that captures individual users’ preferences in order to
improve the relevance of the search results for individual users.
The preferences of each user are gradually collected from his
interactions with the system, especially when posing queries

and browsing results. On the first time a user mentions a
keyword, that keyword is looked for in the collection of names
of concepts and instances from a KB used to annotate the
contents to be searched for, in order to find the descriptions
of the possible meanings for that keyword. When there are
ambiguities, Praestro asks the user to choose one or more
denotations of the keyword that are relevant for him or her,
and observe the behavior of the user when browsing results, in
order to learn his interests for particular meanings. Then it can
provide more precise results for future queries using the same
keyword, by taking into account the evolving preferences of
a user, represented as his/her context relative to the KB.

Praestro maintains the context of each user in a weighted
graph whose nodes refer to specific meanings of keywords
previously mentioned by the user. The users’ context provides
subjective information to automatically disambiguate and se-
mantically expand subsequent queries. After each user interac-
tion, Praestro updates the user’s context, in order to keep track
of his or her evolving interests. Thus, the maintained context
information is an indicative of the user’s intentions towards
a set of keywords in a particular time, helping to reduce the
amount of user’s interaction necessary for capturing his or her
intentions in each keyword based query.

This paper describes some details of our proposal in a case
study about the recovery of articles from Wikipedia, though the
system can be customized for particular domains by changing
the domain specific parts of its ontology and associated KB.
We present domain independent constructions to represent the
context of each user, and processes based on the Ant Colony
Optimization (ACO) Meta-Heuristic to capture and use the
context information when answering keyword based searches.

The remainder of the paper is organized as follows. Sec-
tion II presents the case study scenario. Section III describes
the architecture of the proposed semantic search system.
Section IV presents the ACO based processes to capture and
use the context information in semantic searches. Section V
presents the current implementation and planned experiments.
Some related works are presented in Section VI and Sec-
tion VII closes the paper with some final comments.

II. CASE STUDY SCENARIO

The case study used in this paper is constructed around
DBpedia 1, a dump of Wikipedia’s contents described with

1www.dbpedia.org

587

User’s A Context Other
Users’

Contexts

Onto logy+
Knowledge Base

Annotated Resources

CONTENT
LAYER

DEFINITIONS
LAYER

CONTEXT
LAYER

S
E
A
R
C
H

M
E
C
H
A
N
I
S
M

GRAPHICAL
USER

INTERFACE

I/O WITH USER

Fig. 1. The architecture of the Praestro system.

an ontology and an associated KB, that were built using
Wikipedias’s contents. We selected for our experiments a
total of 537,295 distinct instances from the DBpedia KB,
based on their types (Organization, MusicGenre, Person,
Place). These instances are looked for based on their property
name. Take as an example the keyword São Paulo. The
Wikipedia’s disambiguation page for this keyword lists, among
others, the following denotations:
• São Paulo – one of the states of Brazil;
• São Paulo – the capital city of São Paulo state;
• São Paulo – a small island of the St Paul’s Rocks;
• São Paulo Futebol Clube – a soccer team.
A SPAQRL query for this keyword, searching for instances

and concepts whose property name has the value São
Paulo, returns several results. For the given filtered dataset,
there are two concepts referring to distinct denotations of
this keyword: city and soccer-team. Suppose a scenario
where the user is searching for São Paulo with the intention
to find information about the international airport
for traveling to São Paulo the city, which is actually
located in the nearby city of Guarulhos. The disambigua-
tion between the possible meanings of São Paulo could be
done using information from previous searches. For instance,
if the user had previously searched for airport, which
relates to city, the system could return results related to
São Paulo, the city, and airport. In other words, after
some iterations of the user with the system, the context can
be used to disambiguate the query, and semantically expand
the search as well, in such a way that results about the airport
at Guarulhos are considered relevant.

III. THE CONTEXT-DRIVEN SEMANTIC SEARCH SYSTEM

Praesto is an under-development semantic search system
that captures users’ context information in order to provide
more relevant results for each user query. Figure 1 presents a
high-level architecture of the system. This architecture couples
the the user’s context [15] to the knowledge base (KB) used to
annotate the resources. The KB, with instances of an ontology
and semantic relationships among them, provides objective

definitions for subjects in one or more domains (definitions
layer). Those definitions are used to semantically annotate the
resources in the content repository, which is the lowest layer
of the architecture (content layer). This paper is focused on
the management and use of the context information (context
layer), which copes with the subjective information relative
to each individual user to represent his or her preferences.
This layer keeps the user’s preferences by linking the user’s
vocabulary (collection of keywords that he/she has provided
to the system) to specific denotations of these keywords
described in the KB, using information collected from previous
interactions with the system. The system uses such information
for guiding the search process according to the user’s interests.

A. Representing the Users’ Context
Context, for this paper, can be defined as a set of elements

related and relevant to subjects from a domain [6]. The context
plays an important role in communication [7], as it helps to
create consensus between a speaker and a hearer interpreting
information [5], [3], thus influencing communication [13].

The individual preferences of each user are represented
in this work as a context relative to an ontology and an
associated KB, with instances of the concepts of that ontology.
Specific meanings of keywords mentioned by the user during
his interaction with the system gives rise to topics in his
particular knowledge view. Each topic refers to a term, i.e., a
particular meaning of a keyword ever mentioned by the user.
For simplicity we consider that the KB embodies its associated
ontology. Thus, a term refers to either a concept or an instance
of a concept.

The construct selected to represent the user’s context in this
work is the graph-based [2], [8], [9], [10], [11], [12], [13], [14],
[19], [20], because it is the most customizable and flexible
among the ones that we have studied [4]. The context of each
user is maintained in a weighted graph G(T, A). Each node
t ∈ T is called a topic and refers to a specific denotation of
a keyword provided by the user, by pointing to its description
in the KB. The weight of t represents the level of interest
of the user’s for the respective denotation. Each edge a ∈
A refers to an association between topics. The weight of an
edge a represents the level of user’s interest for the respective
association. Both topics and associations have their weights

normalized in the interval [0, 1]. The weights indicate the level
of interest of the user for particular topics and associations.
A weight value of 0 indicates that, most likely, the respective
topic or association is not relevant to the user. On the opposite,
1 indicates that the user has the highest level of interest for
the respective topic or association.

A topic is a triple t(name, term, weight) that associates a
word name from the user vocabulary (provided keywords),
to a term from the KB KB, with a weight in [0, 1].

Two topics can have the same name, but they cannot share
the same term; if they share the same term, they cannot
share the same name. These conditions represent synonym
and homonym, respectively. Also, the sum of the weights of
the topics with the same name must be 1. It enables the system

588

to compare the user preferences for different denotations of the
same name, helping to solve ambiguities.

The relations between topics are represented by associ-
ations. An association is a triple (origin, target, weight).
An association from the topic origin to the topic target

is represented by origin → target. The existence of an
association between two topics is independent of the existence
of a relation between the respective terms in the KB.

The system uses the weights of the associations to identify
which of the associations departing from a single topic are
the most relevant. For that, the sum of the weights of all the
associations originating in a same topic is equal to 1.

IV. THE SEARCH PROCESS

This section describes the process to take advantage of
the weighted topic graph (TG) when processing searches and
to keep the TG aligned with the user’s interests as he or
she interacts with the system. This process uses the Ant
Colony Optimization (ACO) Meta-Heuristic, which is based
on the behavior of foraging ants [16], [17], [18]. Those insects
communicate through pheromone trails left in the paths they
traverse while searching for food. These pheromone trails are
represented in our solution by the weights in the TG, used to
guide the search processing.

During the first phase of the ACO, virtual ants are created
and sent to find possible solutions for the search, departing
from the TG nodes referring to desired denotations of the
keywords (the nodes with the highest weights among those
labeled with some of the keywords). During this phase, the
virtual ants tend to follow paths that produced good results
before and thus have stronger pheromone trails (higher weights
of topics and associations involved). When a virtual ant finds
a solution, it stores the steps it took on its search. In the
following phase the system attenuates the relevance (weights
of the topics and associations) of paths stored in previous
interactions, meaning that, in the future, the ants will have
a lower tendency to follow those paths. Finally, in the third
phase, the solutions found by each virtual ant are evaluated.
Based on this evaluation, the system updates the pheromone
trails (weights of the nodes and associations in the paths
traversed to find the relevant results).

We adapted the ACO meta-heuristic to this work in a
process with two major phases lookup and maintenance (which
includes attenuation, for simplicity), as presented in Figure
2. Praestro follows this process for each searched keyword.
After looking up for the keywords in the TG, and in the
KB for keywords not present in the TG, it attenuates the
weights of topics and associations in the graph, diminishing
the importance of older interactions, and updates the graph,
according to the keywords used in the search and the feed-
back received from the user when he/she explicitly chooses
denotations or results associated to specific denotations. The
detailed processes for each one of these phases are explained
in the following subsections.

 k in TG?

yes

keywords.empty()?

topics.empty()?

k in KB?

 no

tpcs[] = TG.getTopicsNamed(k)
topics[] .add(tpcs[])

disambiguation;
creation of new

topics

 no
 yes

topic t = topics[].removeFirst()

expanded[].add(t.expand())

 no

expansion e =
expanded[] .removefirst()

expanded[] .empty()?

results[].add(e.retr ieve())

 no

out(results[])

TG.decayWeights()

resul t r =
feedback[].removeFirst()

reinforce-
ExpandedPaths(r)

feedback[] .empty()?

 no

TG.normalize(); end

in(keywords[])

yes

MAINTENANCE PHASE

yes

keyword k =
keywords[] .removefirst()

LOOKUP PHASE

 yes

in(feedback[])

store k for
future KB
evolut ion

 yes

 no

 no

Fig. 2. Praesto’s search and TG update process

A. The LookUp Phase

The lookup is the first step that Praesto executes. This step
receives the user’s query as a set of non-exclusive keywords,
i.e., connected with the OR operator, meaning that the sys-
tem searches for each keyword independently of the others.
Extra-processing, such as identification of composite words
or removal of stop-words, if needed, is done previously, being
out of the scope of this work.

Praestro searches the TG for topics lexically matching each
provided keyword. If no topic matches a keyword, then
Praestro searches for matches in the labels of instances in
the KB. When there is ambiguity, i.e., more than one term
in the KB matches a keyword not present in the user’s TG,
it is necessary to ask the user what denotation(s) matches
his intention on posing that keyword. The system does this
questioning by presenting to the user all the instances labeled
with keyword in the KB, along with their related concepts, so
that the user can choose the relevant terms. For each instance
indicated by the user, the system creates a new topic, with
name = keyword and whose term is a reference to the
indicated instance from the KB. The weight of each inserted
topic receives the value 1/ uantity, where uantity is the
number of created topics. This indicates the average relevance
of the topic to the user.

It is also possible that there is no match for the keyword,
either on the TG or in the KB. This situation is outside this
work’s current scope, as well using the TG for searching for
concepts. Currently, the system warns the specialist in charge
of the ontology and the KB about the problem, for their future
evolution. Having looked for all the keywords and created new
topics or warned the knowledge specialist when necessary, the
search proceeds.

After identifying (and possibly creating some) relevant
topics, i.e., topics matching the keywords, Praestro starts an

589

expansion departing from each relevant topic. An expansion

refer to the path traversed in the graph by a breadth-first search
for other relevant topics for the particular search and user
(and resources annotated to their corresponding denotations).
The search is oriented by the weights of the topics and of
their associations. Each expansion also has its relevance.
The relevance of an expansion is initially the weight of the
topic that originated the expansion. Each time an association is
traversed the topic in the target of that association is added to
the expansion the relevance of the expansion is adjusted, in
order to reflect the weight of that association and the weight

of the topic reached through this association.
The relevance of topics and associations is used to decide

which paths to follow in the breadth-first search. When the
relevance of an association is lower than a minimum thresh-
old, the search skips that association and tries the next one.
The same applies to the relevance of the topic reached by
an association. Thus the expansion can be interrupted. The
expansion can also be interrupted when its path reaches a
maximum depth from the starting topic.

Once the expansions are done, the system retrieves the
resources annotated by the terms from the topics traversed by
the expansions. Those resources are presented to the user, as
results ordered according to their relevance, calculated from
the relevance from the expansions that retrieved them.

B. The Maintenance Phase
As the time goes on, user’s interests may change. Topics

that were once relevant to the user might not be anymore.
Those changes must be reflected in the TG in order to keep
track of the user’s interests. This is important not only in
the long term, but also during user’s interactions with the
system. The interaction of the user with the search system on
posing queries and receiving results referring to the knowledge
and information contents can change his/her perception of the
searched subject, inducing more changes in his/her interests.
Thus, the first step of the maintenance phase is to attenuate the
weight of topics and associations used in previous searches,
in order to give room to increment the weights of topics and
associations used in the current interaction.

The passage of time is applied to the user’s context when-
ever the users provides feedback for search results. When this
happens, the weights from all the topics and associations
in the user’s graph are decayed. The intensity of the decay
depends on the parameter δ ∈ [0, 1], where 0 implies the
lack of any past memory and 1 indicates that the user’s past
interests will continue relevant forever.

After the attenuation of old trails, the system proceeds to
update the TG according to the feedback provided by the user.
For each result r marked as relevant, the system retrieves the
set Expr of expansions that resulted in r. Each exp ∈ Expr

has its path traced back and each association (ti, ti+1) in the
path is reinforced.

The system also increases weightt0 by 1 when namet0

matches a keyword provided by the user. Thus the system
stores that the user is interested in termto

, thus enabling the

Fig. 3. Topic graph (TG) after some search iterations for São Paulo.

disambiguation of future searches for keyword. The system
also reinforces all the associations (t0, tlabel), creating them
when necessary, where tlabel is any topic whose associated
term is used to annotate result. This enlarges the number
of topics in the TG which might be relevant to the user. The
names of the newly created topics provide the system with
information about new words that the user might learn by
browsing the results. In case these newly created topics are
not referenced by the user, they are eventually removed from
the TG, by attenuation.

V. IMPLEMENTATION AND EXPERIMENTATION

The current Praesto prototype implements the three layers
of its architecture, using the DBpedia corpus as the KB. This
prototype also implements the process described above to use
and maintain the contexts of individuals as they interact with
the system. Figure 3 shows part of a topic graph (TG) resulting
from a sequence of searches for São Paulo, where the user
associates São Paulo to city (though the chosen results
are about the closest international airport). The topic São
Paulo is not only associated to that airport, but also to topics
related to that airport, such as airlines and its location (city
of Guarulhos). Despite the amount of searched data, the
graph remains efficiently processable by the system.

Praesto’s uses subjective information to improve the results’
relevance for individual users. Thus, we consider that it is not
sufficient to use just pre-existing benchmarks that consider
only measures like precision and recall for analyzing its
effectiveness. In order to collect more representative measures
of the system’s benefits, empirical experiments are planned.
These experiments will log the user’s interactions with the
system and measure the gradual increment of precision and
recall as the system collects subjective information from the
user. Furthermore, we plan to measure the possible reduction
in the average number of interactions required to disambiguate
queries and the total time spent on posing searches and
browsing results.

Those expected benefits are already observable on an under-
development prototype of Praestro, but we consider that they
should be measured on a version better prepared for the final
users; this depends on a proper graphical interface capable of
providing a quality visualization of the results. This interface
is being developed based on some users’ reports of their
experience with the current version.

590

Table VI: Comparative Table
Work Obj. Subj. Status
Graupmann et al. [9] � Impl.
Park, Cheyer [2] � � Idea.
Michlmayr et al [12] � Impl.
Aleman-Meza et al [8] � Impl.
Mani, Sundaram [13] � � Impl.
Challam et al [10] � ? Impl.
Vallet et al [19] � ? Impl.
Sieg et al [11] � ? PImpl

VI. RELATED WORKS

This section analyses some related works that take context
information into consideration during the search process. Ev-
ery work is evaluated based on the information published by
their authors.

The evaluation criteria are Objective (Obj.), indicating if the
work represents the objective part of the knowledge; Subjective
(Subj.), indicating if the work has support to capture and use
the subjective part of the user’s knowledge (’?’ indicates some
degree of support); and Status, indicating if the solution is
implemented (Impl), partially implemented (PImpl.) or does
not explain how to realize it (Idea.).

According to those criteria, listed in Table VI, only [13] has
both characteristics (Subj. and Obj.) and is implemented. It
uses a graph for representing the context, but it is constructed
directly over ontology’s concepts (they are the graph’s nodes).
It is also targeted to multimedia retrieval and uses different
context graphs for each medium (images, sounds, text, etc),
which is a different focus than the one from our work.

VII. CONCLUSION AND FUTURE WORKS

This paper presents a proposal for keeping track of the
user’s preferences from his interactions with a semantic search
system, and use this information to provide search results
aligned with the user’s interests. The main contributions of
this work are: (i) the architecture based on three layers of
knowledge, separating specific user’s preferences from shared
knowledge; (ii) a formal structure to represent the user’s
context relative to a shared KB; (iii) algorithms for updating
the user’s context after each interaction with the system; and
(iv) ACO based methods to improve the relevance of search
results using an individual context.

This proposal is built on the premise that the user’s prefer-
ences do not change frequently. However, the user can indicate
a change of interest at any time, by asking the system to show
the possible denotations present in the KB for a given keyword
and choosing some of them. Conversely, when there is not
enough information in the user’s context to solve ambiguities
for a keyword, the system asks the user to choose among the
possible denotations for that keyword. When a keyword is not
found neither in the user’s context, nor in the KB, the system
feeds a repository of unknown keywords for future extension
of the shared KB.

Though there are not enough experimental data to validate
the benefits of our proposal yet, controlled executions on small

data collections indicate promising results, which we expect
to confirm with the planned empirical experiments. Depend-
ing upon the proposal’s effectiveness, other experiments and
extensions of our proposal can be considered. One possibility
is to allow any keyword in the context graph, even those that
are not present in the KB. It can increase the adaptability of
the search system and contribute for the KB evolution.

Acknowledgments.: This work is supported by CNPq (grant
48139212007-6) and FEESC. Special thanks for the help
from Grupo-BD/UFSC, LISA/UFSC, LaPeSD/UFSC, profes-
sors Mário Dantas and Fernando Gauthier.

REFERENCES

[1] Tirri, H.: Search in Vain: Challenges for Internet Search Computer, IEEE
Computer Society, 36, pp. 115-116 (2003)

[2] Park, J., Cheyer, A.: Just For Me: Topic Maps and Ontologies. In: Lecture
Notes in Computer Science, 3873, pp. 145-159 (2006)

[3] Degler, D., Lewis, R.: Maintaining Ontology Implementations: The Value
of Listening. In: Extreme Markup Languages 2004, pp. 200 (2004)

[4] D’Agostini, C. S., Fileto, R., Dantas, M. A. R., Gauthier, F. A. O. .
Contextual Semantic Search Capturing and using the User’s Context to
Direct Semantic Search. In: 10th Intl. Conf. on Enterprise Information
Systems (ICEIS), pp. 154-159 (2008).

[5] Naeve, A.: The Human Semantic Web-Shifting from Knowledge Push
to Knowledge Pull. In: International Journal of Semantic Web and
Information Systems, 1, pp. 1-30 (2005)

[6] Souza, D., Belian, R., Salgado, A. C., Tedesco, P.: Towards a Context
Ontology to Enhance Data Integration Processes. In: VLDB 08, ACM
(2008)

[7] Winograd, T.: Architectures for Context. In: Human-Computer Interac-
tion, Lawrence Earlbaum, 16, pp. 401-419 (2001)

[8] Aleman-Meza, B., Halaschek, C., IB, A., Sheth, A.: Context-Aware
Semantic Association Ranking. In: First International Workshop on
Semantic Web and Databases Berlin, Germany, (2003)

[9] Graupmann, J., Schenkel, R., Weikum, G.: The SphereSearch engine for
unified ranked retrieval of heterogeneous XML and web documents. In:
Proceedings of the 31st international conference on Very large data bases,
VLDB Endowment, pp. 529-540 (2005)

[10] Challam, V., Gauch, S., Chandramouli, A.: Contextual Search Using
Ontology-Based User Profiles Conference. In: RIAO2007 (2007)

[11] Sieg, A., Mobasher, B., Burke, R.: Ontological User Profiles for Person-
alized Web Search. In: 5th Workshop on Intelligent Techniques for Web
Personalization, Vancouver, Canada, July (2007)

[12] Michlmayr, E., Cayzer, S., Shabajee, P.: Tech Report: HPL-2007-72:
Adaptive User Profiles for Enterprise Information Access HP Labs
Technical Reports, HP Labs, (2007)

[13] Mani, A., Sundaram, H.: Modeling user context with applications to
media retrieval In: Multimedia Systems, Springer, 12, pp. 339-353 (2007)

[14] Huang, W., Prie, Y., Champin, P., Mille, A.: Semantic context represen-
tation of resources using annotation graph. In: Proceedings of the Eighth
International Workshop on Multimedia Information Systems (2002)

[15] Mangold, C.: A survey and classification of semantic search approaches.
In: International Journal of Metadata, Semantics and Ontologies, Inder-
science, 2, pp. 23-34 (2007)

[16] Dorigo, M., Caro, G., Gambardella, L.: Ant Algorithms for Discrete
Optimization Artificial Life, MIT Press, 5, pp. 137-172 (1999)

[17] Shtovba, S.: Ant Algorithms: Theory and Applications. In: Programming
and Computer Software, Springer, 31, pp. 167-178 (2005)

[18] Panait, L., Luke, S.: Learning ant foraging behaviors. In: Proceedings
of the Ninth International Conference on the Simulation and Synthesis
of Living Systems (ALIFE9) (2004)

[19] Vallet, D., Fernndez, M., Castells, P., Mylonas, P., Avrithis, Y.: Person-
alized Information Retrieval in Context. In: 3rd International Workshop
on Modeling and Retrieval of Context (MRC 2006) at the 21st National
Conference on Artificial Intelligence (AAAI 2006) (2006)

[20] Leake, D., Maguitman, A., Reichherzer, T.: Exploiting rich context:
An incremental approach to context-based web search. In: International
and Interdisciplinary Conference on Modeling and Using Context, CON-
TEXT, Springer, 5, pp. 254-267 (2005)

591

Toward Developing Knowledge Representation in Emergency Medical
Assistance through a Ontology-based Semantic Cache Model

Heloise Manica1, Cristiano C. da Rocha2, José Leomar Todesco1, M. A. R. Dantas1,2

1Post-Graduate Program in Knowledge Engineering and Management (EGC)
2Post-Graduate Program in Computer Science (PPGCC)

Federal University of Santa Catarina (UFSC), Florianopolis, SC, 880400-900, Brazil
heloise@egc.ufsc.br, crocha@inf.ufsc.br, tite@stela.org.br, mario@inf.ufsc.br

Michael A. Bauer

Department of Computer Science
University of Western Ontario

London, Ontario,N6A 5B7,Canada
bauer@csd.uwo.ca

Abstract

In this article, it is present knowledge based

architecture for a mobile emergency medical
assistance system, based on the France SAMU model,
adopting ontology and mobile computing approaches.
The contribution is characterized for providing
routines and medical protocol specifications for
specialists through the use of their natural language,
collecting elements from this language to develop an
ontology domain and also employing a semantic cache
for an enhanced utilization of mobile devices. A
prototype of the proposal was implemented targeting
to support specialists during a day-to-day basis
considering knowledge engineering aided by mobile
computing techniques. These differentiated
characteristics from the contribution have proved to be
successfully at early experiments utilizing the
implemented prototype.
Index Terms - Knowledge representation, ontology,
semantic cache, emergency medical assistance

1 Introduction

 The growth of published biomedical literature has
resulted in an increasing number of independent and
heterogeneous data sources. As observed in [13], the
biomedical language contains many synonymous terms,
abbreviations and acronyms that can refer to the same
concept. The terminological diversity is producing a
high level inefficiency, especially when researchers are

searching for specific issues. Thus, the task to build a
common controlled vocabulary can be considered as a
grand challenge problem. Such a vocabulary could be
developed for different purposes, examples are:
automatic capture in free-text records, literature
indexing and retrieval, electronic patient records,
statistical reports and billing. A formal ontology can
be seen as a controlled vocabulary expressed in an
ontology representation language.

The knowledge represented in health domain
ontology is important to develop of clinical decision
support system (CDSS). The work in [12] defines a
CDSS as a computer based system that helps health-
care professionals make clinical decisions. Despite the
advantages, CDSSs are not widely used in practice,
especially in the emergency management domain [11].

In this work we present an approach to circumvent
the problem of knowledge communication and
representation in the emergency assistance setting. The
proposed approach is based on mobile devices to
provide information anytime and anywhere at the point
of care. The model contributes to the ontology
development and maintenance in the emergency
domain. In the context of ontology maintenance, the
proposed approach enhances the controlled vocabulary
in emergency domain. A Semantic Cache (SC) model
was adopted to deal with mobile computing limitations.
On the other hand, to demonstrate our contribution, it
was designed and implemented a prototype that
executes on mobile devices.

This paper is structured as follows. Ontology and
germane characteristics of mobile devices are
introduced in section 2. Section 3 illustrates the

592

proposed approach and describes the prototype
implementation. In section 4 it is shown an
experimental environment and some results of the
proposal. Finally, in section 5 we present our
conclusions and directions for future work.

2 Ontology and Mobile Devices

The first step in the design of a knowledge base is

the decision related to how elements are going to be
represented. The domain ontology defines classes of
concepts and its relationships. It can be used, for
example, as a source of a controlled terminology to
describe biomedical entities in terms of their functions
and disease involvement. Associating research data
with ontology terms can provide efficient data search,
by querying using terms at different levels within the
ontology [14].

The construction of the ontology is seen as a
collaborative activity among people with different
expertise [15]. The person who provides the
knowledge in a given domain is referred to as expert.
The ontology implementation may be guided by a
knowledge engineer. As [10] notes, a number of
different approaches for ontology development have
been proposed. A common element in all such
approaches is the enumeration of important terms in the
domain. Part of the work described in this paper
includes the identification of important terms in the
emergency assistance domain.

Recent technological advances in mobile computing
makes it feasible to consider the development of
mobile CDSS to be employed at the point of care.
Mobile devices are well known to offer limited
computing capabilities in comparison to desktop
systems. They have battery and local storage
constraints, low resolution display capabilities and
limited computational performance to execute complex
applications.

The mobile user must contend with operating the
mobile devices with its limited resources. Moreover,
care must be taken in the development of the
application to ensure that the end user can easily find
information that is critical. This is especially true in
emergency situations where the emergency personnel
are often interacting with other persons or patients, and
so cannot have all their attention focused on the device.

In addition to issues arising from mobile devices,
wireless environments offer low-quality
communication when compared to wired networks.
Frequent network disconnections and local noise
complicates the provision of information to mobile
users.

The mobile and network challenges described above
are addressed in our research – we consider the use of a
semantic cache model. This model, suggested in [9],
can enhance query processing and reduce network
traffic flow in a mobile environment. Data caching
plays a key role in data management since its use can
improve system performance and availability in case of
disconnection. Further, it can help save battery power
in a client-server communication model and mobile
users are still able to work using the cached data when
the network is unreachable, as it is shown in our
experimental tests.

3 The Proposed Approach

In this section, we describe our approach using an

ontology-based architecture applied to a mobile
emergency service. The major idea is to provide
emergency personnel with a ubiquitous tool which can
increase the level of available knowledge about the
procedures. As a result, the tool can hopefully help
emergency personnel increase their probability of
success in any intervention. For less experienced
personnel, the system may also be used to access
knowledge to assure that appropriate protocols are
being followed.

The proposed approach, shown in Figure 1,
enhances the captured knowledge and maintains the
ontology updated with new instances in a semi-
automatic way. The user is an expert who submits a
query by selecting a keyword and some filters from his
PCS (Personal Communication System).

Figure 1. The proposed architecture

593

The first action of the system is to verify whether a
full (or partial) answer for this query exists inside the
local module, i.e. inside the semantic cache. In the case
that it is necessary to contact the server, the system
forwards the query.

Inside the local server, the indexing module
correlates keywords from the query with various files
(reports, clinical guidelines and clinical procedures, for
example) by using the appropriate local ontology
emergency vocabulary. When the user initiates a search
utilizing a term which can not be found in the local
ontology, the local server initiates a search inside the
DeCS system [3]. DeCS is a controlled vocabulary
developed from the MeSH (Medical Subject Headings
U.S. National Library of Medicine).

After acquiring data from the new vocabulary, the
index module feeds the local ontology. If the
vocabulary does not exist within the DeCS, the
unknown term will be stored in temporary area to be
subsequently reviewed by experts to determine if this
term will (or will not) be included within the ontology.

As a result, the present proposal adopts a strategy
which utilizes a semi-automatic approach to feed the
domain ontology. If the term occurs inside the DeCS it
is immediately inserted in the local domain ontology.
In the case that the term does not exist in the DeCS, it
is considered later by an expert.

Nowadays, the DeCS cannot be considered as a
sufficient element of captured vocabulary for urgency
and emergency domain. The main cause for this is that
emergency terms are distributed over different
categories. Therefore, this represents a challenge
difficult for a searching. An example that helps to
illustrate this point is a query for the topic emergency
burning. A third degree burning is an emergency when
it occurred. However, if this occurrence is an accident
of six months age and the patient is being treated this is
not considered as an emergency burning. As a result,
now relevant documents are returned for the query.

If enough time is available for the user, it can refines
the query and match the desirable results. This is not
the case in urgent or emergency situation. Other well-
known challenger is the utilization of specific terms,
related to particular linguist and slang characteristics,
from a set of specialists.

3.1 Domain Ontology Improvement

The proposed ontology considers the Brazilian

SAMU mobile health care system (the ideas behind the
SAMU can be found in [7]). Emergency experts from
the Santa Catarina State [1] were involved with the
modeling process, supported by Protégé tool [6], an

open source ontology editor and knowledge-base
framework. The process of ontology modeling with
Protégé is not covered in this paper.

In our effort to improve the domain ontology we
developed a query interface that is shown in Figure 2.
This interface allows a user to query through the
ontology for relevant documents (e.g., a medical
procedures, or clinical guidelines). The specialist enters
with the keyword and it is available filters to enhance
his/her query. In the Brazilian SAMU, routines (or
protocols) are classified as gestures or syndrome. The
filter specifies the desirable knowledge, for example,
indications which type of material will be necessary,
some tips about risk and accidents.

Figure 2. Query Interface

Three scenario examples were conceived to test the
prototype. The first scenario considers a key term
inside the domain ontology; the second exploits the
case where a term exists inside the DeCS and not inside
the domain ontology; in the final test the term does not
exist inside of the domain ontology or DeCS. The
following considerations are relevant to the domain
ontology: i) files named ecg_indicacoes and
ecg_materiais have information referring to utilization
and related material of an electrocardiogram; ii) the
ECG is a synonymous for electrocardiography; iii)
specialists know that the term EKG is a synonymous
for both ECG and electrocardiography.
 In the example 1, the user executes a query (Q1)
which results in a search of available materials for
occurrences of “electrocardiography” as a keyword.
This is the simplest case because the term exists inside
the domain ontology, therefore the query is executed
without problem.

594

Example 2 is characterized by a similar query from
example 1, however now the user seeks for the term
“EKG”. This term is synonymous for
“electrocardiography”, and the system does not have
this knowledge. Because the term does not exist inside
the domain ontology the system initiates a search inside
the DeCS, where the term “EKG” is found to be
synonymous with “electrocardiography”. As a result,
the system automatically feeds the domain ontology
with this new synonymous term.

In the example number 3, the user enters a query
(Q2) searching for material and indications of a
keyword “electrode”. Because this term does not exist
inside the domain ontology or the DeCS, it is inserted
as a possible new term into a specific class called
Novo_termo (New_term). The procedure to insert this
term inside the domain ontology will be executed
manually latter upon a specialist’s agreement that this
term is adequate.

As study examples shown, while specialists are
executing their queries, used keyword vocabulary is
employed to enhance the ontology development.
Reliability is an advantage of this approach, because
only those elements that were verified by a specialist or
DeCS will be inserted in the ontology. Other advantage
is that the constant insertion of new terms turns the
ontology updated. The action of populate and update
the ontology when it is done manually is a time
consuming mechanism for specialists.

When a query generates new data for the mobile
user, his PCS will also receive a semantic description,
which will be used for cache management purposes.
The following sub-section describes how this operation
is realized.

3.2 Semantic Cache

In this sub-section we show how the previous

examples were implemented, with special emphasis to
the use of the semantic cache proposal. Our semantic
cache keeps the results of previously asked queries
linked with its semantic descriptions. The semantic
information is used to organize and to manage the
client’s cache.

In this approach, a semantic segment is a tuple (SID,
Scc, Sco, SC, STipo, SF, SFq), where SID stands for the
segment identifier; Scc

 the keyword used for query, Sco
the synonymous; SC a document from query answer;
STipo and SF both are filters employed in the query; SFq a
frequency number that indicates the segment
utilization.

An answer from any query can be a result from three
computational cases: the answer can be only found at a

specific server; the answer is completely inside the SC;
part of the answer exists inside the SC. These are
essentially the scenarios addressed in the three previous
examples. The following revisits them in the context of
the SC.

When executing Q1 (from example 1), the system
verifies that the cache is empty, thus it sends a
complete query to a server, that replies sending
ecg_indicacoes and ecg_materiais files. Each file is
stored as a new semantic segment.

Suppose a user executes the query Q1 again but
using the key-word “ECG”. The system verifies that the
answer is inside the cache, because the domain
ontology indicates that this term is synonymous with
the term “electrocardiography”. Therefore, the query is
completely answered with the content existing in the
SC, without a required communication with a server.
The system updates the frequency of documents’
utilization. In this study, we use the LFU (Least
Frequently Used) to delete the data cache replacement.

Finally, suppose a user executes a query Q1, but
now a filter riscos/acidentes (risks/accidents) is added.
The answer for this query is composed of two pieces.
The first part, ecg_indicacoes and ecg_materiais, exist
inside the cache. The second part ecg_riscos exists
inside a server. As a result, only the second part is
requested from the server. When the results of this
query arrive from the server, they are stored in the
cache, together with semantic description. The
frequency of the use of ecg_indicacoes and
ecg_materiais is updated.

4 Experimental Environment and Results

The experimental environment consisted of a server

connected to a wired network and a PCS network. The
prototype was implemented using the Java language on
the server side and J2ME in the client (PCS) side.
Mobile devices used in our experiments were Palm
Tungsten C, with 200MHz processor, 64 MB
memory, 802.11b wireless network interface cards and
Palm OS 5.2.1 as an operating system.

The domain ontology was expressed using the
Ontology Web Language (OWL) [5], the language
recommended by the World Wide Web Consortium
(W3C). OWL provides a powerful constraint language
for precisely defining how concepts in ontology should
be interpreted by machines. The SparQL language [8]
and API Jena [4] were utilized for automatic update of
the domain ontology.

A traditional object cache application was designed
and implemented targeting to draw a comparison with
the proposed environment. The object cache model

595

only re-uses cache data when a query is the same as
another in cache.

In the following we present some empirical results
adopting the query battery consumption and cache hit
rate as metrics for performance measurements. These
metrics are especially important for emergency services
for a large use of the device and help with available
information.

A set of fifteen different queries were conceived
aiming to allow an automatic process of test and
provide a comparison between applications. A first
experiment verifies the battery consumption. This
measurement was realized, through the BatteryGraph
[2] software package, measuring the two applications
before starting and after finishing its execution. Results
from this experiment are shown in figure 3.

Figure 3. Battery usage

The second experiment was characterized by a
mechanism that informs the cache successful access. In
other words, it was measured the number of cache hit
ratio. Considering all queries it was observed the cache
hit ratio as illustrated in figure 4.

Figure 4. Cache Hit Ratio

5 Conclusions and Future Work

In this paper we described the use of ontology
technique and semantic cache for a mobile emergency
medical assistance system. The proposal architecture
was interesting to identify new terms that were used

during an emergency heath-care queries. This
vocabulary is required to ontology population and to
keep the ontological knowledge up-to-date.

Simulation results show that semantic caching
achieves a significant performance gain over object
caching in mobile environments. The semantic cache is
suitable where permanent connection between clients
and a server can not be guaranteed, in addition to those
cases where crucial functionalities are required without
the support of a server.

For future work, we are planning to extend the
experiments to examine the cache hit rate with
different replacement policies.

References

[1] SAMU – Santa Catarina, 2009.

http://samu.saude.sc.gov.br.
[2] BatteryGraph, 2009. http://palm.jeroenwitteman.com/.
[3] DeCS, 2009. http://decs.bvs.br/.
[4] Jena, 2009. http://jena.sourceforge.net/.
[5] OWL, 2009. http://www.w3.org/TR/owl-features/.
[6] Protégé, 2009. http://protege.stanford.edu/.
[7] SAMU, 2009. http://www.samu-de-france.fr/fr.
[8] SPARQL, 2009. http://www.w3.org/tr/rdf-sparql-

query/.
[9] S. Dar, M. Franklin, B. Jonsson, D. Srivastava, and M.

Tan. Semantic Data Caching and Replacement. In
Proceedings of the International Conference on Very
Large Data Bases, Mumbai (Bombay), India, pages
330–341. IEEE, 1996.

[10] D. Jones, T. Bench-Capon, and P. Visser.
Methodologies for Ontology Development. In
Proceedings of the Conference of the 15th IFIP World
Computer Congress, London, UK, pages 62–75, 1998.

[11] W. Michalowski, R. Slowinski, S. Wilk, K. Farion, J.
Pike, and S. Rubin. Design and development of a mobile
system for supporting emergency triage. Methods of
Information in Medicine, 44(1):14–24, 2005.

[12] M. Musen, Y. Shahar, and E. Shortliffe. Clinical
Decision Support Systems. Medical Informatics.
Computer Applications in Health Care and
Biomedicine, pages 573–609, 2001.

[13] D. Rubin, N. Shah, and N. Noy. Biomedical ontologies:
a functional perspective. Briefings in Bioinformatics,
9(1):75–90, 2008.

[14] N. Shah, D. Rubin, K. Supekar, and M. Musen.
Ontology based annotation and query of tissue
microarray data. In AMIA Annual Symposium
Proceedings, volume 2006, pages 709–713. American
Medical Informatics Association, 2006.

[15] P. Zweigenbaum, B. Bachimont, J. Bouaud, J. Charlet,
and J. Boisvieux. Issues in the Structuring and
Acquisition of an Ontology for Medical Language
Understanding. Methods of Information in Medicine,
34(1):15–24, 1995.

Cache Hit Ratio

0
0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8
0,9

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 C

ac
h

e
H

it
 R

at
io

Number of Queries executions
w ith Semantic Cache

w ith Object Cache

Battery Usage

0

50

100

150

200

250

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Queries executions

B
at

er
y

C
o

n
su

p
ti

o
n

 (
m

V
)

w ith Semantic Cache
w ith Object Cache

596

Specification of a Component-based Domotic System to Support

User-Defined Scenarios

Fady Hamoui1, Marianne Huchard2, Christelle Urtado1, Sylvain Vauttier1

1 Lgi2p / Ecole des Mines d’Alès

Nı̂mes – France

<First>.<Last>@ema.fr

2 Lirmm, Umr 5506, Cnrs and Univ. Montpellier 2

Montpellier – France

huchard@lirmm.fr

Abstract

Many studies have been conducted in order to de-
velop systems that respond to user goals in domotic
environments. These systems generally offer prede-
fined scenarios corresponding to general goals and en-
able users to select those they want to trigger. We
claim that such behaviors cannot be hardwired: user
scenario definition should be supported. In this article,
we propose the specification of a component-based do-
motic system that tackles this issue. This system offers
users high level Guis to define their own scenarios from
functionalities of the devices detected in the environ-
ment. These scenarios are automatically implemented:
components are generated from device descriptors, as-
sembled and the resulting software is run.

1 Introduction

Domotic environments are composed of electri-
cal / electronic devices controlled by a domotic system
that uses software and communication technologies to
have the devices satisfy user goals. Each device pro-
vides control services. Each service in turn offers func-
tionalities. Some devices also emit events that reflect
a change of their parameter values. A domotic sys-
tem can thus be seen as both a set of distributed ser-
vices and a system that manipulates these services to
achieve user goals. Users may simply use existing func-
tionalities or need to combine them in a more complex
scenario. Domotic environments can be used in many
different ways. As it is not possible to hardwire all pos-
sible user scenarios, users must be given the capability
to define their own scenarios. Furthermore, scenario
integration should be automatic and dynamic, in order
not to interrupt system execution [7, 10] and scenario
execution must rely on some technical solution that co-

ordinates service executions. Service Component Ar-
chitecture [18] is a good candidate. It provides a model
for the composition of services. Software components
are the best means to implement services. They ex-
pose interfaces that describe functionalities, each of
which represents a service [5]. Components can be dy-
namically assembled to achieve dynamic service con-
nection [5, 7, 16, 9] without disrupting system execu-
tion [6]. Such systems have been developed by industry
or academics. They are generally included in a fixed or
mobile housing of control that allows to act on home
devices such as shutters and lights. Few of them sup-
port complex user goals: most are exclusively based
on predefined scenarios. Our goal is to specify a self-
configurable system that runs (combinations of) ser-
vices available on nearby devices. This system should
seamlessly integrate user-defined scenarios without dis-
rupting its execution. Users should easily express their
goal scenarios with a dedicated end-user language [4].
The remainder of this article is as follows. Section 2
lists qualities that we expect from a domotic system.
Section 3 describes our domotic system from the user
point of view: it shows how users can describe their
own scenarios. Sections 4 and 5 further describe our
system by respectively providing its meta-model (as its
structural view) and its process-oriented two-phased
description (as its dynamical view). Section 6 com-
pares to existing proposals while Sect. 7 concludes and
draws perspectives to this work.

2 Target qualities for domotic systems

Let us consider a domotic environment composed of
shutter, radiator and clock devices. The clock, for ex-
ample, provides a service to set or get time and an event
that indicates time change and contains the new time.
Users must have the capability to define the following

597

evening scenario: at 07:00 PM, if the living-room tem-
perature is below 17�C, the shutter should be closed and
the radiator turned on at level 6. In order to support
such scenarios, domotic systems should have the follow-
ing qualities [3, 2]. Decentralization makes the software
spatial structure stick to the physical distribution of de-
vices. It also increases software quality and availability
by distributing the load on several units and reducing
the impact of failures. Ability to define goals allows
users to add custom scenarios at any time. Dynamic
evolution makes the system reactive to changes without
impacting service continuity. Autonomicity limits user
intervention to scenario definition: technical steps that
implement scenarios are under system responsibility.

3 User goal-oriented functions

To meet these requirements, our system is com-
posed of software agents built from software compo-
nents. Agents are autonomous and collaborative enti-
ties. They have a flexible internal structure that allows
dynamic (re)configuration through the (re)assembly of
components. We identified two types of agents: Gui
agents and device control agents (Dcas). Gui agents
are a software mediator between devices and users.
They enable users to customize the domotic system and
define their goals. Dcas are responsible for the detec-
tion of devices that are available in the environment
and for the execution of user-defined scenarios through
their ability to control devices. Users can explicit their
goals using services provided by the available devices
by either selecting a particular service or defining a
complex scenario. To do so, Gui agents make graphi-
cal user interfaces that represent the domotic environ-
ment available to users. These Guis are automatically
generated from the descriptors of detected devices.

3.1 Service selection

Using the dedicated Gui, users can select a device
to display its provided services and select one. Each
service in turn offers a set of parameterized operations.
Users select such an operation and provide adequate
parameter values. The system then invokes the re-
quired functionality. For example, the user can select

Figure 1. Service selection GUI

the clock to view its provided services. A single service
is available that provides the set time and get time op-
erations. The choice of the set time operation enables
the user to specify the new time as shown on the simple
Gui of Fig. 1.

3.2 User scenario definition

Using the dedicated Gui, users can define new
complex scenarios. A scenario is defined by several
Event / Condition /Action (Eca) rules [12] that com-
bine various operations. Eca rules enable the coordi-
nation of services as they are active (their execution
is automatically triggered), express alternatives (with
their condition clause) but are declarative (easier to
read) and still interpretable [12]. Users must succes-
sively define the three clauses of the new rule as illus-
trated by Fig. 2 for the evening scenario example.

Figure 2. Scenario definition GUI

Event clause. An event is a pre-condition for
triggering action executions. The Gui displays a list
of all available events (the sum of all events that can
be emitted by all detected devices) among which users
choose the one that suits their needs. In the example,
the event is at 07:00 PM and is obtained by comparing
with the = operator the 07:00 PM parameter value
to the time provided by the Time change event of the
living room.

Condition clause. The condition clause defines
in which cases the rule will be triggered. A condition
is a boolean function with at least two parameters,
provided by either the user or measurement functions
offered by sensor devices. Thus, the Gui displays all
measure services available. The user chooses such a

598

service and a comparison operator. He then provides
a value to compare to. In the example, the condition
is if the temperature in the living room is below 17�C
where the temperature of the living-room is provided
as a service by a sensor device, � is a comparison
operator and 17 �C is a user-provided parameter value.

Action clause. The action clause contains one
or more service operations that perform actions on
devices. The user selects a device, chooses an available
operation and, if needed, specifies values for its pa-
rameters. In the example, the actions are the shutter
should be closed (no parameter) and the radiator
should be turned on at level 6 (6 is a parameter value).

At the end of scenario definition, a coordination de-
scriptor is generated that contains data relative to the
Eca rule. It is stored by the Gui agent and assigned to
the Dca that will implement it. The system also con-
tains predefined (or previously defined) scenarios users
can execute directly.

4 Meta model of the component-based

domotic system

This section aims to describe more precisely the pro-
posed system by providing its meta-model. For read-
ability’s sake, the meta-model representation is divided
into three views. The first view presents our service
typology and the correspondence between services and
Eca rule clauses. The second view shows what scenar-
ios are and how services that compose a scenario are
advertised in the service directory. The last view is
devoted to showing how the agents that compose the
system are made from software components and com-
ponent connections.

4.1 Service typology

We have identified five service categories (see Fig. 3).
Sensor services provide measures that come from sen-
sor devices. They are used to provide measures in the
condition clause of rules. Event services are used in
event clauses: they provide events emitted by sensor
devices and allow to detect changes in the environ-
ment. Action services are used in the action clauses:
they perform operations on actuator devices thus pro-
viding services to users. Comparison services are used
in condition clauses: they are (mostly predefined) tech-
nical services that provide comparison methods for all
primitive types. Coordination services enable scenario
execution. As scenarios are defined by Eca rules, they
integrate a rule execution engine.

Figure 3. Service typology

4.2 Service directory and user scenarios

Agents have access to a service directory that en-
ables inter-agent cooperation without hard-coding the
underlying dependencies (decoupling). This directory
(see Fig. 4) contains information on:
- services offered by devices of the environment (Ser-
vice class). A service has a single type, represented
by the Interface class. It can be provided by several
service providers. Each service provider is bound to
concrete component interfaces (often represented as a
lollipop as shown on Fig. 6), represented by the Func-
tionalInterface class.
- events emitted by devices of the environment. They
are represented by the EventService class as a special-
ization of the Service class. As for general services,
an event is of a certain event type and can be pro-
vided by several event providers. Each event provider
is bound to concrete event interfaces (sometimes rep-
resented as a triangle as shown on Fig. 6), represented
by the EventInterface class.
- parameter types encountered in operations offered by
devices. They are represented by the ParamTypeInfo
class. Primitive types (numbers, strings, dates, times,
etc.) are instances of the ParameterType class.
User scenarios (see Fig. 4) are defined by one or more
Eca rules that are composed of an event, a condition
and of one or more actions. These clause elements
refer to the corresponding service advertisements (see
Fig. 3) and are further mapped to corresponding con-
crete component interfaces (events to event interfaces,
conditions and actions to functional interfaces) when
service providers have been found / chosen for each nec-
essary service. Parameter values defined by users dur-
ing rule condition or action definition are mapped to
parameter type information from the directory. When
the condition clause is built from measure services (as

599

Figure 4. Service directory and user scenarios

results of some sensor service execution) the condition
clause of the rule is linked to the functional interface
that corresponds to this sensor service.

4.3 Component-based software agents

In our proposal, agents are built from components.
The meta-model proposed here for component assem-
bly (see Fig. 5) inspires from our previous work on
self-assembling components [9, 8]. The two agent cat-
egories we have identified in our system (Gui agents
and Dcas) specialize general agents made from com-
ponents (Agent abstract class). Each agent has access
to a service directory. Gui agents enable users to de-
fine their goals in the form of scenarios (stored as their
scenarioList). Dcas detect services and events pro-
vided by available devices and execute scenarios. To
do so, Dcas are composed of four types of components
that mostly follow the typology of services provided in
Sect. 4.1. Sensor components retrieve measures pro-
vided by sensor devices. Action components perform
actions on actuator devices. Comparison components
execute comparison services on primitive parameter
types. Finally, coordination components control and
coordinate the three previous component types to ex-
ecute a scenario. These components all are generated
by Dcas from device descriptors and built-in informa-
tion on data types. Software components export their
requirements and provisions through interfaces, repre-
sented by the ConnectableInterface class. Two compo-
nents interact through the assembly of two interfaces,
one provided by a component and the other required by
the second component. Components export both func-
tional interfaces and event interfaces (modeled as spe-
cializations of the ConnectableInterface class). What-
ever its direction, the type of a functional interface is
defined by an interface (Interface class) that can be
compared to those of Java. These interfaces group op-
eration declarations (modeled by the Operation class)

each of which involves any number of input parameter
types and at most an output type. Sensor components
export one or more provided event interfaces. What-
ever its direction, an event interface is typed by an
event type. An event interface is a channel through
which events are emitted when the value measured
by some sensor changes. The event contains the new
value. Coordination components export one or more
required functional interfaces and an event interface.

5 Domotic system dynamics

The dynamics of the domotic system can schemati-
cally be decomposed into two phases.

Self-configuration phase. This phase consists in
the detection of available devices to set up the system
and maintains accurate information on devices. Each
device is described by a descriptor which contains
information on services and events they provide.
Dcas download these descriptors and extract the
information needed to generate sensor and action
components. Then, they advertise information on the
services and events provided by each component into
the directory. This self-configuration phase executes
autonomically at system startup and re-executes peri-
odically to detect device or service addition or removal.

Self-assembly phase. This phase translates user
scenario definitions into operational component assem-
blies that implement the scenarios. After a scenario
is defined, the corresponding coordination descriptor
is sent to a Dca for it to parameterize the rule exe-
cution engine of a corresponding coordination compo-
nent. Then, the coordination component is assembled
to the declared sensor, action and comparison com-
ponents. Once the assembly achieved, the scenario is
activated. The coordination component then listens to
events, is able to retrieve values from its sensor compo-

600

Figure 5. Agent and component typology and component external description

nents, compute the value of the condition with its com-
parison component and execute the prescribed actions
thanks to its action components. The coordination de-
scriptor of the evening scenario contains the informa-
tion necessary for the Dca to parameterize the coor-
dination component and assemble it to the Clock, Ra-
diator, Shutter and comparator components. The de-
scriptor and resulting assembly are presented in Fig. 6.

6 State of the art

Component models. Sensor Beans (Sb) [13] and
Sofa’s [17] component models are close to ours. They
both propose a typology of interfaces and oppose to
our approach that relies on a component typology. Our
action components nonetheless have interfaces that
correspond to Service (Sb) and CSProcCall interfaces
(Sofa) while our sensor components have interfaces
that correspond to Event and Producer/Consumer
(Sb) and EventPassing and DataStream interfaces
(Sofa). Our proposal is thus comparable as for
the syntactic richness of interfaces but further adds
semantics through a component typology.

Domotic systems. Existing domotic systems fit
into three categories. Predefined Scenario Systems
contain centralized systems based on predefined
scenarios. In [2, 3, 10], the only capability offered to
users is to choose the scenarios they want to execute.
The implementation of a scenario generally consists
in assembling existing components. [2, 3] provide a
slightly more general architecture: new components
are generated as bridges, to enable interoperability
between various technologies. In our proposal, the
components that are generated are not dedicated to
satisfying technical purposes but to meeting new user

goals (they encompass some semantics on the system).
To conclude, to our opinion, predefined scenarios are
not sufficient to cover all possible situations and meet
all user-goals: they are not change-resistant as any un-
foreseen change requires the intervention of an expert
user. Service Control Systems [1, 11, 14, 19] allow
users to control available services. They automatically
detect devices in their environment and build a user
Gui that lists the services provided by the detected
devices. This capability is very close to the service se-
lection Gui provided in our system. The user interacts
with the system through this Gui to trigger service ex-
ecutions but cannot define complex scenarios. Among
them, [19] nonetheless allows to define simple scenarios
as service sequences. Scenario Definition Systems
enables users to define their own scenarios. [7] offers
a tool to define scenarios that is designer-oriented and
does not allow runtime scenario definition. Similarly
to our proposal, [15] provides users with a Gui for
scenario definition and execution. However, scenarios
seem restricted to sequences of service calls: they do
not propose conditional executions as Eca rules do.
Moreover, there is no possibility for users to dynami-
cally define service parameters in their scenario scripts.

7 Conclusion and perspectives

In this paper, we described the specification of a
domotic system that enables users to define their own
goals. The system consists of a set of component-based
agents. It automatically detects services and events of-
fered by available devices and includes them in a Gui
that represents the environment. Users can use a sim-
ple service implemented by a generated component or
define a scenario represented by a new (automatically
produced) component assembly formed by generated

601

rule:

event:

LivingRoom.Clock.TimeChange(time=07:00 PM)

condition:

LivingRoom.Radiator.Temperature()<17

action:

LivingRoom.Shutter(id=*).Close();

LivingRoom.Radiator.TurnOn(level=6)

Figure 6. Evening scenario rule descriptor and component assembly

components. The system is under development us-
ing the OSGi and UPnP standards1. In the future, it
will be enhanced with new component types that im-
plement scenario conflict management, fault tolerance
policies, automatic service adaptation, etc.

References

[1] S. Berger, H. Schulzrinne, S. Sidiroglou, and X. Wu.
Ubiquitous computing in home networks. IEEE Com-
munications Magazine, 41(11):128–135, Nov. 2003.

[2] A. Bottaro, A. Gerodolle, and P. Lalanda. Pervasive
service composition in the home network. In 21st Int.
Conf. on AINA, Niagara Falls, Canada, pp 596–603,
May 2007. IEEE.

[3] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier,
and C. Marin. A dynamic-SOA home control gateway.
In IEEE Int. Conf. on SCC, Chicago, USA, pp 463–
470, Sept. 2006.

[4] M. Burnett, S. K. Chekka, and R. Pandey. FAR: An
end-user language to support cottage e-services. In
Proc. IEEE Int. Symp. on Human-Centric Computing
Languages and Environments, Stresa, Italy, pp 195–
202, May 2001.

[5] H. Cervantes and R. S. Hall. Automating service de-
pendency management in a service-oriented compo-
nent model. In 6th Wkshp on CBSE, Portland, USA,
May 2003.

[6] Y. Charif-Djebbar and N. Sabouret. Dynamic service
composition and selection through an agent interac-
tion protocol. In IEEE/WIC/ACM Int. Conf. on WI-
IAT, Hong Kong, pp 105–108, Dec. 2006.

[7] D. Cheung-Foo-Wo, J.-Y. Tigli, S. Lavirotte, and
M. Riveill. Wcomp: a multi-design approach for proto-
typing applications using heterogeneous resources. In
IEEE Int. Wkshp on RSP, Chania, Crete, pp 119–125,
2006.

[8] N. Desnos, M. Huchard, G. Tremblay, C. Urtado, and
S. Vauttier. Search-based many-to-one component
substitution. Journal of Software Maintenance and
Evolution, Wiley, 20(5):321–344, Sept./Oct. 2008.

1http://www.osgi.org and http://www.upnp.org.

[9] N. Desnos, S. Vauttier, C. Urtado, and M. Huchard.
Automating the building of software component ar-
chitectures. In 3rd Europ. Wkshp on EWSA, Nantes,
France, LNCS, 4344:228–235, Sept. 2006. Springer.

[10] G. Grondin, N. Bouraqadi, and L. Vercouter. MaD-
cAr: An abstract model for dynamic and automatic
(re-)assembling of component-based applications. In
9th Int. Symp. on CBSE, V�aster̊as, Sweden, LNCS,
4063:360–367, June 2006. Springer.

[11] H. Ishikawa, Y. Ogata, K. Adachi, and T. Nakajima.
Building smart appliance integration middleware on
the OSGi framework. In 7th IEEE Int. Symp. on
ISORC, Vienna, Austria, pp 139–146, May 2004.

[12] J.-Y. Jung, J. Park, S.-K. Han, and K. Lee. An
ECA-based framework for decentralized coordination
of ubiquitous web services. Information & Soft. Tech.,
49(11-12):1141–1161, Nov. 2007.

[13] C. Marin and M. Desertot. Sensor bean: a component
platform for sensor-based services. In 3rd Int. Wkshp
on MPAC, New York, USA, pp 1–8, 2005. ACM.

[14] K. Matsuura, T. Hara, A. Watanabe, and T. Naka-
jima. A new architecture for home computing. In
IEEE Wkshp on WSTFES, Washington, USA, pp 71–
74, May 2003.

[15] M. Nakamura, H. Igaki, H. Tamada, and K. ichi
Matsumoto. Implementing integrated services of net-
worked home appliances using service oriented archi-
tecture. In 2nd Int. Conf. on SOC, New York, USA,
pp 269–278, Nov. 2004. ACM.

[16] M. P. Papazoglou and D. Georgakopoulos. Service-
oriented computing special section. Communications
of the ACM, 46(10):24-28, Oct. 2003.

[17] F. Plásil, D. Bálek, and R. Janecek. SOFA/DCUP:
Architecture for component trading and dynamic up-
dating. Int. Conf. on CDS, pp 43–52, 1998.

[18] SCA Consortium. Building systems using a service ori-
ented architecture. Whitepaper available from www-
128.ibm.com/developerworks/library/specification/ws-
sca/ [Last checked 2009-04-30], 2005.

[19] C.-L. Wu, C.-F. Liao, and L.-C. Fu. Service-oriented
smart-home architecture based on OSGi and mobile-
agent technology. IEEE Trans. on SMC, Part C,
37(2):193–205, 2007.

602

Towards Mobility Support in Smart Environments

Daniel Retkowitz Ibrahim Armac

Manfred Nagl

Department of Computer Science 3 (Software Engineering)

RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

{retkowitz|armac|nagl}@i3.informatik.rwth-aachen.de

Abstract

Smart environments are subject to intensive aca-
demic and industrial research. Many of these research
projects deal with challenges such as heterogeneity, per-
sonalization and context-awareness. However, most of
them assume smart environments to be insular places.
Considering users visiting different environments in
daily life, this assumption becomes unrealistic.

Mobile users wish to use personal functionality in
their home environment as well as in other environ-
ments they visit in daily life. In this paper we describe
different realization patterns to implement services for
smart environments. The aim is to support personal-
ization of services and mobility of the users. Depend-
ing on the application, different realization patterns are
preferable. Furthermore, we describe how our prototype
implementation supports the different patterns.

1. Introduction

In this paper we describe our approach on sup-
porting personalization and mobility in smart envi-
ronments, in particular smart homes, which we call
eHomes. These are environments equipped with de-
vices which are usually connected to a hardware plat-
form called residential gateway. This gateway runs
software services to realize value-added functionality
across multiple devices.

A specific challenge in realizing eHomes is to deal
with mobility. One kind of mobility is given when users
move from one location to another one (in-home mo-
bility). In most cases a location is a room in an eHome.
However also larger areas of an eHome that comprise
several rooms or a part of a larger room can be modeled
as one location. Another kind of mobility is given when
users move from one eHome to another eHome (inter-
home mobility). In this case, the term eHome is used

in a broader sense meaning also environments such as
a hotel, work place etc. Furthermore, also the mobil-
ity of devices and changing user preferences have to be
taken into account to support dynamics in eHomes.

Considering inter-home mobility, the important
question arises how to support users in personalizing
visited environments. For this purpose we pursue a
client side personalization approach. This approach
is based on the assumption that every user carries a
smart mobile device which can support the user in per-
sonalization tasks. Nevertheless, not all services need
to be personalized. Therefore we distinguish personal
services which adapt their functionality to user pref-
erences and non-personal services which provide func-
tionality at a specific location in an eHome or for an
eHome as a whole.

Mobility requires a dynamic eHome system that re-
acts on changes and adapts to the new situation. In our
project we developed a configuration approach that es-
pecially supports the requirements becoming apparent
in dynamic scenarios considering mobility of users and
devices. We analyzed different patterns for realizing
services in mobile scenarios, where to apply them, and
what implications they bring along.

We will describe our approach on supporting per-
sonalization and mobility in Section 3. Before that, we
introduce our eHome system model in Section 2. In
Section 4, we will discuss related work. Finally, we will
conclude the paper with a summary and an outlook to
future work in Section 5.

2. System Model

In future smart environments we assume different
usage scenarios. Typical services provide functionality
from the domains of comfort, entertainment, commu-
nication, security, health care, or time and energy sav-
ing. An eHome service implements a certain function-
ality, which is provided either directly to the users of

603

Wake-up

Audio Output Illumination

requires requires

Heating Coffee Brewing

requires

Lighting Manager

Illumination

Artificial Lighting

provides

requires

Speaker Control

provides

controls

Heating Audio Output

Speaker

Lamp Control

Artificial Lighting

provides

Top-Level Service
Application

Integrating Service
Abstraction

Basic Services
Hardware Control

Devices

Radiator Control

Radiator

provides

controls controls

Lamp

requires

Natural Lighting

requires

Functionality

Service

Figure 1. Layered Services

an eHome or to other services. We distinguish between
three different service types: top-level, integrating, and
basic services. Services may rely on functionalities pro-
vided by other services on a lower level of abstraction.
This leads to a layered service architecture.

2.1. Service Layers

Figure 1 shows a wake-up service as an example.
This type of service is called top-level service since
it provides its functionality directly to the user. The
wake-up service requires other functionalities to oper-
ate, which have to be provided by services on a lower
abstraction level. In this case heating is required to
increase the room temperature before wake-up time.
Audio output is required to play some wake-up sound
or music. Coffee brewing functionality is used to pre-
pare coffee after wake-up, so the person does not have
to wait during the brewing process. Illumination func-
tionality is used to slowly increase the illumination level
at the location of the person to wake-up. This allows
for a comfortable wake-up procedure. Illumination is
here controlled by an intermediate lighting manager
service, which provides illumination based on artificial
or natural lighting. In case there is bright sunlight out-
side, the roller blinds can be used to control the illumi-
nation level. In other cases, especially during the night
of course, artificial lighting is used for this purpose. On
the lowest level of abstraction basic services are used to
provide access to the available hardware in the eHome,
e. g. to control radiators, speakers, or lamps.

eH
om

e
Se

rv
ic

es
In

fr
as

tr
uc

tu
re

Physical Environment

eHome Tool Suite

eHome Base

Lamp
Control

Speaker
Control

Radiator
Control

eHome X10

Power Line

Wake-up

Instabus /
Ethernet

eHome KNX

Ph
ys

ic
al

C
om

m
un

ic
at

io
n

OSGi
Components

X10 Devices KNX Devices

eHome
Management

System

Bindings injected by
eHome management
system

Bindings via
OSGi registry

Lighting
Manager

Figure 2. System Overview

A service composition like in the wake-up scenario
is depending on the available hardware and the cur-
rent status of the environment. Since changes occur
frequently at runtime, the service composition has to
be adaptable. In our approach the configuration of the
eHome is managed by a service-oriented middleware
running on the residential gateway. In the next section
we describe the basic system architecture we apply. De-
tails of the configuration mechanism beyond the scope
of this paper are described in [7].

2.2. Service Gateway

The service gateway is a software platform for exe-
cuting eHome services. It is running on the residen-
tial gateway, the central hardware unit of the eHome,
which is in control of all hardware usable by eHome ser-
vices. This means that the services are not distributed
in terms of their execution. Only the device hardware
that is controlled by driver services is distributed. Nev-
ertheless, a service can be bound to a specific location.
This means that the provided functionalities of that
service take effect at this specific location.

The system configuration is also managed central-
ized by the service gateway. We pursue an approach
based on a global view of the eHome and its current en-
vironment status. This way global context information
can be taken into account for service composition, e. g.
the location of persons and devices in specific rooms.
Global knowledge of the environment is required for a
meaningful service composition in many typical cases.

604

A simple example is the requirement to bind a resource
from the specific location a service is associated to.
This requirement can only be formulated if we have
a concept of different locations in the first place and if
we know which resources are available at this location
at a given time.

Figure 2 shows an overview of the service gateway
architecture we apply and how the service gateway is
connected to the devices in the eHome. The top-most
layer is a graphical interactive tool called eHome Tool
Suite that is used to monitor and administrate the
eHome system at setup and during runtime. A service
specification editor is also integrated into this tool.

The data model and application logic for manag-
ing the eHome system is realized on the underlying
eHome Base component. The data model is used as a
representation of the current state of the eHome system
comprising the physical structure of the eHome but also
the dynamic state, i. e. the currently present users and
their positions inside the building, the active devices,
and the running services and their composition. The
application logic of the eHome Base component imple-
ments the control capabilities to manage the eHome
system configuration, i. e. the composition of services,
service parameterization, and other runtime aspects.
Furthermore, the deployment of system configurations
is performed by this component.

The deployed instances of eHome services are ex-
ecuted on the next layer. This is controlled as de-
scribed above by the eHome management system, i. e.
the eHome Tool Suite and the eHome Base component.
Services are composed according to their required and
provided functionalities, the current environment sta-
tus, and the user’s specific requirements. Depending
on the type of the used hardware a corresponding in-
frastructure is used for accessing this hardware, e. g.
X10 devices or KNX (ISO/IEC 14543) devices. These
devices are connected to the residential gateway via the
eHome’s power line or KNX network infrastructure, re-
spectively.

3. Service Realization Patterns

In this section, we will introduce a classification of
possible patterns for realizing eHome services, discuss
our approach on mobility and configuration support,
and describe implementation details.

In Section 2 we have described the different service
layers. In this section we will discuss different realiza-
tion patterns of top-level services regarding their bind-
ings to locations or persons.

eHome Mobile Device

Mobile Device

eHome

eHome

User Model

User
Profile

User
Profile

User
Profile

eHome

d)

User Model User Model

User
Profile

User Model

User
Profile

Lighting Heating

Home
Security

Music

Music

MusicMusic
Proxy

User Model

Lighting Heating

Person-bound personal service running on mobile device

c) Person-bound personal service running in eHome

b) Location-bound personal service

a) Non-personal service

Figure 3. Different realization patterns for
eHome services

3.1. Non-personal Services

Non-personal services are usually bound to locations
and are not related to any specific person, as depicted
in Figure 3a. Such services provide general location-
based functionality, e. g. a home security service that
detects intrusion or fire and raises an alarm. They ob-
viously do not require any personal data to operate and
are only related to spatial context. Any non-personal
service is usually bound to a specific location where its
functionality will take effect.

3.2. Personal Services

Personal services are related to individual persons
and therefore require personal data, provided by user
profiles. Besides the spatial context they also relate

605

to personal context, e. g. a music service depends on
the user’s location and music preferences. We have
developed a user model which holds personal data and
provides it to personal services by a unified interface.
There are different ways to realize personal services.

A location-bound realization is similar to the real-
ization of non-personal services in that the service is
associated to a specific location. In contrast to non-
personal services now the users present at this location
are taken into account. Depending on the presence of
users the service accesses the user model which pro-
vides personal data for the different users, as shown in
Figure 3b. Based on user preferences, the service per-
sonalizes its functionality for a specific user. However,
if the user leaves the service’s location and some other
user arrives the service will personalize its functionality
for this new user.

On the one hand, this realization allows to imple-
ment specific mechanisms for personalization and con-
flict resolution in the service implementation, e. g. in
case of the music service it is possible to search for some
common music preference that all currently present
users have in common. Alternatively, it is also pos-
sible to use priorities for each user or to keep playing
music for the user who arrived first at the service’s lo-
cation. On the other hand, this realization requires
to decide where to run the service in advance and in-
dividual service instances are needed for all locations.
Furthermore, it requires to implement person manage-
ment and conflict resolution mechanisms for each ser-
vice again and again. This leads to a lot of implementa-
tion redundancy and contradicts to reuse. In addition,
while every service implements its individual mecha-
nisms, this can lead to non-uniform behavior.

Another pattern is a person-bound realization which
means that the service instance is no longer bound to
a fixed location but to a specific user. Now, the ser-
vice instance “follows” the user. This means that the
service is bound to the user’s current location at any
time and this association is changed according to the
user’s movement, thereby supporting in-home mobility.
Since the service is now related to one specific user it
only needs to access personal data for this user. In this
realization person management and conflict resolution
have to be handled by the middleware.

Yet, we have described, how we support in-home
mobility by the different kinds of service realization.
However, a person-bound realization is also the basis
supporting inter-home mobility. Details of inter-home
mobility support will be discussed in the following sec-
tion.

3.3. Mobility Support

Considering inter-home mobility, we want to enable
hassle-free access to visited environments, while allow-
ing users to keep their preferences for personal services
across multiple environments. Therefore the visited en-
vironment must have access to these preferences. There
are several ways of how to provide personal data to vis-
ited environments.

One way would be to store the users’ profiles in
a central (Internet-based) repository. Every visited
eHome would then get access to the profiles of its
“logged-in” users. A major disadvantage of that so-
lution is that all the personal data, including sensitive
data such as medical data, is managed by the central
repository and requires the users to trust this reposi-
tory. However, many users may not be willing to do
this. Another way would be to interconnect the visited
eHomes and the user’s “home” environment where the
personal data is stored. The downside of this approach
is that it requires to tell the visited eHomes where one
is coming from. This makes anonymity of users diffi-
cult and conflicts with the protection of privacy. The
third way would be to store personal data on a mo-
bile device. Taking along personal data on a mobile
device allows a user to release his preferences to visited
eHomes on demand. This is depicted in Figure 3c.

We went for the last alternative as it does not have
the disadvantages mentioned above. We refer to this
approach as “client side personalization” [1]. A similar
approach is also suggested in [4].

The user model is responsible for exchange of per-
sonal data between a user’s mobile device and the vis-
ited environment, see again Figure 3c. This includes
transfer of data to the environment during log-in, syn-
chronization during the session, and deletion after log-
out. For more details about the user modeling compo-
nent, including privacy aspects, see [3].

Up to know, we assumed that functionalities which
a user desires are realized by already running services
in the visited environment. In this case, it would be
sufficient only to transfer the necessary personal data to
the environment. However, there might be situations,
where the visited environment does not run the wished
services. Now the question arises how a user still can
be served with the desired functionalities.

We have extended our approach so that a user can
take along also personal services, in addition to per-
sonal data, and execute them on his mobile device when
needed. An example is shown in Figure 3d. On the
residential gateway a proxy service is deployed which
encapsulates the connection to the mobile device where
the actual service is running. Usually, the service needs

606

to be bound to basic or integration services running in
the eHome. Proxy services encapsulating the connec-
tion to these (remote) services, e. g. Speaker Control,
will be generated on the mobile device and bound to the
actual service on the mobile device, e. g. Music. This
realization has the same effect from the user’s point of
view as if the mobile service would be running on the
residential gateway.

Beside providing the user his desired functional-
ity, this approach has another important advantage.
Whenever a personal service is executed on a user’s
mobile device, the necessary personal data can be kept
confidential on this mobile device. Thus, the amount of
personal data transferred to the environment is reduced
and the privacy protection enhanced. This is an im-
portant requirement, especially when moving through
different and possibly unknown environments. How-
ever, this approach has also some disadvantages. It im-
plies e. g. higher communication effort regarding service
interaction between mobile device and the residential
gateway. Furthermore, the energy consumption of the
mobile device increases.

3.4. Configuration Support

As described in Section 2, top-level services are usu-
ally bound to further services, which can be integrating
or basic services. There are several events which can
affect a configuration.

One type of these events occurs when a device ap-
pears to a location. If the basic service controlling the
new device is required by some other service bound to
the same location, it will be bound to this service. In
case of a disappearing device, it might happen that a
location-bound service will be marked as invalid after
its required service is unbound. These actions are sim-
ilar for location-bound and person-bound services.

Other events occur when a person moves from a lo-
cation to another one. In these cases, only personal ser-
vices are affected. The case of location-bound personal
services has been described previously in Section 3.2.
In case of person-bound personal services, the situation
gets more complex. Here, we have to distinguish two
situations. If the service is running on the residential
gateway, the personal service first will be paused. Next,
the bindings of that service to basic services bound to
the location which the user has left will be released.
Then, the personal service will be bound to basic ser-
vices providing the same functionality bound to the
location which the user has entered. Finally, the ser-
vice will be restarted. If the service is running on the
mobile device, the proxy of the top-level service on the
residential gateway is treated as the original service.

Important is, however, that new proxy services encap-
sulating communication to the required services in the
new location have to be generated accordingly on the
mobile device.

3.5. Implementation Details

We use the Java-based OSGi component model for
eHome services. OSGi provides a SOA-based runtime
environment for services and applications. The mobile
implementation is based on top eRCP, an OSGi imple-
mentation for embedded systems. Unfortunately, OSGi
and, thus, eRCP do not support distribution of services
over multiple gateways. Due to this, we have real-
ized remote communication between the mobile device
and the eHome gateway via WLAN based on JXTA, a
language-independent P2P protocol. We implemented
our own RMI-like communication over JXTA, called
“SimpleRMI”, to enable distributed service interaction
over multiple gateways [1].

Furthermore, we have extended our configuration
approach to support dynamic and distributed service
composition and deployment [7]. A light-weight ver-
sion of the eHome Base component for mobile de-
vices is used for this purpose. The personal data
is modeled and exchanged based on the user model
markup language USERML. The services interpret the
data according to the general user modeling ontology
GUMO [6].

We evaluated the mobile device software on Dell
Axim X51v PDAs, capable of WLAN. As Java virtual
machine for mobile devices we used IBM’s WebSphere
Everyplace Micro Environment. The evaluation of the
gateway side was done in combination with our existing
eHome prototype. This prototype contains a 2D sim-
ulation environment, the eHomeSimulator, which can
be executed on usual computers to simulate different
smart environments [2]. We have tested several ser-
vices such as the Wake-up, Music, or Personal Room
Temperature etc.

4. Related Work

Mobile Gaia [5] is a middleware which enables adhoc
personal active spaces. A user can integrate his mobile
devices to a personal active space for realizing certain
functionality. However, the authors do not describe
how Mobile Gaia can be used for connecting mobile
devices with usual smart environments, called active
spaces in Gaia terminology. Furthermore, Mobile Gaia
assumes that each mobile device runs applications ei-
ther of coordinator or client mode. In our approach

607

the a mobile device is used for different purposes. Be-
sides running personal services, it can be also used to
manage and release stored personal data.

The Aura project [8] aims at preserving continu-
ity when a user moves between different environments.
This is done by storing user task data on a global file
server and by connecting the different environments to
this server. In contrast to that, we let the users take
along their data and even their services on a mobile
device. This way, the user can control which parts of
his personal data to release to a new environment.

Agents play an important role in the MavHome
Project [9]. There are three main goals in this project:
Maximizing living comfort, minimizing resource con-
sumption, and maintaining safety and security of in-
habitants. These goals are achieved by treating envi-
ronments as intelligent agents. In contrast to that, we
do not use agent technology but service composition
based on an adaptive configuration process. Since we
support different service realization patterns, we pro-
pose an approach based on a global view on the cur-
rent state of an eHome system. Also, to our knowledge,
inter-home mobility is not considered in the MavHome
project.

Roduner et al. have analyzed the strengths and lim-
its of using a mobile device as a universal interaction
device in ubiquitous computing environments. They
developed a system called AID for this purpose. Sev-
eral tests have proved that persons using AID are faster
solving exceptional tasks but slower solving every day
tasks compared to executing these tasks on the ap-
pliances’ own user interfaces. In our project we have
also developed a prototype for mobile devices provid-
ing eHome users a unified user interface for interacting
with personal and non-personal top-level services [1].
In contrast to AID, we additionally enable executing
services and storing personal data on the mobile de-
vice for personalizing environments.

5. Summary and Outlook

In this paper we discussed different patterns of real-
izing eHome services. We evaluated these patterns and
analyzed their applicability for mobility support and
personalization. There is no single pattern that covers
all scenarios that can occur in eHome systems. There-
fore, we implemented a prototype which supports the
execution of eHome services according to all discussed
patterns. We could successfully show the applicability
of our approach in a test environment consisting of a
simulation environment [2] and several mobile devices.

We have also done some research on protecting the
privacy of mobile users by use of anonymous credential

systems. However, we could not discuss the results in
this paper, a respective publication is pending.

The presented patterns need to be evaluated in a
representative study in order to assess their applicabil-
ity in real world scenarios. Therefore, we are looking
for industrial partners providing a large-scale testbed.

References

[1] I. Armac and D. Evers. Client Side Personalization of
Smart Environments. In SAM 2008: Proc. of the 1st

Intl. Workshop on Software Architectures and Mobility
at ICSE 2008, pages 57–59. ACM, 2008.

[2] I. Armac and D. Retkowitz. Simulation of Smart En-
vironments. In Proceedings of the IEEE Intl. Conf.
on Pervasive Services 2007 (ICPS’07), pages 257–266.
IEEE Press, 2007.

[3] I. Armac and D. Rose. Privacy-Friendly User Mod-
elling for Smart Environments. In Proceedings of the
The Fifth Annual International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous 2008) . ACM, 2008.

[4] L. Bass and J. Klein. Implications of a Single Mo-
bile Computing Device. In SAM ’08: Proc. of the 1st

Intl. Workshop on Software Architectures and Mobility,
pages 51–52. ACM, 2008.

[5] S. Chetan, J. Al-Muhtadi, R. Campbell, and M. D.
Mickunas. Mobile Gaia: A Middleware for Ad-hoc Per-
vasive Computing. In IEEE Consumer Communica-
tions and Networking Conference, pages 223 – 228, Las
Vegas, Nevada, January 2005. IEEE Computer Society.

[6] D. Heckmann, T. Schwartz, B. Brandherm, M. Schmitz,
and M. von Wilamowitz-Moellendorff. Gumo - the gen-
eral user model ontology. In Proceedings of the 10th

International Conference on User Modeling, pages 428–
432, Edinburgh, UK, 2005. LNAI 3538: Springer, Berlin
Heidelberg.

[7] D. Retkowitz and M. Stegelmann. Dynamic Adapt-
ability for Smart Environments. In R. Meier and
S. Terzis, editors, Distributed Applications and Inter-
operable Systems, 8th IFIP WG 6.1 International Con-
ference (DAIS 2008), volume 5053 of LNCS, pages 154–
167. Springer, 2008.

[8] J. P. Sousa and D. Garlan. Aura: an Architectural
Framework for User Mobility in Ubiquitous Computing
Environments. In WICSA 3: Proc. of the IFIP 17th

World Computer Congress - TC2 Stream / 3rd IEEE/I-
FIP Conference on Software Architecture, pages 29–43.
Kluwer, B.V., 2002.

[9] G. M. Youngblood, L. B. Holder, and D. J. Cook. Man-
aging Adaptive Versatile Environments. In PERCOM
’05: Proc. of the 3rd IEEE Intl. Conf. on Pervasive
Computing and Communications, pages 351–360. IEEE
Computer Society, 2005.

608

A Graph Transformation-Based Approach to Task Allocation
in Wireless Sensor Actor Networks

Hossein Momeni
Computer Engineering

Department
Iran University of Science

and Technology
momeni@iust.ac.ir

Vahid Rafe
Computer Engineering

Department
Arak University

Arak, Iran
rafe@iust.ac.ir

Mohsen Sharifi
Computer Engineering

Department
Iran University of Science

and Technology
msharifi@iust.ac.ir

Adel T. Rahmani
Computer Engineering

Department
Iran University of Science

and Technology
rahmani@iust.ac.ir

Abstract

Existing WSANs suffer from the lack of a real-time

task allocation in support of real-time communication
and coordination. In this paper we present a graph
transformation-based approach to allocate the tasks to
the sensor and actor nodes in support of real-time
application. For each action in the designed scenarios
we define one or more graph rules to implement the
proposed model. Using this formalism we analyze the
correctness of our algorithms. We show that the
proposed approach guarantee that the tasks complete
their activities before their deadlines expire. To show
the efficiency of our approach we have simulated the
model. Simulation results showed an improvement of
65 percent in deadline hit ratio comparing our
approach to FIFO algorithm.

1. Introduction

Wireless sensor actor networks (WSANs) consist of a

group of sensor and actor nodes that perform
distributed sensing and acting tasks [1]. Sensors are
able to sense environmental information and actors are
able to act upon environment. These nodes
communicate wirelessly and dynamically to monitor
and control environment. Figure 1 shows a typical
architecture of WSANs. In this architecture, the task
manager node sends its request through Internet and
satellite to the sink and the sink as a central computer
dispatches these requests to designated sensor and
actor nodes that in turn send back the results to the
sink.

The existence of actors in an environment is
demonstrative of time in performing some tasks; hence
real-timeliness is an important issue in WSANs [1] to
guarantee that tasks of an application are distributed
based on limited computation and communication

resources in the network in such a way to meet their
deadline.

In spite of the importance of real-time requirements in
WSANs, this issue had not been totally resolved yet.
Existing researches, e.g., [2], have tried to minimize
delays in packet transmission, in real-time routing and
in coordination, but fall short of guaranteeing task
completion time before specified deadlines expire. To
provide such guarantees, tasks must be allocated to
network nodes considering the deadlines. This had
been pursued only in wireless sensor networks
(WSNs).

In this paper we present a new two level task
allocation mechanism for WSANs by allocating tasks
to sensor nodes and actor nodes considering the real
time deadlines of tasks. Our mechanism considers two
tasks: sensing and acting tasks. Candidate sensor nodes
and actor nodes that have enough energy and can
perform the tasks are identified first, and then tasks are
dispatched to them based on deadlines.

To do so, we first model formally the required
features of WSANs by graph transformation systems.
Graph transformation has recently become more and
more popular as a general formal modeling language
[3].We use this model to analyze the soundness of our
algorithms. Furthermore, using the AGG toolset [4],
we analyze the modeled WSANs and check the results
to become sure about the correctness of the model.
Finally, the efficiency of our approach is evaluated by
simulation. We simulated our proposed algorithms in
VisualSense [7].

Figure1. A typical architecture of WSANs

609

The rest of this paper is organized as follows. Section
2 explains some terminologies and assumptions.
Section 3 describes the model of system using graph
transformation systems. Section 4 presents our
approach. Section 5 shows the experimental results and
Section 6 concludes the paper.

2. Assumptions and Terminologies

In this section we state our assumptions for task

allocation in WSANs, besides a brief description of
graph transformation systems.

Formally, we define a task as follows:

NideadlineperiodT iii �� 	! 1,,,

Where:
� iperiod , is the period of iT meaning that iT is

executed once every iperiod units of time. The

deadline for iT is equal to ideadline , i.e. the time that

execution of iT must be completed.
The execution of the first task will be started with the

period of the task, we define two tasks: sensing and
acting.

For remote task communications we use a tuple
space communication architecture originally proposed
in Linda [5]. Tuples are collections of passive data
values. A tuple space is a pool of shared information,
where tuples can be inserted, removed or read [6].

We introduce two tuple spaces that share information
about sensors and actors among cluster heads and the
sink respectively. Cluster heads and the sink can use
the tuple space to retrieve information about the status
of sensor nodes such as energy of each node. Figure 2
shows tuple space architecture for WSANs.

Tuples are defined as follows:

� If " # LSNSNSNSNS L 		 ,,...,, 21
 is a set of L

sensor nodes and
" # MSenseSenseSenseSenseSense M 		 ,,...,, 21

is a set of M sensing tasks, then the first tuple
space is defined as follows:

 	!� kjkjkjkj powerdelaysense ,,,, ,,

where ljMk ���� 1,1 and kj ,� describes
that the jth sensor performs the kth sensing tasks
with dilation time kjdelay , and power

consumption kjpower , .

� If " # ZAAAAA Z 		 ,,...,, 21 is a set of Z

actor nodes and
" #XActionActionActionAction ,...,, 21	

where XAction 	 is a set of X acting tasks, then the

second tuple space is denoted by:

 	! kjkjkjkj powerdelayAction ,,,, ,,$

where Xk ��1 and kj ,$ describes the jth actor

that performs the kth acting task with dilation time
kjdelay , and power consumption kjpower , .

3. Graph Transformation Model

The mathematical foundation of graph transformation
systems returns to thirty years ago in reaction to
shortcomings in the expressiveness of classical
approaches to rewriting (e.g. Chomsky grammars) to
deal with non-linear grammars. In this subsection, we
describe graph transformation briefly, as a modeling
means. For more information about theoretical
background and semantics of graph transformation,
interested readers can refer to [8,9].

Definition 1 (attributed type graph transformation).
An attributed type graph transformation system is a
triple AGT=(TG,HG,R), where TG is the type graph,
HG is the host graph and R is the set of rules.

Definition 2 (Type Graph). Let TGN be a set of node
types and TGE be a set of edge types. Then a type
graph TG is a tuple: TG=(TGN,TGE,src,trg), with two
functions src: TGE�TGN and trg: TGE�TGN that
assign to each edge a source and a target node.
Definition 3 (Host Graph). A host graph HG, also
called instance graph over TG, is a graph equipped
with a graph morphism typeG: HG�TG that assigns a
type to every node and edge in HG.
Definition 4 (Graph Rules). In this paper, we follow
the algebraic double pushout approach (DPO) to graph
transformation as first introduced by Ehrig et als. for
untyped graphs in [9]. A graph transformation rule P

Figure 2. Tuple space architecture for WSANs

610

over an attributed type graph TG is given
by NAC)type,R,rKl(LP %&%%%�	 , where:

� RrKlL %&%%%� is a rule span with
injective graph morphisms l,r and graphs L
(Left Hand Side or LHS), K (gluing graph)
and R (Right Hand Side or RHS) typed over
TG.

� type=(typeL: L�TG, typeK: K�TG, typeR:
R�TG) is a triple of morphisms, and

� NAC is a set of triples nac=(N,n,typeN) with N
being a graph, n: L�N a graph morphism,
and typeN: N�TG a morphism.

The application of a rule to a host graph H, replaces a
matching of the LHS in H by an image of the RHS.
This is performed by (1) finding a matching of LHS in
H, (2) checking the negative application condition
NAC (which prohibits the presence of certain nodes
and edges) (3) removing a part of the host graph (that
can be mapped to LHS but not to RHS) yielding the
context model, and (4) gluing the context model with
an image of the RHS together by adding new nodes
and edges (that can be mapped to the RHS but not to
the LHS) and obtaining the derived model H’.

4. Proposed Approach

In this section, we describe our approach to model the
WSANs using graph transformation systems.
As it was mentioned, in a graph transformation system,
the type graph shows the metamodel of the system.
Hence, designing the type graph is the first step to
model the system.
Figure 3 shows the proposed type graph as the
metamodel of the system. It compromises 10 nodes
with different types. For example, node “clock” shows
the current time in the model. It has an attribute names
“Time” to show the current time. We use this node to
simulate the time. The behaviors (rules) which must be
done at the same time on the model do not change the
time but other rules change it. The node “Sensor” is an
abstract node, the two nodes “ClusterHead” and
“TypicalSensor” have inherited it. In fact, each sensor
in the model, ether is a cluster head or is typical sensor.
Also, there is an association edge between
“ClusterHead” and “TupleSpace”. It means each
cluster head in the model has a tuple space witch
contains triples called “Tuple”. Each “TypicalSensor”
stores its current status as a “Tuple” in the
“TupleSpace”. We design this type graph based on the
assumptions in section 2. For example the node
“Tuple” contains all the attributes which we defined
them in the previous section.

This type graph shows the proposed syntax for the
models. According to this type graph, we can model
the initial configuration of the WSAN as a host graph.
For example, figure 4 shows a small WSAN with 3
sensors, 1 cluster head, 1 sink, 1 tuple space and so
forth. In general, the host graph is served as the starting
point for simulation and analysis.

We define graph rules to implement the desired
semantics (based on the proposed approach). For each
behavior which must be done on the model, one or
more graph rule(s) is defined. For example, consider
rule of figure 5. It shows the creation of sensing task.
The left side of this rule says if there is a sink in the
model which its “SensingDone” attribute is false and
there is not a “SensingTask” associated to it (negative
application condition), then a sensing task will be
generated by this rule. For this rule, we have supposed
the kind of the task is sensing the temperature and its
deadline is 4. For other cases (i.e. sensing tasks with
different kinds and deadlines) we define similar rules.

Figure 3. The proposed type graph for WSANs model

Figure 4. A host graph to show the initial
configuration of a small WSAN

611

As another example, consider rule of Figure 6. It shows
the process of assigning sensing task to cluster heads
by the sink node. The LHS and NACs together say that
if the sink has a task and this task has not been
assigned to a cluster head while both nodes have the
same kind, then the task must be assigned to the cluster
head.

5. Experimental Results

The effectiveness of our approach is validated through
simulation. We simulated our proposed approach in
VisualSense [7].
We first model sink, sensors and actors so that each of
these nodes has TypedCompositeActor that include
time component, send message component and receive
message component. Also each TypedCompositeActor
has TypedAtomicActor that is processor of each node.
In the experiments, we counted the number of tasks
that is rejected by nodes and the number of deadline
that is missed. We compared our approach with FIFO
mechanism and we observed that our approach
provides the least rejected tasks and reduce deadline
miss.
The results shown in Figure 7 indicate that the deadline
misses in the proposed approach is low compared to
FIFO algorithm.

6. Conclusion

In this paper we proposed A Graph Transformation-
Based Approach to Task Allocation to prevent missing
the deadlines of such tasks. For this purpose, before
allocating tasks to nodes, we checked the feasibility of
execution of tasks on those nodes based on their power
and deadline requirements. We modeled formally the
required features of WSANs by graph transformation
systems. We used this model to analyze the soundness
of our approach. We analyzed the modeled WSANs
and checked the results to being sure about the
correctness of the model. Finally, the efficiency of our
approach was evaluated by simulation. Experimental
results showed an improvement of 65 percent in
deadline hit ratio compared to FIFO algorithm.

7. References

[1] I. F. Akyildiz and I. H. Kasimoglu, "Wireless
Sensor and Actor Networks: Research Challenges", Ad
Hoc Networks, vol. 2, 2004, pp. 351-367
[2] G. A. Shah, M. Bozyiëit, Ö. B. Akan and
B. Baykal, “Real-Time Coordination and Routing in
Wireless Sensor and Actor Networks”, Lecture Notes in
Computer Science (LNCS), No. 4003, Springer-Verlag,
2006, pp. 365-383
[3] L. Baresi, V. Rafe, A. T. Rahmani and P. Spoletini,
"An Efficient Solution for Model Checking Graph
Transformation Systems", Electronic Notes in
Theoretical Computer Science (ENTCS), vol. 213,
2008, pp. 3-21.
[4] AGG, tfs.cs.tu-berlin.de/agg/.
[5] D. Gelernter, “Generative communication in
linda,” ACM Trans. Programming Languages and
Systems, vol. 7, no. 1, 1985, pp. 80–112.
[6] M. Kuorilehto, M. Hännikäinen and T. D.
Hämäläinen, “A Survey of Application Distribution in
Wireless Sensor Networks”, EURASIP Journal on
Wireless Communications and Networking, vol. 5, no.
5, 2005, pp. 774 - 788.
[7] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, Y. Zhao, C.
Brooks, N. V. Krishnan, S. Neuendorffer, C. Zhong, and
R. Zhou, Visualsense, "Visual Modeling for Wireless
and Sensor Network Systems", Electronics Research
Laboratory, College of Engineering, University of
California, 2004.
[8] L. Baresi, R. Heckel, "Tutorial Introduction to Graph
Transformation: A Software Engineering Perspective",
First International Conference on Graph
Transformation, LNCS, vol. 2505, 2002, pp. 402–429.
[9] H. Ehrig, G. Engels, H. Kreowski, G. Rozenberg,
"Handbook on Graph Grammars and Computing by
Graph Transformation, Applications", Languages and
Tools, vol. 2, World Scientific. 1999.

Figure 5. Rule of creating sensing task

Figure 6. Rule of assign sensing task

Figure 7. Deadline misses

612

Another New Criterion to Improve the Interaction Diagrams Quality

Lilia Grati, Mohamed Tmar and Faïez Gargouri
MIRACL Laboratory, Higher institute of informatics and multimedia of Sfax,

BP 242 - 3021, Sakiet Ezzit, Sfax,Tunisia.
 {lilia.grati, mohamed.tmar}@isimsf.rnu.tn, faiez.gargouri@fsegs.rnu.tn

Abstract

 UML interaction diagrams are used to represent
the dynamic relationships that exist among the
system’s objects. These links are established through
exchanging the messages between the objects, which
is considered as a coupling aspect. Actually, this
concept corresponds to the inter-dependency
between the diagram’s objects and, as it was
confirmed by several researchers, the minimization
of coupling is considered as a quality indicator.

 In this paper, we lead an experimental analysis
study and propose a new criterion to estimate and to
improve the quality of the interaction diagrams and
especially, to control the communication and the
representation of messages in these UML diagrams.

1. Introduction

UML interaction diagrams show the dynamic
aspect of the information system in terms of the
exchanged messages between the objects. Indeed,
the main purpose of these diagrams is to model the
use-cases scenarios reflecting the users’
requirements. For that, it will be useful to propose
different criteria to improve their quality’s level. In
fact, a great number of measures and heuristics were
suggested to be applied in these diagrams.
Nevertheless, most of them lack valid and clear
definitions. Therefore, it is difficult for designers to
make a sensible choice.

Thus, this paper is consecrated to present, firstly
an overview on two criteria that we proposed in a
previous work. The second part of the paper is
focused on presenting a new criterion that aims to
analyze the impact of the communication manner
between the objects of an interaction diagram, on its
quality.

2. Proposition of our quality criteria

The main objective of our works is to propose
different criteria that can evaluate and improve the
interaction diagrams quality. Generally, designers

consider that an interaction diagram has a “good”
quality if it corresponds to the use-case’s scenarios.

However, if we refer to the different measures and
heuristics that exist in the literature, such as [1], we
presume that the researchers confirm that minimizing
coupling between classes or objects is considered as
a quality indicator.

In order to determine the adequate values
corresponding to the objects and messages numbers
in an interaction diagram, we have led an empirical
study and statistical calculations based on two
corpuses of sequence diagrams containing
respectively 66 “good” diagrams and 127 “bad”
ones.

In fact, a sequence diagram quality can be
considered as “bad” if the diagram does not reflect
the corresponding use-case scenario, or if it contains
errors of syntax and form, or if the representation of
the exchanged messages and the intervening objects
of the considered diagram, needs to be modified and
optimized.

We denote that we have selected the “good”
sequence diagrams of our first corpus from the
following books: [2], [3], [4] and [5].

Our method aims to lead statistical calculations in
order to show the variations of each criterion, applied
in the two corpuses of sequence diagrams, by curves.

Any difference that can be observed through the
comparison of the curves corresponding to every
criterion is an indicator of its relevance. In other
words, if the curves, resulting from the application of
a criterion in the “good” and the “bad” sequence
diagrams, are similar then, we deduce that this
criterion have no impact on the quality level of the
interaction diagrams.

2.1. Overview on our two previous criteria

In [6], we have proposed two quality criteria,
referring to the minimization of coupling through the
verification of the exchanged messages between
objects and also, the analysis of the distribution of
the messages in an interaction diagram.

613

2.1.1. Verification of the exchanged messages
between objects. The minimization of the exchanged
messages between the interaction diagram’s objects
is considered as a quality criterion in this kind of
UML diagrams as it reduces coupling.

Thus, we have proposed in [6], to analyze and to
test the variation of the number of messages in each
category of the diagrams that we have previously
modeled.

However, reducing only the messages exchanges
between the objects is insufficient neither to evaluate
nor to improve the diagram’s quality. For example,
an interaction diagram containing an only one
message can not be considered as an “excellent”
diagram. Besides, a diagram that contains a great
number of objects but a very little number of
messages will be certainly classified as a “bad” one.

Accordingly, we assume that the number of
messages is correlated to the number of objects
belonging to an interaction diagram. This
dependency is taken into account through
determining and justifying the adequate value of the
number of messages in diagrams having a well-
known value of objects number. So, we aimed to
experiment this correlation between objects and
messages belonging to an interaction diagram, based
on this formula:

No
Nmx = (1)

‘x’: the relative number of messages in the
interaction diagram ‘D’;

‘Nm’ number of messages in ‘D’ diagram.
‘No’: number of objects in ‘D’ diagram.
Based on the calculations that were applied on the

66 “good” diagrams and the 127 “bad” ones, we have
obtained two different curves, drawing respectively
the variation of the number of the “good” and the
“bad” diagrams depending on the relative number of
messages: ‘x’. Thus, we deduced that a difference
exists between the values of the relative number of
messages: ‘x’, to which corresponds the maximum of
each curve. In fact, this difference implies the
possibility to consider the relative number of
messages that we have defined, as a relevant quality
criterion in the interaction diagrams which
contributes to judge and so, to improve the quality of
the representation of the messages in this type of
UML diagrams.

This assumption was demonstrated and approved
through all the calculations that were detailed in [6].

2.1.2. Verification of the activity and the
reception degrees of the interaction diagrams. Our
second quality criterion that we proposed in [6],
aimed to study the distribution of the messages
between the interaction diagram objects.

In fact, a “good” interaction diagram should not
have very active objects and passive ones. A very

active object sends a lot of messages to the other
objects. Moreover, if an object sends (or receives) a
great number of messages to the same object of an
interaction diagram, it is probable that these objects
have a strong relationship and describe the same
abstraction and so, the designer should have a
feedback and for example, may group them into a
same class. Besides, every object that belongs to a
“good” interaction diagram must be active by
sending an adequate number of messages.

The global activity degree: Act(D) of an
interaction diagram ‘D’, having ‘No’ objects and
‘Nm’ messages, is measured by the product of all the
elementary activities of its objects. We define this
measure as follows:

∏
=

=
No

k
kOactDAct

1

)()(
(2)

act(Ok) represents the elementary activity of an
object ‘Ok’ belonging to the interaction diagram ‘D’.
It is defined by formula 3:

1
1

)(
+
+

=
Nm
nmOact S

(3)

‘nmS’: number of messages that are sent by the
object ‘O’ of the diagram ‘D’.

As a result from using the product to calculate the
global activity degree of an interaction diagram ‘D’,
the value of this activity can be maximal if and only
if all the objects of ‘D’ send approximately the same
number of messages.

The results of our experimental study that we have
applied to the two corpuses of sequence diagrams are
shown by two different curves drawing respectively
the variation of the global activity degrees in the
“good” and the “bad” diagrams. We have observed
that the global activity degrees in “good” diagrams
are clearly higher than the “bad” diagrams ones.
Consequently, we deduced that the objects belonging
to the “good” diagrams send almost the same number
of messages and so, there are no passive objects in
these diagrams.

 Since we aim to control the distribution of the
messages in the interaction diagrams, our interest was
also focused, in [6], on studying the reception of
messages by the objects of a diagram. So, we defined
the global reception degree of an interaction diagram
‘D’, by the product of the elementary reception
degrees of all the objects belonging to this diagram:

∏
=

=
No

k
kOrecDc

1

)()(Re
(4)

Rec(D) : the global reception degree of an
interaction diagram ‘D;

rec (Ok) : the elementary degree of reception of
messages by the object ‘Ok’ in the diagram ‘D’.

 This criterion is measured by formula 5:

614

1
1)(
+
+=

Nm
nmOrec R

(5)
‘nmR’: number of messages that are received by

the object ‘Ok’ belonging to the diagram ‘D’.
As a result from the application of this criterion in

the two corpuses of diagrams, we have obtained two
different curves corresponding respectively to the
variations of the global receptions of messages, in the
“good” and the “bad” diagrams: the global reception
degrees in the “good” diagrams are clearly higher
than the “bad” diagrams ones. Accordingly, we
presume that all the objects belonging to a “good”
interaction diagram receive approximately the same
number of messages. So, the reception of the
messages in the first corpus of sequence diagrams is
well shared out between the objects of these “good”
diagrams contrary to the “bad” ones.

We note that the details of all the calculations and
also of all the curves corresponding to the measures
are presented in [6].

2.2. Our new criterion: verification of the
dependency degree between the objects of an
interaction diagram

We still aim to improve the interaction diagram
quality through the minimization of coupling and for
that, we propose, in this subsection, another new
criterion. It relies on studying the communication and
the interdependency between the couples of objects.

In a “good” interaction diagram, the
communication between the pairs of objects must be
decentralized and the exchanged messages between
them must be well distributed. So, we should not
find an only one couple of objects that exchanges the
majority of the messages of the diagram since, it is
probable that one of these two communicating
objects belongs to an abstraction level that is higher
than all the other objects of the diagram.

For example, if the designer uses the object:
“System” in an interaction diagram, this object will
certainly monopolize the behavior of the diagram as
it is considered as a “generic” object representing all
the objects of the modeled information system.

We present, in the following, another example to
explain how can the bad distribution of messages and
the high dependency between the objects, be an
indicator on the “bad” quality of the diagram: if the
designer uses the object: “Person” to model
scenarios of the “commercial management” domain
then, the majority of the messages will certainly be
sent and received by this object as it is general and
represents four objects at the same time: “Customer”,
“Supplier”, “Administrator” and “User”.

Accordingly, we assume that the high dependency
between the objects of an interaction diagram is an
indicator of its quality level and so, the designer

should make a feedback and check the objects of its
modeled diagram. In order to study this criterion and
to test its impact on the “good” and the “bad”
diagrams quality level, we propose firstly, to
calculate the dependency degree “DD” between the
communicating objects as follows:

Let ‘Oi’ and ‘Oj’ be two communicating objects
belonging to the interaction diagram: ‘D’:

(6)
In fact, having a high degree of dependency

between two objects indicates that they exchange a
big number of messages and they have a great
correlation. So, the representation of messages in the
considered diagram needs to be optimized.

As we intend to valid theoretically our proposition
that is focused on studying the impact of the
centralized communication between objects on the
quality of the diagram, we are based on the principles
of an automatic method of classification: “the
hierarchical classification”. This method is a branch
of the data analysis that aims to product groups of
elements to form classes. The principle of the
hierarchical classification algorithm is to gather
successively the nearest elements having the smallest
distance, into classes [7], as it is shown by figure 1.
For this reason, it is indispensable to define and
propose a distance to apply the hierarchical
classification in our study case.

Figure 1. Hierarchical tree [7]

In our context, two objects are gathered in a
partition (or class), if and only if they exchange a
great number of messages. This aspect will be
measured by a well defined distance that separates
these two objects. Having a very small distance
between two objects gathered into the same class,
indicates that they are too interdependent and
correlated and thus, their dependency degree is very
high. Consequently, the coupling between these
objects is great, which implies that the distribution of
the messages in the considered interaction diagram
needs to be optimized.

 DD (Oi , Oj) =

Number of messages exchanged between Oi
and Oj

Total number of messages sent or received by
every object: Oi and Oj

615

No
C

Let ‘Oi’ and ‘Oj’ be two communicating objects
belonging to an interaction diagram and having a
dependency degree DD(Oi, Oj). We define the
distance separating these two objects as follows:

),(
1),(

ji
ji OODD

OOd =
(7)

After grouping the objects of an interaction
diagram into classes and as we aim to form groups of
classes, we have to calculate the distance between
two classes, which is the average distance between
two objects selected at random from these two
classes. So, we define this distance as follows:

mk

CCOO
mk

mk CC

OOd

CCd mkmk

×
=

�
×∈),(

),(

),(
(8)

|Ck|: is the number of objects in the class: ‘Ck’.
After that, we propose to determine the inertia of

each class in order to estimate the homogeneity
degree existing between all the elements that are
gathered into the class. This concept is calculated by
formula 9.

2

),(
),(

)(
C

OOd
CInertia CCOO

ji
ji

�
×∈= (9)

Inertia(C) corresponds to the average distance
between any two objects belonging to ‘C’ class.

We note that C �� refers to the number of
comparisons established between the objects of the
class for a considered assemblage.

The last step of our method relies on determining
the total inertia of every sequence diagram and for
each assemblage of objects into classes (groups). As
a result of this step, we obtain all the curves
corresponding to the total inertias of the “good” and
the “bad” sequence diagrams.

The total inertia of an interaction diagram ‘D’ for
an assemblage of objects: ‘A’ is the weighted average
of the inertias of the classes belonging to ‘D’ and
formed in every assemblage ‘A’ of objects.
The weighting coefficient is:

 C number of objects, gathered into the class ‘C’;
‘No’: number of objects in the diagram ‘D’.
So, this coefficient aims to show the contribution

of each class in the total inertia calculated for a
considered interaction diagram. Thus, the more the
class contains object, the greater its participation, in
the total inertia of the diagram, is.

)(),(
),(

CInertia
No
C

ADInertiaTotal
ADC

∗=− �
∈

(10)

In the case of the “good” interaction diagrams, the
evolution of the total inertias curves is stable, on the

contrary of the “bad” diagrams ones showing a non
stable, acute and strong evolution. This is in fact, a
sign of a “bad” communication between the objects
that were grouped into classes for the diagram.

Example: let us consider two different
distributions of points, presented in figure 2.

Figure 2. Example of two scatters plots

Based on calculations of distances between points,
we aim to estimate the rapprochement and
homogeneity degrees between points.

In the first scatter plot, it is observable that the
elements that will be grouped into classes are well
distributed in space. The distances separating each
pair of points are almost similar. So, these elements
are homogeneous and consequently, the curve
drawing the total inertia of this first scatter plot will
be approximately linear with a stable evolution (see
curve 1 of figure 3).

In the case of the second scatter plot, it is clear
that the elements can be grouped in six distinct and
disjointed classes. In each class, the elements are too
homogenous since the distances separating every pair
of them, are too low. As a result, the total inertia
curve, corresponding to this second distribution of
points, stills in the beginning stable. If we have to
group two points belonging to two different classes,
the distance that separates them will be certainly high
and consequently, the evolution of the total inertia
curve will change suddenly and will be strong and
acute (see assemblage 8 of the second curve
presented by figure 3).

Figure 3 shows an example of two different curves
drawing the total inertia of each scatter plot,
presented previously by figure 2. The horizontal axis
represents the number of points’ assemblages to form
classes. The vertical one corresponds to the total
inertia of every distribution of points.

616

Figure 3. Example of two total inertia curves

As it is shown by figure 3, the second curve has,
in a first phase, a stable and low evolution. But after
the assemblage number 8, this evolution changes
suddenly and becomes strong and acute. This is due
in fact, to an assemblage between elements belonging
to very disjoint classes. On the contrary, the first
curve is approximately linear with a stable evolution.

� Experiments and results:
In order to experiment the impact of the high

dependency degree between the objects of an
interaction diagram, on his quality level, we started
by modeling two corpuses of sequence diagrams
containing respectively 66 “good” diagrams and 127
“bad” ones. Then, we followed these steps:

1. For each sequence diagram, we have
calculated the number of messages that are
exchanged between each pair of communicating
objects. So, the pairs of objects that don’t exchange
messages are discarded from our calculations.

2. Then, we have applied successively
formulas 6 and 7, to estimate the distances separating
each pair of communicating objects of all sequence
diagrams.

3. After grouping the nearest objects of each
sequence diagram into classes, we have applied
consecutively formulas 8, 9 and 10.

4. Finally, by averaging the total inertia
evolution as function of the assembling iterations of
the whole sequence diagrams, we have obtained the
results that are presented by figures 4 and 5.

Figure 4. Total inertia curves of the “good”
diagrams

Figure 5. Total inertia curves of the “bad”
diagrams

If we refer to figures 4 and 5, we observe that the
total inertia curves corresponding to the “good”
diagrams have a stable evolution, on the contrary of
the “bad” ones having strong and acute evolution.

Generally, the total inertia curves that were
presented by figures 4 and 5 have an exponential
function:
)exp()(βα += xxf �������(11)�

‘x’ represents the number of assemblages that are
established to form classes in an interaction diagram.

Let have: Y= log (f(x))
Thus, we obtain the following equation:

 βα += xY (12)

Accordingly, we have to determine the values of
the coefficients: ‘ï’ and ‘ð’.

Based on the linear regression method, we can
calculate the value of the coefficient ‘ï’ as follows:

() ()
()�

�
−

−−
=

x

Yx

xx

YYxx

2
,

*
α

(13)
The evolution of a total inertia curve is measured

by the next formula:

����������������)exp()(' βαα += xxf (14)

Based on formula 14, the evolution of a total
inertia curve depends principally on the coefficient
‘ï’. If the value of the latter is high, the evolution of
the curve will be less stable and more and more
strong. This assumption will be proved
experimentally through the comparison of the
variation of ‘ï’ between the “good” and the “bad”
sequence diagrams.

To reach our objective, we have determined all
the values of the coefficient ‘ï’ corresponding to the
total inertia curves of the “good” and the “bad”
diagrams, by applying formula 13. Afterward, we
calculated the probabilities to have respectively
“good” and “bad” inertia curves depending on the
coefficient ‘ï’. The results of our experimentation are

617

shown by figure 6. The horizontal axis contains the
values of the coefficient ‘ï’. The vertical one
represents the probability to have a “good” or a
“bad” sequence diagram as function of ‘ï’.

Figure 6. Variation of the coefficient ‘�’ in the
“good” and the “bad” inertia curves

Figure 6 affirms experimentally our theoretical
assumptions corresponding to the difference between
the evolutions of the total inertia curves of the
“good” and the “bad” sequence diagrams. If the
value of the coefficient ‘ï’ is high, the probability to
have a “bad” total inertia curve and then, a “bad”
sequence diagram is more and more great.

In fact, it is clear that starting from the threshold:
� = 2,25, it will be more probable to have a “bad”
total inertia curve since the second curve, drawn after
this value of ‘ï’, is constantly on top of the first one
that corresponds to the variation of ‘ï’ in the inertia
curves of the “good” sequence diagrams. This
observation proves experimentally, our previous
hypothesis and indicates that the evolutions of the
“bad” total inertia curves are actually greater and
acuter than the “good” ones and this is a sign of a bad
communication between the pairs of objects in an
interaction diagram. Accordingly, we affirm the
relevance of our new proposed criterion.

3. Conclusion

This paper aims to present several quality criteria
that can be applied in the interaction diagrams
context in order to evaluate and then, to improve
their quality level. In fact, based on the heuristics and
the measures that exist in the literature, we are
convinced that the minimization of the coupling
aspect in an interaction diagram can improve the
quality of its messages’ representation. To reach our
objective and to prove experimentally this
problematic, we have led an empirical study and
modeled two corpuses containing 193 sequence

diagrams having respectively “good” and “bad”
quality levels.

We have presented, in first, two quality criteria
that refer respectively to the verification of the
exchanged messages between objects and the
determination of the total activity and reception
degrees in the interaction diagrams.

Our new criterion corresponds to the estimation of
the dependency degree between the interaction
diagrams objects, based on distances calculations.
We have experimentally proved that if the majority
of the messages of an interaction diagram, are
exchanged between an only one pair of objects then,
it is very probable that this diagram needs to be
optimized because of its “bad” quality.

Our future works will be focused on proposing
other criteria to improve the quality of the other
diagrams provided by UML language.

4. References

[1] Briand, L.C., Daly, J.W., and Wüst, J.K. A unified
framework for coupling measurement in object-oriented
systems. IEEE transactions on software engineering,
1999, vol. 25, N° 1, pp.91 – 121.

[2] André, P., Valley, A. Génie logiciel. Editions Ellipses,
2003.

[3] Kettani, N., Mignet, D., Page, P., Rosenthal-Sabroux,
C. De Merise à UML. Editions Eyrolles, 2nd edition, 1999.

[4] Roques, P. UML par la pratique. Editions Eyrolles,
2001.

[5] Roques, P. Les cahiers du programmeur. Editions
Eyrolles, 2nd edition, 2003.

[6] Grati, L., Tmar, M., and Gargouri, F. Minimizing
coupling to improve the interaction diagrams quality. In
Proceedings of the 15th conference on Information and
Software Technologies (IT’09). Lithuania, April 23-24,
2009.

[7] Nakache, J.P., Confais, J. Approche pragmatique de la
classification : arbres hiérarchiques, partitionnement.
Editions TECHNIP, 2005.

618

�&'�4��#���&=#����''&������ %�� &*��&*�� *#�)����$#%�� ��)��&+#)��

�

����������
�������
��
�	Ì�����
��
��#���ñ���*����������
�������������������������������������
�
�Ì
������Ì����*����
������������£���
�*���

�����������	�
�����
�������	��
���
	�� §����
�	���	���������	����!���!�������������������������������
"������	 ������!
�ñ���
�����#��
��$�

�
���������
%�
�����

���������� ����� �
���� ������	��
� ������� ��� 	��� ���	�
��� �����!	� ��	��
	���� ��	����� 	�
	� �
��� �����
����������
!����� 	��� ���	�
��� ������������ ���	�� ���
��� � ��!����� ��� 	��� �����	� ��	��
	���� ���� ����
��
�
	���
	�!
������������������	�����
�����������
��������!�
�������� ���������!��	���
�
���
����
����
���!���!
�� ���������!���������
	������������#����
!�������������������	���
���!�
�
!	����	�!���������	��

����&�
	����� 	�
	�
�������� 	������
��
������� 	�������
	����
��� ��������	
	��������
!����� 	����������	�
��	��
	������	�������

�#14&�+�>����	�
���'������������'����	���	��
	���������!	���*������	�
��������!	���
���������!�����

�

���
��&+"�� &�

���!��	�������	�!����	��������������	����	���	���!�����	�
������
� ����
���	
�� �������� �
�� ����� 	��� ����������	� ���
!��	
�����
������������������ ���	����
����	
��������!��	��
��
�����
�� 	�� ���
���� 	�� 	�
!��
��� !��	���� 	��� �����!	��
�����	����� ����������� 	��� ��	
��������	���� �������	�����
	�
	���������
�������	����	
���	���������!	��������
��
 �
��
��
���	�!�
���
!!��
	��
�� ��������� �
�� ��!����
��
��!��
����� ��
!	����������������	�����!���!��
��
��������

�����!����	������
���������
�����������������
!&������
� � ��������	� ���!�������� ��� 	���� �!���!��� ���!�� ���	�
���
'�����������	����	���!�
��'������������

���
���	����	�������!���������		��������	�����	���������
��
����!	������ 	��� !��	������� �����	���� 	�
	� 	��� ��	��
	����
��	����� �
��� �(������!���� �
��
����
������� 	�� ��	
���
�	���� ������	�� ��!��
�� 	��� ����
����� ��� 	��� �����!	�� �����

�
� ���� ��� 	��� ���������	 � ��� &�
�	�	
	����
�
� ���� ��� 	���
����!	�������������������	�!�
����������
������	������	�
���
!���	��!	�������!�������

���!��	����·¬)ò����	���������
������������������
��
����
������� ��� �������
��� �
���
���� ����� ��������� �
������
!�
�����!
	��������	����
����
���������������	�!��	���
��*���
��� 	��� ���	�������
��� �������!��� ��� 	��� ��	��
	���� ��� 	���
���� ������
�� � � ���	��� ���������
��� ����� �¬ �
!���������������	 ���������������

�� "���
���:�*;�	
��	����
�	� ������� 	�� 	����� ������� �
���� ���
� ��	� ���
�&�
	�����������
���� �
���(���	��

¨� $�������
�	� ������� 	���	���� 	���������� ������
� �����������

�
� ���� 	����	
������ 	��� ���
	����������	����� 	���

�����	�
��������������!��	���	� ������������ 	����
	���
�������������	����&�
	�����������

� ����
��� ���� ����
�����	����
��� ����
��

�&�
	������
�� +��� ����
��� ����
�����	����
��� ���� ����
��

�&�
	������
,� ��	�
	���

��� �
����
�������	������������������
���������

���!������!
	���
�����	������������������	���
���
�� ����� ������ ������� 	��� �����
������
���!�����������
	���
	�!
�� �
��� 	�
	��������� 	���
���!������������������
����	�
��������!	��

ª� 1���������
��� � ��!�����
	��
� !�����
	���� ���
�
� 	�!
��
�&�
	������ �	
	��	�!
��
����	���	��
	
�
����(���	��
���
���

�������	����	�����
��������	��!	�����
���������§���!	����¨�
���������
� ���� ��������� !�
�����!
	���� ���� �����	�
��	��
	���� ������ ���������� 	��� �
���� ������ ��� ���������
���������������!	����,����!������	�����������
��
��������!�
�
	���
	�!
�� ������� 	�
	� ���
��� ������ 	�� ������	�
���

�
� *�� ���
�!���������!
���������#��
�� ��!��!��������
���
��������������!	����ª���

��� �#4� ��&(&�#+�)��� ' ��� &*� '&�� �''&���
��� %�� &*��&+#)��

£�������
��������� 	����������
����� !�
�����!
	���� ����
�����	���	��
	������������¢ �	�
	�
�	������	
������������
��

619

���	��������������������� ��������	��
�����
����
!��������
���!����!����	�����!
������	��!	�������	���������������

�� #�
��	
������	����������	���
����������������� ��!�����
��� 	������������������
�
	���
	�!
�� �&�
	����� 	���
��� 	����� ��	��
	����
���� ��������!�� ��� ���	���� 	�� � �
��� �����
�����
	���� ��(���	�������	���!��������!
�����	����

������� 	�
	� 	��� ��	�����	���� ��� �(���	�� ���
�����	�
�����	�������������	����	����&�
	�����+���
��� ��������!�� ��	����� 	
���
�� ��������
���	����!
	���������
��
�����������
����������
�����

��� ����� ���� �
��� 	�
	����	����!
	����
��� ����
��
�&�
	�����
��� !����������
��
�	�!��
�� !
������ 	���
���� ����
�� �����
��� ��� 	��� �	���� �
���� 	
���
��
����������	�
	������	�
	����������
���&�
	�����
���

���
� � ��� �������
���
��� 	��� ���� ����������
��	�����������������
���&�
	������

*�� � 	��� ��������	�
	���� ��	����� ����!�
�������
���*������������� ��� ��	����!������� 	��
�	�� �����	
�	� !�������
	����� ��!
���� ��� 	��� ����	�
����������������������	���
���
�����
�!�������
���
�	�� ��
�� �����
��
��
��&�
! � 	��
� ��!
��
����������	� ��� 	��� �
�	� ��� 	��� ����
�!���� ���
�����§�
��� ��� 	��� ��!���� ����� ����� ��� ��� �
���������	����������
������
���
 ��	�����!	�������
�������� ���	���	����
������!������ 	��
!&�����
��� ���	���� ���� 	�� 	���� ��
������������� ��!�������
�	�� ����	��������!���	�������

¨� *�����������	�����*;�	
��*;�	
�	��	�
������� !�
�������� ��	���� 	���� ��	����
��� 	�����
	�
	���������
��
 �	���(�
!	����	������	�����!	����

�������������������������(���	��	��!
�� ���	�	���
��	��
	������ ����� �������
�� ������ 	�������
� ��	�
����	�������	�������	����������&���	����
������

,� 5	�
�����3��	���	����'�	��
�������	��������
�������	�����������
	
�!����!	���
�����������������!	�� 	���
��� 	�������	��
	���
���
��� 	���� ������ ��� �����
�� 	�� 	��� �
	���
	�!
��
�������� ���!��
���� ����� �
	
� ����� ���������
�����!	�� 	�� ��	������� �	�� �
�
��	����� ��	� 	���
��������!�� 	�
	� ������	� ������� !�
�������� ��� 	����
��	������� ��
� �
�	� ��� ��	� ������ �
���� ���
�
	���
	�!
�� �&�
	������ ��� 	�
	��������	����	����
	�� ��� ��� �������
��
����!
	���� ��	� ���� ��
�� ��� 	��
�
��� ���!���� ��	��
	��� ���� 	����� �����!	�� ��� 	���
�
���	 ������	����������
�������������	����
����

ª� ,����������	���
������ �������
������ 	�
	� 	��� !��	� �
!	���� ���
�
���	�
��������!	� !�
��������� 	����
��� ��	��
	���

��� �
��� ��	��
	���
��� �����
	����� ��� ��!��
�
��
	������ ���������� 	��� �
���� ��� 	������	���� ���
��� ���������	������ 	����	���� 	���������!���
���
�
�	
	�!���������	���� �	����

����� �
���� ����� ��!��� ��� 	��� ���� ����
�� �
�
��	��!�
�
	���
	�!
����	��
	������������
�	�!��
�� ����	��������!�
��������
	�������������	���	�����������
���	�
���
���! ��

�

,�����$#%�� ��)��&+#)��

�
	���
	�!
���������
����
������� 	�������������	����
������
	���
	�!
���&�
	�����	�
	�
������������	��������
��
�
 �
������������	����	
���������	�����	����!	�������
���	����

�� ����������	� �
��
����� �
����� ��!��
�� 	��� ��*�� ���
���	�
��� �����!	� 	�� �������� ��� 	��� ������ �(������!�§� 	���
�
���� ���
��	���� ��	� ��� ��������	� �
��
������ ��!��
�� 	���
�����	� ��� 	��� 	���� ������� 	�� �������� 	��� �����!	�� ������
�&�
	���������!�����
������������
�����	�������	��������	�
	�
����� ����������
��� 	�
	� ��� 	��� �
	��	� �������
��� ����
����
���
���
����	��� 	�������
���	�����
�
��	��������!��� ���
	����
���	�����	�
	���	�������	����!�������	����������

���� ����������	� ��� 	��� �
�
��	��!� �
	���
	�!
��
������� ���
�� ��� 	������� �·¬)¦��
��� ���!�� 	�����
� �
����

����	� ��� ������� �
��� ����� ���������� ��	��� ����� �����
�����¦�������	�����
��������������	��	������������	�
	��
��
�!!������ ��� 	���
��� ��� 	��� !����	����� ��	�� 	��� !���	
�	�
!�
���� 	�
	��
�� 	
������
!�� ��� 	����
���
���
������	�
���

�������!�
�� ����	����
 �	����������	�����
�	������

�
	���
	�!
�� ������� !
�� ��� !�
�������� ��� �����!�
���
�����������
	��	������������	�������� 	�
	����������������
����� 	�� ��� �����!� ���!�� 	����� �&�
	������ �
�
��	����� �	!���
����� ����� ��������
	���� ���������� � � 	���
�	���������!��
�
��
��������	���	�� ��
�
� ����
��������&���	������!
	�����
��� �	��
�������
�� �	�� �	���*
	����
��� !
����
	��� ��� ��������	�
����������	�� ��� ���!�� ����� ���������� ��	�
�� 	���� ������
	���� �����	
�!����
�������
	����!�����!�
�� ��	����	��� ���
	�
	�
�����	����
	��	������������������!��	� �
�������	����
	����
��� ������� ��� �
	��	��� � � !���
����� 	�
	� ����
	��
	�������	������	������
	��	����������
!	���
��
���
!����(�

������!
����� ������ 	����������	������	���� 	���� 	���� 	��
��� 	��� �����	� ��� 	��� �����	���� ��� ����� ��������� � �����
����������	����
�������	�
	�	���������
���	
���
����
���	���
�
	���
	�!
���&�
	�����������!���
���
�������	���������
��
��������

���	�����
�������
���������	����!�����������
�!����� ����
�����!������������	���	���(������� �
���������
������	
����

���	�������
�!���������!
���������

,���/	�

���� ����!�
�� �
��� ���� 	���� ������ ���)(1� 	�
	� !�����
����� \����
�� ����
�!�� ������
	����� 	��� !���
� � 	�
	�
�����������	���	��
������	�	������������������·¢ª�� ��
�
!��
��� ��

�����������!
�!��
	��� 	���!��	���� 	���� �	��� �������
���
�	�
���	������	����������������	��!	��������	���	��
�����
�
��������� �����	� !
�!��
	���� ������ 	��� ���������� �&�
	����
����'����	��

����.�<�707 �!�=�>0� #�$�

¥������� ��������	�� 	���!��	���
������ �������
���� �� 	���
��*�����	���� �	��������*����

�

�� �������������������
�������	��
����������
���
���

620

,����&�1�

���� ����!�
�� �
��� ���� 	���� ������ ��� ,��� 	�
	� !�����
����� ��	 � ����!�
	���� 	��� !��	�
!	��� !���
� � ��� ���!��
�
�� !
������ ��	� 	��� �	�� � ��	���	��� � � ����� ����
����������	� ���	��� #����$� ��� 	��� �
	
�
��� ��
� ����
���	����������	�
���#����$����	������
�	���	������������
#���$���� 	���"��	����	
	�����������!
������
������� 	����
����������������	���	��
������	�	������������������·¢¢�� �
£�����	�
����- ��

�������������	��
	���	��������	��!��	��
�������������	�
����
� !��	
��� ���	�
��� �����!	�� ��� ������ 	�� !������ 	���
!���	
�	� �
����� ��� 	��� !
�!��
	���� �&�
	����� 	��� ��	 �
������ ���	���������� ����� 	 ���� ��� �����
��� ��� �����
��
���������

�� *������������	��
!	����
¨� ��
�������������	����
,� �
�!��
	����
ª� *���
	����� �	����

���� ��*�� ��� 	��� ��������� � �	��� ��� ��	��
	��� � �
!���
��������	�� �����
�� � �	�����*������ 	���!��!��������
��	����!���� �	�������������	�
	�	���	�����������	�����	��
�
������ ������� ��� ���	��!	����� ���
� ����������� �
���
��� ���
	����
��� 	�
	� 	�����	�� 	���� ���
��
������ � �
���
������	�

�� 	��� ����������� �
���
��� ��� ��
������ ����
�� � ���
�
���
	���� ����� ,� 	�� ¢�� 	��� �����	� ��� 	�
	� 	��� �����!	���	 �
��!��
����� ���
���	���� 	�� 	��� �
!	� 	�
	� 	��� �����������
�
���
����������������!�
��	 �
���	����������	��
!���	
	���	���
�
��	��
�!���

����� ������ ��� �
���� ��� 	��� ���������� �&�
	����� ����
'����	��

6�����	%� 	�.�>�>?@ �!=�</A� #¨$�

(������	%� 	�.�>�@B0 �!=�77A� #,$�

1���������%� 	�.�7�A?@ �!<�BA>� #ª$�

6�	
�����$��	��%� ���������	�.�=7�<0? �!<�B=?� #¡$�

¥�����	� ��������	�� 	���'����	���
������ �����¨�
�����
	�����*�������*���

,�,��#�&�(��#�

��������!�
���
�������	�������������3	
�����	����	����	�
�
������	�	������������������·¢¢�� ��
�����· ��

�������������	��
	������
�
	�� �	��������	����������
���
�����
��	����
���	������	�������	��������������&�
	���������
�����	���	��
	�����

(������	%� 	�.�<�<@B� �!<�?>� #¬$�

�� �������������������
�����	����������
����

6�	
��
��
���%� ������	�.�7�<=7� �!<�><>� #¢$�

¥����� 	� ��������	�� 	���'����	���
������ ��� ���
��� ��
��*�������*���

,�3�
���?�����@���)��&*@�#) .�

���� ����!�
�� �
��� ���� 	���� ������ ��� 8C��D$,� 	�
	�
!����� ����� ��	���
	���
�� ��������� �
!������ #����
��
� �	�������������� 	���!���
� � ������!���
��!
��������	�
	����	�� �	�
	�
�������	�������������	����	������������	����

����������
�����	�����E������D	��;���!
�����	��
������	�
��������������·¢¢�� �¥
��	���
���#���(���, ��

��	������ 	������������	�������� 	��������	���� 	����
����
���	������������!���������!��§�	���
�
� �������	����
	
�
���
����� � � 	���
�	����� ��������
��	���� ������� ��� ���
	������
�����!	���	 � ������� ���!��	
��� ��� ���� !���� �����������
��!����	
	���� ������� !���� ����������� 	���� ������� !����
����������� 	���� ������� �����	�� ����������	� 	�
�� �������
�����	��!��	��������!������������������!��	�������������	��

����� ������ ��� �
���� ������ 	��� ���������� �&�
	���� ����
'����	�
�������������	�������

*���
%��� 	�.�@�7 �!<�?=� #-$�

¥����� 	� ��������	�� 	��� �����	���
������ ��� ���� �� 	���
���
����*�����	����
���������*���

,	�	����	�����	%� ��������.�7�>B 	!<�0@� �#·$�

¥��������������	��	���	��������������������	���
���	�
	��������	���
�������������

,�;���)#1@���) �

��������!�
���
�������	�������������C���	��C���������	���
�	��
�� ����	� 	���� ���������� ��� �·-�� � ��
��� �
����
�����
�¨ ��

����� 	�
��
� ������ 	�� ��	��
	��� �
��� �
��� �
�����
������	���
� !���	��!	���� ��	���� ���
� ��!
�� ������ 	��
��	��
	��� ���� ���!���� ��� ������ �����
	���� !�����	�� ���
	������	�����

�� �
�!��
	�� 	��� �����	� ����� 	��� ������
�� �&�
	����
���������� �	����������

¨� ��	���������
	�!�����
	��������
!	������������ 	��
	��� �����!	� ���!�� �
�� ����� ��	��
	���
��� 	�
	�
!����� �(��
��� �
��
	����� ��	����� 	��� �
	
�
��
������ ��� 	���
!	�
�������!	�
��� 	�����	��
	���
�
����� ��	
����� 	������� 	��� ������
�� �&�
	�����
�
��� �
����
��� � ����	������
���	��))�
		����	���
��������	���� 	��� ��!
������������	�����������	�

�� ��������� !
����� ��� 	��� �
��
	���� ��	����� 	���
�����	���
������
���	��������	���	��
	����
�	������
�������� ��� � ��	�� �-� ��	�� ��� �
	
� !����� ��	�
!�������� �
	���
	�!
�� � ��� �
� �
		����	���� ���
������	��������	�������������	�� ����������	�������
�����������	� 	�!���&������!��
�� 	����(������!�����
�(���	��� ��� 	��� !�����
	���� �
	��(�� ��� ������ 	��
����!	� 	������	� �������	�
��
		����	��§� ��� 	�����
 �
¨��
		����	��� ����� ���
�� � ��	
������ ���
���	����

621

	�� � �������� 	�����
		����	��� ���������� 	��� ���
�
	�
	� 	��������� �
��
�����	����������
	���� ���
!	�
��� 	��������	�
��� 	�
	��
���
��� �������	
��
�����
����	��������������	
�����������
�� ��	
����	������� �#�'�£$�

�� �������
��
����
¨� ����æ��������������
,� �������#���
������
ª� �������
������
¡� £�
���������
������\������
¬� #���
�����	��
����
¢� ����������	�"��	���
-� #���
����
�������
����

¨� �!!����
	���������(�	 �#���.$�
�� "������	���
!��������(�	 ��
¨� ��
����� ����� 	���!����	���!�� ���	�
	��� 	���

��������
,� ��������	
	������!����������(�	 ��
ª� ������(�	 ����	�������
��#��������
	
��
¡� ��	���
���������!
	����������(�	 ��
¬� '(���
���������!
	����������(�	 ��
¢� �
	
�
���������(�	 ��

,� �!!����
	���'(������!��#�'.$�
�� ��	�	�������	��������
������
¨� ����
�����'(������!����	��	����
!������
,� ����
����� '(������!�� ��	�� 	���

�
���
����
ª� ����
����� '(������!�� ��	�� 	���

����!
	�����
¡� �������� ����� ��� 	��� ��
�� ��������

	���	�����
'
!�����	������������ �����
��
	������
��
���������
	��¡��

,� "���	���������	�������!	����������!	���
���� ������
�� �&�
	���� ��� �
��!� ���
	�������� ��	�����

�����	�
��� ��*�� �
�� ��	���������
�� �
�� ����� ���	������

������ ������ �-� ��	�� ��� �
	
� ����� 	��� �'�� #���	�
���
'������������
���
	�� $���� 	���+���� #+
	���
������! �
���� 	����������	�
	���������
!�$������ �����������&�
	����
�
�������	����	��
	��	��������	��

	�.�0�@�-�<�B0�=�=/�� ����� � #�)$�

¥�����	� ��������	�� 	���'����	���
������ �����������*��
�����*���
���;��	����
��������
!�����������
		����	����

,�<������

���� ����!�
�� �
��� ���� 	���� ������ ��� 1616�6� 	�
	�
!����� ����� �*��	��!	���� �*�	� �*�����
��� �	� �
�� 	���
�������������� ����	����� ���!
������*�*�*�-�§� 	����
���
-�� 	
������� 	��� �
�	� 	�������	����� 	��������!
	���� �
��
���

����� ����� 	��� ���� �������� �*�*�*� ��� ��� �
��!�����
�*�*�*�-���
������	�	������������������·-��� ���������

�	��
������������� ��
� ��������, ������¥���
�������
	���
�
� ���� ��� ¬,� !�����	��� ���	�
��� �����!	��
��� �
��
	����������������

�

�� C������
¨� 8�	
�	���	��
,� ,	���	���

�*�*�*� -�� ������ ��� �
���� ��� 	��� ����������
�&�
	��������'����	�
�������������	�������

*���
%� ��������	�.�� ������� �� ������� ���� � #��$�

¥�����	� ��������	�� 	���'����	���
������ ������� ����*��
�����*�����
�����
���!���	
�	��
���;�&� 	����
��������������
��� !��	� &� ������
��� ��������� �� !
��
����	��� ���� 	���������
��	������
	��
�����	�������
���ª�����	�����	
������������

,	�	����	�����	%� �.����� � #�¨$�

¥��������������	��	���	����������	����	���������	��	���
�����	���
�������������
�����
�����
���!���	
�	��

���� ��!���� ��������� �*�*�*� ���� �
�� ���������� ���
�··¡�� ��������ª �
���!�����	�����	��������������������

�� �*�*�*� �����···�)������������� � 	��� 	�
�����
	��� "�������	 � ��� ���	����� �
�������
� 	�
	� �
��
���������� 	��� 	�����	�!
�� ������� �	� ��� ����� ���
!�
�����
�	���	��ÎÎ�	����!����Î���Î���	/�����������Î�*�*
�*��Î!�!���··�)Î!··)���������(��

¨� �*������ ���������� � � ���	
��� �	� ���
��
��	��
!	����	����	�
	�
����������	��������������!	���

�������
�� �(�������	����� 	��� 	 ���� ¥�
	�������
�
�������º�
¥�����		��ÎÎ�������	�	
�� �	����!���

¥�����		��ÎÎ�����	���!����Î�*�*�*���

��������������!��������� �	����������������
�� 1�������������3������������

����� ��������� ��� ����� 	����	��
	�� 	��������	�
���
	��� 	�����������������	� ��������!	�����������'�
#�����	������������	�
���'����������$�	���������
�
����
����!
	���� ����������	�� ��	������ 	�����
�����!	��
������ ���������	��
����������������� 	��
��� �
���� � ����	� ����� ��	������
���� !�������	���
� ��!
�� !�������	��
��� 	��� ��������� ��� \"��
#\�
���!
�� "���� ��	���
!�$�� �
	
�
��� ��� ����!	��
�
�
������ 	�
��
!	�������!�������� �	!��
�������
��
!�������	��������!���!����
������!��
������!
��
��������	��
��!��	�����
!�
�����

����������������
���
��
����	����
�����	�����*��
��� 	��� �����!	� ����*���!	� ���	�� �� �� ��) �� ����
����!	� ����	��
��� �
��!
�� �
� !���	� ��� 	���
��������� �����	��
��� ��������� ���������� ���
�
�
���
��� ��� 	����� �����
	����� ��� 	���
����!
	�����
'
!��!���	� ��������	��� � �
�!�����!
	���� �
!	���
��� 	����� ������§� �������� �������
��� !�����(��
������ ������ ����� !
����
	������� 	���������� ��) �
����	��	����
!������
	
��

�
622

¨� 8�������	�����
���������������	
������	��
!!���	�	����(����
	����
��� ��������	�
�!��	�!	����� ��� 	��� � �	���
���
����
	���� !��!��	���+���
�� � 	���� ��� ��	� �������
�����
��������!��������	��
	������

�	� �	���*���
�������!	� ��*�� 	��� #��!	�������	��
�������!����������������������
�
��
�����

�	���	����!���
���	����¡��!
���#
!	�����'
!������
��!������
� �
���� 	�
	� ����� ���
� ��
�� �������
!�������������	��	����
����������!��	����
!	������
�����!	� 	�
	� ��� ����������������� �����
!����������

��� ��(� �
������ ¾�� �����������+����
��� £�����
¾�� �£����
���'(�
�£������!
���#
!	����
��� 	���
�����������
�� ��!����	��#�'�$�

�	� 	
���� ��	��
!!���	� 	��� �(������!�� ��� 	���
���
��*
	���� ��� 	��� ����������	� ��� 	���� 	 ���
���
����!
	������

¨� #��(�����	 ����	�������������	�##�'.$�
�	� 	
���� ��	��
!!���	� 	��� ������	 � ��� 	���
��&�������	��
��� 	��� !���	�
��	�����������	��
	��� ��������� ����� 	�� � ����	�	�	�� 	���
�*�*�*�-������������	���������

,� ��!��	�!	����Î����������	����#�'��$�
�	� 	
���� ��	��
!!���	� 	��� ��
������ 	
���� ����
	�������	��������������

ª� ��
�����������#�'��$�
�	� �����!	�� 	��� !��������
��� � �!�����*
	����
�����!��	���� ��� 	��� ����� �����!
	��� ��� 	���
�����!	�� ���� 	�� �	�� �������� ���!����!��
���
����!	������ ������
���� ������� !��	�������
�������������
��	��
�!��	�
����	!��

¡� ��!�������
	���	 �#���$��
����� �
!	��� 	
���� ��	��
!!���	� 	��� �
	���	 �
��������� 	������
��*
	�������!��������������!��
�	� �	���*��� 	��� ����� ������� �!
��� ��� 	��� ����
#�
�
����	 � �
	���	 � �����$� ���������� � �
�'�� #���	�
��� '����������� ���	�	�	�$� ��� 	���
�
��������������"�������	 ��

#��	��������� 	���� ���� ������ �	���*��� ¢� '����	�
���	�������� ���!�� ��!�����
� ��
�� ������� 	
�����
	��� �
���� ��	��
!!���	����� ��(� ������� #¾�� ������
�����+����
���£�����¾�� �£����
���'(�
�£���$��
������!�� 	������	������� ��� ��!
	��� ���� 	����	������
�����!	�� ���� �����	� ���	�������� �
���� 	
���� ���
!
����
	�����������	���!
����
	��������	����	��������
���� 	��� ��	� æ� ��!��	�!	���� ������ #"�����'�
�··¢$������
�������	�����������������!��	�
����
�� ����������
�
����	 �#'��$�
¨� ����
����	 �
��� !�����(�	 � ��� 	��� �����!	�

#�'�0$�
,� ��������&������#�"�'$�
ª� �
	����������!��	 �#��#$�
¡� ����������(������!��#�'.$�
¬� #
!���	����##���$�
¢� �!�������#��'�$��

,� #���F�3
���	��
	�
����� ���� ������ !
�� ��� �	���*��� ����� 	��� �����
������ ������� �
�� ����� !�����	���
��� ����� ���
�
��� ��	� ��	
����� ������
	���� ��� 	���������
����

�� �	�� �
��� ������	�� 	��� ���	�
���
�!��	�!	���� ���
����� ��������
��� ��	
��������� �	�
������ �
�����
��	��
	����� ���� 	��� �����! !��� ��	��������������	�

��� �	� ���
�� �(������� ��� 	��� �*�*�*� -��
��	������
	�� ������� �	� �	���*��� #��!	���� ���	��

���Î��������!����������������
��
������	�����	���
�����!	� ��*�� �
�
��	���� �	� �	���*���
� ��	� ��� �����
�!
��� �
!	������&�
��� ��� �	��!��!��	�
�� �����
	����
	�� 	��� ��������� � ����� ����� ��� 	��� ���	�
�� �������
�����������
��������	���������	����	����������
!��
������	��
� �
���������(��&�
�� ��������
���
�� 	���
���������� ���� 	��� ���	�
�������������������� ������
���������� �
�� �����!
����
	������
��¬�������!	��
�
	
�
��� !�������� ��� 	��� !�����!�
�� �����	� ��

�����
!��� ���������	
��
��� ���������	�
���
��*
	����§� ������
� �
 ���
��
����(��
	����
�¡ �� ���� �������� ��� !��	�
��� �������� ��� 	���
���������������!
	���������
�� ����!	�

�� ���	�
�����&����������
����	 �#�'�0$�
¨� �
	
�
�����*��#���'$�
,� ����!	�!�����(�	 �#��.$�
ª� ��������&������#�"�'$�
¡� ������������!����	
	����#�*�"$�

¨� �
	�����
¬� ����	����!���	�
��	��#���'$�
¢� �
����	����!���	�
��	��#��*�$�
-� �
	��������
	���	 �#¾*�$�

,� �	
���
·� ��
� �	��
�	�	����#���$�
�)�����
������
�	�	����#��$�
���'(������!�� ��� 	��� �����
��
����!
	�����

����������	�#�'.$�
�¨�'(������!�� ��� 	��� ��
	����� ����������	�

#'.$�
�,�'(������!�� ��	�� 	��� �
���
���
��� 	����

#�'.$�
�ª����������!��	����	 �#�*+$�

ª� ����!	�
�¡����	�
���	�����"	���*
	����#�**�$�
�¬����	�������	������������	��#���'$�
�¢�+�!���
� �	������������������	�#��'�$�

�*�*�*��������������
�������	��������������&�
	�����
����'����	�
�������������	�������

*���
%� 	�.������!�"#� � $%&'()���!� ������)� #�,$�

¥����� 	� ��������	�� 	��� �����	���
������ ��� ���� �� 	���
��*�������*��������
�����
���!���	
�	���
����������	����
����
��� 	������������� !��	� &���� ��� �&�
�� 	�� ¢� ��� 	�����������
� �
�����������������
����¢� ������	�æ�
�!��	�!	�����
��� �*����
	����!
����
!	������

623

,	�	�����
���	%� �.����+,��"+,-��.�,+�����/0123�4�++ 5� #�ª$�

¥��������������	��	���	����������	����	���������	��	���
�����	���
������ ��������� ���
�!���	
�	�
���$1*,� ��� 	���
�����	����	���������������������������������	��

,�A������

��������!�
���
�������	�������������16#�6�	�
	�!�����
����� �*��
	���� ����
������ �*����� �	� �
�� ����	� 	����
��������������·-ª�� �����
�	�
����������¨ ��

����������������
������������	��
��
�����	�����*�����	���
�����!	�	���������������
���	�����
�������	����	���	�
��
��*��	�
	����������	��������!	���	�����
�������	�������������
�&�
	��������'����	��

	�.���-�����-�� �!�� #�¡$�

¥����� 	� ��������	�� 	���'����	���
������ ��� ���� �� 	���
��*�����	����
���������*�����������
�����
���!���	
�	���
���
�����	���
���
�����*�����	�������������	�	�
���

3��&*�)"� &*��

��� 	���� �
����� ��� �
��� ������	���
� ������� ��� 	���
���	�
��������!	������	���	��
	������	����� 	�
	��
��������
����������
!�����	������	�
������������������	�� ���
��� �
��!����� ��� 	��� �����	� ��	��
	���� ���� ����
���
	���
	�!
��
��������¥�	��	����������������
���	�����	�����������	�����
��	��
	����������� �
��� �������� ����� �	�� ��������
��� 	���
�
	���
	�!
�� �
���� 	�
	� �
��� ��������� ���� �	��
��������	
	�����

�
�����
� !��
�� ����� ��� ���� 	����� ��	��
	���� �������
�
���������
�����	�����
 �������	
�������
��������������

�������������	���!�����	������
������������!
���������	��

�
� *��	�����(��

����������	�
		���	��	��������
��������������
��������	����
���	�
� ����� � ��	���� 	��������	�
� !���������!
�� �����	����

!!������� 	�� 	��� ���� !�
�����!
	���� ��� ���	�
��� �����!	�
�����	� ��	��
	���� +��� ����
�� ������� ��	�� �����!�
��������
	���� 	�
	� ��� �
��� !��	����	���� �����������
��
��	����� ��������������
����	� ��� ��!������ ���������� 	�� 	���
����������������!���
����������������������
��
��� 	�
	�
�
��� ���� 	��
� ���
	� ��������� ��� 	��� ����������	� ��� 	���
���!������ ��� �����	� ��	��
	���� ��� 	��� ���	�
��� �����!	�
��
���������!�����

��8*&4)#+!#%#*��

¥�� ������ ����� 	�� 	�
��� 	��� "�������	 � ��� ��!
�ñ� ����
������	���� 	���� ����
�!�� #����� ����
�!����� ������	�
�����
���$��

�

�

	#'#�#*�#��

�� � �
������ ���� ®
����
��� ���
��� ®��
��� ���� ���
'�����!
�� ���	� ���*���!	��
����*�	��	� ��
�������	�
��	��!�� ���
� �����	��� ������ ���	�
��� '�����������
#���'$� '���������	�� ��� 9��
���� ��� �����	�	��
8���
������$��	����··ª���

�¨ ��
 ����� ���
����
������¾�������	
������� �������	�
���
����������	� ������!�� '(�����	������ ��� #
��		������
��� �	� D���� 8�	
�������� 1���	
	��	� ��� $����
	�
*����		
�����#�·-�$�������)¢���¬��

�, ������������$����
	�*����		
����*����������'��	���
��
���	�!��£
�����·-���

�ª � ������� ���� ��
���� ���� £�����	*�� '��� �
�
!� �� ����
���� �� ���
��� ¥��	�
���� ���� ���	� ������ ���� #�	����
���	�
��� ����� � !��� ��!������� �*�*�*� ¨�)�� ���
3������ ��� $����
	� *����		
���� $�	����� G����	� ���
$����
	�#
��	�������#
������	���
	�	���'���������
��	����������£��� �
���������
�	*����'��	���\��!���!��
��������������	���
��#£���
��$��#�··¡$��¾�������

�¡ � ����
���� ���� ������� ���
��� �	��!��� ���� �
����
	����
���	�
��� ���	� ������� "����� �
 ���
�� ��
� ����� '��
�	��������(��
�4$1�1$*�?A�@<A��#�··-$��

�¬ ����	��������������������£��'���������¾��0���$����
	�
*����		
���� �	
���� ���� ���	���� ����
���� Î�
���������������!��������
�����·-¬��

�¢ � ��
��
���\
������� ��� ���� �	����� ��� '�	��
!�ó�� ���
�� �!	������	�
�������410���(�1$�7<<<�<=�¾�������
'�������������ñ	�!
�"�,���#��
��$��¨)))��

�- � £����� ���� ��	
��� ���� �������� ¥��
��� �	��
�	�� ®���
���	�
��� ���	� '�	��
	���� �	�� � æ� �	�� � �����	��� ���
D����� �	�������� (��
�� (3,1��(�BB�77<�� '��� ��	 �
����!�
	������!����·¢¢��

�· ��
����������������	�
������	�'�	��
	������	������� ��
��� 8**�#
��		���������+�������3	
�����	�*�	�
�����
1���	
	��	��#�··¢$�����¨¨�¨-��

��) �®
����
������
���®��
�����%����	������*��������
*;�	
��	� ��� 6�&	�� C��	�� 813$*� *���
���	����
'��	���
���	�����!����������������������	��+���0����
"�������	 ���
��
� ��··,���

��� � �
�
!��� ����
��� ��	������� ���� '�	��
	���� �����	���
��&�������	��
��� ���	�
��� ����������	� ���	��� ���
(��=AB0��'����\����
������
�!��������
	������·¢ª��

��¨ �����
�	����� �������¾��������
� 	�!�������!��������
���� �
�����!
��� ���	�
��� ����������	�� ��� 8���� #
����
�����	�	���¨)�#��¨$��#�·-ª$��

��, � ¥
��	���� ���
��� #���(�� ���� #�$� �� ��	���� ���
�����
������ ��
�������	�
��� '�	��
	����� ��� 8C��
$��	��9��
������¬��#�$��#�·¢¢������¡ª�¢,��#¨$���	���ò��
���������� ��� 8C��$��	��9��
������¬� #ª$��#�·¢¢$������
ª¨¨�ª¨,���

624

Software Estimation: Universal Models or Multiple Models?

Alain Abran1, Juan Jose Cuadrado Gallego2
1École de Technologies supérieure – Université du Québec, Montréal, Canada

alain.abran@etsmtl.ca
2Universidad de Alcalà de Henarès, Madrid Spain jjcg@uah.es

Abstract. In the field, there is a very large diversity of
development processes in use, and various mixes of costs
drivers, each with a different impact depending on the
context. The classical approach to building estimation
models in software engineering is to build a single
estimation model and include within it as many cost factors
(i.e. independent variables) as possible. In this paper, we do
not postulate that there exists a single estimation model that
is ideal in all circumstances, but rather we report on
exploratory research conducted over the past few years
looking at relevant concepts from the field of economics
and from discussions with organizations attempting to
understand the data that they have collected on their
projects. The purpose of exploratory research is not to
demonstrate a hypothesis, but to identify new potentially
relevant concepts to develop hypotheses to be tested later
on with empirical or experimental data.

Categories and Subject Descriptors
D2.9 [Management]: Productivity

General Terms
Measurement

Keywords
Process measurement, Productivity measurement, Estimation

1. INTRODUCTION
The classical approach to building estimation models in
software engineering is to build a single estimation model
and include within it as many cost factors (i.e. independent
variables) as possible.

A- Model based on completed projects: When the
builders of estimation models have access to a reasonable
set of completed projects, they typically attempt to build a
single model for all of these projects which takes into
account the largest possible number of the variables
included in their data repository. This approach is best
illustrated with the design of the COCOMO models [1-3],
containing a large number of cost drivers, with:
• the authors’ own definition of these cost drivers,
• the authors’ own measurement rules for these cost

drivers and their own assignment of impact factors for
each of them.

This, of course, leads to complex models with a large
number of variables, but seldom with enough data points
for meaningful statistical analysis or the confidence that

such models can be used in environments other than the one
for which they were developed initially.

B- Models based on opinions: Another approach is to
build models based on the authors’ opinions about the
variables and their estimation of the impact on a model’s
behavior. With such an approach, it is very easy to come up
with any number of new cost drivers: being based on
opinion only, there is no cost for data collection and
analysis. This can be observed in some of the ‘use case
points’-based models [4-7]. Furthermore, for many of such
models – some available free from the web, there has not
even been any attempt to demonstrate how well they
perform, even within the context in which they were built.

Models built without data (or with not enough data) and
those that include many opinion-based cost drivers (i.e.
independent variables) lead the managers to believe that the
majority of the important costs drivers have been duly taken
into account by the models: the managers are then led to
believe that, by using these models, they reduce the risks
inherent in estimation. This makes them feel good, but
falsely so, since such models are not supported by empirical
evidence, and their limitations have not been documented.
Moreover, lured by that ‘feel good’ potential, managers
may find themselves dealing with even more uncertainty.

Over the past 30 years of research on software project
estimation, expert practitioners and researchers have come
up with many models with different mixes of cost drivers,
but with little commonality, and to date most of them have
not been generalized to contexts other than the one on
which they were based.

In this paper, we report on exploratory research conducted
over the past few years looking at relevant concepts from
the field of economics and from discussions with
organizations attempting to understand the data that they
have collected on their projects. The purpose of exploratory
research is not to demonstrate a hypothesis, but to identify
new potentially relevant concepts to develop hypotheses to
be tested later on with empirical or experimental data.

This paper is organized as follows. Section 2 presents a few
economics concepts used to model a production process,
and corresponding characteristics that may be relevant to
build multiple models and interpret them. Section 3

625

presents next an approach to build distinct models by size
ranges.

In this paper, we do not postulate that there exists a single
estimation model that can be considered ideal in all
circumstances. Rather, we look for concepts and
approaches which could contribute to the identification of
distinct models corresponding to distinct production
processes.

2. PRODUCTION MODELS: SOME
CHARACTERISTICS
2.1 A production process
How can the performance of a development process be
estimated in the future if its current and past performance,
and the variations in that performance, are not known?
• What is a development process?
• How is its performance determined?
• How can a development process be modeled to build

estimation models?

A development process can be modeled as a production
process: this can be illustrated in its most simplified form
with three main components – see Figure 1: Inputs,
Activities within the process itself (in software, this
corresponds to the development life cycle selected and
implemented), and Outputs (the software itself and the
environment in which it will be executed).

 Figure 1: A production process

The inputs to a production can typically be classified into
three groups:
1- The objectives for a specific production run: In

software engineering, this corresponds to the objectives
of the software development project. These objectives
are often stated in terms of functional requirements and
non functional requirements for the software to be
delivered, as well as in terms of the project priorities
(costs, quality, duration).

2- The human resources to be made available for the
development process, that is, the staff who will be
available to work on the development project and carry
out all the tasks of the sub processes within the

process. These inputs are typically measured in work-
hours (or person-days/-weeks/-months).

3- Any other non human resources available for carrying
out the tasks, such as the technical environment,
including the hardware-software platform, the tools,
the methodologies, etc.

2.2 Productions models with fixed and variable
costs
A production model is typically built with data from
projects completed, that is, when:
• all the information on a project is available;
• there is no more uncertainty on either the inputs or the

outputs: all the software functions have been delivered;
and

• all the hours worked on the project have been
accurately entered into a time reporting system.

The points on the graph in Figure 2 represent, then, the
number of hours it took to deliver the corresponding
functional size of the projects completed.
• The x axis represents the functional size of the software

projects completed;
• The y axis represents the effort in number of hours that

it took to deliver a software project.

The straight line across Figure 2 represents a statistical
model of the production process and is based on the
performance of past projects.

This linear model models the relationship between effort
and size, and is represented by the following formula:
Y (effort in hours) = f(x) = a x Size + b where:
• Size = number of Function Points (FP)
• a = variable cost = number of hours per Function Point

(hours/FP)
• b = fixed cost in hours

In terms of units, this equation then gives:

Y (hours) = (hours/FP) x FP + hours = hours

In a production process, there are typically two major types
of costs incurred to produce different sets of the same types
of outputs:
Fixed costs: the portion of the resources expended (i.e.
inputs) that does not depend on the number of outputs. In
Figure 2, this corresponds to b, the constant in hours at the
origin when size = 0.
• Example of a fixed cost: at x = 0, b represents the fixed

cost of this production process (i.e. in this organization,
a cost of b hours of project effort is required to set up
and manage a project independently of its size).

Variable costs: the portion of the resources expended (i.e.
inputs) that depends directly on the number of outputs
produced. In Figure 2, this corresponds to the slope of the
model, that is: slope = a in terms of hours per function point

626

(that is, the number of work hours required to produce an
additional unit of output, that is, the independent variable
x).

Effort (in hours)

Size (in Function Points)

b

a

Figure 2: Production model: fixed & variable costs

2.3 Wedge-shaped datasets
A graphical representation of project datasets in software
engineering typically has the wedge-shape distribution
illustrated in Figure 3 [8-9]. It can be observed in this figure
that, as the project effort increases on the x axis, there is a
corresponding larger dispersion of the data points across the
vertical axis: for projects of similar effort, there are
increasingly wide variations of project duration on the y
axis as the project effort increases. This is often referred to
as a wedge-shaped dataset. This had initially been observed
by [10-11], and it is typical of most data subsets built with
data from large repositories (such as illustrated in [8].

D
U

R
A

T
IO

N

0

10

20

30

40

50

60

70

80

0 20000 40000 60000 80000 100000

EFFORT
Figure 3: Example of a wedge-shaped dataset [8].

2.4 Low & high sensitivity to functional size:
multiple models?
In production processes, there might be ones where:
• 1 additional unit of output requires exactly 1 additional

unit of input,
• 1 additional unit of output requires less than one

addition unit of input, and
• 1 additional unit of output requires more than one

additional unit of input.
When the increase in output units requires a
correspondingly smaller increase in the number of input
units, the production process is said to have lower

sensitivity to size: the larger the number of units produced,
the more productive the production process.

By contrast, when an increase in output units requires a
larger increase in the number of units for each additional
output, then the production process is said to have high
sensitivity to size: for each additional unit produced, the
less productive the production.

Let us revisit the typical pattern of wedge-shaped datasets
of software projects – see Figures 3 and 4. When looked at
with the analytical grid of the concepts of low and high
sensitivity to size, this single wedge-shaped dataset can be
decomposed into three subsets, as follows – see Figure 4:
• Zone 1: The lower part of the wedge-shaped dataset.

This lower part represents the set of projects
demonstrating little sensitivity to increases in size:
indeed, for this subset, even large increases in size do
not lead to noticeably correspondingly large increases
in effort. In practice, it is as if, in this subset, the effort
required is almost insensitive to an increase in the
number of functions in the software being developed.

• Zone 3: The upper part of the wedge-shaped dataset.
This upper part represents the set of projects
demonstrating high sensitivity with respect to
functional size as the independent variable (that is, a
small increase in size requires a much larger increase in
effort – in either fixed or variable costs, or both).

• Zone 2: Finally, there is sometimes a third dataset that
is somewhere in the middle range of the wedge-shaped
dataset

Figure 4: Wedge-shaped dataset with distinct
sensitivities to functional size

This leads, then, to three distinct production models (often
referred to as ‘estimation models’ in the software
engineering literature):

f1(x) = a1*x + b1, which corresponds to a data sample
in zone 1.

Size (in Function Points)

a3

a2

a1
b3

b2

Effort (in hours)

b1

ZONE 3

ZONE 2

ZONE 1

627

f2(x) = a2*x + b2, which corresponds to a data sample
in zone 2.

f3(x) = a3*x + b3, which corresponds to a data sample
in zone 3.

Each of these 3 models has its own slope (the ai), as well as
its own fixed costs bi. The next question is, of course, what
causes these different behaviors?

Of course, the answer cannot be found by graphical
analysis alone, as there is only a single independent
variable in a two-dimensional graph. This single variable
does not provide, by itself, any information about the other
variables, or about similar or distinct characteristics of the
completed projects for which data are available.

However, the projects included within each subset can be
identified nominally by the organizations having collected
such data [9]. Each project within each subset should next
be analyzed to figure out:
• which of their characteristics (or cost drivers) have

similar values within the same subset; and
• which characteristics have very dissimilar values

across the 2 (or 3) subsets.

Of course, some of these values can be categories (on a
‘nominal’ scale type: for example, a specific Data Base
Management System (DBMS) has been used for a subset of
projects, etc.).

The ability to discover the different values of such
characteristics can then be used to characterize such
datasets, and to set the parameters for selecting which of
these three production models to use later on for estimation
purposes.

3. DISTINCT MODELS BY SIZE RANGE
We have often observed in organizations measuring the size
of their projects the following:
- a large number of small projects, a smaller number of

medium size projects and, in comparison, few much
larger projects [12].

- a lightweight development process for small projects, a
very heavyweight development process for very large
projects and a tailored process for the medium-size
projects.

Notwithstanding this, the usual approach in software
engineering is to look for a single model across all the size
ranges. An alternative approach is to build estimation
models by segregating the available dataset into ranges of
project sizes when an organization has different processes
by size ranges.

When such information about the organizational processes
is not known, a similar analysis can be done by segregating

by the data set by density distributions in contrast to the
general practice of building a single model for the whole
range of data points [13]. Indeed, a single model across the
full range is not a strict requirement of the statistical
techniques used to build such models; if this is the case,
users should beware, since the levels of confidence may
vary across the ranges when the data is not normally
distributed)..

These concepts are illustrated in Figure 5 with an
exemplary data set with a large number of small projects
(e.g. fewer than 100 CPF), while there are only a few
projects in the much wider interval for large projects. Of
course, a single estimation model can be built with this full
dataset. However, another approach would be to build
multiple regression models representative of the density of
the data points that can be identified graphically [13].

�

���

���

���

���

���

���

	��

��

���

����

� ��� ���� ����

Figure 5: Dispersion of data points

For example, in Figure 5, there are:
− about 20 small projects within the 15 to 150 FP range
− about 10 projects within the 200+ to 600 range
− only 3 projects within the 1,000 to 1,300 FP range

For this specific dataset, it would be much better to build
two estimation models, one for the very small projects
(Figure 6) and one for the mid-range projects (Figure 7),
and to consider the 3 largest projects as an analogy base
without statistical strength. This would be preferable to
building a single estimation model over such a large range
of projects with distinct project densities, and more
representative of the projects themselves.

For the small projects of this illustrative set of Figure 5, the
regression equation is (Figure 6) :
Effort = 1.01*FP +3 with an R2 of 0.87.

628

For these small projects, the fixed cost is low, that is = 3,
and the variable cost is close to 1.

For the mid-sized projects (within this illustrative dataset,
of course). the equation is (Figure 7):
Effort = 0.32*FP + 192 with an R2 of 0.59,
but with a much higher fixed cost of 192 and a lower slope
of 0.32, instead of the steeper variable cost of 1.01 for the
small projects. Also, with a slope of 0.32, it exhibits much
lower sensitivity to an increase in size within that size range
than much smaller projects.

���������

�
�
���
	

�

��

��

��

�

���

���

���

���

� �� ��� ���

Figure 6: Regression model for the 15 to 150 FP interval

������������

�������

�

���

���

���

���

���

� ��� ��� ���
��

�����
�

Figure 7: Regression model for the 200 to 600 FP
interval

For example, for the estimation of a small project of 50 FP,
equation A is highly preferable to the general equation:
• Equation A is built with small projects only, and is

therefore much more representative of the project being
estimated. Moreover, this equation is not influenced by
much larger projects.

For the estimation of a mid-range project of 500 FP,
equation B is preferable to the general equation:

• Equation B is built with mid-range projects only, and is
therefore much more representative of the one being
estimated. This equation is not influenced either by the
very small projects or by the much larger projects.
Caution must still be exercised, however, because of
the limited number of projects within that range to
build the estimation model for this range.

For the estimation of a very large project of 1000 FP, there
is no generalization significance to Equation B, although
these 3 data points can still be used for analogy purposes.

For purposes of comparison, the single model with the
single equation for the full dataset is presented in Figure 8.
For the full set of projects, the equation is Effort =
0.748*FP + 22 with an R2 of 0.967.

y = 0,748x + 22

R2 = 0,967

0

200

400

600

800

1000

1200

0 500 1000 1500

Figure 8: Model with the full dataset

While this model appears to have a better R2 of 0.967, it is
influenced too much by the three largest projects and is not
representative of the majority of much smaller projects;
therefore, calculation of the magnitude of the relative error
(MRE) would lead to a larger MRE for the model of the full
dataset, and smaller ones for the models per subset of
projects within the size intervals identified.

Also, for the full dataset, the normality distribution of the
data is not met, and its regression is correspondingly less
statistically meaningful. By contrast, within the two size
intervals identified, they would be closer to a normal
distribution – within their ranges, of course.

4. SUMMARY
In the field, there is a very large diversity of development
processes, and different mixes of costs drivers, each with a
different impact depending on context.

629

Over the past 30 years of research on software project
estimation, expert practitioners and researchers have come
up with different models with different mixes of cost
drivers, but with little commonality, and to date most of
them have not been generalized to contexts other than the
one on which they were based.

In this paper, we have reported on exploratory research
looking at relevant concepts from the economics field and
from discussions with organizations attempting to
understand the data they have collected on their projects.

The purpose of exploratory research is not to demonstrate a
hypothesis but to identify new potentially relevant concepts
to develop hypotheses to be tested later on with empirical
or experimental data.

In this paper, we did not postulate that there exists a single
estimation model that can be considered ideal in all
circumstances. Rather, we looked for concepts which could
contribute to the identification of distinct models
corresponding to distinct production processes.

For instance, section 2 presented a few economics concepts
used to model a production process, and corresponding
characteristics that may be relevant to software, such a
fixed and variables costs as well as production processes
with either low or high effort sensitivity to functional size.
Section 3 showed another approach to the identification of
distinct production models which may manifest themselves
across size ranges as organizations adjust project processes
as project size increases.

The authors are currently working in collaboration with
industrial organizations with datasets similar to the ones
discussed in this paper (wedge-shape and with different
density of size ranges). Research is in progress to test the
contributions of taking into account the various concepts
presented in this paper for developing distinct models for
the various processes identified by organizations.

Reference
[1] Boehm, B. W., Software Engineering Economics,

Englewood Cliffs, NJ, Prentice Hall, 1981.

[2] Boehm, B. W., Abts, C., Brown, A. W.,; Chulani, S.,
Clark B. K., Horowitz, E., Madachy, R., Reifer, D.,
and Steece, B., ‘Software Cost Estimation with
COCOMO II’, Prentice Hall, 2000.

[3] Jørgensen, M. and M. Shepperd,. "A Systematic Review
of Software Development Cost Estimation Studies",
IEEE Transactions on Software Engineering 2007, Vol.
33, no. 1, pp.: 33-53.

[4] Clemmons, Roy K., “Project Estimation With Use Case
Points,” Crosstalk, February 2006, pp. 18-22

[5] Mohagheghi, Parastoo, “Effort Estimation of Use Cases
for Incremental Large-Scale Software Development,”
IEEE International Conference on Software
Engineering – ICSE ’05, May 15-21, 2005, St.Louis,
MI, USA, pp. 303-311.

[6] Nageswaran, Suresh, “Test Effort Estimation Using Use
Case Points,” Quality Week 2001, San Francisco, CA,
USA, June 2001.

[7] Ouwerkerk, J., Abran, A.‚ Evaluation of the Design of
Use Case Points (UCP)’, MENSURA2006, Conference
Proceedings edited by the Publish Service of the
University of Cádiz www.uca.es/publicaciones Nov.
4-5, 2006, Cadiz (Spain), pp. 83-97.

[8] Bourque, P., Oligny, S., Abran, A., Fournier, B.,
‘Developing Project Duration Models in Software
Engineering’, Journal of Computer Science and
Technology, Vol. 22, no. 3, May 2007, pp. 348-357.

[9] Abran, I. Silva, L. Primera, "Field Studies Using
Functional Size Measurement in Building Estimation
Models for Software Maintenance," Journal of
Software Maintenance and Evolution: Research and
Practice, vol. 14, 2002, pp. 31-64.

[10] Kitchenham, B. A., Taylor, N. R., "Software Cost
Models," ICL Technical Journal, vol. 4, no. 1, May
1984, pp. 73-102.

[11] Kitchenham, B.A., Empirical studies of assumptions
that underlie software cost-estimation models.
Information and Software Technology 34(4):211-218
1992.

 [12] Lokan, C., ‘What Should you Optimize when building
an Estimation Model?’, IEEE International Software
Metrics Symposium – METRICS 2005, 2005.

[13] Abran, A., Ndiaye, I., Bourque, P., “Evaluation of a
Black-Box Estimation Tool: A Case Study,” In the
special issue: “Advances in Measurements for
Software Processes Assessment,” of the journal
Software Process Improvement and Practice, vol. 12,
no. 2, March-April 2007, pp. 199-218.

630

An Empirical Study of the Feedback of the In-process
Measurement in a Japanese Consortium-type

Software Project

Yoshiki Mitani1,2, Tomoko Matsumura2, Katsuro Inoue3, Mike Barker2,
Akito Monden2, Ken-ichi Matsumoto2

1Information Technology Promotion Agency, Japan/SEC (IPA/SEC), Tokyo, JAPAN, y-mitani@ipa.go.jp
2Nara Institute of Science and Technology (NAIST), Nara, JAPAN

{ymitani|tomoko-m|mbarker|akito-m|matumoto}@is.naist.jp
3Osaka Univ., Osaka, JAPAN, inoue@ist.osaka-u.ac.jp

ABSTRACT
Recent research has clarified the usefulness of in-process
measurement of a software development project. Past research
showed the need for technology to perform in-process
measurement of a software development project and utilize the
results. Research continues on methods of measurement, analysis,
visualization, and feedback of the results, suited to different
software development structures. In this paper, the authors present
an empirical study focused on requirements for feedback of
measurement results. Japanese industry generally uses a
hierarchical industrial structure to develop large information
systems. In such an environment, effective feedback of
measurement results requires different approaches from those that
apply to homogenous and flat development organizations. This
research illustrates conditions for effective feedback in a
hierarchically structured development organization based on
actual measurements.

Categories and Subject Descriptors
D.2.8 [Metrics]: Process Metrics, `Product Metrics, D2.9
[Management]: Productivity

General Terms
Measurement

Keywords
In-process measurement, Project management, Empirical study

1. INTRODUCTION
In-process measurement involves measurement, analysis, and
visualization of the state of an ongoing software development
project. Research efforts have shown that various technologies are
required for in-process measurement. Such research has focused
on the structure of the measurement system, the measurement
model, and use of case studies to prove the validity of the
measurements. [1]-[6] This research applied the Empirical Project
Monitor (EPM) and other tools and methods to a typical multi-
vendor medium-scale software development project. The authors
used interviews with key persons to evaluate the usefulness of in-
process measurement in project management and evaluation, and
to clarify the requirements for feedback of analysis and
visualization results.

This paper briefly summarizes the target project, measurement
tools and methods. The authors then discuss the results of project
measurement and feedback of project progress based on
interviews with key persons after the end of development.

2. BACKGROUND OF PROJECT
MEASUREMENT
2.1 Target Project
The selected target project is a Ministry of Economy, Trade and
Industry (METI) funded development of kernel software for an
experimental public information system that collects information
about traffic conditions and generates useful public information.
The project consortium consisted of seven companies, including
six major software development companies that are rivals in this
field. The project duration is two years, with a first phase of 10
months from basic design to integration test.

2.2 Measurement Tools
This project used the Empirical Project Monitor (EPM) and five
other measurement tools and methods to collect and analyze
process and product data.

1) Empirical Project Monitor measurement and analysis

EPM automatically gathered data from a configuration
management system, bug tracking system, and mailing list
management system. This process and product data was stored in
a relational database, with various analysis and reports available.
Figure 1 illustrates some EPM displays.

2) Review report collection

We used an electronic form to collect review reports.

3) Code clone analysis

A code clone is a similar code fragment in the source program.
The code clone distribution map displays a bird’s-eye view of
such fragments in the whole source program.

631

Fig.1. Empirical Project Monitor (EPM) Display Example

4) Benchmark database analysis using a collaborative filtering
tool

The project reported benchmark data using a 400 item data sheet
developed by IPA/SEC. A collaborative filtering tool identified
similar projects from a database of benchmark data from 1000
projects, allowing prediction of future project parameters based on
data from the similar projects. [7]

5) Checklist of items for collection of project context data

This research effort defined an interview checklist of 80 items
related to project context data.

6) Continuous participation in project meetings for the collection
of project context data

To collect project context data, some research staff attended all
the project meetings.

2.3 Structure of the Project Measurement
2.3.1 Logical View of Measurement Structure
The measurement structure combines a logical structure and the
hierarchical structure of the project. Figure 2 shows a logical view
of the overall measurement structure. In this logical view, the
Software Engineering Center (SEC) in collaboration with the
Empirical Approach to Software Engineering (EASE) project
collects data from the individual companies.

Fig.2. Logical Structure of Project Measurement

Source line of code transition

Check-in/out opportunity

Quantity of bug report

Mail quantity transition

Bug quantity transition

SRGM analysis

SLOC & Check-in timing Mail quantity
& Check-in timing

Bug quantity
& Check-in timing

Check-in/out timing
& Check-out frequency

Cumulated/
Remain-bug
& bug-MTTR

Cumulated bug
& SRGM curve

Source line of code transition

Check-in/out opportunity

Quantity of bug report

Mail quantity transition

Bug quantity transition

SRGM analysis

SLOC & Check-in timing Mail quantity
& Check-in timing

Bug quantity
& Check-in timing

Check-in/out timing
& Check-out frequency

Cumulated/
Remain-bug
& bug-MTTR

Cumulated bug
& SRGM curve

Consortium

Owner

A

B C D E F

PM

SEC/EASE

Company
Group

CVS/

GNATS

CVS/

GNATS

CVS/

GNATS
CVS/

GNATS

CVS/

GNATS

Measurement
Data

Feedback
Analyzed Data
to PM

Feedback
Analyzed Data
to Individual
Companies

Analysis Tools & Platform
CVS,GNATS,Mailman,EPM,
CCFinder
Benchmark DB+
Collaborative Filtering Tool

Management
Flow

632

The EASE project is a software engineering research project
involving both industry and academia. Having this independent
group collect the data ensured confidentiality to meet the
information privacy requirements of the companies in the
consortium.
Each development company uses a CVS server for code
management and GNATS server for bug tracking. They
periodically share the CVS and GNATS databases with SEC.

During the intercompany integration test phase, a common
GNATS server provides bug tracking.
SEC uses various analysis tools such as EPM and provides reports
back to the consortium. The SEC/EASE analysts provide the
project manager (PM) with overview or summary reports on the
project. They also provide individual reports to each development
company with details relevant to the company.

Fig.3 Physical Development Structure

2.3.2 Hierarchical View of Measurement Structure
The software industry in Japan has a complicated internal
organization involving a strong hierarchical structure. Figure 3
illustrates the overall actual development structure, and Table 1
shows five detailed parts of this structure.
The company groups labeled B to F have various structures for
their partner companies. Generally, the structures are confidential
except to the project owner, METI. For each group, companies B
to F act as main contractors for their own group and manage
everything inside their own company group. The main companies
contribute requirements definitions and basic designs to the
consortium and control intergroup issues. Within a group, there
are contracts and financial flows, with developers belonging to
specific companies. Quality assurance and product delivery are
controlled hierarchically with each group. Subsidiary companies'
locations and facilities are separate. The main companies B to F
take responsibility for shipping developed software to the owner.
These different structures have the following features:
1) There are two kinds of main companies. One has internal

software development (ex.B2-Bn,C1). The other does not
have internal software development (ex.B,C).

2) Generally main companies (ex.B,C) leave practical
development work and all responsibilities to their
subsidiaries(ex.B1,C1).

3) The development process in practice is segmented and
performed by individual small software companies using
specialized technology (ex.B2-Bn,C2-Cn).

4) The company groups used two different approaches to locate
the configuration management and bug tracking servers. One
approach located the servers at the practical development
company (ex.C1,D1). The other approach located the servers
at the upper management company that performed delivery
to the owner (ex.B1).

5) There are various physical relationships between the upper
management company and the practical development
companies. In one type, all workers on a project are
collocated and produce tightly connected products (ex.C,Ea).
In another type, while the physical locations are separated,
the work is still tightly connected (ex.D,Eb). And in a third
type, each company within the group works independently,
using periodic business meetings to manage and coordinate
the project (ex.B,F).

6) In manufacturing or factory type companies, the small
software development subsidiaries are not given access to the
CVS and GNATS servers of the upper management company,
physically located in a large factory (ex.B2-Bn,D1-Dn).

7) Some large companies have multiple business divisions, with
each division acting as an independent company (ex.E).

633

Table 1. Hierarchical Software Industry Structure Example

3. VERIFICATION OF USEFULNESS OF
the MEASUREMENT
3.1 Qualitative Estimation of Measurement
This kind of multivendor development structure generally
conceals the development process for each IT vendor until system
integration testing at the end of the development process. This
project used measurement to reveal the development processes to
the project owner and project manager. Measurement and analysis
revealed development process differences and allowed better
project management.

3.2 Analysis Based on Post-Process Interview
of Key Persons in the Project
The general features of the target project are similar to many
government procurement projects in Japan. In particular, several

major IT vendors cooperated on the software development in a
hierarchical structure with several work areas.

The following section evaluates project measurement and
feedback based on interviews with key project personnel.

3.2.1 Features of the structure of the target project
The consortium developed and managed the specification. METI
provided development funding directly to each consortium
company. While one company provided project management,
human resource management and financial control were handled
independently by each company.

In the consortium organization, six companies perform
development. One of these six also was the project manager. A
seventh company, the automobile company, played the role of
system user.

Company C acts
as group PM and
develops software
with group
software company
C1 and partner
companies C2 to
Cn in a unified
structure.
CVS, GNATS
server and
development
environment are
run by company
C1.

Group company B1
acts as group PM
and runs CVS,
GNATS and total test
environment.
Partner companies

B2 to Bn develop
software. Developed
software is gathered
by B1.
Companies B2 to Bn
cannot access the
server inside B1 by
security policy.
Companies B2 to Bn
are rather small and
there is no CVS and
GNATS server

C,C1B1

C1B1

CBGroup

Company C acts
as group PM and
develops software
with group
software company
C1 and partner
companies C2 to
Cn in a unified
structure.
CVS, GNATS
server and
development
environment are
run by company
C1.

Group company B1
acts as group PM
and runs CVS,
GNATS and total test
environment.
Partner companies

B2 to Bn develop
software. Developed
software is gathered
by B1.
Companies B2 to Bn
cannot access the
server inside B1 by
security policy.
Companies B2 to Bn
are rather small and
there is no CVS and
GNATS server

C,C1B1

C1B1

CBGroup

B

B1

B2-Bn

no CVS
no GNATS

C

C1

C2-Cn
no
server
access

Hierarchical
Development
Structure

CVS/GNATS
source

Feedback
target

Hierarchy
Outline

Group software
company F1 acts
as group PM and
develops with
partner
companies F2 to
Fn. CVS, GNATS
and development
environment are
run by companies
F2 to Fn. There is
no development
environment in
company F1.

Company E is
separated into two
divisions. Each
division develops a
part. Division Ea acts
as PM of Ea group
and develops
software with partner
companies Ea1 to
Ean. CVS and
GNATS server and
development
environment are run
by Ea. Eb acts as PM
of Eb group and
develops with group
software company
Eb1 and partner
companies Eb2 to
Ebn. CVS, GNATS
and development
environment are run
by Eb1.

Group software
company D1 acts
as group PM and
develops software
with partner
companies D2 to
Dn.
CVS, GNATS
server and
development
environment are
run in D1 as group
common
environment.
Company D1

cannot access
company D’s
server by security
policy.

FEa,EbD,D1

F2-->F1,Fn-->F1Ea,Eb1-->EbD1

FED

Group software
company F1 acts
as group PM and
develops with
partner
companies F2 to
Fn. CVS, GNATS
and development
environment are
run by companies
F2 to Fn. There is
no development
environment in
company F1.

Company E is
separated into two
divisions. Each
division develops a
part. Division Ea acts
as PM of Ea group
and develops
software with partner
companies Ea1 to
Ean. CVS and
GNATS server and
development
environment are run
by Ea. Eb acts as PM
of Eb group and
develops with group
software company
Eb1 and partner
companies Eb2 to
Ebn. CVS, GNATS
and development
environment are run
by Eb1.

Group software
company D1 acts
as group PM and
develops software
with partner
companies D2 to
Dn.
CVS, GNATS
server and
development
environment are
run in D1 as group
common
environment.
Company D1

cannot access
company D’s
server by security
policy.

FEa,EbD,D1

F2-->F1,Fn-->F1Ea,Eb1-->EbD1

FED

D

D1

D2-Dn

Ea
(Div.)

Ea1-Ean

Eb1

Eb2-Ebn

F1

F2 Fn

no
server
access

Eb
(Div.)

634

Each development company developed their part of the system
independently, providing developed parts to the integration test
environment. Since there is no main contractor, access to
development management information in other companies is
limited. While requirements definition, basic design, and common
interfaces in the detailed design are shared, most of the detailed
design, program size, and source code are confidential.

3.2.2 Analysis of feedback usefulness
After successful completion of the project, key project personnel
were interviewed concerning the usefulness of measurement and
feedback. Table 2 shows the outline of these opinions.

There were about 60 persons engaged in this project. The
interviews indicated the following eight positions in the project
structure:

1) Project Owner

2) Person responsible for target system

3) General Project Manager for system development

4) Project leader for each subsystem (project management inside
development companies)

5) Subsystem development leader who does not see development
field. Trusted capabilities of lower organizations and left all
management to them.

6) Subsystem development leader willing to see development field,
but unable to do so. Insufficient time available to see work of
individual development teams.

7) Subsystem development leader who could see development
field, with resources to manage development teams.

8) Actual program development personnel

Table 2 indicates differing effects based on position. Opinions
from interviews of key personnel support the usefulness of this
project measurement and feedback approach. Selection and
tailoring of feedback information to match positions and
information needs is an important future issue identified in these
interviews.

3.2.3 Interpretation of Results
The measurement process used in this project provided automated
data collection across the members of the consortium and
aggregation through a trusted third-party (SEC/EASE). Analysis
results were then made available through a semi-automated
feedback process involving customization and selection from the
many analyses and graphics available. At least three factors
strongly influenced the selection of information that was useful
feedback.
First, the level of the individual strongly influenced the amount of
aggregation or detail desired. The project owner, responsible
person, and general project manager wanted bird's-eye views of
the entire project. Project and subsystem leaders were more
focused on their specific company or subsystem details, and at
least in some cases, were not even interested in details from
subsidiaries. Finally, the project development personnel typically

were most interested in details related to their own specific part of
the work.
Second, related to this is the limited time and resources available
to different individuals in the hierarchical structure to absorb and
understand the analysis results. Even if additional details are
available despite concerns for confidentiality and corporate
privacy, often individuals do not have time to consider them. This
emphasizes the need to provide the right information in feedback.
Third, the goals of the individuals differ significantly, which
shapes the kind of information and analyses that are desired. For
example, program development personnel are mostly interested in
seeing how effective they are at their work. Subsystem
development leaders and individual company project leaders are
mostly interested in seeing the rate of completion and any trouble
spots in their process. The highest levels again are focused on
making the entire project across the different companies run
smoothly and deliver.
The key finding of this study, then, concerns the need for
customization and selection of feedback to match the various
positions within the hierarchical structure of the software
consortium. It is necessary to collaborate closely with the software
development organizations to understand the roles and positions,
and to tailor the delivery of feedback to best support those
different parts of the organizations. Figure 4 shows this.

Fig.4 Data Collection, Analysis and Feedback Cycle

4. CONCLUSIONS
This research showed the effectiveness of in-process project
measurement and feedback in a governmental consortium-type
software project. The research suggests a new viewpoint on
process improvement and innovation. Specifically, software
development organizations may not be simple flat organizations
composed of an owner, project manager, and development
persons. Instead, they may have various ad hoc, complicated
hierarchical structures. Efficient measurement and feedback
mechanisms for projects must reflect this complexity of structure.
The research was useful in obtaining a wide viewpoint concerning
issues with measurement and feedback.

635

Table2. Opinions of Project Individuals

Position Opinions
o affirmative x negative + others

Future Plans

Project owner o satisfied with project success
o satisfied with development process

Planning next project
Wishes to continue research

Person responsible for target system o welcomed lack of software issues Planning application of software
General Project Manager o appreciated early feedback and visibility, esp.

EPM
x individual analysis tools immature, need
development
+ has suggestion for feedback information

Wants to try on another new project
Wishes to exploit pressure on software
developers of visual presentation of their
work

Project leader for each subsystem o welcomed lack of software issues
o had positive evaluation report about software
engineering research from developers

Introduce tools and methods experienced in
research into own company

Join another extended software engineering
project with IPA/SEC

Start new joint project with EASE

Subsystem development leader who
doesn't see development

o satisfied with project success
o unable to evaluate software engineering
research

Subsystem development leader willing,
but unable to see development

o information feedback useful for project
management
o project monitoring tools like EPM especially
effective

Subsystem development leader who
could see development

o individual analysis tools more welcome than
monitoring tools
x some tools need development

Actual project development personnel o strongly supported visualization of
development
o positive effects on rewarding work

reported positive response to upper
management

5. ACKNOWLEDGMENTS
This work is supported by IPA/SEC, METI and the MEXT of
Japan. We thank researchers in the SEC and EASE & StagE
projects who kindly support our project.

6. REFERENCES
[1] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura,

Satoshi Iwamura, Mike Barker, Ken-ichi Matsumoto, An
empirical trial of multi-dimensional in-process measurement
and feedback on a governmental multi-vendor software
project. International Symposium on Empirical Software
Engineering (ISESE) 2005, Vol.2, Noosa Heads, Australia,
Nov (2005) pp.5-8

[2] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura,
Satoshi Iwamura, Yoshiki Higo, Katsuro Inoue, Mike Barker,
Ken-ichi Matsumoto: Effect of Software Industry Structure
on a Research Framework for Empirical Software
Engineering, International Conference on Software
Engineering (ICSE)2006, Far East Experience Track, Poster
Session, Shanghai, China, May (2006) pp.616-619

[3] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura,
Naoki Ohsugi, Akito Monden, Yoshiki Higo, Katsuro Inoue,
Mike Barker, and Ken-ichi Matsumoto: A Proposal for
Analysis and Prediction for Software Projects using

Collaborative Filtering, In-Process Measurements and a
Benchmarking, International Conference on Software
Process and Product Measurement (MENSURA)2006, ,
Cadiz, Spain, November (2006) pp.98-107

[4] Philip M Johnson: Requirement and Design Trade-offs in
Hackystat: An In-Process Software Engineering
Measurement and Analysis System. International Symposium
on Empirical Software Engineering and Measurement
(ESEM) 2007, Madrid, Spain, (2007), pp.81-90

[5] M. Ciolkowski, J. Heidrich, F. Simon, M. Radicke:
Empirical Results from Using Custom-Made Software
Project Control Centers in Industrial Environments,
International Symposium on Empirical Software Engineering
and Measurement (ESEM) 2008, Kaiserslautern, Germany,
(2008), pp.243-252

[6] Alberto Colombo, Ernesto Damiani, Fulvio Frati, Sergio
Oltolina, Karl Reed, Gabriele Ruffatti : The Use of a Meta-
Model to Support Multi-Project Process Measurement, Asia-
Pacific Software Engineering Conferencr (APSEC) 2008,
Beijing, China, (2008), pp.503-510

[7] N.Ohsugi, A.Monden, S.Morisaki: Collaborative Filtering
Approach for Software Function Discovery: International
Symposium on Empirical Software Engineering (ISESE)
2002, vol.2, Nara, Japan (2002) pp.45-46

636

Prest: An Intelligent Software Metrics Extraction, Analysis and Defect
Prediction Tool

Ekrem Kocagüneli1�����������1�����������1, Burak Turhan2���������������1

1Software Research Laboratory (Softlab), Computer Engineering Department, ����	
�
�
University, Turkey

2National Research Council (NRC), Canada
ekrem.kocaguneli@boun.edu.tr, ayse.tosun@boun.edu.tr, bener@boun.edu.tr,

Burak.Turhan@nrc-cnrc.gc.ca, bora.caglayan@boun.edu.tr

Abstract

Test managers use intelligent predictors to increase
testing efficiency and to decide on when to stop testing.
However, those predictors would be impractical to use
in an industry setting, unless measurement and
prediction processes are automated. Prest as an open
source tool aims to address this problem. Compared to
other open source prediction and analysis tools Prest is
unique that it collects source code metrics and call
graphs in 5 different programming languages, and
performs learning based defect prediction and analysis.
So far Prest in real life industry projects helped
companies to achieve an average of 32% efficiency
increase in testing effort.

1. Introduction

The role of software measurement becomes
increasingly important to understand and control
mature software development practices and products
[1]. Software measurement helps to evaluate the
software quality by measuring error-proneness of
software modules, since residual defects in the software
affects the final quality. However, measurement
programs cannot be easily employed in software
companies [2]. There has to be a tool support to
analyze the quality of the software using various source
code metrics [3,7]. Many researchers also have been
working on building predictive models: defect
prediction, cost/ effort estimation. These models need
raw data (i.e. regular measurement of software
attributes) [4,26,24,25,27,28]. These research have
significant implications in practice as well. Predictive
models support practitioners to take critical decisions
under uncertainty. Automated tools help researchers
and practitioners to measure software artifacts seamless
to coders [4,24,25,26,27,28]. Current software

development environment, on the other hand, is
complex such that multiple platforms (i.e. hardware
and software) as well as multiple programming
languages have to co-exist. Therefore any automated
code measurement and analysis tool should address the
issue of heterogeneity in software systems.

 There exist several measurement and analysis tools,
which are provided either as commercial of-the-shelf
(COTS) [5, 22, 23] or as open source tools [6, 15, 19,
20, 21]. There are COTS tools, which provide
extensive set of metrics and functionalities; however,
they are not always affordable. Furthermore, their
output formats cannot be easily integrated with other
measurement and analysis tools. Open source tools, on
the other hand, [6, 15] are easily accessible and their
functionalities may be tailored to meet specific needs.
However, open source tools have certain deficiencies:
a) they can extract only a limited number of static code
attributes from a limited number of programming
languages, b) they do not include a learning based
prediction support and c) they lack multiple output
formats [8].

In this paper, we introduce an intelligent open
source, software metrics extraction, analysis and defect
prediction tool, called Prest [16]. The need for Prest
has emerged during our collaborative research with
industry partners from various domains (i.e.
telecommunication [13], embedded systems [11] and
healthcare [12]) over the past four years. Our aim in
developing Prest was to extract static code attributes
from software programs and build a learning-based
defect predictor, which would highlight defect-prone
parts of new projects, using code attributes and defect
data from past projects. Prest is capable of extracting
28 static code attributes and generating call graphs by
using five different language parsers. It also provides
output in various formats that are compatible with
popular toolkits like Weka [10]. Our industry partners
have been using Prest for two years. The project

637

managers have been able to detect problems in coding
practices and testing, and they take corrective actions
on a timely manner.

2. Functionality

Prest is developed as a one-stop-shop tool that is
basically capable of:
� Extracting common static code metrics from C,

C++, Java, JSP and PL/SQL languages
� Presenting output via GUI components and in

*.xml, *.csv, *.xls and *.arff file formats
� Generating call graphs in class and method level
� Defining new metrics or thresholds on extracted

metrics
� Applying machine learning methods for analysis

and defect prediction.
Each of these functionalities will be further

described using a sample code (Figure 1). We also
placed the sample code of Figure 1 and an executable
jar of Prest in the Prest repository [16] for self trial.
More complex analysis including defect prediction will
be provided as a demo in Section 4.

Figure 1. Sample code

2.1. Parsing and saving a project

Prest can parse all files that are written in different
programming languages by using different parsers at
the same time. Similar tools, on the other hand, can
parse only one language at a time while ignoring other
files. Once a project, such as the sample code in Figure
1, is parsed, the metrics are presented via GUI
components in a structured manner and outputs are
placed under the related project folder within the
repository. The outputs are presented in several
formats: *.csv, *.xls,*.arff and *.xml. In Figure 2, only

one metric, i.e. cyclomatic density, is presented as the
static code attributes that can be extracted by Prest,
since we have page limitations. However, Table 1
provides full set of attributes.

Figure 2. GUI Overview of Prest

2.2. Call graph generation

Prest introduces a new and simple call graph feature
for all supported languages. It extracts this information
to better illustrate dependencies between functions/
classes and the complexity of software systems.
Basically, a function call graph represents the
encodings of caller-callee relations between functions
in a structured manner (Figure 3). Using Prest, each
function in Figure 3 is treated as a potential caller and a
unique ID is assigned to each function. Therefore, all
the functions are listed under the column
CALLER_NAME and their ID's are listed under the
column CALLER_ID in an excel file. The second
CALLEE_ID column keeps the ID's of the called
function(s) that were called by the caller function.
Generated call graph matrix of Prest can be seen in
Figure 4.

Figure 3. Function calls of sample code

Figure 4. Call graph matrix of sample code

638

2.3. Data Analysis and Prediction

Data analysis and prediction are particular features
of Prest, which provide analysis and prediction via
Naïve Bayes (NB) and Decision Tree (DT) algorithms.
Given actual defect data of a project, in which bugs are
matched with functions; Prest can analyze the given
data via Naïve Bayes and Decision Tree algorithms and
make predictions for a future release, which has yet not
been tested. Then, it pinpoints defect-prone modules to
increase the testing efficiency considerably. This
feature has drastically helped our industry partners by
reducing the testing effort by 32% [11]. Its architecture
and a detailed tutorial will be explained in Section 3, 4.

2.4. Threshold and New Metric Definition

Certain values of metrics or a combination of those
may be indicator of error proneness. Prest provides
users the ability to define certain conditions
(thresholds) on the extracted metrics and apply color
coding according to user-defined thresholds, i.e.
metrics of defect-prone modules are colored with red
on the GUI, whereas the defect-free ones are painted as
green. Furthermore, Prest lets users to define new
metrics by combining existing metrics via mathematical
operators. In Figure 5, definition of a new metric using
“/ DIVIDE” operator, cyclomatic_complexity and
lines_of_code metrics is illustrated.

Figure 5. Defining a new metric

3. System Architecture

Prest architecture has four main components:
Language parser, metric extractor, analysis and
prediction component and GUI components.

3.1. Language Parser

A parser is responsible for parsing code into tokens
depending on its type such as operand, operator etc.
Currently, Prest consists of C, C++, Java, JSP and
PL/SQL parsers.

3.2. Metrics Extractor

Once the language parser is done with parsing the
code into tokens, the metric extraction component
starts to execute and it produces logical results
depending on the output of the language parser. Those
logical results are used to calculate static code metrics,
listed in Table 1. Prest collects 28 static code attributes
(Table 1) and none of the other open source metrics
extraction tools [18] were able to extract all metrics.

Table 1. Static code metrics extracted by Prest
Total loc Blank LOC

Comment LOC Code Comment LOC

Executable LOC Unique Operands

Total Operands Total Operators

Halstead Vocabulary Halstead Length

Halstead Volume Halsted Level

Halstead Difficulty Halstead Effort

Halstead Error Halstead Time

Branch Count Decision Count

Call Pairs Condition Count

Multiple Condition Count Cyclomatic Density

Cyclomatic Complexity Decision Density

Design Complexity Design Density

Normalized Cyclomatic
Complexity

Formal Parameteres

3.3. Analysis and Prediction Component

Analysis and prediction component of Prest
significantly differentiates itself from similar open
source tools, since none of them provides a learning
based defect prediction component [18]. Unlike other
open source metric extraction tools, Prest can perform
analysis and predictions regarding the defect-proneness
of software by utilizing machine learning methods. We
have benefited from Weka libraries [10] to implement
two classifiers, Naïve Bayes and Decision Tree, for this
component. However, new methods may be included
either by implementing it from scratch or by calling
Weka libraries.

3.4. GUI Component

GUI component is responsible for interacting with
the user and presenting the results. We paid particular

639

attention to GUI component and analyzed various tools
such as Eclipse [6], Predictive [5] and WEKA [10],
before designing it. We aimed to keep the usage
simple, while providing full range of features, such as
project repository, easy switch between metric
extraction and analysis tabs, defining thresholds on
static code metrics, filtering results depending on
defined thresholds, applying color codes, and defining
new metrics.

4. Demo

In Section 2, we have analyzed a sample Java code
to discover the functionalities of Prest. In this section,
we have analyzed a large software system from one of
our industry partners. This software system has been
implemented in Java and JSP languages. We took two
versions of the same system (version 11 for training
and 12 for testing) and extracted static code attributes
from both Java and JSP files with Prest. Then, we
matched actual defect data with the files whose static
code attributes were extracted by Prest and fed them to
analysis and prediction component. We have used
Naïve Bayes classifier to predict defect-prone files in
version 12. Finally, we have measured the performance
of the prediction component of Prest when only Java
files, only JSP files and both of them are used. In
Figure 6, probability of detection rates (pd) and the
balance rate (bal) have been increased when both Java
and JSP files are used. Furthermore, probability of
false alarm rates (pf) has been decreased.

Those results have been encouraging in the sense
that extracting static code attributes from all the
languages of a software project can increase the
prediction performance. In addition, Prest, as a single
tool, is able to conduct a thorough analysis in large
software systems, thereby reducing the need for
multiple tools for different languages and machine
learning tools.

Figure 6. Improvements in the prediction
performance of Prest

5. Development Methodology

Prest has been developed by MS and PhD students in
SoftLab during the last three years. At various lengths
of involvement (from 6 months to three years), a total
of 12 students and a faculty member worked as the
developers and designers of Prest. We used a formal
waterfall approach where we took the requirements
from our industry partners, reviewed them and used
existing tools. Then, we designed the architecture,
coded Prest, and conducted alpha and beta tests with
our industry partners. Also, a senior architect has been
guiding us for the current and future architecture of the
tool. All development stages are well documented and
we have used a versioning system as well as an
automated bug tracking system. Current members of
SoftLab carry out implementation of new parsers and
they provide maintenance of Prest.

6. Current Usage & Benefits

 Early versions of Prest were used by a local white-
goods manufacturer, who wanted to measure code
quality to reduce defect rates and to effectively manage
their testing resources [11]. Using Prest, we collected
static code metrics attributes from C codes at function
level. Then, we analyzed the defect-prone parts of the
software using data analysis component of Prest and
found that testing effort could be reduced by 32%
while catching 76% of defective modules [11].
 Recently, we have conducted a metrics program in a
large telecommunication software system [13]. In this
project, we collected static code metrics with Prest in
Java source file-level. Then, we matched those files
with actual defect data and used Naïve Bayes classifier
to predict defective files of the software. We have also
used call graph information in method level and
applied the Naïve Bayes classifier to predict defect-
prone files in the system. Results show that prediction
model in Prest has been capable of detecting 84% of
defective files by inspecting only 31% of the code [13].
 In addition to our local industry partners, currently
Prest has been in use in a multi-national company in the
UK. Since Prest [16] is designed as an open source
tool, it is available via Google Code [19] to review,
download or further develop and integrate.

7. Support

The development team of Prest provides support to
users [14]. Once a development activity is performed
and a stable version is elicited new code is committed
to the Prest repository in Google Code [16]. Therefore,

640

the code that users can access is always the latest stable
version of Prest. Any failure or problem in the system
can be directly entered into the issue management
system of Google Code in order to track the status of
each problem on the web.

8. Related Work

There exist a considerable number of software metrics
tools available either as open source [6, 15, 19, 20, 21]
or as commercial [5, 22, 23]. Since Prest is developed
as an open source tool, we focus on non-commercial
tools for comparison of Prest and other tools. We
acknowledge that there is no ultimate criterion to
compare different tools and conclude that one is
certainly better than the other. However, a set of
criteria may be defined while assessing different metric
tools: Number of languages that are supported, number
and nature of metrics extracted, type of output formats
and analysis and prediction components. Those
functionalities are also examined by other researchers
[7, 18]. Thus, they are also critical for our future
extensions in Prest. We have presented this comparison
with CCCC [19], Chidamber-Kemerer Java Metrics
[20], Dependency Finder [21], Eclipse Metrics Plug-in
version 1.3.6 [6] and CyVis[15] tools in Table 2. From

Table 2, we can see that Prest is more extensive than
other open source tools with respect to languages it
parses, number of extracted metrics, output formats and
its analysis and prediction component. However, this
does not make Prest the finest and the ultimate tool,
since there has been significant effort behind each tool
and we still lack some properties such as simple and
precise graphical representation of dependencies in
Eclipse plug-in or saving extracted metrics in an html
file. Nevertheless, we have managed to provide an all-
in-one tool for software practitioners by saving their
time and effort for searching multiple tools for various
needs and dealing with various output formats.
Moreover, we have benefitted from Prest in our
research studies by extracting static code attributes and
doing predictions for all experiment settings.

9. Conclusion and Future Work

Prest has been in use in three large software systems
(locally and internationally). It has also been used in
various SoftLab empirical research studies at different
companies [11, 12, 13]. Prest in practice with its
prediction capability has so far successfully guided
project managers to take decisions under uncertainty
and has considerably increased testing efficiency.

Table 2. Comparison of Prest and other open source tools
Prest CCCC CK Java

Metrics
Dependency

Finder
Eclipse
Plug-in

CyVis

C + + - - - -

C++ + + - - - -

Java + + + + + +

Jsp + - - - - -

Su
pp

or
te

d
L

an
gu

ag
es

PL/SQL + - - - - -

csv + - - - - -

xls + - + - - -

arff + - - - - -

xml + + + + + +O
ut

pu
t

html - + - + + -

Data Analysis
Component

+ - - - - -

Call Graph
Generation

+ - - + + -

Metrics
Collected

28 9 6 13 23 2

641

Going forward, Prest will be constantly adding new
parsers as well as more learning algorithms. Currently,
we are in the process of migrating Prest tool to cloud
computing in order to serve larger communities better,
to share data and foster reproduction of empirical
experiments.

10. Acknowledgment

This research is funded in part by Tubitak
EEEAG108E014. We would also extend our gratitude
to Mr. Turgay Aytaç, senior architect, for his guidance
as well as A.D.Oral, ��<��\�^������<��������\������������
O. Bozcan and S. Karagulle for their efforts in the
development of this tool.

11. References

[1] B. Kitchenham, S. L. Pfleeger, and N. Fenton. Towards a
framework for software measurement validation. IEEE
Transactions on Software Engineering, 21(12):929–944,
1995.
[2] N. Fenton. Software measurement: a necessary scientific
basis. Software Engineering, IEEE Transactions on,
20(3):199–206, Mar 1994.
[3] M. J. Harrold. Testing: a roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software
Engineering, pages 61–72, New York, NY, USA, 2000.
ACM.
[4] N. Nagappan and T. Ball. Static analysis tools as early
indicators of pre-release defect density. Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
nternational Conference on, pages 580–586, May 2005.
[5] Predictive, Integrated Software Metrics, available at
http://freedownloads.rbytes.net/cat/development/other4/predi
ctive-lite/
[6] Eclipse metrics plug-in 1.3.6, available at
http://sourceforge.net/projects/metrics.
[7] P. Kulik and C. Weber. Software metrics best practices –
2001. In Software Metrics Best Practices 2001, March 2001.
[8] M. Auer, B. Graser, and S. Biffl. A survey on the fitness
of commercial software metric tools for service in
heterogeneous environments: common pitfalls. Software
Metrics Symposium, 2003.
[9] B.Turhan, G. Kocak and A. Bener. Software Defect
Prediction Using Call Graph Based Ranking (CGBR)
Framework, Proceedings of the 34th EUROMICRO Software
Engineering and Advanced Applications (EUROMICRO
SEAA'08), 2008.
[10] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann
Series in Data Management Systems. Morgan Kaufmann,
second edition, June 2005.
[11]A. Tosun, B. Turhan and A.Bener. Ensemble of Software
Defect Predictors: A Case Study. Proceedings of the 2nd
International Symposium on Empirical Software Engineering
and Measurement (ESEM'08 Short Paper), pp.318-320, 2008

[12] A. Tosun, B. Turhan and A. Bener. The Benefits of a
Software Quality Improvement Project in a Medical Software
Company: A Before and After Comparison, International
Symposium on Health Informatics and Bioinformatics
(HIBIT'08 Invited Paper), 2008.
[13] A.Tosun, B. Turhan and A. Bener. Direct and Indirect
Effects of Software Defect Predictors on Development
Lifecycle: An Industrial Case Study, to appear in
Proceedings of the 19th Interntational Symposium on
Software Reliability Engineering (Industry Track), 2008.
[14] Software Research Laboratory (Softlab), available at
www.softlab.boun.edu.tr
[15] Cyvis Software Complexity Visualizer,
http://cyvis.sourceforge.net/
[16] Prest Metrics Extraction and Analysis Tool, available at
http://code.google.com/p/prest/.
[17] T. Menzies, J. Greenwald and A. Frank. Data Mining
Static Code Attributes to Learn Defect Predictors, IEEE
Transactions on Software Engineering, January 2007,
Vol.33, No. 1, pp. 2-13.
[18] R. Lincke, J. Lundberg, W. Löwe. Comparing Software
Metrics Tools, ISSTA '08: Proceedings of the 2008
international symposium on Software testing and analysis,
2008
[19] C and C++ Code Counter, available at
sourceforge.net/projects/cccc, 2006.
[20] D. Spinellis. Chidamber and Kemerer Java Metrics,
available at www.spinellis.gr/sw/ckjm, 2006.
[21] Dependency Finder, available at
depfind.sourceforge.net, 2008.
[22] Analyst4j Find Using Metrics, available at
www.codeswat.com.
[23] SciTools Source Code Analysis and Metrics,
Understand for Java, available at www.scitools.com
[24] Victor R. Basili , Lionel C. Briand , Walcélio L. Melo,
A Validation of Object-Oriented Design Metrics as Quality
Indicators, IEEE Transactions on Software Engineering, v.22
n.10, p.751-761, October 1996
[25] S. R. Chidamber , C. F. Kemerer, A Metrics Suite for
Object Oriented Design, IEEE Transactions on Software
Engineering, v.20 n.6, p.476-493, June 1994
[26] Nachiappan Nagappan , Laurie Williams , John
Hudepohl , Will Snipes , Mladen Vouk, Preliminary Results
On Using Static Analysis Tools For Software Inspection,
Proceedings of the 15th International Symposium on
Software Reliability Engineering, p.429-439, November 02-
05, 2004
[27] Yue Jiang , Bojan Cuki , Tim Menzies , Nick Bartlow,
Comparing design and code metrics for software quality
prediction, Proceedings of the 4th international workshop on
Predictor models in software engineering, May 12-13, 2008,
Leipzig, Germany
[28] A. Gunes Koru , Hongfang Liu, Building Defect
Prediction Models in Practice, IEEE Software, v.22 n.6,
p.23-29, November 2005

642

Accelerated Risk Management using Statistical Triggers

Rose Williams, M.S.C.S.
Department of Software and Services Science

I.B.M. Thomas J. Watson Research Center
Hawthorne, N.Y. 10532, U.S.A.

rosemw@us.ibm.com

Krishna Ratakonda, PhD.
Department of Software and Services Science

I.B.M. Thomas J. Watson Research Center
Hawthorne, N.Y. 10532, U.S.A.

ratakond@us.ibm.com

Abstract
In any large IT services provider’s portfolio, it is not
uncommon to find several deals that have a high
customer satisfaction rating, but result in a financial
loss. In many cases it is not clear that an IT
engagement that is in serious trouble should be
immediately terminated. The provider may have good
reasons in continuing an engagement which may not
be eventually profitable. For example, the provider
wants to maintain a relationship with a client, or
avoid an adverse impact on their reputation. It is
important to not only identify that a project has
become troubled, but also be able to predict whether
the project can be salvaged from financial, quality
or other perspectives. By drawing upon a historical
database of services projects spanning several years,
we are able to draw conclusions on the effectiveness
of certain well established principles in risk
assessment used by the project management
community. We define derived statistical measures
that can be used to predict the eventual outcome of
an in-delivery project along several dimensions. In
this paper, we will explore how quantifiable
measures of project progress, gathered at several
important stages of a project's life-cycle, can aid in
early identification of troubled projects.

1. INTRODUCTION

What causes complex IT services engagements to
fail? Patterns of failure that emerge can be associated
with a number of root causes, many of which are well
known, such as: requirements creep, sudden changes
in scope/schedule changes or poor project
management practices. Some of these root causes are
particularly difficult to address in large engagements
because of the complex interactions between the
different portions of a project which are typically
addressed by separate teams that do not communicate
on a regular basis. The large, diverse and dynamic
nature of the global workforce that many IT
providers use to deliver on these engagements has put
a new level of stress on traditional practices. Process
guidance only goes so far when the team responsible
for delivery has limited experience using the
processes in other engagements. Resource churn and

communication gaps play a significant role in
undermining what would otherwise be effective risk
mitigation measures. IT service leaders have taken
significant steps to address these challenges; such
measures range from organizing global resource
pools into cohesive competency centers and
instituting common tooling platforms across the
board. However, quantifying the overhead and risks
involved in engaging a geographically distributed
team to deliver on an IT engagement is still more of
an art than a science.

Given a collated historical database of project metrics
and outcomes, statistical analysis can be used to
derive classification rules, regression measures and
identify statistically significant clusters in the dataset.
Our system analyzes the quantitative metrics
collected at different stages of an IT engagement,
including risk management reviews, technical
reviews and monthly financial reports, to gain an
early insight into key patterns of trouble. As such,
statistical measures can be used to initiate accelerated
risk mitigation plans early in the project’s lifecycle
resulting in a reduction of potential loss. Our
predictive analytics detect troubled patterns early in
the project’s life-cycle, and act as first-alerts helping
focus the limited risk management resources on the
subset of the projects that are most at risk.

2. LITERATURE SURVEY

In recent literature, the trend towards a systems
approach to risk management, wherein statistical
techniques are used to classify and mine the project
metrics data, is gaining acceptance [1, 2, 3, 4]. These
methods actively use the metrics collected during
traditional risk management reviews and then employ
techniques borrowed from statistical learning theory
to derive models that describe the relationship
between the collected metrics and eventual project
outcomes.

Quantitative analysis of IT investment decisions
using options analysis, to mitigate financial risk, is an
active area of research [5, 6, 7]. Options analysis can
be used to assess the value of prototyping work and
early adoption initiatives related to new IT platforms

643

– options provide a way to evaluate the value of IT
projects which give the right to adopt the resulting
technology without having the obligation to do so.
Fichman [5] shows how options analysis can be used
to predict IT platform initiation and adoption, value
IT platform options and manage IT platform
implementation. Chen and Sheng [6] discuss how to
do real options analysis while accounting for
estimation errors.

In our view, the lack of widespread adoption for
options analysis can be traced back to a fundamental
issue that affects all methods for analyzing financial
risk – the inability to accurately estimate with any
degree of certainty the net present value (NPV) of a
complex in-flight IT project. In this paper, we
evaluate financial risk by analyzing how projects that
exhibited similar trends in project metrics performed
in the past – thus, the analysis has no dependence on
a particular methodology for evaluating NPV.

Qualitative analyses of IT projects remain an active
area of research. Erickson and Evaristo [8] provide an
account of how risk factors associated with IT
projects are magnified or multiplied when dealing
with distributed project teams. They provide a
conceptual list of a variety of factors ranging from
culture to distance and discuss how an increase in
distributedness along these dimensions affects project
risk. Ramasubbu and Balan [9] present an empirical
study which quantifies the loss in quality and
increase in schedule risk that one would expect in
global software projects. They suggest that good
software process controls may mitigate these losses
to some degree. Beise [10] suggests that good project
management practices when properly applied may
help to mitigate some of the problems caused by
virtual teams. Our analysis suggests that even under
the best possible control structure the losses due to
distributed development are unavoidable – the ability
to recognize the symptoms and act quickly will
decide which companies will succeed in leveraging
the promise of globalization.

3. MINING IT PROJECT METRICS FOR
TROUBLE PATTERNS

In this section we will take a closer look at patterns in
project metrics that are indicative of future trouble.
As discussed in the previous sections, the risk
entailed can be along several dimensions – financial,
functionality, customer satisfaction or others. In
section 3.1, the focus is on financial risk for the
delivery organization with a view to determining
whether a given project will be eventually profitable
at completion. In section 3.2, we discuss how to

predict a poor outcome in an aggregated project risk
measure, in the preliminary phases of an IT
application services project, based on information
gathered prior to project inception. Section 3.3 shows
how this prediction algorithm can be extended to an
in-flight project where there is an established history
of past risk assessment reviews. In particular, the
emphasis is on understanding what role early patterns
in individual dimensions of project risk play in
determining a poor outcome in an aggregated project
measure in the future.

3.1 Financial Metrics
In analyzing project financial data, our objective is to
determine whether a project will be eventually
profitable. In our experience, we found that a small
set of projects were the cause for a significant drop in
profits. Therefore, if we could identify these projects
early in the lifecycle, there is large potential for
increasing the profit margins for the rest of the
projects – terminating a fraction of these high loss
projects early could increase the margin by about 10-
20%.

Figure 1: A comparison of profit data plotted on a monthly
basis from projects that resulted in a loss (top) and those
that resulted in a profit (directly above). Monthly data is
plotted only for the first 25 months from project start date.

644

Figure 1 shows the profiles of the project project/loss
over a project’s lifecycle. It is clear that most
profitable (loss making) projects start generating
profits (losses) early on in their lifecycle. The graphs
clearly show that the longer a project is unprofitable,
the more difficult it is to turn-around. Our approach
is to turn this rule of thumb into a statistically robust
measure. One would expect that some projects are
more front loaded than others i.e., significant ramp up
costs are offset by realization of significant revenues
in the later stages of project execution. However, this
effect is reduced as we move further in time in the
delivery phase.

More formally, given the monthly ledger data
(revenue and cost) and static categorical information
about a project, we would like to identify projects
that will generate a loss at completion. Applying a
classification algorithm, we identify the set of
projects that will produce a significant loss. As
expected, the prediction accuracy (in terms of both
false positives and false negatives) improves as we
move closer to project completion. Figure 2 shows a
plot of the error rate on the training data for
completed projects as a function of the project
duration. To account for the variations in project
duration, we normalized the project’s lifecycle into
six phases.

Figure 2: A plot of the error in classification for the
training data set of completed projects as a function of
the normalized project duration i.e., a project is
classified based on partial data.

3.2 Qualitative Metrics

Pre-engagement metrics: A number of risk
assessment related activities are conducted prior to
project inception with an objective of determining the

risk entailed in delivery. The number and depth of
these reviews is determined by a variety of factors,
such as: the size of the project, the novelty of the
proposed solution, and the industry sector to which
the client belongs. These reviews may cross multiple
delivery organizations within and beyond the
purview of the primary service provider. The
integrated technical review (ITR) is meant to
integrate inputs from these different organizations
and produce a proposal baseline assessment (PBA).
Key decisions facilitated by this process include the
amount of contingency budget that is allocated to the
project, and the frequency and composition of project
management reviews (PMR) during the project
lifecycle. In the rest of this section, we will explore
how to take advantage of this information to predict
the outcome of the first project management review
after project inception (the initial PMR or IPMR)
which is a letter grade: A (best), B, C or D (worst)
assigned within the first 12 weeks. The letter grades
indicate increasing risk and/or project trouble.

Data collection: By reviewing the PBAs of several
recent IT delivery projects, we identified a set of
sixteen questions that were considered to be
predictive of the project outcome in the initial phases
of the project lifecycle. These questions were
reviewed by experienced risk managers and carefully
screened to ensure that they can be used to obtain
objective answers within well-defined ranges. For
each of the reviews used in this paper, a risk manager
was involved in assessing the project and answering
the questions. The intent was to remove subjectivity
in the answers by basing them on data that is readily
accessible to the risk manager. Questions ranged
from a client’s past experience with the delivery
organization, match of the delivery team’s technical
skills to the project objectives and the type of
contract (fixed price vs. time and materials). It is to
be noted that these questions do not delve deeply into
the technical details of the project itself, as they need
to cover a variety of IT projects ranging from
implementing a custom application to customizing a
packaged application.

Statistical Process: We then used statistical
classification algorithms to match the risk
management questions with the eventual project
outcome. Prior to classification, the answers to the
risk management review questions were scaled and
binned appropriately to reduce the effects of variance
due to human error and differences in procedures
followed in different countries. We chose to apply a
decision tree classifier to the data set. This approach
produced acceptable results and the resultant rules
enable the end users to understand the prediction

645

process more readily. Using random sampling, we
split the available data set into a training and test data
set.

A cost matrix that indicated the relative weight to be
associated with a particular type of misclassification
was used. The cost matrix allows the risk managers
to indicate the relative weight to be associated with a
particular type of misclassification. In our model,
misclassifying a project that would have been a C as
a D project carries a cost (or weight) of 1, where as a
more serious misclassification of C as an A carries a
weight of 9. In our prediction model, false positives
(good projects being classified as troubled) carry less
weight than false negatives (troubled projects being
classified as good).

In-Delivery metrics: Once a project is in delivery,
there are periodic project management reviews
(PMRs), conducted by experienced risk managers,
the frequency of which are typically determined by
the results of prior PMRs. The question we would
like to answer in this section is whether an
accelerated risk management review is warranted
based on the data that is collected during the PMR
process. Thus, the focus is on predicting the
transitions of good projects (grade A or B) to
troubled projects (grade C or D). The objective data
collected during a PMR process can be categorized
into three classes: static project characteristics,
standard project management metrics, and root
causes of troubles (ex: root causes can range from
statement of work issues in design phase to resource
or client issues in delivery phase).

Given this data, we trained a decision tree classifier
to predict the next PMR score, as we did in the case
of pre-engagement metrics. Given the complexity of
the data set, we faced challenges in binning and
scaling the data to make it amenable for a tree
classifier. Also, the practices followed in conducting
PMRs underwent changes over the years. Thus, we
had to choose a narrow timeframe for the training
data to avoid contaminating it with outliers. Figure 3
shows the transitions between two consecutive PMRs
that occurred in the training data set. Applying the
decision tree classifier on a test data set shows an
ability to capture about 80% of the transitions with
14% false positives and 2% false negatives over the
entire data set.

Figure 3: Transitions between PMR types for consecutive
PMRs conducted on the same project. The highlighted cells
(in dark blue) show transitions of interest from a risk
management perspective.

Although the analysis for predicting transitions is
similar to the one used for pre-engagement metrics,
the prediction findings in this case are used to cull
out those projects that require closer attention from
the risk management practice. As such, keeping a low
false negative rate is important in this case to avoid
missing any potentially negative transitions. Given
that the algorithm can potentially miss 20% of the
transitions, it is important to use this as a supplement
and not as a replacement for established risk
management practices. As one would expect, many
of the transitions in PMR rating occur more
frequently in the initial phases of the project – thus,
conducting the first few PMRs on a regular basis is
recommended irrespective of the predicted outcome.

4. RECOMMENDATIONS

In implementing the algorithms and rolling them out
for use in a large organization, we found that getting
access to reliable, consistent data that can be
statistically analyzed is typically the most
challenging aspect of the project. IT services delivery
organizations that are spread across the globe have
different auditing and data collection requirements
that make this process difficult. Based on our
experience, we recommend the following best
practices:
� Do a preliminary analysis of the data to establish

a viable sub-set of attributes that have stable
reporting characteristics.
� Cross-check with sources for validity. It

is important to access the data from
primary/trusted sources. In large
organizations the same data may be
reported through multiple databases –
and accessing data from a secondary
source may lead to inconsistencies or
stale data.

646

� Ensure that the data has attributes that
are amenable to analysis. Some data is
typically more prone to subjective
interpretation due to its nature.

� It is also key to ensure that the data
collection process is itself not
compromised by conflicts of interest.
Typically, project health data entered by
project managers, who have a vested
interest in the success of the project, is
not as reliable as reviews conducted by
dedicated risk managers. Accountability
or, at least, traceability between the data
collected and the person responsible for
entering the data is an important
indicator of its trustworthiness.

� Identify a set of algorithms that are suitable for
use. Our focus was on identifying portfolio wide-
trends that can be aggregated (rolled up)
meaningfully. Models that have easily accessible
semantic interpretations (such as decision tree
classification) are more suitable.

� Perform sanity checks before introducing new
metrics and data items
� If new metrics need to be added,

following a goal-question-metric or
similar process to validate their need is
a good practice. It is also important to
perform statistical tests to validate that
the data collected for each metric is
valid – to expose problems in wording
the question or the ability of the person
to answer the question.

� Choose the right set of attributes as inputs and
outputs for analysis
� Predictive analysis has more value (i.e.,

a higher predictive power) when the
input attributes combine data that is
collected early in a project’s lifecycle
and then periodically thereafter.

� Target attributes should be carefully
selected to match typical information
that is relevant to delivery excellence:
customer satisfaction, classification
score, financial viability at completion
etc.

5. CONCLUSIONS
In this paper, we considered the problem of
generating early warning indicators that can be then
used to perform proactive/accelerated risk
management. Although it is not always possible to
salvage a project, terminate a project or take other
drastic measures, predictive algorithms can act as a
first alert helping focus the limited risk management
resources on the subset of the projects that are most

at risk. By analyzing a variety of IT application
delivery projects over the span of a number of years,
we trained and validated the prediction algorithms.
The results are encouraging and show the potential
for a significant impact in a variety of project
planning areas.

6. ACKNOWLEDGEMENTS
We would like to thank Paul Huang for providing the
data and algorithms used in section 3.1. We would
like to thank Jack Bisceglia and Russell W. Taylor
for their help in understanding the prevalent risk
management practices.

7. REFERENCES
[1] Sun, A. & Li, C. (2007), Research on

Project Risk Evaluation Method Based on
Markov Process, in 'Proc. International
Conference on Wireless Communications,
Networking and Mobile Computing WiCom
2007', pp. 5293--5296.

[2] Hu, Y.; Huang, J.; Chen, J.; Liu, M. & Xie,
K. (2007), Software Project Risk
Management Modeling with Neural
Network and Support Vector Machine
Approaches, in 'Proc. Third International
Conference on Natural Computation ICNC
2007', pp. 358--362.

[3] Jianyi, G.; Li, Z.; Xusheng, L.; Yuejuan, H.
& Zhengtao, Y. (2008), Implementing a
quantitative-based methodology for project
risk assessment DSS, in 'Proc. 27th Chinese
Control Conference CCC 2008', pp. 730-
734.

[4] Clemons, E. & Weber, B. (Fall 1990),
'Strategic information technology
investments: guidelines for decision
making', Journal of Management
Information Systems 7(2), 9-28.

[5] Fichman, R. G, (2004) "Real Options and IT
Platform Adoption: Implications for Theory
and Practice", Information Systems
Research,15(2) 132-154.

[6] Chen, L.; Sheng, O.; Goreham, D. &
Watanabe, J. (2005), A real option analysis
approach to evaluating digital government
investment, in 'Proceedings of the 2005
national conference on Digital government
research', Digital Government Society of
North America, pp. 157-166.

[7] Kumar, R. (Summer 1996), 'A note on
project risk and option values of investments
in information technologies', Journal of
Management Information Systems 13(1),
187-193.

647

[8] Erickson, J. M. & Evaristo, R. (2006), Risk
Factors in Distributed Projects, in 'Proc.
39th Annual Hawaii International
Conference on System Sciences HICSS '06',
pp. 216c--216c.

[9] Ramasubbu, N. & Balan, R. K. (2007),
Globally distributed software development
project performance: an empirical analysis,
in 'ESEC-FSE '07: Proceedings of the 6th
joint meeting of the European software
engineering conference', ACM, New York,
NY, USA, pp. 125-134.

[10] Beise, C. M. (2004), IT project management
and virtual teams, in 'SIGMIS CPR '04:
Proceedings of the 2004 SIGMIS conference
on Computer personnel research', ACM,
New York, NY, USA, pp. 129-133.

648

A Layered Approach for Planning Releases under Uncertain Capacities

Jim Mc Elroy & Guenther Ruhe
Laboratory for Software Engineering Decision Support, University of Calgary

2500 University Drive NW, Calgary, AB T2N 1N4, Canada
{mcelroy, ruhe}@cpsc.ucalgary.ca

Abstract
Planning for product releases includes a number of
uncertainties. This paper studies a layered approach
for handling uncertainties related to available and the
requested resources. The main idea of the approach is
to solve a sequence of problems starting from most
restricted to less resource restricted problems. By
keeping the assignments of features of the former
problem fixed for the solution at the next layer, we
maintain compatibility of the solutions. The results of
the approach is a set of feature release strategies. The
important implication of the compatibility is that the
different layers also provide guidance for in which
order features should be treated.
A hypothetical case study is undertaken to illustrate the
approach and to show the added value from a
decision-making perspective.
Keywords: Software engineering decision support,
release planning, resource planning, uncertainty.

1 Motivation and Related Work
Release planning for incremental software

development facilitates the optimal assignment of
features to releases such that most important technical,
resource and budget constraints are met. The notion of
release planning varies from informal approaches,
including those performed in agile development, to
more formalized approaches. A discussion of the two
fundamental approaches and existing solution methods
is given in [16]. Informal planning approaches as
described in [2] mainly rely on communication and
expert knowledge. Agile release planning (often called
“planning games”) falls into the informal category due
to the lack of a formal optimization model defining it.

Formalized approaches provide an explicit and
quantitative description of the problem to be solved.
Based on that, mathematical optimization is applicable
to generate optimal or approximate solution
alternatives. This approach is used as the kernel of an
evolutionary problem solving method called
EVOVLE* [15], the formal approach the authors have
the most experience with. Other approaches with
underlying formal models include those proposed by

Jung [11], Bagnall [1], Carlshamre [5], and van den Akker,
et. al. [17].

One problem with formal approaches such as
EVOLVE* has to do with the accuracy of the inputs to the
model. Effort estimation input, which serves as an
important constraint on the model, is especially
problematic. Effort estimations may be significantly off in
the early stages of project planning, when release planning
is typically done.

Therefore, the challenge addressed by this paper is how
to provide a release planning strategy, which is
implementable also under varying levels of availability of
resources. The paper is divided into six sections. Section 2
gives a description of the formal EVOLVE* approach to
release planning. Section 3 discusses, in general, how to
handle resource estimation error in the formal model.
Section 4 delineates a layered approach addressing
uncertainty in the availability of resources. Section 5
describes a case study using the specific approach.
Finally, in section 6 we discuss the results and provide an
outlook for future research.

2 Release Planning with EVOLVE*
2.1 Features and Related Decision Variables

This paper uses the concept of a “feature” as the basic
unit for release planning. Features are the “selling units”
provided to the customer. In the context of this research,
we follow the definition given by [18] which defines
features to be “a logical unit of behavior that is specified
by a set of functional and quality requirements”.

We assume a set of features F = {f(1), f(2), … , f(n)}.
The goal is to assign the features to a finite number K of
release options or to decide to postpone the feature. A
release plan is characterized by a vector of decision
variables x = (x(1), x(2), …, x(n)) with

x(i) = k if feature f(i) is assigned to release option k
�{1,2,…K}, and

x(i) = K+1 if the feature f(i) is postponed (e.g., not
contained in one of the next K releases)
2.2 Stakeholders

Stakeholders are very important for performing realistic
and customer-oriented release planning. We assume a set

649

of stakeholders S = {S(1),…,S(q)}. Each stakeholder
S(p) can be assigned a relative importance '(p), based
on an ordinal nine point scale. This approach is
applicable to other possible scales.
2.3 Prioritization of Features by Stakeholders

In order to select and schedule features, there must
be an agreed upon statement of priorities for features.
In our model, prioritization by each stakeholder S(p)
can be done with respect to different criteria. We
define them here again on an ordinal nine-point scale.
Possible criteria for prioritization are (but are not
limited to) overall business value, urgency (time
dependency), impact if feature is NOT included in a
release, risk (using an inverted scale), requirements
volatility (inverted scale), etc. For more information
on these criteria, refer to < insert references>
2.4 Technological Constraints

A study of requirements repositories in the
telecommunications domain by Carlshmare et al. [5]
concluded that only about 20% of the features were
singular or independent of each other. For this paper,
we model what we consider the two most important
types of technological constraints: the coupling relation
C, and the (weak) precedence relation WP. Both of
these relations are subsets of the product set F x F.

Definition 1: Two features f(i) and f(j) are coupled
(written as (i,j) � C)) if they are required to be
implemented in the same release. This dependency can
be due to implementation or usage issues. In terms of
the introduced decision variables, this means that
x(i) = x(j) for all (i,j) � C (F x F (Coupling) (1)

Definition 2: Feature f(i) is in a (weak) precedence
relation to feature f(j) (written as (i,j) � WP) if feature
f(j) can not be delivered in a release earlier than f(i). In
terms of the introduced decision variables, this means
that
x(i) � x(j) for all (i,j)�WP (FxF (Precedence) (2)
2.5 Pre-assignment

Feature f(i) can be pre-assigned to release k, thus
fixing the result of planning. In terms of the introduced
decision variables, this means that
x(i) = k (Pre-assignment) (3)
2.6 Resource Constraints

Different resources are required for the
implementation of features, and there are capacity
bounds on the amount of resources available in each
release cycle. We consider R types of resources
involved in the implementation of features.
Correspondingly, we define resource capacities
Cap(r,k) for each resource type r = 1,…,R and all
releases k = 1,…,K. To become a feasible plan,
decision variables must satisfy
�x(i)=k resource(i,r) � Cap(k,r) (4)
for all releases k=1,…,K and all resource types
r=1,…,R.

2.7 Objective Function
The objective is the maximization of a function F(x)

among all release plans x satisfying the above
technological and resource constraints (1) – (4).

F(x) is composed of the weighted average priority
vector WAP(j) defined for each feature f(j). Therein, the
weighted average priority is a function including the
different possible criteria and applying operators such as +,
*, power, log, exp, Min, or Max to combine the criteria.
For each release option k, parameter)(k) describes the
relative importance of the release option and its relative
impact to the objective function.
F(x) = *k=1…K)(k) [* j: x(j)=k WAP(j)] (5)

3 Handling Resource Estimation Error in the
Formal Model
This paper will assume that resource overestimation

errors are not nearly the problem as resource
underestimation errors, and will be concerned primarily
with the latter. This paper will also assume that most
project development resources are time-dependent, i.e.,
increasing the time spent on a project increases the
capacity of such resources. This would be true for most
human resources on a project (assuming more personnel
does not have to be added and trained, which would
undermine this premise).

A third assumption made by the paper is that resource
usage inefficiency and unexpected non-availability can be
viewed as a form of resource estimation error. E.g, lost
development time due to domain inexperience is viewed as
an estimation error. Similarly, lost development time due
to unexpected employee unavailability and / or attrition is
also viewed as a resource estimation error, although this
could technically be argued to be a different dimension of
estimation error.

Given that resource underestimation errors are the most
common and/or the most costly and problematic types of
resource estimation errors, three approaches can be taken
when resources are found to be lacking during project
execution:
1. Resources can be added to the project
2. The release date of a project can be extended, which

effectively increases the availability of the bulk of the
resources, which are time-dependent, such as
developers, testers, etc.

3. The number of features to be released can be reduced,
hence reducing the amount of resources needed to
develop the features.
All three approaches have their drawbacks. Approach

1, adding resources to a project, may be impossible in a
given project. Even if it is not, it may be counter-
productive, as Fred Brooks eloquently pointed out many
years ago when he observed that “adding manpower to a
late software project makes it later”[4].

Approach 2 may also be either impossible due to
contractual or other obligations, or carry other severe
repercussions. If there are few drawbacks to approach 2,

650

(deadline overruns) then it is the logical way to
proceed. Unfortunately, such deadline overruns often
occur even when there are severe repercussions.

Approach 3 may be the best approach when
deadlines are more important than releasing all the
features assigned for release on a given date. It will be
the approach discussed in the remainder of this paper.

All three of these approaches can be viewed as
minimizing the risk of resource estimate errors in
release planning. Approach 3 can be viewed as
minimizing this risk with the constraint that release
dates are fixed, or nearly fixed.

Along these lines, the acceptable or even desired
amount of risk may vary from project to project, and
from release to release within a project. Some projects
may prefer risk to be deferred to later releases to the
degree possible. Gilb espoused this approach in [10].
Other projects may prefer that risk be exposed as early
as possible, leading to greater risk in earlier releases.
Boehm described this approach in [3]. Presumably,
many of these risks, especially technical and quality
risks, could be translated into, or have a strong impact
on resource estimate risk.

Therefore, risk, in terms of resource estimates, shall
not be handled as one of the objectives to be
minimized in this paper. Rather, the discussion will
center on effectively handling such risk, regardless of
its magnitude.

There are two aspects of resource estimation risk.
The first deals with how close an organization’s
resource estimates are, on average, to the actual
amount of resources needed to complete a project, or
perhaps a lesser unit of work such as a feature. E.g.,
say an organization historically completes about 85%
of work within their resource estimations. Then the
resource estimation risk could be said to be 15% (or -
15%).

Figure 1 -- Features completed within resource estimates

The second aspect deals with how widely these

estimates vary – i.e., how accurate they tend to be.
Although the average historical estimate may be close
to the average historical resources actually needed, the

variance may be wide, making using such estimates more
risky.

Figure 1 above shows a hypothetical plot of the
historical percentage of work completed for a set of
features within the resource estimates for those features.
Features are used instead of projects in this case because
they provide a much larger sample size. Figure 1 shows
that 90% of work is typically completed within resource
estimates, although this can vary as much as 50% in both
directions around this average.

Figure 2 -- Probability of completing a percentage of work

Integration of Figure 1 from actual percent completed

to 140% yields Figure 2, which shows the probability of
completing a percentage of work, given the historical
trends in resource estimates. For the hypothetical data set,
Figure 2 shows that there is just over a 90% chance of
completing 60% or more of the work within the resource
estimates, just under a 60% chance of completing 85% or
more of the work, and a 30% chance of completing 100%
or more of the work. A somewhat similar approach is
briefly discussed by Davis in [8]. However, Davis
discusses the probability of releasing all features on given
(flexible) dates, rather than the probability of releasing a
percentage of features on a fixed date.

Given a fixed release date, a project manager can then
predict, from historical resource estimation data, his or her
chances of completing a certain percentage of work by the
mandated release date, and plan accordingly. The
approach to making these plans will be discussed in the
next section.

4 Solution Approach
4.1 Execution

The first phase in executing the proposed solution
would be to arrive at resource estimate probabilities, as
described in the previous section. If no historical data
exists, or if there are too few data points to make accurate
estimates, then guessing will have to substitute. However,
the proposed solution still provides significant advantages
even if resource estimate probabilities are guessed at.

Once these estimates are made (or guessed at), then
acceptable probability levels need to be chosen. In the

651

example given previously, (and to be used in the rest
of this paper), 90%, 60% and 30% probability levels
were chosen, which correspond to 60%+, 85%+, and
100%+ work completion levels, respectively. (There is
no reason why other probability levels can not be
chosen, or that the number of probability levels should
be limited to 3.)

Formal release planning models can be created for
any work completion estimate. Given a tool for
implementing the formal model described previously
(EVOLVE*), implementing the formal models for each
work completion estimate is relatively simple. Such a
tool does exist, (ReleasePlanner®) [14] and will be
described in the next section.

Running the formal models for the work
completion estimates involves the following. First the
preliminary resource estimates for all resources are
reduced by a certain percentage that represents the high
certainty case. In our example, the 60% completion,
90% certainty estimate is being examined, so resource
estimates are reduced by 40%. This has the same effect
on the model as saying that resource estimates are 40%
too low. Resource estimates are reduced by 40% in
both the current and subsequent releases, although the
current release is our primary concern.

Release plans are then generated via automated
tools (e.g., ReleasePlanner®) implementing the
models, using these reduced resource estimates, and
features are assigned to the defined releases by the
optimization process in the models.

Next, resource capacities are expanded to
encompass the medium certainty estimates. In our
case, this is the 85% work completion, 60% certainty
estimate solution. Again, this is done with the resource
estimates for both the current and subsequent releases,
although the current release is, again, our primary
concern.

In addition, those features that ended up in the
current release in the “60% solution” are fixed in the
current release for the “85% solution” by using pre-
assignment. They are denoted as belonging to the 60%
solution using some appropriate notation such as “1A”
or “160”.

Release plans are then generated for the “85%
solution”, after resource expansion and pre-assignment
have occurred. If extra features can be added to the
current release in the 85% solution, they will be added
by the optimization process.

Finally, resource estimates are expanded to
encompass the 30% certainty estimates. In our case,
this is the 100% solution. As before, features that were
added to the current release in the “85% solution” are
pre-assigned to the first release, using an appropriate
notation such as “1B” or “185”.

Then release plans are generated for the 100%
solution. If features can be added to the current release
in the 100% solution, they will be added by the

optimization process. These features are then given an
appropriate notation, such as “1C” or “1100”.
4.2 When Resource Estimates are too High

If resource estimates are too high, then a similar
approach to what has been described can be employed.
Let’s say that a project manager determines that a project is
on schedule to complete with only 80% of the resources
being consumed. In this case, another iteration of release
planning can occur where resource estimates are expanded
by 20%, in the same way that solutions were generated by
contracting resource estimates in the 60, 85, and 100%
solutions. New features that can be added to the current
release will be added by the optimization process.
4.3 Monitoring by Project Management

The main intention of this approach is that, at the
operational level, the features in the 60% solutions are
implemented first in the current release. This ensures that
they are completed and delivered even if the effort
estimates fall into the (near) worst case category of being
low by 40%.

Next to be completed in the current release would be
features that fit into the 85% solution, assuming there is
enough time to complete them. And finally, the features in
the 100% solution would be completed.

This scenario allows project managers to have viable
release plans even if schedules slip, but a release on a
given date must be met. Managers can monitor the
progress of a development organization and see which
release plan seems most realistic, ahead of a release date –
the high, medium, or low confidence release plans (60, 85,
and 100% solutions in our example).

If the current release must contain fewer features than
the 100% solution would assure, then those features that
would be accepted under the 100% solution but rejected in
the lower percent solutions should then normally become
top priority in the next release, although this isn’t fully
predictable ahead of time.
5 Hypothetical Case Study
5.1 Set-up

A hypothetical case study was run employing a
benchmark release planning project staged at a large
telecommunications company. The case study includes 25
candidate features to be decided upon for their release
placement. Each feature is actually a kind of mini project
undergoing the key steps of a development cycle (i.e.,. it is
a very large feature). These features are documented in
Table 1.

Seven resources were defined. Resource definitions are
also provided in table 1, along with the consumption of the
resources by the features, and the resource capacities at the
“60%, 85% and 100% solution” levels, as discussed earlier
(columns 4 – 10). A relatively large number of resources
were employed to show that the proposed method will
work with multiple resource types.

Seven hypothetical stakeholders were defined in the
project, and each stakeholder voted on two criteria for each

652

feature – business value and urgency. These
stakeholders basically served the purpose of assigning
value to the features and are unimportant in this study
outside of this role. Therefore, they are not
documented in this paper.

There were two dependencies between the features
– one coupling dependency – between features 9 and
10, and one precedence dependency, between features
14 and 15. Originally, no features were pre-assigned to
releases. Pre-assignments to the current release
occurred when 85% and 100% solutions were
determined, as described previously. Pre-assignments
are shown in Table 1 as dotted cells in the release
placement columns.
5.2 Results

Release planning solutions were generated at the
60%, 85%, and 100% resource capacity levels by the
ReleasePlanner® support tool. The placement of
features in releases can be seen in the three right-most
(release placement) columns in Table 1.

At the 60% level, 7 features were placed in release
1 (the current release) by the tool. These features are
labeled in the table as being in release “1A” to indicate
that they should be implemented first, to allow
planning for the cases where resource capacities might
be expanded to the 85% or 100% levels.

All of the 1A features were then pre-assigned to
release 1, and resource capacities were expanded to
85%, and the ReleasePlanner® tool was executed
again. At this level, two more features were added to
the current release by the tool, (features 2 and 22) and
are labeled “1B” in the table. The 1B features were
then also pre-assigned to release 1, resource capacities
were expanded to 100%, and the tool was run again.
At this level, two more features were placed in release
1 (features 14 and 24), and are labeled “1C” in the
table.

Feature placement in release 2 is not that critical,
because it is assumed that when the current release
(release 1) is completed, then the next release (release
2) will be subject to re-planning anyway, with multiple
new factors in mind. However, placement of features
in release 2 can provide a general roadmap for future
development.

In general, it would be expected that any “1B”
features in an 85% or 100% solution would end up in
release 2 of a 60% solution. Similarly, any “1C”
features in a 100% solution would end up in release 2
of a 60% or 85% solution. In the sample project, this
happened in all cases but one. In that one case, a “1C”
feature (feature 24) in a 100% solution ended up being
postponed in the 85% solution, yet placed in release 2
of the 60% solution. The reasons for this are not

immediately apparent, but when resource capacities are
expanded in the 85% solution, the optimization algorithm
saw a better opportunity for organizing the features by
postponing feature 24. The multi-dimensional nature of the
resource capacities makes analyzing the exact reason
difficult.
5.3 Discussion

The one major caveat of this approach lies in the
implicit assumption that the features are implemented in a
serial fashion. This is often not the case, and features are
often implemented in parallel, with different developers
working on different features simultaneously.

If a release plan has many high confidence solution
features to be implemented, but only a few medium and
low confidence solution features, there may be problems
fully utilizing a staff to implement the small number of
medium and low confidence solution features.

Another caveat lies in the fact that some formal models
(including EVOLVE*) can handle the modeling of
multiple resources simultaneously, and different resource
estimates may be off by different amounts. However,
EVOLVE* can still create formal models using the
approach described in this paper.

Handling both of these situations fall into the domain
of operational rather than strategic planning, and deal with
the allocation of resources at the feature level, which is
outside the scope of this paper.

6 Summary and Conclusions
Formal release planning has the advantage of offering

optimized solutions for projects of almost any scale, in
which features are assigned to releases such that most
important technical, resource and budget constraints are
met. In addition, formal release planning models can
handle complexity far beyond what human beings are
capable of handling.

However, formal release planning produces solutions
inferring accuracy that may be beyond what the inputs to
the model warrant, especially when fixed release dates
and/or fixed resources are mandated.

A solution to this problem was presented in this paper,
in which sets of release plans are generated for low,
medium, and high certainty feature completion given fixed
resources and fixed release dates. This allows project
managers to have working sets of release plans, even if
significant schedule slippage occurs.

Acknowledgment
The authors would like to thank the Natural Sciences

and Engineering Research Council (NSERC) (Discovery
Grant 250343-07) for the financial support of this research.

653

Table 1 -- Features, varying resource capacities and layered release strategies.

ID Name
BTS
SW
Dev.

BTS
HW
Dev.

BSC/BS
M SW
Dev.

MTX
SW
Dev.

Test-
ers

Doc
Writ-
ers

Capital
Req
($k)

60% 85% 100%

1 BTS-HW01
Cost Reduction of
Transceiver 150 200 120 0 200 60 1000 1A 1A 1A

2 BTS-HW02
16 sector, 12 carrier BTS
for China 400 300 150 150 200 150 1000 2 1B 1B

3 BTS-HW03
Expand Memory on BTS
Controller 75 120 10 0 75 20 200 1A 1A 1A

4 BTS-HW04
Next Generation BTS 'In a
Shoebox' 450 350 375 125 500 200 150 pp pp 2

5 BTS-HW05 Pole Mount Packaging 400 180 300 50 400 150 500 pp 2 pp

6 BTS-HW06
FCC Out-of-Band
Emissions Reg. Change 400 120 100 0 200 10 200 1A 1A 1A

7 BTS-HW07 India BTS variant 575 420 400 200 250 200 750 pp pp pp
8 BTS-SW01 Software Quality Initiative 450 0 100 50 400 5 0 pp 2 2
9 SYS-SW01 USEast Inc. Feature 1 100 0 400 100 40 100 0 1A 1A 1A

10 SYS-SW02 USEast Inc. Feature 2 200 0 400 150 50 50 25 1A 1A 1A
11 SYS-SW03 USEast Inc. Feature 3 400 0 100 100 40 20 100 pp 2 2
12 SYS-SW04 USEast Inc. Feature 4 150 0 400 125 400 150 1000 pp pp 2
13 SYS-SW05 USEast Inc. Feature 5 75 180 225 225 300 60 750 pp pp pp
14 SYS-SW06 China Feature 1 50 0 250 140 200 60 500 2 2 1C
15 SYS-SW07 China Feature 2 60 10 120 120 190 40 200 2 2 2
16 SYS-SW08 China Feature 3 75 75 300 120 450 50 500 pp pp pp
17 SYS-SW09 China Feature 4 0 0 100 150 100 50 0 1A 1A 1A
18 SYS-SW10 China Feature 5 250 100 400 400 400 50 300 pp pp pp
19 SYS-SW11 India Mkt Entry Feature 1 200 100 250 250 250 100 500 pp pp pp
20 SYS-SW12 India Mkt Entry Feature 2 0 0 300 250 250 100 300 pp pp pp
21 SYS-SW13 India Mkt Entry Feature 3 100 100 150 100 300 25 1200 1A 1A 1A
22 SYS-SW14 Common Feature 01 100 0 250 100 200 0 50 2 1B 1B
23 SYS-SW15 Common Feature 02 0 0 100 250 150 50 0 pp 2 2
24 SYS-SW16 Common Feature 03 200 0 150 0 100 20 0 2 pp 1C
25 SYS-SW17 Common Feature 04 100 0 300 200 200 30 50 pp pp pp

Total Possible Consumption 4960 2255 5750 3355 5845 1750 9275
Resource Capacities pp = Postponed
 100% solution release 1 1800 1100 2160 960 1680 600 4800
 100% solution release 2 1600 960 1680 960 1680 480 4800
 85% solution release 1 1530 935 1836 816 1428 510 4080
 85% solution release 2 1360 816 1428 816 1428 408 4080
 60% solution release 1 1080 660 1296 576 1008 360 2880
 60% solution release 2 960 576 1008 576 1008 288 2880
Resource Utilization
 100% solution release 1 98.6% 76.4% 96.3% 97.2% 99.1% 90.8% 87.0%
 100% solution release 2 94.4% 37.5% 71.1% 80.2% 100.0% 96.9% 30.2%
 85% solution release 1 99.7% 89.8% 91.5% 91.9% 95.6% 91.2% 90.1%
 85% solution release 2 100.0% 23.3% 67.9% 87.0% 96.6% 79.7% 31.9%
 60% solution release 1 94.9% 81.8% 98.8% 86.8% 95.7% 87.5% 91.1%
 60% solution release 2 84.4% 53.8% 81.3% 88.5% 88.3% 93.8% 60.8%

Resource Consumption (In days, except for
Capital Req.)

Release
Placement Features

References
[1] Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. M., “The

Next Release Problem”, Information and Software Technology,
Vol. 43 (2001), 883-890.

[2] Beck, K., “Extreme Programming Explained”, Addison
Wesley, 2001.

[3] Boehm, B., “A Spiral Model of Software Development and
Enhancement,” Proceedings of the International Workshop
Software Process and Software Environments, ACM Press,
1985.

[4] Brooks, F. “The Mythical Man Month”
[5] Carlshamre, P., “Release Planning in Market-driven Software

Product Development - Provoking an Understanding”, Journal
of Requirements Engineering, Vol. 7, No. 3, 2002, 139-151.

[6] Cohn, M., “User Stories Applied: For Agile Software
Development” 2004, Prentice-Hall.

[7] Cohn, M., “Agile Estimating and Planning”, 2005, Prentice-
Hall.

[8] Davis, A., The Art of Requirements Triage. IEEE Computer 36
(3), pp. 42- 49. 2003.

[9] Du, G., McElroy, J., and Ruhe, G., “Ad hoc versus Systematic
Planning of Software Releases - A Three-Staged Experiment”,
Proceedings of 7th International Conference on Product

Focused Software Process Improvement (PROFES06), Amsterdam
2006.

[10] Gilb, T., “Principles of Software Engineering Management”,
Addison Wesley Longman, 1989.

[11] Jung, H-W., “Optimizing Value and Cost in Requirements
Analysis”, IEEE Software, Vol. 15 (1998), No 4, 74-78.

[12] McBreen, P. 2003. Questioning Extreme Programming. Boston:
Addison-Wesley; p. 100.

[13] A. Ngo-The, G. Ruhe, “Optimized Resource Allocation for
Incremental Software Development”, IEEE TSE, January/February
2009 (vol. 35 no. 1) pp. 109-123.

[14] www.releaseplanner.com
[15] Ruhe, G., and Ngo-The, A., “Hybrid Intelligence in Software

Release Planning”, International Journal of Hybrid Intelligent
Systems, Vol. 1, No. 2, 2004, 99-110.

[16] Ruhe, G., and Saliu, O., “The Art and Science of Software Release
Planning”, IEEE Software, Vol. 22 (2005), No. 6, 47-53.

[17] van den Akker, M., Brinkkemper, S., Diepen, G. and Versendaal, J.,
“Software product release planning through optimization and what-
if analysis”, Information and Software Technology 50, pp. 101-111,
2008.

[18] van-Gurp, J., Bosch, J, and Svahnberg, M, “Managing Variability in
Software Product Lines”, Proceedings of LAC’2000, Amsterdam.

654

PP-HAS: A Task Priority Based Preemptive Human Resource Scheduling
Method

Lizi Xie1,3, Qing Wang1, Junchao Xiao1, Yongji Wang1,2, Ye Yang1

1 Laboratory for Internet Software Technologies, Institute of Software,

 The Chinese Academy of Sciences, China
2Key Laboratory for Computer Science,

The Chinese Academy of Sciences, China
 3Graduate University of Chinese Academy of Sciences, China

{xielizi, wq ,xiaojunchao,ywang,ye }@itechs.iscas.ac.cn

Abstract
To schedule human resource effectively is an

important research topic in software project
management field. Optimized scheduling for limited
resource is a firm assurance for software project
success. The most important problem is how to ensure
that the more valuable task be satisfied with resource
when resource is not enough for all the tasks.
Traditional human resource scheduling mainly
depends on the project manager’s experiences and
instincts. Human resource scheduling is much more
difficult for those software companies which have
many concurrent software projects. Resource conflicts
often take place and make great trouble to the
management work. There is a lack of scheduling
method to support software project manager’s work
under limited human resource. In this work, we
propose a preemptive human resource scheduling
method base on task priority and Process-Agents’
negotiation. The capability and work time of the
assigned human resource can be guaranteed. The
value-based task priority model introduced in this
paper is integrated with Process-Agents to supply
decision support for project managers who are
struggling against resource conflicts in software
projects. The method can help software companies
gain high human resource utilization rate and improve
their software project management capability.
1. Introduction
Human factors are much more important for software
process compared with traditional industry process,
and human resource is the core resource in software
development [1]. The purpose of researching resource
scheduling in software projects is to help software
companies make better use of their limited human
resource. Schedule, quality and cost of a software
project can be controlled only when the resource are
scheduled clearly and effectively.

Traditional human resource scheduling mainly
depends on the project manager’s experiences and

instincts. It works well when the project and the
organization are particularly small. Actually the
environment is often very complicated. To schedule
human resource effectively is much more difficult in
Multi-Projects development. There is a lack of
scheduling method for limited human resource to
support software project management work.

Boehm has proposed VBSE (Value based Software
Engineering) [2]. He claims that the factors in software
engineering are not value-neutral. 20% of the features
provide 80% of the value. Pareto Principle [3] should be
considered in software engineering. We have to admit
that the personal capability is different from person to
person, and the task’s value for the organization is also
different from task to task. In order to make better use
of limited human resource, two problems should be
solved: How to describe and evaluate the value of
tasks for the organization and how to make human
resource scheduling much more effective and flexible.

We propose preemptive human resource scheduling
through Process-Agents’ negotiation, and using value
based task priority to solve resource conflicts. First,
value based task priority model can decompose a
project’s value to its tasks through the three
dimensions (Schedule, Quality, Cost). The value of the
task is consistent with the project status. Second, a
preemptive human resource scheduling method is
proposed. The resource can be allocated or reallocated
much more smoothly according to the inconstant
project environment.

The rest of this paper is organized as follows,
section 2 introduces some related works, section3 will
discuss the value based task priority model and
describes the resource scheduling method with
Process-Agents, an example of the method is shown in
section 4. Conclusion and future work are presented in
section 5.
2. Related Work
Human, technology and process are the three core
factors in software production. How to describe,

655

manage and schedule human resource effectively is the
key of software project management. We have
proposed OEC-SPM (Organization Entity Capability
based Software Process Modeling) [4]. The
organization resource and knowledge asset are
organized by a set of Process-Agents. Process-Agent
can self-government and cooperate with each other.
The work presented in this paper is based on OEC-
SPM, and focuses on optimized human resource
scheduling.

QONE [5] has been widely used by software
companies in china. We have developed a tool [6] to
create Process-Agents automatically from historical
project data in QONE. The work in this paper
enhances the relationship between Process-Agents and
human resource.

Scheduling is to allocate resource and time for a
shared goal. There are many scheduling arithmetic in
operations research fields [7]. But these standard
theoretical methods mainly focus on traditional
industry process where the output of the equipments
often plays the key role. The resource are defined and
scheduled without considering the complexity and
particularity of human. Our former research [8] aims to
optimize human resource allocation for single software
project, but it does not take multi-projects environment
for consideration.
3. Task Priority based Preemptive Human
Resource Scheduling Method

Figure1 shows the main framework of our resource
scheduling method. The input of the method is a task
set and a task priority sequence which is produced by
the task priority model. Process-Agents will schedule
human resource following the given negotiation
protocol. When resource conflicts occur, decisions will
be made by Process-Agent base on task priority
sequence. The output of the method is the optimized
resource schedule result which can do decision support
for software project managers.

3.1 Value based Task Priority Model

3.1.1 Model Definitions
Project value indicates the importance of the software
project to the organization. For example, we can
simply using this formula to estimate the value of a
project:

PSCRvP ��)(.
(R: Expected return from market. C: Estimated cost of
the project. PS: Probability of the project success
Table 1. The explanations of the parameters in task

priority model
Parameter Explanation

P Project
vP. The value of the project

FS The set of factors which can
affect vP. }.,.,.{ CPQPSPFS 	

SP. The schedule factor which can affect
 vP.

QP. The quality factor which can affect vP.
CP. The cost factor which can affect vP.

SIP. The importance rank of to SP. P

QIP. The importance rank of to QP. P

CIP. The importance rank of to CP. P

SWP. The control power of on schedule P

QWP. The control power of on quality P

CWP. The control power of on cost P

T Task
sT . The schedule factor of task T
tsT . The degree of the impact for to sT . SP.
qT . The quality factor of task T
tqT . The degree of the impact for to

qT .

QP.
cT . The cost factor of task T
tcT . The degree of the impact for to cT . CP.

Software project management relates to schedule
management, quality management and cost
management. To get a balance among the three
dimensions in appropriate scope is the core to ensure
software project success. The importance of S, Q and
C * varies from project to project because of different
business goals and organization environments. In order
to manage projects effectively, we have to order the
importance of the three dimensions for a project. In our
work, we try to analyze and decompose a project’s
value through the three dimensions. The symbols used
in the model are listed and explained in table1.

Figure 1. The main framework of PP-HAS

* In the rest parts of this paper, S, Q and C are short for

Schedule, Quality and Cost.

656

Task Value Definition: is the value of task . vTx . xT
vPcfP

tcTcT
tcTcTqfP

tqTqT
tqTqTsfP

tsTsT
tsTsTvT

nn

xx

nn

xx

nn

xx
x .).

)..(
..

.
)..(

..
.

)..(
..

(. ��
�

�

�

�

�

�

�

�
	

���

sfP. is the value proportion for P.S to P.

ccqqss

ss

WPIPWPIPWPIP
WPIP

sfP
......

..
.

�
�
�

�
	

qfP. is the value proportion for P.Q to P.

ccqqss

qq

WPIPWPIPWPIP
WPIP

qfP
......

..
.

�
�
�

�
	

cfP. is the value proportion for P.C to P.

ccqqss

cc

WPIPWPIPWPIP
WPIPcfP

......
..

.
�
�
�

�
	

Through the definition of , and , we can
decompose project value through S/Q/C. As we all
know, a project consists of several tasks. Task here
means the low level work package in WBS

sfP. qfP. cfP.

[9], its cost,
workload, duration, work-product and resource
requirement are finely estimated. We will evaluate the
impact of a task for the project from the three aspects
(S/Q/C), and decompose the project’s value into task’s
value by choosing reasonable weights (see Task Value
Definition).It can be easily proved that � 	 vPvTx ..

We can compare the priorities of tasks by their
values. Tasks with higher value will gain high priority;
tasks with lower value will gain lower priority.

3.1.2 Quantify the Parameters
We can embody the model by implementing the five
rules below. The method we finally get can help
project manager to estimate the value of different tasks.
The approaches of quantifying the parameters can be
customized according to the organization situation.
Rule1. Quantify the importance of S, Q and C for a
project.

)10)...(()10.1()10.1()10.1(

��������� cqscqs IPIPIPIPIPIP

The value of the three parameters in rule1 can be
decided by the managers using Delphi Method.
Rule2. Quantify the control power on S, Q and C
for a project.
IF the allowed deviation of S/Q/C is below 3%,

SWP. / / =4; IF the allowed deviation of S/Q/C is
QWP. CWP.

in the range (3%,10%], / / =3; IF the
SWP. QWP. CWP.

allowed deviation of S/Q/C is in the range (10%,30%],
SWP. / / =2; IF the allowed deviation of S/Q/C is

QWP. CWP.

higher than 30%, / / =1.
SWP. QWP. CWP.

For example, if the allowed deviation of S is 2%, the
allowed deviation of Q is 15%, the allowed deviation

of C is 25%, then =4, =3, =2. The deviation
range and the value of weight can be modified by the
user to reflect their specific situation.

SWP. QWP. CWP.

Rule3. Quantify task schedule factors
sT . is the planed duration of the task, the unit should

be “day”.
If T is on the critical path of the project, =2, else, tsT.

tsT. =1.
The tasks on the critical path are much more important
for project schedule.
Rule4. Quantify task quality factors

qT . is the number of estimated defects which will be
injected by task T .
If T belongs to the “Requirement” phase of the project
life, =4. If tqT . T belongs to the “Design” phase of the
project life, T =3. If tq. T belongs to the “Coding” phase
of the project life, T =2. If tq. T belongs to the “Test”
phase of the project life, =1. tqT .

We believe that the earlier the defect was injected, the
more important it is. The phases of the project life can
be extended if needed.
Rule5. Quantify task cost factors

cT . is the plan cost of the task T . The unit could be $.
For all the tasks, =1. tcT .

3.1.3 An Example of Using the Model
The software company has many customized versions
of a product to maintain. Two customers have raised
some new function requirements, so there are two
projects and . Because of the time and human
resource limitation, there will be resource conflicts
between the tasks of the two projects. The project
manager has do decide which task is more valuable so
that it should be assigned enough human resource with
high priority. The manager has estimated the value of
these two projects: = 360, = 460. Now, we
will calculate the task priority sequence in the two
projects using the task priority model.

1P 2P

vP .1 vP .2

At first, we will decompose the value of each
project on the three dimensions (S/Q/C) using rule1
and rule2. The result of

1P is shown in table2, and the
result of P is shown in table 3.

2

The work of the two projects has been broke down
by the project manager. The task attributes have been
finely estimated, such as the plan duration, plan cost,
estimated defect injected and so on. The task attributes
in both projects are shown in Table 4. We can get the
parameters for each task by using rule3-5. (Table 5).

657

Table 2. The parameters of (F(Factor) IR(Importance
Rank) VP(Value Proportion))

1P

Allowed deviation % F IR
3 3-10 10-30 >30

VP

S 5 - - - P.sf=0.61
Q 3 - - - P.qf=0.27
C 2 - - - P.cf=0.12
Sum 10 - - - - 1

Table 3. The parameters of (F(Factor) IR(Importance
Rank) VP(Value Proportion))

2P

Allowed deviation % F IR
3 3-10 10-30 >30

VP

S 3 - - - P.sf=0.32
Q 5 - - - P.qf=0.54
C 2 - - - P.cf=0.14
Sum 10 - - - - 1

Table 4. Tasks in the two projects. (C (Cost), D (Plan
Duration), CP (Critical Path), PH (Phrase), DI

(Estimated defects injected))
Project Task C D CP PH DI

T1 1600 5 Y Design 10
T2 1280 4 Y Test 3
T3 1600 5 N Code 5

P1

T4 1920 6 Y Code 6
T5 2240 7 Y Design 30
T6 2560 8 Y Test 10 P2

T7 3200 10 Y Code 15
Table 5. The derived parameters of tasks

T sT . tsT . qT . tqT . cT . tcT .
T1 5 2 10 3 1600 1
T2 4 2 3 1 1280 1
T3 5 1 5 2 1600 1
T4 6 2 6 2 1920 1
T5 7 2 30 3 2240 1
T6 8 2 10 1 2560 1
T7 10 2 15 2 3200 1

Now, we can get the value of each task by using Task
Value Definition in section 3.1.1

	vT .1
=126.828, 63.936, 59.94, 	vT .2 	vT .3 	vT .4

109.332,
230.414, 87.308, 142.278 	vT .5 	vT .6 	vT .7

Based on the task values, we can get the task
priority sequence: T5>T7>T1>T4>T6>T2>T3. This task
priority sequence can do much help for us when
scheduling human resource.

3.2 The Process-Agents based Preemptive
Resource Scheduling Method

3.2.1 Concepts of Process-Agent
PA(Process-Agent) is first introduced in OEC-SPM[6][7].
PA is the abstract description of a set of organizational

human resources with similar capability. The resource
scheduling method in this paper is based on these PAs.

PA consists of three kinds of knowledge and some
engines. The engines control the self-government
actions and interactions of the Process- Agents.
Description knowledge (DK) indicates the resource
owned by the PA, what can PA do, and the capability
of the PA. Process knowledge (PK) indicates the
detailed processes for PA to achieve special goals.
Experience Lib (EL) holds the history data of
executing software processes.

We extended DK of PA. Human resource maintains
the unit cost and work calendar. Different human
resources have different unit costs and work calendars.

3.2.2 Resource Scheduling Process base on
Negotiation

Figure 2. Resource scheduling process of PA
(BI (Bid Invitation), C (Contract))

Because human resource is organized by a group of
PAs, the resource scheduling process exists not only
inside a PA, but also the cooperation among PAs. PA
will negotiate and cooperate with other PAs to satisfy a
task when its own resource is not enough. Figure2
shows the process of a PA when conducting resource
scheduling and negotiating with others.

The information space for PAs to communicate
with each other is called shared information space
(SIS). The sub resource requirement formed by PA is
called bid invitation (BI).

The resource scheduling and negotiation process of
PA are explained as follows:
Step 1. Start Up: After being started, PA will perceive
the SIS to find new tasks or bid invitations. PA will
judge whether it has the capability to do the task or the
bid invitation according to its knowledge, if so, PA
will turn to Step 2, else, it will continue perceiving the
SIS.
Step 2. Internal Resource Scheduling: PA analyzes
the resources needed by the task or bid invitation,
searches the optimized human resource combination in
its human resource set. When necessary, resource

658

assigned to other tasks of lower priority will be robbed
to satisfy high priority task. If PA can find suitable
resource combination, it turns to Step 4; else, it turns to
Step 3.
When searching suitable resource combination, if the
available free human resource is not enough, Task
priority model will be used by PA to do preemptive
human resource scheduling. First, when searching
suitable human resource combination for the given
task, free human resources and human resources
occupied by lower priority tasks compared with the
target task are both considered. Second, if there is
more than one tasks whose resource can be robbed, PA
will choose the task of lowest priority.
Step 3. Bid Invitation Preparation: PA forms a bid
invitation based on the lack of resource. After sending
it to the shared information space, PA turns to Step 8.
Step 4. Bid Preparation: PA forms a bid based on the
selected human resource combination, sends it to the
share information space, and turns to Step 5.
Step 5. Waiting for Contract: PA searches SIS to find
corresponding contract. If the contract is found, PA
turns to Step 6; else, PA turns to Step 7.
Step 6. Generating Resource Plan: PA generates
resource plan according to the contract, updates the
work calendars of the human resource, sends contract
confirmation to SIS, and turns to Step 7.
Step 7. Finish: PA finishes the resource scheduling
process, waits for the next startup.
Step 8. Waiting for Bid: PA searches the SIS, if
expected bids are found, it turns to Step 9, and else, it
turns to Step 7.
Step 9. Bid Selection: PA selects the best bid, forms a
contract based on the chosen bid, sends the contract to
SIS, and turns to Step 10.
Step 10. Waiting for Contract Confirmation: PA
searches the SIS, if expected contract confirmation
exists, it turns to Step 4, and else, it turns to Step 7.

We will give an example to illustrate the method in
the following section.

4 An Example of the Method

4.1 Case Introduction

We will take the two projects in section 3.1.3 to
illustrate the process of task priority based preemptive
human resource scheduling method. From section
3.1.3 we know that the task priority sequence is:
T5>T7>T1>T4>T6>T2>T3. There are nine PAs in

our system listed in Table 6. (The description of
capability of PA is simplified compared to OEC-SPM.
More detail please refer to [4])

Table 6. Process-Agents in the system
Name Capability Rank Resources
PA1 Design Senior HR1
PA2 Design Medium HR2
PA3 Design Junior HR3
PA4 Code Senior HR4
PA5 Code Medium HR5 HR6
PA6 Code Junior HR7 HR8
PA7 Test Senior HR9
PA8 Test Medium HR10
PA9 Test Junior HR11 HR12

Supposing that project1 has already finished resource
allocation (table7). Now the emergent project2 has to
be set up(table8). There will be resource conflicts
between the two projects. The resource should be
rescheduled to satisfy the two projects.
Table 7. Tasks in project 1 (T (Task), C (Capability), NH

(Number of human required), PSD (Plan Start Date),
PFD (Plan Finish Date))

T C NH PSD PFD HRs
T1 D 1 2009-5-1 2009-5-5 HR1
T3 C 2 2009-5-6 2009-5-12 HR6 HR7
T4 C 2 2009-5-6 2009-5-13 HR4 HR5
T2 T 2 2009-5-

14
2009-5-18 HR9 HR10

Table 8. Tasks in project 2
T C NH PSD PFD
T5 D 1 2009-4-29 2009-5-5
T6 T 2 2009-5-16 2009-5-23
T7 C 2 2009-5-6 2009-5-15

We will schedule the resource for the two projects
using our method under the situation described above.

4.2 The Process and Result of Resource
Scheduling

There is a special PA (PA-System) who is in charge of
the new tasks. All the tasks will be scheduled
according their logic sequence. We will take the
resource scheduling process for task T7 for example to
illustrate our method:

Step1: PA-System puts T7 into share information
space. PA4, PA5 and PA6 will try to satisfy T7 based on
T7’s capability requirement.

Step2: PA4 finds that human resource HR4 is
occupied by T4 in the time period (2009-5-6, 2009-5-
15). Because T7’ priority is higher than T4’s, HR4 can
be robbed by T7. But PA4 can only offer one resource
for T7 while two persons are needed. PA4 will form a
bid invitation based on the resource lack. The bid
invitation indicates that it needs one person with
designing capability during (2009-5-6, 2009-5-15),

659

and it is derived form T7. PA4 puts the bid invitation
into SIS.

Step3: PA5 and PA6 can detect the bid invitation.
They will try to satisfy it. PA5 finds that its two
resources are both occupied. Based on task priority
(T7>T4>T3), PA5 decides to rob T3’s resource. PA5
forms the bid {2009-5-6, 2009-5-15, HR6}.

Step4: PA6 forms the bid {2009-5-6, 2009-5-15,
HR8}.

Step5: PA4 will choose PA5’s bid, because PA5 has
higher capability than PA6.

Step6: After contract and contract confirmation,
PA5 updates HR6’s work calendar, PA4 integrates its
bid with PA5’s. The new bid is {2009-5-6, 2009-5-15,
HR4, HR6}.

Step7: PA5 and PA6 will form its bids too, but only
PA4’s bid will be chosen by PA-System based on their
capability level.

The four times of resource scramble in the whole
scheduling process are summarized in Table 9. The
final resource scheduling result is shown in table 10.

Table 9. The four times of resource scramble
ID Resource scramble detail
1 T5 Robs T1 of HR1

2 T7 Robs T4 of HR4

3 T7 Robs T3 of HR6

4 T6 Robs T2 of HR9 and HR10

Table 10. The final result of resource scheduling
Task Process-Agent Resources
T1 PA2 HR2
T2 PA9 HR11 HR12
T3 PA6 HR7
T4 PA5 PA6 HR5 HR8
T5 PA1 HR1
T6 PA7 PA8 HR9 HR10
T7 PA4 PA5 HR4 HR6

From the resource scheduling result in table 10, the
advantages of our method can be summarized:
1. Based on Process-Agent, the human resource

capability is finely considered when scheduling
resource. The most skillful human resources are
assigned to the most important tasks. (T5 got the
most skillful person). And the assigned human
resource will have enough time for task execution.

2. When resource is not enough, the task with higher
value will be satisfied first. The total income with
limited resource can be maximized. (The total
income is 760.06 (T1.v+T2.v+T4.v+T5.v+T6.v+T7.v)
better than the income under un-preemptive
schedule method: 677.722 (T1.v+T2.v+T3.v+T4.v+
T5.v+T6.v))

There might be a plan change requirement for T3. The
project manager will focus on dealing with the task of
lowest value.

5 Conclusion and Future Work

Preemptive human resource scheduling method can
help project managers to optimize human resource
utilization in the complicated Multi-Projects
environment. Using Process-Agent can support
effective resource scheduling under human capability.
PP-HAS can help software companies optimize
resource management and solve resource conflicts. We
believe that making better use of human resources will
greatly improve software companies’ enterprise
competitive power. Future work will focus on
developing tools and refining the task priority model.
Acknowledgments: Supported by the National
Natural Science Foundation of China under grant Nos.
90718042, the Hi-Tech Research and Development
Program (863 Program) of China under grant
No.2007AA010303, 2007AA01Z186, as well as the
National Basic Research Program (973 program) under
grant No. 2007CB310802.

7 References

[1] Kathy schwalbe, Information technology project management, 2nd

edition

[2] Barry Boehm , A Value-Based Software Process Framework,

SPW/ProSim2006,Shaing,China

[3] Richard Koch. The 80/20 Principle: The Secret to Success by

Achieving More with Less. Doubleday Business. 1998

[4] Qing Wang, Junchao Xiao, Mingshu Li, M. Wasif Nisar, Rong

Yuan, and Lei Zhang. A PA Construction Method for Software

Process Modeling in SoftPM. SPW/ProSim 2006, LNCS 3966

[5] Q. Wang, M. Li: Software Process Management: Practices in

China. SPW 2005, LNCS 3840, pp. 317–331

[6] Lei Zhang, Qing Wang, Junchao Xiao, Li Ruan, Lizi Xie, Mingshu

Li, A Tool to Create PAs for OEC-SPM from Historical Project

Data :ICSP2007, LNCS 4470, pp.84-95

[7] Brucker P Scheduling Algorithms Springer Verlag. 2001.

[8] Lizi Xie. A Project Scheduling Method Based on Human Resource

Availability. SEKE2008.

[9] IEEE Std 1058-1998, IEEE Standard for Software Project

Management Plans

660

A Real Execution of a Software Process Improvement: An Opportunity to
Execute a Combination of Approaches

1Adriano Bessa Albuquerque, 2Ana Regina Rocha

1University of Fortaleza (UNIFOR) - Washington Soares Avenue, 1321 - Bl J Sl 30 - 60.811-341

– Fortaleza, Brazil
2COPPE/UFRJ - Federal University of Rio de Janeiro, POBOX 68511 – ZIP21945-970 – Rio de

Janeiro, Brazil

Abstract
Software development organizations must improve

their products’ quality, increase their productivity,
reduce the projects’ costs and increase the projects’
predictability aiming to maintain their competitiveness
in the market. So, it is essential to invest on software
process and support approaches to continually improve
the processes on this volatile market. This paper
presents the execution of a process to evaluate and
improve the organizational process assets in a software
organization, where we can experiment a combination
of known approaches of different knowledge areas. At
the end, we analyzed the results and suggested some
improvements to the process.

1. Introduction

Nowadays, the world’s software industry increases
because the software becomes part of many products and
activities. In the United States, between 1995 and 1999,
the tax of investments in software was four times higher
then in the period of 1980-85 [1].

However, the software organizations need improve
the quality of their products, increase the productivity,
reduce the costs and increase the predictability of the
projects to continue in this promising market, where the
changes of the clients needs are constants and the
increase of the competitiveness.

In face of this context and of the knowledge that the
quality of the software products is influenced by the
quality of the software processes used to develop them
[2], the industry of software and the academy are
investing more and more in researches related to

software process. Besides, as the market is volatile and
its level of exigency increases day by day, the processes
should stay all the time in a state of continuous
improvement [3] [4].

However, the improvement of software processes
comprehend complex issues, being fundamental support
them in an efficient and organized way.

This paper presents the execution of the process
“Evaluation and Improvement of Process Assets”, where
some approaches were experimented. The process is part
of the strategy in layers to define, evaluate and improve
software processes, implemented on TABA Workstation.

Following this introduction, Section 2 presents the
strategy in layers to define, evaluate and improve
processes. Section 3 presents the execution of the
proposed process and the analysis of the tested
approaches. Section 4 presents the identified
improvements opportunities to the process. Section 5
finally concludes the paper.

2. Strategy in Layers to Define, Evaluate
and Improve Software Processes

In 2006, a research group of COPPE defined the
Strategy in layers to define, evaluate an improve
software processes to be implemented on TABA
Workstation, an enterprise-oriented Process-centered
Software Engineering Environment (PSEE) created to
support the definition, deployment and software process
improvement [5].

Nowadays (Figure 1), the strategy comprises three
layers: external entity layer, organizational layer and
processes execution layer.

661

Figure 1. Strategy in layers to define, evaluate and

improve software processes

According to Figure 1, in relation of process

improvement, the layers interact in the way presented
bellow:

(i) processes execution layer and organizational

layer: a set of data from the executed processes is
analyzed on the organizational layer. They can be
collected from the following sources: processes
adequacy evaluation (supported by Avalpro [6]);
processes adherence evaluation; work products
adherence evaluation; post-mortem analysis (supported
by Avalpro [6]); processes monitoring indicators
(supported by Metrics [7]); lessons learned (supported
by Acknowledge [8]); guidelines (supported by
Acknowledge [8]); processes changes rationales
(supported by AdaptPro [9]); and processes changes
demands.

The results of official MPS.BR [10] and SCAMPI

[11] assessments can contribute with the analysis too.

(ii) organizational layer and external entity layer:

the processes problems identified on the organizational
layer, their root-causes and improvements to be
implemented, besides the results of MPS.BR or CMMI
assessments are sent to the external entity. These data,
from many organizations, are analyzed and
improvements are identified to the external entity’s
assets.

3. The process definition and execution

The approach was performed on the organizational
layer and comprised the following phases: (1) Identify
improvements objectives; (2) Analyze data; (3) Identify
improvements; (4) Analyze and prioritize improvements;
(5) Implement improvements; (6) Define preventives
actions; and (7) Incorporate lessons learned.

The experience of use was in a medium size company
from Rio de Janeiro between March and August of 2007.
The objective of the experience was to find out
evidences of viability and inadequacy aspects of the
process and, specially, to experiment some define
methods and techniques to support the activities
execution.

Phase 1 - Identify improvements objectives: the purpose
of this phase was to identify the improvements
objectives to the organization’s processes. These
objectives may be reach higher levels on a maturity
model (vertical improvement) or make changes on the
processes to improve the productivity, the adequacy to
the organization or the performance (horizontal
improvement), or both of them.

The organization’s directors defined hierarchically
the following objectives: (i) reach the level F of the
MPS.BR maturity model; (ii) improve the processes
adequacy and (iii) enlarge the use of the processes in all
the organization.

Phase 2 - Analyze data: the purpose of this phase was
to identify the problems that must be solved, because are
making difficult the organization achieve their
improvements objectives. As the problems are
organizational, it is necessary to analyze data from more
than only one project.
 Aiming to guide the analysis, the organization
defined:

• Business objectives: (i) reduce the level of rework,

that is an historical problem and (ii) reduce the
projects costs to increase the organization’s profits.

• Product quality objectives to the organization:
(i) improve the usability, because the company
develops websites; and (ii) increase the products
level of reliability, reducing the quantity of defects.

• Processes, which the data would be analyzed:
Project Management, Requirements Management
and Measurement.

• Types of problem to be considered: (i) adequacy:
related to the level of adequacy of the processes or
activities (“Training Inadequacy”, “Support Tools
Inadequacy” and “Templates Inadequacy”); (ii)

662

usability: related to the difficulty to understand the
description of the activities e (iii) relevance: related
to the execution of not necessary activities.

• Sources of evidence: (i) processes adequacy
evaluation; (ii) processes adherence evaluation; (iii)
post-mortem analysis; (iv) processes monitoring
indicators; (v) lessons learned; (vi) processes
changes rationales; and (vii) processes changes
demands.

 On this phase we used and tested the Content
Analysis Technique, analyzing qualitative data registered
on the projects’ sources of evidence. This methodology
is usual on the Social Sciences. Its main goal is find out
the more relevant subjects, reading the documents. The
frequency of them defines its relevance [12].
 We executed this technique to define the most
relevant problems, searching and identifying the
frequency which some terms were presented on the
reading documents, like: “partially adequate”,
“inadequate”, and others. Besides the frequency, we
classify the terms, using others characteristics presented
on the Matrix to Analysis of Problems (Table 1), created
specially to support this qualitative analysis.

Table 1. Identified Improvement Opportunities
Characteristics Description

Frequency ��������	
 ���

 ����
 ��
 �������
 ��
 �����

����
��
��
������
���
����������

Intensity �����
 ��
 ��������	
 ����������
 ��
 ����

����������
������
��
���
��������

Gravity �����
 ��
 �����	
 ����������
 ��
 ���
 ����������

������
��
���
��������

Influence on the
business
objectives

�����
 ��
 �������
 ���������
 ��
 ���
 ����������

������
��
���
�������
��
���
�������
��������

�����������

Influence on the
product quality
objectives

�����
 ��
 �������
 ���������
 ��
 ���
 ����������

������
 ��
 ���
 �������
��
 ���
 �������
 �����	

�������
�����������

Impact on the
adherence of the
maturity models

�����
 ��
 �������
 �����
 ��
 ���
 ����������

������
��
���
�������
��
���
��������
��
���

������	
�������

After we consolidated the results, the following

problems were selected to be considered in the actual
improvement cycle: (i) Project Management: Tools
Support Inadequacy and Templates Inadequacy; (ii)
Requirements Management: Training Inadequacy; and
(iii) Measurement: Tools Support Inadequacy.

Phase 3 - Identify improvements: the purpose of

this phase was to identify the improvements to be
implemented on the organization processes assets. For

this, we used a collaborative approach with the
participation of the collaborators that somehow were
involved with the processes. We decided to use and
tested the collaborative approach defined on [13]. It is
also used a lot on the Social Sciences.
 A meeting was held with the collaborators involved
on the projects (projects’ managers, developers and test
analyst) and the members of the software process group
and metrics group.
 On this meeting we tested another technique. We
presented to the participants predefined cause-effect
diagrams to facilitate the identification of the problems’
root causes.

After the presentation of the predefined diagrams, the
collaborators suggested modifications, inclusions and
exclusions, generating final versions of the diagrams.

We decided to utilize the same meeting to capture the
improvement opportunities, which were identified after
the elaboration of the final version of a diagram. At the
end of the meeting the improvement opportunities
presented on Table 2 were identified.

Table 2. Identified Improvement Opportunities

Processes Problems Improvement
Opportunities

Project
Management

Support tool
inadequacy

�
 �������
 �������
 ��

 !"#������
�����

��
 $�������
 ���
 %&'&

(��)������
 ��
 !"
#�������

��
 ����	
 ���
 %&'&

(��)������
 ��

�����"
����
����

 Templates
inadequacy

�
 ������
 ��
 �*�����

�����
 ����
 ���	
 ��

�������
���������

Requirements
Management

Training
inadequacy

�
 ������
 ���
 ������

��
 �	���
 ��

�������������

��
 �������
 ���

������
 ��
 ������
 ���

�����

��
�����

���
������	

��
 �����
 ���
 ��������

��
������
��
���
���

����
 ����
 ���
 ����

��	��
 ��
 ���
 +����	

,�����

��
 �������
 ��������
 ��

-�����������

 �������
���
��
���

�����������

Measurement Support tool
inadequacy

�
 �������
 ���

�������������.
 �������	

���
 ������)/�

�����������

��
 ������
 ����������
 ��

����
���
���
��
�������

���
���

��
 ���������
 �����

���������
��
�������

���
������������
��
���

��
 ����������
 �������

��
���
�����0�����

663

At the end of the meeting we registered the following

lessons learned, identified by the participants: (i) the
project becomes more organized with the utilization of
some artifacts; (ii) the requirements management must
be performed in all the organization’s projects, because
it is an important factor of success; (iii) the requirements
management facilitates the stakeholders’ understanding
of the project; and (iv) the activity spreadsheet is a very
important management tool, but it should be filled
exactly on the moment when the fact occurs.

Phase 4 - Analyze e prioritize improvements: the

purpose of this phase was to analyze, prioritize and
select the improvements to be implemented. Initially, to
deepen the analysis, we applied a SWOT Analysis [14]
aiming to test how useful this method could be to
analyze the improvement opportunities. The objective
was to know the factors that may facilitate or difficult
the implementation of the improvements.

The strengths were the internal facilities to implement
the improvement on the organization. The weaknesses
were the internal difficulties. The opportunities were the
external benefits obtained with the implementation of the
improvements and the threats were the external benefits.

After the SWOT Analysis, we decided to test the
prioritization of the improvements using a multiple
criteria formal evaluation. For this, we defined the
Matrix to Prioritize Improvements. Although this matrix
comprises nine criteria, as we can see on Table 3, we
decide to use only five: (i) urgency; (ii) impact; (iii)
internal satisfaction; (iv) investment; and (v) operational
simplicity.

Table 3. Criteria of the Matrix to Prioritize

improvements

Criteria

Criteria Definition

�������	���
 !����������
 ��
 ����
 ��
 ���
 �����0����
 ��
 ���

�����������
����
���
��
������������

����	�
 1�����	
��
���������
���
������������

��	��	�
 #��������	
��
 ���
�������
����������
����
�����

��
���
�����������
����
���
��
������������

�����
 $����
 ��
 ���
 �����������
 ��
 ���
 �������

�����������

�	���	��

����������	

2����������
 ����������
 ����
 ���
 �������
 ��
 ���

�����������
����
��
������������

�	������	�
 3����
 ��
 ���������
 ��������.
 ����
 ��

�������������
��
���������
���
������������

����
 3������	
����
��
���������
���
�����������
�����	��

����������	

2������/
 ����������
 ����
 ���
 �������
 ��
 ���

�����������
����
��
�����������

��������	��

���������

!��������	
 ��
 �������
 ���
 �������	
 ������
 ��

���������
���
������������

As we can see, each criterion was evaluated using a

scale comprised of the following values 3, 5 and 7. The
improvement that obtained the highest level of priority
was: “Create a new activity to obtain the revision and
approval of the use cases from the test analyst and the
Quality Group“.

Phase 5 - Implement improvements: the purpose of
this phase was to implement and institutionalize the
improvements selected on the anterior phase, including
the planning, execution and evaluation of pilot projects.
As this phase had already been evaluated by COPPE in
experiences of processes implementation (consultancy)
[15], it was not evaluated, but a report containing the
results was elaborated to be sent to the external entity.

Phase 6 - Define preventive actions: the purpose of
this phase is to define actions that may prevent the
organization against imminent problems. For this, we
decide to know the relations of the causes of the
problems. We chose to test the utilization of the Matrix
to Find-out Relationships, adapted from the Matrix to
Discovery, suggested by Bacon and presented in [16].
The utilization of this matrix aimed to facilitate the
identification of the relationships of the causes identified
on the meeting hold on phase 3 and their strength of
influence (relationship coefficient). Besides, aiming to
improve the visualization, we tested the utilization of
circles to represent the strength of influences among the
causes, similarly in the Matrix of Distances, illustrated in
[17]. It aimed, mainly, to facilitate the identification of
influence zones.

Phase 7 - Incorporate lessons learned: the purpose of
this phase was to register the lessons learned captured
during the execution of the phases, aiming to be reused
in future situations. At this experience, many lessons
learned were captured and registered.

4. Analysis of the Results

After the execution of the proposed process, we
analyzed the main utilized methods and techniques to
identify their weaknesses and strengths to support the
activities execution and to suggest some improvements.
Table 4 presents the results obtained by this analysis.

Table 4. Analysis results

Technique/Method Results

��	��	�
�	������

%��
�����0����
��
 ����
���������
������

���
 ��
 �����0�
 ���
 ��	���
 ��
 ���

���������
���
4������.
 ��
 ��
 ��������

��
 �������
 ����
 ���������
 ����
 ������

664

������.
 ��)�
 ������.
 ��
 �����
 ������
 ���

�������������
��
������
�����
��
��*��

�������������

�������

%��
���������
��
���
�����������
��

�������
��
���	
�����
������
���������

��
�������	
���
��������/
����
�����
��

�������
 ������
 �������������

'������.
 ��
 ���������
 ��
 �������
 ���

)��������
 ��
 ���
 �����������
 ��
 ���

�����0����/�
 ����������
 %���
 ������

���
 ���������
 ���
 �*������
 ��
 �������

��	���.
 ���
 ��������
 ���
 ����/
 �����

��
 ����������
 ��
 ���
 ������0����
 ��
 ���

)���������
5678
�

 ������	��
 ����!
�����
�������

%��
 ���
 ��
 ���"�������
 ������
 ������

���
 ����������
 ��
 ��������
 �����

�*���������
 ����
 ���
 ����������
 %��	

�����
 ��
 ����
 �

 ��������
 ���	��
 ��

���
���������
��
���
������
4������.

��
 ��
 ��
 ���
 ������
 ��
 �������	
 ���

��������
�������
���
������

�"��
�	������

%��
 ���������
 ��
 ���
 !(9%
 &��	���.

������
 ���
 ��������0����
 ��
 ���

�����������
 �������������
 ��
 ���	

��������.
 ������
 ��
 ���������
 ���

��	��
 ��
 ������
 �����
)��������
 ��

�������
 ��
 ���
 �������������
 (���

����������
������
��������
�������

#�������
 �������

������
���������	

%���
 ������
 ��
 ���	
 ������.
 ������

��
 �����
 ���
 ���
 ����������
 ����
 ��

������
 ���	
 �����
 ��������
 ����
 ��

������
 �����
 ����"�������
 ��������

 �������.
 ��
 ������

 ���
 ���
 ��������"
�)���

������
�������	����

$�
��
���
������
��
�������	
��������

���������
 	��
��
��
����
�������
��

�������
���
�������������
��
�����������

��������������
 4������.
 ��
 �����

�������
 ���
 ���
 �����0����
 ��
 �������
 ��

���������
 ���
 ��������
 ��
 ���

������������
 ��
 ���	
 ������
 ��
 �������	

0����
��
����������

5. Conclusion and Future Works

The results of the first experience demonstrated that the
approach was effective, supporting the organization to
identify and prioritize improvements. The phases guide
the execution of the approach adequately, providing
knowledge that helps the collaborators. Besides, the
methods and techniques were almost always very useful
and relevant to guarantee the efficiency of the activities
execution.
 After this experience, we may explore the following
further works: (i) Plan and perform a formal case study
to validate this process; (ii) Test others techniques and
methods; and (iii) Develop a tool on the TABA
Workstation to support this process.

6. References
[1] Araujo, E. E.. R., Meira, S. R. L., “Competitive Insertion
of Brazil on the International Market of Software”,
http://www.softex.br/portal/_publicacoes/publicacao.asp?id=8
06

 [2] ISO/IEC, ISO/IEC 25000: Software engineering –
Software product Quality Requirements and Evaluation
(SQuaRE) – Guide to SQuaRE”, 2005.

[3] SOFTEX, Brazilian Software Process Improvement –
General Guide version 1.2, available at
http://www.softex.br/mpsbr.

[4] CMU/SEI, CMMI for Development version 1.2.,
CMU/SEI-2006-TR-008, 2006.

[5] Montoni, M. et al., “Enterprise-Oriented Software
Development Environments to Support Software Products and
Processes Quality Improvement”, In: Proceedings of PROFES
2005, 2005, pp. 370-379, Oslo, June.

[6] Andrade, J. M. S., Evaluation of Software Process in
ADSOrg, Dissertation of M.Sc., COPPE/UFRJ, Rio de
Janeiro, RJ, Brazil, 2005.

[7] Schnaider, L. et al., “MedPlan: an approach to
measurement and analysis on projects of software
development”, In: Proceedings of the SBQS 2004, 2004,
Brasília.

[8] Montoni, M., Knowledge Acquisition: an application on
the software process, Dissertation of M.Sc., COPPE/UFRJ,
Rio de Janeiro, RJ, Brazil, 2003.

 [9] Berger, P., Instantiation of Software Processo n
Configured Environment in the TABA Workstation,
Dissertation of M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ,
Brazil, 2003.

[10] SOFTEX, Brazilian Software Process Improvement –
General Guide version 1.2, available at
http://www.softex.br/mpsbr.

[11] CMU/SEI, CMMI for Development version 1.2.,
CMU/SEI-2006-TR-008, 2006.

[12] Bardin, L., 1977, Content Analysis, Lisboa, Edições 70.

[13] Cordioli, S., “Participation Approach”, In: BROSE,
Markus (org), Participation Methodology: an introduction to
29 tools, Tomo Editorial, 2001, pp. 25-46.

[14] Keok, C. B., “Work in progress - integrating bos, swot
analysis, balanced scorecard and outcome-based framework
for strategy formulation of engineering school”, In:
Proceedings of FIE '07, Milwaukee, 2007, October.

[15] Ferreira, A. I. F. et al., “ISO 9001:2000, MPS.BR Level F
e CMMI Level 3: a software process improvement strategy on
company BL”, In: Proceedings of SBQS 2006, 2006, pp. 375-
382, Vila Velha.

[16] Moles, A., The Scientific Creation, São Paulo,
Perspectiva Press, 1971.

[17] Moles, A., The. Sciences of the Imprecise, Rio de Janeiro,
Civilização Brasileira Press, 1995.

[18] Popper, K.R., The Mith of the Framework, Lisboa,
Editions 70, 1996.

665

Establish Decision Making Process for selecting
Outsourcing Company

Akihiro HAYSHI
R&CM, Capacity Management, IBM Japan,

19-21, Nihonbashi, Hakozaki-cho, Chuo-ku, Tokyo, 103-8510,
E-mail: AikPIXY@jp.ibm.com

Abstract Outsourcing is prevalent among system devel-
opment activities. According to relevant statistic source,
outsourcing is not always successful from the viewpoint
of cost-performance, despite outsourcing merit being
emphasized. This is considered because that decision-
making process to select outsourcing company is not es-
tablished. In this paper, we adapt the framework of
CMMI and traditional decision-making process such as
Kepner-Tregoe Method as the basis, and attempt to es-
tablish reliable decision-making process by combining
AHP method and Even-Swap method. Also, with concept
of liner programming, we verify validity of final alterna-
tives derived by the process
.

1. Introduction
Recently, there is increasing number of cases to out-

source some part of system development project to an ex-
ternal organization. Outsourcing companies are not lim-
ited to domestic enterprises, but offshoring to enterprises
in emerging countries such as China and India are also
increasing.

The rationales for outsourcing to the external organiza-
tion include; to focus on the core competence; to pursue
cost advantage; to shorten lead-time of product develop-
ment; and utilization of asset of external enterprise.

Despite outsourcing of system development project is
promoted to achieve cost advantage etc, there are number
of troubles such as delivery delay or quality issue due to
skill-shortage and lack of communication capability in
outsourcing companies have occurred. Even after suc-
cessful project delivery with selected outsourcing com-
pany, if you kept ordering to the same organization for
four years, your cost reduction effect often decreases [1].

About 65% of domestic enterprises have been selecting
their outsourcing companies by criteria such as "past as-
sociated organization or introduction by the customer"
[2]. There are some examples of having selected out-
sourcing companies by applying original purchase man-
agement process, as with purchase of a PC, but there are
few cases that the Decision Making process for selecting
outsourcing companies is established.

Even with reports at international conference on proc-
ess improvement such as SEPG, or domestic workshop
such as JASPIC and SPES in Japan, reliable and easy to
use decision making process for selecting outsourcing
companies is not� yet established.

From these background, establishment of the decision
making process for selecting outsourcing companies in
system development projects is taken up as the theme of
this research.

In this paper, we first prepare the criteria and the pa-
rameter for selecting external outsourcing companies in
system development projects. It aims to establish the de-
cision making process that is reliable by combining a
simple decision making technique to traditional decision
making process as the basis. Then, the hypothetical crite-
ria and the evaluation results are verified by reference to
the idea of linear programming.

As an early research on outsourcing of IT Manage-
ment, Lacity[3] pointed out that the success condition of
the outsourcing of IT management depends on the maxi-
mization of flexibility and the control ability of the sys-
tem and discussed a concrete selection method for select-
ing outsourcing companies and their estimate.

Huber[4] listed various conditions of selecting out-
sourcing companies which change high fixed costs into
the additional value ahead, then discussed a method of
concentration of candidate organizations. Cross[5] re-
ported on the means to evaluate the candidate company
list of outsourcing companies which introduce the princi-
ple of competition for IT outsourcing strategy.

However, these reports are discussions on the idea of
the strategic outsourcing. Method for selecting one com-
pany by considering criteria such as geographical scope,
offer cost, services that can be provided, and technical
feature after several candidate-outsourcing companies is
decided was not presented.

There is no previous research that objectively evaluated
the decision making process for selecting outsourcing
companies.

The composition of this paper is as follows. In Chapter
2, the decision making process of CMMI and issues to be
solved are described. In Chapter 3, the principle for using
traditional decision making process and the assumption is

666

described. In Chapter 4, in order to solve the issues de-
scribed in Chapter 2, by using a traditional decision mak-
ing theory as a basic framework and various decision-
making processes in addition, method for correctly
weighting evaluation criteria and evaluation of alterna-
tives is proposed. In Chapter 5 the issue presented in
Chapter 2 is verified. In Chapter 6 discussion is made,
and the conclusion is given in Chapter 7.

2. The Issue in Selecting Outsourcing Companies
2.1. Limited capability of using CMMI for Selecting

Outsourcing Companies
Process evaluation model CMMI Ver 1.2[6] developed

in the United States is often used in system development
projects. In CMMI, 'Decision analysis and Resolution'
(DAR) is described as a process of decision-making proc-
ess. Figure 1 shows six activities of DAR.

Fig. 1 DAR process of CMMI
When selecting outsourcing companies according to

the steps in Figure 1, the organization establishes guide-
line such as "Select enterprise that is balanced on cost and
skill", and establishes the evaluation criteria such as
"Cost, schedule, skill, and past dealing results", and spec-
ify alternatives such as "Company-A, Company-B, and
Company-C".

Now, even if the candidate outsourcing companies are
selected, SP1.4 "Select Evaluation Methods" is often not
implemented efficiently enough. According to CMMI,
"Evaluation method" includes simulation model, prob-
ability model and decision-making.[6] However, no con-
crete procedures are described.

It is very difficult and unrealistic for the project man-
agers of system development projects to investigate ad-
vanced expertise of simulation model, probability model
and decision-making model and establish the application
for selecting outsourcing companies within tight devel-
opment schedule.
2.2. The issue to be solved and requirement

Organizations where CMMI process improvement best
practice model has been introduced, have issue to estab-
lish the decision making process as the method for select-
ing the outsourcing companies.

The decision-making process to be established has two
requirements.

(1) Simple method that project manager of general
knowledge level can use

The decision making process is an indirect activity
of the project. It is preferable to complete within
short time. Method must not require one weeklong
discussion only for selecting outsourcing companies.
The simple method that general skilled project managers
who doesn't have advanced expertise of simulation
model, probability model and decision-making can use is
preferred.
(2) Reproducibility of result when executed by two

people in charge with understanding of circum-
stances of the project.

As the method of the decision-making, association, or
selection might introduce outsourcing companies without
valid rationale such as wild guess or flashes. If you select
the outsourcing companies without rationales, it is diffi-
cult to have reproducibility.

Process is required to give same result when executed
by two people in charge of the project such as a project
manager and a member from outsourcing company.

3. Reused Framework of Traditional Decision
Making
A traditional method of the decision-making is used in

this research to establish the outsourcing companies se-
lection decision-making process. Traditional decision-
making process consists of four steps, which is Situation
Recognition, Trouble Shooting, Decision Making, and
Risk Management. For example, Kepner-Tregoe Method
[7] of the United States (hereafter, abbreviated as the KT
method), EM method and THP method (both roots as the
KT method) are assumed as traditional methods of the
decision-making.

Traditional Decision-Making Process is executed by
following steps:
1) Define the issue that need to make decision, 2) Set up
the evaluation criteria for the alternatives, 3) Set relative
weight of the evaluation criteria, 4) Enumerate all alter-
natives, 5) Evaluate alternatives based on the criteria,
6) Evaluate value combined Weight of criteria and each

value 7)Select the highest score of the comprehensive
 evaluation.

Because a total score is already calculated in this
method when a final solution was selected, a quantitative
judgment without intuition and the experience but the
numerical result can be done. This method is a decision
making process used most traditionally, and the easily
used methodology.

However, there are three preconditionsto apply a tradi-
tional decision making methodology to the method of se-
lecting the outsourcing companies in the system devel-
opment projects [8]

SP 1.1 Establish Guidelines for Decision Analysis
SP 1.2 Establish Evaluation Criteria
SP 1.3 Identify Alternative Solutions
SP 1.4 Select Evaluation Methods
SP 1.5 Evaluate Alternatives
SP 1.6 Select Solutions

667

1) All criteria of selecting the outsourcing company can
be recognized and the accurate weights of criteria are
known.

2) All alternatives are recognized and unnecessary
alternatives can be excluded.

3) Alternatives can be evaluated objectively and
numerically.
However, it is often not the case that above precondi-

tions are fully satisfied and therefore a traditional method
of the decision-making is not reproducible enough.

4. Proposal of the Decision-Making Process of Se-
lecting Outsourcing Companies

In this chapter, the decision making process that is reli-
able, is established by using the framework of the tradi-
tional decision making method. The assumption require-
ment pointed out in Chapter 3 is met by the hierarchical
analysis and Even-Swap method. The process consists of
the following three phases.
Phase1) Set evaluation criteria, define absolute condition
and relative condition, and set weight on relative condi-
tion by the hierarchical analysis method.

Phase2) The selected candidates are narrowed down to
about ten organizations by using the Even-Swap Method.

Phase3) Alternatives are evaluated against absolute con-
dition and relative condition, then results are collated us-
ing linear programming approach.

Based on the framework of the traditional decision
making theory, three phases proposed are shown in Fig-
ure 2. Detailed explanations are in following Phases.

Phase 1: The Hierarchical Analysis Method is applied
to Weighted Criteria
In Phase 1, the selection criteria are classified into abso-
lute condition and a relative condition, and weight is set
between criteria of relative conditions.

The absolute condition is a mandatory condition such
that must be met, and outsourcing companies, which fail
to meet this condition, will not be selected.

��

�

�

�

�

1

�

�

�

X

�

	
��

Com A

Total Points

���������

���

������

���
�����������

����������

��� �

���

���
�����������

Alternative 1

!������"�������

��������"�

����
�$���
��

%&$�
������	��'������

�������(����������)*����"�

Cost < 12 million yen

�+��
����	��'������

��

�

�

�

�

1

�

�

�

X

�

	
��

Com A

Total Points

���������

���

������

���
�����������

����������

��� �

���

���
�����������

Alternative 1

!������"�������

��������"�

����
�$���
��

%&$�
������	��'������

�������(����������)*����"�

Cost < 12 million yen

�+��
����	��'������

Phase 3Phase 1

Phase 2

Fig. 2 Decision Making Process for Selecting Out-
sourcing Company

For example, "The order budget to outsourcing compa-
nies is to be kept less than 10 million yen" becomes an
absolute condition in a limited project budget.

On the other hand, a relative condition is such that it’s
preferred to be met, but not an absolute condition. For
example, use C++ for development language, achieved
CMMI level 3. Because the importance is uniformly dif-
ferent between relative conditions, weight is set to them.

The criteria in traditional decision-making method are
usually evaluated by ten stages evaluation where score of
1-10 is set on each of the relative conditions (There are
five stage evaluation method, comparative assessment
method).

Now, which relative condition to be considered the
most important and should it be set at 10 points? How
can you adjust other relative conditions to 7 points or 8
points compared with most important relative conditions?
If the point is 7, why isn’t it 8, why not 6, but 7? The ra-
tionale of the logical grounds is extremely vague. It might
be difficult to reproduce the same point accurately, even
when the same evaluator executes it for the second time.

In this paper, by using the Analytic Hierarchy Proc-
ess[9] (hereafter abbreviated AHP), relative conditions
are weighted. AHP is a technique for choosing the best
evaluation by synthesizing a relative importance of the
element in each hierarchy after arranging them to a lay-
ered structure of the target, evaluation criteria, and alter-
native approach, when there are multiple criteria. In this
research, evaluation criteria are weighted using AHP.

For calculation of weight of AHP, there are an eigen-
value method and a geometric mean method. The eigen-
value method is excellent in the point of best approxima-
tion process. The geometric mean method is excellent in
the point of ease of calculation. In this paper, the geomet-
ric mean method is used, valuing its simplicity.

In geometric mean method, weight is set at an average
value of a pairwise comparison. For example, with crite-
ria "Price", "Years of experience", "Deal result", "Pres-
ence of the contract for maintenance", and "Distance be-
tween the order side", point is set from the classification
of (1) Same, (3) a little, (5) rather, (7) plentifully, (9) Ab-
solutely (inverse is used when you calculate opposite
way). The product of the evaluation result of the criteria
is calculated, find their geometric mean, and the propor-
tion of each geometric mean in the total of the geometric
mean is considered to be the weight.

With traditional decision making method, usually inte-
ger value is used for weight (refer to Figure 3), where
thousandth value is used in AHP weight.

Phase 2 is a phase that narrows down the list of out-
sourcing companies to about ten companies or less that
can be selected realistically.

When CMMI is used for process management, candi-
date of outsourcing companies is predefined as "Sup-

668

plier's candidate's list" or "List of desirable supplier" [6]
in Supplier Agreement Management process. The number
might reach several dozen of companies. If all of these
several dozen companies are to be scored as candidates, it
will not result well-modulated selection. It is preferable
to exclude unnecessary alternatives beforehand.

 Price Yer Dea Main Dist. Calculations
Price 1 3 5 7 9 1*3*5*7*9
Years 1/3 1 1/3 1/3 5 1/3*1*1/3*1/3*5
Deal 1/5 3 1 7 1/5 1/5*3*1*7*1/5

Maint. 1/7 3 1/7 1 3 1/7*3*1/7*1*3
Dist. 1/9 1/5 5 1/3 1 1/9*1/5*5*1/3*1

 Product GeoMean Weight Description
Cnt. 945.000 3.936 0.575 <== 3.926/6.846

 0.185 0.714 0.104
 0.840 0.966 0.141
 0.184 0.713 0.104
 0.037 0.517 0.076

 Total 6.846 1.000 <==Weight Total
1

Fig. 3 Criteria Prioritization by AHP

Phase 2: Applying Even-Swap Method to Narrow
Down Alternatives

In this paper, the Even-Swap method [11] (ES method)
is used to narrow down alternatives. The ES method is a
way that normalizes value of result of various alternatives
by adjustment, and omits their effect upon selection.

For example, assume there are two criteria “price” and
“years of experience”. Then assume Company-A price is
one million yen higher than Company-B and Company-
A’s experience is two years longer than Company-B. The
judgment is affected by the consideration whether to pri-
oritize the five years of experience of Company-A is
higher price, or prioritize lower price even if Company-B
has only three years of experience.

Now, assume that know-how of one-year experience
can supplement the price difference of one million yen.
That is, cost advantage of one million yen by selecting
Company-B is counterbalanced after one year. The price
12 million yen with four years experiences has equal
value to the price 11 million yen with three years experi-
ence after adjustment.

 Alternatives
Company-A Company-B

Price 1200 1100
Exp.Years 5 3

Fig. 4 Result Table
Alternatives

Company-A Company-B

Price 1200 110
0 1200

Exp.Years 5 3 4
Fig. 5 Applied Even Swap to Alternatives

The price of the two companies is 12 million yen and
the experience years are five years for Company-A and
four years for Company-B in Figure 5. Company-B has
become disadvantageous to Company-A, and so there is
no reason to keep Company-B as an alternative. Com-
pany-B can be excluded from alternatives candidates.

Unnecessary alternatives are excluded by repeating this
procedure for narrowing down disadvantageous alterna-
tive.

However, the rationale of illustrated Even Swap exam-
ple "One year of experience can counterbalance one mil-
lion yen of proposal price" is not very strict. Moreover, it
is nonsense to have an Even-Swap such as "The differ-
ence of the distance 10,000km with the order side coun-
terbalances proposal price of one million yen" when you
are selecting offshore organization like India.

So, in this paper, the ES method is only used within the
scope where the rule of thumb built up at the order side
such as prices and years of experience. The alternatives
are not narrowed down until the last one by the ES
method, but narrowing down to about ten organizations.

Also, with case shown in Figure 5, you can either re-
move the price (criteria) from the examination item of the
decision making since it is already equal, or you can re-
move Company-B (alternatives) as Company-B is com-
pletely disadvantageous to Company-A. In this paper, not
the criteria but alternatives are narrowed down according
to the investigation purpose.

Phase 3: Evaluate and Verify Alternatives by Linear
Programming.

In Phase 3, alternatives are evaluated by criteria and an
integrated point is calculated. Then the result is verified
by linear programming.

There are absolute conditions and relative conditions in
the basis of selection as shown in Figure 2. Since the al-
ternatives won't be selected unless absolute conditions are
satisfied, absolute conditions are initially judged by �X.
If at least one absolute condition is evaluated X, no more
evaluation will be done.

Then, relative conditions of the alternatives that its ab-
solute conditions are already evaluated � are evaluated.
In the evaluation of the relative conditions, the alterna-
tives narrowed here are compared and 10 points is given
to the alternative that best meet a relative condition. Next,
1-9 point is set to other alternatives by the comparison
with alternatives with 10 points. Therefore, 10 points is
given to one alternative and so are 1-9 points to other al-
ternatives.

Afterwards, alternatives with the highest integrated
point calculated by the product of weight of the criteria
and evaluation esult is selected.

However, as pointed out in Chapter 1, available alter-
natives of the outsourcing companies in system develop-

669

ment projects are often introduced by past association or
the customers. Sometimes the candidate alternatives
might be a small business where there is possibility of
bankrupt by cash flow if the company cannot receive an
order. Or the selection candidate might be a sole proprie-
torship that senior retired employee had founded.�

It is difficult to objectively evaluate the alternatives
numerically due to cognitive biases. The cognitive bias is
the phenomenon that evaluation of certain object is
dragged by a remarkable feature, or that evaluation is
misinterpreted by influence from specific information or
memory [12].

For example, Halo Effect that the evaluation is unnec-
essarily improved by the introduction of the customer,
Ranking Inflation that makes the evaluation lenient when
the candidate has long term association, or Ranking Com-
pression that the evaluation becomes noncommittal near
center saying "It cannot be said either". �

So, in this paper, objectivity of evaluation is verified.
The 1st and 2nd place of the result by 10 points evalua-
tion are verified using the idea of the linear programming.
Linear programming is a technique used to calculate the
best resource allocation for production management and
operations research. It is used to calculate the optimum
distribution that the targeted value becomes the maximum
in the limited condition of the linear expression.�

Evaluation point required for the 2nd place alternative
to exceed 1st place alternative’s point is calculated by lin-
ear programming method. This value is then compared to
the current scores of alternatives, and with consent by
more than two people, evaluation is considered final. If
not, then alternatives are reevaluated.�

For example, as shown in Figure 6, assume that evalua-
tion result of alternative A is 7 point, and of alternative B
is 9 point when the final evaluation is completed. In this
case, B is finally selected. However, if the evaluation re-
sult of alternative A is 10 point, then the final alternative
become not B but A. Then, the evaluation value of a rela-
tive condition that an integrated point becomes 10 point is
calculated using the linear programming.
�

 Alt.A Alt.B Lin.Prog.
Con Wei Sco Poit Sco Poit Sco Poit

1 0.345 10 3.45 10 3.45 10 3.45
2 0.531 3 1.59 5 2.65 6 3.19
3 0.123 5 0.62 5 0.62 5 0.62
4 0.51 3 1.53 5 2.55 6 3.06

Total 7 9 10
Fig.6 Verification using Linear-Programming

The linear programming is built in as one of the add-in
functions of MS-Excel normally used in current IT com-
panies. With required limiting condition and targeted val-
ues, the best search result will be returned. In the right-

most column of Figure 6, values required for the overall
judgments to become 10 points are shown for each condi-
tion, using the linear programming. By comparison, you
can see that Alternative A exceeds B if relative conditions
2 and 4 were 6 points respectively.

Now, whether cognitive biases of “Negative Leniency”
effect that the evaluation of A company lowers unneces-
sarily had occurred is verified by investigating the person
in charge of the evaluation of relative condition 2 and 4,
content of the relative conditions, and A company.

For instance, there is a possibility to generate Cognitive
biases due to the person in charge of the evaluation with
insufficient understanding of neither relative condition 2
or 4, or past incident of delivery delay and/or a quality
trouble by Company-A. In such cases, person in charge
of the evaluation need be changed and/or mean value of
two or more evaluation results should be taken as the
measures of the adoption.

If the result remains the same after person in charge of
selecting outsourcing company is changed, then Com-
pany-B is selected as outsourcing companies as shown in
Figure 6. If the result differs, then process in phase 3 is
repeated and final outsourcing company is selected.

5. Verification
� In this paper, the establishment of the decision making
process for outsourcing company selection is taken up as
main theme and the requirement for the solution was pre-
sented in 2.2.

In Chapter 5, whether the method proposed in this pa-
per meet the requirement is verified.
(1) Simple method that project manager of general

knowledge level can use.
All the proposed techniques in this paper, which are

KT methods, AHP, and ES method, can be implemented
on MS-Excel. For more complex calculations for AHP,
which are pairwise comparison, geometric mean, and ei-
genvalue (unused in this paper) can be done using com-
mercially available materials and free software. User can
semi-automatically obtain selection result by only judging
weighting. Knowledge of advanced mathematics in com-
plex eigenvalue or geometric average calculation is not
required.

Moreover, by implementing on the spreadsheet tool, a
more accurate evaluation can be made by referring to the
knowledge from past projects reflecting what result actu-
ally became.

As a result, even a project manager who doesn't have
advanced knowledge of the theory of probability and
simulation can obtain a proper decision making result by
use of the technique proposed in this paper. It can be said
that the method proposed here can be use by the project
manager of a general knowledge level.

670

(2) Reproducibility of result when executed by two
people in charge with understanding of circum-
stances of the project.

The technique for the selection of the outsourcing com-
panies has mainly three points; weight setting to the crite-
ria; narrowing down alternatives; and evaluation of alter-
natives by referring to the absolute conditions.
In this paper, AHP was used for the weight setting of the
criteria. AHP is a well-known method that quantifies per-
son's sensuous evaluation which has already been con-
firmed as reliable method.

The ES method was used for narrowing down alterna-
tives. There is essentially reproducibility as long as the
trade-off condition becomes clear, since ES method ex-
cludes unnecessary alternatives by setting the trade-off
condition such as costs and years of experience.

In the evaluation of alternatives against the absolute
conditions, most suitable alternative was evaluated to a
relative each condition as 10 points, and other alternatives
were evaluated relatively. In addition, alternatives in 1st
and 2nd place were verified by calculating value required
for the 2nd place alternative to exceed value of 1st place
alternative using linear programming. It can be expected
that this process to yield same result almost every time as
long as two or more people discusses along the proce-
dure.

Therefore, it is judged that the selection result has re-
producibility from the technique proposed in this paper if
two people who know circumstances of the project exe-
cute the method.

6. Discussion
In this paper, five decision-making methods are used.

They are CMMI, a traditional decision making methods
like KT Method, AHP methods, ES methods, and linear
programming. These techniques are independent decision
making techniques respectively, and any of these deci-
sion-making method can be solely used for decision-
making.

For example, AHP that was used Chapter 4 can be exe-
cuted to the selection of the final alternative by evaluating
not only setting weight but evaluate the criteria.

However, there is some occasion that selection should
be made amongst unknown organizations where there is
no past dealing experience. If the AHP is to be consis-
tently used, you will be comparing whether unknown
Company-A or an unknown Company-B is better, which
is not very wise idea.

Because five decision-making techniques used in this
paper have both merits and demerits like this, the pro-
posed method supplements insufficient area of one
method by another, and aims to achieve more reliable de-
cision-making process.

7. Conclusion
Decision making process for the selection of outsourc-

ing companies is proposed in this paper by recognition
that it was a situation in which the selection of the opti-
mal outsourcing companies was not necessarily done ap-
propriately, considering increasing requirement of out-
sourcing in IT system development.

The proposal in this paper uses the frame of traditional
decision-making process KT method with CMMI, the
best practice of the system development, in its basis. AHP
is used for the weight setting of the criteria, ES method is
used for the trade-off of alternatives, and, in addition, the
process became more reliable by using the idea of the lin-
ear programming for the selection of result.

By applying the technique in this paper, evaluation that
has been made intuitively can now be supplemented with
the method of the decision-making by which effective-
ness is confirmed. In addition, the idea of the linear pro-
gramming verifies the execution result and the reliability
of the evaluation result is improved.

In this paper, a theoretical frame in the decision making
process is proposed. However, application evaluation in
an actual project is not yet conducted. It is future tasks to
improve this proposal continuously by applying to an ac-
tual project and evaluating it.

8. Reference
[1] http://www.ciojp.com/contents/?id=00003744;t=12
[2] White Paper of Japan Information Service Associa-

tion 1996,1997
[3] Mary C. Lacity, Leslie P. Willcocks, David F. Feeny,

“IT Outsourcing: Maximize Flexibility and Control”,
Harvard Business Review Article, May 1, 1995

[4] Richard L. Huber�” How Continental Bank Out-
sourced Its “Crown Jewels”, Harvard Business Re-
view Article, Jan 1, 1993

[5] John Cross, “IT Outsourcing: British Petroleum’s
Competitive Approach”, Harvard Business Review
Article, May 1, 1995

[6] http://www.sei.cmu.edu/cmmi/translations/japanesem
odels/index.html

[7] Charles H. Kepner, Benjamin B. Tregoe, “The New
Rational Manager”, Princeton Research Press , 1981

[8] Ichiro Innami,, Sugureta Ishikettei, Chuokouron,
1997

[9] T. L. Saaty, The Analytic Hierarchy Process.
McGraw-Hill, NewYork, 1980.

[10] Hideji Takeda, Saaty no houhou niyoru Weight no
Jakkan no ginmi, AHP Jireishu, JUSE, pp.223-246,
1990

[11] John S. Hammond III, Ralph L. Keeney, Howard
Raiffa, “Even Swaps: A Rational Method for Making
Trade-Offs”, Harvard Business Review Article, Mar 1,
1998

[12] Globis Business Schoool, MBA Glossary,
http://gms.gl

671

From Strategy to Solution: A Lightweight Semi-Prescriptive Approach for Software
Development Lifecycle with Outsourcing Support

 Nelio Alves Sergio Paim Alexandre Cardoso Edgard Lamounier

 Federal Institute of Invit Information Services Federal University of Uberlândia Federal University of Uberlândia
 Triângulo Mineiro sergio.paim@invit.com.br alexandre@ufu.br lamounier@ufu.br

 nelio@iftriangulo.edu.br

Abstract- This paper presents an ongoing academic-

enterprise collaborative research work on specifying and
implementing a lightweight semi-prescriptive software
development lifecycle method with hybrid agile-
prescriptive features. This method proposes features and
design choices that are characterized and discussed. For
instance, we choose formal requirement management with
proper change traceability, as well as prescriptive software
architecture in order to provide advantages like team
scalability, reliable requirement realization and scoping.
We introduce the concept of implementation scenario: a
particular subset of requirement – even non-functional –
that greatly improves risk management and overall
architecture stabilization efficiency, and also is one of the
key aspects for agile-prescriptive integration. The method
also proposes a built-in support to software development
outsourcing, which consists of a process-centered interface
between customer and provider based on activity
assignment, artifact custody and the method design itself.
The method has been informally tested on small and
medium size projects so far. Tests have shown significant
results that are presented and discussed.

I. INTRODUCTION AND MOTIVATION

A recent substantial process-centered survey on software
development methodology [1] analyzed the state of the art of
this research field by examining seminal, disciplined and agile
methods. Among their conclusions, we discuss those that serve
as part of the foundation to our work motivation:

• Integration needs: According to their analysis,
disciplined methods and their agile counterparts have
no other choice but to converge. Another source of
inspiration to this matter is the work published in [2].

• Methodological neglecting: Software development
methods are usually built without considering a proper
methodology foundation or systematic approach.

• Agile approaches common problems: They concluded
that, despite remarkable achievements, agile methods
are still not mature enough [2, 3, 4, 5] and the problems
more commonly cited are lack of scalability, unrealistic
assumptions and lack of a specific, unambiguous
process.

We also point out some other issues that motivate this work:
• Software outsourcing: The whole mentioned survey

[1] does not even mention outsourcing. We could
observe some lack of process-centered methodological
approaches to support outsourcing. In other words,

software development processes usually do not include
specific support to outsourcing.

• Requirements: Formal requirement management is
crucial to ensure proper communication and agreement
between customer and provider. In [1], Requirements
Engineering is considered a weak link in many
methods. We also observed it in our experience and
decided that a formal approach with proper change
traceability to requirements is mandatory to the purpose
of this work.

In order to address the mentioned issues, this paper presents
a software development lifecycle method and discusses its
general and specific features that cover those issues.

An experienced IT company is playing a core role on this
research as it has been given lots of contributions on the
process specification and testing. The method has being tested
on small and medium size projects and tests have shown
significant results, mainly on efficiency and risk management.

This paper is considered a proposal because quantitative
empirical validation was not yet carried out.

II. RELATED WORK

We considered the core related work about this research
two-fold: those about (1) software development methodology
and those about (2) outsourcing software.

There are many approaches to disciplined and agile software
development lifecycle methodology. This brief review focused
on those which have influenced this work. More information
about software methodology can be found in [1].

Rational Unified Process (RUP) [6, 7] and its
nonproprietary counterpart USDP [8] was the major
theoretical and practical basis for this work. Besides, it is
widely experienced for more than six years by the company
where this work is being applied. RUP is a use-case driven,
architecture centric, interactive and incremental method. RUP
uses the Unified Modeling Language (UML) [9] as its default
modeling language. RUP consists of a huge specification and
it is able to customization in order to facilitate manageability.
An extended variant of RUP called Enterprise Unified Process
[10] was later proposed.

Scrum [11] is a framework for software development first
presented in [12] focused on strong team interaction and
structuring the development disciplines in 2-4 week iterations
called sprints. This framework consists of three cyclic phases:
pre-game (planning, high level design, architecture),
development (sprint execution) and post-game (integration and

672

delivering activities). Scrum is usually used in combination
with another method – typically an agile one – and prescribes
some practices like doing daily meetings and keeping a
physical visible task board with work orders and a release
burndown chart. Our approach incorporated the task board
prescribed by Scrum as part of one of the management
activities, which has shown very effective.

Much research has been carried out on information systems
outsourcing, but few treated software development
outsourcing specifically [13]. We found more publications
about the broader field of IT outsourcing and even more about
general cross-organization workflow. Several outsourcing
topics often appear like its adaptive nature [14], success
factors [15], case studies [16] and guidelines [17].

We could not find any methodological approach to software
development outsourcing closely similar to our proposal and
the literature analysis shows that there is still a lot to do on
process-centered methodological approaches to this subject.

III. METHOD OVERVIEW

Our software development lifecycle method was defined in
terms of seven IT processes, grouped according to Service
Design and Service Transition functional areas from the
service structure of ITIL - a widely accepted library of good
practices for IT service management [18]. Table I shows those
seven processes and grouping.

TABLE I
IT processes for Service Design and Service Transition

Service Design Service Transition

• Service Inception
• Process Engineering
• Requirements Engineering

• Improvement Management
• Improvement Engineering
• Improvement Validation
• Improvement Deployment

A brief description of each IT process responsibility is

shown below. In next section we give more details about the
process specification pattern.

Service Inception: this process first takes strategic guidance
and updates service portfolio by identifying and describing an
IT service that assist an automation demand being analyzed. It
then calls the Requirements Engineering process to identify
initial scope of an application solution for the service and
performs functional and economical feasibility analysis,
structuring initiatives for solution development if feasibility is
confirmed. If necessary, this process is previously assisted by
the Process Engineering one for business modeling and
exploration of automation demands. The Service Inception
purpose is similar to the one from Inception phase from RUP.

Process Engineering: responsible for business modeling
with strategic alignment and continual optimization. More
details are discussed on next section.

Requirements Engineering: responsible for performing
one requirement cycle. This cycle consists of elicitation and
specification of automation requirements (without violating
architectures integrity), formal change traceability

management, scope estimation and formal costumer-provider
validation.

Improvement Management: responsible for performing
project management activities during Service Transition stage.

Improvement Engineering: responsible for performing one
development cycle, which consists of activities related to
architecture refinement, design, implementation, tests, inte-
gration and production of supporting material. This process
has an agile fashion and more details are given on Section V.

Improvement Validation: responsible for performing one
validation cycle, which consists on activities related to
deployment to validation environment and validation of the
application software and its supported IT services.

Improvement Deployment: responsible for performing
activities necessary to deploy the new solution to production
(as IT services), like defining infrastructure resources,
migration plan execution, stability testing and user training.

IV. USED METHODOLOGY

All seven IT processes were modeled according to a well-
defined Process Engineering foundation. In fact, the method
we used was exactly the “Process Engineering” process we
have created (see Table I). Note that this is a meta-process as it
is a business process that specifies how to specify business
processes (where IT process is nothing but a specialization).

Our “Process Engineering” process was highly inspired by
the Business Modeling discipline of RUP, where some aspects
were simplified and others added.

We made a detailed textual specification complemented by
graphical representations for each IT process and its activities.
For space constraints, we only present the “Process
Engineering” process’ behavioral and structural models in
Figures 1 and 2. Notice that we used UML Activity Diagram
and UML Class Diagram with proper use of stereotypes.

V. FEATURES AND DESIGN CHOICES

In this section we discuss main design choices we made and
point out reasons that have lead to them. This discussion is
then complemented in next section, where we present
outsourcing-related decisions.

Formal requirement management: the Requirement
Engineering process was defined in order to accommodate an
outsourcing requirement logistics. On every requirement cycle
(including the first), a Specification Change document is
produced and all related requirements are baselined. After
customer-provider mutual requirement elucidation and
specification, requirements are formal validated by customer
and then are baselined by the customer’s Project Manager and
communicated on both sides with contractual value. This
methodological structure ensures proper requirement
management and change traceability.

Prescriptive architecture: one aspect we do not left
behind, especially by dealing with an outsourcing
environment, is prescriptive solution architecture. A good
solution architecture approach ensures agreement about

673

technical risk mitigation, technological decisions and
requirements realization. It also provides team scalability and
helps realistic scope definition.

Agile software construction: our Improvement
Engineering process is the agile portion of our method. It was
designed with some agile principles [19] background.
Furthermore, as we mentioned before, we adopt some Scrum
practices like task board, daily meetings and short sprint-like
iterations. Nevertheless, an important question arises: it is well
known that refactored architecture and exploratory
requirements are some of the central aspects on most of agile
methods, but we used opposite approaches in order to ensure
all advantages we just mentioned above. So how can one
improve software factory dynamics by an agile approach if
requirements management and architecture are prescriptive?
The exploratory nature and dynamics of agile development is
possible to be exploited because of the Implementation
Scenario approach presented below.

Implementation scenario: we introduce the concept of
implementation scenario: a particular risk-based subset of
requirement – even non-functional ones – conveniently chosen
by the Solution Architect depending on the lifecycle moment,
with focus on implementation for architectural prioritizing. On
RUP, the requirement is the basic unit of architectural
prioritizing, which implies on waste of time and risk
management power by implementing non-architectural
portions of code on elaboration phase. The main implication of
implementation scenario is to split requirements and prioritize
only those portions appropriated to each development phase.
Besides, implementation scenarios play an important role in
prescriptive and agile integration: the architecture is
prescriptive, but the architectural stabilization and software
construction are made by exploratory identification and
prioritization of scenarios.

VI. OUTSOURCING PROPOSAL

The outsourcing contribution of this work is related with its
built-in structure, which consists of a well-defined customer-
provider interface from three points of view: (1) activity
assignment, (2) artifact custody and (3) the method design
itself.

Activity assignment: specifies either the activity is
performed on customer side, provider side or mutually. We
represented it graphically by different background colors for
each activity inside the Activity Diagrams.

Artifact custody: we defined a supplementary mapping of
artifacts to be developed and delivery along the development
lifecycle. For each project to be executed, this mapping must
be instantiated. The artifacts are classified by (1) phase (initial
phase where it is produced), (2) required or not, (3)
intervention (how the customer works on the artifact: revision,
tracking, approval or formal validation) and (4) format/tool
(what tool or file format is used to produce the artifact).

Method design: although the method defines formal
requirements and prescriptive architecture, the software

Metric

Entity

Goal

Process

Business Rule

Event

Role

«trace»

«trace»
«trace»

1..*

1..*

1..*
0..*

«deriva»

«derive»

Business
Architecture

Fig. 2 – Process Engineering related entities and relationships

Business Architect

Business Analyst

System Analyst

Business Architecture

Entitie

Role

Automation Demand

[improvement
identified]

[obsolete]

Business
functional

area
deactivated

Business
functional

area
recognized

Capture Business
Directives

Identify Strategic
Orientation

Analyze Business
Architecture

Describe and
Cadence Process

Realize Process

Refine Roles and
Entities

Explore Process
Automation

Publish Specifications

Evaluate Historical
Performance

Business Vision

Strategic Objectives

Identify Performance
Indicators

Business Process
Model

Business Process
Model

Business Process
Model

Business Process
Model

Business Process
Model

Goal

Metric

[preliminary]

Fig. 1 – The “Process Engineering” process.

674

construction (inside the software factory) is based on
exploratory implementation scenarios in an agile fashion. The
main technical outsourcing interface point is the architecture:
it is being prescriptively designed with mutual participation,
but the Solution Architect from provider side has freedom to
exploratory choose implementation scenarios while inside the
Improvement Engineering process. The main management
outsourcing interface point is the formal requirements
management, which give the basis for scope, budget, schedule,
quality management and nonetheless acceptance of the
project’s outcome.

VII. EMPIRICAL TESTS AND RESULTS

As mentioned before, an experienced IT company has been
testing this method for more than six months on four small-
size and medium-size projects (ranging from 1000 to 7000
hours each), playing the “provider role”. The “customer role”
is being played by one of its clients (a big enterprise group that
has an IT department).

The Project Manager and Technical Director were
interviewed in order to give feedback about the improvements
they could perceive from the new method. The main
improvements reported are listed below:

Risk management: the use of implementation scenario
greatly improved technical risk management and therefore the
architecture stabilization. By taking exploratory risk-driven
part of requirements one can focus on really important aspects
to architecture stabilization and, thus, improving its
effectiveness and mitigating later phases risk of delay.

Productivity: the use of agile approach to software
construction improved the software factory dynamics and
flexibility. The increase of efficiency on development was
specially perceived by the use of shorter iterations and
physical task board.

VIII. CONCLUSIONS

We presented a semi-prescriptive software development
lifecycle method by defining seven IT processes. The method
was built on top of a well-defined Process Engineering
foundation as a positive attitude against the methodological
neglecting often present on software methods creation [1].

A summary of main contributions is shown below:
• A solution of the agile-disciplined integration was

proposed. Essentially, formal requirement management
and prescriptive architecture were taken from the
disciplined world and exploratory (risk-driven)
implementation scenarios and agile practices for
software factory were taken from agile world. In other
words, this way we could improve development
dynamics without harming scoping and scalability.

• A built-in method support to software development
outsourcing was proposed. This support consists of a
process-centered interface between customer and
provider based on activity assignment, artifact custody
and the overall method design itself.

• Informal tests have been carried out and significant
results were reported, mainly concerning risk
management and productivity.

One can also verify that all issues pointed out on Section I
were addressed by this approach.

IX. FUTURE WORK

Additions to this work are already being carried or planned.
We are going to define process metrics for this method in
order to obtain tangible quantitative evidence for validation.
Other future directions are those about integration with other
IT areas (like business consulting) and continual refinement.

This method is also intended to be applied in combination
with Application Lifecycle Management (ALM) as part of a
broader IT governance model to multi-sourcing environments.

X. REFERENCES

[1] Ramsin R. and PAIGE, R. F., “Process-Centered Review of Object
Oriented Software Development Methodologies”, ACM Computing
Surveys, Vol. 40, No. 1, Article 3, February 2008.

[2] Boehm, B. and Turner, R., “Balancing Agility and Discipline: A Guide
for the Perplexed”, Addison Wesley, Reading, MA, 2003.

[3] Abrahamsson, P., Warsta, J., Siponen, M. T., and Ronkainen, J., “New
directions on agile methods: A comparative analysis”, Proceedings of the
International Conference on Software Engineering, (ICSE), 2003.

[4] Boehm, B. and Turner, R., “Management challenges to implementing
agile processes in traditional development organizations”, IEEE
Software, 22, 5 (September/October), 30–39, 2005.

[5] Nerur, S., Mahapatra, R., and Mangalaraj, G. “Challenges of migrating
to agile methodologies”, Communication of the ACM 48, 5 (May), 73–
78, 2005.

[6] Kruchten, P., “Rational Unified Process: An Introduction”, 3rd ed,
Addison-Wesley, Reading, MA. 2003.

[7] Kroll, P. and Kruchten, P. “The Rational Unified Process Made Easy: A
Practitioner’s Guide to Rational Unified Process”, Addison-Wesley,
Reading, MA, 2003.

[8] Jacobson, I., Booch, G., and Rumbaugh, “Unified Software
Development Process”, Addison-Wesley, Reading, MA, 1999.

[9] Unified Modeling Language Specifications (v2.0), Object Management
Group, 2004 - http://www.omg.org/technology/documents/
formal/uml.htm

[10] Ambler, S.W., Nalbone, J., and Vizdos, M. J., “The Enterprise Unified
Process: Extending the Rational Unified Process”, Prentice-Hall,
Englewood Cliffs, NJ, 2005.

[11] Schwaber, K. and Beedle, M., “Agile Software Development with
Scrum”, Prentice-Hall, Englewood Cliffs, NJ, 2001.

[12] Schwaber, K., “SCRUM development process”, Proceedings of the
Conference on Object-Oriented Programing Systems, Languages, and
Applications (OOPSLA’95), 1995.

[13] Gonzalez, R., Gascoa, J. and Llopis, J., "Information systems
outsourcing: A literature analysis", Volume 43, Issue 7, October 2006.

[14] Lee, J., Huynh., M. Q., Kwok., R. C. and Pi., S., "IT outsourcing
evolution---: past, present, and future", Communications of the ACM,
Volume 46, Issue 5, May 2003.

[15] Pei, Z., Zhen-xiang, Z. and Chun-ping, H., "Study on Critical Success
Factors for IT Outsourcing Lifecycle", Int Conf. on Wireless
Communications, Networking and Mobile Computing, 2007.

[16] Martin, A., Biddle, R. and Noble, J., "When XP Met Outsourcing",
Extreme Programming and Agile Processes in Software Engineering,
Lecture Notes in Computer Science, Volume 3092, 2004.

[17] Yalaho, A., “A Conceptual Model of ICT-Supported Unified Process of
International Outsourcing of Software Production”, IEEE International
Enterprise Distributed Object Computing Conference Workshops, IEEE
Computer Society, 2006.

[18] ITIL - Information Technology Infrastructure Library. http://www.itil-
officialsite.com

[19] Bech, K., et al. 2001. Manifesto for agile software development -
http://agilemanifesto.org.

675

A MODEL DRIVEN METHOD FOR DATA WAREHOUSE

Leopoldo Zepeda1, Elizabeth Ceceña1, Jorge Rivas1, Javier cano1, Nelly Condory2, Matilde Celma2

Tecnológico de Culiacán, , Sinaloa, Mexico
Universidad Politecnica de Valencia, Valencia, España

lzepeda@itc.edu.mx

Keywords: Data Warehouse, Model Driven Architecture, OLAP model.

Abstract: Nowadays, it is getting more common to develop Data Warehouse (DW) systems. To deal with the
construction of this kind of data bases current DW methods should provide the mechanisms that facility the
integration of user requirements in addition to the availability structure of the operational database. This
paper presents a Model Driven method that achieves the integration of user requirements with the
multidimensional structures available in the operational data sources.

1 INTRODUCTION

A DW is a database used for analytical processing
whose principal objective is to maintain and analyze
historical data. As yet there is not a well-defined
strategy for the design and construction of this kind
of systems; there are different ways in which a DW
system can be built. For instance, some approaches
design the DW starting from a detailed analysis of the
operational data sources; others start from determining
the information requirements of DW users. A more
complex way could be support integration of user
requirements and the multidimensional structures
available in the operational database. Our proposal
introduces some contributions in this perspective
because we think that defining the multidimensional
schema is one of the most critical steps in the overall
DW development process which demand knowledge
of operational data sources and user requirements. In
this context, it is necessary to provide a
methodological guide that helps DW developers in
the construction process of this kind of systems. This
is achieved by developing a method for the
integration of user requirements with the
multidimensional structures available in the
operational data base. We think that this process
should be tackled following a Model Driven
approach. This paper is structured as follows: in
section 2 we review previous approaches on DW

design. Section 3 introduces our method. Finally,
Section 4 draws some conclusions and future works.

2 RELATED WORKs

Model Driven Architecture (MDA) is a standard that
addresses the cycle of designing, deploying, and
managing applications by using models in software
development [1]. MDA separates the specification of
system functionality from the specification of the
implementation of that functionality on a specific
technology platform. Thus, MDA encourages
specifying a Platform Independent Model (PIM)
which contains no information specific to the
platform. Then, this PIM can be transformed into a
Platform Specific Model (PSM) in order to include
information about the specific technology. MDA
also presents a Computation Independent Model
(CIM), this model describes the system within its
environment and shows what the system is expected
to do. Using a series of transformations, also called
model transformations, the software system is
developed from a PIM to source code.
In [2] a method for developing multidimensional
schemas is presented. The design method starts from
an existing Entity Relationship (ER) schema, derives
a multidimensional schema, and provides
implementations in terms of relational tables as well

676

as multidimensional arrays. In [3] the authors
present a DW design method. The design of a
conceptual schema is carried out by producing a fact
schema for each fact, which can be derived from an
ER schema using an algorithmic procedure. The
above contributions are concerned with DW
conceptual design starting only from conceptual
operational schemas. The most valuable contribution
of those proposals is that they incorporate concepts
and notations to the model to reflect graphically
multidimensional aspects. Nevertheless, the use of
proprietary notation is a deficiency, since turns these
methods in particular and isolates solutions. On the
other hand, to the best of our knowledge, only one
effort has been development for aligning the design
of DWs with the general MDA paradigm. In [4] the
authors apply MDA to the logical stage of the DW
development. They present a set of transformation
rules between the OLAP and Relational PIM.
However, the OLAP PIM is very simple and does
not offer the necessary details used in real models.

3 OUR METHOD

Our approach aims to perform an automatic
analysis of the operational data sources in order to
discover the implicit multidimensional (OLAP)
schemas in it. After that, we reconcile these schemas
with end-user requirements. This process is divided
into four steps. First one identifies end-user
requirements. An automatic process on the other
hand (step 2), starts with the identification of the
multidimensional elements in the operational
database and creates different models of the
relational PIM. In step 3, a set transformation rules
produce the OLAP schema from the relational
models. Finally, an integration process and a model
to text transformation process generate the SQL
code for the creation of the OLAP schema. In the
next sections, we briefly describe each step. An
example is presented in several parts according to
the section been discussed.

3.1 Defining the CIM

According to MDA, a CIM must describe the
requirements of the system. We specify the early
requirements of a DW by means of a goal model.
We propose two steps to define the goal model:
1. Goal identification. We identify the set of
goals that both, the system together and an actor
must achieve to accomplish each requirement. The
set of identified goals are organized in a Goal
Refinement Tree (GRT). The GRT represents the

goals that the actor can achieve when interacting
with the DW.

Part I: Example.- In this section we provide an
example of our approach, related to the information
system of a self-service store. In our example, two
main domain stakeholders are identified: sales
manager and offer manager. The strategic goals of
the sales manager are: G1.- Increase return on
investment and G2.- Increase customer fidelity. For
instance the strategic goal Increase return on
investment may be AND decomposed into G.1.1.-
Increase sales volume and G1.2.- Increase sales
profit. Likewise, increase sales volume might be OR
decomposed into G.1.1.1.- Increase consumer
appeal or G1.1.2.- Expand market. In our example,
at least two well-established tasks can be to Increase
sales profit: G.1.2.1.- Increase sales price or
G.1.2.2.- Lower production costs. The partial
representation of this model is shown in figure 1.

Figure 1: Partial goal model

2. Goal Description. To accomplish the goal
defined by each leaf task included in the GRT, we
describe the set of actions to obtain some goal of the
organization. This description is completed by using
UML Activity Diagrams. During this step, each task
of the GRT is related to the actions that stakeholders
consider necessary in order to satisfy each task. In
these diagrams, we show the actions performed to
obtain some task, indicating the roles that are in
charge of each activity, and the data required and
produced by each activity. Data appear as objects
that flow between activities. We refer to these
objects as Data Objects (DO). We distinguish two
different types of DOs. 1) Output DO: the system
provides actors with information about data. 2) Input
DO: the system is waiting for the user to introduce
some data.

Part II: Example.- Figure 2, shows an activity
diagram for the description of the task G.1.2.1:
increase sales price task. This task is related with
two actions: analyze the margin profit and the
quantity sold. The activity diagram starts with the
selection of an individual action. Thus, for instance
if the selected action is quantity sold, this action will
search information that matches with the

677

information provided by the DW user through an
Input DO (Year, Promotion and Store). In order to
make goal descriptions, we propose the definition of
an information template (see Table I) for each task
identified. In each template we describe the
information in detail by means of a list of properties
associated to the task.

Figure 2: Task description
According to the information showed in table I,

the information that the DW must store about the
increase sales price task is: Promotion, Year, Day,
Store, Quantity sold and Margin profit.

Table I: Information template.
Name Data type DO

Promotion String Input
Year Date Input
Store String Input
Day String Input
Quantity sold Number Output
Margin profit Number Output

The information template can be interpreted to

select a candidate multidimensional schema, the,
items listed in the DOs section are considered as
measures and dimensions in the multidimensional
schema. Then, the Input DO defines the variables
that may cause changes to measures (dimension) and
each Output DO contributes to a measure. The
information template of Table I can be interpreted as
follows: the Input DO (Promotion, Year, Day, Store)
detail the dimensions, while the Output DO
(Quantity sold, Margin profit) details the measures.

3.2 Building models of the Relational PIM

The aim of this step is to automatically create
different instances of the Relational PIM. For this;
we have developed an algorithm that identified the
multidimensional elements in the relational schema
of the operational database and creates different
instances of this PIM. In this section we first

describe the Relational PIM, next we introduce the
most relevant steps of the algorithm, followed by a
brief explication of each one.

3.2.1. Relational PIM
The CWM relational [5] PIM (figure 3) is structured
into a schema class that owns all elements of a
relational model. In the relational PIM, a Table is
used to store Columns. Each table can contain a
Primary Key or multiple Foreign Keys.

Figure 3. Relational metamodel

3.2.2. The Search Algorithm
The algorithm to get a set of relational models

starting from the logical schema of the operational
database, consists in performs an exhaustive analysis
to it. The goal is identifying the tables that are
candidates to be cubes in the OLAP model. Once the
tables are identified a search for dimensions and
levels must be done. The goal is to add dimensions
so we can produce a relational model for each cube
identified. The algorithm follows the next three
principal steps.

[S1].- Identifying cubes.- A table T is mapped to a cube C

in the relational model if T has the following
features: big size cardinality and the possible
presence of measures.

[S2].- Identifying measures.- Each numeric attribute from
C is mapped to a measure M in the relational
model.

[S3].- Identifying dimensions and levels.- Dimensions and
levels are identified as follow:

a.- Let FK be a foreign key between the tables (C, E),
where FK has multiplicity C(1,1), E(0,N) and C is a
cube, then:
� FK is mapped to a dimension D in the relational

model.
� E is mapped to a level L of the dimension D in

the relational model.
b.- Let FK be a foreign key between the tables (Ej,
Ek), where Ej has been mapped to a level of the
dimension D then:
� Ek is mapped to a level Lk of the dimension D in

the relational model.

678

Part III: Example.- As the main need of the
company identified in section 3.1 was to study and
analyze the Sales process. We focus on part of the
operational schema that supports the Sales business
process (figure 4), where primary keys are
underlined and foreign keys dashedlined.

Figure 4. The Sales operational database schema

First one the algorithm looks for tables with

numeric attributes and big size cardinality (step S1).
Following this condition, the set of cubes identified
in the operational schema are: Line and Forecast.
Then, the algorithm selects a table from this set, for
example: Line. Then the numeric attributes Price
and Quantity belonging to the Line table are
considered measures of the OLAP model (Step S2).
According to the step S3, the foreign keys attributes
of Line (Ticket_id, Prom_id and Article_id) are
considered dimensions. A search in the relational
schema is done for each table related with Line (step
S3). Those tables will be considered dimension’s
levels of the OLAP model associated to Line. The
set of levels identified are: Ticket, Promotion and
Article. The algorithm continues the search of levels
following the foreign key chain until the chain end.

3.3. Transformation rules

In this section, we describe the OLAP PIM and
some of the transformations rules.

3.3.1 OLAP PIM
In the OLAP PIM [5], each Dimension is a
collection of Members (figure 5). Cubes are used to
store Measures and they are related to the
Dimensions through the CubeDimensionAssociation
class. Dimensions can contain multiple and diverse
hierarchical arrangements of Members including a
specialized Hierarchies that support ordering
Members by Hierarchy Levels
(HierarchyLevelAssociation).

3.3.2. Transformation rules
In this section we describe some of the
transformation rules using the diagrammatic notation
of the declarative approach of QVT. Each
transformation contains the following elements:

� Domains: identifies a set of elements to match in
the target model by means of patterns.

� A relation domain: it specifies the kind of relation
between domains, since it can be marked as
checkonly (C) or as enforced (E).

� When clause: it specifies the pre-conditions that
must be satisfied to carry out the transformation.

� Where clause: it specifies the post-condition that
must be satisfied by all model elements
participating in the relationship.

Figure 5. OLAP metamodel

TableToCube. According to this transformation
rule (figure 6), a candidate cube table gets
transformed to a corresponding Cube, having the
same name of the table. Once this transformation is
done, the transformation rules ForeignKeyToCDA
and AttributeToMeasure must be done.

Figure 6. Transformation rule TabletoCube

ForeignKeyToDim. In this rule (figure 7), a Foreign
Key gets converted to a corresponding Dimension,
having the same name as the Foreign Key, but
prefixed with a "D". The check domain (C arrow)
determines the transformation in the following way:
1) each path identified is matching with a Hierarchy
through the transformation rule
HierarchyAuxToHierarchy. 2) The goal of the
function Get_Hierarchies is identify each path
starting from the relationship. 3) Each table in the
path is matching with a level through the
transformation rule TableToLevel. 4) The goal of the
function Get_levels is identify each table in the path.

HierarchyLevelAssociation

Name

Hierarchy

Name

Hla

1

n{ordered}

Level

Name

n

Las
1

Dimension

Name

n
1

Lbher n Lev 1..n

1

Measure

Name
datatype

CubedimensionAssociation

Name
1n

Dim

Cube

Name

Med n
1

CDAn

1

679

Figure 7 Transformation rule ForeignKeyToDim

Part IV: Example.-. Using a textual representation a
partial transformation for the candidate cube table
Line can be tracked from T1 to T7. In T1, the
candidate cube table Line is transformed into a Cube
class. Once this transformation is executed, the
following transformation rules AttributetoMeasure
and ForeignKeyToDimension are executed (T2-T7).

T1:Table (Name=”Line”) � TableToCube � Cube
(name=”Line”).
T2:Attribute (Name=”Quantity”) �
AttributetoMeasure � Measure (“MQuantity”)
T3:Attribute (Name=”Price”) �
AttributetoMeasure � Measure (“MPrice”)
T4:ForeignKey (Name=”Lin_Tic”) �
ForeignKeyToDimension �
Dimension(Name=”DLin_Tic)
T5: ForeignKey (Name=”Lin-Pro”) �
ForeignKeyToDimension �
Dimension(Name=”DLin-Pro)
T6: ForeignKey (Name=”Lin-Art”) �
ForeignKeyToDimension �
Dimension (Name=”DLin-Art)
T7:Table (Name=”Ticket”) � TableToLevel �
Level (Name=”LTicket”)

The candidate multidimensional schema Line
obtained from the relational schema is shown in
figure 8.

3.3. Integration and code generation

In this section, we present the rules that analyze
the elements produced from user requirements to
select and refine the OLAP models and the model to
text transformation rules.

Figure 8. Line model

3.3.1. Schema Matching
On one hand, the algorithm discovers a set of

OLAP models. These OLAP models capture the
available structures in the operational data base. At
the requirements level we specify the data
requirements, that is, the detailed information that
the DW must recognize in order to properly support
tasks that users must perform. Thus, analyzing the
information templates we can select the OLAP
model that best fit the user requirements. The
metrics to which OLAP model acquires them are:
� Corresponding attributes. We must identify

attributes from the cubes of each OLAP model
that has a correspondence with the measures
identified from user requirements.

� Corresponding dimensions. We must identify
dimensions from each OLAP model that has a
correspondence with dimensions obtained from
user requirements.

Table II resume the number of properties of each
OLAP model (for the Analyze ppromotions task).
Based on this information we can select the OLAP
model Line over the Forecast model, because it
captures better the user requirements and is
supported by the operational database.

Table II: Schema Matching.

Property\Schema Líne Forecast

Corresponding attributes 1 0
Corresponding dimensions 2 1

Once the model has been selected, it must be
manually modified. During this process we can
eliminate unnecessary levels, add measures, etc. To
better understand this step, we describe the process
that eliminates a dimension level.
Part V: Example.- Eliminate a dimension level.-
Probably, not all of the levels represented in the
selected OLAP schema are interesting for DW.
Thus, the level must be eliminated. For instance, one
may want to classify the information in Line cube

680

directly by Client and Store levels without
considering the Ticket Level. Figure 9, shows the
modified OLAP schema. The changes made to the
schema were: a) The time dimension and the
measure Sum(Quantity) were added. b) The level
Ticket was eliminated, generating two new
dimensions: Store_id and Client_id.

Figure 9. Modified OLAP model

3.4.2. Model to Text Transformation
In this section, we focus on describing two of the
developed transformations rules using the
MOFScript language. In figure 10, we show the
mapCreateCube transformation rule, a
transformation dealing with cubes and obtaining the
SQL code for a relational technology like ORACLE.
According to the transformation rule each Cube
class of the OLAP model gets transformed to a
corresponding SQL code, having the same name of
the cube class. The dimensions of this cube are
generated by the transformation rule
mapCreateDimensions.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced our Model Driven
method for DW design. In conclusion, the
experience we have gathered by applying the
proposed method in our case study is encouraging.
The method can be essential to direct the designer
toward a solution that is both efficient to implement
and consistent with users’ requirements. We think
that the description of the OLAP metamodel and its
transformations is a good example about the use of
MDA in the constructions of this kind of systems, at
the same time the final DW schema is strongly
rooted to the operational database which makes the
design of Extraction Transformation and Loading
(ETL) simpler. We plan for future works to extend
the approach presented in this paper by considering
richer criteria for the third phase.

Part VI: Example.- The SQL code generated for our
case study can be view in figure 11 .

Figure 10. Model to Text Transformations rules

Figure 11. SQL code

References
[1] A. Kleppe, J. Warmer, W. Bast, “MDA Explained. The

Practice and Promise of the Model Driven
Architecture”. Addison Wesley. 2003.

[2] L. Cabibbo and R.Torlone, “A Logical Approach to
Multidimensional Databases”. In Proceedings of the
International Conference on Extending Data Base
Technology (EDBT ’98, Valencia, Spain, Mar.), pp.
183–197, 1998.

 [3] M. Golfarelli, D. Maio and S. Rizzi, “Conceptual
Design of Data Warehouses from E/R schemes”, In
Proceedings of the 31st Hawaii International
Conference on System Sciences (HICSS ’98, Kona,
Hawai), 1998.

[4 J-N. Mazón, J. Trujillo, M. Serrano, M. Piattini,
“Applying MDA to the development of data
warehouses”, ACM 8th International Workshop on
Data Warehousing and OLAP, Bremen, Germany
DOLAP, pp. 57-66, 2005.

 [5] OMG, Common Warehouse Metamodel specification.
http://www.omg.org/cgi-bin/doc?ad/2001-02-02.

681

Analyzing the software development process with SyQL and Lagrein

Mirco Bianco
Center for Applied Software

Engineering
Free University of Bolzano

Via della Mostra, 4
I-39100 Bolzano-Bozen
Mirco.Bianco@unibz.it

Alberto Sillitti
Center for Applied Software

Engineering
Free University of Bolzano

Via della Mostra, 4
I-39100 Bolzano-Bozen
Alberto.Sillitti@unibz.it

Giancarlo Succi
Center for Applied Software

Engineering
Free University of Bolzano

Via della Mostra, 4
I-39100 Bolzano-Bozen

Giancarlo.Succi@unibz.it

Abstract
Mining information from software products metrics

and software process data is very hard[14]. Automatic
collected data from the source code metrics extractors
and from the software development process probes
have different formats, it makes difficult to use both at
the same time. In this paper, we present a data ma-
nipulation language called System Query Language
(SyQL), which overcomes problems of other similar
languages and allows the user to access data stored in
a relational-temporal database. Developers and man-
agers can look at effort data and code metrics by writ-
ing very concise SQL-like queries and by using
linguistic variables that are unavailable in other exist-
ing similar query languages. SyQL helps the user to
access temporal data of the software process, provid-
ing a set of temporal constructs. Examples of problems
solved using SyQL queries and Lagrein (a tool for
source code analysis) are provided, evidencing the
advantage of he proposed approach. t

Keywords� Query languages, data warehouses,
software metrics, effort, development process.

1. Introduction

2.

Mining information from software process and
products metrics at the same time is challenging [5].
The relations between them can be different depending
on the analysis to perform.
Typically, researchers mine information from rela-
tional data warehouses in asynchronous way, using
SQL to perform data extraction and other data manipu-
lation tools (Weka, RapidMiner, Matlab, etc) to per-
form elaboration, such as filtering, clustering, etc.
These data warehouses grow up to 1.5 GB/day [14],
therefore the asynchronous approach is very time con-
suming. Moreover, the structure of the data warehouse
is usually fairly complex [13].
To overcome such problems we propose a new lan-
guage: System Query Language (SyQL). SyQL is a

domain specific language based on fuzzy-temporal
logic to query a data-warehouse of software process
data [15] through “SQL like” queries. SyQL is used
inside Lagrein [7] for retrieving and visualizing the
historical data about the software development process
(code metrics, effort, bugs, etc.). Software develop-
ment takes place over time. To allow the user to con-
sider the time aspect when evaluating software metrics,
SyQL offers the possibility to filter data using tempo-
ral conditions.
The paper is organized as follows: sections 2 defines
the goals of this work, section 3 discusses the related
work, section 4 presents our solution, section 5 gives
an overview of our automatic metrics collection sys-
tem, section 6 introduces the syntax of SyQL, section 7
describes how the SyQL query engine works, section 8
shows examples of visualization, finally section 9
draws the conclusion and presents future directions.

The Goals
SyQL has been designed to achieve the following

goals:
� Build an abstraction layer between the user and

the tables of the data-warehouse;
� Make the query preparation process against the

metrics data warehouse [14] trivial;
� Help software engineers to evaluate software

along the timeline;
� Support the evaluation of the effort spent by the

developers along the temporal line;
� Help the user to evaluate product quality using

simple logic constructs;
� Make the language extensible.

Summarizing, SyQL has a high aggregation capacity
and it supports extensible fuzzy logic and temporal
functions. The Fuzzy logic is useful for performing
qualitative analysis on large datasets, which sometimes
is more useful than quantitative analysis, because the
user cannot a priori estimate the value of software met-
rics [19]. The user can miss some important results if

682

he/she uses a wrong threshold value. Therefore, a
fuzzy set encapsulates the “experience” to evaluate a
particular metric. By temporal functions, we mean lan-
guage clauses that help the user to write shorter que-
ries. Temporal functions are needed because the
software development process evolves over time, and
so queries must include temporal conditions
[1][16][18][10].

3.

4.

Related work
There are several works on languages that can be

used to query repositories of software data. The fea-
tures that appear most relevant to consider are: the
capabilities to perform temporal queries on product
and process metrics, the possibility to help the user to
filter the results through linguistic variables [17] (such
as high, medium, low), and the possibility to be used
into a general context. In addition it is important to
consider some other technical aspects such as: support
to combined analysis (software metrics/effort), tempo-
ral management, fuzzy logic support, supported pro-
gramming languages (languages from which the tool is
able to extract information for analysis tasks), and ob-
ject orientation.
In Table 1 we use such criteria to compare some of the
most relevant existing work and SyQL.
Language Integrated Query – LINQ [9] is designed to
be embedded into another programming language.
Therefore, queries can be performed with the same
expressive power from a program written either in C#
3.5, VB 9.0, or another .NET language. FuzzySQL [4]
is a commercial relational database front-end; it sup-
ports fuzzy conditions and it is designed to assist the
user during the analysis tasks. .QL [11] is a commer-
cial tool designed to perform code analysis tasks as
reverse engineering and discovery of bad code smells.
DmFSQL [2] is a general-purpose fuzzy query lan-
guage data-mining oriented implemented as an Oracle
database front-end. SCQL [6] is a domain-specific
temporal query language used to retrieve information
from a relational database containing information gath-
ered from a source control system. NDepend is an ap-
plication, which uses CQL (Code Query Language),
for extracting information from .NET projects. With
this program is possible to extract a lot of information
from the source code.

Our proposal
To enable the final user to perform fuzzy-temporal

query against a metrics data warehouse [15] we de-
cided to implement a new query language, SyQL. The
reasons of this choice are now discussed, showing the

main differences with those of languages introduced
above.
The syntax of SyQL is similar to the one of LINQ [9],
but it is designed to achieve different purposes. LINQ
is more general and can perform queries on different
data sources, while SyQL is tight to a specific data
source (the metrics data warehouse [15]). Both of them
are fully object oriented; SyQL allows the use of
Fuzzy equal operator and temporal tokens, LINQ does
not.
The main difference between SyQL and FuzzySQL [4]
is that FuzzySQL is a general-purpose relational data-
base front-end, while SyQL is a specific tool to per-
form information retrieval tasks on metrics data
warehouse [14] with additional features to handle tem-
poral analysis of the software development process.
SyQL can be used to perform software metrics and
effort analysis, on the contrary .QL [11] can handle
only software data. SyQL can perform tasks on differ-
ent project written in different programming lan-
guages, while .QL can perform analysis only on Java
projects. SyQL supports the fuzzy logic conditions,
.QL does not.
SyQL is completely different from dmFSQL [2], the
only evident similarity between them is the fuzzy logic
support, because the purposes of these two languages
are different.
Both SCQL [6] and SyQL have keywords to manage
temporal data. The main difference is that SyQL is
designed to be extended to handle different aspects of
development process (effort, software metrics, re-
quirements, etc.), while SCQL is designed only to per-
form information retrieval tasks on software repository
data. SCQL has not fuzzy logic support.
NDepend and SyQL have been designed for achieving
different goals. With NDepend is easier keep under
control a set of .NET projects, because it is highly in-
tegrated with the .NET environment, on the other hand
SyQL is more platform independent (it supports also
C/C++ and Java) and it wants to help the users to con-
trol different aspect of the software development proc-
ess. With SyQL is possible to visualize and compare
the values of a specific metric into a specified time
interval (e.g. show the total number of line of code in
the last 6 months), with NDepend is possible only to
compare two different versions of the code showing
the changes. SyQL makes possible running real effort
analyses on source code (e.g. compute the total effort
spent by the developers on a specific pack-
age/namespace), it enables the user to track the bug
fixing process showing which methods had been modi-
fied during a specific fixing task, with NDepend it is
not possible.

683

Table 1: Comparison between different query languages.

Languages

Support to
combined analysis

(software
metrics/effort)

Temporal
management

Fuzzy
Logic

General
Purpose
language

Supported programming
languages

(for analysis task)

Object
Orientation

LINQ [9] NO NO NO YES None YES
FuzzySQL [4] NO NO YES YES None NO

.QL [11] NO NO NO NO Java YES
dmFSQL [2] NO NO YES YES None NO

SCQL [6] NO YES NO NO None NO
NDepend1 NO NO NO NO All .NET languages YES

SyQL YES YES YES NO C/C++, Java, C#, VB.NET YES

5.

1 http://www.ndepend.com/

Architecture description
Before presenting the architecture of SyQL and how

the results are displayed, we are going to give a brief
introduction to our distributed non-intrusive system for
collecting software metrics [14]. Figure 1 shows the
role of SyQL and Lagrein in the system. The metric
collection system is distributed: the applications plug-
ins are installed on the clients and they are able to trace
the user activities inside the most common IDEs (Mi-
crosoft Visual Studio, Eclipse, etc.); the Source Code
Analysis components runs on a standalone machine
that takes daily snapshots of the source code from the
Versioning System. These components send the col-
lected data to the Metric Server using Apache XML-
RPC protocol implementation. Then, the Metrics
Server organizes these data and stores them inside the
relational data warehouse. The extracted information
are delivered to the managers and to the developers in
two possible ways, either by an automatic statically
generated report (using Eclipse BIRT) or by La-
grein/SyQL in a "dynamic/visual" way.

6.

Figure 1: The System Architecture.

Language description
We introduce the structure of the language through

an example.

[01] FROM Class c, Method m
[02] WHERE c.getFullName() =
[03] m.getDefClassFullName()
[04] AND .getEffort(YESTERDAY) IS High c
[05] SELECT c.getFullName(),
[06] c.getEffort(TODAY – 1 ’day’),
[07] COUNT(m)
[08] GROUP BY c.getFullName(),
[09] c.getEffort(TODAY – 1 ’day’);

The above query returns a collection of class names,
the related effort spent by the developers since yester-
day, and the number of methods for each class.
The first row introduces the FromClause, which could
contain one or more FromElement(s). Each of them is
composed by two literals, the former identifies the con-
cept type, the latter declares the concept name (like in
SQL). The second, third and fourth rows introduce the
WhereClause. In the example there are two conditions:
an equal join condition and a fuzzy condition. The
fuzzy condition evaluates the effort spent yesterday by
the developers. The method c.getEffort(...) is a Java
method that returns a value. In the fifth, sixth, and sev-
enth rows the SelectClause is shown. This is a non
empty collection of MethodCall(s) and/or aggregation
functions (like Count, Sum, Max, Min, etc.). In the last
two rows we declare the GroupByClause, which is
similar to SQL one.
As happens in others similar query languages [9] [11],
we decide to put the FromClause at the beginning of
the query for allowing to use the auto completion in
Where, Select, and GroupBy clauses.

684

7. How the query engine works
7.1 Concepts and methods

The extensibility is one of the main requisite of
SyQL engine, different concepts (the non-terminal
symbol FromElement) and methods (the non-terminal
symbol MethodCall) used into a SyQL query are
shipped in a separate library. This allows us to imple-
ment new concepts and new methods during the entire
lifecycle of SyQL. Another advantage is that SyQL
acts as an abstraction layer between the user and the
data-warehouse. Therefore, we can modify the schema
of the data-warehouse without affecting the user, if the
library is updated properly.
Implementing a new concept in SyQL has only one
requirement: an instance of one concept must be an
entry of a relation defined with a SQL statement. In
this way, we can perform the mapping between the
SyQL concepts and the tables. The materialization of
the object is performed through a constructor, which
takes as input an entry of the relation defined above.
All the methods of a concept class that can appear in
the SyQLExpression are annotated in two different
ways. An annotated method can become part of an
external or an internal calculable condition. A method
can be annotated as external if the returned value is
present in one column of the defining concept relation,
otherwise it must be annotated as internal. If a condi-
tion, which is represented by an instance of SyQLRela-
tionalExpression, is composed by at least one internal
calculable method, it must be evaluated into the SyQL
query engine, otherwise it can be evaluated by the

query engine of the underlying DBMS. The FuzzyEx-
pression(s) are internal by default.

7.2 Query Execution
The SyQL query engine works on top of the DBMS

(Figure 2).

Figure 2: The Data Layers.

The SyQL query engine has been implemented without
the need of developing a sophisticated query planner
and executor. The idea is to push as much conditions
as possible into the query engine of the underlying
DBMS, in this way we obtain better time performance
because the SyQL query engine does not execute any
join. To perform it correctly, we convert the conditions
that appear in the WhereClause into an equivalent
Conjunctive Normal Form (CNF) formula using Boo-
lean algebra and the De Morgan’s theorem. The CNF
notation is very helpful, because a block of OR condi-
tions can be processed by the underlying DBMS query
engine only if all the conditions (inside the block) are
evaluated as external, otherwise the block of condi-
tions must be evaluated by the SyQL query engine. A
condition is evaluated as an external one if all the pre-
dicates (of the condition) are external, otherwise a
condition is evaluated internally. The query execution
workflow is shown in Figure 3.

Figure 3: The SyQL Query Workflow.

To perform always this conversion, we convert the
parsed formula into an equivalent Disjunctive Normal
Form (DNF) formula. Then, we convert it into an

equivalent CNF formula doing the Cartesian product
among all the condition contained into the AND
blocks. The most critical component for the perform-

685

ance is the internal condition evaluators, usually inter-
nal conditions require a lot of computation, because
most of them need to fetch data from the database. To
address this problem we adopted two solutions: 1) sort-
ing these conditions according to their cost, the cost is
estimated by the developer of the SyQL libraries dur-
ing the implementation; 2) evaluating these conditions
in parallel taking advantage of the modern paral-
lel/multicore hardware architectures.

8. Query visualization
SyQL query results may produce a large quantity of

data. Extracting useful information from a large tem-
poral series may be difficult for a human user. Inspect
a large software system (about 1,000 classes) on a tem-
poral line of one month (20 working days) generates
about 20,000 values per selected class metric, assum-
ing that we collect one metrics snapshot per day with-
out specify any filtering condition. If we perform
queries on methods instead on classes, the reader can
easily understand how the number of results grows up.
Computer animation can easily be a useful and intui-
tive solution for displaying evolving datasets [12].
We solve this problem mapping the query results in-
side the metric views of Lagrein. Mapping these results
it is straight forward because the SyQL query engine is
written in Java, the common implementation technol-
ogy simplifies the integration between the two tools.

8.1 Introducing query visualization by
examples
Example 1:

In this example we visualize the growth of the
classes (in term of LOC) where the developers have
spent high effort during the last four days.

FROM Class c, Chron chr
WHERE chr.getDate() >= TODAY - 4 'days'

AND chr.getDate() < TODAY
AND c.getEffort(TODAY - 4 'days', TODAY)

IS High
SELECT c.getLOC(chr.getDate());

The result of this query can be visualized either in an
Evolution matrix (Figure 4) or in a Evolution Chart.
The query above is a collection of ClassLOC in-
stances. The ClassLOC class implements the interface
ClassMetric. Through this interface is possible to re-
trieve the date, the class owner, and the value of the
metric. In this way, it is possible to create an animated
view of the growth of the classes in the last four days.

It is also possible repeat this query for all the software
metrics collected by the source code analyzer (Cyclo-
matic Complexity, Halstead Volume, CK metrics [3]).

Figure 4: Evolution Matrix

Example 2:

It is also possible to create static views of the sys-
tem. In this example we perform selection of the
classes with high value of Coupling Between Objects
(CBO).

FROM Class c
WHERE c.getCBO(TODAY) IS High
SELECT c;

The result of this query (static result) can be visualized
in several views (Figure 5) available in Lagrein (e.g.,
Inheritance tree, Dependency graph, etc).

9. Conclusion and future work
This paper discussed a possible approach for visual-

izing and mining software metrics and software proc-
ess data. The whole architecture of the metric
collection system and the language structure of SyQL
have been presented and a comparison to existing sys-
tems is provided, showing that SyQL can go further
than the other existing languages. The query execution
workflow has been discussed. As a proof of concept a
set of examples has been provided to the reader.
Now we are using this language to build training data-
set for estimating the fault-proneness of a method. We
will embed these models into SyQL concept libraries,
so we will enable the language user to estimate the
fault-proneness of a method simply from a SyQL que-
ries.

686

Figure 5: Inheritance Tree of High CBO Classes

References
[1] M. Böhlen, J. Gamper, and C. Jensen. Multi-
dimensional aggregation for temporal data. In Advances in
Database Technology - EDBT 2006, pages 257-275, 2006.
[2] R. Carrasco, M. Vila, and F. Araque. dmFSQL: A lan-
guage for data mining. In Proceedings of the 17th Interna-
tional Conference on Database and Expert Systems
Applications, pages 440-444, 2006.
[3] S. Chidamber and C. Kemerer. A metrics suite for ob-
ject oriented design. IEEE TSE, 20(6):476-493, 1994.
[4] E. Cox. FuzzySQL a tool for finding the truth: the pow-
er of approximate database queries. PC AI, 14(1):48-51,
2000.
[5] F. Fioravanti, P. Nesi. Estimation and prediction met-
rics for adaptive maintenance effort of object-oriented sys-
tems. IEEE TSE, 27(12):1062-1084, 2001.
[6] A. Hindle and D. M. German. SCQL: a formal model
and a query language for source control repositories. In Pro-
ceedings of the 2005 workshop on Mining software reposito-
ries, pages 1-5, 2005.
[7] A. Jermakovics, R. Moser, A. Sillitti, and G. Succi.
Visualizing software evolution with lagrein. In OOPSLA
Companion, pages 749-750, 2008.
[8] M. Karaila and T. Systa. Applying template meta-
programming techniques for a domain-specific visual lan-
guage – An industrial experience report. In Proceedings of
the 29th international Conference on Software Engineering,
pages 571-580, 2007.
[9] E. Meijer, B. Beckman, and G. Bierman. LINQ: recon-
ciling object, relations and XML in the .NET framework. In
Proceedings of the 2006 ACM SIGMOD international con-
ference on Management of data, pages 706-706, 2006.
[10] B. Moon and F.V. Lopez. Efficient algorithms for
large-scale temporal aggregation. IEEE Transactions on
Knowledge and Data Engineering, 15(3):744-759, 2003.

[11] O. d. Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T.
Ekman, N. Ongkingco, D. Sereni, and J. Tibble. Keynote
Address: .QL for source code analysis. In Proceedings of the
Seventh IEEE international Working Conference on Source
Code Analysis and Manipulation, pages 3-16, 2007.
[12] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visu-
alizing multiple evolution metrics. In Proceedings of the
2005 ACM Symposium on Software Visualization, pages 67-
75, 2005.
[13] K. Ramamurthy, A. Sen, and A.P. Sinha. Data Ware-
housing Infusion and Organizational Effectiveness. IEEE
Transactions on Systems, Man and Cybernetics, Part A,
38(4):976-994, 2008.
[14] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza. A
non-invasive approach to product metrics collection. Journal
of System Architecture, 52(11):668-675, 2006.
[15] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza. Non-
invasive collection of software metrics: some issues and
experiences. In Sharing experiences on agile methodologies
in open source software development, Polimetrica Publisher,
Italy, pages 31-38, 2006.
[16] J. Yang and J. Widom. Incremental computation and
maintenance of temporal aggregates. The VLDB Journal,
12(3):262-283, 2003.
[17] L. A. Zadeh. The Concept of a Linguistic Variable and
its Application to Approximate Reasoning. Information
Science, 8:199-249, 1975.
[18] D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos,
and B. Seeger. Efficient computation of temporal aggregates
with range predicates. In Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 237-245, 2001.
[19] S. Zhang, J. Lu, and C. Zhang. A fuzzy logic based
method to acquire user threshold of minimum-support for
mining association rules. Information Sciences, 164(1-4): 1-
16, 2004.

687

Performance Analysis of a Deductive Database with a Semantic Web
Reasoning Engine: ConceptBase and Racer

Simone A. Ludwig, Craig Thompson, Kristofor Amundson

Department of Computer Science, University of Saskatchewan, Canada
ludwig@cs.usask.ca

Abstract

Knowledge engineering is a discipline concerned
with constructing and maintaining knowledge bases to
store knowledge of various domains and using the
knowledge by automated reasoning techniques to solve
problems in domains that ordinarily require human
logical reasoning. Therefore, the two key issues in
knowledge engineering are how to construct and
maintain knowledge bases, and how to reason out new
knowledge from known knowledge effectively and
efficiently. The objective of this paper is the evaluation
of a Deductive Database system with a Semantic Web
reasoning engine. For each system a knowledge base
is implemented in such a way that comparable
performance measurements can be performed. The
performance and scalability are evaluated for class
and instance queries.

1. Introduction

Knowledge engineering is a discipline concerned
with constructing and maintaining knowledge bases to
store knowledge of the real world in various domains
and using the knowledge by automated reasoning
techniques to solve problems in domains that
ordinarily require human logical reasoning. Therefore,
the two key issues in knowledge engineering are how
to construct and maintain knowledge bases, and how to
reason out new knowledge from known knowledge
effectively and efficiently.

Knowledge-based systems (KBS) use human
knowledge to solve problems which normally requires
human intelligence. A KBS shell is a software
environment containing a knowledge acquisition
system, the knowledge base itself, inference engine,
explanation subsystem and user interface. The core
components are the knowledge base (human
knowledge represented by e.g. IF-THEN rules) and the
inference engine (forward or backward chaining).

MYCIN [1] is an example of a rule-based expert
system which was designed for the diagnosis of

infectious blood diseases. MYCIN has been developed
without using a modeling framework, opposed to a few
frameworks which were developed to help during the
knowledge engineering process such as CLIPS (C
Language Integrated Production System) [2] or JESS
(Java Expert Systems Shell) [3]. CLIPS is a productive
development and delivery expert system tool which
provides a complete environment for the construction
of rule and/or object based expert systems. JESS is a
rule engine and scripting environment written in Java.
With JESS, one can build software that has the
capacity to "reason" using knowledge supplied in the
form of declarative rules. JESS uses an enhanced
version of the Rete algorithm [4] to process rules
which is a very efficient mechanism for solving the
difficult many-to-many matching problem.
CommonKADS [5] is known for having a structure of
the Expertise Model and Model-based and Incremental
Knowledge Engineering (MIKE) [6], which relies on
formal and executable specification of the expertise
model as the result of the knowledge acquisition phase.

Another approach for reasoning is Deductive
Databases, where data is described by logical formulas,
usually in a restricted subset of first-order logic. These
formulas are intended to specify part of the external
world relevant to the application at hand, called the
application world. Thus, a Deductive Database is a
logical representation of the application world.
Therefore, the semantics of Deductive Databases are
based on mathematical logic. A user queries a
Deductive Database by submitting a goal. Goals are
also logical formulas. A correct answer to a goal
provides values for the variables of the goal that make
this query logically follow from the database. Hence,
the semantics of query answering in Deductive
Databases is based on the notion of logical
consequences developed in mathematical logic.
Besides formulas specifying the database and queries,
a Deductive Database can also contain integrity
constraints: logical conditions which the database must
satisfy at any given moment [7].

The latest reasoning technology for the Web is the
Semantic Web, which vision is to make the Web

688

machine-readable, allowing computers to integrate
information and services from diverse sources to
achieve the goals of end users. It allows to reason
about the content when Web pages and services are
augmented with descriptions of their content. Semantic
Web technologies are used in many ways to transform
the functionality of the Web by enriching metadata for
Web content to improve search and management;
enriching descriptions of Web services to improve
discovery and composition; providing common access
wrappers for information systems to make integration
of heterogeneous systems easier; and exchanging
semantically rich information between software agents.
Ontology languages [8] were created to augment data
with metadata. The most recent ontology for the Web
is called OWL (Web Ontology Language). OWL
builds on a rich technical tradition of both formal
research and practical implementation.

This research was motivated by the fact that
reasoning on the Web becomes ever more important
due to the advancement of Web services and service
computing on the whole. However, not much research
has been conducted into the evaluation of the
performance and scalability of reasoning on the Web.
Furthermore, no comparison between an established
reasoning tool, namely the deductive database, has
been done. The objective of this paper is the evaluation
of a Deductive Database system with a Semantic Web
reasoning engine. For each system a knowledge base is
implemented in such a way that comparable
performance measurements can be performed.

The paper is outlined as follows. In Section 2, both
systems, ConceptBase and Racer are described. In
Section 3, the knowledge base, queries, measurement
methodology and setup are outlined. Section 4 presents
the performance analysis of both systems exploring the
load time and the scalability of classes and instances.
The findings and conclusions are given in Section 5.

2. Description of Both Systems

ConceptBase was chosen as the Deductive Database
system to compare with the Semantic Web reasoning
engine Racer. The two systems are described in more
details in the subsections below.

2.1. ConceptBase

ConceptBase has been used in a number of
applications at various universities in Europe. The
ConceptBase system, developed since 1987, seeks to
combine deductive rules with a semantic data model
based on Telos [9] (described further below). The

system also provides support for integrity constraints
[10]. ConceptBase is free software available for
download, and the user interface is java based.
Furthermore, ConceptBase uses the client-server
architecture, and has a fairly extensive Application
Programming Interface (API) for writing clients in
Java, C or C++.

ConceptBase is a deductive object-oriented
database management program intended for conceptual
modeling. It uses O-Telos which is a version of the
logical knowledge representation language Telos,
which includes deductive and object-oriented features.
O-Telos is based on Datalog, which is a subset of
Prolog.

ConceptBase allows for logical, graphical and
frame views of databases. The ConceptBase graph
editor allows one to visualize the relationships in the
database, as well as adding and modifying the classes,
individuals, and relationships. Queries are represented
as classes that have membership constraints. Within
the database, all classes, instances, attributes, rules and
constraints are represented as objects that may be
updated at any time. However, there is not an option to
cascade changes, so it is easy to add information at any
time, but it can be difficult to remove information.

2.2. Semantic Web Technologies: Protégé and
Racer

The Semantic Web technology used to create an
ontology to represent the application domain was
Protégé [11], a Java-based, free ontology editor
developed by Stanford Medical Informatics at the
Stanford University School of Medicine. It provides a
knowledge base that allows the user to create formal
rules for a knowledge representation system to reason
through. After developing a taxonomy and creating
rules the ontology can be exported in OWL format,
which is similar to XML in syntax and includes the
descriptions of the classes and individuals along with
their explicit relationships. Protégé also provides a
Java API that allows OWL files to be imported and
represented as Java classes. The API has the capability
to connect to a knowledge representation system, such
as RACER (Renamed ABox and Concept Expression
Reasoner) [12], allowing implicit relationships to be
found.

RACER is commercial software developed by
RACER Systems and was used for this research
investigation. This software is capable of reasoning
through Description Logic TBoxes (subsumption,
satisfiability, classification) and ABoxes (retrieval,
tree-conjunctive query answering using an XQuery-

689

like syntax), such as the ones that are created using
Protégé and exported in the OWL format.

3. Evaluation

In order to perform a comparison analysis of Racer
and ConceptBase, a knowledge base was implemented
in both systems. Queries were chosen which return the
same results to evaluate class and instance queries. The
measurement methodology and setup are described
below.

3.1. Knowledge Base

The knowledge base / ontology used for the

evaluation is an extension of the pizza ontology
supplied with Protégé.

Table 1. Ontology description of scaling classes

Ontology
size

Number of
classes

File size
Racer
(in KB)

File size
ConceptBase
(in KB)

1 263 279 27

2 495 565 54

3 727 869 82

4 959 1189 109

5 1191 1536 137

6 1423 1897 163

7 1655 2280 191

8 1887 2683 219

9 2119 3105 246

10 2351 3553 273

The ontology contains classes describing pizzas and

ingredients, as well as sandwiches and salads. The
dishes (pizzas, sandwiches, salads) were defined in
terms of the ingredients they contain. All subclasses in
the ontology were given instances, and in some cases
higher level classes had instances, so there are nearly
as many instances as classes. Some dishes were
defined to describe specific foods, such as a BLT
(Bacon Lettuce Tomato) sandwich, other dishes such
as vegetarianPizza were defined to be any pizza
without meat or fish. The classes describing specific
foods were given necessary conditions, for example,
this pizza must have mozzarella as a topping. The
other classes, such as vegetarianPizza, were given
necessary and sufficient conditions, meaning that any
pizza that had no meat or fish would be considered a
vegetarianPizza. Thus, the classes that met the

necessary and sufficient conditions would be
subsumed, creating an inferred hierarchy of classes.

ConceptBase on the other hand, required a slightly
different modeling technique. It is not possible to
create an inferred class hierarchy, thus, in order to
have similar reasoning capabilities to the Protégé
ontology, queryClasses were used. Query classes have
constraints describing which individuals may be
members of the query class. Thus, with the vegetarian
pizza example, members of the vegetarian pizza query
class were defined to be any individual that did not
have meat, or fish, as an ingredient.

Table 2. Ontology description of scaling instances
(number of classes fixed to 263)

Ontology
size

Number of
instances

File size
Racer
(in KB)

File size
ConceptBase
(in KB)

1 217 305 46

2 434 321 65

3 651 348 84

4 868 375 104

5 1085 402 123

6 1302 433 142

7 1519 454 162

8 1736 480 181

9 1953 507 200

10 2170 542 220

As knowledge bases consist of classes and

instances, the investigation will only focus on class
and instance reasoning. In order to measure how good
both systems scale, we expanded the ontologies in two
directions; (1) scaling of classes and (2) scaling of
instances. Table 1 and 2 show the properties of the
different ontology sizes used for this investigation.
Table 1 contains 10 different ontology sizes, whereby
the number of classes is increasing with the size
without containing any instances. For the scaling of
instances, the class structure of the size 1 ontology
(Table 1) is fixed to 263 classes for all different
instance ontology sizes.

3.2. API and Queries

The ConceptBase API provides methods to ‘tell’
files to the ConceptBase server, retrieve a named class
or individual, find instances of a class or query a class,
retrieve attributes of classes or individuals, retrieve
superclasses and subclasses, find the class that an

690

individual belongs to, and get generalizations and
specializations from a class. Additionally, several
Boolean operations are provided for testing the
relationships between classes, or instances, such as
isSuperclassOf or isExplicitInstanceOf. There
appeared to be many methods that returned the same,
or very similar results in different formats, such as
newline delimited, or comma delimited. The redundant
queries in ConceptBase returned the same classes, but
in different formats, e.g., subclasses can be returned in
ConceptBase code syntax, or as a string with one class
per line, or with all classes on one line separated by
commas, or as a hashset, depending on what the user
want to do with the subclasses. Attributes in
ConceptBase are tied directly to the class they
represent, so all information about attributes is gained
through the appropriate class, or instance. The useful
methods for obtaining information from the database
can be found in the ICBclient and ITelosObjectSet
classes.

The Protégé API allows the user to find descendant
classes, classify the taxonomy, compute the inferred
hierarchy, compute the inferred types of all
individuals, retrieve ancestor classes, retrieve
equivalent classes, retrieve subclasses, find individuals
belonging to a class, determine the subsumption
relationship between two classes, return the superclass
of a class, get sub properties, get inverse properties,
return the inferred equivalent classes, get the inferred
subclasses, get the inferred superclasses, maximum
and minimum cardinalities of properties, determine if
subclasses are disjoint, determine if a class has a
superclass, return the name of an instance, return the
namespace of the ontology, return a list of the possible
rdf properties, and return rdf types. Properties in
Protégé are independent of classes and instances, and
thus may be queried directly. The useful methods for
gaining information about the model were spread
across several classes in the API, namely,
ProtegeOWLReasoner, RDFProperty, OWLProperty,
OWLNamedClass and OWLIndividual. Among these
classes, there seemed to be several redundant methods.
This is because OWLProperty inherits from
RDFProperty and therefore has all the same methods,
plus a few more. ProtegeOWLReasoner and
OWLNamedClass have some methods with the same
results, the difference is that ProtegeOWLReasoner
calls RACER, whereas OWLNamedClass uses the
results from the last time the reasoner was used.

The main type of reasoning of a knowledge base
can be divided into two categories, class and instance
reasoning. In order to perform a fair analysis of these
systems, equivalent queries existent in both systems
which perform the same type of reasoning were

chosen: Query 1 and 2 are class queries, and query 3
and 4 are instance queries.

Query 1 returns all subclasses belonging to a
particular class: getDescendentClasses (Racer);
getAllSubclassesOf (ConceptBase).

Query 2 returns the superclasses of a particular
class: getSuperClasses (Racer);
getExplicitSuperClasses (ConceptBase).

Query 3 returns all individuals that are members of
a particular class: getIndividualsBelongingToClass
(Racer); getAllInstancesOf (ConceptBase).

Query 4 returns all classes that an individual or an
instance belongs to: getIndividualTypes (Racer);
getClassificationOf (ConceptBase).

3.3. Methodology

Bash scripts were used to automate all the
measurement runs. The process for each measurement
was as follows: start Racer or the ConceptBase server,
run the java query, and close Racer or ConceptBase
server to clear the cache. This process was repeated 30
times (to guarantee normal distribution) for each
query. The Java query file used to perform a query
would start by loading the data model into Racer or the
ConceptBase server. Then, the java method
System.nanoTime was used immediately before and
after the query, and the difference was calculated to
estimate the performance of the query. Each time the
java program was executed it would perform only one
query, in order to avoid caching issues across queries.
System.nanoTime was found to give results with a
higher precision than System.currentTimeMillis,
especially as several of the queries took less than one
millisecond to execute.

3.4. Measurement Setup

The following measurement setup was used for this
investigation:
� Hardware configuration (Lenovo M55 with

2.4GHz Intel Core2 CPUs and 2GB of RAM; no
hyperthreading).

� Software configuration (Mandriva Linux 2008.1;
Java 1.6.0_03; latest versions of ConceptBase 7.1,
Protégé 3.4 and Racer 1.9.2.)

4. Results

The evaluation was performed as follows. First, the
load times for loading the different ontologies into
memory are measured. Afterwards, the scalability of
classes and instances are evaluated.

691

4.1. Load Time of Different Ontology Sizes

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Ontology size

Lo
ad

 ti
m

e
in

 s

Scaling classes Racer Scaling classes ConceptBase
Scaling instances Racer Scaling instances ConceptBase

Figure 1. Load time of Racer for scaling of classes and
instances

Before queries are run in both Racer and

ConceptBase, the knowledge base or ontology needs to
be loaded into memory first. Figure 1 shows the load
time in seconds for increasing ontology sizes. Two
distinctions are made here for either scaling of classes
or instances. The scaling of Racer shows a linear
distribution with increasing ontology sizes, whereby
the scaling of classes has a greater impact on the
performance than the scaling of instances. The scaling
of classes has a gradient of 0.3, whereas the scaling of
instances has a gradient of 0.07. The load time for
ConceptBase has a slightly different distribution. The
scaling of instances seems to be linear; however, the
scaling of classes follows a quadratic distribution. The
query times for the scaling of classes are also larger
than for the scaling of instances as also observed for
Racer. Comparing both systems it can be concluded
that the load time of ConceptBase is greater by a factor
of 3.01 for the scaling of classes, but is almost similar
for the scaling of instances with a factor of 0.95.

4.2. Scaling of Classes

Looking at how the performance scales with
increasing ontology sizes (the instance queries would
not make sense when querying an ontology without
instances), Figure 2 shows the queries run in Racer and
ConceptBase (getSuperClasses, getAllSubclassesOf
and getSuperclassesOf all have similar query times). It
is observed, that both queries, getDecendentClasses
and getSuperclasses, scale in a similar fashion with a
quadratic distribution. This is because the same
operation is performed, that is the classification of a

new concept. Racer computes more than is required in
order to answer these particular class queries.
ConceptBase on the other hand shows the
measurements of the similar queries with a linear
distribution. Instead of both queries scaling in a simiar
fashion as in Racer, the query time for subclasses is
higher than for superclasses. It appears that the
performance is dependent on the number of return
values. getAllSubclassesOf returns 31 to 238
subclasses for ontology size 1 and 10 respectively,
while getSuperclassesOf returns only 1 superclass for
all ontology sizes.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ontology size

Q
ue

ry
 ti

m
e

in
 m

s

getSuperclasses Racer getDescendentClasses Racer
getAllSubclassesOf ConceptBase getSuperclassesOf ConceptBase

Figure 2. Query time of Racer for scaling of classes

Comparing the class queries executed in Racer and

ConceptBase, it shows that ConceptBase scales much
better than Racer.

4.3. Scaling of Instances

Figure 3 shows the linear distribution of query
times for scaling of instances. For Racer, it shows that
the query times for getIndividualBelongingToClass are
higher than for getIndividualTypes queries.
getIndividualTypes looks at a specific individual and
returns all classes of which it is an instance of, whereas
getIndividualsBelongingToClass has to consider all
individuals. The implementation of the operations
seem to be quite different and therefore the result can
be seen in the query times of both queries in Racer.
The instance query, getAllInstancesOf, performed in
ConceptBase shows a quadratic distribution, whereas
the getClassificationOf query shows a linear gradient.
getAllInstancesOf takes longer as the return values
range between 47 to 256 for ontology size 1 to 10
respectively, whereas getClassificationOf returns
always only one return value. The direct comparison of

692

the query times regarding the scaling of instances of
both systems shows that ConceptBase performs better
than Racer.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Ontology size

Q
ue

ry
 ti

m
e

in
 s

getIndividualTypes Racer getIndividualsBelongingToClass Racer
getAllInstancesOf ConceptBase getClassificationsOf ConceptBase

Figure 3. Query time of Racer for scaling of instances

5. Conclusion

This paper evaluated a Deductive Database system
and a Semantic Web reasoning engine - ConceptBase
and Racer. For each system a knowledge base was
implemented in such a way that comparable
performance measurements could be performed.

The findings revealed that the reasoning capabilities
in Racer are richer. Furthermore, queries in
ConceptBase run much faster than in Racer. The
factors were 61 and 7 for ontology sizes 1 and 10
respectively for ontologies with instances. On the other
hand however, the load time to load the different
ontologies was better in Racer by a factor of 3.01 for
the scaling of classes, but was almost similar for the
scaling of instances for which the factor measured was
0.95. The load time for Racer is linear, whereas the
load time for ConceptBase seems to have a quadratic
growth function. The scaling of classes revealed that
class queries take much longer in Racer than in
ConceptBases as in Racer all consistencies are being
checked before a class query is being performed,
measured by a factor of 470. The growth function for
Racer for the class queries is quadratic, whereas the
growth function for ConceptBase is linear. The scaling
of instance queries showed a better performance for
ConceptBase than for Racer by a factor of 4.8.
However, it seems that ConceptBase is more affected
by string processing of the return values of the queries.
This means that if a large amount of result values are

returned, the performance decreases in ConceptBase,
whereas Racer is not affected by this.

Considering that ontologies are developed
incrementally, adding a relatively small increment to a
large ontology has a great effect for the loading of this
ontology into memory for ConceptBase, whereas the
class and instance queries in Racer will have a greater
performance reduction than ConceptBase.

As reasoning on the Web has seen a steady increase
in the past several years, this evaluation shows that
Web reasoning has to speed and scale up with
technologies existing for many decades such as
deductive databases.

6. References

[1] Shortliffe, E. H., “MYCIN: Computer-Based Medical
Consultations”, Elsevier Press, New York, 1976.

[2] CLIPS Website, Last retrieved April 2009 from
http://www.ghg.net/clips/CLIPS.html.

[3] JESS Website, Last retrieved April 2009 from
http://herzberg.ca.sandia.gov/jess/.

[4] Forgy, C. L., “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”. Artificial
Intelligence, 19(1982) 17-37.

[5] Schreiber, A. T., Wielinga, B.J., de Hoog, R.,
Akkermans, H., and van de Velde, W., “CommonKADS: A
Comprehensive Methodology for KBS Development”, IEEE
Expert, December 1994, 28-37.

[6] Angele, J., Fensel, D., and Studer, R., “Developing
Knowledge-Based Systems with MIKE”, Journal of
Automated Software Engineering, Volume 5, Number 4, pp.
389-418(30), 1998.

[7] Voronkov, A., Chapter 1, Lecture notes on Deductive
Databases, 2002.
http://www.voronkov.com/dresden/2002/chapter_1.ps.

[8] Gruber, T. R., “Toward principles for the design of
ontologies used for knowledge sharing”. Journal of Human-
Computer Studies, Volume 43, Issue 5-6 Nov./Dec. 1995,
Pages: 907-928, 1993.

[9] Jeusfeld, M. and Jarke, M., “From relational to object-
oriented integrity simplification”, Proc. Of Deductive and
Object-Oriented Databases 91. Springer-Verlag, 1991.

[10] Jeusfeld, M. and Staudt, M., “Query optimization in
deductive object bases”. In G. Vossen J.C. Freytag and D.
Maier, editors, Query Processing for Advanced Database
Applications. Morgan-Kaufmann, 1993.

[11] Protégé Website, Last retrieved April 2009 from
http://protégé.stanford.edu.

[12] Racer Website, Last retrieved April 2009 from
http://www.racer-systems.com.

693

Object Specification Language for Graph Based Conceptual level
Multidimensional Data Model

Anirban Sarkar1, Sankhayan Choudhury2, Nabendu Chaki2, Swapan Bhattacharya1

1National Institute of Technology, Durgapur,West Bengal, India 713209
2Department of Computer Science, University of Calcutta, Kolkata, India

anirban.sarkar@nitdgp.ac.in, sankhayan@gmail.com, nabendu@ieee.org, swapan.bhattacharya@nitdgp.ac.in

Abstract
 Data Warehouse (DW) design demands a proper
methodological support for the designer of DW to specify
the system at logical level efficiently from its conceptual
level design. This paper proposes an object specification
language for Graph Object Oriented Multidimensional
Data Model (GOOMD model) for the purpose. The object
specification language (GOSL), proposed in this paper
permits conceptual multidimensional schemas to be
specified in terms of classes and class hierarchies.
Further, GOSL provides the mechanism for mapping the
On Line Analytical Processing (OLAP) operators as
formally defined in GOOMD model, into a set of
functions which will operate over the instances of classes
and its hierarchies produced by GOSL. The proposed
specification language is also useful towards automatic
generation of logical model of DW from the conceptual
model and its graphical notations.
Keywords: Multidimensional Data Model, OLAP, Object
Orientation, Graph Data Model, Logical.

1. Introduction
 Data Warehouse (DW) and On Line Analytical
Processing (OLAP) in conjunction with multidimensional
database are typically used for complex, online and
multidimensional analysis of data. In DW design
framework Conceptual models with graphical notations
are closer to the way users perceive an application domain
and the logical models concentrate more to the way
designer perceive an application domain.
 Designing DW is highly complex engineering task
which demands a proper methodological support for the
designer to specify the DW system at logical level
efficiently from its conceptual level design. But there still
is a semantic gap between advanced multidimensional
conceptual data models and implementations of such data
model at logical level [10]. So, more research scope is
there to identify the methodology to preserve all
information captured by advanced conceptual
multidimensional models in logical design.
 Several proposed formal multidimensional data models
at conceptual level [1, 2, 3] are compatible to the
relational model at logical design phase. But the relational
model, however, have serious deficiencies in many
aspects [7]. In some other approaches [4, 5, 6] the object

oriented paradigm is considered for conceptual level
design of DW. Further, the object oriented specification
for multidimensional database has been addressed only in
[8] based on GOLD model [6]. But the GOLD model
itself lacks from semantic enriched graphical notations
and OLAP operational model.
 However, the Graph Object Oriented Multidimensional
Data Model (GOOMD) [9] provides a novel graph based
semantic and simple but powerful algebra to
conceptualize the multidimensional data visualization and
operational model for OLAP, based on object oriented
paradigm. The model provides a set of constructs along
with rich set of graphical notations to facilitate the
designers of DW and a set of operators for OLAP.
 This paper proposes an object specification language for
GOOMD model to facilitate the designer of DW. The
language is used to specify the system at logical level as
well as to provide the direction towards the mapping of
the system from conceptual to logical level [Fig 1]. Using
the proposed object specification language, conceptual
multidimensional schemas can be specified in terms of
classes and class hierarchies. Further, it provides the
mechanism for mapping the OLAP operators as formally
defined in GOOMD model, into a set of functions which
will operate over the instances of classes and its
hierarchies produced by the same specification language.

2. GOOMD Model with Example
 In this section we will summarize the basic concepts of
GOOMD model [9]. The GOOMD model is the core of
the comprehensive object oriented model of a DW
containing all the details that are necessary to specify a
data cube, the dimensions, the classification hierarchies,
the description of fact and measures attributes. It allows
the entire multidimensional database to be viewed as a
Graph (V, E) in layered organization. At the lowest layer,
each vertex represents an occurrence of an attribute or
measure, e.g. product name, day, customer city etc. A set
of vertices semantically related is grouped together to
construct an Elementary Semantic Group (ESG). On next,

Conceptual
Design –
Constructs and
Operators

Object
Specification
Language

Logical / Operational
Model – Object Data
Model, Object -
Relational Data Model

Fig 1: Transformation of Conceptual to Logical Model

694

Model

 M_NAME

M_ID
(Determinant ESG)

Product

Customer

C_ID
(Determinant ESG)

C ADDR

C NAME

Determinant ESG DSG ESG

Edges Directed Edges

several related ESGs are group together to form a
Contextual Semantic Group (CSG) – the next upper layer
constructs to represent any context of business analysis. A
set of vertices of any CSG, those determine the other
vertices of the CSG, is called Determinant Vertices of
said CSG. This layered structure may be further organized
by combination of two or more CSGs as well as ESGs to
represent next upper level layers From the topmost layer
the entire database appears to be a graph with CSGs as
vertices and edges between CSGs. Dimensional Semantic
Group (DSG) is a type of CSG to represent a dimension
member, which is an encapsulation of one or more ESGs
along with extension and / or composition of one or more
constituent DSGs. Fact Semantic Group (FSG) is a type
of CSG to represent a fact, which is an inheritance of all
related DSGs and a set of ESG defined on measures. In
order to materialize the Cube, one must ascribe values to
various measures along all dimensions and can be created
from FSG. Two types of edges has been used in GOOMD
model, (i) directed edges to represent the one – to – many
associations between different CSGs and (ii) undirected
edges between constituent ESGs and determinant ESGs to
represent the association within the members of any CSG.

 Let consider an example, based on Sales Application
with sales Amount as measure and with four dimensions –
Customer, Model, Time and Location with the set of
attributes {C_ID, C_NAME, C_ADDR}, {M_ID,
M_NAME, P_ID, P_NAME, P_DESC}, {T_ID,
T_MONTH, Q_ID, Q_NAME, YEAR} and {L_ID,
L_CITY, R_ID, R_NAME, R_DESC} respectively. Model,
Time and Location dimensions have upper level
hierarchies say Product, QTR and Region respectively.
Then in the notation of GOOMD model, there will be four

DSGs {DCustomer, DModel, DLocation, DTime} with hierarchy.
The FSG for the database can be described as FSales =
{DET(DCustomer), DET(DModel), DET(DLocation), DET(DTime),
EAMOUNT}, where EAMOUNT is the ESG defined on the
measure AMOUNT. The schema from the topmost layer
has shown in Fig 2.
 GOOMD model also provides algebra of OLAP
operators those will operate on different semantic groups.
The dSelect (,) operator is an atomic operator and will
extract vertices from any CSG depending on some
predicate P. The Retrieve (-) operator extracts vertices
from any Cube using some constraint over one or more
dimensions or measures. The Retrieve operator is helpful
to realize slice and dice operation of OLAP. The
Aggregation (� and +�) operators perform aggregation on
Cube data based on the relational aggregation function
like SUM, AVG, MAX etc. on one or more dimensions.
Aggregation operators are helpful to realize the roll-up
and drill down operations of OLAP. GOOMD model also
provides the definitions of the operators like Union (�),
Intersection (.), Difference (�), Cartesian Product ()
and Join (| |), which are operated on any CSG or Cube.

3. Object Specification Language for GOOMD
Model (GOSL)
 The concept of any multidimensional data model
consists of three basic construct namely, (1) Dimensions,
where each can consist of a multi-level classification
hierarchy, (2) Facts and (3) Measures In object oriented
concept different classes need to specify for Dimension
members and Fact constructs type. Object identification
or OID must address the key attributes specification. In
the context of GOOMD model, the construct like DSG
and FSG will realize the dimension member class and fact
class respectively. The determinant ESG will realize the
OID for a specific semantic construct. Further, it is
important to note that, the dimension hierarchy level can
be represented by corresponding inheritance tree of
dimension classes.
 Object Specification Language for GOOMD Model or
GOSL proposed in this section will be used to specify the
classes and its hierarchies corresponding to conceptual
level multidimensional schemas defined using GOOMD
model. Further GOSL includes the mechanism of
mapping the OLAP operators into a set of functions
which will operate on the instances of the classes
produced by the specification language.

3.1 Class Definitions Using GOSL
 In GOSL, the specification of a class is a description of
the structure and behavior of the objects belonging to
specific semantic group. Each specification of a class
begins with the word class and consists of a number of
sections or paragraphs, according to the formal
specification of the GOOMD model. To serve the purpose
we have defined two type of Class definition (1) Regular

Fig 2: Schema for Sales Application in GOOMD Model

Location

 L_CITY

L_ID
(Determinant ESG)

Region

Time

T MONTH

T_ID
(Determinant ESG)

QTR

SALES (FSG)

M I C ID L ID T ID

AMOUNT
(Measure)

695

Class Template [Fig 3] to specify the CSG of innermost
layer which do not have any constituent CSG. Only the
DSGs of innermost layer and the DSGs without having
any constituent DSG can be represented through regular
class definition. (2) Complex Class Template [Fig 4] to
specify the CSG of upper layers which have alteast one
constituent CSG either connected by link of association
relation with their parents, for example any DSG or FSG
of Top Most Layer.

For any Dimension class specification, the generalized
dimension class name will be specified in Parent Class
Section. If there does not exist any parent class for some
Dimension class, then either the constant literal
No_Parent will be used or the section can be omitted
from the class definition. OID must address the key
attributes specification, through which any instance or
object of the class can be identified uniquely. By default
the OID attributes are inheritable i.e. visibility mode is of
protected type. Fixed Attributes are the list of static

attributes those are defined for a specific fact or
dimension class. For complex class, the attributes can be
defined on ESG or constituent DSG connected using
association relation with the parent DSG. Since, an
attribute can be of complex type i.e. an object of some
class. Derived Attributes are the list of attributes derived
from static attributes by the object specific function
defined in Methods section. Constructor and Destructor
functions will be used to create and to destroy instances or
objects of specific Class. The set of functions, those will
operate on the attribute type of class templates also will
be defined in Methods section (Fig 3 and Fig 4).
Measures section must address the specification of
measures attributes and the additivity constraints on
measures. The visibility mode of the measure attributes
can be considered as protected if there is a possibility of
declaration of a derived fact class by reusing the existing
fact class.

3.2 Function Definitions Using GOSL
 The OLAP operators as defined in GOOMD Model can
be mapped into functions with atleast one of the
arguments as related construct class type i.e. fact class or
dimension class, so that the function can manipulate the
set of instances of the said class type. These functions
need to be mapped out side of any class definitions. The
several operators which will operate on attribute type of
class templates can be defined as the member function of
the class. These operators are UNION, INTERSECTION,

Operators of
GOOMD

Model
Notati

on

GOSL Function Syntax

dSelect , dSelect(ESG|DSG, Predicate) return
ESG|DSG;

Retrieve - Retrieve (FSG, List of Derived DSG)
return FSG

Aggregation �

 +�

Aggregation (FSG, List of DSG,
Measure ESG,
Addityvity_Constraint, Aggregation
Function Identifier) return FSG;
+Aggregation (FSG, List of DSG,
Measure ESG, Constraint,
Aggregation Function Identifier)
return FSG;

Union,
Intersection,
Cartesian
Product,
Difference

� .,

Union (List of ESG|DSG|FSG)
return ESG|DSG|FSG;
InterSection(List of ESG|DSG|FSG)
return ESG|DSG|FSG;
CartesianProduct(List of
ESG|DSG|FSG) return
ESG|DSG|FSG;
Difference(List of ESG|DSG|FSG)
return ESG|DSG|FSG;

Join | | Join(List of FSG | Derived FSG,
CON Specification) return FSG;

Class <class name>
 Type
 DSG
 OID
 <visibility> Determinant ESG: type
 Fixed Attributes
 <visibility> ESG name: type;
 Derived Attributes
 <visibility> Derived ESG name: type;
 Methods
 Constructor Functions;
 Destructor Functions;
 Union (List of ESG) return Derived ESG;
 Intersection (List of ESG) return Derived ESG;
 CartesianProduct(List of ESG) return Derived ESG;
End Class

Fig 3: Regular Class Template for GOOMD Model

Class <class name>
 Type
 [DSG | FSG]
 Parent Class
 Constituent CSGs Name;
 OID
 <visibility> Determinant ESG: type
 Fixed Attributes
 <visibility> ESG|DSG name: type;
 Derived Attributes
 <visibility> ESG name: type;
 Measures
 <visibility> ESG on Measure: type;
 Additivity_Constraint : [None / List of DSGs / All]
 Methods
 Constructor Functions;
 Destructor Functions;
 Union (List of ESG) return Derived ESG;
 Intersection (List of ESG) return Derived ESG;
 CartesianProduct(List of ESG) return Derived ESG;
End Class

Fig 4: Complex Class Template for GOOMD Model

Table 1: Representing GOOMD Model Operators
into GOSL Function

696

DIFFERENCE and CARTESIAN PRODUCT as defined
in GOOMD model [9]. In Table 1 we have summarized
the set of GOSL functions mapped from OLAP operators
as defined in GOOMD Model.

3.3 Example of GOSL
 The proposed GOSL is simple, powerful, expressive,
and has been drawn from basic concept of object
orientation. It can express the concepts, graphical
notations and the OLAP operators of conceptual
multidimensional data model like GOOMD.
 Recalling the Sales Application example described in
Fig 2 the Product DSG is most inner most layer construct
and do not have any constituent DSG. Using GOSL, the
Product DSG can be described using Regular Class
template. The upper layer DSG like Model is an
encapsulation of several ESGs along with an extension of
DSG Product. So Model DSG can be described using
Complex Class template as shown in Fig 5. Further, in the
Sales Application example the only measure attribute is
Amount. The Sales FSG can be represented using
Complex Class Template as shown in Fig 6.
 Since any FSG will inherit the Determinant ESGs from
the related top most layer DSGs, which in combine will
act as OID attributes for the FSG and inherit
automatically. Henceforth the type of the OID attributes
for the FSG Class template definition is not required to
specify explicitly.

4. Conclusions
 In this paper an object specification language (GOSL)
has been proposed for the conceptual level
multidimensional data model called GOOMD Model.
GOSL can express the concepts, graphical notations and
the OLAP operators of the GOOMD model at logical
level through a systematic approach. GOSL is used to
specify the conceptual multidimensional schemas in terms
of classes and class hierarchies and the OLAP operators
in terms of GOSL functions. The expressive power of the
specification language also has been demonstrated using
typical examples.

 The proposed object specification language, in general,
can be used with any conceptual multidimensional data
model with proper mapping scheme. The feature makes it
more useful for automatic generation of logical model
from the conceptual model and its graphical notations.

5. References
[1] Nectaria Tryfona, Frank Busborg, Jens G. Borch
Christiansen, "starER: a conceptual model for data warehouse
design", Proceedings of the 2nd ACM Int. workshop on Data
warehousing and OLAP, Nov 1999.
[2] Matteo Golfarelli, Dario Maio and Stefano Rizzi,"The
Dimensional Fact Model: A Conceptual Model for Data
Warehouses", Int. Journal of Cooperative Information Systems,
Vol 7 (2-3), PP 215-247, 1998.
[3] Aris Tsois and Nikos Karayannidis and Timos K. Sellis,
"MAC: Conceptual data modeling for OLAP", Booktitle:
"Design and Management of Data Warehouses", 2001.
[4] Sergio Luján-Mora, Juan Trujillo and Il-Yeol Song, "A UML
profile for multidimensional modeling in data warehouses",
Data & Knowledge Engineering, vol 9, Issue 3, PP 725 – 769,
December 2006.
[5] Nicolas Prat, Jacky Akoka and Isabelle Comyn-Wattiau, "A
UML-based data warehouse design method", Decision Support
Systems, Vol 42 (3), PP 1449 – 1473, December 2006.
[6] J. Trujillo, “The GOLD Model: An Object-Oriented
ConceptualModel for the Design of OLAP Applications”,
Doctoral Dissertation, Languages and Information Systems
Dept., Alicante University, Spain, June 2001.
[7] Senko M. E., “Information Systems: Records, relations, set,
entities and things”, Information Systems, Vol. 1.1, PP 3–13,
1975.
[8] Juan Trujillo, Manuel Palomar, Jaime Gómez, “The GOLD
definition language (GDL): an object oriented formal
specification language for multidimensional databases”,
Proceedings of the ACM symposium on Applied Computing, Vol
1, March 2000.
[9] Anirban Sarkar, Swapan Bhattacharya, “The Graph Object
Oriented Multidimensional Data Model: A Conceptual
Perspective”, 16th Int. Conference on Software Engineering and
Data Engineering (SEDE), pp 165 – 170, July 2007.
[10] Stefano Rizzi, Alberto Abelló, Jens Lechtenbörger, Juan
Trujillo, “Research in data warehouse modeling and design:
dead or alive?”, Proceedings of the 9th ACM Int. Workshop on
Data warehousing and OLAP , November 2006.

Class Model
 Type
 DSG
 Parent Class
 Product;
 OID
 Protected MID: Integer
 Fixed Attributes
 Private MDES: String;
 Methods
 Constructor Functions for Model;
 Destructor Functions for Model;
 Other Methods…..
End Class

Fig 5: Class Template for Model DSG

Class SALES
 Type
 FSG
 Parent Class
 Model, Customer, Location, Time
 OID
 {M_ID, C_ID, L_ID, T_ID}
 Measures
 Private Amount: Float;
 Additivity_Constraint : None
 Methods
 Constructor Functions for SALES;
 Destructor Functions for SALES;
 Other Methods…..
End Class

Fig 6: Class Template for Sales FSG

697

A Framework for Trajectory Data Preprocessing for Data Mining

Luis Otavio Alvares, Gabriel Oliveira, Carlos A. Heuser, Vania Bogorny

Instituto de Informatica – Universidade Federal do Rio Grande do Sul
Porto Alegre – Brazil

{alvares,gpaoliveira,heuser,vbogorny,}@inf.ufrgs.br

Abstract

Trajectory data play a fundamental role to an increasing
number of applications, such as traffic control, transporta-
tion management, animal migration, and tourism. These
data are normally available as sample points. However, for
many applications, meaningful patterns cannot be extracted
from sample points without considering the background ge-
ographic information. In this paper we present a framework
to preprocess trajectories for semantic data analysis and
data mining. This framework provides two different meth-
ods to add semantic geographic information to the impor-
tant parts of trajectories from an application point of view.
It was implemented as an extension of Weka.

1. Introduction

The increasing use of GPS devices to capture the posi-
tion of moving objects demands tools for the efficient anal-
ysis of large amounts of data referenced in space and time.
Current analysis over trajectories of moving objects have
basically to be performed manually. Another problem is
that most techniques for the analysis of this kind of data
and more sophisticated approaches as data mining algo-
rithms consider only the raw trajectories, that are generated
as pure (x,y,t) coordinates. In the last years, some works
have been developed for trajectory data analysis, such as
[5], in particular for discovering dense regions or similar
trajectories. However, these approaches consider only the
geometric properties of trajectories, what is very limited for
many real applications.

GPS and other electronic devices that capture moving
object trajectories do not collect the background geographic
information. We claim that for several real applications
there is a need to preprocess trajectories to add additional
information that gives to trajectories more meaningful char-
acteristics. Indeed, this should be the first step, before any
trajectory data analysis. We claim that the first additional in-
formation to be considered, is the geographic context where
trajectories are captured.

Figure 1 shows an example where we can observe the

necessity of extra information to understand trajectories.
Figure 1 (left) shows an example of a geometric trajectory,
in which the objects move to the same region at a certain
time. Considering a pure geometric approach where only
the trajectory points themselves are used for mining it could
only be discovered that the four trajectories meet in a certain
region, or the trajectories are dense in this region at a cer-
tain time. In Figure 1 (right), considering the background
geographic knowledge, the moving objects go from differ-
ent hotels (H) to meet the Eiffel Tower at a certain time.
From these trajectories with some semantics, the moving
pattern from Hotel to Eiffel Tower could be discovered. In
this example, it is clear that the origin of the trajectories is in
sparse locations that have the same semantics (it is a hotel).
A pure geometric trajectory data mining algorithm would
not be able to discover such semantic pattern.

In [2] we presented a spatial framework to automatically
preprocess geographic data for data mining. In this paper
we present an intelligent spatio-temporal framework to pre-
process trajectories, in order to transform trajectory sample
points in a higher level of abstraction, adding geographic
semantics to trajectories.

The main contribution of this work is a framework to al-
low a user to both analyze and mine trajectories in a high
level of abstraction, considering the needs of the applica-
tion. This framework implements two different methods to
add semantics to raw trajectories: one is based on the inter-
section of trajectories with places relevant to the application
and the other is based on the speed of the trajectory. Fur-
thermore, different classical data mining algorithms can be
applied in the data mining step.

The remaining of this paper is structured as follows: Sec-
tion 2 introduces some concepts of semantic trajectories,
Section 3 presents the proposed framework for trajectory
data analysis and mining, Section 4 presents an implemen-
tation of the framework and some experiments, and Sec-
tion 5 concludes the paper and suggests directions of future
works.

2. Basic Concepts

Recently Spaccapietra [8] introduced the first conceptual
model for trajectory data, with two key concepts: stops and

698

Figure 1. (left) Geometric (raw) trajectories and (right)
semantic trajectories

moves. Stops are important places of the trajectory from
an application point of view, where the moving object has
stayed for a minimal amount of time. Moves are subtrajec-
tories between two consecutive stops.

To better understand what stops and moves are, we
present one formal model where geographic object types
are defined a priori by the user as the important places of
the trajectory. This model has been introduced in [1] for
querying trajectories, but it is not the only way to formally
define stops and moves. It will be briefly presented in the
following subsections.

2.1. Trajectory Samples and Candidate Stops

Trajectory data are normally available as sample points.

Definition 1 A sample trajectory is a list of space-time
points 〈p0, p1, . . . , pN 〉, where pi = (xi, yi, ti) and xi, yi,
ti ∈ R for i = 0, . . . , N and t0 < t1 < · · · < tN .

To transform trajectory sample points into stops and
moves it is necessary to provide the important places of
the trajectory which are relevant for the application. These
places correspond to different spatial feature types (spatial
object types). For each relevant spatial feature type that is
important for the application, a minimal amount of time is
necessary, such that a trajectory should continuously inter-
sect this feature in order to be considered a stop. This pair
is called candidate stop.

Definition 2 A candidate stop C is a tuple (RC , ΔC),
where RC is a polygon in R2 and ΔC is a strictly posi-
tive real number. The set RC is called the geometry of the
candidate stop and ΔC is called its minimum time duration.

An application A is a finite set {C1 = (RC1
, ΔC1

), . . . ,
CN = (RCN

, ΔCN
)} of candidate stops with mutually non-

overlapping geometries RC1
, . . . , RCN

.

In case that a candidate stop is a point or a polyline, a polyg-
onal buffer is generated around this object, and thus it is
represented as a polygon in the application, in order to over-
come spatial uncertainty.

2.2. Stops and Moves

Definition 3 Let T be a trajectory and let

A = {C1 = (RC1
, ΔC1

), . . . , CN = (RCN
, ΔCN

)}
be an application. Suppose we have a subtrajectory 〈(xi, yi,
ti), (xi+1, yi+1, ti+1), . . . , (xi+�, yi+�, ti+�)〉 of T , where
there is a (RCk

, ΔCk
) in A such that ∀j ∈ [i, i + �] :

(xj , yj) ∈ RCk
and |ti+� − ti| ≥ ΔCk

, and this subtra-
jectory is maximal (with respect to these two conditions),
then we define the tuple (RCk

, ti, ti+�) as a stop of T with
respect to A.

A move of T with respect to A is one of the following
cases: (i) a maximal contiguous subtrajectory of T in be-
tween two temporally consecutive stops of T ; (ii) a maximal
contiguous subtrajectory of T in between the initial point of
T and the first stop of T ; (iii) a maximal contiguous subtra-
jectory of T in between the last stop of T and the last point
of T ; (iv) the trajectory T itself, if T has no stops.

When a move starts in a stop, it starts in the last point
of the subtrajectory that intersects the stop. Analogously,
if a move ends in a stop, it ends in the first point of the
subtrajectory that intersects the stop.

It is important to notice that the place where a stop oc-
curs is a spatial feature (relevant geographic object) which is
intersected by a trajectory for the minimal amount of time.
This spatial feature will enrich the trajectory with its spa-
tial and non-spatial information. For instance, if a hotel is a
stop, its geometry and the non-spatial attributes (e.g. name,
stars, price) is information that can be further used for both
querying and mining trajectories.

Definition 4 A Semantic Trajectory S is a finite sequence
{I1, I2, ..., In} where IK is a stop or a move.

3. The proposed framework

Figure 2 shows an interoperable framework with support
to the whole discovery process. It is composed of three ab-
straction levels: data repository, data preparation, and data
mining.

At the bottom are the geographic data repositories, stored
in GDBMS (geographic database management systems),
constructed under OGC [6] specifications. On the top are
the data mining toolkits or algorithms. In the center is the
trajectory data preparation level which adds semantics to
trajectories according to the application domain. In this
level the data repositories are accessed through JDBC con-
nections and data are retrieved, preprocessed, and trans-
formed into the format required by the mining tool/algo-
rithm.

There are three main modules to implement the tasks of
trajectory data preparation for mining: Clean Trajectories,
Add Semantics, and Transformation, which are described in
the sequence.

699

Figure 2. The Semantic Trajectory Mining Framework

3.1. Clean trajectories

The Clean Trajectories module performs many verifica-
tions over the trajectory dataset in order to eliminate noise,
what is very common in this kind of data, and assure that
the trajectory dataset is in the format required by the Add
Semantics module.

Some of the verifications include: i) the calculated speed
between two consecutive points should not be greater than
a specified threshold; ii) the trajectory points should be in
a temporal order; iii) the trajectories should not have more
than one point with the same timestamp; iv) each trajectory
should have a given minimum number of points.

3.2. Add Semantics

To prepare trajectory data to data mining, the main step
is to add semantics to these trajectories. We do that by using
the concepts of stops and moves. Two algorithms have been
developed so far. The first one, introduced in [1], considers
the intersection of a trajectory with the user-specified rel-
evant feature types for a minimal time duration (candidate
stops), which we call IB-SMoT (Intersection-Based Stops
and Moves of Trajectories).

In general words, the algorithm verifies for each point
of a trajectory T if it intersects the geometry of a candidate
stop RC . In affirmative case, the algorithm looks if the du-
ration of the intersection is at least equal to a given threshold
ΔC . If this is the case, the intersected candidate stop is con-
sidered as a stop, and this stop is recorded. If a point does
not belong to a subtrajectory that intersects a candidate stop
for ΔC it will bee part of a move.

Figure 3 illustrates this method. In the example, there
are four candidate stops with geometries RC1

, RC2
, RC3

,
and RC4

. Let us consider a trajectory T represented by the
space-time points sequence 〈p0, . . . , p15〉 and t0, . . . , t15
are the time points of T . First, T is outside any candi-
date stop, so we start with a move. Then T enters RC1

at point p3. Since the duration of staying inside RC1
is long

enough, (RC1
, t3, t5) is the first stop of T , and 〈p0, . . . , p3〉

Figure 3. Example of a trajectory with four candidate
stops and two stops

is its first move. Next, T enters RC2
, but for a time interval

shorter than ΔC2
, so this is not a stop. We therefore have

a move until T enters RC3
, which fulfills the requests to

be a stop, and so (RC3
, t13, t15) is the second stop of T and

〈p5, . . . , p13〉 is its second move.
The second algorithm is called CB-SMoT [7], and is a

clustering method based on the variation of the speed of the
trajectory. The intuition of this method is that the parts of a
trajectory in which the speed is lower than in other parts of
the same trajectory, correspond to interesting places. CB-
SMoT is a two-step algorithm. In the first step, the slower
parts of one single trajectory are identified, using a spatio-
temporal clustering method that is a variation of the DB-
SCAN [3] algorithm considering one-dimensional line (tra-
jectories) and speed. In the second step, the algorithm iden-
tifies where these potential stops (clusters) are located, con-
sidering the candidate stops. In case that a potential stop
does not intersect any of the given candidates, it still can be
an interesting place. In order to provide this information to
the user, the algorithm labels such places as unknown stops.
Unknown stops are interesting because although they may
not intersect any relevant spatial feature type given by the
user, a pattern can be generated for unknown stops if sev-
eral trajectories stay for a minimal amount of time at the
same unknown stop. In this case, the user may investigate
what this unknown stop is.

Figure 4 illustrates the method CB-SMoT. Considering
the trajectory T = 〈p0, p1, . . . , pn〉 represented in Fig-
ure 4, the first step is to compute the clusters. Suppose
that T has 4 potential stops, the clusters G1, G2, G3 and
G4, represented by ellipsis. In this example the user has
specified 4 candidate stops, identified by the rectangles
RC1, RC2, RC3 and RC4. The cluster G1 intersects the
candidate stop RC1 for a time greater than Δc1, then the
first stop of the trajectory is RC1. The same occurs with the
cluster G2, considering RC3, which is the second stop of
the trajectory. The clusters, G3 and G4 do not intersect any
candidate stop. Therefore, G3 and G4 are unknown stops.

The two methods cover a relevant set of applications. IB-
SMoT is interesting in applications where the speed is not
important, like tourism and urban planning. In this kind of
application, the presence or the absence of the moving ob-
ject in relevant places is more important. However, in other

700

Figure 4. Example of a trajectory with 2 stops and 2 un-
known stops

applications like traffic management, CB-SMoT, which is
based on speed, would be more appropriate.

The output of the Add Semantics module are relations of
stops and moves in the database. The schema of the stop
relation has the following attributes:

STOP (Tid integer, Sid integer, SFTname varchar,
SFid integer, startT timestamp,
endT timestamp)

where:

• Tid: is the trajectory identifier.

• Sid: is the stop identifier. It is an integer value starting
from 1, in the same order as the stops occur in the tra-
jectory. This attribute represents the sequence as stops
occur in the trajectory.

• SFTname: is the name of the relevant spatial feature
type (geographic database relation) where the moving
object has stayed for the minimal amount of time.

• SFid: is the identification of the instance (e.g. Ibis)
of the spatial feature type (e.g. Hotel) in which the
moving object has stopped.

• startT: is the time in which the stop has started, i.e.,
the time that the object enters in a stop.

• endT: is the time in which the moving object leaves the
stop.

In a relational model, the attributes SFTname and SFid are
a foreign key to a geographic relation. Therefore, the stop
relation significantly facilitates querying trajectories from a
semantic point of view. Queries can be performed consid-
ering both spatial and non-spatial attributes of any spatial
object that represents a stop.The relation of moves has the
following schema, with four attributes more than the stop
relation:

MOVE (Tid integer, Mid integer, SFT1name varchar,
SF1id integer, SFT2name varchar,
SF2id integer, startT timestamp,
endT timestamp, the_move multiline)

where:

• Mid: is the identifier of the move in the trajectory. It
starts with 1, in the same order as the moves occur in
the trajectory.

• SFT1name and SFT2name : are the names of the spa-
tial feature type in which the move respectively starts
and finishes.

• SF1id and SF2id: are the identifier (feature instance)
of the start and end stop of the move.

• the move: is the set of points that corresponds to the
spatial properties of a move.

3.3. Transformation

The Transformation module uses as input the tables of
stops and moves in the database, generated by the Add Se-
mantics module and generates an output file in the format
required by a specific mining algorithm or tool. Although
each tool can use a specific format, there are two main for-
mat types. One, the most used, can be seen as an horizon-
tal type, where each line corresponds to one trajectory and
each column corresponds to one stop or move. The other
type is a vertical one, where each line corresponds to a stop
or move of a trajectory. This second type is mostly used for
sequential pattern mining.

Another key issue performed by the Transformation
module is to generate the output file in the granularity level
specified by the user. In fact, the stop and move table is
generated in the lowest granularity level (instances of ob-
jects for the spatial dimension and timestamp for the time
dimension). However, it is almost impossible to find pat-
terns at this granularity level. It is very difficult to some
events occur in the same second, for instance several tra-
jectories arriving at home at exactly the same moment. To
overcome this problem, in our framework the user can spec-
ify different granularity levels, for instance to consider in-
tervals of one hour. This means that one event that occurs at
18:10PM will be considered at the same case as another oc-
curred at 18:20PM. Depending on the application, the time
granularity can be year, month, week, day, hour, etc. Anal-
ogously, the space granularity can change, including even
the semantics of the object. For instance, in the example of
Figure 1 the space granularity was the class of the object
(Hotel), what will allow that a pattern from Hotel to Eiffel
Tower could be discovered. In this case, Hotel is at the fea-
ture type granularity level and the Eiffel Tower at instance
granularity level. If both were at feature type granularity
level, the discovered pattern could be from Hotel to Touris-
tic Place.

Furthermore, the user can specify what will be consid-
ered in the mining step: (i) only the space dimension; (ii)
the space and the time of the beginning of the stop or move;
(iii) the space and the time of the end of the stop or move;
or (iv) the space and the time of beginning and ending of
the stop or move.

701

4. Validation and experiments

The proposed framework was implemented in the java
programming language in a module called STPM (Semantic
Trajectory Preprocessing Module) and tested using Weka as
data mining tool and PostGIS as data repository. Weka[4] is
a free and open source non-spatial data mining toolkit with
several data mining algorithms.

With the information specified by the user, the STPM
module connects to the database through JDBC and can ex-
ecute different tasks. Usually, the first one is to clean the tra-
jectory dataset and put it in the format required by STPM.
After that, the user can generate semantic trajectories. To
do this, he should supply some information to the program
like the method (IB SMoT or CB SMoT), the spatial fea-
ture types of interest (candidate stops) with the respective
minimum time duration in order to be considered a stop,
etc. Before mining, the last step is to generate an .arff file
(the native Weka input format), which can be either in the
horizontal or vertical type.

So far, we have tested the prototype with data stored in
a Postgresql/Postgis database. We have performed some
experiments with real trajectory data collected in the city
of Rio de Janeiro. A first experiment was performed con-
sidering the districts of Rio de Janeiro and the trajecto-
ries. We used the IB-SMoT method and frequent pat-
tern mining to find the districts crossed by a large num-
ber of trajectories (minsup=10%) considering time inter-
vals (07:00-09:00, 09:01-12:00, 12:01-17:00, 17:01-20:00,
other). Some frequent patterns found are:

{Barra[07:00-09:00], Joa[07:00-09:00], SaoConrado[07:00-09:00]}
(s= 0.18)

{Joa[17:01-20:00], SaoConrado[17:01-20:00]} (s= 0.2)

The first pattern expresses that 18% of the trajectories
cross the districts Barra, Joa and SaoConrado between 7AM
and 9AM. The second pattern means that 20% of the trajec-
tories cross Joa and SaoConrado in the period between 5PM
and 8PM.

In a second experiment we used the set of streets as back-
ground geographic information, and the CB-SMoT method
to generate stops. We also used more refined time intervals.
The objective was to investigate the streets and periods of
slow traffic. An example of an association rule found in this
experiment is:

ElevadaDasBandeiras[18:01-18:30] →
AvenidaDasAmericas[18:31-19:00] (s= 0.05) (c=0.58)

This rule expresses that 58% of the trajectories with slow
traffic at Elevada das Bandeiras between 6PM and 6:30PM,
also have slow traffic at Avenida das Americas between
6:31PM and 7PM. This pattern of slow traffic occurs in 8%
of the trajectories.

We can observe by the examples above that this frame-
work facilitates the analysis of the obtained results from a
user point of view. The output is in a high abstraction level,
what we call semantic patterns, in opposition of pure geo-
metric patterns generated by other approaches.

5. Conclusions and Future Work

Trajectory data are normally available as sample points,
what makes their analysis in different application domains
expensive from a computational point of view and quite
complex from a user’s perspective. A higher abstraction
level considering semantics is needed.

This paper presented a framework to preprocess sample
point trajectories for semantic trajectory data analysis and
mining. By adopting the model of stops and moves we
provide to the user aggregated information about space and
time. The framework is application and domain indepen-
dent and it was implemented as an extension of Weka data
mining toolkit.

As future ongoing work we are extending the framework
in order to consider other methods to add semantics to tra-
jectories.

Acknowledgements

This work was partially supported by the Brazilian
agencies CAPES (Prodoc Program) and CNPq (projects
481055/2007-0 and 573871/2008-6). We would like to
thank the Traffic Engineering Company of Rio de Janeiro
for the trajectory data.

References

[1] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo,
B. Moelans, and A. Vaisman. A model for enriching trajec-
tories with semantic geographical information. In ACM-GIS,
pages 162–169, New York, NY, USA, 2007. ACM Press.

[2] V. Bogorny, P. M. Engel, and L. O. Alvares. Geoarm: an
interoperable framework to improve geographic data prepro-
cessing and spatial association rule mining. In K. Zhang,
G. Spanoudakis, and G. Visaggio, editors, SEKE, pages 79–
84, 2006.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In E. Simoudis, J. Han, and U. M. Fayyad, edi-
tors, Second International Conference on Knowledge Discov-
ery and Data Mining, pages 226–231. AAAI Press, 1996.

[4] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer,
I. H. Witten, and L. Trigg. Weka - a machine learning work-
bench for data mining. In O. Maimon and L. Rokach, editors,
The Data Mining and Knowledge Discovery Handbook, pages
1305–1314. Springer, 2005.

[5] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajec-
tory pattern mining. In P. Berkhin, R. Caruana, and X. Wu,
editors, KDD, pages 330–339. ACM Press, 2007.

[6] OGC. Opengis standards and specifications. Available at:
http://http://www.opengeospatial.org/standards. Accessed in
August 2008, 2008.

[7] A. T. Palma, V. Bogorny, and L. O. Alvares. A clustering-
based approach for discovering interesting places in trajec-
tories. In ACMSAC, pages 863–868, New York, NY, USA,
2008. ACM Press.

[8] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo,
F. Porto, and C. Vangenot. A conceptual view on trajectories.
Data and Knowledge Engineering, 65(1):126–146, 2008.

702

A Payload Optimization Technique for Multimedia Visual Cryptography

MOUSSA H ABDALLAH*, ROLA I AL-KHALID**, RANDA A AL-DALLAH***

*Department of Electronics Engineering, Princess Sumaya University for Technology,
Amman, Jordan, moussa@psut.edu.jo

**Department of Computer Information System, University of Jordan, Amman, Jordan
r.khalid@ju.edu.jo

***Computer Science Department, Al-Balqa Applied University, Salt, Jordan
randa@bau.edu.jo

Abstract
The technique proposed in this paper is an XOR encryption operation to embed large payload including
multimedia information in visual cryptographic color image. The major advantages of the technique are to
provide a perfect reconstruction of the image and the increased payload including biometrics, voice, text and
images. The algorithm was implemented on large database where it shows its effectiveness when compared to
basic watermarking techniques.

Key-words: - Visual Cryptography, Multimedia, Information Hiding, Color images

1 Introduction
Visual secret sharing (VSS) technique was first proposed
by Naor and Shamir in 1994 [1]. The shared secret is an
image (such as printed texts, handwritten notes, pictures,
etc.), and the VSS scheme provides an unconditionally
secure way to encode the shared secret into share images.
The decoder is the human visual system. In the VSS
technique, several sub pixels in the share are used to
represent a pixel in the original secret image, that is, the
size of share is expanded. The expansion factor is defined
as the size of the share image to the size of the secret
image. There have been many published studies [2-6] of
visual cryptography. Most of them, however, have
concentrated on discussing black-and-white images, and
just few of them have proposed methods for processing
gray-level [3] and color images.

Rijmen and Preneel [7] have proposed a visual
cryptography approach for color images. In their approach,
each pixel of the color secret image is expanded into a 2×2
block to form two sharing images. Each 2×2 block on the
sharing image is filled with red, green, blue and white
(transparent), respectively, and hence no clue about the
secret image can be identified from any one of these two
shares alone. Other techniques [8-9] achieved a certain
degree of sharing color image information; the drawback
is that secret images must be decrypted with heavy
computation.

This paper proposed an efficient technique in the
multimedia information hiding based on color visual
cryptography. This technique will enhance the level of
security and the payload by combining cryptography with
steganography. Using this approach we embed any
multimedia information such as pictures, voices, biometric

fingerprints, personal profiles, medical records and family
history in a cover image.

2 The Proposed Technique

2.1 Hiding Technique
This technique provide three layers of security: First, using
a proposed XOR encryption method to encrypt the
personal picture and produce three gray shares with gray
mask. Then embed the multimedia information in the
shares randomly using any steganography technique such
as the least-significant-bits (LSBs) method. The resultant
shares called multimedia shares. In the LSBs, we use a
permutation of bits and pixel locations in which to embed
the bits according to private key, so that the hackers may
not be able to locate the secret data. Finally we embed the
multimedia shares in a cover image using also any
steganography technique.

The subtractive CMY model is used in our
technique. Each single color based on C, M, and Y can
represent 0-255 variations of scale. In the (C, M, Y)
representation, (0, 0, 0) represents full white and (255,
255, 255) represents full black.

2.1.1 XOR Method
This paper proposed a new method “XOR” based on visual
cryptography to encrypt the secret image. XOR method
will produce three gray shares and a gray mask that is used
to decrypt these shares. The gray mask generated
randomly according to private key, which is used as a
signature for encryption and decryption. The gray mask

703

can be generated in the sending and receiving sides
automatically by using the same private key.

In this method, the XOR operation will be used
for encryption and decryption. The XOR operation needs
computation but the perfect reconstruction of the image is
possible.

The color visual cryptography method [10] used
digital halftoning technique to convert each color
component (C, M, Y) from gray scale to a bi-level, where
each pixel has only two possible values: blank or not
blank. Halftone technique is used to make the color image
suitable for applying original visual cryptography
technique. The influence of halftone technique in the
reconstructed image (decrypted image) is quality
degradation and low contrast. The proposed XOR method
is introduced to overcome the effect of the halftone,
enhance the quality of the decrypted image and allow
visual cryptography to be directly applied on color images.
XOR method enhance the quality of the decrypted image
by saving 2l of color levels for each pixel instead of bi-
level that is produced by halftoning technique, where l is
the number of bits to represent each pixel.

To encrypt the secret color image using XOR
method, transform it into three color components C, M,
and Y and reduce the number of the color levels for every
pixel (Sij) in each color components from 2k to 2l according
to the following equation:

/
/
0

1
2
2
3

4

�

��
	

)12(
)12(

k

l
ij

ij

S
RoundS (1)

Where lkandMjNi ���� 1,1
The quality of the reconstructed image will be

enhanced when the number of the bits that represent each
pixel increases, but the payload will be decreased. Thus if
k = l then the method can reconstruct exactly the same
original image but that will affect the payload drastically.
We will reduce the color levels from 28 to 24 (where k=8
and l=4).

To encrypt every pixel in each obtained color
components, a gray mask (Ms) is generated that has the
same size as the secret image. Each pixel in Ms contains
random number from 0 to 2l-1 according to a private key
(K1), as shown in the following equation:

)2()(l
ij RandRoundMs �	 ……(2)

Where: Rand() is a random number generator according to
the seed (K1), 1()0 !� Rand .

The Ms is used to encrypt each color components
by XORing the Ms with each color component to produce
three gray shares, a share for every color components. For
every encrypted pixel in each share, expand the encrypted
pixel into nxm block (pixels) by converting the value of
the pixel into l bits string and decomposing each bit in one
pixel of the nxm block. The block size nxm depends on the
number of bits l that represents the pixel value. The block
size must satisfy the following equations:

/
0
1

2
3
4	

2
lRoundn …..………………..... (3)

/
0
1

2
3
4�	

2
1 lRoundm ………….…...…… (4)

If the original secret image size is NxM and the
block size is nxm, then the size of each gray share will be
WxH, where:

NnW *	 .. (5)
MmH *	 .. (6)

Fig. 1 shows diagrammatically how the XOR
encryption method is applied to the colored secret image
(Lena).

2.1.2 Multimedia Embedding Stage
The multimedia secret information such as personal voice,
biometric fingerprint, personal profile and so on is stored
in a separate file. For example the personal voice is stored
in a wav file, the biometric fingerprint is stored in a bmp
file and the personal profile is stored in a text file.

In this stage, the LSBs method is used to embed
multimedia secret information in the three gray shares.
LSBs is used for two reasons. The first reason is that the
LSBs is simple and well known method for embedding
information in an image. The second reason is that
changing some least significant bits does not result in a
noticeable degradation in an image.

Fig. 1: XOR method

704

The security of the LSBs method is enhanced
through embedding the multimedia information in the
shares randomly after permuting all the pixels in the shares
using a private key (K2). The pixels accuracy for the
shares is one bit; we will expand the pixel from 1 bit to 4
bits. The three least significant extra bits are used to
embed multimedia information. Before embed the
multimedia information, some details about this
multimedia information must be embedded such as the
number of files to be embedded, the type and size for each
file. These details are called header data. The header data
is created by converting each byte in the header data into 8
bits and then decomposing the 8 bits into 8 pixels. Select
one of the three shares randomly to embed the header data
in the first least significant bit, by applying OR operation
between the header data bits and the first least significant
bits of the selected share. After embedding the header data
there are 2 bits free in the share that is selected to embed
the header data, and 3 bits free in each of the other two
shares. Totally 8 free bits are distributed in the three
shares. Use these bits to embed the secret files contents by
reading every file byte by byte and convert each byte into
a sequence of bits then embed the sequence of bits in the

free bits in the shares.
The resultant shares called multimedia shares.

The total size of the embedding data depends on
the size of the encrypted secret image. If the secret image
size is NxM and the block size that is used in the
encryption method is nxm, then the total number of the
bytes that can be sorted in the secret image will be
n*N*m*M bytes.

After embedding the header data and the secret
files, restore the original pixel positions of multimedia
shares by rearranging the pixels using inverse random
permutations according to the private key (K2). Fig. 2
shows diagrammatically the embedding stage, where the
first least significant bit of ShareY is chosen to embed the
header data.

2.1.3 Final Embedding Stage
In this stage, the multimedia shares obtained from the
previous steps is embedded into meaningful color cover
image using the LSBs method. This stage embeds the bits
of the shares into the four least-significant bit plane of the
cover image, which results in a stego-image.

Before embedding the multimedia shares, we
must first prepare the shares and the cover as follows:

Fig. 2: The Multimedia Embedding Stage.

Fig. 3: The Final Embedding Stage

705

The first step: expand the number of bits for each pixel in
the shares from 4 bits to 8 bits and set the value of the 4
most significant bits to zero. The second step: Choose the
cover image at least of size WxH to be long enough to fit
the share (where the size of multimedia shares is WxH).

Once both the multimedia shares and the cover
image are prepared, embed each multimedia share into the
corresponding color components of the cover image by
using OR operation. The resultant image called stego
image. Fig. 3 shows the detailed steps of the final
embedding stage

Further, to make the LSBs method more robust
against casual hackers, use a random combination of bit
and pixel permutation techniques according to a private
key.

2.2 Extraction Technique
In the sending side (hiding technique), the multimedia
secret information about the person are embedded in the
meaningful cover image by using two keys; (K1) to
encrypt the secret image and (K2) to embed the secret
information in the encrypted image. The same two keys
must be used in the receiving side to extract the secret
image and information from the stego image.

In this technique, the extraction performed by
applying the reverse steps of the hiding technique. The
multimedia shares extracted first from stego-image, and
then the secret information and secret image extracted
from multimedia shares. LSB technique is used to extract
Multimedia shares from the stego image.

To extract the secret information from the
multimedia shares, first a random permutation for every
pixel in each multimedia share is applied according to key
(K2). Second, the header data is retrieved from the share
that is selected randomly to embed the header data. Third,
the file contents for the n secret files are extracted by
retrieving the bits that contains the secret data from
multimedia shares, two bits from the share that embed the
header data and three bits from the other two shares. Each
eight bits which are retrieved from each three colored
pixels (C, M, Y) are combined into one byte. Finally
according to the header data, the related bytes are grouped
into files.

Since the encrypted secret image was embedded in
the 4th least significant bit for each pixel in the multimedia
shares, the secret image obtained by: First, the 4th least
significant bits are retrieved and stored in logical shares.
Second, the secret image reconstructed by XORing the gray
mask Ms with each logical share. The gray mask Ms
generated randomly according to the private key (K1) that
was used in the encryption technique as in equation (2).
Combine the three new shares together to produce the color
secret image. The reconstructed image has 2l color levels,
change the number of levels from l2 to k2 by applying the

following equation to each pixel in the image. In our work,
l=4 and k=8.

)12(
)12(

�

��
	 l

k
ij

ij

S
S ….……………………… (7)

Where l < k

3 Experimental Results
Several experiments have been done, and we would like to
describe and discuss the results and its evaluation. Please
note that for all the resultant images shown in this paper,
they have been scaled down to the same size to fit the page
requirements. As a result, there could be a loss in quality.

The experiments are applied on XOR method
with l = 4, where l is the number of color level. The input
of the algorithm is the secret information and the
meaningful cover image as shown in Fig. 4.

Note that the size of the cover image satisfies the
equations (5) and (6). Fig. 5 shows the results after
applying XOR method. Fig. 5(a) is the secret image after
applying equation (1) with l is equal to 4, Fig. 5(b), 5(c)
and 5(d) are the generated multimedia shares, Fig. 5(e) is
the result of stacking the three shares. Fig. 5(f) is the stego
image that hides the stacked image. Fig. 6 shows the final
output of the extraction technique. The reconstructed
secret image in Fig. 6(a) is the same as the image in Fig.
5(a), and the other secret information in Fig. 6(b), 6(c) and
6(d) are the same as the original secret information.

4 Payloads and Security Analysis
Data payload is defined as the amount of information it
can hide within the cover media. As with any method of
storing data, this can be expressed as a number of bits,
which indicates the max message size that might be
inserted into an image.

In our technique, we use two cover media to hide
secret multimedia personal information, and use the
simplest technique LSB method to hide the data in the two
cover media. The first cover media is the encrypted secret
image that consists of three shares of size n×N×m×M,
where NxM is the size of secret image and nxm is the size
of block that used to encrypt each pixel. In this level of
hiding we use three bits for each pixel in each share to
hide the data, which leads to data payload
3×3×n×N×m×M bits. The second cover media is the
meaningful cover image of size WxH, where WxH satisfy
the equations (5) and (6). In this level we use four bits to
hide the result of the first level. The data payload in the
second cover media is 3×4×W×H bits.

The shares size will depend on the block size that
we use in the XOR method. When increase the block size,
the shares size will be increased, as consequents the cover

706

size will be increased. When use the cover media size less
than the shares size, the payload will be decreased.

(a) (b) (c)

Fig. 4: Inputs: personal secret information's and cover image (a) Color secret image of 300 x 300 pixels. (b) Other secret
information's such as biometric fingerprint (Bmp file), sample of personal voice (wav file) and personal profile (txt file). (c)
Color cover image of 600 x 600 pixels.

(a)

(b) (c) (d) (e) (f)
Fig. 5: Example of XOR method for 16 color levels. (a) Color secret image with 16 color levels. (b) ShareC with secret
information. (c) ShareM with secret information. (d) ShareY with secret information. (e) Stacked image (f) Stego image.

(a) (b) (c) (d)

Fig. 6. The outputs of XOR method after extraction. (a) Secret image. (b) Personal voice. (c) Biometric fingerprint. (d)
Personal profile.

Our technique enhanced security, because we use
multilevel of security. One of the security levels is encrypt
the image randomly to produce three gray shares. The
second level is hide secret multimedia data in the random
share and in random position. The third level is the secret
multimedia data has different type such as wav, bmp and
txt. The final level is hiding encrypted image and secret
data in meaningful cover image in random position. More
levels can be implemented depending on initial
specifications and keys.

5 Conclusion and future work
The algorithm used in this paper results in perfect

reconstruction of the encrypted stego image with larger
payload and efficient security layer. As a future work,
various attacks including geometric and transformation
will be thoroughly studied to see the robustness of the

technique against attacks. The idea of having visual
cryptography in watermarking is of interest for data
communication and data security.

References:

[1] M. Naor and A. Shamir, Visual Cryptography, in
Proceedings of Eurocrypt 1994, lecture notes in
Computer Science, vol. 950, 1994, pp. 1–12.

[2] Ching-Nung Yang, New visual secret sharing
schemes using probabilistic method, Vol. 25, No. 4,
2004, pp. 481-494.

[3] C. Blundo, A.D. Santis, and M. Naor, Visual
cryptography for gray-level images, Information
Processing Letters, Vol.75, No.6, 2000, pp.255–
259.

[4] T. Hofmeister, M. Krause and H. U. Simon,
Contrast-optimal k out of n secret sharing schemes

707

in visual cryptography, Theoretical Computer
Science, Vol. 240, No. 2, 2000, pp. 471-485.

[5] G. Ateniese, C. Blundo, A.D. Santis, and D.R.
Stinson, Extended capabilities for visual
cryptography, Theoretical Computer Science
archive, Vol.250, No.1–2, 2001, pp. 143–161.

[6] Chang-Chou Lin, Wen-Hsiang Tsai, Visual
cryptography for gray-level images by dithering
techniques, Vol. 24, No. 1-3, 2003, pp. 349-358.

[7] V. Rijmen, B. Preneel, Efficient colour visual
encryption for shared colors of Benetton,
Eurocrypto’96, Rump Session, Berlin, 1996.
Available at: http://www.iacr.org/conferences/
ec96/rump/preneel.ps

[8] R. Youmaran, A. Adler, A. Miri , An Improved
Visual Cryptography Scheme for Secret Hiding, in
Proceedings of the 23rd Biennial Symposium on
Communications (QBSC), Kingston, 2006,
pp. 340–343

[9] Y.C. Hou, F. Lin, C.Y. Chang, A new approach on
256 color secret image sharing technique, MIS
Review, No. 9, December 1999, pp. 89–105.

[10] Young-Chang Hou, Visual cryptography for color
images, Vol. 36, No. 7, 2003, pp. 1619-1629.

708

KNOWLEDGE MANAGEMENT FRAMEWORK FOR CONFERENCE
VIDEO-RECORDING RETRIEVAL

Maria Sokhn, Elena Mugellini, Omar Abou Khaled
University of Applied Sciences of Western Switzerland, Fribourg

Boulevard de Perolles 80, 1700 Fribourg
{Maria.Sokhn, Elena.Mugellini, Omar.AbouKhaled}@hefr.ch

Abstract

With recording technology becoming easier to use and
more affordable due to technological developments, an in-
creasing number of conference talks and academic events
are being recorded. However the resulting multimedia data,
such as video data, lack rich semantic content annotations.
This rich information implicitly conveyed in the large avail-
able digital content is today only accessible if considerable
effort is made to analyze, extract and create useful seman-
tic annotations. We present in this paper CALIMERA, a
knowledge management framework for conference video-
recording retrieval that aims to bridge the gap between the
implicit knowledge conveyed in the content resources and
the explicit representation of knowledge required for effi-
cient multimedia retrieval, access, sharing, and content an-
notation by communities.

1 Introduction

Recently, an increasing number of conference talks and

academic events are being recorded for later access, sharing,

use or annotation. However with the exponential growth

of digital resources it becomes rather complex to retrieve

the appropriate video or video-sequence of a talk due to the

lack of rich semantic content annotations associated with

those resources. The rich information implicitly conveyed

in these resources is only accessible if considerable effort is

made to analyze, extract and create useful semantic anno-

tations. Current search engines, for instance, are not able

to answer complex a query such as ”Find a sequence of a
recorded talk, in 2007, in Italy, where a colleague of profes-
sor X, talked about image indexing after the coffee break” or

”Find a recorded talk of the speaker who wrote the paper Z”

or ”Find a recorded talk of an excellent professor explaining
the benefit of ontology use”. Such queries requires resources

to be semantically annotated based on defined concepts re-

lated to the conference domain. For example the concept

of ”excellent professor” in a conference domain may be de-

fined as a person with more than 10 publications, while in

an academic or everyday life domain the same concept may

be defined differently. Examples cited above illustrate the

so-called semantic gap which as defined by [14] (but also

other works presented almost similar definitions [33, 19])

“the lack of coincidence between the information that one
can extract from the visual data and the interpretation that
the same data have for a user in a given situation”. In order

to bridge this semantic gap, information should be indexed

according to the users expectations, allowing search engines

to find suitable data matching users requirements. Based on

this need we designed the framework CALIMERA a a Con-

ference Advanced Level Information ManagEment & Re-

trieval. CALIMERA framework is targeted for conference

video recording.It provides a solution for two main tasks;

the knowledge and information management of a confer-

ence video recording as well as their retrieval.

Every conference has a life cycle through which rich infor-

mation is conveyed. We argue that the cOnference High-

Level informAtion (OHLA) should be taken into account

in video-recordings annotation. OHLA includes the video-

recording of the talk with its content extracted informa-

tion (video segmentation, keywords, topics, etc.), the talk

presentation file (ppt, pdf, etc.), the speaker and the audi-

ence information (name, organization he/she belongs to it,

publications, etc.), the administrative information (confer-

ence planning, logistics, etc.), the related demos, the related

events, etc.. Such information can be automatically or man-

ually extracted and used to provide rich content based in-

dexing for video-recordings from a user semantic point of

view. Manual annotation, is accurate since the description

is based on human perception of the semantic content of the

video, however it is a labor extensive and time-consuming

process especially with the growth of the video collection.

Automatic annotation often describes low level content fea-

tures such as color, shape, etc. Those features lack enough

high level semantic information to be useful for users when

709

searching for data.

In our work we use a mixed approach combining the au-

tomatic and the manual approach reducing whenever possi-

ble, the burden of a manual annotation. To address the issue

of video content description various standards and annota-

tion formats have been developed (MPEG-7, RDF, OWL,

etc.). In our work we designed a conference model named

HELO (High-level modEL for cOnference) that models the

so-called OHLA. HELO extends and integrates existing

conference models.

The paper is structured as follows: in section 2 we intro-

duce the framework CALIMERA, in section 3 we present

the conference model HELO, In section 4 we describe the

data & metadata management part of the framework. In sec-

tion 5 we present the related works and finally in section 6

we conclude the paper and present the future work.

2 CALIMERA Framework

CALIMERA is an integrated framework aiming to facili-

tate the retrieval of videos of recorded talks within a confer-

ence. CALIMERA framework provides a solution for two

main tasks; the knowledge and information management of

a conference video recording as well as their retrieval. We

argue that the retrieval process is enhanced if the content

and the context of a conference during its life cycle are taken

into account for describing the resources. Fig. 1 outlines

the global view of the framework which is composed of the

following modules:

Figure 1. CALIMERA global view

• Tools manager:CALIMERA is a tool independent

framework. The tool manager allows any user to inte-

grate a tool that may be used for data meta-data man-

agement,query & visualization or both (Fig.2).

For a proof of concept we integrated four principal

tools. SMAC [12]:a tool we developed, to record

conference talk and automatically segments the vide-

orecording of this talk based on slide change detec-

tions [22, 28]. INDICO [7] is an integrated tool devel-

oped by the CERN [3] that manages the administra-

tive part of a conference (such as the conference plan-

ning,logistics, etc.). INVENIO [8] and CALISEMA

(detailed in section 4.3) are two different tools for

video semi-automatic and manual annotation, guided

by the conference model, HELO. The two cited tools

have been developed in collaboration with the CERN.

INVENIO has also a set of modules for automatic fea-

tures extraction of multimedia data and information in-

dexing.

• Data & metadata management module
(Fig.2)consists of handling the cOnference High-Level

information, such as recording talks, segmenting video

recordings, annotating video segments, managing the

context information of these talks, etc. A more

detailed presentation of this module is given in section

4.

• Data & Metadata storage (Fig.2) integrates existing

data and metadata formats such as MPEG-7 which is

one of the most widely used standard for multimedia

description, RDF & OWL, which are a more seman-

tically oriented standards for multimedia description

that integrates high level semantic description.

• Query & visualization module (Fig.2) queries the

data & metadata storage in order to return the video or

the set of video sequences of recorded talks the users

are seeking for. In order to handle the heterogeneity of

annotation standards and formats we designed a format

independent interface aiming at querying the heteroge-

neous data storage [17]. This query engine is based on

different concepts such as query analysis, query refor-

mulation, result reasoner, etc..

• Conference model: HELO (Fig.1 & 2), is a confer-

ence model we designed to model the OHLA. HELO

is based on some existing ontologies related to confer-

ence domain [5, 24, 21].

3 Conference model: HELO

HELO stands for High-level modEL for cOnference. It

models the information and knowledge conveyed during a

conference life cycle in order to make best use of the exist-

ing information and their eventual relationships. e.g. ‘Pro-

fessor X” is not anymore a simple keyword, but an infor-

mation linked to predefined concepts such as Person, Com-

munities,etc.. We developed the HELO ontology which is a

set of different interconnected concepts that have been de-

veloped or integrated/extended from existing ones such as

the event concept [5], the relationship [21], the presenta-
tion [10], the video-recording structure, etc. The detailed

description of HELO is the key-subject of another paper.

710

Figure 2. CALIMERA detailed view

We clustered HELO concepts into 7 different views called

Scopes

• Person Scope includes information about people in-

volved in a conference e.g. names, roles, affiliation. It

allows users to make queries such as: find the video

of the talk where a colleague of the chairman made a

presentation.

• Location Scope contains information about the con-

ference location e.g. continent, city, building, room. It

allows users to make queries such as: find the video

of the talk that took place in the building A during the

conference session Y.

• Temporal Scope concerns conference planning e.g.

starting time, parallel sessions, breaks. It allows users

to make queries such as: find the video of the talk that

took place in the afternoon in parallel to the talk B.

• Type Scope lists several categories of conferences e.g.

workshop, lecture. It allows users to make queries such

as: find a talk given in the academic lecture X.

• Media Scope gathers all the media information linked

to a talk e.g. video recording of the talk, presenta-

tion document, papers, books. It allows users to make

queries such as: find the video segment of the talk re-

lated to this paper.

• Thematic Scope affiliates a conference to a domain,

topic, related events e.g. video indexing, biology. It

allows users to make queries such as: find the video

part of the talk related to the inauguration of the LHC.

• Community Scope defines communities such as lab-

oratories, research groups, conferences committee e.g.

SEKE program committee, MIT group. It allows users

to make queries such as: find the video of the talk

where a professor from France university in the SEKE

program committee made a presentation.

The detailed description of HELO is the key-subject of

another paper. The following section explains the data &

metadata management module and describes prototypes for

automatic features extraction (SMAC) and semi-automatic

video annotation (CALISEMA).

4 Data & Metadata management

Different types of information can be associated to a

video. Some of them can be automatically extracted, others

have to be manually integrated into the video description,

or semi-automatically integrated by annotating the video

using for example a domain ontology. For instance admin-

istrative information of a conference, such as a planning

and logistics, usually exists in a digital format (text file,

database), thus it can be added to the video description,

using an automated extraction process. Conference context

description (topic, keywords, communities involved, etc.)

and video content description (slide transition, extracted

metadata, associated files, etc.) can be extracted using a

mixed approach e.g. slide transition can be automatically

detected while associating a speaker to a research commu-

nity requires a manual annotation. CALIMERA combines

these approaches. It integrates a set of data management

711

techniques based on HELO model providing users with ef-

ficient and granular search facilities and allowing complex

query based on semantic criteria.

4.1 Video segmentation: SMAC

Usually scientific conferences take the form of a series

of talks where speakers use slide-based presentations (Mi-

crosoft PowerPoint PPT, OpenOffice ODP, Acrobat PDF)

displayed as a slide-show during the speech. SMAC cap-

ture the speakers slides and records the talks. The synchro-

nization and the linking of those streams are very useful

for efficient retrieval and playback. Several prototypes have

been proposed to synchronize video recording of a talk with

the corresponding images of the slides. Generally, a replay

interface allows to playback the talk. Users can select a

slide image of the presentation and replay the corresponding

video sequence. We developed an algorithm within SMAC

project that automatically segments the video recording of

the talk and matches each video segment to its correspond-

ing slide. Our approach is guided by metadata information

extracted from presentation files and by heuristic hypothesis

such as slide show presentations being usually played from

the first slide to the last one, or the time passed on each slide

is minimum 30 seconds, etc.. As far as we know no prior

works such as [31, 26, 15] investigate heuristics hypothe-

sis that exist in the domain of conference presentations. An

evaluation of the proposed algorithm has been done using

60 videos of recorded talks (around 50 hours) including an-

imated slides, external demos, non linear slides navigation.

Over the 60 videos only two presented an unwanted result.

This was due to the speaker slides having a very dark back-

ground.

4.2 Video annotation: CALISEMA

Annotation of multimedia information is considered a

key issue for efficient information handling. Different mul-

timedia annotation standards have been developed one of

the most widely used is the MPEG-7. MPEG-7 supports

the description of both low-level and high-level multime-

dia content features. Low-level features extraction may be

automated thanks to several existing algorithms and sys-

tems, yet these annotations remain insufficient for a seman-

tic multimedia content description. High level content ex-

traction, which is a richer annotation as stated in the in-

troduction, is a complex and time consuming task requir-

ing manual intervention. To facilitate manual annotation

we developed a video annotation tool called CALISEMA.

CALISEMA has been developed in collaboration with the

university of Athena. It integrates an algorithm manager

that allow users to choose the segmentation algorithm they

want to apply on their video such as slide change seg-

mentation for the video recording of talks or shot change

detection for video recording of demonstrations, scientific

experiments, etc.. CALISEMA has also a segment man-

ager that helps users handling (deleting, adding, or merg-

ing) existing segments. Each video segment represented

by a keyframe or group of segments can be annotated in

CALISEMA using HELO ontology. The description file is

exported afterward to either MPEG-7, OWL format or both.

Fig.3 shows the CALISEMA interface. The bottom part

(1) shows the keyframes of the video recording of the talk.

Each keyframes correspond to a slide in the talk presenta-

tion. In the left part (2) we view the video sequence corre-

sponding to the chosen slide. Each sequence can be anno-

tated in different ways (top-right part(3)), such as ontology

based annotation whose parameters are shown in bottom-

right part(4)).

5 Related Work

Several research works in the domain of multimedia re-

trieval have been carried out in the last decade. This section

presents the ones which are more relevant to our work.

5.1 Framework

Several frameworks have been designed to handle mul-

timedia information retrieval such as the ones described

in [2, 20, 11, 18]. Some of them, such as PHAROS[11],

are dedicated for multimedia information retrieval in gen-

eral. Others, such as COALA [18] for TV news retrieval

or ConKMeL [20] for e-learning knowledge management,

have been designed based on the domain (news, sport) of

the video collection. In fact issues encountered during video

processing, such as feature extraction, are addressed differ-

ently depending on the video domain. Video analysis and

video information extraction techniques can largely differ

from a domain to another (e.g. extracting information from

a soccer game would differ largely from extracting informa-

tion from television news or a conference recording).

In our work we decided to develop a framework targeting

the scientific conference domain. Our framework extends

the VIKEF project approach [2] (a framework for scientific

congresses and trade fairs) by adding several capabilities

some of which are the automatic analysis of a conference

video recording (such as video segmentation), and hetero-

geneous data querying.

5.2 Ontology

Several works have been carried out to define an ontolog-

ical model for conferences and events such as the AKT Ref-

erence Ontology [1], the eBiquity Conference Ontology [4]

712

Figure 3. Slide change based video segmentation, HELO annotation

and [21] which describes vocabulary of relations between

people. According to a detailed study in [24] these exist-

ing solutions lacked the required expressiveness. In ESWC

(European Semantic Web Conference) metadata project [6],

a more expressive and detailed ontology is proposed, this

ontology is called ESWC2006 [5]. It has 6 top-level classes:

Artefact, Call, Event, Place, Role, Sponsorship. In contrast

to the other ontologies, it models explicitly relationships be-

tween people, roles, and events. In our work we integrate

the ESWC2006 ontology and extend it (more specifically

by adding concepts concerning the video of the conference,

such as video conference structure, video sequences, etc.)

in order to satisfy users requirements and for efficiently re-

trieving videos of recorded talks using complex queries.

5.3 Tools

Video segmentation:

Several industry and research groups work on enhancing

the reuse of meetings, conference talks, courses, etc.

recording. One of the most important issues to solve is

video segmentation. All existing projects are based on

segmenting the video according to the slide change of

the speaker presentation. Mediasite [13], is a rich media

search engine that automatically indexes publicly-available

recorded webcasts. Mediasite works on multimodal search

including phonetics, OCR, language models and applying

contextual analysis. Jabber [29, 23], is a prototype designed

to record, index, and search information generated during

multimedia meetings. Marvel (Multimodal Analysis of

Recorded Video for E-Learning) [30, 31], is a suite of tools

and techniques for the creation of multimedia documents

for e-learning taking into account video content indexing.

WLAP [26] is a web lecture archive project that aims to

implement an electronic archival system for slide-based

presentations on the Internet. Mediasite, Jabber, Marvel

and WLAP and other projects present interesting results,

yet none of them present a completely automated task with

a high rate of success in the video segmentation of slide

presentation..

Video annotation:

Several software programs have been developed to handle

multimedia annotation such as Muvino [16] a part of the Vi-

TooKi tool kit; Caliph & Emir [25] a project from the Graz

University of Technology; M-OntoMat-Annotizer [27] de-

veloped using the framework of aceMedia, K-Space An-

notation Tool [32] developed at the University of Koblenz-

Landau and POLYSEMA MPEG-7 Video Annotator [9] de-

veloped at the University of Athens within the Polysema

project, etc. Most of these softwares generate MPEG-7 for-

mat which is one of the most appropriate multimedia format

713

while others generate RDF or OWL output.

6 Conclusion and future work

This paper presented an end-to-end framework which

aims at addressing the existing issues in video indexing and

retrieval in the domain of conference. We presented CAL-

IMERA a framework that aims at providing users with effi-

cient and granular search facilities and allows the retrieval

of videos of recorded talks of conferences, based on seman-

tic criteria. CALIMERA is based on HELO, a model we

conceived to describe the cOnference High-Level informA-

tion (OHLA) conveyed along a conference life cycle. We

presented a video segmentation tool (SMAC) and a video

annotation tool (CALISEMA), both based on HELO ontol-

ogy. As a next step we are currently implementing the de-

signed query engine within query & visualization module.

References

[1] Advanced knowledge technologies.

http://www.aktors.org/publications/ontology/.

[2] An advanced software framework for enabling the

integrated development of semantic-based information,

content, and knowledge (ick) management systems.

http://www.vikef.net/.

[3] Cern, european organization for nuclear research.

http://www.cern.ch.

[4] ebiquity conference ontology.

http://ebiquity.umbc.edu/ontology/.

[5] European semantic web conference ontology.

http://www.eswc2006.org/technologies/ontology-

content/2006-09-21.html.

[6] European semantic web conference project.

http://www.eswc2006.org/.

[7] Indico, web application used for scheduling and organizing

events. http://indico.cern.ch/.

[8] Invenio, a set of tools for building and managing an au-

tonomous digital library. http://cdsweb.cern.ch/.

[9] Multimedia application supported by semantics. University

of Athena. http://polysema.di.uoa.gr/.

[10] Ontology used to manage w3c presentation.

http://www.w3.org/2004/08/Presentations.owl.

[11] Pharos: Platform for searching of audiovisual resources

across online spaces. http://www.pharos-audiovisual-

search.eu/.

[12] SMAC, Smart Multimedia Archiving for Conference.

http://smac.hefr.ch/.

[13] Webcasting and knowledge management.

http://www.sonicfoundry.com/mediasite/.

[14] A. G. R. J. A.W.M. Smeulders, M. Worring. Content-based

image retrieval at the end of the early years, 2000.

[15] J. J. H. Berna Erol and D.-S. Lee. Linking multimedia pre-

sentations with their symbolic source documents: algorithm

and applications. pages 498–507. eleventh ACM interna-

tional conference on Multimedia, 2003.

[16] K. M. Bszrmenyi L Mller A. Annotation and presentation

of content-variations in a webbased search environment for

video. pages 67–74. Istvan Simonics (Hrsg.): Technology-

enhanced Learning with Ubiquitous Applications of Inte-

grated Web, Digital TV and Mobile Technologie, July 2005.
[17] E. M. O. A. David G., Maria S. Virtua mea:virtual query

architecture for heterogeneous data sources. 2008. Internal

publication.
[18] N. F. PhD thesis, Ecole polytechnique federale de Lausanne,

2003.
[19] A. P. G. PhD thesis, Queen Mary, University of London,

2006.
[20] W. H. and A. M. Conkmel: A contextual knowledge man-

agement framework to support multimedia e-learning, Au-

gust 2006.
[21] E. V. Ian D. A vocabulary for describing relationships be-

tween people. http://vocab.org/relationship/.
[22] E. M. O. A. Jean Revertera, Maria Sokhn. Video segmen-

tation algorithm for enhanced multimedia synchronization

and indexing. 2008. Internal publication.
[23] R. K. John, K. Accessing multimedia through concept clus-

tering. pages 19–26. ACM SIGCHI, 1997.
[24] T. H. S. H. J. D. Knud, M. The eswc and iswc metadata

projects. pages 802–815. ISWC2007, 2007.
[25] M. Lux and al. Caliph & emir: Semantic annotation and

retrieval. In Personal Digital Photo Libraries, pages 85–89.

CAiSE ’03 Forum at 15th Conference on Advanced Infor-

mation Systems Engineering, 2003.
[26] U. of Michigan Media Union. Web lecture archive project.

http://www.wlap.org/.
[27] K. Petridis and al. M-ontomat-annotizer, a tool for semantic

annotation of images and videos for multimedia analysis and

retrieval. 2005.
[28] J. Revertera. PhD thesis, University of applied sciences of

western Switzerland, 2008. Master thesis.
[29] R. A. W. H. M. M. Rick, K. Four paradigms for indexing

video conferences. volume 3, pages 63–73. IEEE MultiMe-

dia, 1996.
[30] A. B. J.-M. O. Thomas, M. Multimodal analysis of recorded

video for e-learning. pages 1043–1044. MM S05, 2005.
[31] A. B. J.-M. O. Thomas, M. Multimedia scenario extraction

and content indexing. pages 204–211. CBMI, 2007.
[32] P. Wilkins and al. K-space. trecvid, 2007.
[33] G. L. W.-Y. M. Ying Liu, Dengsheng Zhang. A survey

of content-based image retrieval with high-level semantics,

January 2007.

714

SEPARATING THE SCATTERED CONCERNS: A GRAPH BASED MODEL

Dipankar Majumdar
B.P. Poddar Institute of Management & Technology

137, V.I.P. Road, Kolkata – 700052, India
dipankar.majumdar@gmail.com

Swapan Bhattacharya
Jadavpur University,

Kolkata – 700032, India
bswapan2000@yahoo.co.in

Abstract
Separation of Concerns is a well -established concept.
SoC is often well-achieved till the Design Phases, but gets
difficult in the later phases of the Software Development
Life Cycle. This paper makes a graphical app roach to
address the Code and Maintenance Level SoC. The paper
also proposes a formal-model based on relational -
algebra to separate out the concerns that remain
scattered throughout the source code and make the code
complex. This separation will help untan gle the tangled
code often present in procedural programs.

Keywords
Software-Engineering, Separation-of-Concerns, User-
defined-Symbols, Relational Algebra.

1. Introduction
Addressing complexity is one of the fundamental goals of
Software-Engineering. The primary mechanism for
addressing complexity has been based on the separation
of concerns, allowing distinct concerns to be addressed in
relative isolation. Separation of Concerns is quite an
established concept. For effective programming and
addressing issues like Maintainability, Understandability
and Extendibility, SoC is not only desirable but an
essential issue. While separation of concerns is generally
done in the Design Level, due to limitations of the
programming-languages, often the separated conc erns
tend to intermingle at the implementation level. Some of
the concerns get spread throughout the system, scattered
through most of the subroutines, while others tend to
remain localized to a particular vicinity of the code. The
concerns that get scattered in the system tend to pose
threat to understandability, maintainability and hence
scalability of the system. This paper proposes a graphical
representation, namely the Symbol Associativity Graph ,
for a given procedural source code. Thereafter the paper
also proposes a generalized graphical cum mathematical
modus-operandi for isolating the scattered concerns.
Thereby separating out the un-scattered concerns from the
scattered ones, so that they can be placed under separate
domains for scalable maintenance.

2. Related Work
There has been a wide spectrum of the nature of work that
been done in the area of Separation of Concerns. Jonathan
Aldrich in his work [7] put forward the challenges that are
faced while keeping concerns separated till the
implementation level. Adrian Colyer, Awais Rashid and
Gordon Blair in their work [8] introduced a set of
principles that instruct in the creation of flexible,

configurable, aspect-oriented systems that can help
separation of concerns in a software. Y. Smaragdakis and
D. Batory in their work [9] proposed how Mixin Layer
technique can be used for achieving SoC. N. Bouraqadi in
his work [10] proposed the steps behind the usage of the
technique: Reflection, for enabling Concern Oriented
Programming for achieving SoC while coding. Mark C.
Chu-Carroll in his work [11] proposed the technique of
file-based program organizations, where the SoC can be
addressed and achieved at the implementation level.
WalterL.Hursch and C. Videira Lopes in their work [12]
identified the major concerns that exist in today’s
software applications and analyze recent proposals in the
literature that address separation of single concerns.
Kim Mens et al in their work [13] proposed the idea of
intentional source code views to aid the task software
maintenance. They proposed the lightweight abstraction
of intentional source-code views as a means of making
these conceptual structures more explicit. S. Herrmann
and M. Mezini in their work [14] p resented their
experience with applying multidimensional sep aration of
concerns to a software engineering environment. S.
Horowitz et al in their work [16] considered the problem
of interprocedural slicing—generating a slice of an entire
program, where the slice crosses the boundaries of
procedure calls. To solve this problem, they have
introduced a new kind of graph to represent programs,
called a system dependence graph, which extends
previous dependence representations to incorporate
collections of procedures (with procedure calls) rather
than just monolithic programs. D.L. Parnas in his work
[15] presented an analytical survey of the criteria to be
used in decomposing a system into modules. Martin. P.
Robillard and Gail C Murphy in their work [17] described
how they support the evolution of artifacts that refer t o the
implementation of concerns in a system by combining the
ideas of low-level program abstractions, tolerance to
inconsistencies, and specialized tool support for
inconsistency management. Hafedh Mili et al, in their
work [18] proposed a conceptual framework based on a
transformational view of software development
addressing the issue of Separation of Concerns. Flavio De
Paoli in his work [19] presented three examples of
separation of concerns and discusses possible solutions.
He and Bai [20] propose ano ther aspect mining technique
based on cluster analysis. They start from the assumption
that if the same methods are called frequently from within
different modules, this may be a good indication that a
hidden crosscutting concern [6, 23] is present. Marin et al.
[21] noticed that many of the well -known scattered and
crosscutting concerns [23] exhibit a high fan -in. They
propose using a fan-in metric in order to discover these

715

concerns in source code. Shepherd et al. [24] and
implemented as a tool they call Ophir, makes use of
program dependence graphs (PDG) to detect possible
scattered and tangled concerns.
Bruntink et al. also make use of clone detection
techniques to mine for aspects. In [25, 26], they compare
token-based [27] clone detection, which is ba sed on a
lexical analysis of the source code, with AST-based [28]
clone detection, which takes the parse tree of the source
code into account. Bruntink reports on a refinement of
this work [22], in which a number of metrics for the clone
classes are described which can be used to filter the
results of the clone detection techniques.

Taking the idea from the above work the current paper
addresses the problem of identifying and isolating the
scattered concerns from a procedural source -code. As put
forward by Shepherd et al [24] that scattered and
crosscutting concerns [23] may not lie modularized in the
code and hence they may be needed to be extracted from
the statement level, this paper goes ahead in the way
proposing a new graphical model namely the Symbol -
Associativity-Graph (SAG) and proposes a formal
methodology for identifying and separating out the
scattered and tangling concerns, in the form of individual
statements, from the other parts of the code.

3. Scope of the Work
Separation of Concerns is a well significant issue to be
taken care of in software development. Although it is
highly feasible in the earlier stages of SDLC, the issue
becomes difficult to follow from the implementation
phases onwards. The limitations that exist in the
programming languages often pose a threat to the
Separation of Concerns. Hence SoC remains un -addressed
in some portions of the code. This makes
understandability as a result maintenance and scalability
difficult. Often concerns that are implemented using
scattered variables, scattered codes and functions called

from scattered locations. If these heavily -used variables
and frequently-called functions be traced and eliminated,
it will be possible to filter out the scattered concerns from
the code. This paper proposes a methodology to separate
out these tyrannical concerns from the other parts of the
program, assuming the fact that any user -defined symbol
is declared and defined [13] for and only for a certain
purpose or concern. The proposed methodology needs the
user-defined symbols along with the source -code as input,
which generates the Symbol Associativity Graph (SAG)
as output. Fig-1 presents the methodology pictorially.

3.1 Symbol Associativity Graph
Symbol Associativity Graph (SAG) is a graphical model
for representing a procedural source code. In this
graphical model, stress is laid principally on the
associativity of one symbol with the other. The model
considers each user-defined symbol as a node/vertex and
associativity among them are represented by a directed
edge, the direction being from the user to the used.
Associativity refers to the ‘usage of a variable’ or a ‘call
to a function’ from a particular function. Consequently
the above implies that the nodes representing variable -
names can only act as destination nodes, while function -
names can act as both source as well as destination nodes.
The edges are not only directed but also carry a string
value. The string consists of hyphen -separated numeric
values representing the sequence -number of the usage of
the destination-node by the source-node in its (source-

node’s) domain. Each hyphen indicates the appearance of
a compound statement and the following numeric value
signifies the sequence number of the usage of the
destination-node within that compound statement. The
further usage of this sequence -number is beyond the
scope of this paper and will be considered for usage in our
forthcoming work. After the Graphical Model is built, the
next objective is to remove out the frequently used as well
as the scattered concerns. Assuming that a particular user -
defined symbol is declared and defined for a particular
purpose or concern [5], it therefore implies that a
widespread usage of a (user -defined) symbol indicates the
presence of a scattered-concern. Therefore the nodes of
SAG with high ‘in-degree’ represent its widespread
usage. Hence its removal will eventually separate the
scattered concerns from the un -scattered ones. The
following filtering methodology shows how the objective
can be fulfilled.

User-defined
Symbols

�������	
��

������

���
����
������

 �!�

������"

���#�
�

���

���������

716

3.2 Filtering Methodology:
Let us assume that a graph G (V, E), represents a
procedural code, where V: User -defined Symbols and E:
Inter-Symbol Associativity.
From the above it is clear that a set V comprises user -
defined symbols i.e. data-objects or functional-units and E
represents their edge-label. Representing above graph G
in tabular form, we have a tuple for each link. Our table
would have three fields, namely Source -Node, Target-
Node and Edge-Label, where for each tuple the Source -
Node column would have the entry for the node from
which the link originates and the Target -Node column
would have the entry for the node on which the link
terminates. The third column, namely the Edge -Label
would consist of a record of the string that represents the
label of the edge under consideration. This way each tuple
of our table will represent a single link of the SAG. All
the tuples taken together represents the total SAG. We
have named our table as Symbol –Associativity-
Relationship-Table (SART) shown as Table -1. Since a
table logically represents a ‘mathematical -relation’, we
can highly execute relational operations on it. In this
paper we have framed a set of ten ‘relational -algebra’
based queries which when executed sequentially would
eliminate the tuples from the SART that are responsible
for tangled-code, leaving out the rest. Consequently our
left out table, which as previously assumed represents the
SAG, and the SAG in turn represents a procedural

program, would consist of source -code devoid of tangled-
code and scattered-concerns. Therefore we have
converted a code-mining problem to a graphical -problem
and the graphical-representation is converted to
mathematical-relation such that the ‘relational -algebra’
can be used to solve the problem thereby obtaining a
clean solution. The following list of queries when
executed on the Symbol-Associativity-Relationship-Table
that represents the SAG in tabular -form, fulfills our
objective to separate the scattered concerns from a
Graphical-Representation of a Procedural Co de. The
objectives are to identify the nodes having their in -degree
value greater than average in -degree of all nodes. At the
same time those nodes are also required to be isolated,
which are linked with a large number of distinct other
nodes. Thereafter these nodes along with their associated
edges are to be removed. While removing these nodes
along with the associated edges, if their exists any
edge/link that represents the condition of a compound -
statement, such as a condition or loop whose execution
critically depending on the values of any of these nodes
(symbol-variables), then the whole block needs to be
removed. Our query-based formal-methodology with
‘Relational-Algebraic Queries’ numbered R9 and R10,
caters to that removal activity. In the followin g query
based model, R10 gives the relation representing the
graph, which in turn represents the graph devoid of the
scattered symbols.

#Relation R1 shows the list of nodes with their usage -frequency.
R1 = ρSymbol-Name, Usage-Frequency (Target-Node � Target-Node, count (Source-Node) (SART))
#Relation R2 shows the list of nodes with their scattering -values.
R2 = ρSymbol-Name, Scattering-Value (Target-Node � Target-Node, count (unique (Source-Node) (SART))
R3 merges the lists represented by R1 and R2 resp ectively, with their usage-freq. and scattering-value renamed as metric.
R3 = σ ((ρSymbol-Name, Metric-Value (R1)) UNION (ρSymbol-Name, Metric-Value (R2)))
Relation R4 computes the average of the usage -frequency and scattering-value for each node.
R4 = ρSymbol-Name, Avg-Metric-Val (Symbol-Name � Symbol-Name, avg(Matric-Value) (R3))
R5 projects the list of all nodes, each with their usage -frequency, scattering value and their average using Natural Join
R5 = π Symbol-Name, Usage-Frequency, Scattering-Value, Avg-Metric-Val (σ (R1 R2 R4))
Relation R6 computes a (self) cartesian -product of R4 with R4, considering only the ‘average metric value’ and an average
of the all the ‘average metric values’
R6 = ρ Symbol-Name, Avg-Metric-Val, Avg-Avg-Metric-Val (Symbol-Name-X � Symbol-Name-X, Avg-Metric-Val-X, avg(Avg-Metric-Val-Y

(ρSymbol-Name-X, Avg-Metric-Val-X (R4)) X (ρSymbol-Name-Y, Avg-Metric-Val-Y (R4))))
R7 shortlists those symbols that have their average metric value higher than the av erage of all the average metric values.
R7 = π Symbol-Name (σ Avg-Metric-Val >= Avg-Avg-Metric-Val (R6))
R8 projects the list of nodes with source -node, target-node and edge-label values, where the target -node matches with the
list in R7
R8 = π SART.Source-Node, SART.Target-Node, SART.Edge-Label (σ SART.Target-Node = R7.Symbol-Name (SART X R7))
Relation R9 projects the list of source -nodes, target-nodes and edge-labels where the edge label starts with any of the edge -
labels in R8
R9 = π SART.Source-Node, SART.Target-Node, SART.Edge-Label (σ SART.Source-Node = R8.Source-Node AND SART.Edge-Label = R8..Edge-Label* (SART X R7))
* indicates any group of characters.
The following relation R10 negates out the list R9 from SART Table.
R10 = SART – R9.

The relation R10 represents the resulting SAG representing the same program devoid of the Scattered Concerns

717

4.0 Case Study
As a Case Study we have taken a C Language source -
code of a ‘Two-Player’ ‘Tic-Tac-Toe’ Gaming Software
for analysis. The corresponding SAG generated from the
source-code in the from of Sub-Graphs is presented in
Appendix-I for illustration. The diagrams depict the

viewpoint of each node with its incoming edges only.
Since the point of interest of this paper is limited to: the
scattering and frequency of usage of any particular
symbol, the graph-lets prove to be sufficient enough to
provide the said information. The corresponding SART in
brief is shown as Table-1.

$�#
��������#�
����������%����&�
������'���$�#
�
Source-Node Target-Node Edge-Label

CheckVacancy matrix 1
TestCollinearity matrix 1

Display matrix 1-2-1
Set matrix 1-1
Set matrix 2
init matrix 5-1-1-1
… … …
… … …

According to our model proposed in section 3.2, the relation R5 is shown in tabular form as follows:
$�#
��(��)����� �����������������
�����$�#
�

Serial No Symbol Name Usage-Frequency Scattering-Value Avg-Metric-Val
1 Matrix 5 5 5
2 fp 9 3 6
3 User1Attempt 6 6 6
4 User2Attempt 6 6 6
5 UserMove 6 6 6
6 DisplayString 7 7 7
7 DisplayMessage 6 4 5
8 WritetoLog 8 5 6.5
9 ClearMessageBuffer 10 5 7.5

10 Init 1 1 1
11 Set 2 1 1.5
12 Display 2 1 1.5
13 TestCollinearity 2 1 1.5
14 CheckVacancy 2 1 1.5
15 CheckValidity 2 1 1.5
16 Terminate 1 1 1

4.1 Calculations & Results:
The Relation R5 presents the Usage Cum Scattering
Analysis of all the symbols under consideration. The
representation shows clearly that symbols bearing serial
nos.: 1, 2, 3, 4, 5, 6, 7, 8 and 9 has the tendency of either
getting scattered throughout the source -code or being

frequently used in the source-code. In this paper, the
mean ‘Usage-Cum-Scattering Value’ is taken as the
Statistical-Central-Tendency for partitioning the symbols
on criteria basis.

The Relation R7 according to our proposed model gives the following list of symbols as i ts result:

1. matrix
2. fp
3. user1Attempt

4. user2Attempt
5. userMove
6. displayString

7. DisplayMessage
8. WritetoLog
9. ClearMessageBuffer

According to the symbol listing shown in Table -2, user-
defined symbols numbered 1 through 9 are the same as
the above list of symbols. While removing the above
listed symbols, the care should be taken to remove the
compound statements if associated with them. Thus we
have relations R8, R9 and R10. Thus, R10 gives the

relation that represents the associativity -relationships of a
procedural program devoid of the scattered symbols and
the dependencies of any other statements on them. Thus
R10 represents a SAG, which again represents a
procedural program filtered off from the scattered
concerns.

718

5.0 Discussions and Conclusions:
From the above it can be concluded that frequently used
and scattered symbols that are principally responsible for
scattered problematical concerns can be isolated out from
the other concerns that stay localized at particular sections
of code. This is to be done principally to handle the two
domains: one that of scattered concerns and the other that
of un-scattered concerns differently, in different styles of
programming paradigm. We advocate the scattered -
symbols and their scattered -usage in the code re-coded
using the Aspect-Oriented-Programming paradigm,
because AOP Paradigm is proved to be very effective [1]
in handling scattered-concerns and tangled-code. On the
other hand the other localized -concerns may stay back in
the original procedural form. Ultimately both can be
integrated using the weaver -program [3, 4] used for
integrating code-sections in the AOP Paradigm [3, 4]. Our
approach is fully practical and scalable for larger -
programs as well, so long as procedural -program are
concerned. Hence our approach can prove to be a cost-
effective for the maintenance phase of SDLC.

References
[1] Jan Hannemann and Gregor Kiczales, Overcoming the
Prevalent Decomposition in Legacy Code, Workshop on
Advanced Separation of Concerns (Proceedings) ,
International Conference on Software Engineering (May
2001, Toronto, Canada)
[2] A. Silberschatz, H.F. Korth, S. Sudarshan, “Database
System Concepts”, 4th Edition, Mc Graw Hill, 2002
[3] Aspect Oriented Programming, http://en.wikipedia.org
[4] http://www.aspectc.org/
[5] Steve McConnel, “Code Complete”, Third Indian
Reprint: 2006, WP Publishers & Distributors P Limited,
pages 255-257
[6] José María Conejero, Juan Hernández, Elena Jurado,
Klaas van den Berg, “Crosscutting, what is and what is
not?: A Formal definition based on a Cro sscutting
Pattern”, Technical Report TR28/07. University of
Extremadura, 2007
[7] Jonathan Aldrich, “Challenge Problems for Separation
of Concerns”, In Proceedings of the OOPSLA 2000
Workshop on Advanced Separation of Concerns
[8] Adrian Colyer, Awais Rash id, Gordon Blair, “On
Separation of Program Families”,
Families,http://www.comp.lancs.ac.uk/computing/aop/pa
pers/COMP-001-2004.pdf
[9] Yannis Smaragdakis, Don Batory, “Implementing
Layered Designs with Mixin Layers”, 1998 — In
European Conference on Object -Oriented Programming
[10] Noury Bouraqadi, “Concern Oriented Programming
using Reflection”, 2000 — In: Workshop on Advanced
Separation of Concerns – OOPSLA
[11] Mark C. Chu-Carroll, “Separation of Concerns: An
Organizational Approach”, In OOPSLA 2000 Work shop
on Adavanced Separation of Concerns
http://trese.cs.utwente.nl/Workshops/OOPSLA2000/paper
s/chucarroll.pdf

[12] WalterL.Hursch and Cristina Videira Lopes,
“Separation of Concerns”,
http://related:reference.kfupm.edu.sa/content/s/e/separatio
n_of_concerns__91681.pdf
[13] Kim Mens, Benard Paul and Sebasti´an Gonz´alez,
“Using Intentional Source-Code Views to Aid Software
Maintenance”, In Proceedings of the International
Conference on Software Maintenance,
http://ftp.info.ucl.ac.be/pub/publi/2003/ICSM2003. pdf
[14] Stephan Herrmann, Mira Mezini, “PIROL: a case
study for multidimensional separation of concerns in
software engineering environments”, Proceedings of the
15th ACM SIGPLAN conference on Object -oriented.
[15] D. L. Parnas, “On the criteria to be us ed in
decomposing systems into modules”, Communications of
the ACM, v.15 n.12, p.1053-1058, Dec. 1972
[16] Susan Horowitz, Thomas Reps, and David Binkley,
“Interprocedural Slicing Using Dependence Graphs ”,
Technical Report SOCS-TR-2005.1 McGill University,
Canada, 12 January 2005
[17] Martin P. Robillard and Gail C. Murphy. “Evolving
Descriptions of Scattered Concerns” Technical Report
SOCS-TR-2005.1, McGill University, Canada, January
2005
[18] Hafedh Mili, Houari Sahraoui, Hakim Lounis,
Hamid Mcheick and Amel Elkharraz., "Concerned About
Separation". In Lecture Notes in Computer Science,
Proceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering FASE
2006, Vienna, Austria, March 27 -28, 2006, pp. 247 - 261.
[19] F. De Paoli, “Multidimensional Separation of
Concerns”, In the Proceedings of Workshop on
Multidimensional Separation of Concerns in Software
Engineering, ICSE-22, IEEE, Limerick (Ireland) June 5 -9,
2000
[20] He, L., Bai, H., Zhang, J., Hu, C.: Amuca algorithm
for aspect mining. In: Proceedings of SEKE 2005. (2005)
[21] Marin, M., van Deursen, A., Moonen, L.: Identifying
aspects using fan-in analysis. In: Working Conference on
Reverse Engineering (WCRE’04), IEEE Computer
Society (2004) 132–141
[24] Shepherd, D., Gibson, E., Pollock, L.: Design and
evaluation of an automated aspect mining tool. In:
International Conference on Software Engineering
Research and Practice. (2004)
[25] Bruntink, M., Deursen, A.v., Engelen, R.v., Tourw´e,
T.: An evaluation of clone dete ction techniques for
identifying crosscutting concerns. In: International
Conference on Software Maintenance (ICSM 2004),
IEEE Computer Society Press (2004)
[26] Bruntink, M., van Deursen, A., van Engelen, R.,
Tourw`e, T.: On the use of clone detection for identifying
crosscutting concern code. IEEE Transactions on
Software Engineering 31(10) (2005) 804 –818
[27] Baker, B.: On finding duplication and near -
duplication in large software systems. In: Working
Conference on Reverse Engineering (WCRE 1995), IEEE
Computer Society Press (1995) 86 –95

719

[28] Baxter, I., Yahin, A., Moura, L., Sant’ Anna, M.,
Bier, L.: Clone detection using abstract syntax trees. In:
International Conference on Software Maintenance
(ICSM 1998), IEEE Computer Society Press (1998).

[22] Bruntink, M.: Aspect mining using clone class
metrics. In: 1st Workshop on Aspect Reverse
Engineering. (2004)
[23] http://en.wikipedia.org/wiki/ Crosscutting_Concerns

2

1

11

1413 15

12

11-2-1

5-1-1-1

1-1

2
1-3

5
9 11

17

3

11-111

1

2
4

6

6-3

4

12111

15 16 17

5

5
5

3-4

1-1-11-1-1

5

12111

15 16 17

8

2-1
2

3-15

1-1-11-1-1

9
6

2

1-23

1-2
8

1512

16 17 31-3

1-34

3-163-5
3-10-2 3-21-2

9

1

1716

1512
57

1-41-4

3-173-6
3-10-3 3-21-3

10
4

10

1

12
17

1615

11 1

1 12

3-19

3-8
1 13

3-20

3-9

1 14

3-21

3-10

1 15

3-18

3-7

1 16

3-18

3-7

6

12111

15 16 17

22

2
3

11

 1-11-1

7

1098

12 15 16

22

2
3

11

 1-11-1

11 4

�����!���*

��#�����'���"��'�� ���
��������"����'��������� �!���"��'��$* �$� �$+,���"�-���

720

Early Analysis of Modularity in Software Product Lines

José M. Conejero, Juan Hernández, Elena Jurado, Pedro J. Clemente and Roberto Rodríguez
University of Extremadura, Avda. de la Universidad s/n, 10071, Caceres, Spain

{chemacm,juanher,elenajur,pjclemente,rre}@unex.es

Abstract

Software Product Lines has emerged as a new
technology to develop software product families based on
the combination of a set of common and variable assets.
However, in order to combine these assets to build
different products, coupling between common and
variable parts must be highly reduced. In that sense,
crosscutting features make evolution and adaptability of
software difficult. In this paper we propose a framework
to identify crosscutting features at early stages in order to
use aspect-oriented techniques to modularize them and
reduce their dependencies. This framework is based on a
crosscutting pattern and uses traceability matrices to
automatically perform the analysis of crosscutting by
means of syntactical and dependencies based analyses.
Applicability of the framework is shown by identifying
crosscutting features in the MobileMedia product line.

1. Introduction

Software product lines (SPL) have become an
emerging trend in software development where products
related to a particular domain are created from the
combination of a shared set of common and variable
software assets [3]. SPL approaches [3] [16] aim at
reducing development costs and efforts, while improving
the productivity, adaptability and reliability of software
systems.

In this setting, feature-oriented modeling techniques
analyze commonalities and variabilities among products
of a family [6] [10], whereas feature dependency analysis
identifies the dependencies among features of a SPL [11].
The effectiveness of a software product line approach
highly depends on how well features are managed
throughout the development lifecycle [17]: the more
independent the assets are, the easier the products may be
built [4]. However, features may crosscut each other,
making them dependant and reducing thus the flexibility,
reusability and adaptability of the SPL assets [17] [4] [9]
[12].

Several works have introduced the benefits of using
aspect-oriented techniques to deal with crosscutting
features, reducing dependencies between them [4] [9] [12]

[13] [15] [17]. However, these proposals only focus on the
modeling of variable features in SPL using aspect-
orientation. In addition, some of these approaches (e.g. [9]
[12] [15]) focus on programming or design stages,
relegating the benefits of aspect-orientation to the latest
phases of the development.

Besides, as it is stated in [12], common features could
be also modeled using aspect-oriented techniques (e.g.
aspectual components) if they crosscut to other features.
Analogy, variable features need not to be defined always
as crosscutting concerns. They may be effectively
implemented in modular components if they do not
crosscut to other features. Accordingly, although the need
of identifying crosscutting features in SPL has been
demonstrated in previous works, all the aforementioned
approaches just analyze the benefits of incorporating
aspect-oriented techniques in SPL and they do not deal
with the identification of the crosscutting features
(common or variable). Moreover, the incorporation of
aspect-oriented techniques at early phases of development
improves flexibility and reutilization of the product assets
from beginning of the development.

In this context, the major contributions of this paper are
twofold. First, it presents a process to automatically
identify crosscutting features in SPL requirement
artefacts; Second, crosscutting features are then refactored
using aspect-oriented techniques, thus complementing
other works in the literature such as [1] (Section 3). This
is particular useful in the SPL context, where analysis of
crosscutting features should be undertaken in early SPL
representations. Our identification approach is based on a
conceptual framework (Section 2) that is independent of
specific requirements and architectural models. Finally,
Sections 4 and 5 evaluates the process using a real product
line and concludes the paper, respectively.

2. A conceptual framework for crosscutting

In [2] we presented a conceptual framework where a
formal definition of crosscutting was provided. This
framework is based on the study of traceability
relationships between two different domains. These
domains, generically called Source and Target, could be,
for example, features and use cases respectively or, in a

721

different situation, design modules and programming
artefacts. We used the term Crosscutting Pattern to denote
this situation (see [2]).

The relationship between Source and Target can be
formalized by two functions f and g, where g can be
considered as a special inverse function of f.

Let f: Source %&% c (Target) and g: Target c
(Source) be these functions defined by:

� s � Source, f(s) = {t � Target :there exists a trace
relation between s and t }

� t � Target, g(t) = {s � Source : there exists a trace
relation between s and t}.
The concepts of scattering, tangling and crosscutting are
defined as specific cases of these functions.
Definition 1. [Scattering] We say that an element s �
Source is scattered if card(f(s)) > 1 (i.e. a source element
is related to multiple target elements), where card refers to
cardinality of f(s).
Definition 2. [Tangling] We say that an element t �
Target is tangled if card(g(t))>1 (i.e. a target element is
related to multiple source elements).
Definition 3. [Crosscutting] Let s1, s2 � Source, s1 � s2,
we say that s1 crosscuts s2 if card(f(s1)) > 1 and � t �
f(s1): s2 � g(t) (i.e. a source element is scattered over
target elements and where in at least one of these target
elements, some other source element is tangled).

Figure 1. Overview of steps in the framework
In [2] we defined the dependency matrix (a special

kind of traceability matrix) to represent function f. From
this matrix, other two matrices (scattering and tangling
matrices) are derived to obtain scattered and tangled
concerns of a system. The crosscutting product matrix is
obtained through the multiplication of scattering and
tangling matrices. The crosscutting product matrix shows
the quantity of crosscutting relations and is used to derive
the final crosscutting matrix where a cell denotes the
occurrence of crosscutting; it abstracts from the quantity
of crosscutting.

3. Managing early crosscutting features

We have extended our framework defined in [2] with
syntactical and dependency based analyses for identifying
and managing crosscutting features at requirements level.
These analyses allow us to automatically correlate

elements of problem space (source) to elements of the
solution space (target). The main steps of our approach are
outlined in Figure 2 and summarized as follows:
(A) Identifying source elements. We perform a Feature-
Oriented Analysis to obtain the main features of the
product family including both common and variable assets
(Figure 2-(1)). We also search for evidences of non-
functional concerns (NFC) that appear in the requirement
documents (Figure 2-(2)).
(B) Identifying target elements. In this phase we model
the requirements (Figure 2-(3)) using use cases.
(C) Build the dependency matrix. Taking features (also
including the NFC) and use case artefacts as source and
target respectively, we establish the trace relations
between them (function f defined in Section 2). These
trace relations are automatically established by means of
syntactical (Figure 2-(4)) and dependencies based (Figure
2-(5)) analyses.
(D) Identification of crosscutting by matrix operations.
Applying several matrix operations (Figure 2-(6) and
Figure 2-(7)), shown in Section 2, the crosscutting
features (Figure 2-(9)) at requirements level are obtained.
(E) Aspect-oriented refactorization. Finally, the
crosscutting features identified are modeled using aspect-
oriented techniques (Figure 2-(8 and 9)).
The example: the MobileMedia product line
In order to illustrate the process, we apply it to a well-
know case study, the MobileMedia product line [7]. The
MobileMedia is a product line system built to allow the
user of a mobile device to perform different operations
such as visualizing photos, playing music or videos and
sending them by SMS. The system has been built as a
product line in 8 different releases (from 0 to 7). In this
section we use a particular release (release 3) to illustrate
the process explained in this paper. This release includes
the functionality to manage albums and photos and some
other optional features like sort photos by frequency, edit
labels and set favourite photos. This release was selected
because it presents some variable features and includes the
presence of non-functional concerns. Nevertheless, the
release is simple enough to not complicate the explanation
of the process (in Section 4 we show the application of the
process to all the releases). In next subsections, we explain
each activity of the process represented in Figure 2

3.1. Feature-Oriented Analysis
Feature-Oriented Domain Analysis (FODA) [10] is a

domain analysis technique which allows the developer to
improve the understanding of software requirements. In
this section, we focus on the feature model for the
MobileMedia (Figure 2-(1)). Since the system has been
used in previous analyses, we utilize the same feature
model used by the original authors [7] (shown in Figure

%&%

1

Dependency
Matrix

2

Tangling Matrix

Scattering Matrix

3 4

Crosscutting
Product Matrix

(ccpm)

Crosscutting
Matrix
(ccm)

Derive X Product

Derive

Framework Process

722

3). Note that variability between products is mainly
concentrated in the possibility of sorting photos, setting
the favourites and editing labels.

Figure 3. Features model for MobileMedia

We represent the features in a XML file (Figure 4) with
<feature> tags. The subelement <keyword> represents
the words that we use to relate the source element with
elements of the target domain (explained later on).
<?xml version="1.0" encoding="UTF-8"?>
<FeaturesFile>
 <feature id="f4" name="Sorting">
 <description>Feature related to … </description>
 <stakeholder>
 <user>user</user>
 </stakeholder>
 <keyword>Sort</keyword>
 <keyword>Count</keyword>
 <keyword>Frequency</keyword>
 </feature>
 ...
 <nfc id="c1" name="Persistence"
 <description>Way of storing … </description>
 <stakeholder>
 <user>developer</user>
 </stakeholder>
 <keyword>store</keyword>
 <keyword>retrieve</keyword>
 </nfc>
</FeaturesFile>

Figure 4. Feature and NFC in XML format

3.2. Non-functional concerns elicitation
Secondly, we identify the non-functional concerns

involved in the product line (Figure 2-(2)). This analysis is
performed using a catalogue (in XML) where common
non-functional concerns are presented and related to
different words that usually describe them in requirements
documents. We use these words to analyze the stakeholder
requirements so that non-functional concerns are
identified when one of these words appears in the
requirements documents.

Using the requirements of the system presented in [7],
we have identified some non-functional concerns:
Persistence and Error Handling. Persistence is present in

the system since the photos or any media file must be
stored in the mobile memory. Error Handling is added in
release 1 and it is included in the rest of releases (from 2
to 7). Then, the elements of the source domain in the
MobileMedia are the features Album, Photo, Label,
Sorting and Favourites and the non-functional concerns
Persistence and Error Handling. The non-functional
concerns are also represented in the XML features file
(<nfc> tags in Figure 4).

3.3. Requirements modeling
In this activity we build the first representation of the

system using UML use case diagrams (Figure 2-(3)).

Figure 5. Use case diagram for MobileMedia system

The use case diagram (Figure 5) is stored in XMI
format (see Figure 6).
<packagedElement xmi:type="uml:UseCase"
xmi:id="1221839017656_481435_864" name="View Photo">
 <include xmi:id="1222084791125_970342_2817"
 addition="1222084764703_704034_2805"/>
</packagedElement>
...
<packagedElement xmi:type="uml:UseCase"
xmi:id="1222084764703_704034_2805" name="Count Photo"/>

Figure 6. XMI generated from diagram of Figure 5

3.4. Build the dependency matrix
The trace relations between elements of source

(features and NFCs) and target (use cases artefacts)
domains are represented by means of the dependency
matrix. A cell with one denotes that the target element of
this column contributes to the source element of the
corresponding row. The dependency matrix is
automatically built by means of two analyses: Syntactical

Figure 2. Main phases of the identification of crosscutting features

Photo�Management

Mobile�
Media

Delete�
Photo

Create�
Photo

View�
Photo

Album�
Management

Delete�
Album

Create�
Album

SortingFavourites

Set�
Favourites

Basic�Photo�
Operations

View�
Favourites

Edit�Photo�
Label

View�
Album

723

(Figure 2-(6)) and Dependencies based (Figure 2-(8)). The
inputs of the phase are the XML files generated in
previous phases whilst the output is the dependency
matrix built.

Syntactical analysis
In this activity we discover trace relations between

features and non-functional concerns (source elements)
and artifacts of the use case diagram (target elements). We
relate these two set of elements through a syntactical
analysis based on the similarities among the identifiers of
these elements. The values of the different <keyword>
tags of the features file are totally or partially compared
(using the whole word or just the morpheme) with the
attribute name of the <packagedElement> tags (in the use
cases XMI file). For instance, we can relate the feature
Insert to a use case with the name Insert file but also
Insertion of files.

In order to compare the identifiers defined in the XML
files, we use the XQuery language [18]. Using different
queries, we obtain the relations shown in higher part of
Table 1 (cells with 1 and in light grey background).

Dependencies based analysis
Next we search for indirect dependency relations

between source and target elements by analyzing the
existing relations between the elements of the target
domain as follows: if s1 is related to t1, and t2 depends on
t1 then s1 is related to t2, being s1 � Source, and t1, t2 �
Target (a special kind of transitivity relation). Clearly, the
<<include>> relations in the use case diagram represent
such dependencies between target elements. We do not
use <<extend>> relations because they represent a
specialization and not a dependency (the extended use
case does not really depends on the use case which
extends it).

Table 1. Dependency matrix after the analyses
 Use cases

A
dd

 A
lb

um

D
el

et
e

Al
bu

m

A
dd

 P
ho

to

D
el

et
e

Ph
ot

o
V

ie
w

 P
ho

to

V
ie

w
 A

lb
um

P

ro
vi

de
 L

ab
el

S

to
re

 D
at

a
R

em
ov

e
D

at
a

R
et

rie
ve

 D
at

a
Ed

it
La

be
l

C
ou

nt
 P

ho
to

V

ie
w

 S
or

te
d

P
ho

to
s

S
et

 F
av

ou
rit

e
V

ie
w

 F
av

ou
rit

es

Fe
at

ur
es

Album 1 1 1
Photo 1 1 1
Label 1 1 1 1

Sorting 1 1 1
Favourites 1 1

N
FC

Persistence 1 1 1 1 1 1 1 1 1 1 1 1
Error Handling 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can see in Figure 5 that there are different
<<include>> relations. For instance, there are several use
cases that include the functionality of the Store Data use
case. Since the Store Data use case is contributing to
Persistence (see Table 1), we relate all the use cases
which include the Store Data use case to the Persistence

NFC. Indirect relations are shown in dark grey
background in Table 1.

The application of the dependencies based analysis is
also automatically done by means of analyzing the XMI
file (see Figure 6). The <include> tag has an attribute
called addition (pointing out to the included use case). We
just need to search the identifier of the included use case
in the rest of file (e.g. View Photo use case has an
<include> tag with the addition attribute pointing out to
Count Photo). A simple Java tool allows us to process the
XMI file.

In some cases, there are some NFC that do not
explicitly appear in the use case diagram. The process
helps to identify these situations since the dependency
matrix would have a null row (without any mapping). For
instance, in MobileMedia, Error Handling is not
explicitly present in the use cases so that it would not be
related to any use case. These situations may be solved by
manually reviewing the use case descriptions. We
identified that all the use cases were constrained by the
Error Handling NFC (then we added the mappings shown
in black cells in last row of Table 1). In other cases, the
NFC could be related to an architectural or hardware
decision (e.g. using a particular hardware platform to deal
with performance or an architectural pattern to improve
reusability) and thus it would not constrain the software
modularity.

3.5. Identification of crosscutting by matrix
operations

Using the dependency matrix and the conceptual
framework introduced in Section 2, we derive the final
crosscutting matrix (Figure 2-(7)). A cell with 1 indicates
that the element of this row is crosscutting to the element
of the corresponding column (see Table 2).

Table 2. Crosscutting matrix for the MobileMedia
Features NFC

Al
bu

m

P
ho

to

La
be

l
S

or
tin

g
Fa

vo
ur

ite
s

P
er

si
st

en
ce

E

rr
or

H
an

dl
in

g

Fe
at

ur
es

 Album 1 1 1 M
Photo 1 1 1 1 M
Label 1 1 1 1 V

Sorting 1 1 1 V
Favourites 1 1 V

N
FC Persistence 1 1 1 1 1 1

Error Handling 1 1 1 1 1 1

Table 2 firstly confirms what intuition perceives: NFC
Persistence and Error Handling are the elements which
crosscut to more features. This table also shows how
Mandatory features (Album and Photo) may crosscut
Variable features (e.g. Label or Sorting) and vice verse.
This situation suggests the use of aspect-oriented
techniques to isolate and refactor NFCs and crosscutting

724

features. Isolating a certain crosscutting feature removes
the crosscutting dependencies between features. However,
if two given features A and B are crosscutting each other,
what feature should be refactored, A or B? In Section 4,
we show how to take such decisions by an empirical
analysis driven by a set of concern metrics [5].

3.6. Aspect-oriented refactorization of
crosscutting features

In [14], the authors present a method to modularize
volatile concerns at requirements level by aspect-oriented
techniques using Pattern Specification [8]. We have
adapted this technique to refactor the crosscutting features
in the MobileMedia product line. The use cases
implementing the crosscutting features are marked using
the special symbol “|” (Figure 2-(8)). A new relation
<<crosscut>> is added to the use case diagram which
relates use cases implementing crosscutting features to
those which are considered as the base functionality (see
Figure 7).

Figure 7. Use case diagram marked

Once crosscutting features have been isolated in the
marked use case diagram, different products may be built
simply changing features using composition rules. By
these composition rules we may compose different
activity diagrams. As an example, in Figure 8 and Figure
9 we show two activity diagrams which represent the main
flows of the View Photo and Count Photo use cases
(Figure 2-(9)). These activity diagrams are composed
using the composition rule shown in Figure 10 (Figure 2-
(10)). The addition or removal of the Sorting feature is as
easy as applying or not the composition rule in the system,
respectively. We could also use a different way of sorting
photos just using a different composition rule and thus
composing different activity diagrams.

Figure 8. View Photo
activity diagram

Figure 9. Count Photo
activity diagram

Compose ViewPhoto with CountPhoto
 Insert Retrieve observed times after Display Photo

Figure 10. Composition rule for the diagrams

4. Evaluation and discussion

In this section we have analyzed the crosscutting
relations in the MobileMedia product line (including the 8
different releases). We have used a set of concern-oriented
metrics [5]. These metrics are automatically calculated
using our dependency matrix (Section 3.4). Since the
metrics are generic (not tied to any specific development
domain or level), we have used them in the SPL context
relating features and use cases as source and target
domains respectively. In Figure 11 we show a graphic
showing the Degree of Crosscutting metric of the different
features throughout all the releases (see the whole
concern-oriented metrics in [5]). The closer to 1 the values
obtained for this metric are, the more crosscutting a
feature has. We use the metric to decide the features or
concerns that should be refactored. Then it may be used as
an oracle to support developer’s decisions.

The analysis of the results shows the following
evidences: i) Persistence and Error Handling concerns
present the higher Degree of Crosscutting in all the
releases. ii) Some variable features (e.g. Label) also
present a Degree of Crosscutting higher than the rest of
features in all the releases. Note that any change in Label
feature (including the removal) implies the modification
of all the features crosscut by it (actually the artefacts
implementing these features). iii) Some mandatory
features, such as Photo also crosscut to other features.
These results show the evidence about the need of using
aspect-orientation to modularize these features, reducing
dependencies between them and improving, thus, the
reutilization of the software assets.

Figure 11. Degree of crosscutting for MobileMedia
The metrics allow us to focus on the features with a

higher Degree of Crosscutting. Accordingly, and as we
mentioned before, the values obtained for the metric
suggest the following: i) NFCs Persitence and Error
Handling should be refactored to avoid crosscutting
dependencies with mandatory and variable features. ii) As
Label and Photo are crosscutting each other but Label
presents a higher Degree of Crosscutting, the Label

0

0,2

0,4

0,6

0,8

1

A
lb

um

Ph
ot

o

La
be

l

Pe
rs

is
te

nc
e

Er
ro

r�H
an

dl
in

g

So
rt

in
g

Fa
vo

ur
ite

s

Co
py

SM
S

M
us

ic

M
ed

ia

Vi
de

o

Ca
pt

ur
e

release0
release1
release2
release3
release4
release5
release6
release7

Degree�of�crosscutting

725

feature should be refactored, as it was shown in Section
3.6.

In general, we could say that the refactorization of
variable features allows a better reutilization of the core
assets in order to build other products (just adding
different aspects to the systems). However, in cases where
a mandatory feature crosscut other mandatory features, a
change in it implies the modification of the features
crosscut, thus they should be also modeled using aspects.

5. Conclusions

It has been demonstrated in the literature that AOSD
helps to reduce crosscutting dependencies between assets,
improving flexibility, configurability and reutilization of
SPL assets. In order to introduce the benefits of AOSD in
SPL, we have presented a process to identify the
crosscutting features at early stages so that they may be
isolated at the very beginning of the software development
process. Then, the process presented allows us to improve
the product line modularity getting as result an important
improvement in configurability and reutilization of the
family products.

In addition, the process presented is semi-automatically
applied using features and requirements models. Then, the
results obtained may be linked to other aspect-oriented
design approaches (e.g. [1]) which define the system
UML models. These models can be used to generate the
product family.

Acknowledgements

This work has been supported by MEC under contract:
TIN2008-02985.

References
[1] Alférez, M., Kulesza, U., Sousa, A., Santos, J., Moreira, A.,
Araújo, J. and Amaral, V. (2006). A Model-Driven Approach for
Software Product Lines Requirements Engineering. In the 20th
International Conference on Software Engineering and
Knowledge Engineering, San Francisco Bay, USA
[2] Berg, K. van den, Conejero, J. and Hernández, J. (2007)
Analysis of Crosscutting in Early Software Development Phases
based on Traceability. Transactions on Aspect-Oriented
Software Development III, LNCS 4620, pp. 73–104, Springer-
Verlag. Special issue on Early-Aspects.
[3] Clements, Paul & Northrop, Linda (2002). Software Product
Lines: Practices and Patterns. Boston, MA: Addison-Wesley
[4] Colyer, A., Rashid, A. and Blair, G. (2004). On the
Separation of Concerns in Program Families. Lancaster
University Technical Report Number: COMP-001-2004
[5] Conejero, J., Figueiredo, E., Garcia, A., Hernández, J. and
Jurado, E. (2009) Early Crosscutting Metrics as Predictors of
Software Instability. To appear in 47th International Conference

Objects, Models, Components, Patterns (TOOLS Europe).
Zurich, Switzerland
[6] Czarnecki, K., Eisenecker, U. (2000). Generative
Programming: Methods, Tools, and Applications. Addison-
Wesley, Reading, MA
[7] Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M.,
Kulesza, U., Garcia, A., Soares, S., Ferrari, F. Khan, S., Filho,
F.,Dantas, F. (2008). Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability. In proceedings
of the 30th International Conference on Software Engineering
(ICSE), Leipzig, Germany
[8] France, R., Kim, D., Ghosh, S. and Song, E. (2004). A UML-
Based Pattern Specification Technique. IEEE Transactions on
Software Engineering, Volume 30(3)
[9] Griss, M. (2000) Implementing product-line features by
composing aspects. In proceedings of First International SPL
Conference, pp. 271—288, Denver, USA
[10] Kang, K., Cohen, S., Hess, J., Novak, W. and Spencer A.
(1990). Feature Oriented Domain Analysis (FODA). Feasibility
Study. Carnegie Mellon University Technical Report CMU/SEI-
90-TR-21
[11] Lee, K., Kang, K., Kim, M. (2004). Feature Dependency
Analysis for Product Line Component Design. In the 8th
International Conference (ICSR), Madrid, Spain. LNCS 3107,
Springer, pp. 69-85
[12] Lee, K., Kang, K., Kim, M. and Park, S. (2006). Combining
Feature-Oriented Analysis and Aspect-Oriented Programming
for Product Line Asset Development. In proceedings of the 10th

International SPL Conference, Baltimore, USA
[13] Loughran N., Sampaio, A. and Rashid, A. (2005). From
Requirements Documents to Feature Models for Aspect Oriented
Product Line Implementation. In proceedings of workshop on
MDD for Product Lines at MODELS 2005. Montego Bay,
Jamaica
[14] Moreira, A., Araujo, J. & Whittle, J. (2006). Modeling
Volatile Concerns as Aspects. In 18th Conference on Advanced
Information Systems Engineering. LNCS 4001/2006: 544-558.
ISBN: 978-3-540-34652-4, Luxembourg.
[15] Morin, B., Barais, O. and Jézéquel, J.M., (2008). Weaving
Aspect Configurations for Managing System Variability. In
Proceedings of Second International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’08), Essen,
Germany
[16] Pohl, K., Böckle, G. and van der Linden, F. (2005) Software
Product Line Engineering: Foundations, Principles and
Techniques. Berlin, Germany. Springer.
[17] Voelter, M. & Groher, I. Product Line Implementation
using Aspect-Oriented and Model-Driven Software
Development. In proceedings of the 11th International SPL
Conference, 2007
[18] XQuery 1.0 (2007): An XML Query Language. W3C
Recommendation, 23 January 2007.
http://www.w3.org/TR/xquery/

726

MD-JPA profile: A model driven language for Java persistence1

Alexandre Torres
����������������� ¡¢��£¤¥�¦§©ª¬¥

� ���¯±�² �¥�©¬¥�³ ¤µ�±
�¡¤�±�¤�� ��¶���¹�� ²�¹º

Renata Galante
����������������� ¡¢��£¤¥�¦§©ª¬¥

� ���¯±�² �¥�©¬¥�³ ¤µ�±
�¡¤�±�²¤±¤���¶���¹�� ²�¹º

Marcelo S. Pimenta
����������������� ¡¢��£¤¥�¦§©ª¬¥

� ���¯±�² �¥�©¬¥�³ ¤µ�±
�¡¤�±�¡»�¡���¤¶���¹�� ²�¹º

Abstract
����������������������������������!����!$�������^�^ �
�����^ � ��!`��~ � ��� � �!�� � ���� � �� � ^`^��� � ������������ �
����������������^�����!�$��^��^�!�����!������������������
^�^���$� � �!^�� � ���� � ����$� � ���!����!� � �!����~ � ��!���
����^�������������!$�^�^��$���$���^���$�^��������^�^���$� �
�������~�����������`����!����^�������������^������!�������
����$����������`�!��$�$��$���^����^���~�����������^��!�
���������^�^���������!��������������������^�^���$������
����~��!^����������������������!�!����^�^���$������������ �
���^���~������������~������!�^�����!������^�^������������^ �
�� �! ����� �$������� �!��� ����~�!��� ��! �̀ ���^ ��!����^���
$����^������!���$�!�!$����^��$^�����������!^����� �!^� ��� �
�!`���!�������^���!��!�����^�$����������$!���������������� �
������!�!����������!������`������^�������������!�^����!�
����^������^������!�����!����!$��

Keywords
� ������£�¥�¦¼�¥�¼��¥��¯¥��¤�¤º¤��¹�

1. INTRODUCTION
½���¦�������¼���±��²��¤�²�¤²��¾¦¼����¤��º� ��� �¡�����
�º��£� �� ������ �»¤ ¤��²¡�¿ÀÁÂ �¤�� ��¤� � ¤»��±Ã�º�£�¡��¤�
��¤��¤ �����¤������� ������¤ ��¡���±��²¥����»��������±¤£Ä����
 ���� £����� ��¤�¤�¡���±��²�¾»� ������£���¿ÀÂ¹�½��������Ã� �Å
±¤�������»�¾Æ©��¡���±�¿ÁÂ�¤����� �Ç¤��Ç���¤ �����±±��¡»±�Ã���
¤������¡¤���¤ ���¤£����� �£��£�»��¤±��¤�¤º¤���¡���±��²¥�¤���
º����¦¼��¤���Æ©�¡���±���¤Ç�����±±�£��È��������±±��������
�����¤ ����²���� ��²�» �£�����¹�
½�� � ¼���± �� �Ç�� ���Ç�±�»¡��� � ¾¼��� � » �»���� � ��¤��
¡���±���¤Ä���������¡¤��� �±����������Ã���¡���Ç�±�»¡����
» �£���¥ � �»±¤£��²�»¤ ���� � �������±��» �£������������¤ ��
£����²�¿	Â¹�³Ã�����²�¼���¤»» �¤£������������ ¡¤����� �»Å
 �����������¤��������¡���±������±��º��£��� ���¥�����² ¤���¥�
¤�� � £�¡»��¤º±� � �� � ��¤� � ¤���¡¤��£ � � ¤���� ¡¤����� � £��±��
�� � �¡���±� � ���� � �È�£��¤º±� � �Ã���¡� ¿ÊÂ¹ �¦���² � ��»¤ ¤����
¦¼��¤���Æ©�¡���±���� �����������º��¤�» �º±�¡��� �� ¤��Å
�� ¡¤�����£���� �£����Ë���� ����������� �����² ¤�����º�������
�±�¡������� �¤�£�¡¡���¡��¤Å¡���±¹�³������¥���� ���������
�º��£�Å �±¤����¤±��¡»��¤�£��¡��¡¤�£��» �º±�¡�¿ÀÂ¹
Ìº��£�Å©�±¤����¤±�¼¤»»��²�¾Ì©¼��� ¤¡��� Ä��¤�� ��������
�¡»��¤�£��» �º±�¡���������¤ ���¡»±�¡���¤�����±�Ç�±�¿ÀÂ¹�
½�� ��¤Ç¤�� ������£� �¯��¾�¯� � ¿ÍÂ � �� �¤ �����±Ã�¤��»����
�»�£���£¤��������Ì©¼��� ������¤Ç¤�»±¤��� ¡¥���¤º±��²�����
 �» �����¤���� ��� �º��� ��º��£� �� ������ �£��£�»�� �¤�� � �±¤Å
����¤±��¤�¤º¤����»�£���£¤����������¤����¤�����¤Ç¤�» �² ¤¡�¹�

Î���Ç� ¥ � ����Ì©¼�¡���±��²� ±¤£Ä��¤�¡���±��²� ±¤�²�¤²��
��¤��£¤���È» ��������£��£�»��¹
½����»¤»� �» �»�����¼�Å�¯¥�¤�¦¼��» ���±����¤����¤º±���
���� �» �����¤���������¤�¤º¤���¤��������¤ ���� �£�� �������²�
�����¯���¤��¤ �¥������������¼���¤»» �¤£�¹�Ï������£���ÈÅ
�������¥�¡���±���¡¤Ã�º�������¤��¤ ���¤£���������������¤ ����Å
Ç�±�»¡����£Ã£±� �¤���¤��¤ ���� £���� � � ¤���� ¡¤������ ��¤��
¤�¡�¤������²��� ¤��������»��£�����������Ã���¡¹
½���¼�Å�¯�» ���±�����Ç¤±��¤����ºÃ�¤��������� ¤���� ¡¤������
��¤��£¤���� ����±±��� ¡���¡���±��������¯�£�¡»¤��º±���¡Å
»±�¡���¤����¹�½���¡¤���£��� �º��������������»¤»� ����¤�¦¼��
» ���±����¤���¡»±�¡�����¤�� �¡����������È���������¤���£¤��
º� � ¤»»±��� � �� � ¡���±� � £ �¤��� � ºÃ � ��¤��¤ � � ¦¼� � ����²��
���±�¹�¼� ��Ç� ¥�¤��������£���� ¤�����£��£Ä��¡���±������£�Å
��²���£�¡»¤��º±������²��������Ì©¼¥� ���£��²����� ����Å
� �»�����£�����¤�¤»���²�¡���±�������Ç�±�»¡���������¹
½��� �¡¤����²���£�������������»¤»� �¤ ��� ²¤��µ���¤����±Å
±���¹�¬�£�����	�» ������� �±¤������ Ä����»� ������£��¡���±Å
��²¥ � Ì©¼¥ � ¤�� � � ¤���� ¡¤�����¹ � ¬�£���� � Á � �»�£����� � ����
¼�Å�¯�¡���±��²��±�¡�����¤�����£�����Í����£��������£��Å
�� ¤�������������Ç¤±��¤���¡���±�¹�¬�£�����Ð�Ç¤±��¤��������» �Å
��±��ºÃ�» �������²�� ¤���� ¡¤��������¤���¤Ä��¡���±��» ���Å
£��²��¯��¡»±�¡���¤����¹�½���±¤�����£�����º ��²���������¤±�
 �¡¤ Ä��¤������� ���� Ä¹

2. Related Work
½���¤²�±���¤�¤º¤���¡���±��²�¿ÀÂ����¤���±±�Ä�����» �»��¤±�
�� ��¤�¤º¤���¡���±��²�����²�¦¼���È��������¹�������¡¤��±Ã�
º¤�����»�������£±¤�����¤² ¤¡���� � �» �������²��¤�¤�¡���±��
�����¤��������¡���±¥�£±¤��¥�¤���» �»� �Ã���� ���Ã»��¥�¤±±��Å
��²�����£ �¤��������¡���±�����Á�¤º�� ¤£�����±�Ç�±�Ë�£��£�»��Å
¤±¥�±�²�£¤±¥�¤���»�Ã��£¤±¹�
½���£��£�»��¤±�¤���±�²�£¤±�¡���±����£���������� �» �����¤Å
������������Æ©�£��£�»�����£��¤����������¥� �±¤�������»�¥�¤���
¤�� �º����¥�ºÃ�¤����¤��������£±¤����¥�» �»� ����¥�¤���¤���£�Å
¤�����¹ � ½�� � »�Ã��£¤± � ¡���± � �» ������ � �¤�¤º¤�� � £��£�»���
��£��¤���¤º±��¥�£�±�¡��¥�Ç����¥�¤����� ��²��Ä�Ã�¹�½��� ���±��
���¤���È����������¤����££�����±±Ã�¤±±���������¤�¤�¡���±��²�
�����¦¼��º�������������¤£Ä±����������² ¤���������º��£��� �Å
������¤��� �±¤����¤±�£��£�»��¹
½���Ìº��£� �¼¤�¤²�¡����ª ��»�¾Ì¼ª� ��¤��¤������ �¤Ã�
» �»��¤±��� ��¤�¤�¡���±��²� �» �����¤����¹�¯²¤���������£���
���¡�����º������ �» �����¤��������Æ©�£��£�»��������¦¼�¥�
¤�����ºÃ��¤�¤º¤��� �Ç� �����²���� ��²¥ �» �Ç����²�¤����� �
 ¤�²�����£��£�»������¤±±���Ñ¼�� �» �����¤�����¿ÀÒÂ¹�

À ¤ ��¤±±Ã����¤�£���ºÃ�» ���£��ÓÔÕ
Ó½Å�Ô§Ì�ÐÐÒ�ÊÀ
	ÒÒÖÅ	�¤���ÓÔÕ
½�¬ÎÆ�Å��Æ���¤±�¦��Ç� �¤±�Ò	
	ÒÒØ

727

³����» �»��¤±����¤º±�������������¦¼���� ��¤�¤�¡���±��²¥�
��� ��� ��¤±±����²�����£���� �£��������� ¤���� ¡¤�������Ç� �
¤�£�¡¡���¡��¤�¡���±¹�Î���Ç� ¥������££�����±±Ã��¤£Ä±������
�º��£�Å �±¤����¤± � �¡»��¤�£� � ¡��¡¤�£� � » �º±�¡¥ � ��� � �¤�¤�
¤����º��£��¡���±��²�����±��º��¡� ������² ¤����¤���£��� Å
����¿ÀÂ¥����£���¤£�±��¤���²�����Ç���¤±�µ¤������������� �±¤������
º��������¤º±���¤���£±¤�������¤��¤££�����������¤º±��¹
¦¼� ��È��������� �±¤��� � �� �»� ������£�¥ �¤»» �¤£���²� �±¤Å
����¤±��¤�¤º¤����»� ¤������¿À�Â�¤���¡�±����¡������¤±�¡��Å
�±��²�����¤�¤��¤ ��������¿ÀÊÂ¥�¤ ����£������������¡���±��²�
���¤�±� ��� ��¤�¤� �» �����¤����¹�½�� ��º��£� �� ������� �¡»±�Å
¡���¤����������£���¤�¤� �» �����¤����������Ì©¼��������»¤ ��
����������� Ä�¹
¬�¡�±¤ ��� Ä���� ��» �»������� �¡���±��²��º��£��� �������
�¤�¤º¤���������¦¼�¥ �¤�����£���������¿ØÂ¹�¯±����²� � ������
����������£��������� ¤���� ¡¤�����¥�¤������ ��� ��¤ ���������
���º����������������¼���¤»» �¤£�¥����� �¡¤���£��£� ���¤��
���� � ��� � �» �����¤���� � �� � ��� � �º��£� � � ������ � �¤�¤º¤���
�� �£�� �������¦¼�¥�����������±Ç��²�����¡¤»»��²�º�������
 �±¤����¤±��¤�¤º¤����¤����º��£��� ������������¤ �¹
½���Ì©¼��¤£Ä±��������¡»��¤�£��¡��¡¤�£��» �º±�¡�¤���¡Å
»±�¡���¤�����±�Ç�±¥�¤±±����²�������Ç�±�»� ������������ �±¤Å
����¤±�¤����º��£��� ���������£���Õ������²���� ¥� �¤º�� ¤£���²�
�����¤�¤º¤�� ��� �£�� �� ¿ÀÂ¹ �½�� �¡¤»»��²��£¤��º� ����� � ���
º������±±������ ¤¡��� Ä��������� ¤��±¤����º��£�������¤�¤º¤���
��»±��¥�¤�����²��� ¤���¤��¤�¤º¤����� �£�� ��¿ÍÂ¹���
½����¤Ç¤�»±¤��� ¡��¤��¤�²��� �£��»�£���£¤������� �Ì©¼¥�����
�¯�»� ������£��¿ÍÂ¹��� ���������²����±��������Ì©¼�� ¤¡�Å
�� Ä��¤���Ì©¼������¤ ����Ç�±�»¡����º��¤Ç�� �¥���£��¤��
¤����¤�����¥���¤��¤ ��£����²� ¤�������±���¤��� �±����� �£� Å
 �£���¯�£����²¹�½����¯��»�£���£¤��������¤��»����ºÃ���Ç� Å
¤±����±��� �¡�¡¤�� �Ç���� ��¾��£±����²�¤��±�¤����������±���¤��
�� Ä���������$��^����������¤����¤�� ¤»��±Ã�º�£�¡�����±���Å
��¤±��������Ì©¼�������²�¤������¡�����¡»� �¤��¥��������£� Å
 ���±Ã�������±Ã¥��»�£���£¤��������Ì©¼¹
¼������±����¤������ �¦¼���È����������� �»� ������£����Å
¡¤���� ��� �¤��»���� ��� �¤ � �»�£���£ �»±¤��� ¡¥ � �¡»����²� ����
¡���±��²����� �£� �¤�� �����²��»¤��� �� �¤��� ��£���±�²���¥�
��£��¤���¤�¤�½ ¤���� �Ìº��£���¿ÀÐÂ¹�½���¼�Å�¯�» ���±��
����� ��� �¡����������±��º�£¤�����������»�£���£��������Ì©¼Å
�¯�»±¤��� ¡¥�º������� ��������¤�»±¤��� ¡�����»�������» �Å
»��¤±¹
½����»¤»� � �±�����������¯½��±¤�²�¤²��¿�Â����º��±��� ¤��Å
�� ¡¤����� �º������ �¡���±� �¤�� � �� � ��� � ��� ��¤Ç¤�¯º�� ¤£��
¬Ã��¤È�¾�¯¬��¡��¤�¡���±�¿ÖÂ¹�½����¯¬�» �Ç�����¤�£�¡»±����
¡¤»»��²���������¤Ç¤�±¤�²�¤²�����Ñ¼��¡��¤�¡���±¥�¤±±����²�
����� ¤���� ¡¤���������¤Ç¤�£���������¡���±�¥�¤�����������
¿À	Â¹� ½�� �¡¤���¤�Ç¤��¤²�����¯½� ��Ç� � ����£� ��� ��»���
��� £���Ù½����±�������¤�����¤±±����º�����¡»� ¤��Ç��¤��� �±¤Å
����¤±� �±�����������¤¡��� ¤���� ¡¤����¹

3. The MD-JPA Profile
½�� �¼�Å�¯�» ���±� � �� �¡¤��±Ã�£�¡» ������� ���� ���Ã»��¥�
�¤£� � �� � ���¡ � �È������² � ¤ � ¡��¤Å£±¤�� � �� � ¦¼�¥ � ��£� � ¤��
£±¤����¥�» �»� ������ � �±¤�������»�¹�³�������������� ���Ã»��¥�

£���� ¤������� �����������������Ìº��£��Ó���� ¤�����¤�²�¤²��
¾ÌÓ���¿ÀØÂ����£��£Ä��������¡���±��¤ ����±±Å�� ¡���¤££� �Å
��²���������»�£���£¤����� �±��¹
Ì����������Ä�Ã���¤�� �������¯������¤�����¤±±��������� ����²�
���£����������������¤�±��¤º���������¤ ��»� ������£��¤������
¤±±����¤�Ç� Ã����¤�±���¡¤»»��²���¤��£¤��º��±¤�� ���������£ �Å
¤��������¤�¤º¤����º��£��¹�½���¼�Å�¯��¤��������¤¡��£�¤ Å
¤£�� ����£¥�����¤��¤�����������¤�±���¡¤»»��²����¤��¡¤Ã�º���¡Å
»±�Ã������ ¥�� ����¡¤Ã����������¤��¡¤±±����������� ���Ã»���
�������²��¤�»� ��������¡���±¹
¼� ��Ç� ¥�����¼�Å�¯�¤��¤��¦¼��» ���±���¤Ä���¤�Ç¤��¤²��
�������¦¼��¤º�±��Ã��������²����Ç� ¤±�£±¤�����¤² ¤¡��� �¡�
�����¤¡��¡���±¹����¤±±�����������������¤² ¤¡�������¤���²�� �
±�Ç�±����¤º�� ¤£�����¾�����¤�±�����¡º� �����»� ������£����Å
�¤�±���¤�����¤² ¤¡�������¤�£�¡»±����Ç������������Ã���¡¥�¤±±�
�Ç� ������¤¡��¡���±¹�½�����±±����²���º��£�������»�£��Ã�����
¡�����¡»� �¤������ ���Ã»�������� ��¯�» ���±�¹�

3.1 Entities and properties
½��������Ã�£��£�»������¯���� �» ��������ºÃ����������`����Å
 ���Ã»������¤º±�����¦¼��£±¤����¹�¯�������Ã���������¤�£±¤���
������£���¤£������¤�£�����»� ��������¤����¤��¤����Õ���������Å
��� ¹�¯�������Ã�¡¤Ã��¤Ç��¤��������»� ��������» �»� �������¤��
����±���¤Ç�� �Ã»�� �¤££� ���²� �� � �����¯�¡¤»»��²� ±�¡��¤Å
�����¹�¦�±�Ä������ �¤»» �¤£������ �»� ������£��¾������ ��ÈÅ
¤¡»±��¿ÀÂ�¥������» ���±�����������������²�����»� ����������¤Å
² ¤¡�¥�¤±±����²� ���� ¤� ����������¤���£�¡¡���£±¤����� ��Å
²���� ¥����¤�Ã�£±¤�����¤² ¤¡¥�¤����� �����£ �����¹
³Ã����¤�±���¤£��» �»� �Ã�������������Ã����»� �������¥��È£�»��
�� �������¡¤ Ä�������������!�^����� ��� ���Ã»��������¤¡��
 �±��¤»»±�������¤±±����£���¤��������������^�^�������� ���Ã»�¹�
Æ¤£� � �����Ã � ��� ¤ £�Ã � ¡��� � �¡»±�¡��� � ��� � �¤¡� � ¤££����
¡�������� �»� ��������» �»� ����¥��¤¡�±Ã����±��� �¡������¤£Å
£����¿ÍÂ¹�½�� ��� �¥�����¤££����¡��������������������������Å
���Ã���� ���Ã»�¥�¤����������» �»� �����¤���¡������¹�
Ì���¯��������È»�£������¤���¤£��» �»� �Ã�» �������~������¤���
^������ ¡������¹ � ½� � �� � � ��� � ¡���±� � ��¡»±� ¥ � �¤£� � ¦¼��
» �»� �Ã� �� �£������ �� �¤� �¤ ��!�!��!�� » �»� �Ã� ¿ÀÖÂ ������
» �Ç¤�� � ����¤�£� � Ç¤ �¤º±� � ºÃ � ���¤�±�¹ � Ô� �~������ � �^������
¡�������»�£���£¤�������� �Õ�� ���¤�������»±¤£�����¤����¤�����
������� ���ºÃ�����¤££����¡������������������Ã¹
Æ¤£� � »� ������� � » �»� �Ã � ¡¤Ã � �¤Ç� � ¤ � £�±�¡� � ¡¤»»��²�
¡¤ Ä���ºÃ��������������� ���Ã»�¥���¤º±��²�¤�¡� ��» �£����
���£ �»�������������Ã»��¡¤»»��²����¤��¤�¤º¤���£�±�¡�¹�½���
����������������� �º��£� � ���¤�±� � £�±�¡���¤¡�¥ �» �£�����¥�
�£¤±�¥�¤���������¤±±������±±�Ç¤±���¥�¤¡��²����� �¡¤»»��²���Å
�¤�±�¹�
Æ������� � ¡¤Ã��¤Ç� � ��� � » �¡¤ Ã � �¤º±� � ���������� � ¤�� � ¤�Ã�
��¡º� ������£���¤ Ã��¤º±��������������¥������¤�����Ã�£¤��º��
������������������¤�±��¤º���������¤�¤º¤����£��¡¤�¡¤»»��²�
¤�� �²��� ¤����Ë ��¤¡�¥ � £¤�¤±�²¥ � �£��¡¤¥ � ¤�� ����Õ�� �£��Å
�� ¤���������¤¡��¤����¹�§� ���������� �» ��������¤£ ����¡� ��
��¤�������¤º±�¥�������¤±���»����º±���������������� ��¤º±�����¤�
» �»� �Ã���������������������������� ���Ã»�¹

728

Ì��� ���� ���Ã»���£¤��º��¤»»±�������»� ��������» �»� ����¥�¤��
���������§�²¹�À¹�½����»�£�¤±�µ¤��������������!����� ���Ã»��
¾�!��¥ ����� ¤�� ������!������±»�¡¤»»��²������¤Ç¤ ��!���
£±¤������¤��»�£���£��¤�¤º¤����Ã»�¹�½���������� ���Ã»��¡¤ Ä��
¤�» �»� �Ã�¤��¤�±¤ ²����È��� �º��¤ Ã��º��£�¹�½����!^�$���� ��Å
�Ã»��¤±±�������������������¤�¤º¤������$���� ¤��²Ã�¤����������
» �»� �Ã�¤±±������±±�Ç¤±�������» �² ¤¡�±�Ç�±¹�½�� �������
����¤����^^�$�!�����!����~���� ���Ã»�����±±�º���È»±¤�����
��������� ��� ���º��£�����¹�

3.2 Embeddable classes
Æ¡º���¤º±� � £±¤���� � £¤� � �» ����� � »¤ � � �� � ��� � »� ��������
��¤��������������¹�½��Ã���������¤Ç��»� ���������������Ã¥�¤���
�¤£� � ����¤�£� �£¤���� �º�±��²� �� �¡� � � ��¤� ���� ������Ã� ��Å
��¤�£��¤� � �����¤¡����¡��¿ÍÂ¹ �Æ¡º���¤º±� �£±¤���� �¡¤Ã�º��
����������£¤»��±¤���£�¡¡���±�²�£����¤�����Å² ¤�����£�¡Å
»������ ������º�������� ¤�������¤���»� ��������£±¤����¹

½�� �������!���� ��� ���Ã»� � ����£¤��� �¤ �£±¤�� � ��¤� �£¤��º��
�¡º�����������������¹�Æ¤£� ��������» �»� �����£¤���¤Ç������
������� ��� ���Ã»�����£ �º��²����� ���¡�²���º��¡¤»»������
�¤�¤º¤�� � £�±�¡��¹ � ½�� ���������� ��� ���Ã»� � ����±� � º��
����������»� ��������» �»� �������¤��¡¤Ä�� ��� ��£������¡Å
º���¤º±��£±¤����¹
§�²¹�	����¤���¤² ¤¡��È��º����²�¤���¡º� ����£±¤������ �¡�¤��
¤£¤��¡�£��Ç¤±�¤������Ã���¡¥���£±����²����������¤����¡º��Å
�¤º±��£±¤����¹�½�� ��!��������!�� £±¤����È����������� ¤�������
������!��£±¤���ºÃ��¡»±�¡�����²�¤������ Ç¤±������¡��������¤Ã�
² ¤��±¤ ��Ã¹ �Æ¤£� ���!��!����� ����¤�£����� ���¤��£� ���� �¤�
» ����������¤������� Ç¤±¥����£���������� ��¤���¡º�������ºÅ
��£�¹�½�� �����^���!��!����� �����Ã��¡»±�¡���������¤º�� ¤£��
�Ç¤±�¤�����£±¤���¤������� ������������ Ç¤±�» �»� �Ã¥����£�����
¡¤»»�����������¤���£�±�¡����������£�� ����Ç¤±�¤������¤º±�Ë�
^�!���¤������¹�

3.3 Primary Keys
ÆÇ� Ã������Ã���� ¤ £�Ã�¡�����¤Ç��¤�» �¡¤ Ã�Ä�Ã¥������������
������»¡���������Ã����������� ¤ £�Ã�� ���¿ÍÂ¹�¬�¡»±��» �¡¤ Ã�
Ä�Ã��¤ ������� �» ��������¤��¤����¤����¤�� �º����¹�Ó�¡»������

Ä�Ã� � ¡��� ��¤Ç� � ¤ � ��»¤ ¤�� � �¡º����� � £±¤��¥ ���� � � �¤£��
» �»� �Ã����¤�£�±�¡���������Ä�Ã¹������£��£¤��¥�������»����º±��
����»�£��Ã�����» �»� �Ã���¤��¡¤Ä��� ��� ��£�����������¡º��Å
��� �£±¤�� �� �¤ ���� ��� �» �»� ���� � ��¤� �¡¤Ä��� ��� ��£�� � ���
�¤£����������¡º������£±¤����Ú�» �»� ����¹
½�� ��¤ ����� ��¡»� �¤������ ���Ã»��������������� �» �����Å
¤��������» �¡¤ Ã�Ä�Ã�Ë�¾�����Å�¦��������������Ã�¤����²±��Ä�Ã¥�
� ��¤£� �» �»� �Ã����¤�£�¡»������Ä�Ã¹�Ó�¡»������Ä�Ã�� �Å
Õ�� �� ���� ��������£¤������� � ����£±¤�� ����� �����!^^� � ¾��� � ��Å
Ó±¤���Å��������������¤��£±¤�����±±�º���������� �» ����������
» �¡¤ Ã�£�¡»������Ä�Ã�¡¤»»���ºÃ���� ���� ��� ���Ã»�� �¾�����
Æ¡º��������Å���������¤�£�¡»������» �¡¤ Ã�Ä�Ã�¤��¤���¡Å
º������» �»� �Ã��¾�Ç��ª��� ¤���Ù¤±���Å���������¤�» �»� �Ã�
¤� � �¤Ç��² � ¤���¡¤��£ � ²��� ¤��� � Ç¤±���¹ � �� � �� � »����º±� � ���
�����������²��� ¤������� ¤��²Ã�� ����±�¤Ç��������£�������������
Ì©¼�� ¤¡��� Ä¹��� � ���¤±���»����º±��������£ �º��¤ �!����
�����!����� �¤ �������$������!���¥�º������ �Ç���� �¡�����
¤º�� ¤£�������!������� ���Ã»�¹

3.4 Relationships
¯±±� �±¤�������»��º����������������¤ �¥�ºÃ����¤�±�¥�»� �������¹�
½�� ��!������`��������`¥ ��!����~��`��¥�¤�� �����$����� ¤ ��
 ��»�£��Ç�±Ã��È» �������������¡���±�ºÃ�����¤���£�¤����� �±¤Å
����¥�£¤ ���¤±��Ã�¤����¤Ç�²¤º�±��Ã¹�½�������������¥��!�`����
���¥ ���������!�`� � ��!�`�����!�`�¡¤»»��²��������������
¤�Ã��»�£���£���� ���Ã»�¹�¯�Ã�£¤ ���¤±��Ã�¤º�Ç������ �» ��Å
�����¤�¡¤�Ã� �±¤�������»¹�§� ������¤Ä�������¡»±�£��Ã¥�¤���£�Å
¤������¤ ��¡¤»»�������¤Ç¤�£�±±�£������¤���ª��� �£��¿ÀÍÂ����
��������¤��� ���Ã»��£��£Ä��²¹�¯²² �²¤�����¤���£�¡»��������
��±±��������¤¡�� �±���¤��¤���£�¤�����¹

�������	
�������������������������������

½������ ���Ã»���^^�$�!�����!����~�» �Ç������� ��� �������Å
��������¤��¤±±��������»�£��Ã���¤��Ä�������£�±±�£�������±±�º��
�����¾������ �±�����¥�� �� ��²��È» ������¥�£¤�£¤����Ã»�¥����£��

��������
�����������������!"��������$��'�������

�������;
�Z�������������$����������������\�$"��

729

�� ¤��²Ã¥ �¤��� ������¤º±��¹ ��� � �� �¤»»±�£¤º±� ���� ��� ��������`�
�±�¡���� �����¤����� ����¤���£�¤���������±�Ë��¤£� �¦¼� �£±¤���
¤���£�¤������¤������» �»� �Ã�¡�¡º� �����¤£������¥�¤����£¤��
º��º���¤�� ¤±±Ã�¡¤»»���¤��£����£���²�» �»� �������������¤Ç¤�
£±¤����¹
½��������£�±�¡���» �»� �Ã�����^^�$�!�����!����~�£¤��£��Å
�¤�������� �¡� ��¡¤»»��²�����¤�±��²����� ������ ��²��Ä�Ã�
����±� � º� � ²��� ¤���¹ � �� � ��� � �� ��²� � Ä�Ã � �� � »¤ � � �� � ����
» �¡¤ Ã�Ä�Ã¥��������������^�����±��º������������¤�¹�¯����Å
� � ���� £� ��� � �¯� �� � ��� � ���� � �¤º±�¥ � ������� � ¤� � ¤����� �
» �»� �Ã��� ��^^�$�!�����!����~� ��� ���Ã»�¹ � �� �£¤���������
������ �£�� ����������¤º±����������¡¤�Ã����¡¤�Ã�� ��������
¡¤�Ã � ����� �£����¤± � ¤���£�¤�����¹ � ���� � �¤º±��¥ � ��£���¤ Ã�
�¤º±��¥�¤��������¤º±�������������¤ ��¤±±�¡��¤Å£±¤�������¤ ��²�
������^��!$�!������»� �¡��¤Å£±¤��¥�¤�����������§�²¹�Á¹

������
��������������'����������^��_�������������!"������
������

���� `������!"�� ����Z��$���
¶Æ����Ã Æ����Ã Ó±¤��
¶���� ��¤�£��¾¬� ¤��²Ã� ¬��²±�½¤º±�¥�������¥�

½¤º±�� Ó±¤��
ª��� ¤±�µ¤����

¶¾Ì��
¼¤�Ã��½��¾Ì��

¼¤�Ã�

¯���£�¤����¼¤»»��²� �»� �Ã

¶Æ¡º���¤º±� Æ¡º���¤º±� Ó±¤��
¶Æ¡º����� Æ¡º����� �»� �Ã
¶½ ¤������ ½ ¤������ �»� �Ã
¶�� �� �»� �Ã
¶��Ó±¤�� ��Ó±¤�� Ó±¤��
¶Æ¡º������� Æ¡º������� �»� �Ã
¶Ó�±�¡� Ó�±�¡� �»� �Ã
¶Ù� ���� Ù� ���� �»� �Ã
¶Æ��¡� ¤��� Æ��¡� ¤��� Ó±¤��
¶¼¤»»��¬�»� £±¤�� ¼¤»»��¬�»� £±¤�� Ó±¤��
¶ª��� ¤���Ù¤±�� ª��� ¤���Ù¤±�� �»� �Ã
¶��º ��º �»� �Ã
¶½�¡»� ¤± �¤��¥�½�¡�¥�½�¡�¬�¤¡» �»� �Ã
¶¯�� �º���ÌÇ� ���¾�� ¯�� �º���ÌÇ� ���� �»� �Ã
Ó±¤��
¶Ì �� ³Ã Ì �� ³Ã �»� �Ã
¶���£ �¡��¤�� Ó�±�¡� ���£ �¡��¤�� Ó�±�¡� Ó±¤��
¶¬�Õ���£�ª��� ¤�� ¬�Õ���£�ª��� ¤�� �»� �Ã
Ó±¤��
¶½¤º±�ª��� ¤�� ½¤º±�ª��� ¤�� �»� �Ã
Ó±¤��
¶¯���£�¤����ÌÇ� ��� ¯���£�¤����ÌÇ� ���� ª��� ¤±�µ¤����

3.5 Inheritance
¯�� �����Ã � £¤� � ²��� ¤±�µ� � � � �»�£�¤±�µ� � ¤����� � £±¤�� � ¿ÍÂ¹�
Ï����������»� £±¤������¤����� ������Ã¥���� ��¤ ���� ���»��Å
��º±� � �� ¤��²��� � �� ��º��£�Å �±¤����¤± �¡¤»»��²��� ��¯¹ �§� �
�¤£�¥���� �����¤���� ���Ã»����¤���È��������� ������!���!�����
�±�¡�������¦¼�¥�¤�����������§�²¹�Í¹���������� ���Ã»�����¤�Å

��²���¥ � ��� � ���� ��¤�£� � �� ¤��²Ã ���±± � º� � ��� � ���¤�±� � �¯�
�� ¤��²Ã¹

�������{
�}�~����������������!"����'�������

½������~��!������� ���Ã»�� �» �������¤�¡¤»»��²����������Å
�� ����� ¤ £�Ã����£±¤�������������¤º±����±Ã¹�½�� �!�������
��!^^���� ���Ã»�� �» �������¤�¡¤»»��²���� ���¤£��£��£ ����
£±¤����¤��¤���»¤ ¤����¤º±�¹����¤���¡�±¤ ��¤Ã¥���������������Å
 ���Ã»��¤±����¡»±�Ã�������¤º±���� ��¤£��£±¤��¥�º�������» �»Å
� ������ �¡�������»� £±¤���¤ ����� ������������»� £±¤����¤º±�¹
½������£ �¡��¤�� �£�±�¡�����¡¤��¤�� Ã�������~��!����º���
�»����¤±������������� ¤��²Ã¥����£��������^$�����!���������
!���!����� ¤º�� ¤£� � ��� ���Ã»� � £¤� � ��±� � ��� � ���£ �¡��¤�� �
Ç¤±��¹�½�����^$�����!������������� ���Ã»��£¤��º����������
���¤�±�����£�±�¡���� �¤±±����������� ¡¤�����£¤��º��±�������
����� ¤¡��� Ä���£�����¹� ½�� �������� £¤��¤±���º�����¤�±���
������� ��²��Ä�Ã����» �¡¤ Ã�Ä�Ã�¡¤»»��²�¹
½¤º±� �À � ��¡¡¤ �µ�� � ��� �¤����¤����� � ¤�� � ���� ��Õ��Ç¤±����
��� ���Ã»�� � �� � ���� � » ���±�¹ � ½�� � ��±±����² � £±¤���� ��� ��
�����������£�¡»±�¡������������� ���Ã»�������� �¤²²���Ç¤±Å
���Ë ������������ � ����������������� � !���� � ��$���!�`�
!���������!���������������������������������^��!�������^�
$�����!����!������ ������������¤����^^�$�!������������¹�

4. Constraints for model checking
Ì����������¤�Ç¤��¤²����������²��È�����������£��¤��¼�Å�¯�
�Ç� ���¤��¤ ��£±¤���¡���±���������¤º�±��Ã����£��£Ä�����¡���±�
Ç¤±������ � ¤²¤���� � ��� � �»�£���£ � ¡���±�� � ��¡¤��¹ � Ô�� � ¤±±�
¡���±� �£¤��º� �¡¤»»���ºÃ� �����¯¥� ��� � �¤ � � ±�¡��¤������
¤º�����¤�¤��Ã»�����¥����� ��¤�£��¤��� �±¤�������»¹�½����£¤��
±�¤��������£ �»¤�£����º�������»� ��£±¤���¡���±��¤������� �
�¡»±�¡���¤�������¤��������¡¤Ã���Ç� �º��£� �£������������ �Å
²��¤±�¡���±¹
���� �� ����£��£Ä�¡���±������� ����»� ������£��» ���±�¥����
�»�£��Ã�¤����¡»±�¡����¤��������£���� ¤���������²�����Ìº��£��
Ó���� ¤��� ��¤�²�¤²� � ¾ÌÓ�� � ¿ÀØÂ¹ � ¬�� ���Ã»�� � ¤�� � ¦¼��
¡��¤Å£±¤���� � £¤� ��¤Ç� � ¤ � ��� � �� � ��Ç¤ �¤�� � £���� ¤���� � ��¤��
¡����¤��� � � � ����� �¤±± � ��� ��±�¡����¥ �����£���²����£� ��±�Å
¡�����¤ ��º¤���� ¡��¹
½����¯��»�£���£¤�������¤������Ç� ¤±� �Õ�� �¡������� ������Å
���¥����±��¥�Ä�Ã�¥����� ��¤�£�¥�¤��� �±¤�������»���������»�£���£Å
¤������¤������º¤������£ �¤���¡��������� �ÌÓ�� ��Ç¤ �¤���¹�
§� ���������Ç¤ �¤���¥� �����¤¡��£� ��»�����������£�¤»�� ¥�
��£����¥ � ¤�� �»¤ ¤² ¤»� � �� � ��� � �»�£���£¤���� � ��¤� � �� � ���� �
£��£Ä¥ � ���£� �����¡¢£�¤� ��� ��£�� � £�¤»�� �	¥ � ��£���� � À�
»¤ ¤² ¤»��Á¹�Ï���������¤������¤��Û½��������Ã�£±¤���¡����º��¤�
��»Å±�Ç�±�£±¤���¥ � ����£���� ¤�������������£��£Ä���� ����º¤���
£±¤���������������Ã��������¤��������£±¤���¿ÀÍÂ¥���¤�����¦¼�����
�È» ������ºÃ��������� � �±¤�������»�¿ÀÀÂ¹�

730

�������	
����������	����������	��������
������������ ��!�"	$�������	�����������
	�������������������&��	�$$��

½���£����È���� �����¡¢£¤� ��� ����¤º�� ¤£� ����^�^����� ��� ��Å
�Ã»�¥ ����£� � ²��� ¤±�µ�� ������`¥ ��!�����������!^^� ¤���
��������� ��� ���Ã»��¹ ��� �» �Ç�����¤�£�¡¡�� ��!^�£��!^^�
Ç¤ �¤º±��»������²��������£±¤����±�¡����¤��������»»������Ç¤ �Å
¤º±�������^���£���^�^������¤�� ���������ºÃ��¤£����º���� ��Å
�Ã»�¹�
¯�£±¤������������� ����¤����� �£±¤���� �¤�Ã����²����� ���¤��
¤�»¤£Ä¤²�����¡���±�£¤�����º��£������ ���¤����»�±�Ç�±�£±¤���
¿ÀÍÂ¹�³�����������¥�¤���»�±�Ç�±�£±¤���£¤�����º��» ���£����� �
» �Ç¤��¥�¤�����������������±±����²�£������¤������������ �±�Ë
������*�����	���������������*+/�����?���
�����*+��������*	�*	�����
���	���������������*+/�����?�������*+�
����������*	$

½�� �» ���±� ��¤� �¤ � ��� ��� �¤����� �ÁÒ � ��Ç¤ �¤�� �£��£Ä�� �� �
¡���±���±±Å�� ¡������¥��������¤�±����� ����������»¤£��±�¡Å
��¤�����¹�¯º�����¤±������ �±����� ���� �£�� ��� ��£����������
�»�£���£¤���������¯¥�¤������� �¡¤����²� �±���¤ ��¤�������¤±�
£��£Ä� � �� ����� £� � ����²��� ������� � ��� �» ���±� �¤�� �¦¼��
¡���±��²��� ��¯¹�¬�¡���È¤¡»±������¤�������¤±�£��£Ä��¤ �Ë�
��±Ã�����£±¤���£¤��²��� ¤±�µ��¤�Ã����� �£±¤�������¤Ç¤�� ����
�^^�$�!�����!����~� ��� ���Ã»��£¤����±Ã�º��¤»»±�����������
¤���£�¤��������������¤�» �»� �Ã�����Ç� �����¥����¡�����È�������
�������������»� £±¤����¹

5. Transformations
½���» ��������£�����Ç¤±��¤����¼�Å�¯�» ���±��¤��¤�¼���
¤ ���¤£��ºÃ�������²������¤Ã���� ��²�����£�������������¤��¤�
��Ç�±�»¡����¤ ���¤£�¹��� ��� �� �» �»����� ¤��������¯½��� ¤��Å
�� ¡¤����� � �±�� � ��¤� � �¤Ä�� � ¼�Å�¯ � ¡���±�¥ � ²��� ¤���²�
¡���±� � �� � �¤Ç¤ � ¤����¤��� � �¡»±�¡���¤���� � Å � �¤Ç¤ � ¡���±��
��±± �º� � � ¤��±¤���� �����£���¥ �¤�� �¡����Ì©¼�� ¤¡��� Ä��
£¤��²��� ¤��������¤�¤º¤����� �£�� ��� �¡������£����¿ÍÂ�¹�½��
�� ��� � £��£Ä � ��� � � ¤���� ¡¤���� � £�¡»±�������¥ � ¤ � ¡���±�
����������È¤¡»±���¡»±�¡���¤���������¯��»�£���£¤������¤��
£ �¤����ºÃ� �Ç� �����²���� ��²¥�£�¡»¤ ��²����� ���±��������
�����È¤¡»±��£���¹

��������
������'��$�������_��_���

½�����¤ ²���¡���±���±±�±¤�� �º��� ¤��±¤���������£���¹�§�²¹�Ð�
������¤���Ç� Ç��������� �� ¤���� ¡¤�����» �£���¹�Ì� �¯½��
� ¤���� ¡¤����� �� �¤ � ��� ��� � �±�� � ��¤� �¡¤�£� � �±�¡����� ���¤�
��� £��¡���±¥���±±����²�������� £��¡��¤�¡���±¥�¤���» �Å

��£��������±�¡�������������¤ ²���¡���±¥�¤££� ���²��������
�¤Ç¤�¤º�� ¤£���Ã��¤È�� ���¡��¤�¡���±���������ºÃ�¿ÖÂ¹�
Ó±¤����¥�» �»� ����¥�¡������¥����¡� ¤�����¥�¤������� �¤£���
¤ ��¡¤�£����ºÃ����� �±��¥� �¤±±�¤¡��²�¦¼��º¤����±�¡����¹�
Æ¤£��¡¤�£�����±�¡����» ���£�������� �¡� ���¤Ç¤��±�¡����Ë�
¯���»�±�Ç�±�£±¤�����±±�²��� ¤���¤�£±¤���¤���¤�» �² ¤¡�������¤�
» �»� �Ã���±±�²��� ¤���¤�» �Ç¤�������¤�£��Ç¤ �¤º±��¤���¤£Å
£���� ��¡������¹
¬�¡���±�¡�����£¤�����º��» ���£�����±�±Ã�ºÃ�¡¤�£�� �±���
¤���¤ ��¤�� ������ºÃ��¡»� ¤��Ç�� �±���£¤±±������������¡��
¡¤�£�¹�§� �����¤�£�¥�����¡������ ��²��� ¤����� �¡�¤����²±��
£±¤��¥�¤�� �º����� ��»� ¤����¥���»������������Ç���º�±��Ã�¤���
����¤º�� ¤£��¤�� �º���¹���������£¤������ ���������¤�£±�¤ ���� £��
�� � ����²��� ¤�����±�¡�������� � ��¤������£±¤���� ���¤�� �¥�
¤���������²��� ¤������±Ã����£� �¤���£� £�¡��¤�£����¤�» �Ç¤���
Ç���º�±��Ã�� �¤º�� ¤£��º���²�� ��¹�½����¡»� ¤��Ç�� �±���¤ ��¤��
¤±�� �¤��Ç�����£ �¤�������¡¤�£�� �±���� ��¤£��£�¡º��¤��������
£� £�¡��¤�£������������� £���±�¡����¿�Â¹
½��� ���±���²�¡���±���±±�º��¤�¡���±���������¯¬�¡��¤�¡���±¥�
���£�� ���º¤�����»��������£±�»�����½�� ¤¡��� Ä�¿ÐÂ¹�½���
� ¤���� ¡¤���� ��� � �����¯¬�¡���± � ���� �£��� � �� �»� �� ¡���
����������¡»±�¡���¤��������¤���½�Ç����� ¹
���� �� ����Ç¤±��¤�������� ¤���� ¡¤���������» ������¤�¡���±�
£ �¤����� �¡������¯��È¤¡»±���Ã���¡¥�£�¡»¤ ��²�����²��Å
� ¤����£��������� �����¡»±�¡���¤�����» �»�����¤�������¯�
�»�£���£¤�����¿ÍÂ¹�§�²¹�Ø�������¤����¤�±���¼�Å�¯�£±¤�����¤Å
² ¤¡�������¤£��£±¤��¥�» �»� �Ã¥�¤���¤»»±������� ���Ã»��£��Å
�¤����²�����¡¤»»��²����� ¡¤������������!$����È¤¡»±�¹�

��������
����$����$"��\��\�$"�����'������"���'�������

½�� � ��±Ã � ��¡¤���£ � ����� ��£�� � º������ � ��� � ��� � Û¤£¡���
��� £����� ����������¤�£��Ç¤ �¤º±���¤¡��¥����������» �»Å
� �Ã��¤¡�����������£��� �¡�����» �Ç¤���Ç¤ �¤º±�¥�¤�����������
���²��� �£�����¤±±� �±¤�������»�¹�³��� �¤ �����������£�������
£��£� ���²�����¡¤»»��²�����¤Ç¤�£��£�»������» �»� �����¤���
£�±±�£���������¼�Å�¯�» ���±�¹�Î���Ç� ¥������¤�¤º¤���²��Å
� ¤����ºÃ��¤���� ������¤���²��� ¤����£�����¤��������£¤±¥�
º��� ������Ì»��Å�¯�¿	ÒÂ�¤���Î�º� �¤���¿	ÀÂ��¯��¡»±�Å
¡���¤�����¥ � �� � ¤±± � ¤Ç¤�±¤º±� � �¤�¤º¤�� � ��¤±�£�� � �� � ������
���±�¹
���� �� ����������²���� �����¼�Å�¯�» ���±��¤���� ¤���� ¡¤Å
�����¥�¤���»������ £���£±�»���Û»±�²��� ��¤����Ç�±�»��¥�¤±Å
����²� � ���Ã � £¤� � º� � ���� � ������� � �£±�»�� � »±¤��� ¡ � ¿	ÁÂ¹�

731

¼� �����¤�±��¤º��������� ¤���� ¡¤����� �±��¥�������£±�����ºÃ�
�»¤£� � ��� �£�����¥ � £¤� �º� � ����� �¤� � ��� �¼�Å�¯���º�����
¿		Â¹

6. Conclusions
���»��� � ���������¤��»������� �¦¼�¥ � ��� �� �� ���� �¤ �£±�¤ ¥�
£�������¤±�¤����¤�ÃÅ��Å������±�������� �����» �º±�¡����»� Å
������£��¡���±��²¹�¬�»¤ ¤���Æ©�¤���¦¼��¡���±��¤ ��»��Å
��º±Ã�����¡����£�¡¡���¤»» �¤£�¹�Î���Ç� ¥�����¼���¤»Å
» �¤£� ���¡¤��������² ¤����¡���±����¤��£¤��£� �£�±Ã� �»Å
 �����������¡»±�¡���¤�������������Ã���¡¹
½����»¤»� ��¤��» ��������¤�¦¼��» ���±�����£��¤±±��������
¡���±��²��������»� ���������±�¡��������¤��Ã���¡¥���±±����²�
�����¯�»� ������£����¤��¤ �¹�½�����£������¼�Å�¯�» ���±��
��� ����£ �¤��������¡���±����»�£���²� �����±Ã�º��� �»� ��������
¤�� � �º��£� � � ������ � �±�¡����¹ � ½���� � ¡���±� � £¤� � º��
£��£Ä��¥ � �� � � �� � �� � ����£� � ¤ � ����²� � ��£�¡»¤��º±� ������
Ì©¼¥�¤��������� ¤���� ¡������»¤ ���������������¤ ���¡»±�Å
¡���¤����¹�¼� ��Ç� ¥����¤±±���������������Ì©¼�¤�Ç¤�£���
 ���� £���¤��������¥�±�Ä������£������±Ã�¤»» �¤£���¤���» �Å
�� Ç�������¦¼��¤º�±��Ã����£ �¤���������£����¤² ¤¡����������Å
�� ����±�Ç�±�����¤º�� ¤£����¥������²���������£���¤ Ã����¤�±��
�����»�±�Ç�±���¤² ¤¡�¥���������±�����²�����¡¤»»��²����� ¡¤Å
�������� ����������±���±�Ç�±���¤² ¤¡�¹
¯���¡»±���È¤¡»±���±±��� ¤�����������£¤��Ç¤±��¤�������¼�Å
�¯�» ���±��ºÃ������������� ¤���� ¡¤�����¥�¤���¤±���������
�������±��Ã������ �¤»» �¤£�Ë�¤�¡���±��¤��º��±��¤££� ���²����
����£�¡»±����¤£��¤±��È¤¡»±��¤Ç¤�±¤º±����������¯��»�£���£¤Å
����¹�½��� �¡���±��¤�������� ¤���� ¡�������²��� ���������
¯½� � � ¤���� ¡¤�����������¤���¡»±�¡���¤�������¤� �����Õ��Å
Ç¤±������������È¤¡»±�¥������������²���¤������¤£���� �¼�Å
�¯�» ���±��£¤�� �» ������¤��Õ�¤��±Ã�����¤����¤�����¡¤»Å
»��²������¯¹
§��� ����������¡�²����È����������» ���±�����¤������£���� �£���
�� � �»�£���£ �Ì©¼� ���±�¹ �¯� ����Ã��� � ¤±± � £�¡¡��� ��¤�� ���
¤¡��²�Ì©¼����±��£¤��±�¤�����¤�£¤����£¤±�» ���±�¥���¤��£¤��
±¤�� �º������² ¤����¤����²�� �±�Ç�±�» ���±�����¼�Å�¯¹

7. REFERENCES
¿ÀÂ ¯¡º±� ¥�¬¹�Ï¹Ë�¯²�±���¤�¤º¤���½�£���Õ���Ë�Æ���£��Ç��

¬� ¤��²��� � �� � ��� � ¯²�±� � ¬����¤ � ���Ç�±�»� ¹ � Ï�±�Ã�
�º±�����²¥���£¥�¦¬¯��¾	ÒÒÁ�

¿	Â ³�Ã���¤¥�¬¹¥�³��Ä¥�¼¹¥ª ���¥�Ù¹Ë�¼���±�� �Ç���¬���Å
�¤ ����Ç�±�»¡���¹�¬» ��²� ÅÙ� ±¤²�Ô����� Ä�¾	ÒÒÐ�

¿ÁÂ Ó���¥�¹�Å¬¹Ë�½���Æ����ÃÅ©�±¤�������»�¼���±Å½��¤ ��
¤ �¦������ �Ù��� � �� ��¤�¤¹ �¯Ó¼�½Ì�¬ �Ù�± �À¥ �Ô� �À�
¾ÀÊÖØ�

¿ÍÂ ��¡�£���±¥��¹¥������¥�¼¹Ë�Æ��� » �����¤Ç¤³�¤��½¼¥�Ù� Å
�����Á¹Ò¥��¤Ç¤�� ������£��¯�����»Ë

�£»¹� ²
¤º����¤Ç¤

£�¡¡����Ã» �£���
���¤±
�� 		Ò
����È¹��¡±�

¿ÐÂ Æ£±�»����¤Ç¤���Ç�±�»¡����½��±��¾��½�¥����»Ë

���¹�£Å
±�»��¹� ²
���

¿ØÂ ª ¤��¥ �Æ¹ �¬¹¥�Ó����¤¡¤����¥ �©¹¥ �©�µ¤¥ � �Î¹Ë�½��¤ ���
¤�¤±Ãµ��²�¦¼� �£±¤�� ���¤² ¤¡�¡���±� � �� ��º��£�Å �±¤Å

����¤± � �¤�¤º¤�� � �Ã���¡� � � ¤���� ¡¤�����¹ � �£�����²��
�������	Í����¯¬½Æ������ �¤����¤±�£���� ��£������¤�¤Å
º¤���¤���¤»»±�£¤�����¥�»»¹�À	ÊÅÅÀÁÍ¥�����º �£Ä¥�¯��� �¤�
¾	ÒÒØ�

¿ÖÂ �¤�Å¡��¤¡���±¥�
���»Ë

���¹�£±�»��¹� ²
²¡�
¡����£�
���±³�È
�¤Ç¤¯ºÅ
�� ¤£�¬Ã��¤È
�

¿�Â ���¤�±�¥�§¹¥�¯±±�±¤� �¥�§¹¥�³�µ�Ç��¥��¹¥��� ��Ç¥��¹¥�Ù¤±�� Å
��µ¥ �¹Ë �¯½�Ë � ¤ ��Ù½Å±�Ä� �½ ¤���� ¡¤���� ��¤�²�¤²�¹�
ÌÌ¬�¯ÚÒØ¥ � »»¹ � ÖÀÊÅÅÖ	Ò¥ � � �±¤��¥ � Ì �²��¥ � ¦¬¯�
¾	ÒÒØ�

¿ÊÂ ¼�±±� �¬¹��¹¥�¬£�����¹¥�¦�±�¯¹�¥Ï������¹Ë �¼�¯����Å
��±±��Ë� ��£�»±������¼���±Å� �Ç���¯ £����£�� �¹�¯����Å
���Ï��±�Ã¥�¦¬¯�¾	ÒÒÍ�

¿ÀÒÂ Ì¼ªË�©�Õ�����§� � �»��¤±Ë����� ¡¤�����¼¤�¤²�¡����
¼��¤¡���±¥�����»Ë

���¹�¡²��Ä��¹� ²
�¡¡
��Ä�¹»�»

¿ÀÀÂ Ì¼ªË � ¦������ � ¼���±��² ��¤�²�¤²�Ë � ¬�»� �� �£�� �¥�
���»Ë

���¹�¡²¹� ²
£²�Åº��
��£Ü�� ¡¤±
ÒÖÅÒ	ÅÒÁ�

¿À	Â � ��¥�Ï¹¥�³ ����¥��¹¥�©¤¡¤±��¥�§¹Ë��¦¼�Åº¤��������²��
�����²��� ¤����¹� � �£�����²���������¯Ó¼��Ã¡»����¡�
���¯»»±����£�¡»����²¥�»»¹�ÖÁÐÅÅÖÍÒ¥�§� �¤±�µ¤¥�Ó�¤ ¤¥�
³ ¤µ�±�¾	ÒÒ��

¿ÀÁÂ ©�¡º¤�²�¥ ��¹¥ ��¤£�º���¥ � �¹¥ �³��£�¥ �ª¹Ë �½�� �¦�������
¼���±��²��¤�²�¤²��©��� ��£��¼¤��¤±¹��¯������ÅÏ��Å
±�Ã����²¡¤������¾ÀÊÊÊ�

¿ÀÍÂ �¤Ç¤��¤�²�¤²��¬»�£���£¤����¥����»Ë

�¤Ç¤¹���¹£�¡
��£�

º��Ä�
�±�
����±�¤�
�±¤�²�»�£ÅÁ¹Ò¹»��

¿ÀÐÂ Ó¤±�¤ �¥�ª¹¥�¼���µ�¬�±Ç¤¥�¹Ë�¯�£¤�������Ã����¡���±��²�
»� ������£�������¼�¯����±�¹�¯�¤±������Ñ�� ��� �¤�¤��
�����²��� Ý¤���±�¬����¤ ��Ã�³¤��������¤���¥��»»¹�ÐÀÅÐÊ¥�
�¤ ¤²�µ¤�¾	ÒÒÖ�

¿ÀØÂ Ì¼ªË � Ìº��£� � Ó���� ¤��� � �¤�²�¤²�¥�
���»Ë

���¹�¡²¹� ²
��£�
�� ¡¤±
ÒØÅÒÐÅÒÀ¹»���¾	ÒÒØ��

¿ÀÖÂ �¤Ç¤³�¤�� � �»�£���£¤����¥�
���»Ë

�¤Ç¤¹���¹£�¡
�¤Ç¤��
��£���±�²���
���Ä��»
�¤Ç¤Å
º�¤��
��£�
��»�£¹��¡±

¿À�Â ¬��²¥�Æ¹¥����¥�¬¹¥�¤���©¤Ã¥��¹Ë�¦���²�¦¼�����¡���±� �Å
±¤����¤±��¤�¤º¤����»� ¤�����¹�Ó�¡»��¹�¬�¤��¹����� �¤£���
	Ê¥ � Á¥ � »»¹ � ÁÍÁÅÅÁÐÍ¹ � �Ì�Þ�
���»Ë

�È¹���¹� ²
ÀÒ¹ÀÒÀØ
�¹£��¹	ÒÒØ¹ÒÐ¹ÒÒØ�¾	ÒÒÖ��

¿ÀÊÂ���¢�Å¼� ¤¥�¬¹¥�½ ���±±�¥��¹¥�¤���¬��²¥��¹Ë�¯�¦¼��» �Å
��±���� �¡�±����¡������¤±�¡���±��²�����¤�¤��¤ �������¹�
�¤�¤ � ����±¹ � Æ�²¹ � ÐÊ¥ � Á � ¥ � »»¹ � Ö	ÐÅÅÖØÊ¹ � �Ì�Þ�
���»Ë

�È¹���¹� ²
ÀÒ¹ÀÒÀØ
��¹�¤�¤Ä¹	ÒÒÐ¹ÀÀ¹ÒÒÍ��¾	ÒÒØ�

¿	ÒÂ ¯»¤£���Ì»���¯¥����»Ë

�»���»¤¹¤»¤£��¹� ²

¿	ÀÂ Î�º� �¤��¥����»Ë

���¹��º� �¤��¹� ²
¿		Â ¼�Å�¯ � »±�²��¥ � ���»Ë

��Ä�¹���¹�� ²�¹º
¡���¤��Ä�
��Å

��È¹»�»
¼�Å�¯
¿	ÁÂ Æ£±�»���»±¤��� ¡¥����»Ë

���¹�£±�»��¹� ²

732

A Pragmatic UML-based Meta Model for Object-oriented Code Generation

Tobias Haubold, Georg Beier, Wolfgang Golubski

Zwickau University of Applied Sciences, Informatics, Zwickau, Germany

E-mail: tobias.haubold@fh-zwickau.de

Abstract

Model-based or model-driven software development is a highly
regarded topic as it claims to development high quality software
faster. It is already used in the software industry. There are efforts
to use UML as well as DSLs as meta model but either they lead
to complex model transformations in case of UML or the model
transformations are restricted in their reuse in case of DSLs. We
target this problem by introducing a fixed meta model for code
generation resulting in a fixed, reusable back-end of an MDSD
process. This approach overcomes the use of the modeling meta
model in model transformations resulting in a higher return of in-
vest in those and the whole MDSD process.

1. Introduction

The increasing number of acronyms, e.g. Model-Driven

Software Development (MDSD), Model Driven Architec-

ture (MDA), Model Driven Engineering (MDE) or Model

Driven Test Development (MDTD) to classify model driven

approaches reflect the interest in this research topic and are

already used in the software industry [1, 2, 3]. The key con-

cept is to automatically derive source code from determin-

istic evaluable models. These models use prescribed struc-

tures and semantics which are defined within meta models.

This involves the Unified Modeling Language (UML)[4]

as a standard to describe object oriented software sys-

tems which is specified by the Object Management Group

(OMG)[5]. It plays a key role in the Model Driven Archi-

tecture (MDA)[6]. It evolves with an increasing amount of

supported charts and modeling concepts to a quite complex

language[7]. The UML meta model as the data model is

consequently normalized which further increases it com-

plexities and outlines the ineligibly to access a particular

model information. The Executable UML uses a subset of

the UML namely class models and state machines with an

additional action language [8]. Activity charts are an im-

portant aspect in model driven testing [9] to specify flows.

Both examples underline that only a subset of the thirteen

diagrams[4] of the UML is relevant for model driven ap-

proaches.

Today Domain Specific Languages (DSL) are very popu-

lar. They focus on the concepts of a particular domain. The

foundation of DSLs is the domain concept of Shlaer and

Mellor[10] and therefore DSLs exist for several abstraction

levels in software development. DSLs are normally more

handy and precise but only applicable for a certain field of

application or technical aspect. One classification of DSLs

is into subject area DSLs and system aspect DSLs [11].

DSLs can be defined using UML profiles or using other

meta modeling languages like MOF[12] or Ecore[13, 14].

Both the UML and DSLs play a key role in model driven

approaches by providing a meta model (there can be more)

for the MDSD process, but have also a wide field of appli-

cation out of the scope of model driven approaches. The de-

cision to choose meta models is not an either or - UML and

DSLs can be used together. But the choice of meta models

have an impact on the model transformations as they rely

on these meta models. Thus changes on meta models cause

changes of model transformations.

Model to text transformations generate source code for

a particular programming language. These mapping func-

tions usually use the archetype[15] or template[16] con-

cept to accommodate the complex abstract syntax (the meta

model) of programming languages but they remain consid-

erably. Based on these facts, the following consequences

can be drawn:

• the use of UML leads to complex transformations

• the use of subject area DSLs increase the gap between

the abstractions in programming and modeling lan-

guages resulting in more complex transformations

• system aspect DSLs are restricted in their use to the

technical aspect they cover

• domain changes in subject area DSLs have more seri-

ous consequences that changes in system aspect DSLs

• if a DSL cannot be applied another DSL has to be in-

vented resulting in the creation of transformations

• if a subject area DSL cannot be applied and there is

no intermediate meta model in the MDSD process, the

whole MDSD process has to be reinvented

The GeneSEZ approach as outlined in section 2 overcomes

733

these weaknesses by introducing a separate meta mdel for

the MDSD process which is covered in section 3. With an

intermediate transformation step the modeling meta model

is decoupled from the code generation and the GeneSEZ

meta model makes the development, maintenance and cus-

tomization of model transformations easier as outlined in

4. We discuss related work in section 6 and conclude our

approach in section 7.

2. The GeneSEZ MDSD Approach

As illustrated in Fig. 1 our approach consists of four

main concepts:

Figure 1. Overview of the GeneSEZ MDSD
process

Model adapters are used to populate GeneSEZ models

with information

GeneSEZ meta model is the meta model of our MDSD

process

Components are several utilities supporting the MDSD

process, e.g. execution of model transformations

Platform projects support code generation for program-

ming languages

With the use of model adapters our approach does not pre-

scribe a particular meta model to model the application.

In fact, we believe this decision should be based on other

means than the MDSD process and therefore we decoupled

the meta models used for modeling and code generation.

The GeneSEZ meta model is the fixed meta model within

our MDSD process enabling reusable model transforma-

tions across different application meta models. Model

transformations enabling code generation for different tar-

get programming languages as well as frameworks and li-

braries.

3. The GeneSEZ Meta Model

The GeneSEZ meta model is a general purpose meta

model for object oriented software systems and can be seen

as a domain specific meta model where the domain[10] is

object oriented source code generation. It targets the need

of developers for a special view of the information of an

application model with respect to the creation and mainte-

nance of model transformations. We target especially model

to text transformations to achieve a close mapping between

the meta model and the source code. Therefore it has some

commonalities with UML class models.

3.1. Object oriented constructs

To support object oriented programming languages the

constructs shown in figure 2 are used to describe the static

structure of an application. The following constructs need

to be distinct from the UML:

• the final attribute of an MClassifier specifies if a clas-

sifier can be inherited or not

• the final attribute of an MOperation specifies if it can

be overridden or not

• the final attribute of a MProperty specifies if its value

is changeable or read-only

• the concept of association ends

• the distinction between attributes and association ends

The UML supports associations with more than two

ends[4]. To accommodate the complexities of mapping as-

sociations into source code as outlined in [17] the GeneSEZ

meta model currently supports only binary associations1.

To indicate this difference we use the name association role
instead of association end.

Attributes and association ends are both properties in the

UML[4]. The distinction in UML takes place if a property

has a reference to an association or not, i.e. the check of an

attribute value. The GeneSEZ meta model introduces a sep-

arate model element for association roles. Distinct model

elements have the benefit that properties and association

roles can filtered by their type. Therefore the distinction is

done on the meta model layer within a GeneSEZ model in-

stead of the application model level within an UML model

(i.e. based on an instance of the UML meta model).

3.2. Type system

The GeneSEZ type system consists of the types shown

in figure 3. All types inherited from MClassifier are defined

within the target programming language. The concept of

generic and external types are not known by the UML:

• parameterized types are specified with UML templates

• the UML has no support to use already existing types

Parameterized types are supported using the concept of

generic types. A generic type (MGeneric) is a place holder

1furthermore we are not aware of the need of and a mapping for more

than two association ends

734

Figure 2. The definition of object oriented constructs in the GeneSEZ meta model

for a type of the programming language and is defined as

a textual specification. This definition overcomes the com-

plex evaluation of formal and actual type parameters within

UML templates. When using parameterized types in UML

formal template parameters have to be substituted with ac-

tual template parameters. In the case of code generation

for a target programming language supporting parameter-

ized types it is only of interest which textual representation

has to be generated. It does not matter if it is a formal tem-

plate parameter or an substituted one.

To support the reuse of existing types in programming

languages, frameworks or libraries we introduce the con-

cept of external types (MExternal). This is of particular

interest of software developers as they always prevent to

reinvent the wheel. External types are not possible with the

UML and results in filter expressions every time the defini-

tion of an UML classifier has to be generated and therefore

for every target programming language. With the GeneSEZ

meta model this filter expression is not needed resulting in

a simpler and more understandable mappings to target pro-

gramming languages.

Primitive and external types are mapped to already exist-

ing and available types in a programming language.

3.3. Special support for code generation

The term special is used to classify meta model defini-

tions which are either not needed to run the application or

are not directly contained within the generated source code.

This involves the following three concepts shown in fig. 4:

Comments can be used to annotate model elements with

textual content, usually used to generate the source

code documentation.

Stereotypes are an annotation mechanism for model ele-

ments and usually used as marker to control and adjust

model transformations.

Tagged Values are a concept to specify additional informa-

tion for model elements. The additional information

can be used to embed it into the source code or as a

kind of parameter to control model transformations.

The UML uses profiles to extend the meta model in a

lightweight way. Stereotypes are UML classifiers which ex-

tend an existing meta class. Tags are attributes of a stereo-

type and tagged values the attribute values. This concept is

specifically designed to allow the definition of DSLs based

on UML. However, for code generation other semantics

are needed which we cover with MStereotype, MTag and

735

Figure 3. The definition of types in the Gene-
SEZ meta model

MTaggedValue. This involves the use of stereotypes as an-

notations rather than specialized types as further outlined in

section 6.

4. Sample Application

With the development of an application for project plan-

ning we will illustrate our appraoch. The domain model of

the application is shown in figure 5. It allows to structure a

project into milestones and tasks. Tasks can be nested using

main tasks. Each task has a planned time effort. The time

effort of several work units of a sub task can be booked by

each person working on that task. This time effort is called

time budget and modelled as an association class between

SubTask and Person. Main tasks have a derived attribute

which indicates the current time spent on this task.

Figure 4. The definition of stereotypes,
tagged values and comments in the GeneSEZ
meta model

Figure 5. The domain model of the sample
application time budget planning

To define external types with the UML we defined the

stereotype external and assigned it to the class Date. This

supports expressive and robust models. During the trans-

formation into a GeneSEZ model every classifier with this

stereotype is transformed into an MExternal instead of an

classifier. This results in a clear mapping that all classi-

fiers are defined within the source code. The filter is only

specific to the UML to GeneSEZ transformation instead of

the UML to target programming language transformation.

During a GeneSEZ to target programming language trans-

formation such a filter does not need to be applied.

Distinct model elements for properties and association

roles have the benefit that properties and association roles

can be distinguished on the meta model layer instead of the

application model layer. Application model layer based dis-

tinctions involve additional checks of the existence of the

referenced objects by checking the attribute value.

5. Evaluation

Our primary focus was to ease code generation using

UML models by introducing the GeneSEZ meta model as

an intermediate transformation step before code generation

in the whole MDSD process. The GeneSEZ model is cre-

ated by a representing mapping[15] of a UML model. This

has several benefits:

• a handy and concise general purpose meta model for

model transformations

• the whole meta model can be printed on two pages

in letter format for an handy overview during model

transformation development rather than searching in

bloated UML API documentation

736

• increased productivity during development, mainte-

nance and customization of model transformations

• a fixed and reusable back-end for code generation

within an MDSD process which is decoupled from the

meta model used for modeling

• UML as well as subject area DSLs can be used to

populate GeneSEZ models resulting in robust models

which concentrate on the application domain

• stereotypes and tagged values can be used to pro-

vide annotations and additional information for model

transformations, e.g. to support system aspect DSLs

• model transformations become a reusable and cus-

tomizable set of architectural building blocks across

different modeling meta models

The GeneSEZ meta model evolved during the application

in projects of our industry partners to a practical approach.

The field of application includes:

• code generation for embedded systems based on Java

(JavaME)

• development of Java applications

• reengineering and porting of a software written in C++

to C#

• development of PHP based web applications

• development of Java applications based on EJB3 and

the Seam framework

In these projects we were able to generate 50% - 80% of the

source code which indicates the importance of the structural

part of an application.

6. Related Work

The UML as well as DSLs are used in model driven ap-

proaches which can be classified by:

• the use of the UML meta model

• the use of the DSLs which were used to model the ap-

plication

• the use of special DSLs which are populated by the

information of UML models

There are two popular open source tools for model driven

approaches which we will cover in more detail: openArchi-
tectureWare[18] and AndroMDA[19].

Commercial tools focus mainly on DSLs, e.g.

MetaCase[20] or Jetbrains MPS[21]. The latter one is

a language oriented tool that supports the modularization

and reusablitiy of already defined languages. Languages

can be created, embedded into other languages and com-

bined. Furthermore an application is created by structured

editing which directly edits the syntax tree.

6.1. AndroMDA

AndroMDA is currently an UML-based approach and

uses an UML implementation in Java as meta model for

code generation. Tool adapters are used to support a couple

of UML tool vendors. For meta model adjustments and in-

formation hiding AndroMDA has the concept of so called

meta facades: Java interfaces and classes according the fa-
cade pattern2 to provide a special view of the information

in the UML model to a cartridge3. Usually every cartridge

has its own meta facades. The meta facades use either the

UML meta model directly or other meta facades. In fact,

the implementation of meta facades can be seen as model to

model transformations implemented in Java.

Developers who create, maintain or customize cartridges

have to work with the complex UML meta model. Currently

all model transformation logic has to be implemented us-

ing Java. This is sometimes a bit intricately, e.g. to deter-

mine qualified names of a model elements. For such cal-

culations a functional expression language like openArchi-

tectureWares Xtend[23] is more suited because it is more

expressive for this kind of problems.

6.2. openArchitectureWare

The generator framework openArchitectureWare sup-

ports various meta models:

• the EMF UML2 implementation and the so called clas-
sic meta model for UML based approaches

• EMF and Java beans -based meta models, primarily

used for DSL based approaches

• external textual DSLs based on Ecore with Xtext[24]

The so called classic meta model is a simplified version

of the UML meta model. To use stereotypes and tagged

values the meta model classes must be extended by one im-

plementation class for each stereotype. Tagged values are

the attributes of the stereotype classes. Due to the impor-

tance and heavy usage of stereotypes and tagged values in

code generation this is a tedious additional work. This con-

cepts treats stereotyped classes as special types, which is

closer to the UML semantics but leads to challenges during

model transformations if multiple stereotypes are assigned

to one model element. These challenges are avoided using

the GeneSEZ meta model because we treat stereotypes as

annotations (see section 3.3). The classic meta model seams

to be developed in a mixed way by using MDSD and man-

ual implementations in contrast to the completely generated

GeneSEZ meta model. The future of the classic meta model

was a long time unclear but it seams to be further supported.

2The facade pattern provides a simplified interface to a more complex

implementation consisting of at least one class [22]
3AndroMDA organizes model transformations in cartridges according

the target programming language and supported frameworks.

737

6.3. Sculptor

A DSL based approach for code generation is Sculp-
tor4. It can be used to generate web applications based

on Spring, Spring Web Flow, Hibernate, Java EE and Java

Server Faces. It is build on top of openArchitectureWare

and uses Xtext to describe the DSL and to generate an edi-

tor for the DSL. The DSL is then used to describe the web

application. This approach is well suited for this specifically

tailored domain. But the meta model as well as the model

transformations can only be used for this kind of applica-

tions. If the same application should be ported to a desktop

application, the model cannot be reused because it is build

with the concepts of web applications.

7. Conclusion and further work

There was a big effort to establish the UML as a standard

notation to describe object oriented software. The use of

standards is always preferable to support the elaboration of

communicable and understandable models. Unfortunately

MDSD and UML evolved to digressing technologies [25].

The MDA standard comes with good concepts but cannot

hide the complexities of the UML [7] and its ineligibly for

code generation due to the huge information contained.

Our approach has still some shortcomings. The meta

model still covers only the structural aspects of an applica-

tion and the concept of generic types needs some attention.

It also contains only navigable association roles which is a

discussion point. By now, return types of operations cannot

have a comment.

Further work has to be done to support standardized

stereotypes. Current work includes meta model support for

state machines, C++ as a target platform and the enhance-

ment of the existing target platforms with common and pop-

ular frameworks. Last but not least we work on a platform

independent concept to implement associations. All work

is done within projects of our industry partners.

Moreover a new project is initiated to invent the benefits

of expressing robustness, testability and security in UML

models utilizing the GeneSEZ approach to develop auto-

motive software applications. The project will be carried

out with a leading German automobile company as an in-

dustry partner.

References

[1] Use of openarchitectureware in the software industry.

http://www.openarchitectureware.org/index.
php?topic=success.

4Sculptor is a DSL based approach to MDSD, http:
//www.fornaxplatform.org/cp/display/fornax/
Sculptor+(CSC)

[2] Use of andromda in software projects. http://
galaxy.andromda.org/index.php?option=com_
content&task=blogcategory&id=26&Itemid=40.

[3] Use of metacase in software projects. http://www.metacase.
com/cases/.

[4] Object Management Group. The UML Superstructure Specification
2.1.2, November 2007.

[5] Homepage of the object managment group (omg). http://www.
omg.org/.

[6] Object Management Group. Overview of Model Driven Architecture
(MDA) specifications. http://www.omg.org/mda/specs.
htm.

[7] Dave Thomas. Uml - unified or universal modeling language? Jour-
nal of Object Technology, 2(1):7–12, January-February 2003.

[8] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation
for Model-Driven Architectures. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 2002. Foreword By-Jacoboson,,

Ivar.

[9] Paul Baker, Zhen Ru Dai, Jens Grabowski, Ø ystein Haugen, Ina

Schieferdecker, and Clay Williams. Model-Driven Testing: Using
the UML Testing Profile. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2007.

[10] Sally Shlaer and Stephen J. Mellor. The shlaer-mellor method. 1996.

[11] Johan den Haan. Dsl and mde, necessary assets for model-driven

approaches. http://www.theenterprisearchitect.
eu/archive/2008/08/11/dsl_and_mde_necessary_
assets_f, August 2008.

[12] Object Management Group. The Meta Object Facility (MOF) Core
Specification 2.0, Januar 2006. http://www.omg.org/spec/
MOF/2.0/.

[13] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose.

Eclipse Modeling Framework - A Developer’s Guide. Pearson Edu-

cation, 2004.

[14] Homepage of the eclipse modeling framework (emf). http://
www.eclipse.org/modeling/emf/.

[15] Stephen J. Mellor, Scott Kendall, Axel Uhl, and Dirk Weise. MDA
Distilled. Addison Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA, 2004.

[16] Krysztof Czarnecki and Simon Helson. Classification of model

transformation approaches. In OOPSLA’03 Workshop on Generative
Techniques in the Context of Model-Driven Architecture, 2003.

[17] Gonzalo Gnova, Carlos Ruiz del Castillo, and Juan Llorens. Map-

ping uml associations into java code. Journal of Object Technology,

2(5):135–162, September-October 2003.

[18] Homepage of openarchitectureware. http://www.
openarchitectureware.org/.

[19] Homepage of andromda. http://andromda.org/.

[20] Homepage of metacase. http://www.metacase.com/.

[21] Homepage of the jetbrains meta programming system (mps). http:
//www.jetbrains.com/mps/.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional, 1994.

[23] Reference of the Xtend language. http://
openarchitectureware.org/pub/documentation/
4.3.1/html/contents/core_reference.html.

[24] Homepage of the xtext language. http://www.eclipse.org/
modeling/tmf/?project=xtext.

[25] Sven Efftinge, Peter Friese, and Jan Köhnlein. Best prac-

tices for model-driven software development. InfoQ,

June 2008. http://www.infoq.com/articles/
model-driven-dev-best-practices.

738

An Ontology-based Model Driven Approach for a Music Learning
System

Yingchun Tian, Feng Chen and Hongji Yang
Software Technology Research Laboratory

De Montfort University, Leicester, LE1 9BH, England
{ytian00, fengchen and hyang}@dmu.ac.uk

Leigh Landy
Music, Technology and Innovation Research Centre

De Montfort University Leicester, LE1 9BH, England
llandy@dmu.ac.uk

Abstract

E-learning systems are attracting much attention in
both research and industry areas. Because of massive
data and complex functions, the means how to organise
the information and build architecture effectively to
improve the e-learning system development is considered
to be a kernel issue. This paper proposes an ontology-
based model driven approach for a music learning system
named the Pedagogical ElectroAcoustic Resource Site
(EARS II). Firstly, requirements are extracted into
vocabularies under Natural Language Processing (NLP)
theory. Then, a Reference Ontology (RO) is designed
based on Learning Technology System Architecture
(LTSA) and vocabularies are classified into Application
Ontology (AO) based on RO. Finally, Platform
Independent Model (PIM) is generated from AO
following proposed transformation rules. Furthermore,
the implementation of the proposed approach into EARS
II is provided, showing it’s feasible and applicable to
facilitate the modelling process and increase the
maintainability and reusability of the implemented
system.

The proposed approach has the potential to develop
general e-learning systems without the user is
connoisseur of philosophy ontological or pedagogical,
while giving him the approach steps that works in an
Object-Oriented environment.

Keywords: Ontology, Learning Technology System
Architecture (LTSA), Model-Driven Approach, E-learning,
ElectroAcoustic Resource Site II (EARS II),
Electroacoustic Music

1. Introduction

In recent decades, e-learning has been widespread,
especially since standardising initiatives for learning
technologies have begun. Therefore, system’s quality is
more concerned, not only in computer area but also

pedagogical domain. Specific background knowledge and
pedagogical approach are necessary but easily ignored.
Traditionally, team work is the solution that involves both
software developers and pedagogical experts. However,
the common problem is the team cannot start quickly
because the huge gap between those two areas.
Accordingly, this paper offers an approach as solution.
Learning Technology System Architecture (LTSA), which
contains educational knowledge, is combined with
ontology to provide pedagogical support. Meanwhile,
Model-Driven Architecture (MDA) has a significant idea,
which is the independence of specification and particular
platform. So Platform Independent Model (PIM) is
considered befitting form of final architecture in this paper.

Besides, a real music learning system is involved. The
musical corpus that will form the focus of this research is
called Electroacoustic music, which is “any music in
which electricity has had some involvement in sound
registration and/or production other than that of simple
microphone recording or amplification” [1]. This corpus is
useful for a number of reasons not least because of the
fact that those who make it are highly involved with
technology. Therefore introducing its pedagogy online
might be seen as a logical thing to do. The complete
pedagogical environment will be called the
ElectroAcoustic Resource Site II (EARS II) and is a
follow-up to the internationally respected research
resource site, EARS (http://www.ears.dmu.ac.uk) which
has been supported by the Arts and Humanities Research
Council in the UK as well as by UNESCO.

Above all, this paper proposes an ontology-based model
driven approach for a music learning system. It will
results in PIM, which contains pedagogical information
and becomes a bridge for the areas’ gap. The rest of the
paper is organised as follows. Section 2 is a short
introduction about related work; Section 3 provides the
whole approach this paper proposes, including
vocabularies extraction, ontologies classification, and
transformation into PIMs; Next section is the
implementation of this approach into the Pedagogical
ElectroAcoustic Resource Site II (EARS II) [2] project.
Finally, Section 6 concludes the paper with a summary of
further work.

739

2. Related Work

This section discusses research related to our work.
Gavras et al [3] have proposed an MDA-based
development methodology. Applying MDA to enterprise
computing have described in [4]. In [5] author has
provided model driven software modernisation. They
proved the practicability to apply MDA in general
systems’ development. Even in software evolution, MDA
is an effective methodology [6]. However, those related
works mentioned above only focus on MDA’s
application but not specific to PIM’s establishment.
Though Solms and Loubser [7] formulated a
methodology to generate PIM, it aims at the system
domain experts but not software technicians.

The initial design for the MDA-based development of
EARS II is provided as a paper [8], including lifecycle
and pedagogical design. In this paper, our proposal is
based on it and can be considered as an extension and
specification of the lifecycle.

3. The Proposed Approach

The proposed ontology-based model driven approach
for music learning system is shown as Figure 1. Actually,
this approach is not only limited on music-learning
system but also suitable for general e-learning systems.

Figure 1: Ontology-based PIM Modelling
Approach

There are mainly three steps in this approach:
(1) Extracting vocabularies: according to Natural

Language Processing (NLP) technology,
requirements are extracted into vocabularies.

(2) Classifying ontologies: LTSA is the basic structure
for classify the vocabularies that come from previous
step. First, a RO is involved in this phase, which
designed based on LTSA. Then classify vocabularies
into RO to be an AO. Next task is to add extra
vocabularies into AO. Finely, if there are
redundancies in AO, they are reduced in this step.

(3) Transforming into PIMs: Ontologies are transformed
into Platform Independent Models following a set of
transformation rules that we proposed. Considered
the PIMs are showed as a set of UML diagrams
generally, following the five rules, classes are
generated with name, mandatory attributes,
operations, interfaces, and relationships.

3.1 Vocabularies Extraction

Vocabularies extraction is always happened as a
general activity in initial development such as
requirement writing. Normally, developers extract them
on mind with potential self-rules. In this approach,
Natural Language Processing (NLP) theory is used as
basic technology for extraction. This activity aims to get
simple vocabularies including Noun, Verb, and relevant
explanation. Therefore, Natural language understanding
(NLU) system is involved. However, we will not discuss
specific methodology or tools about NLU since it is
another research issue. The only rule here is to reduce
redundancy after extraction. The result structure of
vocabularies is organised as below,

Noun: Explanation Verb: Explanation
… …

Table 1: Format of a Set of Vocabulary

3.2 Ontologies Classification

There are a number of terms to be used to classify
ontologies. There are Leightweight ontologies that only
consist “if” concepts and their relationships, but without
many axioms, additional conditions and restrictions;
Application Ontologies (AO) contain the definitions
specific to a particular application [9], while Reference
Ontologies (RO) focus on clarifying the intended
meaning of terms used in specific domains. RO is
designed for general e-learning system based on LTSA.

The standard of Learning Technology (LTSA) [10]
specifies a high level architecture for information
technology-supported learning, education and training
System component is an important support in this phase.

Vocabularies

Classify

Ontologies

PIMs

Ontology

LTSA

Requirement
Specification

(1)

(2)

(3)
Transform

Extract

740

Figure 2: The LTSA System Component [11]

Based on above component structure, an RO is
designed and Figure 3 depicts the RO’s concepts and
relationships.

Figure 3: LTSA-based Reference Ontology

The notion of RO is described as a 3-tuple RO=(C, A,
Sc), where: C=Concept, A=Attribute, Sc=SubConcept.
Attribute owns a specific definition A=(Do, Ra), where:
Do=Domain, Ra=Range.

There are three steps to generate AO:
(1) To generate AO by mapping vocabularies into RO;
(2) To add extra vocabularies into ontologies as an AO;
(3) To reduce redundancies for AO.

The notation of AO is described as a 4-tuple AO=(C,
A, O, Sc) that A=Attribute, O=Object=(Name, Domain,
Range, Value), Sc=SubConcept. There are more details
for e-learning system on Table 2. Besides, the result is a
‘good’ AO following Gruber’s criteria [12] which
describes what ‘good’ ontology should meet: terms
clarity, axioms coherence, extensibility, and suitability.

Concepts
[C]

Attributes(Range)
[A(Ra)]

SubConce
pt [Sc]

LearnerEntity leID (String);
lePassword(String);

Login(Boolean);
Logout(Boolean);
Multimedia(Delievery);
LearningParameters(Coac
h);

LearnerRecor
ds

LroID(String);
learnerInfo(Evaluation).

LearnResourc
e

lrID(String);
lrContents(Xi);

LearnConte
nt

LearnContent
lcID(String);
lcBegin(X);
lcEnd(X).

Delivery(GUI
)

deID(String);
locator(LearnContent);

Evaluation

LearnerInfo(LearnerReco
rd);
Evaluate(LearnerEntity);

Coach

coID(String);
coPassword(String);
Login(Boolean);
Logout(Boolean);
sendLearnerInfo(Learner
Record);
getHistory(LearnerRecord
);
LearningParameters(Lear
nerEntity);
Locator(Coach,
LearnResource);
Query(LearnResource);
CatalogInfo(LearnResour
ce);

Table 2: RO List for General E-Learning System

The followings are the specific classification steps:
(1) To map vocabularies into AO.

In the vocabularies, noun maps to Concept,
subConcept, or Object under its explanation. Verb maps
to Attribute only. This step results in Table 3 as below:

Concepts
[C]

Attributes(Rang
e)[A(Ra)]

Object(
O)

SubConcept
[Sc]

N1
…

V1; V2; V3
…

N11
… …

Table 3: AO of Step (1)

(2) To add extra vocabularies into ontologies.
If there are some vocabularies left, a step to add them

properly in AO is necessary. The Table 4 shows the
Result of step2, where Ex is Extra Vocabulary.

Concepts
[C]

Attributes(Rang
e)[A(Ra)]

Object(
O)

SubConcept
[Sc]

N1
…
Ex_N1
…

V1; V2; V3
…
Ex_V
…

N11
…
Ex_N2
…

…
Ex_N3
…

Table 4: AO of Step (2)

(3) To reduce redundancy for AO.
There are many reasons to introduce redundancy, such

as synonyms, verb and noun with same meaning,

LearnerEntity

LearnerRecordsLearnResource

Delievery

Coach

Evaluation

Query

Locator

LearnContent

Do

Ra

Multimedia

sendLearn
erInfo

getHistory

Query

Behavior

Locator

LearningP
arameters

Interaction
Context

LearnerInf
o

: Concept

: Attribute

Do

Do
Ra

Ra/DoDo

Do

Do

Do

Do

Do
Do/Ra

Do: Domain

Ra: Range

Ra
Ra

Ra

Ra

Do

Ra

Ra

Ra

Sc: Sub Concept

Sc

Ra

Ra

CatalogInfo

Ra
Do

741

vocabularies under inclusive relationship, etc. Table 5
shows the result of this step with strikethrough on
redundancy.

Concepts
[C]

Attributes(Rang
e)[A(Ra)]

Object(
O)

SubConcept
[Sc]

N1
…
Ex_N1
…

V1; V2; V3
…
Ex_V
…

N11
…
Ex_N2
…

…
Ex_N3
…

Table 5: AO of Step (3)

3.3 Transform into PIMs

To generate PIMs from AO, a set of transformation
rules are proposed.

Figure 4: Transformation Rules -- AO to PIMs

Notations of the transformation rules are defined as
follows.
(1) AO=(C, A, O, Sc); C=Concept,

A=Attribute=(Name,Domain, Range, Value),
O=Object=(Name, Domain, Range,Value),
Sc=SubConcept.

(2) M=PIM=(Cl, In, Re(Clx)).Cl=Class=(Na, At, Op), where,
Na=Name, At=Attribute, Op=Operation; In=Interface=(Na,
At, Op) where Na=Name, At=Attribute, Op= Operation;
Re(Clx)=Relationship with Classes Clx, including
‘Generalization’, ‘Association’, and ‘Composition’.

Rule 1: Mapping Class
In AO, each Concept maps to a Class in PIM. Because

every Concept is a noun, Class’s name simply is valued
by Concept.

M.Cl{
Check AO.C;
Force M.Cl.Na=AO.C;
}

Rule 2: Mapping mandatory attributes
In AO, if Attribute’s Range is not any Concept or

Object, it equals to Class’s mandatory attribute.
M.Cl.At{
Check AO.A;
If(Not AO.A.Ra==AO.C and AO.O){
 M.Cl.At=AO.C.O.A;
}}

Rule 3: Mapping Operations
In AO, if Attribute’s Value is verb, it maps to Option

o f Class.
M.Cl.Op{
Check AO.A;
If(AO.A.Value==Verb){
 M.Cl.Op=AO.A;
}}

Rule 4: Mapping Interfaces
In AO, if Attribute’s Range is a Concept, AO’s Object

is valued as an Interface in Class.
M.ln{
Check AO;
If AO.A.Range==AO.C{
 M.In==AO.O;
}}

Rule 5: Mapping Relationships
In PIM, three relationships are necessary:

Generalization, Association, and Composition. They are
mapped separately.
(1) Generalisation

Generalisation is ‘a-kind-of’ relationship. Checking
AO, if SubConcept is not empty, there must have a
generalisation relationship. One Class is valued by
SubConcept which is generated from the other Class that
valued by Concept.

M.Re{
Check AO.Sc;
If(Not AO.Sc==None){

M.Re=Generalization(M.Cl1==AO.C, M.Cl2==AO.Sc);//Cl2
generated from Cl1.
}}

(2) Association
Association is a kind of semantic relationship between

classes. In AO, if value of one Attribute is another
Concept, the mapped classed are associated.

M.Re{
Check AO.A;
If(have (AO1.A.Value==AO2.C)){

M.Re=Association(M.Cl1==AO1.C,M.Cl2==AO2.C);//Cl1
associate with Cl2.
}}

(3) Composition
Composition is a particular association relationship

showing components. If the value of an AO’s Attribute is
a sum of many other AO’s Concept, this AO valued
Class is composed by other Classes that mapped from
those other AO’s Concepts.

M.Re{
Check AO.A;
If (have(AO1.A.Value==AO2.C+AO3.C+…+Aon.C)){

M.Re=Composition(M.Cl1==AO1.C,M.Cl2==AO2.C…,
M.Cln=Aon.C);
//Cl1 composed by Cl2, Cl3, …, and Cln.

}}
Following above rules, AO can be transformed into

PIM as UML diagrams. Most Classes are mapped from
AO’s Concepts under Rule 1. Mandatory attributes and
operations come from AO’s Attribution by Rule 2 and 3.
AO’s Object been leaded to Interface following rule 4.
Also, there are main relationships generated from AO

742

depends on rule 5. Particularly, in rule 5, Generalization,
Association, and Composition are the three necessary
relationships we considered. To sum up, PIM is
transformed from AO under proposed rules.

4. Implementation

The Pedagogical ElectroAcoustic Resource Sit (EARS
II), a music learning system, is demonstration project in
this research, showing the implementation of the
proposed approach.
(1) Vocabulary Extraction

A piece of the customers’ original requirement is
showed as follows, which comes from the EARS II
music-learning system by Professor Landy [13].

The pedagogical strategy that is being modelled is a
holistic one. It works as follows: there is a three-way
approach that is to be presented interdependently. It
consists of a ‘section’ concerning music appreciation
(‘listening’), one focusing on the understanding of
musical, theoretical and technological concepts
(‘understanding’) and another involved with music
making (‘doing’). The heart is the understanding section
as any learner-driven navigation starts here as all key
terms and concepts are embedded in this section. [13]

Extraction is done manually- picked key nouns and
verbs- and the result is shown as below,

Noun Verb
Music appreciation. Listen
Understanding Make music
Concept
Term
Learner
Navigation
Doing

Table 6: Extracted Requirement Vocabularies

(2) Ontologies Classification
Step1: To generate AO by mapping vocabularies into

RO.

Concepts
[C]

Attributes(Range)
[A(Ra)]

SubConce
pt[Sc]

Leaner==Learn
erEntity

leID (String);
lePassword(String);
lrID(String).

Music==Learn
Resource

lrID(String);
lrContents(X);

LearnConten
t

term, concept
==LearnConte
nt

lcID(String);
lcBegin(X);
lcEnd(X).

Delivery(GUI)
deID(String);
locator(LearnContent);

Listening/U
nderstandin
g/Doing

Table 7: AO of Step (1)

Step 2: To add extra vocabularies into ontologies to be
an AO.

In Table 7, Navigation is an extra vocabulary from
requirement. Besides, based on LTSA, there is a potential
vocabulary, LearnerRecord.

Noun: Explanation
Learner Record: to record Learner’s information.
Navigation: to navigate the learning route.

Table 8: Extra Vocabularies

Table 9 is the AO with above vocabularies.

Concepts
[C]

Attributes(Range)
[A(Ra)]

SubConc
ept[Sc]

Leaner
leID (String);
lePassword(String);
lrID(String).

LearnerRecords
LrdID(String);
lrdContents(X).

LearnResource
lrID(String);
lrContents(X);

LearnCo
ntent

LearnContent

lcID(String);
lcBegin(X);
lcEnd(X).

Delivery(GUI)

deID(String);
locator(LearnContent);
hasNavigation(Navigatio
n).

Listening
/Understa
nding/Do
ing

Navigation
Table 9: AO of Step (2)

Step 3: Reduce redundancies for AO. After check,
there is no redundancy in Table 9, so it is the final AO
for EARS II.

(3) Transforming into PIMs
Following transformation rule in section 3.3, a PIM is

generated from AO of EARS II as a UML diagram.

-leID : string
-lePassword : string
-lrID : string

Leaner

-lrdID : string
-lrdContents :
LearnContent

LearnerRecord

Understanding Listening Doing

Navigation-deID : string
-locator : LearnContent
-hasNavigation :
Navigation

Delivery(GUI)

-lcID : string
-lcBegin
-lcEnd

LearnContent

-lrID : string
-lrContents :
LearnContent

LearnResource

navigation

Figure 5: Generated PIM for EARS II

743

Figure 5 shows PIM is generated properly. Under the
proposed rules, classes, attributes, operations, and
relationships are transformed from AO successfully.

5. Conclusion and Further Investigation

This paper proposes an ontology-based model driven
approach for a music learning system - EARS II. It
provides a method to formulate effective platform
independent architecture with pedagogical knowledge.
Also, this approach supplies the gap between software
developers and education experts. The important
contributions of this research are that:

(1) An integrated approach is proposed to guide PIM
modelling.

(2) In designed RO, LTSA and ontology are
combined to provide pedagogical support.

(3) Transformation from ontology to PIM is
supported by five rules. Hence, there is a
procedure to follow in modelling process.

(4) An implementation is performed regarding the
EARS II project. It evaluates the proposed
approach and proves its feasibility and
applicability.

The proposed approach is promising to be applied in
general e-learning system. Therefore, further work is
concerned with automatic transformation, PSMs
generation, and improved implementation in EARS II.

References [3-6, 9, 12-25]

[1] Music, Technology and Innovation Research Centre at De
Montfort University, July 2007. "Index: Electroacoustic
Music (Genres & Categories [G&C]), " [Online].
Available:
http://www.ears.dmu.ac.uk/spip.php?rubrique125. [Access:
January 17, 2009].

[2] L. Landy, "The ElectroAcoustic Resource Site (EARS)
Approaches Its Next Phase: Going global and addressing
the young, " in International Computer Music Conference,
2007, pp. 141-144.

[3] A. Gavras, M. Belaunde and L. F. Pires and J. P. A.
Almeida, "Towards an MDA-Based Development
Methodology," in Lecture Notes in Computer Science:
Software Architecture. Vol.3027. Berlin: Springer, 2004.
pp. 230-240.

[4] D. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing. John Wiley & Sons Inc, 2003.

[5] F. Chen, "Model Driven Software Modernisation." vol.
PhD Leicester: De Montfort University, 2007.

[6] F. Chen, B. Qiao, H. Yang and W. C. Chu, "A Formal
Model Driven Approach to Dependable Software
Evolution," in 30th IEEE International Computer
Software and Application Conference (COMPSAC'06).
Vol.1. Chicago, 2006. pp.205-212.

[7] F. Solms and D. Loubser, "Generating MDA's Platform
Independent Model using URDAD," Knowledge-Based
Systems, vol. 22, 2009. pp. 174-186.

[8] Y. Tian, H. Yang and L. Landy, "MDA-based
Development of Music Learning System," in 14th
International Conference on Automation & Computing,
Uxbridge,England, 2008. pp.97-102.

[9] N. Guarino, "Understanding, Building and Using
Ontologies, " International Journal of Human Computer
Studies. vol. 46. Academic Press, 1997. pp. 293-310.

[10] IEEE Learning Technology Standards Committee, IEEE
Computer Society, IEEE Standard for Learning
Technology -- Learning Technology Systems Architecture
(LTSA).vol. IEEE Std 1484.1, 2003.

[11] F. Farance and J. Tonkel, "Learning Technology Systems
Architecture (LTSA)." vol. 1484.

[12] T. R. Gruber, "Toward principles for the design of
ontologies used for knowledge sharing," International
Journal of Human Computer Studies. vol. 43: Academic
Press, 1995. pp. 907-928.

[13] L. Landy, "The ElectroAcoustic Resource Site (EARS),"
Journal of Music Technology and Education, 2007. pp. 69-
81.

[14] J. Miller and J. Mukerji, MDA Guide Version 1.0. 1. Object
Management Group: Needham, 2003.

[15] J. D. Poole, "Model-Driven Architecture: Vision, Standards
and Emerging Technologies", Workshop on Metamodeling
and Adaptive Object Models, ECOOP, 2001.

[16] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A
UML-Based Modeling Language for Model-Driven
Security”, Lecture notes in computer science. Springer,
2002, pp. 426-441.

[17] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained:
The Model Driven Architecture: Practice and Promise:
Addison-Wesley, 2003.

[18] F. Chen and H. Yang, “Model Oriented Evolutionary
Redocumentation,” in IEEE Computer Software and
Application Conference(COMPSAC'07), Beijing, China,
2007.

[19] D. Oberle, “Semantic Management of Middleware,” ACM
New York, NY, USA, 2004. pp. 299-303.

[20] H. Yang, Advances in UML and XML-based Software
Evolution. London: Idea Group Pub., 2005.

[21] D. Gas , Model Driven Architecture and Ontology
Development. Berlin: Springer, 2006.

[22] M. Uschold and M. Gruninger, "Ontologies: Principles,
methods and applications," Knowledge Engineering Review,
1996.

[23] L. Landy, “Electroacoustic Music Studies and Accepted
Terminology: You Can't Have One Without The Others,”
in EMS06, Beijing, 2006.

[24] L. Yu, J. Zhou, Y. Yi, P. Li, and Q. Wang, "Ontology
Model-Based Static Analysis on Java Programs" in
International Computer Software and Applications
Conference, 2008. pp. 92-99.

[25] F. Chen, S. Li and H. Yang, “A Model Driven Approach to
Evolutionary Redocumentation,” in 31st IEEE
International Computer Software and Application
Conference (COMPSAP'07), Beijing, China, 2007.

i
‘X’ indicates range is uncertain but depends on specific system.

744

Reviewers’ Index

A
Alain Abran

Silvia Teresita Acuna
Taiseera Albalushi
Edward B. Allen

B
Doo-Hwan Bae

Ebrahim Bagheri
Rami Bahsoon
Xiaoying Bai

Maria Teresa Baldassarre
Purushotham Bangalore
Muhammad Ali Barbar

Emese Bari
Daniel Beimborn
Nicolas Belloir

Alessandro Bianchi
Jim Bieman

C
Danilo Caivano
Gerardo Canfora

Joao W. Cangussu
Giovanni Cantone
Jeffrey C. Carver

Garcia-Castro
Jaelson Castro

Christine W. Chan
Keith C.C. Chan

W.K. Chan
Kuang-Nan Chang

Ned Chapin
Shu-Ching Chen

Yinong Chen
Yung-Pin Cheng
Yoonsik Cheon
Peter J. Clarke

Nelly Condori F.
Panos Constantopoulos

Daniel Cooke
Kendra Cooper

Maria Francesca Costabile
Karl Cox

Juan J. Cuadrado-Gallego
Alfredo Cuzzocrea

D
Deepak Dhungana

Jin Song Dong
Jing Dong

Dirk Draheim
Philippe Dugerdil

Reiner Dumke
Schahram Dustdar

E
Christof Ebert

Raimund K. Ege
Faezeh Ensan

Onyeka Ezenwoye

F
Davide Falessi

 Behrouz Homayoun Far
 Robert Feldt

 Eduardo B. Fernandez
 Renata Fortes

G
Kehan Gao

Alessandro Garcia
Felix Garcia
Holger Giese
Itana Gimenes

Swapna Gokhale
Wolfgang Golubski

Des Greer

745

Eric Gregoire

H
Mark Harman
Xudong He

Rattikorn Hewett
Mong-Fong Horng

Mei Hsing
Shihong Huang

Byung-Yeon Hwang

I
Ali Idri
Peter In

J
Clinton Jeffery
Nils Joachim

Natalia Juristo

K
Audris Kalnins
Sascha Konrad

Gunes Koru
Nicholas A. Kraft
Vinay Kulkarni
Gi-Hwon Kwon

L
Mark Last

Konstantin Laufer
Jeff Lei
Tao Li

Shih-Hsi Liu
Xiaodong Liu

Yan (Jenny) Liu
Yi Liu

Hakim Lounis
Zhongyu (Joan) Lu

Heiko Ludwig
Michael R. Lyu

M.
Jose Carlos Maldonado

Jochen Malinowski
Antonio Mana
Emilia Mendes
Harald Meyer

Rym Mili
James Miller

Ana M. Moreno
Henry Muccini

N
Martin Neil

Allen Nikora
Elisabetta Di Nitto

O
Mehmet Orgun

P
Eric Pardede

Witold Pedrycz
Jun Peng

Massimiliano Di Penta
Antonio Piccinno

Alfonso Pierantonio

R
Damith C. Rajapakse

Rajeev Raje
Jose Angel Ramos-Gargantilla

Sanjay Ranka
Marek Reformat
Robert Reynolds
Daniel Rodriguez

Ignacio Garcia Rodriguez
Guenther Ruhe

746

S
Samira Sadaoui
Masoud Sadjadi

Eng. Sattar B. Sadkhan
Ramon Sagarna
Ahmed Salem

S. Alessandro Sarcia
Kamran Sartipi
Peter Sawyer

Douglas Schmidt
Andreas Schonberger

Naeem Seliya
Tony Shan

Rajan Shankaran
Yidong Shen
Michael Shin

George Spanoudakis
Arndt von Staa

Rajesh Subramanyan

T
Jeff Tian

Scott Tilley
Mark Trakhtenbrot

Laurence Tratt
Peter Troger
Jeffrey Tsai

Tse-Ming Tsai
T.H. Tse

V
Antonio Vallecillo
Michael VanHilst

Sira Vegas
Silvia Regina Vergilio

W
Huanjing Wang

Christiane Gresse von Wangenheim
Tim Weitzel

Victor Winter
Eric Wong

Franz Wotawa

X
Haiping Xu

Y
Chi-Lu Yang
Hongji Yang

Ren-Dar Yang
Huiqun Yu

Z
Jing Zhang

Min-Ling Zhang
Zhinan Zhou

Hong Zhu
Xingquan Zhu
Eugenio Zimeo
Andrea Zisman

747

Authors’ Index

A
Moussa H. Abdallah, 703

M.K. Abdi, 122
Alain Abran, 625

Mohammad Abu-Matar, 291
Saeed Abu-Nimeh, 542
Mohsen Afsharchi, 164

Hamed Ahmadi, 147
Syed Nadeem Ahsan, 129

Adriano Bessa Albuquerque, 661
Randa A. Al-Dallah, 703

Fernanda Alencar, 43
Rola I. Al-Khalid, 703

Ziad Al-Sharif, 194, 392
Luis Otavio Alvares, 698

Nelio Alves, 672
Kristofor Amundson, 688

Cesar Andres, 426
Ibrahim Armac, 603

Michele Atkinson, 157
Stefan Augustin, 322
Lerina Aversano, 509
Stefan Axelsson, 412
Ruhaya Ab Aziz, 26

B
Dejan Baca, 412

Ana Paula Terra Bacelo, 67
Anders Back, 460

Eric Baily, 487
Glivia Angelica Rodrigues Barbosa, 33

Marcelo Werneck Barbosa, 33
Emese Bari, 103
Mike Barker, 631

David Barrera, 536
Ricardo Melo Bastos, 67
Michael A. Bauer, 592

Georg Beier, 733
Ayse Bener, 526, 637
Helmut Berger, 218

S. Berhe, 575

Swapan Bhattacharya, 694, 715
Mirco Bianco, 682

Stefan Biffl, 222, 233
Michael Bigrigg, 370
Marcelo Blois, 206
Vania Bogorny, 698
Rob Brennan, 228
Carson Brown, 536
Torben Brumm, 552

Ingrid Buckley, 4

C
Ernest Cachia, 499
Bora Caglayan, 637

Ju Cai, 350
Javier Cano, 676

Alexandre Cardoso, 672
Kathleen M. Carley, 370

Jaelson Castro, 43
Michele Ceccarelli, 252
Elizabeth Cecena, 676

Orieta Celiku, 370
Peggy Cellier, 432
Matilde Celma, 676
Nabendu Chaki, 694
Hung-Fu Chang, 493

Lily Chang, 189
Yeim-Kuan Chang, 338
Ching-Ming Chao, 530

E-Liang Chen, 334
Feng Chen, 569, 739
Shu-Ling Chen, 306

Tsong Yueh Chen, 418
Wei Chen, 406

Yinong Chen, 280
Yixin Chen, 442

Zhenyu Chen, 422
Sheng-Tzong Cheng, 364

Yuh-Ming Cheng, 334
Sucharita Chinchanikar, 93

Chih-Lun Chou, 364

748

Sankhayan Choudhury, 694
Tszyan Chow, 280

Laurel Christian, 487
Chih-Ping Chu, 338

Diana Ciric, 548
Pedro J. Clemente, 721

Nelly Condory, 676
Jose M. Conejero, 721

Jonathan Cook, 438
Juan Jose Cuadrado Gallego, 625

D
Andrew D. da Costa, 212

Cristiano C. da Rocha, 592
Tiago Santos da Silva, 110
Viviane T. da Silva, 212

Caio Stein D'Agostini, 587
Kamini Dandapani, 103

Maya Daneva, 73
M. A. R. Dantas, 592
Gargi Dasgupta, 16

Eduardo Santana de Almeida, 328
Flavia Braga de Azambuja, 67

Deise de Brum Saccol, 564
Paloma de Juan, 246

Jose Luis de la Vara, 55
Silvio Romero de Lemos Meira, 328

Carlos J. P. de Lucena, 212
Renata de Matos Galante, 564

Marian Fernandez de Sevilla, 619
Jano Moreira de Souza, 110
Alessandro De Stasio, 252
Matthew Del Buono, 487

S. Demurjian, 575
Dwight Deugo, 536

Jose Jorge Lima Dias Junior, 328
Maria J. Dominguez-Alda, 619

Antonio Donatiello, 252
Jin Song Dong, 406

Derek Doran, 97
Lucas Drumond, 558
Weichang Du, 312

Mireille Ducasse, 432

Sheryl Duggins, 157

E
Hanan Elazhary, 382

Hugo Estrada, 61
Onyeka Ezenwoye, 16

F
Sandra Fabbri, 386
Xiaocong Fan, 200

Behrouz H. Far, 164
Robert Feldt, 412, 460
Zaiwen Feng, 178, 286

Eduardo B. Fernandez, 4
Sebastien Ferre, 432

Derek Ferris, 487
Javed Ferzund, 129
Renato Fileto, 587

Lance Fiondella, 480
Liana Fong, 16

Josef Froschauer, 218

G
Renata Galante, 727
Jerry Gao, 103, 466

Faiez Gargouri, 258, 613
David Garlan, 370
Vahid Garousi, 141
Markus Gartner, 218
Enrica Gentile, 581
Rosario Girardi, 558

Swapna S. Gokhale, 97, 480
Wolfgang Golubski, 733

Xufang Gong, 456
Lilia Grati, 613

He Guo, 569
Jin-gang Guo, 505

H
Jafar Habibi, 147

749

Fady Hamoui, 597
Tobias Haubold, 733

Michael Hausenblas, 240
Akihiro Hayshi, 666

Keqing He, 178
Xiao-yang He, 505
Xudong He, 189

Matthew J. Henderson, 520
Peter Henderson, 520
Juan Hernandez, 721

Miguel A. Herranz, 619
Carlos A. Heuser, 698

Mong-Fong Horng, 334
Sam Hsu, 93

Gang Huang, 446
Jianchu Huang, 262

Shihong Huang, 93, 514
Wen-Shyang Huang, 334

Zhiqiu Huang, 274
Marianne Huchard, 597

I
Carlos A. Iglesias, 246

Magda G. Ilieva, 49
Katsuro Inoue, 631
Roberto Intonti, 509

Aftab Iqbal, 240

J
Clinton Jeffery, 194, 392

Changbin Ji, 422
Shunhui Ji, 350, 456

Yuting Jiang, 350
Wenpin Jiao, 152
Elena Jurado, 721

K
Denis Kacan, 412
Selim Kalayci, 16
Ali Kamandi, 147

Jian Kang, 262

Omar Abou Khaled, 709
Taghi M. Khoshgoftaar, 81, 116, 344

Ekrem Kocaguneli, 526, 637
Lingjun Kong, 37

Sven J. Korner, 552
Nicholas A. Kraft, 268

Dhananjay Kulkarni, 548
Izuru Kume, 376

Fei-Ching Kuo, 418

L
Edgard Lamounier, 672

Leigh Landy, 739
Heesang Lee, 170
Jen-Kuin Lee, 334

Ana Paula Lemke, 206
Michael Leuschel, 400

Bing Li, 286
Bixin Li, 350, 456

Han Li, 569
Jianzhi Li, 262, 569

Juan Li, 37
Xiang Li, 274

Yin Li, 37
Yan Liang, 268

Bin-Yi Liao, 334
Pengpeng Lin, 81

Chien-Hung Liu, 306
Huai Liu, 418

Ruimin Liu, 569
Yang Liu, 406

Yanhong A. Liu, 406
H. Lounis, 122

Stephen C-Y. Lu, 493
Marcia Lucena, 43

Simone A. Ludwig, 688

M
Jia-kuan Ma, 505
Yutao Ma, 178

Dawn MacIsaac, 312
Jihen Majdoubi, 258

750

Dipankar Majumdar, 715
Heloise Manica, 592

Borja Martin, 619
Alicia Martinez, 61

Ken-ichi Matsumoto, 631
Tomoko Matsumura, 631

Tom McBride, 26
Jim McElroy, 649

Nancy R. Mead, 542
Hong Mei, 446

Manoel Mendonca, 386
Mercedes G. Merayo, 426

Dieter Merkl, 218
Mark Micallef, 499
Yoshiki Mitani, 631
Seiya Miyazaki, 542

Shahrouz Moaven, 147
Hossein Momeni, 609
Akito Monden, 631

Richard Mordinyi, 222
Mirella M. Moro, 564

Thomas Moser, 222, 233
Javed Mostafa, 185

Elena Mugellini, 709
Snehasis Mukhopadhyay, 185

John Mylopoulos, 61

N
Manfred Nagl, 603
Shin Nakajima, 20
Xiaofei Nan, 442

Valeh H. Nasser, 312
Baldoino F. dos S. Neto, 212
Manoel T. de A. Netto, 212

Nicole Novielli, 581
Manuel Nunez, 426
Amjad Nusayr, 438

O
Gabriel Oliveira, 698
Olga Ormandjieva, 49
Declan O'Sullivan, 228

P
Sergio Paim, 672

Mathew Palakal, 185
Jeng-Shyang Pan, 334

Weifeng Pan, 286
Abhijit Pandya, 93
Marilyn Parker, 93
Oscar Pastor, 61

Pushkala Pattabhiraman, 103
Rong Peng, 178

Shengquan Peng, 185
Tao Peng, 286
Xin Peng, 135

Beatriz Perez, 318
Fredrik Petterson, 460

Marcelo S. Pimenta, 727
Macario Polo, 318
Daniel Porto, 386
Sarah Printy, 487

Q
Dong Qiu, 350, 456

R
Zornitza Racheva, 73

Vahid Rafe, 609
Adel T. Rahmani, 609

Rajeev Raje, 185
Krishna Ratakonda, 643

Pedro Reales, 318
P.Krishna Reddy, 87

Daniel Retkowitz, 603
Olivier Ridoux, 432

Jorge Rivas, 676
Ana Regina Rocha, 661

Sergio Assis Rodrigues, 110
Roberto Rodriguez, 721

Gustavo Rossi, 4
Guenther Ruhe, 141, 649

Gaurav Ruhela, 87
Vasile Rus, 442

751

S
S. Masoud Sadjadi, 4, 16

H. Sahraoui, 122
Salamah Salamah, 487

Mireille Samia, 400
Juan Sanchez, 55

Emanuel Santos, 43
R. Saripalle, 575

Anirban Sarkar, 694
Shailashree Savanur, 466
Gregor Scheithauer, 322

Bradley Schmerl, 370
Ingo Seidel, 218

Naeem Seliya, 116
Taemin Seo, 170
Maulik Shah, 103
Mihir Shah, 103

Ali Shahrokni, 460
Mohsen Sharifi, 609
Chih-Chin Shen, 530

Liwei Shen, 135
Etsuya Shibayama, 376

Jiashing Shih, 364
Michael E. Shin, 10
Sajjan Shiva, 442

Darius Sidlauskas, 412
Alberto Sillitti, 682

Carla Silva, 43
Fabio Silva, 558

John C. Sloan, 344
Randy K. Smith, 268

Maria Sokhn, 709
Hui Song, 152

Pablo R. Soria, 619
Giancarlo Succi, 682

Jun Sun, 406
Yanchun Sun, 152, 446

Kiran Gopala Reddy Sunanda, 10
Wikan Danar Sunindyo, 222, 233

T
Dan Tappan, 295

Hendrik Thomas, 228

Craig Thompson, 688
Yingchun Tian, 262, 739
Mohamed Tmar, 258, 613
Jose Leomar Todesco, 592

Alexandre Torres, 727
Maria Tortorella, 509
Ayse Tosun, 526, 637

W.T. Tsai, 280
Giovanni Tummarello, 240

Burak Turhan, 637

U
Muhammad Irfan Ullah, 141

Oana Ureche, 240
Christelle Urtado, 597

V
Michael VanHilst, 514

Augusto Varas, 344
Sylvain Vauttier, 597

Hema Veeraragavathatham, 466
Balaji Viswanathan, 16

Dante Vitale, 252
Devarshi Vyas, 103

W
Bo-Sian Wang, 334
Huanjing Wang, 81

Jian Wang, 178
Qing Wang, 37, 655

Yasha Wang, 356, 505
Yongji Wang, 655
Yuxin Wang, 569

Xiao Wei, 280
Rose Williams, 643
Guido Wirtz, 322

Franz Wotawa, 129
Hong-Chi Wu, 334
Mingzoo Wu, 364
Weibiao Wu, 473

752

X
Jinchun Xia, 466

Junchao Xiao, 655
Bing Xie, 356
Lizi Xie, 655

Baowen Xu, 422
Zhiwei Xu, 473

Y
Chi-Lu Yang, 338

Hongji Yang, 262, 569, 739
Lili Yang, 456

Ye Yang, 37, 655
Zilan Yang, 164
Huilin Ye, 301
Min Yuan, 274

Z
Leopoldo Zepeda, 676

Du Zhang, 450
Shao Jie Zhang, 406

Jian Zhao, 274
Junfeng Zhao, 356
Wenyun Zhao, 135
Zhihong Zhao, 422
Cheng Zhong, 164
Hong Zhou, 569
Wu Zhou, 505

Zhou Zhou, 473
Wenhui Zhu, 446
Didar Zowghi, 26

Fernanda Zulkarnain, 548

753

�

Th

The Tw
Knowl
City, C

The co
knowle
engine
on the

TOPI
Agent
Multi-a
Agent-
Interfa
Agent-
Artific
Secure
Mobile
Mobile
Mobile

Autono
Adapti
Integri
Reliabi
Enterp
Proces
E-Com
Industr

Service
Service
Service
Middle
Service
Quality
Service
Runtim
Seman

Requir
Agent-
Artific
Compo
Autom
Autom
Compu
Embed
Measu
Revers
Progra
Pattern
Reflect
Progra

Knowl
Knowl
Knowl
Knowl
Time a
Knowl
Data v
Uncert
Ontolo
Learnin
Tutorin

he Twenty

wenty-Second Inte
ledge Engineering
California, USA, Ju

onference aims at b
edge engineering t

eering or knowledg
transference of me

ICS
architectures, onto
agent systems
-based learning an
ace agents
-based auctions an
ial life and societi

e mobile and multi
e agents
e Commerce Techn
e Systems

omic computing
ive Systems
ty, Security, and F
ility
rise Software, Mid
s and Workflow M

mmerce Solutions a
ry System Experie

e-centric software
e oriented requirem
e oriented architec
eware for service b
e discovery and co
y of services
e level agreements

me service manage
ntic web

rements Engineerin
-based software en
ial Intelligence Ap
onent-Based Softw

mated Software Spe
mated Software Des
uter-Supported Co
dded and Ubiquitou
urement and Empir
se Engineering
amming Languages
ns and Framework
tion and Metadata

am Understanding

ledge Acquisition
ledge-Based and E
ledge Representati
ledge Engineering
and Knowledge M
ledge Visualization
isualization
tainty Knowledge
ogies and Methodo
ng Software Organ
ng, Documentation

y-Second I

ernational Confere
(SEKE'10) will be

uly 1-3, 2010.

bringing together e
to discuss on relev
ge engineering or b
ethods between bo

ologies, languages

d knowledge disco

nd marketplaces
es
-agent systems

nology and Applic

Fault Tolerance

ddleware, and Too
Management
and Applications
ence and Report

engineering
ments engineering
ctures
based systems
omposition

s (drafting, negotia
ement

ng
ngineering
pproaches to Softw
ware Engineering
ecification
sign and Synthesis

ooperative Work
us Software Engin
rical Software Eng

s and Software En
s

a Approaches

Expert Systems
ion and Retrieval
Tools and Techni
anagement Tools
n

Management
ologies
nization
n Systems

SEKE
Internatio

Hote

Knowled

nce on Software E
e held at the Hotel

experts in software
vant results in eithe
both. Special emph
oth domains.

 and protocols

overy

cation Systems

ols

ation, monitoring a

ware Engineering

s

neering
gineering

ngineering

iques

E 2010
nal Confe

En
el Sofitel, Sa

July 1

O
dge Systems

Engineering and
l Sofitel, Redwood

e engineering and
er software
hasis will be put

and management)

Call F
rence on S

ngineering
an Francisc
 - July 3, 20

Organized by
s Institute G

d
Huma
Multim
Multim

Smart
Pervas
Swarm
Soft C

Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw
Softw

Web a
Web-B
Web-B
Web-B
Web a

CON
The SE
Califo
7/4/20
single

INFO
Papers
MS W
URL:
Explo
more t
referen

INFO
Papers
(webm
http://

If you
seke10

SEKE
Know
3420 M
Skokie
Tel: 84
Fax: 8
E-mai

IMP
March
April 1
May 1

or Pap
Software E

co Bay, USA
010

Graduate Sc

an-Computer Intera
media Application
media and Hyperm

Spaces
sive Computing
m intelligence
Computing

are Architecture
are Assurance
are Domain Mode
are dependability
are economics
are Engineering D
are Engineering T
are Maintenance a
are Process Model
are product lines
are Quality
are Reuse
are Safety
are Security
are Engineering C

and text mining
Based Tools, Appl
Based Knowledge
Based Tools, Syste
and Data Mining

NFERENCE S
EKE 2010 Confer

ornia, USA. The ho
009) to SEKE 2010
/double, not includ

ORMATION
s must be written i

Word format) of the
http://conf.ksi.edu
rer as the browser
than 6 pages of IE
nces). Workshop p

ORMATION
s submitted to SEK

master, program ch
/conf.ksi.edu/seke1

u have any question
0@ksi.edu.

E 2010 Conference
wledge Systems Ins

Main Street
e, IL 60076 USA
47-679-3135

847-679-3166
il: seke10@ksi.edu

PORTANT DA
h 2, 2010 Pap
15, 2010 Not

10, 2010 Cam

ers
Engineerin

A

chool

action
ns, Frameworks, an
media Software En

eling and Meta-Mo

Decision Support
Tools and Environm
and Evolution
ling

Case Study and Exp

lications and Envir
Management

ems, and Environm

SITE (HOTEL
rence will be held a
otel has made avai
0 attendees a disco
ding sales tax.

FOR AUTHO
in English. An elec
e full paper should
u/seke10/submit/S
. Manuscript must

EEE double column
papers should be s

FOR REVIEW
KE'10 will be revie
hair, reviewers...) c
10/review/pass.php

ns or run into prob

e Secretariat
stitute Graduate Sc

u

ATES
per submission due
tification of accep
mera-Ready Copy

ng and Kn

nd Systems
ngineering

odeling

ments

perience Reports

ronment

ments

L INFORMAT
at the Hotel Sofite
ilable for these lim
ount rate of $89 U

ORS
ctronic version (Po

d be submitted usin
ubmitPaper.php. P
t include a 200-wo
n text (include figu
ubmitted to the wo

WERS
ewed electronicall
can login using the
p.

blems, please send

chool

e
tance

y

nowledge

TION)
el, Redwood City,
mited dates (6/30 -

S dollars for

ostscript, PDF, or
ng the following
Please use Internet
ord abstract and no
ures and
orkshops directly.

ly. The users
e following URL:

e-mail to:

t
o

SEKE
2009

Proceedings of the
Twenty-First International
Conference on
Software Engineering &
Knowledge Engineering

Boston, Massachusetts
July 1-3, 2009

Copyright © 2009
Printed by
Knowledge
Systems
Institute
3420 Main Street
Skokie, Illinois 60076
(847) 679-3135
info@ksi.edu
www.ksi.edu
Printed in USA, 2009
ISBN 1-891706-24-1 (paper)

