
PROCEEDINGS

SEKE 2008
The 20th International Conference on

Software Engineering &
Knowledge Engineering

Sponsored by
Knowledge Systems Institute Graduate School, USA

Technical Program
July 1-3, 2008

Hotel Sofitel, Redwood City, San Francisco Bay, USA

Organized by
Knowledge Systems Institute Graduate School

Copyright © 2008 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN 1-891706-22-5 (paper)

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:office@ksi.edu
http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

ii

Foreword
On behalf of the Program Committee Co-Chairs, who are listed below, and the Program Committee of the
2008 International Conference on Software Engineering and Knowledge Engineering (SEKE-2008), it is an
honor to welcome you to SEKE-2008 in San Francisco, California. It has been my pleasure as Program
Committee Chair to help organize this year’s impressive scientific and technical program and the technical
proceedings. The proceedings contain the papers selected for presentation at SEKE-2008. I hope these
proceedings will serve as a valuable reference for the research community.

The International Conference on Software Engineering and Knowledge Engineering has entered its 20th
year. For the past nineteen years, the Conference on Software Engineering and Knowledge Engineering has
provided a unique, centralized, forum for academic and industrial researchers and practitioners to discuss
the application of either software engineering methods in knowledge engineering or knowledge-based
techniques in software engineering. Preference is given to papers that emphasize the transference of
methods between both engineering disciplines; however, outstanding papers on software engineering or
knowledge engineering alone have also been presented.

This year’s program committee consists of the following great team of Vice Program chairs:

Program Co-Chairs:
Guido Wirtz, Bamberg University, Germany
Jerry Gao, San Jose State University, USA
Du Zhang, California State University, USA

The SEKE-2008 Program Committee selected papers for publication in the proceedings and presentation at
the Conference based upon a rigorous review process of the full papers. We received an overwhelming 252
submissions from many countries. The acceptance rate for full papers is 48% and for short papers is 16%.
This year, authors from 37 countries (Australia, Austria, Brazil, Canada, China, Colombia, Czech Republic,
Denmark, Egypt, Finland, France, Germany, India, Iran, Ireland, Italy, Japan, Jordan, Malta, Mexico,
Netherlands, Pakistan, Portugal, Singapore, South Korea, Spain, Sri Lanka, Sweden, Switzerland, Taiwan,
Thailand, Tunisia, Turkey, United Kingdom, United States, Uruguay, Venezuela) will present papers at the
conference.

I appreciate having had the opportunity to serve as the Program Chair for this Conference, and am very
grateful for the outstanding efforts provided by the Program Committee Co-Chairs. The Program
Committee members and reviewers provided excellent support in promptly reviewing the manuscripts. I
want to extend my sincere and deepest thanks to Dr. Shihong Huang and Dr. Masoud Sadjadi as the
Publicity Co-Chairs, Dr. Jose' Carlos Maldonado as the South America Liaison. My appreciation also goes
to the keynote speakers for sharing their insights and experiences with the conference attendees, and to the
SECIML 2008 workshop and special tracks organizers. I am grateful to the authors and sessions chairs for
their time and efforts to make SEKE-2008 a success. As always, Dr. S. K. Chang of the Knowledge
Systems Institute, USA, provided excellent guidance throughout the effort. Last but not the least, we all
owe a special debt of gratitude the heroic efforts of Mr. Daniel Li, of the Knowledge Systems Institute.

Finally, I truly hope that you will enjoy the technical programs of SEKE-2008 and encourage you to
explore and enjoy the various attractions San Francisco has to offer.

Taghi M. Khoshgoftaar
SEKE-2008 Program Chair

iii

The 20th International Conference on
Software Engineering & Knowledge Engineering

(SEKE 2008)

July 1-3, 2008
Hotel Sofitel, Redwood City, San Francisco Bay, USA

Conference Organization

Steering Committee Chair
Shi-Kuo Chang, University of Pittsburgh, USA

Steering Committee
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

Conference Chair
Daniel Cooke, Texas Tech University, USA

Program Chair
Taghi M. Khoshgoftaar, Florida Atlantic University, USA

Program Co-Chairs
Jerry Gao, San Jose State University, USA

Guido Wirtz, Bamberg University, Germany
Du Zhang, California State University, USA

iv

Program Committee
Alain Abran, Universite du Quebec,Canada

Silvia Teresita Acuna, Universidad Autnoma De Madrid, Spain
Edward B. Allen, Mississippi State University, USA
Mikhail Auguston, Naval Postgraduate School, USA

Doo-Hwan Bae, Computer Science Dept. KAIST, Korea
Xiaoying Bai, Tsinghua University, China

Maria Teresa Baldassarre, University of Bari, Italy
Luciano Barezi, Politechnico de Milano, Italy

Emese Bari, eBay Inc., USA
Saida Benlarbi, Alcatel-Lucent, Canada

Sami Beydeda, The Federal Finance Office, Germany
Alessandro Bianchi, University of Bari, Italy
Jim Bieman, Colorado State University, USA

Gary D. Boetticher, University of Huston Clear Lake, USA
Jean-Michel Bruel, University of Pau, France

Barrett Bryant, University of Alabama , Birmingham, USA
Kai-Yuan Cai, Beijing University of Aeronautics and Astronautics, China

Danilo Caivano, University of Bari, Italy
Gerardo Canfora, University of Sannio, Italy

Joao W. Cangussu, University of Texas at Dallas, USA
Giovanni Cantone, University of Rome Tor Vergata, Italy

Jeffrey C. Carver, Mississippi State University, USA
Christine W. Chan, University of Regina, Canada

Keith C.C. Chan, The Hong Kong Polytechnic University, Hong Kong
W.K. Chan, City University of Hong Kong, Hong Kong
Kuang-Nan Chang, Eastern Kentucky University, USA

Ned Chapin, InfoSci Inc., USA
Shu-Ching Chen, Florida International University, USA

Yinong Chen, Arizona State University, USA
Harry Cheng, University of California, Davis, USA

Yoonsik Cheon, University of Texas at El Paso, USA
Peter J. Clarke, Florida International University, USA

Panos Constantopoulos, Athens University of Economics, Greece
Kendra Cooper, University of Texas at Dallas, USA
Maria Francesca Costabile, University of Bari, Italy

Juan J. Cuadrado-Gallego, University of Alcala, Spain
Alfredo Cuzzocrea, ICAR Institute and DEIS Department, University of Calabria, Italy

Scott Dick, University of Alberta, Canada
Jin Song Dong, National University of Singapore, Singapore

Jing Dong, University of Texas at Dallas, USA
Philippe Dugerdil, HEG-University of Applied Sciences, Switzerland

Reiner Dumke, University of Magdeburh, Germany
Schahram Dustdar, University of Technology Vienna, Austria
Christof Ebert, Vector Consulting Services GmbH, Germany

Faezeh Ensan, University of New Brunswick, Canada
Behrouz Homayoun Far, University of Calgary, Canada

Martin S. Feather, Jet Propulsion Laboratory, USA
Robert Feldt, Blekinge Institute of Technology, Sweden
Norman Fenton, Queen Mary University of London, UK

v

Eduardo B. Fernandez, Florida Atlantic University, USA
Todd Fitch, Intuit Corp, USA

Andres Folleco, Florida Atlantic University, USA
Jose Fortes, University of Florida, USA

Renata Fortes, University of Sao Paulo, Brazil
Kehan Gao, Eastern Connecticut State University, USA

Alessandro Garcia, Lancaster University, UK
Felix Garcia, University of Castilla-La Mancha, Spain

Carlo Ghezzi, Politechnico di Milano Technical University, Italy
Holger Giese, University of Potsdam, Germany

Itana Gimenes, UEM/PR/Brazil, Brazil
Swapna Gokhale, University of Connecticut, USA

Jeff Gray, University of Alabama , Birmingham, USA
Des Greer, Queens University Belfast, UK
Eric Gregoire, Universite dArtois, France

Paul Grunbacher, Johannes Kepler University Linz, Austria
Mark Harman, Kings College London, UK

Ahmed E. Hassan, Queens University, Canada
Xudong He, Florida International University, USA

Rattikorn Hewett, Texas Tech University, USA
Mei Hsing, Fu Jen Catholic University, Taiwan

Shihong Huang, Florida Atlantic University, USA
Byung-Yeon Hwang, The Catholic University of Korea, Korea

Ali Idri, ENSIAS, Rabat, Morocco
Peter In, Korea University, Korea

Natalia Juristo, Madrid Technological University, Spain
Gunes Koru, University of Maryland, Balt Cty, USA

Mark Last, Ben-Gurion University of the Negev, Israel
Jeff Lei, University of Texas at Arlington, USA
Tao Li, Florida International University, USA

Yingdar Lin, National Chiao-Tung University, Taiwan
Xiaodong Liu, Napier University, UK

Yan (Jenny) Liu, National ICT, Australia
Yi Liu, Georgia college and State University, USA

Jian Lu, Nanjing University, China
Zhongyu (Joan) Lu, The University of Huddersfield, UK

Heiko Ludwig, IBM TJ Watson Research Center, Almaden, San Jose, USA
Michael R. Lyu, Chinese University of Hong Kong, Hong Kong

Jose Carlos Maldonado, University of Sao Paulo, Brazil
Antonio Mana, University of Malaga, Spain

Emilia Mendes, University of Auckland, New Zealand
Harald Meyer, HPI Potsdam, Germany

Rym Mili, University of Texas at Dallas, USA
James Miller, University of Alberta, Canada

Henry Muccini, Univerita degli Studi de L Aquila, Italy
Nachi Nagappan, Microsoft Research, Seattle, USA

Martin Neil, MQueen Mary (U. of London), UK
Allen Nikora, Jet Propulsion Laboratory, USA

Elisabetta Di Nitto, Politechnico de Milano, Italy
Mehmet Orgun, Macquarie University, Australia

Manish Parashar, Rutgers University, USA

vi

Witold Pedrycz, University of Alberta, Canada
Jun Peng, Chongqing University of Science and technology, China

Massimiliano Di Penta, University of Sannio, Italy
Hoang Pham, Rutgers University, USA

Rajeev Raje, Indiana University-Purdue University, Indianapolis, USA
Sanjay Ranka, University of Florida, USA

Marek Reformat, University of Alberta, Canada
Robert Reynolds, Wayne State University, USA

Daniel Rodriguez, The University of Alcala, Spain
George Roussos, University of London, UK

Guenther Ruhe, University of Calgary, Canada
Masoud Sadjadi, Florida International University, USA

Ramon Sagarna, The University of Birmingham, UK
Ahmed Salem, California State University at Sacramento, USA

Naeem Seliya, University of Michigan at Dearborn, USA
Tony Shan,Wachovia Bank, USA

Yidong Shen, Chinese Academy of Science, China
Martin Shepperd, Brunel University, UK

Simon Shim, SAP Lab. LLC, USA
Michael Shin, Texas Tech University, USA
George Spanoudakis, City University, UK

Arndt von Staa, PUC-Rio, Brazil
Mark Stamp, San Jose State University, USA

Nenad Stankovic, Univ. of Aizu, Japan
Xiao Su, San Jose State University, USA

Rajesh Subramanyan, Siemens Corporate Research, Inc. USA
Jeff Tian, Southern Methodist University, USA

Genny Tortora, University of Salerno, Italy
Peter Troger, Blekinge Institute of Technology, Sweden

T.H. Tse, University of Hong Kong, Hong Kong
Bhekisipho Twala, Pretoria, South Africa

Michael VanHilst, Florida Atlantic University, USA
Silvia Regina Vergilio, UFPR, Brazil

Marlon Vieira, Siemens Corporate Research, Inc. USA
Qianxiang Wang, Beijing University, China

Yingxu Wang, University of Calgary, Canada
Christiane Gresse von Wangenheim, Universidate do Vale do Itaja, Brazil

Tim Weitzel, Bamberg University, Germany
Laurie Williams, North Carolina State University, USA
Victor Winter, University of Nebraska at Omaha, USA

Eric Wong, University of Texas at Dallas, USA
Ye Wu, Advanced Information Technology Center, SAIC, USA

Baowen Xu, Southeast University, China
Zhiwei Xu, University of Michigan at Dearborn, USA

Hongji Yang, De Montfort University, UK
Huiqun Yu, East China University of Science and Technology, China

Cui Zhang, California State University, USA
Zhi-Hua Zhou, Nanjing University, China
Hong Zhu, Oxford Brookes University, UK

Xingquan Zhu, Florida Atlantic University, USA

vii

Eugenio Zimeo, University of Sannio, Italy
Andrea Zisman, City University, UK

Publicity Co-Chairs
Shihong Huang, Florida Atlantic University, USA

Masoud Sadjadi, Florida International University, USA

South America Liasion
Jose Carlos Maldonado, University of Sao Paulo, Brazil

Industry Advisory Committee
Silvia Ahmed, NetApp, USA

Emese Bari, eBay, USA
Cecilia Claudio, SVP/CIO Information Technology, SanDisk Corporation, USA

Yi Deng, Dean, School of Computer Science, Florida International University, USA
Todd Fitch, Intuit Corp, USA

Chuck Fredrick, Chief Technology Officer, Douglas County, Denver, USA
Laura Haas, Distinguished Engineer and Director, Computer Science, Almaden Research Center, IBM

J. S. Ke, Senior Fellow, Institute for Information Industry, Taiwan
Shilpa Kolhatkar, Cisco, USA

Gerry Pompa, Vice President, Compunetix, USA
A. J. Rhem, Senior Partner, A. J. Rhem and Associates Inc., USA

Proceedings Cover Design
Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Conference Secretariat

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Jerilyn Tinio, Knowledge Systems Institute Graduate School, USA

Jessica Braunstein, Knowledge Systems Institute Graduate School, USA
Chen-Cheang Huang, Knowledge Systems Institute Graduate School, USA

Daniel Li, Knowledge Systems Institute Graduate School, USA

viii

Table of Contents

Foreword …………………………………………………………………………..…… iii

Conference Organization …………………………………………………………… iv

How to make an information elephant dance

Dr. Cecilia Claudio ……………………………………………………………………...... 1

Impact! The Challenge of Industrial Research in Computer Science in a
web 2.0 world

Dr. Laura Haas ….……………………………………………………………………...... 2

Building Global Ecosystem for Collaborative Computing Research and
Education

Dr. Yi Deng ...…………………………………………………………………………...... 3

Applications I

Transformations for Rapid Prototyping of Time-critical Applications
Shi-Kuo Chang, Zhoulan Zhang, Colin J. Ihrig, Paolo Maresca, Valentina Ternelli … 4

Case Study: Applying Business Process Management Systems (S)
Gregor Scheithauer, Guido Wirtz ………………………………………………………... 12

Verification of Optimization Algorithms: a Case Study of a Quadratic Assignment
Problem Solver
Tsong Yueh Chen, Huimin Lin, Robert Merkel, Daoming Wang ………………………. 16

ix

Software Engineering Methodology I

Towards a Theoretical Model for Evaluating the Acceptance of Model-driven
Measurement Procedures (S)
Nelly Condori-Fernandez, Oscar Pastor ………………………………………………… 22

Knowledge Transformation from Task Scenarios to View-based Design Diagrams
Nima Dezhkam, Kamran Sartipi …………………………………………………………. 26

PSPCAT: A PSP Data Collection and Analysis Tool (S)
Chien-Hung Liu, Shu-Ling Chen, Yu-Chun Huang …………………………………… 33

Software Process Modeling I

A Systematic Method for Process Tailoring Based on Knowledge Reuse (S)
Xiao-yang He, Ya-sha Wang, Yu-xin Teng, Jin-gang Guo ……………………………... 38

Linking Return on Training Investment with Defects Causal Analysis
Santiago Matalonga, Tomas San Feliu Gilabert ………………………………………... 42

Autonomous Reconfiguration Procedures for EJB-based Enterprise Applications
Thomas Vogel, Jens Bruhn, Guido Wirtz ……………………………………………….. 48

Software Maintenance and Evolution

Cross-language Clone Detection
Nicholas A. Kraft, Brandon W. Bonds, Randy K. Smith ………………………………... 54

Software Maintenance Maturity Model (S3mDSS) A Decision Support System
Alain April, Naji Habra, Arnaud Counet ………………………………………………... 60

Odyssey-MEC: Model Evolution Control in the Context of Model-Driven Architecture
Chessman Correa, Leonardo Murta, Claudia Werner ………………………………….. 67

x

SE with Computational Intelligence and Machine Learning I

Analyzing the Impact of Attribute Noise on Software Quality Classification
Andres A. Folleco, Taghi M. Khoshgoftaar, Lofton A. Bullard ………………………… 73

An Adaptive Neural Network with Dynamic Structure for Software Defect Prediction
Zhiwei Xu, Naeem Seliya, Weibiao Wu ………………………………………………….. 79

Software Engineering Methodology II

Evaluating the Accuracy of Call Graphs Extracted with the Eclipse CDT
Nicholas A. Kraft, Kevin S. Webb ………………………………………………………... 85

A Comparison of Time Tracking Tools for Software Developers
Jouni Lappalainen, Lasse Harjumaa, Jukka Sirvio, Tytti Pokka, Heidi Moisanen,
Hanna Leskinen ………………………………………………………………………….. 91

RealSpec: an Executable Specification Language for Modeling Resources
Amir A. Khwaja, Joseph E. Urban ………………………………………………………. 97

Software Testing I

Predicting Change Propagation in Object-oriented Systems: a Control-call Path Based
Approach and Associated Tool
Linda Badri, Mourad Badri, Daniel St-Yves …………………………………………….. 103

A Qualitative Assessment of the Reverse Engineering Capabilities of Unit Testing Tools
for Understanding Java Programs
Andy Tinkham, Scott Tilley, Tauhida Parveen ………………………………………….. 111

Estimating Event Lifetimes for Distributed Runtime Verification
Christos Kloukinas, George Spanoudakis, Khaled Mahbub ……………………………. 117

SE with Computational Intelligence and Machine Learning II

Ontology-learning Supported Sematic Search Using Cooperative Agents
Cheng Zhong, Zilan (Nancy) Yang, Mohsen Afsharchi, Behrouz H. Far …………….. 123

xi

Automating a Domain Model Aware Reengineering Methodology
Javier Belmonte, Philippe Dugerdil ……………………………………………………… 129

Explaining Product Release Planning Results Using Concept Analysis
Gengshen Du, Thomas Zimmermann, Guenther Ruhe …………………………………. 137

Weighted Static Code Attributes for Software Defect Prediction
Burak Turhan, Ayse Bener ………………………………………………………………. 143

Software Engineering Methodology III

Predicting Software Project Size Using Project Generated Information
Marcio de O. Barros ……………………………………………………………………… 149

Supporting Reusable Component Selection with Use Case Gap-based Development
Effort Estimation
Xin Zhou, Bonnie Ray, Chenhua Feng ………………………………………………….. 155

A Project Scheduling Method Based on Human Resource Availability
Lizi Xie, Junchao Xiao, Dapeng Liu, Qing Wang ………………………………………. 161

Estimating the Effort of Independent Verification and Validation in the Context of
Mission-critical Software Systems - A Case Study (S)
Haruka Nakaoa, Adam Trendowicz, Jurgen Munch …………………………………... 167

Software Process Modeling II

Unified Basic Concepts for Process Capability Models
Clenio F. Salviano, Adriana M. C. M. Figueiredo ……………………………………… 173

Systematic Approach to Risk Management in Software Projects through Process
Tailoring
Lisandra M. Fontoura, Roberto Tom Price ……………………………………………... 179

Process tailoring based on well-formedness rules
Eliana B. Pereira, Ricardo M. Bastos, Toacy C. Oliveira ………………………………. 185

xii

Non-invasive Software Process Data Collection for Expert Identification
Andrea Janes, Alberto Sillitti, Giancarlo Succi …………………………………………. 191

SOA-Based Software Testing and Maintenance

Using XML Patterns to Guide Perturbation Based Testing of Web Services
Paulo N. Cruz Filho, Silvia Regina Vergilio …………………………………………….. 197

Translating OWL Specified Domain Knowledge to Aspect Oriented Model
Juanzi Li, Xinyu You, Xiaoying Bai ……………………………………………………... 203

MAPLE: a Maintenance Approach for Pattern-enabLed rEconfiguration of SOA-based
Enterprise Application
Songlin Hu, Ying Liang, Jiuming Tian, Yicheng Song ………………………………… 209

Reliability Oriented QoS Driven Composite Service Selection Based on Performance
Prediction (S)
Lei Yang, Yu Dai, Bin Zhang ……………………………………………………………. 215

Service Oriented Technology and Web Technology I

Design of an RSS Crawler with Adaptive Revisit Manager (S)
Bum-Suk Lee, Jin Woo Im, Byung-Yeon Hwang, Du Zhang …………………………... 219

QuickPay Online Payment Protocol (S)
Jian Dai, Mark Stamp ……………………………………………………………………. 223

Sharing Application Logic Across Programming Language Boundaries (S)
Dennis S. Patrone, Bina Ramamurthy …………………………………………………... 227

Software Reuse and Component Technology I

Synergizing Collaboration and Reuse in Software Engineering (S)
Stefan Seedorf, Oliver Hummel ………………………………………………………….. 232

xiii

Improving Component Container Development Process through Product Line
Engineering
Guoliang Liu, Yang Li, Jun Wei ………………………………………………………….

238

System and Software Architecture I

.NET Extensions to the �-architecture Description Languages (S)
Zawar Qayyum, Flavio Oquendo ………………………………………………………… 244

Towards Collaborative Development Based on Software Architecture (S)
Yanchun Sun, Hui Song, Xinghua Wang, Wenpin Jiao ………………………………... 250

Choosing a Software Architecture: An Approach and a Case Study
C. Ghezzi, G. Tamburrelli ………………………………………………………………... 255

Formal Methods I

PROTEF: Automatic Verification of Pattern-Based LTL Templates
Luis Garcia, Steve Roach, Salamah Salamah …………………………………………… 261

Formal Specification of Object-oriented Systems with Collaborative Objects and Petri
Nets – a Case Study
Boleslaw Mikolajczak …………………………………………………………………….. 267

A Property Specification Tool for Generating Formal Specifications: Prospec 2.0
Irbis Gallegos, Omar Ochoa, Ann Gates, Steve Roach, Salamah Salamah, Corina Vela 273

SE with Computational Intelligence and Machine Learning III

On the Rarity of Fault-prone Modules in Knowledge-based Software Quality Modeling
Taghi M. Khoshgoftaar, Naeem Seliya, Dennis J. Drown ……………………………… 279

Machine Learning and Value-based Software Engineering: a Research Agenda
Du Zhang …………………………………………………………………………………. 285

Automatic Clustering of Defect Reports
Vasile Rus, Sameer Mohammed, Sajjan Shiva ………………………………………….. 291

xiv

Software Engineering Methodology IV

Subjective Assessment of the Mutual Influence of ISO 9126 Software Qualities: an
Empirical Study
Sandro Morasca …………………………………………………………………………... 297

Reverse Engineering Interface Protocols for Comprehension of Large C++ Libraries
during Code Evolution Tasks
Edward B. Duffy, Jason O. Hallstrom, Brian A. Malloy ………………………………... 303

Knowledge Management to Support the Deployment of a CMMI Level 3 Process
A. P. Cavalcanti, F. Furtado, V. Moura, R. Costa, S. R. L. Meira ……………………… 309

System and Software Architecture II

Code Transformation Techniques and Management Architecture for Self-manageable
Distributed Applications
M. Muztaba Fuad ……………………………………………………………………….... 315

A Decision-centric Architecture Design Method Facilitating the Contextually Capture
and Reuse of Design Knowledge
Xiaofeng Cui, Yanchun Sun, Sai Xiao, Hong Mei ……………………………………… 321

System Architecture Induces Document Architecture (S)
Peter Henderson, Nishadi De Silva ……………………………………………………… 327

A Software Framework for Integrative Physiological Model Simulation (S)
E. Zeynep Erson, M. Cenk Cavusoglu …………………………………………………… 333

Service Oriented Technology and Web Technology II

Combining SOA and BPM Technologies for Cross-System Process Automation
S. Herr, K. Laufer, J. Shafaee, G. K. Thiruvathukal, G. Wirtz …………………………. 339

Ontology-Enabled Generation of Embedded Web Services
Klaus Marius Hansen, Weishan Zhang, Goncalo Soares ………………………………. 345

xv

Modeling Services to Construct Service-oriented Healthcare Architecture for Digital
Home-care Business
Chi-Lu Yang, Yeim-Kuan Chang, Chih-Ping Chu ……………………………………… 351

Databases

Testing Relational Database Schemas with Alternative Instance Analysis
Maria Claudia F. P. Emer, Silvia Regina Vergilio, Mario Jino ………………………... 357

Analyzing Termination and Confluence in Active Rule Base via a Petri Net Approach (S)
Lorena Chavarria-Baez, Xiaoou Li ……………………………………………………… 363

A Fuzzy Trigger Language for Relational Database Systems
Ying Jin, Tejaswitha Bhavsar ……………………………………………………………. 367

Data Mining I

A Comparative Study on Data Representation to Categorize Text Documents (S)
D.A. Meedeniya, A.S. Perera
……………………………………………………………... 371

An Example on Economics-driven Software Mining
Rami Bahsoon, Wolfgang Emmerich ……………………………………………………. 375

VP: an Efficient Algorithm for Frequent Itemset Mining
Qin Ding, Wen Shen Huang ……………………………………………………………... 381

Model-Based Software Engineering I

Evolution Shelf: Exploiting Evolution Styles within Software Architectures
Olivier Le Goaer, Mourad-Chabane Oussalah, Dalila Tamzalit, Abdelhak-Djamel
Seriai ……………………………………………………………………………………… 387

Coverage-based Testing Using Qualitative Reasoning Models
Harald Brandl, Gordon Fraser, Franz Wotawa …………………………………………. 393

xvi

Traceability Models to Control an Aspectual Model-driven Development (S)
Marta S. Tabares, Raquel Anaya, Ana Moreira, Joao Araujo, Fernando Arango …….. 399

Knowledge Engineering

Knowledge-based System Development with Scripting Technology: A Recommender
System Example
Dietmar Jannach …………………………………………………………………………. 405

Integrating Trust Management into Usage Control in P2P Multimedia Delivery
Li Yang, Raimund Ege …………………………………………………………………… 411

Flow Balancing Model for Air Traffc Flow Management (S)
Bueno Borges de Souza, Li Weigang, Antonio Marcio Ferreira Crespo, Victor Rafael
Rezende Celestino ………………………………………………………………………… 417

Applications II

VisRFID: Visualizing Customer Behavior in Geotemporal Space Using RFID
Technology
Beomjin Kim, Keith Bock, Michael Burton, Rod Strong, Benjamin Aeschliman ……… 422

Analyzing Manufacturing Process Knowledge Flows with KoFI
Oscar M. Rodriguez-Elias, Alberto L. Moran, Jaqueline I. Lavandera, Aurora
Vizcaino …………………………………………………………………………………… 428

Performance: a Longitudinal Study
Nenad Stankovic ………………………………………………………………………….. 434

Formal Methods II

A Formal Approach for Translating a SAM Architecture to PROMELA
Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He, Yujian Fu, Leyuan Shi ………… 440

An Algorithm for Computing Loop Functions
Ali Mili, Shir Aharon, Chaitanya Nadkarni ……………………………………………... 448

xvii

Verifying Behavioral Correctness of Design Pattern Implementation
Tu Peng, Jing Dong, Yajing Zhao ……………………………………………………….. 454

Software Requirements Engineering I

Automated Multiperspective Requirements Traceability Using Ontology Matching
Technique
Namfon Assawamekin, Thanwadee Sunetnanta, Charnyote Pluempitiwiriyawej ……... 460

Eliciting Scenarios from Scenarios
Abdolmajid Mousavi, Behrouz H. Far …………………………………………………... 466

Tailoring an Aspectual Goal-oriented Approach to Model Features
Carla Silva, Fernanda Alencar, Joao Araujo, Ana Moreira, Jaelson Castro ………….. 472

Representing Textual Requirements as Graphical Natural Language for UML Diagram
Generation
Magda G. Ilieva, Harold Boley …………………………………………………………... 478

Software Testing II

A Dynamic Adjusting Method for Test Case Prioritization (S)
Bo Qu, Changhai Nie, Baowen Xu, Xiaofang Zhang …………………………………… 484

A Systematic Mapping Study on Non-Functional Search-based Software Testing
Wasif Afzal, Richard Torkar, Robert Feldt ……………………………………………… 488

A Degraded ILP Approach for Test Suite Reduction
Zhenyu Chen, Xiaofang Zhang, Baowen Xu ……………………………………………. 494

A Meta-model to Support Regression Testing of Web Applications
Yanelis Hernandez, Tariq M. King, Jairo Pava, Peter J. Clarke ……………………….. 500

xviii

Service Oriented Technology and Web Technology III

Service Granularity Effects in SOA
Ned Chapin …………………………………………………………..…………………… 506

Securing Service-oriented Systems Using State-Based XML Firewall
Abhinay Reddyreddy, Haiping Xu ……………………………………………………….. 512

Toward Model Checking Web Services Over the Web
John C. Sloan, Taghi M. Khoshgoftaar …………………………………………………. 519

A Metadata Model for Managing and Querying XML Resources in Peer-to-peer Systems
Deise de Brum Saccol, Nina Edelweiss, Renata de Matos Galante …………………….. 525

Formal Methods III

Minimal Observability for Transactional Hierarchical Services
Debmalya Biswas, Blaise Genest ………………………………………………………… 531

Using Boolean Cardinality Constraint for LTS Bounded Model Checking (S)
Sachoun Park, Gihwon Kwon ……………………………………………………………. 537

Japanese Puzzle as a SAT Problem (S)
Sachoun Park, Gihwon Kwon ……………………………………………………………. 543

Business Models for Service-Oriented Architectures

Bridging the Semantic Gap Between Process Documentation and Process Execution
Gregor Scheithauer, Guido Wirtz, Candemir Toklu …………………………………….. 549

Performance Challenges in Migrating to SOA Based Healthcare Systems
Suyog Gaidhani, Vijayananda Jagannatha ……………………………………………... 555

xix

Agent-Based Technology and Intelligence I

Dynamically Optimize Process Execution Based on Process-agent (S)
Jian Dai, Junchao Xiao, Qing Wang, Mingshu Li, Huaizhang Li ……………………... 561

Mobile-FIRST: a Mobile Agent Based First Responder System (S)
Jason Honda, Harry H. Cheng, Donna Djordjevich ……………………………………. 565

Ontology-based and Evolutionary Search for Computational Agents Schemes (S)
Roman Neruda …………………………………………………………..……………….. 569

Software Reuse and Component Technology II

A Goal-oriented Mixed-granularity Component Selection Method for Huge Component
Repositories (S)
Xiaolin Xi, Jiyong Park, Jiakun Liu, Seongsoo Hong ………………………………….. 573

A Case Study: Self-managed COTS Component-based Elevator System (S)
Michael E. Shin, Fernando Paniagua …………………………………………………… 577

Using Scenario Monitoring to Address State Based Crosscutting Concerns (S)
Mark Mahoney, Tzilla Elrad ……………………………………………………………... 581

Methods and Tools for Robust Services and Service Compositions

Negotiating Service Levels - A Generic Negotiation Framework for WS Agreement
Sebastian Hudert, Heiko Ludwig, Guido Wirtz ………………………………………….. 587

Taxonomy on Consistency Requirements in the Business Process Integration Context
Andreas Schönberger, Guido Wirtz ……………………………………………………… 593

Developing Enterprise Applications with Support to Dynamic Unanticipated Evolution
(S)
Hyggo O. de Almeida, Marcos F. Pereira, Marcio de M. Ribeiro, Angelo Perkusich,
Emerson Loureiro, Evandro Costa ………………………………………………………. 599

xx

Data Mining II

Privacy-preserving Classification of Data Streams (S)
Ching-Ming Chao ………………………………………………………………………… 603

Comparing the Use of Traditional and Associative Classifiers towards Personalized
Recommendations
Joel Pinho Lucas, Saddys Segrera, María N. Moreno ………………………………….. 607

Discovering Meaningful Clusters from Mining the Software Engineering Literature
Yan Wu, Harvey Siy, Li Fan ……………………………………………………………... 613

Model-Based Software Engineering II

A Model-Driven Approach for the Semi-automated Generation of Web-based
Applications from Requirements
Ali Fatolahi, Stephane S. Some, Timothy C. Lethbridge ………………………………... 619

A Model-driven Toolset to Support an Approach for Analyzing Integration of Business
Process Aspect of Enterprise Application Integration
Souvik Barat, Vinay Kulkarni ……………………………………………………………. 625

Model-based Test Complexity Analysis for Software Installation Testing (S)
Jerry Gao, Karen Kwok, Todd Fitch ……………………………………………………... 631

Service Oriented Technology and Web Technology IV

A Similarity Analysis Model for Semantic Web Information Filtering Applications
Lucas Drumond, Rosario Girardi, Fabio Silva ………………………………………….. 638

Fuzziness in the Semantic Web: Survey and Future Directions
Seyed Koosha Golmohammadi, Marek Reformat, Witold Pedrycz ……………………... 643

A Language-based Approach to Addressing Reliability in Composite Web Services
Onyeka Ezenwoye, S. Masoud Sadjadi …………………………………………………... 649

xxi

Agents, Web, and Security

A Systematic Process for Domain Engineering
Eduardo Santana de Almeida, Alexandre Alvaro, Vinicius Cardoso Garcia, Daniel
Lucredio, Renata Pontin de Mattos Fortes, Silvio Romero de Lemos Meira …………... 655

Diagnosing Runtime Violations of Security & Dependability Properties
Theocharis Tsigritis, George Spanoudakis ……………………………………………… 661

Model-Based Software Engineering III

Translating Workflow Diagrams into Web Designs
Antonio Navarro, Jorge Merino, Alfredo Fernandez-Valmayor, Jesus Cristobal ……... 667

A Security Domain Model for Static Analysis and Verification of Software Programs
Alan B. Shaffer …………………………………………………………………………… 673

Component Based Architectures for eXtreme Transacion Processing (S)
Luca Vetti Tagliati ………………………………………………………………………... 679

Ontologies I

An Ontology for Controlled Experiments on Software Engineering
Rogerio Eduardo Garcia, Erika Nina Hohn, Ellen Francine Barbosa, Jose Carlos
Maldonado …………………………………………………………..……………………. 685

Improving Automatic Model Creation Using Ontologies
Sven J. Korner, Tom Gelhausen …………………………………………………………. 691

Ontology-based Development of Testing Related Tools
Ellen F. Barbosa, Elisa Y. Nakagawa, Ana C. Riekstin, Jose C. Maldonado ………….. 697

xxii

Software Test Automation and Practice I

Test Order Generation for Efficient Object-oriented Class Integration Testing
Rattikorn Hewett, Phongphun Kijsanayothin, Darunee Smavatkul ……………………. 703

Using Observer Automata to Select Test Cases for Test Purposes
Gordon Fraser, Martin Weiglhofer, Franz Wotawa …………………………………….. 709

Building Testable Components - a Systematic Approach and Its Experimental Study
Jerry Gao, Wrihang Roberto Liang, Radhika Chhabra, Ramyashree Swamyo, Ma
Xiang …………………………………………………………..………………………….. 715

SyncTest: a Tool to Synchronize Source Code, Model and Testing
Xiaoying Bai, Tao Liu ……………………………………………………………………. 723

Agent-Based Technology and Intelligence II

A Virtual Machine for Distributed Agent-oriented Programming
Bin Zhou, Hong Zhu ……………………………………………………………………... 729

MAAEM: a Multi-agent Application Engineering Methodology
Adriana Leite, Rosario Girardi, Uiratan Cavalcante …………………………………… 735

A Semantic Based Certification and Access Control Approach Using Security Patterns
on SEAGENT
Fatih Tekbacak, Tugkan Tuglular, Oguz Dikenelli ……………………………………... 741

Documenting and Modeling Multi-agent Systems Product Lines
Ingrid Nunes, Uira Kulesza, Camila Nunes, Carlos J. P. de Lucena …………………... 745

Model-Based Software Engineering IV

A Study of the Model Explosion Problem in CTL Model Update
Yulin Ding, Yan Zhang …………………………………………………………………... 752

xxiii

Feature Modeling for Context-Aware Software Product Lines
Paula Fernandes, Claudia Werner, Leonardo Murta …………………………………... 758

MEtaGile: A Pragmatic Domain-specific Modeling Environment (S)
Olivier Buchwalder, Claude Petitpierre ………………………………………………….. 764

Software Requirements Engineering II

Obtaining Well-Founded Practices about Elicitation Techniques by Means of an Update
of a Previous Systematic Review (S)
Oscar Dieste, Marta Lopez, Felicidad Ramos …………………………………………… 769

Automatic Discovery of Interactions Between Software Requirements
Edgar S. Calisaya, Marcos R. S. Borges, Maria Luiza M. Campos …………………….. 773

A Model-driven Approach for Software Product Lines Requirements Engineering
Mauricio Alferez, Uira Kulesza, Andre Sousa, Joao Santos, Ana Moreira, Joao
Araujo, Vasco Amaral ……………………………………………………………………. 779

Model Interpretation for Executable Observation Specifications (S)
Mathias Funk, Piet van der Putten, Henk Corporaal …………………………………… 785

Security Technology & Systems

Network Intrusion Detection Based on Bayesian Networks (S)
Alma Cemerlic, Li Yang, Joseph M. Kizza ………………………………………………. 791

Supremum of Agent Number Needed in Analyzing Security Protocols Based on Horn
Logic
Feng Liu, Zhoujun Li, Ti Zhou, Mengjun Li …………………………………………… 795

Towards the Detection of Emulated Environments via Analysis of the Stochastic Nature
of System Calls
Tauhida Parveen, William Allen, Scott Tilley, Gerald Marin, Richard Ford …………... 802

 B

xxiv

SE of Autonomic Grid Computing Systems and Applications I

Self-managed Deployment in a Distributed Environment via Utility Functions
Debzani Deb, Michael J. Oudshoorn, John Paxton …………………………………….. 808

Design of a Fault-tolerant Job-flow Manager for Grid Environments Using Standard
Technologies, Job-flow Patterns, and a Transparent Proxy
Gargi Dasgupta, Onyeka Ezenwoye, Liana Fong, Selim Kalayci, S. Masoud Sadjadi,
Balaji Viswanathan ………………………………………………………………………. 814

Supporting Context-awareness in Web-based Groupware Development (S)
Jose Maria N. David, Marcos R. S. Borges, Jose A. Pino ………………………………. 820

Software Engineering Methodology V

Object-Z to Java/OO-Perl: A Conversion from Object-Z to Executable Skeletal Code
with Dynamically Checkable Design Contracts
Sherri M. Sanders, Cui Zhang …………………………………………………………… 824

An Empirical Study on Modularization of Object Oriented Software
Jing Liu, Bin Liu, Chi K. Tse, Keqing He ……………………………………………….. 830

Bridging the Gap Between Slicing and Model-based Diagnosis
Franz Wotawa …………………………………………………………..………………… 836

Dynamic Analysis and Design Pattern Detection in Java Programs (S)
Lei Hu, Kamran Sartipi …………………………………………………………..………. 842

Service Oriented Technology and Web Technology V

Active Ontologies - an Approach for Using Ontologies as Semantic Web Services
Interfaces (S)
Tiago Cordeiro Marques, Marcio Gurjao Mesquita, Julio Cesar Campos Neto, Pedro
Porfirio Muniz Farias ……………………………………………………………………. 847

Failure Prediction Based Self-healing Approach for Web Service Composition (S)
Yu Dai, Lei Yang, Bin Zhang, Kening Gao ……………………………………………… 853

xxv

A Wed-based data Management and Analysis System for CO2 Capture (S)
Yuxiang Wu, Christine W. Chan ………………………………………………………… 857

Software Test Automation and Practice II

Integrating Random Testing with Constraints for Improved Efficiency and Diversity
Yoonsik Cheon, Antonio Cortes, Gary T. Leavens, Martine Ceberio …………………... 861

Properties of Machine Learning Applications for Use in Metamorphic Testing
Christian Murphy, Gail Kaiser, Lifeng Hu, Leon Wu …………………………………... 867

Fault Injection Testing of User-space File Systems Using Traditional and Aspect-based
Techniques (S)
Jonathan Hittle, Sudipto Ghosh …………………………………………………………. 873

Evaluation of Personalized Information Systems: Application in Intelligent Transport
System (S)
M. Soui, C. Kolski, M. Abed, G. Uster …………………………………………………… 877

SE of Autonomic Grid Computing Systems and Applications II

Dynamis: Dynamic Overlay Service Composition for Distributed Stream Processing
Farshad A. Samimi, Philip K. McKinley ………………………………………………… 881

Wings4Symbian: A Pervasive Computing Middleware for Symbian OS Mobile Devices
Olympio C. Silva Filho, Danilo F. S. Santos, Angelo Perkusich, Emerson Loureiro,
Hyggo Almeida …………………………………………………………..……………….. 887

An OWL/SWRL Based Diagnosis Approach in a Pervasive Middleware
Weishan Zhang, Klaus Marius Hansen …………………………………………………. 893

Model-Based Software Engineering V

A Constraint Model for Automated Deployment of Automotive Control Software
Mihai Nica, Bernhard Peischl, Franz Wotawa ………………………………………….. 899

xxvi

Applying Critical Pair Analysis in Graph Transformation Systems to Detect Syntactic
Aspect Interaction in UML State Diagrams
Zaid Altahat, Tzilla Elrad, Luay Tahat ………………………………………………….. 905

Model Comparison: a Strategy-Based Approach
Kleinner Oliveira, Toacy Oliveira ………………………………………………………... 912

Ontologies II

Towards Metrics for Ontology Balance
Steffen Mencke, Martin Kunz, Reiner R. Dumke ……………………………………….. 918

Techniques for De-fragmenting Mobile Applications: A Taxonomy
Damith C. Rajapakse ……………………………………………………………………... 923

Identifying NFRs Conflicts Using Quality Ontology
Taiseera Al Balushi, Pedro R. Falcone Sampaio, Mitul Patel, Oscar Corcho, Pericles
Loucopoulos …………………………………………………………..…………………... 929

Ontology-based Process Modeling and Execution Using STEP/EXPRESS
Arndt Muhlenfeld, Wolfgang Mayer, Franz Maier, Markus Stumptner ……………….. 935

Reviewer’s Index ………………………………………………………………………… 941

Author’s Index …………………………………………………………………………… 944

Note: (S) means short paper.

xxvii

�

Keynote I:
Why Doesn't the Software Do What I Need It to Do?

or Aligning IT Objectives with the Business
Cecilia Claudio

Abstract
Software Development has a long and varied history that is littered with many failures
and fewer successes. While Software Developers have the best intentions the "results"
when viewed from a management perspective often fall short. Schedule and budget
overruns are common and often the original business objectives (and certainly the
expectations) are not or only partially met. This presentation will examine the historical
reasons that have resulted in unmet expectations and various strategies will be discussed
for ensuring that expectations are aligned with results.

About Dr. Cecilia Claudio
Cecilia Claudio has spent the last 15 years as CIO at leading organizations and has
established a proven track record of transforming IT to become a valued partner to
business users. She is currently CIO at SanDisk Corporation, which she joined in
February 2007. Previously Ms. Claudio was CIO of Mercury Interactive; Zurich
Financial Services; Anthem Blue Cross/Blue Shield and Harvard Pilgrim Health Care.

Ms. Claudio also serves on several boards including Sybase, newScale and DiVitas and
has previously served on the board of Farmers Group Inc. She has also served on CIO
Advisory boards for Cisco, IBM, Siebel, Syndera and Tablus. She was recognized by
Computerworld as one of the Premier 100 IT Executives worldwide in 2001, and has
been recognized as one of the Top 100 Women in Computing in the US by McGraw Hill.

Ms. Claudio earned an MA in Philosophy in 1974 in Lisbon - Portugal.

1

Keynote II:
Impact! The Challenge of Industrial Research in

Computer Science in a Web 2.0 World
Laura Haas

Abstract
The IBM Almaden Research Center, located in San Jose, California, is one of eight IBM
Research Division facilities worldwide and a premier industrial research laboratory.
Currently, over 200 permanent members, postdoctoral scholars, and academic visitors
pursue research in computer science and closely related fields. But pressures on industrial
research in computer science are increasing. Labs need to be nimble to adapt and to
continue to bring value to their company and its customers. In this talk, these pressures and
the resulting demands on industrial labs are illustrated through an exploration of several
research projects from Almaden's computer science department. We discuss how they are
changing IBM's business, their disciplines, and maybe even the world, and the diverse
mechanisms they employ to have impact. Projects will be drawn from five different areas
in which Almaden specializes, including computer science theory, information
management, health informatics, human-computer interaction and services science, and
will illustrate a number of different approaches from traditional, academic-style research to
"standard" industrial research directly influencing IBM's products to research in the
marketplace (featuring work directly with customers, partners and standards bodies) to
spin-outs to engagement with educators to influence curriculum formation.

About Dr. Laura Haas
Laura Haas is an IBM Distinguished Engineer and Director of Computer Science at
Almaden Research Center. She also leads information management research worldwide
across IBM’s eight research labs. Most recently, she was responsible for Information
Integration Solutions (IIS) architecture in IBM's Software Group, after leading the IIS
development team through its first two years. Dr. Haas joined the development team in 2001
as manager of DB2 UDB Query Compiler development. Previously, Dr. Haas was a
research staff member and manager at IBM's Almaden Research Center for nearly twenty
years. In Research, she worked on and managed a number of exploratory projects in
distributed database systems. She is best known for her work on the Starburst query
processor (from which DB2 UDB was developed), on Garlic, a system which allowed
federation of heterogeneous data sources, and on Clio, the first semi-automatic tool for
heterogeneous schema mapping. Garlic technology married with DB2 UDB query
processing is the basis for WebSphere Information Server's federation capabilities, while
Clio capabilities are a core differentiator for the new Rational Data Architect. Dr. Haas is an
active member of the database community, serving as vice chair of ACM SIGMOD from
1989-1997, and, currently, as Vice President of the VLDB Board of Trustees, as well as on
many program committees for technical conferences. She has received several IBM awards
for Outstanding Technical Achievement, and an IBM Corporate Award for her work on
federated database technology. She is a member of the IBM Academy of Technology, an
ACM Fellow, and a member of the board of the Computing Research Association.

2

Keynote III:
Building Global Ecosystem for Collaborative

Computing Research and Education
Yi Deng

Abstract
I will present our experiences in developing international partnerships for collaborative,
interdisciplinary computing research and education, from the Latin American Grid
Consortium (LA Grid) to the NSF sponsored International Partnership for Research and
Education (PIRE) initiative, involving leading universities, industry and governmental
organizations in eight countries on four continents. I will discuss our partnership model,
our problem-driven research framework, as well as our approach of using research
collaboration to drive streamlined education and workforce development.

About Dr. Yi Deng
Yi Deng received his Ph.D. in Computer Science from the University of Pittsburgh in
1992. He currently serves as the Dean of School of Computing and Information Sciences
at the Florida International University (FIU) – the state university of Florida in Miami, a
position he has held since 2002. He is an accomplished leader in computing research and
innovation, and has led many large scale multidisciplinary research and education
initiatives. He founded and directed three research centers, including the Center for
Advanced Distributed System Engineering, the NSF Center of Emerging Technologies
for Advanced Information Processing and High Confidence Systems, and the IBM Center
for Autonomic and Grid Computing at FIU. He co-founded the Latin American Grid (LA
Grid) Consortium with IBM, an innovative international partnership for computing
research and workforce development, with 11 member institutions in the US, Puerto Rico,
Mexico, Spain and Argentina.

33

Transformations for Rapid Prototyping of Time-Critical
Applications

Shi-Kuo Chang1, Zhoulan Zhang1, Colin J. Ihrig1

Paolo Maresca2 and Valentina Ternelli2
1Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260 USA

chang@cs.pitt.edu
and

2Department of Computer Engineering
University of Naples

Naples, Italy
paomares@unina.it

Abstract: Application software nowadays tends
to be more intelligent to perform actions
autonomously, and the development of such
software tends to have shorter turn around time.
In our approach for designing distributed
intelligence systems, each object called a Tele-
Action Object (TAO) is enhanced by an index
cell (IC). Objects enhanced by index cells can
perform actions by themselves. Therefore
intelligence is distributed to these tele-action
objects. An IC system is an active index
consisting of a network of index cells that
embodies a lot of distributed knowledge to
enhance the overall intelligence of the
application software. In the rapid prototyping of
time-critical applications, intelligent application
software can be generated by combining the
technologies of IC cards, IC system (active
index), relational mining and time management
to transform IC card specifications into
executable codes, thus accelerating and
simplifying the development of time-critical
applications. The Methodology for this
transformation approach is described in detail in
this paper.

1. Introduction

Recent advances in communications technology,
web-based applications and service oriented
architecture have stimulated the need for
application software development with shorter
and shorter turn-around time. Nowadays
customers require application software to

possess the following characteristics: (a) it can
integrate web services, components and legacy
software into a functioning system; (b) it must be
operational before deadline and remain
operational until expiration time; and (c) it must
satisfy user-specified timing constraints. These
characteristics indicate that application software
should be intelligent and capable of performing
autonomous actions.

 In our approach for the rapid prototyping of
distributed intelligence systems, each object is
called a Tele-Action Object (TAO), which is a
multimedia object with associated hyper-graph
structure and knowledge structure [4]. A Tele-
Action Object can be as simple as a single piece
of information without connection or relation to
any other objects. Or we can combine several
TAOs in certain connections into a new complex
TAO and/or add certain knowledge to a TAO.
Basically the TAO is further refined as two parts
(G, K): hyper-graph G and knowledge K. For a
TAO the hyper-graph G is used to describe the
connections and relations between the sub-TAOs
within it. The knowledge K is used to describe
the actions.

The private knowledge specific to that object is
enhanced by an index cell (IC). Index cells [2]
behave like agents; however there can be
numerous index cells. Objects enhanced by index
cells can perform actions by themselves.
Therefore intelligence is distributed to these tele-

4

action objects. Objects may also contain
multimedia data. An IC system is an active index
[2, 3] consisting of a network of index cells that
embodies a lot of distributed knowledge to
enhance the overall intelligence of the
application software.

Based upon index cells and tele-action objects, in
the rapid prototyping of time-critical applications
we propose an approach by combining the
following technologies:
– IC cards,
– IC system (active index),
– Relational Mining for appropriate web
 services,
– Time Management Techniques.

The IC cards enable the visual specification of an
application. It captures the interaction patterns
and timing constraints. The interaction patterns
depict how the objects interact with each other,
and the timing constraints indicate how much
time the objects have for action before deadline.
The interaction patterns lead to relational graphs
specification and protocols, finally the
transformation into IC system (active index).
The timing constraints lead to time analysis
based upon Petri net. The intelligence of ICs in
IC system enables the ICs to automatically locate
the agents they want to communicate with, and
this relational mining mechanism can be used to
discover appropriate web services. In
component-based software engineering, “gap
fulfillment” of the right components uses a
similar approach.

The rapid prototyping environment and tools are
illustrated by Figure 1.1. The user/developer
first creates and edits the IC cards using the IC
Card Management System, which generates an
XML specification XMLicc. Next the user/
developer can design an IC system based upon
the user requirements specified by XMLicc using
the Multimedia Knowledge Eclipse
Environment, which in turn produces another
XML specification XMLicx. The IC Software
Engineering Environment accepts the
specification of the IC system XMLicx, compiles
it into executable code, runs the code and

produces runtime snapshots for tracing the
execution. Since traceability is maintained by
the rapid prototyping environment, the
user/developer can go back to change the
requirements by modifying the IC cards,
redesign the IC system, and test it again. Using
the above tools the rapid prototyping and
development of time-critical applications
becomes easier and more effective.

The paper is organized as follows. In Section 2
we present the IC card structure and its XMLicc
schema. In Section 3 the visual editor for the IC
system, MKEE, is described. In Section 4 we
show where the XMLicc schema and XMLicx
schema differ and how to transform one schema
into the other. The compilation of the XMLicx
of an IC system into codes is explained in
Section 5. Section 6 describes the IC software
engineering environment. In Section 7 we
discuss further research topics.

2. IC Card and its XML schema

An IC card is the user’s or developer’s
specification of an active object or an agent [5].
An active object usually interacts with other
active objects according to certain interaction
patterns. There are six basic interaction patterns
– quiet (meaning this active object has no tasks
and has no interactions with other active
objects), by-myself-no-interaction, by-myself-
with-interaction, by-others-no-interaction, by-
others-with-interaction, and mixed (meaning
both active objects have to do tasks and they
have interactions). Figure 2.1 shows an example
of defining an active object using IC card [5], in
which interaction pattern and timing constraint
are included.

Figure 1.1. Tools for the rapid prototyping
environment of time-critical applications.

IC�Card�
Manageme
nt�System�

Multimedia�
Knowledge�
Eclipse�
Environmen
t

IC�Software�
Engineering�
Environmen
t�

IC�Card XMLjcc XMLjcx� Cod

User/developer�

Knowledge�Base�

5

�
Figure 2.1.An IC card with interaction patterns.�

�

The IC Card Management System enables
efficient editing, organization, and management
of IC cards. It maintains a list of icCardEntry,
which is a collection of icCard. Each
icCardEntry has icEntryName, along with
EntryId indicating which group an icCard
belongs to.

For each icCard, it includes the following
attributes:
– icName: name of the IC
– icId: id of the IC
– icDescription: description for the IC
– icIntPattern: how current IC interacts
with another IC, can be one of the six patterns
– icMyTask: task of the current IC
– icTimeCriticalCondition: the timing
constraints imposed on the IC
– icNumberTotal: N, the total number of
IC cards to describe current IC
– icNumberCurrent: i, the ith IC card (if
N IC cards are used to describe the IC)

icCard also has a sub-element icOther, which
keeps the needed information to interact with
another IC. It includes such attributes:
- otherId: the id of the other IC which the
current IC will communicate with
- icOtherName: the name of the other IC
- icOtherMessage: the message sent to
the other IC
- icOtherTask: the other IC’s task

3. The Visual Editor for IC System

The MKEE (Multimedia Knowledge Eclipse
Environment, can be found at

http://eclipse.dis.unina.it/MkeeSite/) is an
Eclipse Development Environment that provides
the modeling of multimedia applications and the
sharing of knowledge owned by multimedia
objects. A multimedia application can be
modelled in terms of intelligent objects, i.e., the
TAOs [4], which are tele-action objects related
by hyper-graph G and enhanced by knowledge
K. Every object reacts differently depending on
the input that it receives from the outside. The
mechanism of answering to the stimuli can be
realized by associating a private knowledge to
the TAO through the Index Cells [2]. Therefore
the application software constructed using this
approach supports both the static description of
the multimedia application in terms of TAO
objects, and the definition of Index Cells net
representing the dynamics structure.

A typical IC system is made up of a series of
interacting Index Cells, which communicate with
each other through message passing. A typical
Index Cell has such structure as shown in Figure
3.1:

Figure 3.1. The Index Cell Structure.

�

The Index Cell is a particular Finite State
Machine which accepts Input messages, executes
operations and sends one or more output
messages to one or more IC or to external
environment. The amount and type (or types) of
IC depends on the state and Input Messages. It is
a Mealy model machine and, according to the
problem domain, could be deterministic or non-
deterministic, but as theory states, any ND-FSM
could be transformed in a deterministic FSM.

An example of the visual specification of an IC
system based on the healthcare application is
illustrated in Figure 3.2. In this IC system,
Camera captures patient’s images and Sensor
captures patient’s health conditions such as
blood pressure and temperature. A disabled

6

patient cannot make alert request by
himself/herself, so an alert is initiated by Sensor
and/or Camera. Emergency Alert forwards the
alert information to Hospital Response when any
parameter’s threshold is reached. Then both the
Doctor and Nurse will be informed. Nurse will
be dispatched to assist the disabled patient if
necessary, and Nurse can communicate with
Doctor.

Figure 3.2. A Disabled Patient IC System.

�

MKEE has the advantage to be a
hardware/software platform independent and
enable designer to speedily generate application.
These advantages are very important in the
healthcare environment where a lot of hardware
devices and interface to manage there exists. The
MKEE tool generates XMLicx specifications of
the IC system. Therefore it can be used to serve
as the front end for the IC system compiler.

4. Mapping between IC Cards and
MKEE IC System

In MKEE the Index Cell is a little different from
the IC depicted by IC card. While mapping the
same name and id from IC card to Index Cell,
Index Cell provides more details such as states
and transitions than IC card does. Although the
visual representations of IC card Management
System and the MKEE IC System are different,
they both can be represented by XML, which
facilitates the sharing of data across different
information systems. Figure 4.1 shows the tree-
structured XML schemas used in IC card and IC
system.

Figure4.1. IC Card XML and IC System XML

�

The mapping between IC card in IC Card
Management System and Index Cell in MKEE
IC system is shown in Table 4.1. The matching
shows that the two specifications are indeed
compatible.

Table 4.1. Map IC Card to MKEE IC System
IC Card Management
System

MKEE IC System

icCardType.icId IndexCell.id
icCardType.icName IndexCell.name
icOtherType.icOtherMess
age

Message.name
(The message sent to
target IC)

icOtherType.icOtherName IndexCell.name of
other IC
(The target IC name
of output message)

icCardType.icMyTask/
icOtherType.icOtherTask/
icCardType.IntPattern

Relate to the action
target in transition
(external/source)

icCardType.
icTimeCriticalCondition

Parameter.dataValue
(Time parameter in
messages)

Specifically for the timing constraints, users can
indicate the time during which a task should be
done in an IC card’s TimeCriticalCondition
field. In an IC system, similar timing constraints
can be imposed through the parameter of
message in transition.

Since both IC Card Management System and
MKEE are built on Ecore models, we can use
IBM Model Transformation Framework (MTF)
to implement partial transformations between the
two models. MTF provides an extensible rules
language that can be used to define what the

7

transformation should accomplish, and a
transformation engine which can interpret the
rules in order to perform the transformation.
MTF works on models described by a
compatible meta-model in order to express the
correspondences in a consistent way. The output
of MTF transformation is a set of mappings that
relate the objects of two models. The user can
specify the mapping as a relation that defines the
type of mapping that will apply to model class
instances.

5. Compiling IC Specifications

Modern compilers are typically made up of five
conceptual phases. The first three phases, lexical
analysis, syntax analysis, and semantic analysis,
are grouped together to form the compiler’s front
end. The fourth conceptual phase is code
optimization and is referred to as the middle end.
The final phase, dubbed the back end, is the code
generator.

The front end is responsible for recognizing
validity, or lack thereof, of source language. It
also shapes the source language into an
intermediate representation (IR), typically an
abstract syntax tree (AST) for the middle and
back ends. In the case of the IC system, the
MKEE visual editor creates the AST. The AST
is then analyzed for proper semantics by the
compiler. Upon completion of semantic analysis,
the task of the front end is complete.

The middle end of the compiler analyzes and
transforms the IR through optimizations, so as to
improve code quality such as reduced execution
time. The IC system compiler does not currently
perform any optimizations.

The back end generates the final output in the
target language. Contrary to the front end, the
back end is source language independent and
target language dependent. The IC system
compiler generates Java classes, which can be
used in cross-platform web applications.

5.1. Input to the IC System Compiler

The MKEE tool is an Eclipse visual editor for
specifying IC system. It outputs an XMLicx file

describing an IC system. XML documents, due
to their inherit tree structure, provide an obvious
mapping to an AST in a typical compiler. Once
the XML file is created, it can be processed by
the IC system compiler. The compiler reads in
the XML file, and creates an internal IR. The
MKEE tool outputs valid XML files. However,
the XML may not be semantically correct for
code generation. Semantic analysis is performed
on the IR, and, pending valid semantics, output
as a set of Java classes. The Java classes can in
turn be used in web based Java Server Pages
(JSP) applications. When a JSP page is
accessed, a web page is dynamically created by
compiling the Java classes used by the page.
The use of server side computation and the Java
programming language allows for platform
independence and rapid development of web
applications.

5.2. Semantic Analysis

The top level of the IC system is a collection of
Index Cells. Index Cells are composed of States
and Transitions. For type checking purposes, all
immediate children of an Index Cell must be of
type State or Transition. States themselves must
have a type of internal, entering, or ending. A
value of entering indicates that this is a start
state. All Index Cells must have exactly one
State of type entering. There can be multiple
ending and internal states. Each Index Cell must
also have a maximum lifetime value. Index
Cell’s which do not persist forever will have a
numeric value specifying the lifetime in
milliseconds. Once the length of the lifetime has
expired, the Index Cell will die.

Transitions are hierarchal objects composed of
Actions, Input Messages, and Output Messages.
Transitions have a source state and a target state.
Both the source state and the target state must be
resolvable to valid State structures. Transitions
also must have a type of boundary or internal.
Internal transitions occur between states in the
same Index Cell. Boundary transitions occur
between states in different Index Cells and are
used to pass messages. Internal transitions

8

areused to drive the progression between States
in an Index Cell.

Messages and Actions are composed of
Parameters. Parameters must have a data type
and data value, as well as a name property.
Output Messages have a Target Index Cell that
must be resolvable to a valid Index Cell. Actions
have simple semantics, requiring only a name.

5.3. Code Generation

The code generator of the IC system compiler
creates a set of Java classes that can be used in
JSP applications. The code generator is based on
a set of transformation rules. The following
example illustrates the transformation from
MKEE formatted XML to Java code. It is worth
mentioning that names in MKEE are entered by
the user. The user-provided names are
transformed to ensure that they are valid
identifiers in the Java language. A simple Index
Cell taken from the previously described
disabled patient IC system is shown in Figure
5.1. The visualization of the Index Cell will
result in the MKEE XML in Listing 5.1. The
MKEE XML is passed to the compiler. The
compiler will apply a set of transformation rules
to the XML resulting in Java source code. Table
5.1 contains a non-exhaustive listing of
transformation rules used in the compiler.
Transforming most of the XML is a relatively
straightforward process. Transitions provide the
most challenging transformation process. The
Transitions along with the States are transformed
into the Index Cell’s transition function. The
Java implementation of the transition function
for the example Index Cell is shown in Listing
5.2.

Figure 5.1. Visualization of an Index Cell.

<indexCell
currentState="//@icSystem/@indexCell.0/@state.0" id="ic1"
maxLifeTime="infinity" name="Camera">
 <state name="state1-1"/>
 <state name="state1-2"/>
 <transition id="trans1"
source="//@icSystem/@indexCell.0/@state.0"
target="//@icSystem/@indexCell.0/@state.1">
 <message xsi:type="ic:OutputMessage" id="msg1"
name="patient's image">
 <targetIC>ic3</targetIC>
 <parameter dataType="time" dataValue="Tc"
name="Tc"/>
 </message>
 <action body="collect image info periodically" id="act1"
name="msg1" target="source"/>
 </transition>
</indexCell>

Listing 5.1. Specification of an Index Cell.

Table 5.1. Example Transformation Rules.

MKEE XML Java
Transformation

<indexCell id=”�”> � public class �
extends
IndexCell

<indexCell
currentState=”�”>

� This.currentState
= �;

<parameter
dataType=”�”/>

� new �()

<action id=”�”> � private void �()
<targetIC>�</targetIC> � �
<message id=”	”> � new 	 (“�”,

“�”, �)

public void transition() {
 switch(this.currentState)
 {
 case icSystemindexCell0state0:
 changeState(icSystemindexCell0state1);
 break;
 case icSystemindexCell0state1:
 if (this.previousState ==
 icSystemindexCell0state0) {
 act1(); postMessage(new msg1("ic1", "ic3",
 new Object()));
 }
 else stateError();
 break;
 default:
 stateError();
 }
}

Listing 5.2. Example Transition Function.

In the target code, each Index Cell is
implemented as a separate Java class. Each
Index Cell class is a thread, in order to allow
multiple Index Cells to run concurrently. The
States of an Index Cell are implemented as a
finite state machine based on the Transitions
between them. Messages are implemented as
objects which are passed between Index Cells.

9

The Messages’ Parameters are implemented as
the objects’ data fields with corresponding
inspector functions. Actions are implemented as
function calls. An Action’s Parameters
correspond to the arguments to the function.
Each Index Cell transitions through its state
machine until its lifetime expires. On state
transitions, any corresponding output messages
and actions are executed. If the next state
expects an Input Message, the thread will sleep
until it receives any messages it is expecting.
Finally, the next transition will be taken.

The code generator can be enhanced by
relational mining as follows. If through the
relational mining technique an appropriate web
service is found to perform certain functions,
then the code generator will only produce the
Java class to invoke the available web service.

6. The IC Software Engineering
Environment

The IC Software Engineering Environment
(ICSEE) is an environment for compiling and
generating Java codes from MKEE XML output.
Figure 6.1 illustrates the interface of ICSEE. The
ICSEE main screen shows the various stages
including UploadXML, Parsing, Generate,
Compile, Load and Instantiate, as well as the
options of Save, Delete, Logout, and ReadMe.
We will also use the disabled patient example
here. Figure 6.1 illustrates the results after
UploadXML, showing the various Index Cells.

After uploading the disabled patient XML which
is generated by MKEE, click the “Parsing”
button. Then all the Index Cells including
Camera, Sensor, Sensor Emergency Alert,
Hospital Response, Expert, and Nurse will be
parsed and displayed in “Index Card
Information” section. The Java source code will
be generated at the server side when user clicks
“Generate”. The server will start compiling the
generated Java source code, and the compiled
classes will be saved. When clicking “Load”, the
generated classes will be loaded into JVM; when
clicking “Instantiate”, the created instances will
be displayed in the "Index Cell Instances"
section.

Using ICSEE the user/developer can easily test
and trace the rapid prototyping process. The
generated Java code also lays the foundation for
further developing application software.

7. Discussion

The transformation approach for rapid
prototyping of intelligent software applications is
described in this paper. The transformation from
IC systems into codes enables the user/developer
to explore the design space based upon different
IC systems. However the transformation from IC
cards to IC systems is still at best a manual
process. Our next objective should be to
(partially) automate this transformation.

There are different ways to realize the
transformation from IC cards to IC system:
developing syntactic transformation on the XML
documents, or developing graph transformation
algorithms to produce a target graph from the
initial graph, or using some AI techniques such
as rule-based approach. Following the first
approach, now we can find the matching
between IC cards and IC system and define the
mapping rules between the two models.
However the IC cards represent an initial
specification without details about interaction
protocols, timing considerations and protocols.
The mapping rules are incompletely defined.
Therefore the other approaches are still
necessary and require further investigation.

Acknowledgements:

Giuseppe Marco Scarfogliero and Lorenzo
Sorrentino implemented the initial version of
MKEE, the IC System Visual Editor. Dan Li
implemented the software engineering
environment (ICSEE) for the IC System
Complier. Robert Zaremba provided the details
on the implementation of remote IC subsystems.
Their contributions are acknowledged.

References:

[1] Kent Beck and Ward Cunningham, "A
Laboratory For Teaching Object-Oriented
Thinking", Proceedings of 1989 ACM OOPSLA
Conference on Object-Oriented Programming,
1989, 1-6.

[2] Shi-Kuo Chang, "Towards a Theory of
Active Index", Journal of Visual Languages and
Computing, Vol. 6, No. 1, March 1995, 101-118.

[3] Shi-Kuo Chang, D. Graupe, K. Hasegawa
and H. Kordylewski, “An Active Medical
Information System using Active Index and
Artificial Neural Network", in Advances in

10

Medical Image Databases, (S. Wong, ed.),
Kluwer, 1998, 225-249.

[4] H. Chang, S. K. Chang, T. Hou and A. Hsu,
"The Management and Applications of Tele-
Action Objects" , ACM Journal of Multimedia
Systems, Springer Verlag, Volume 3, Issue 5-6,
1995, 204-216.

[5] Shi-Kuo Chang, Perry Rajnovic and Mark
Zalar, “IC Card: Visual Specification for Rapid
Prototyping of Time-Critical Applications”,
International Journal of Software Engineering

and Knowledge Engineering, Vol. 17, No. 5,
October 2007.

[6] P. Maresca, S.K. Chang, M. Pesce,
"Application of Active Index to the Management
of E-Learning", Rivista della societ` italiana di e-
learning Rivista Si-el, Vol. 3, No. 2, 2006,
November 2006, 331-341.

 Figure 6.1. Results after UploadXML.

11

Case Study: Applying Business Process Management Systems

Gregor Scheithauer∗ and Guido Wirtz
Distributed and Mobile Systems Group, University of Bamberg

Feldkirchenstraße 21, 96052 Bamberg, Germany
gregor.scheithauer@gmail.com, guido.wirtz@uni-bamberg.de

Abstract

Business Process Management Systems aim to support the
Business Process Management paradigm and to ease legacy
application integration. However, do such systems really
meet real-world requirements? This paper introduces and
discusses a set of criteria which are important for business
process management systems and applies these criteria in
comparing tools from three important vendors, namely IDS

Scheer, Oracle and Intalio based on a real-world case study.
Keywords: BPMS, usability criteria, Webservices

1. Introduction

Business Process Management Systems (BPMS) [7] are sets

of tools to support the Business Process Management (BPM)

life-cycle [5] that are either offered by one vendor, or multi-

ple vendors offer parts of a BPMS. Smith [6] sees a list of key

advantages in using a modern BPMS: it bridges heterogenous

application environments, includes human activity by incor-

porating workflow, allows web service orchestration, provides

the opportunity to customize the whole process for specific

customers and partners, offers an integrated user interface

through a single portal and back-end integration, and monitors

process instances. Rather than introducing new technology

or replacing existing business applications, BPMS integrate

existing technologies and existing applications in a process-

oriented fashion. Based on this notion of BPMS, Smith and

Fingar [7] describe requirements for a BPMS as follows: a

BPMS should be able to support modeling, deploying, and

monitoring business processes, as well as to support integra-

tion of heterogeneous processes, automatization, and collab-

oration.

Table 1 depicts which BPMS tools support what step in

the BPM life cycle. Business process design includes process

documentation with a process notation, such as Event-driven

Process Chain (EPC) [3] notation and Business Process

Modeling Notation (BPMN) [9]. Configuration includes

the transformation [2] from process models into formal

languages such as the Business Process Execution Language

(BPEL) [1]. Integration facilitates better reuse of existing

applications. BPMS allows easy deployment of configured

∗The first author is funded by means of the German Federal Ministry of

Economy and Technology under the promotional reference 01MQ07012.

process models, and to execute them.

This paper summarizes the results of a case study to find

out if prominent existing BPMS meet real-world expecta-

tions. Based on a detailed list of evaluation criteria covering

all steps relevant for BPMS (section 2), a real-life scenario is

used to evaluate two different BPMS - a multi-vendor system

based on tools from IDS Scheer and Oracle as well as a single

vendor system provided by Intalio (section 3). The results

are summarized in table 2. A more detailed description of

the scenario and the case study implementation as well as

a more in-depth discussion of the results is documented in [4].

2. Evaluation Criteria

The criteria used to evaluate BPMS tools take a holistic

view on the entire process. The 23 criteria are clustered into

three layers which are introduced in [5]: questions 1–9 cover

the business layer, questions 10–19 address the integration

layer, and questions 20–23 address the execution layer. The

questions represent real-world requirements originating from

an industry project.

1. What kind of people are involved during design and
improvement in the BPM life cycle. These steps need

to be business driven, and flexible, thus, people who

manage business processes, need to be in the position

to express their understanding of business, without

technically founded limitations.

2. Standard or proprietary design notation points out

if the process design notation in question was stan-

dardized by a group such as OMG or OASIS, or if

it is a vendor specific format. Moreover, does the

standard cover the graphical elements and the persis-

tence of the notation? By using a standard notation,

it is easy to switch process design tools or exchange

process diagrams between different process design tools.

3. Industry acceptance shows if a process design nota-

tion is widely used in industry. Established notations

are more likely to provide supporting technologies

and middle-ware. In addition, if a design notation

is widespread, it might undergo further and constant

improvements.

4. Completeness of process design notations denotes

the expressive power of a notation (cf [8]). Business

12

Table 1. BPM tools used in the process life cycle
Design Configuration Integration Deployment Execution

IDS Scheer (ARIS) SOA Architect X X

Business Architect X

Oracle Process Manager X

BPEL Designer X X X

Intalio Process Server X

Process Designer X X X X

analysts need elements to express business tasks, busi-

ness objects, and business partners. Missing elements

result in complex process diagrams emulating missing

constructs, which are difficult to maintain.
5. Data management. indicates the possibility to design

business objects with the process design tool. Business

objects make the process diagram semantically richer

and better to understand for process stake-holders.
6. Is a methodology behind process design notation. A

methodology covers the semantics of the notation and

reduces the complexity of business process design via

guidelines how to use and how to combine the elements

of the notation.
7. Does the design tool support the full design notation in

its recent version. The more a tool supports a design

notation standard, the greater the ability to exchange

process diagrams.
8. Diagram repository states if the process design tool

accesses diagrams from a shared repository or from a

local machine. A process repository has the advantage

that more people are allowed to access processes, thus,

processes are viewed and re-viewed by more people,

which, to an extend, improve process diagrams.
9. Process version control shows if a process design

tool contains or has access to version control. Next

to a shared repository, this is a very useful tool for

maintaining process diagrams. Business analysts are

able to roll back to a prior version of the process, if nec-

essary, or browse the evolution of a process for a better

understanding of the meaning behind the current version.
10. What kind of people are involved in the configuration

and the integration step of the life cycle. Process

diagrams should not be altered much to be executed.

No change in business logic should be needed, but a

technical mapping is required. People on this level must

not be faced with the complexity of business logic.
11. Compatibility of design notation and execution language

refers to what extent the design notation is transformable

into the execution language. There are two main reasons

for incompatible languages: (i) languages are either

block-oriented or graph oriented or, (ii) languages may

support different concepts and use richer semantics.
12. Standard or proprietary execution language points out

if the execution language in question was standardized,

or if it is vendor specific. This covers the language and

the persistence of the language. Using a standard lan-

guage eases switching execution engines or exchanging

process configurations between different engines.

13. Industry acceptance shows if an execution language is

widely used in industry. Besides the importance to use

standards, it is necessary to find supporting technologies

and middle-ware to support execution languages.

14. Message type management. Is it possible to design or

even import message types with the configuration tool?

Next to configure the flow of business tasks between

applications, departments and companies, it is necessary

to define message types. These types may be imported

from service definitions, database table definitions or

class definitions from a programming language. Oth-

erwise, they might be defined with the configuration tool.

15. Configuration complexity measures how many tools are

needed for a successful process configuration. Besides

an integrated configuration tool, it may necessary to

apply configuration to other middle-ware before deploy-

ment is possible. The more tools and middle-ware need

to be configured, the higher the complexity.

16. Is process configuration part of a shared repository.

This criteria points out if the configuration tool accesses

process configurations from a shared repository or from

a local machine. The former has the advantage that

more people access the configuration, thus process

configuration might be adapted by many people.

17. Is the process configuration attached to the process
diagram. If there is a well-defined link between a

process diagram and the process configuration, changing

the diagram as well as the configuration consistently

becomes much easier.

18. Is process configuration bound to one execution plat-
form refers to the vendor lock issue. This is the case, if

process configurations are only be executed on the plat-

form which the process diagram was configured with.

This may happen if execution engines do not support

standards or industry accepted execution languages.

A vendor lock makes it difficult to switch between

different execution engines.

19. Legacy applications integration explains what kind

of applications and their services may be integrated.

However, middle-ware technology makes it possible to

integrate those application as services.

20. What kind of people are involved in the deployment
step. System analysts should be qualified to accomplish

this task. If other than the system analyst needs to be

involved, process deployment is a too complex step.
13

21. Deployment tool integration tells whether a deployment

tool is integrated into an IDE or not. Users do not need

different tools, the acceptance of the user is higher and

users already know how the tools behave.
22. Deployment complexity measures how many tools are

needed for a successful process deployment. Next to

an integrated deployment tool, it may be necessary

to deploy to more than one execution engine. The

more deployment steps are required, the higher is the

complexity for process deployment.
23. Process version control. This refers to what will

happen if instances of a process are running and a new

version of that process will be deployed. There are

four possibilities. Firstly, all instances are stopped and

deleted. The new process will be deployed. Secondly, a

deployment of a new version is refused, when instances

of that process are still running. Thirdly, the tool tries to

merge running instances with the new process definition.

If a merge is possible, the new version will be deployed,

otherwise the deployment will be refused. Running

instances may run until they terminate. New instances

are based on the new version of the process. The old

version of that process will be archived when every

instance has been terminated.

These criteria are used to evaluate the different tools when

realizing the example process that is introduced next.

3. Case Study and Results

Two companies are involved in the case study: Shade Tree
Garage (STG), a garage shop in New Jersey, repairs cars for

nearly all makes of cars wehereas the SPC company manu-

factures car spare parts and distributes them to garage shops.

Prices for spare parts are not fixed and change on a daily basis.

Shade Tree Garage wants to minimize its stocking costs and

to maximize planning reliability. SPC identifies this demand

as a selling proposition, and intends to offer a Garage Shop
Information System (GSIS) to garage shops.

The business process, which is shown in figure 1, offers

price information and quantity information for spare parts to

garage shops. On the business level, the following business

tasks are identified: (1) Request spare part information on the

garage shop side, (2) Receive spare part information request,
(3) Get price information for spare part, (4) Get quantity in-
formation for spare part, and (5) Send spare part informa-
tion on the SPC side. The business objects include (1) unique
ID for spare parts, (2) Price, and (3) Quantity. On the ser-

vice level, two services are needed: (1) PriceService, and (2)

QuantityService. Both services are available as web services

and provide a WDSL file. The appropriate message exchange

pattern between SPC and garage shops is a Request-Response

pattern. To access the GSIS, the GSISRequestMessage is used

which contains a placeholder for a spare part ID. Spare part

information is received by the GSISResponseMessage which

contains a placeholder for price and quantity information.

The case study comprises an end-to-end business process

that contains reasonable business logic and has relevance

in today’s business. Moreover, it spans more than one

company’s department and more than a single application.

Hence, it is suitable to check technical capabilities and busi-

ness to business integration issues. The results of applying

our criteria when implementation GSIS using two different

BPMS are summarized in table 2; for a detailed discussion

refer to [4].

4. Outlook

Future work has to include better integration of different tools

into a BPMS. Further adoption and improvement of stan-

dards, such as BPEL, and WSDL might tackle this issue. Tool

providers must enhance tool functionality and better separate

the roles in the life cycle. Moreover, process design nota-

tions must advance in the direction of BPMS, that is, that

business processes are intended to be supported by webser-

vices. Lastly, as business processes become executable and

traceable by means of process portals, BPMS should permit

the monitoring of important data and processing of this data.

Business analysts might even model Key Performance Indi-

cators (KPI) with a process design notation and get processed

results for process instances on those indicators. This allows

to identify bottlenecks and shortages in business processes.

Only after lots of ambitious efforts and their successful

completion over the next years, BPMS will become easier to

use during the entire life cycle of business processes.

References

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,

M. Ford, Y. Goland, A. Guzar, N. Kartha, and C. K. Liu. Specifi-

cation: Business Process Execution Language for Web Services

version 2.0. Tech. rep. 2.0, OASIS, January 2007.
[2] C. Ouyang, van der Aalst, M. Dumas, ter Hofstede, and A. H.

M. From business process models to process-oriented software

systems: The BPMN to BPEL way, October 2006.
[3] A.-W. Scheer and M. Nuettgens. Architecture and Reference

Models for Business Process Management. Lecture Notes in
Computer Science, 1806 / 2000:376–389, 2000.

[4] G. Scheithauer and G. Wirtz. Applying Business Process

Management Systems – a Case Study. Bamberger Beiträge

zur Wirtschaftsinformatik 76, Bamberg University, May 2008.

ISSN 0937-3349.
[5] G. Scheithauer, G. Wirtz, and C. Toklu. Bridging the seman-

tic gap between process documentation and process execution.

In The 2008 International Conference on Software Engineering
and Knowledge Engineering (SEKE’08), 2008.

[6] H. Smith. The Emergence of Business Process Management. In-
formation & Software Technology, 45(15):1065–1069, Decem-

ber 2003.
[7] H. Smith and P. Fingar. Business Process Management, the third

wave. Meghan-Kiffer Press, first edition edition, January 2003.
[8] R. Weber. Ontological foundations of information systems.

Coopers & Lybrand: Accounting Association of Australia and
New Zealand, Melbourne, 1997.

[9] S. A. White. Specification: Business Process Modeling Nota-

tion Specification, February 2006.

14

Figure 1. Case Study Process

Table 2. Evaluation: 1-9 – Business Level / 10-19 – Integration Level / 20-23 – Execution Level

ARIS Business Architect Intalio BPMN Designer
1. Process owner, business analyst, process participant Business analyst

2. EPC; not a standard, was published in 1992, XML based,

thus open.

BPMN is an OMG standard, may replace UML activity di-

agram, only standard for graphical elements, not easy ex-

changed.

3. EPC is accepted in the industry for documenting and com-

municating processes within a company. Recently, SAP and

Oracle use ARIS tools to enable business analysts to interact

with middleware.

BPMN is seen as a workflow definition language, since it is

very rich in graphical elements. Business people hesitate to

use it since it is so rich at technical elements. Tool support

is available.

4. Complete BPMN in general.

5. Possible Possible with limitations

6. Architecture Integrated Information Systems (ARIS) Specification with instructions how to use the notation

7. Full support Limited support

8. Global or local diagram repository No repository

9. No version control No version control

ARIS SOA Architect, Oracle BPEL Designer Intalio BPMN Designer
10. System analyst, software developers Business analyst, system analyst, software developer

11. EPC → BPEL 1.1 Poorer to richer semantic translation BPMN → BPEL 2.0 Different semantics

12. BPEL 1.1, Specification from IBM & Microsoft BPEL 2.0, Specification from OASIS

13. Accepted language, great tool support, missing concepts,

such as human people integration

BPEL 2.0 Specification not yet adopted, no other tool sup-

port

14. Complete Complete

15. Configuration with two major tools necessary Configuration with one tool

16. Global or local service repository Local service repository

17. Process diagram and process configuration are linked,

though only the configuration done in the SOA Architect.

It is possible to synchronize changes.

Process diagram and process configuration are attached.

Changes to either process diagram or process configuration

affects the other.

18. No vendor lock Since BPEL 2.0 is not widespread, process configuration is

limited to Intalio’s BPMS

19. Integration through web services Integration through web services (Connectors for SAP)

Oracle Process Manager Intalio Process Server
20. System Analyst Software Developer System Analyst Software Developer

21. Integrated into the BPEL Designer Integrated into the BPMN Designer

22. BPEL Designer and Process Manager BPMN Designer and Process Server

23. Parallel Newer versions overwrite older versions

15

Verification of optimization algorithms: a case study of a quadratic assignment
problem solver

Tsong Yueh Chen∗, Huimin Lin†, Robert Merkel & Daoming Wang

Abstract

It is often difficult to verify the solutions of computationally
intensive mathematical optimization problems. Metamorphic
testing is a technique to verify software test output even when
a complete testing oracle is not present. We apply metamor-
phic testing to a classic optimization problem, the quadratic
assignment problem (QAP). A number of metamorphic rela-
tions for the QAP are described in detail, and their effective-
ness in “killing” mutated versions of an exact QAP solver is
compared. We show that metamorphic testing can be effec-
tively applied to the QAP in the absence of an oracle, and dis-
cuss the implications for the testing of solvers for other hard
optimization problems.

1 Introduction

In software testing, an “oracle” is a means by which it is de-
termined whether the output of a test case meets the software’s
specification. In some cases, a convenient oracle is readily
available; however, there are many situations where the ora-
cle’s evaluation is manually conducted, a slow and error-prone
process. For some applications - a notable example is scien-
tific simulation - even this may not be possible.

Metamorphic testing is a testing technique designed to al-
low the checking of test output where there is no oracle, or it
is too expensive to verify against the oracle [1]. In this pa-
per, we investigate the use of metamorphic testing on a class
of problems where oracles are difficult to find - mathemati-
cal optimization problems. A classic example of this class,
the quadratic assignment problem, serves as the subject of our
case study.

1.1 The Quadratic Assignment Problem

Mathematical optimization problems, in general, involve
finding the maxima or minima of functions, usually taking
∗T.Y. Chen and Robert Merkel (corresponding author) are at at Swin-

burne University of Technology, John St. Hawthorn 3122, Email:
{tchen,rmerkel}@swin.edu.au
†Huimin Lin and Daoming Wang are at the Institute of Software, Chinese

Academy of Sciences, Beijing, China, Email: {lhm,dmwang}@ios.ac.cn

into account constraints of the function parameters. Many
practically important classes of optimization problems are
NP-hard1, or even harder. In practice, given that we need an
actual solution rather than simply knowing the existence of
one, this means that verifying that a solution is indeed opti-
mal can be very difficult.

The Quadratic Assignment Problem (QAP) is a classic
example of this kind of difficult operations research prob-
lem. Informally, the problem can be viewed as “the assign-
ment of facilities to locations” [2]. For example, consider
a company which intends to build k factories denoted as
f1, f2, . . . , fk. The factories can be constructed in k distinct
locations l1, l2, . . . , lk. The output of some factories is used
as the input to others. The amount of goods that will move be-
tween factories is quantified as the “weight”. This weight can
be represented as a k × k matrix w, where w(i, j) represents
the weight of the items moving from factory fi to factory fj .

The relative expense of moving items around between lo-
cations can be represented in another k × k matrix c, where
c(i, j) represents the cost of moving a unit of weight from
location li to location lj . In many real-world applications,
the cost corresponds to the distance between two locations.
Therefore, it is common for c(i, j) and c(j, i) to be the same
for all i and j, and thus for the matrix to be symmetric, but
this is not compulsory according to the formal definition of
the problem. The quadratic assignment problem is to assign
factories to locations such that the total transport cost is min-
imised. More formally [3], the goal is to find a bijection
g : {f1 . . . fk} → {l1 . . . lk} such that the following sum-
mation is minimised:

k∑

i=1

k∑

j=1

w(i, j) c(g (i) , g (j)) (1)

Like many other optimization problems, the solution g may
not be unique (as will be illustrated in section 2.1).

Given that the problem is NP-hard, and the obvious practi-
cal applications, there has been a great deal of research to find
efficient approximation algorithms for the QAP (see [4] for a
survey).

In this paper, however, our interest in the QAP was in
demonstrating the detection of faults in an exact QAP solver.

1in their decision problem form

16

Lau [5] provides such a solver, implemented in Java. Pri-
marily intended for educational purposes, this solver meets
our needs as a relatively straightforward implementation that
could be easily incorporated into a test harness. Lau’s code
base contains a large number of other methods that implement
other optimization algorithms, that are not executed when us-
ing the QAP solver. To avoid irrelevant and time-consuming
processing of this code in our experimental setup, methods
unrelated to the QAP (and thus never executed) were removed
from the source code.

1.2 Metamorphic Testing

Metamorphic testing [1] is a method for verifying test out-
put in the absence of an oracle. It is based on the idea of taking
pre-existing source test cases T , and systematically generat-
ing a set of follow-up test cases T ′ based on T . While it may
not be known directly whether the program output on individ-
ual members of T or T ′ is correct, T ′ is constructed in such
a way so that certain relations between T , T ′, and their cor-
responding outputs, must hold if the software is functioning
according to its specification.

To take a simple example, consider that the software un-
der test is designed to compute the sine of an angle θ. Ele-
mentary trigonometry tells us that sin (−θ) = −sin (θ)∀θ.
We can use this property as a metamorphic relation to derive
follow-up test cases and relationships between the outputs for
the original and follow-up test cases. Therefore, if we have ex-
ecuted a test case θi with output sθi

, we can derive a follow-up
test −θi. The output from the execution of the follow-up test
case −θi must be equal to −sθi

for the metamorphic relation-
ship to hold. If it does not, then a failure in the software under
test is revealed.

This metamorphic relation is a simple one-to-one corre-
spondence between a single source test case and a single
follow-up test case, but metamorphic relations can be defined
between multiple tests. For instance, consider the trigono-
metric tangent function. The tangent addition formula states
that for angles θ and φ, tan(θ + φ) = tan θ+tan φ

1−tan θ tan φ
. To use

this metamorphic relation with two source test cases, θ and
φ, a follow-up test case (θ + φ) is constructed and executed,
and the metamorphic relation is then checked. Furthermore,
while these examples have made use of an equality relation-
ship, this is not obligatory; other relationships can be defined,
such as inequalities, greater-than or less-than relationships, or
non-numeric relationships such as subsets.

Metamorphic testing has been examined in a number of
contexts, including COTS component testing [6], context-
sensitive middleware [7], and programs involving symmetries
[8]. It has been shown to provide effective testing in the ab-
sence of an oracle.

In this paper, we seek to demonstrate the application of
metamorphic testing for a solver of a well-known optimiza-
tion problem.

2 Some Metamorphic Relations for the QAP

For most software under test, there are many valid meta-
morphic relations that might be used to check software cor-
rectness. However, not all of them will be effective in reveal-
ing software failures; as a trivial example, if we have a pro-
gram P that takes some input I (assuming there is no internal
state), and returns P(I), clearly P(I) = P(I) for all I. However,
this will probably reveal only a very few failures.

We devised a number of metamorphic relations that we
hoped would be effective for evaluating the correctness of a
QAP solver. The three types of metamorphic relations (six
relations in total), were identified quickly, over a few hours.
None of the authors had any previous experience in the area of
QAP solvers. All the metamorphic relations we constructed,
were evaluated experimentally. We did not cherry-pick a few
satisfactory metamorphic relations from a much larger, mostly
unsatisfactory bunch!

2.1 Relabelling

The labelling of factories and locations in the QAP does
not affect the nature of the solutions, only their names. For
instance, assume that we have a QAP of size 3 with an opti-
mal assignment of f1 to l2 f2 to l1 and f3 to l3. If we relabel
factories f1, f2, and f3 as f2′, f3′, and f1′ respectively, with-
out changing the weights between the relabelled factories, we
know that assigning factory f2′ to l1, f3′ to l2, and f1′ to l3
will be optimal for the relabelled QAP.

However, for any given QAP, there may be more than one
optimal solution - for a trivial example, consider a QAP where
all weights are zero and hence every possible assignment is an
optimal solution. However, the QAP solver does not guaran-
tee to return any particular optimal assignment. Therefore,
we cannot assume that the optimal solution found to a rela-
belled problem will be the corresponding relabelling of the
optimal assignment found for the original problem. However,
all optimal solutions by definition have the same total cost;
therefore, any optimal solution to the relabelled problem will
have the same total cost as the optimal solution to the original
problem.

Consider the QAP denoted by Qa with weight and distance
matrices defined as follows:

wa =
0 5 8
0 0 0
0 4 0

, ca =
0 7 2
7 0 10
2 10 0

(2)

If we relabel the factories such that f1′ = f3, f2′ = f1, and
f3′ = f2, we can obtain a weight matrix wa′:

wa′ =
0 0 4
8 0 5
0 0 0

(3)

Similarly, if we relabel the locations l1′ = l2, l2′ =
l3, l3′ = l1, we get a distance matrix ca′:

17

ca′ =
0 10 7
10 0 2
7 2 0

(4)

The QAP instance Qa′, with weight matrix wa′ and dis-
tance matrix ca has an optimal solution with exactly the same
cost as Qa. The QAP instance Qa′′, with weight matrix wa

and distance matrix ca′ will also have an optimal solution with
the same cost, as would (though we did not use this) Qa′′′
with wa′ and ca′.

We implemented this metamorphic relation by developing
a tool that randomly permutes the weight of any given prob-
lem instance, and then separately permutes the distance of
the problem instance, resulting in two follow-up problem in-
stances. The QAP solver is then used to solve both the source
problem instance Qa and the two follow-up problem instances
Qa′ and Qa′′. The total cost of all three must be equal.

2.2 Adding a new factory

There is no straightforward way to predict the effect on the
optimal solution after an arbitrary addition of a factory and
location to an existing QAP. However, if it is possible to en-
sure that any optimal solution must have the new factory being
placed in the new location, calculating the cost of the optimal
solution to the expanded problem, is then quite straightfor-
ward.

One way to ensure this is to make the new location a very
long distance M from all the existing locations (much greater
than distances between existing factories), and assign zero
weights between the new factory and all existing factories. As
discussed earlier, there is the possibility that there are multi-
ple optimal solutions to the original QAP, and therefore there
are multiple optimal solutions for the expanded QAP. If this is
the case, we cannot be sure that the optimal solution found by
the solver for the expanded QAP will simply be the optimal
solution found for the original one, with the new factory as-
signed to the new location. Regardless, any optimal solution
must have the new factory in the new location, and hence the
total cost must not change.

One potential flaw in such a scheme is that there are still
certain obvious types of faults that such a relation will not
detect. For instance, consider a bug in the cost calculator
such that it always finds a total cost of 0, regardless of the
assignment of factories to locations. Therefore, a modified
version of this metamorphic relation was sought. Instead of
zero weights between the new factory and all existing facto-
ries, one existing factory fi is chosen randomly, and a weight
smaller than all existing non-zero weights is assigned between
the new factory fn and fi, with weights between the new and
existing factories other than fi set to 0. In this case, the new
factory will still be assigned to the new location, but the cost
of an optimal solution will be increased. If the distance be-
tween fn and fi is d, and the weight is ε, the total cost will

increase by d · ε. For this relationship to hold, there must be
no “isolated” factories (that is, factories for whom all weights
are 0) in the existing problem.

For instance, consider again Qa from the previous section.
The distance matrix for the follow-up test cases, Qa′ and Qa′′,
ca′, is defined as follows:

ca′ =

0 7 2 M

7 0 10 M

2 10 0 M

M M M 0

(5)

We can define the corresponding weight matrices, wa′ for
the zero-weight case, and wa′′ for the non-zero weight case:

wa′ =

0 5 8 0
0 0 0 0
0 4 0 0
0 0 0 0

, wa′′ =

0 5 8 0
0 0 0 0
0 4 0 1
0 0 0 0

(6)

The QAP problem Qa′ made up of wa′ and ca′ will have
the same total cost as Qa. The QAP problem Qa′′ defined by
wa′′ and ca′ will have a total cost M > Qa.

Both versions of this metamorphic relation, linking Qa

with Qa′, and Qa with Qa′′, were implemented as described.

2.3 Merging

The previous metamorphic relations are straightforward
one-to-one correspondences. As explained in section 1.2, it is
possible to define metamorphic relations for the QAP involv-
ing multiple test cases. Here, we define a metamorphic rela-
tion based on the merger of two existing problem instances.

Such a merged problem Qm can be constructed in a fairly
straightforward manner from two smaller problems Qa and
Qb. The factories for Qm are the union of the factories
from Qa and Qb. If la1, la2 . . . , laj designate the locations
in Qa, let lma1, lma2, . . . , lmaj designate all the locations in
Qm taken from Qa. For all possible pairs of lmaα and lmaβ ,
let the distance between them be the same as the distance be-
tween the corresponding locations in Qa, caαaβ . Similarly, for
lmb1, lmb2, . . . lmbk, the distances between the pairs should be
the same as the corresponding locations in Qb. The weights
for the merged problem should be constructed in the same
manner.

The key insight enabling the optimal solution to the merged
problem to be predicted is the distances and the weights be-
tween pairs, where one member of the pair is from Qa and
one from Qb. This can be achieved by making the distance
between the pairs of locations of this type some very large
value M - much larger than the distances between all pairs
where both are from Qa, or both from Qb. The weights be-
tween pairs of factories where one is from Qa and one from
Qb are zero. To minimise the total cost, any optimal solution
will ensure that the very long distances correspond with the

18

zero weights, and thus ensures that the factories correspond-
ing to Qa are in one “cluster” of locations, with the factories
corresponding to Qb at the other cluster.

If the “clusters” of factories end up at the locations corre-
sponding to their corresponding problems, the total cost of the
merged problem will be the sum of the two original problems,
thus giving us a metamorphic relation. But we must guaran-
tee that the factories are located in this manner. The simplest
way to guarantee this is to ensure that the original problems
are of different sizes - any attempt by the solver to place the
factories in the “wrong” cluster will result in at least one very
large cost penalty, and will thus not be an optimal solution.

A second metamorphic relation can be created by a tech-
nique similar to that for adding nodes, by ensuring that there is
one small weight between a pair of factories, one in each clus-
ter. One factory originally from Qa, fmaj , and a factory from
Qb, fmbk are randomly selected, and rather than a zero weight
between them a very small weight ε, smaller than all existing
weights, is added between them, such that w(aj, bk) = ε. The
total cost of the optimal solution to the merged problem is then
the sum of the total costs of the original problems and ε × Δ.

To illustrate this, we consider Qa from the previous exam-
ples, and Qb defined as follows:

wb =

0 20 0 0
0 0 10 0
0 0 0 30
5 0 0 0

, cb =

0 25 15 22
25 0 12 44
15 12 0 68
22 44 68 0

(7)

We can now define follow-up test cases for the two vari-
ants of the metamorphic relations, Qm for the zero-weight
case and Qm′ for the weight case. In both cases, the distance
matrix cm is defined as follows:

cm =

0 7 2 M M M M

7 0 10 M M M M

2 10 0 M M M M

M M M 0 25 15 22
M M M 25 0 12 44
M M M 15 12 0 68
M M M 22 44 68 0

(8)

The weight matrix for the zero-weight case, wm and for
the weight case, wm′, are as follows:

wm =

0 5 8 0 0 0 0
0 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 0 0 20 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 30
0 0 0 5 0 0 0

(9)

wm′ =

0 5 8 0 0 0 0
0 0 0 0 0 0 1
0 4 0 0 0 0 0
0 0 0 0 20 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 30
0 0 0 5 0 0 0

(10)

Qm has a total cost equal to the sums of the costs of Qa

and Qb, and Qm′ has a total cost equal to Qm + M .
Both of these metamorphic relations were implemented as

described, with a small program written to transform two ex-
isting problem instances into a single merged one, with zero
or non-zero weight between a pair of members of different
original problems.

3 Experimental evaluation

As we did not have access to a set of faulty QAP solvers,
we instead used the technique of mutation testing to assess the
effectiveness of our metamorphic relations.

In our experiment, we compared the proportion of mutants
killed by the various metamorphic relations we have devised,
to the proportion killed by checking against a pre-computed
correct solution - that is, with a test oracle.

3.1 Mutations - Jumble

Mutation testing is a well-established technique in which
faults are deliberately inserted into software to form “mu-
tants” to determine whether a set of test cases can detect them.
It can be used for a number of different purposes, including
making an assessment of the quality of test cases in terms of
mutation scores, denoting the proportion of mutants killed.
Jumble [9] is a mutation testing tool designed for assessing
the quality of unit tests written in the JUnit unit testing frame-
work for Java software. Jumble supports the evaluation of a
test case by the following procedure:

• identifying all locations in a Java class where its sup-
ported mutation operations can be performed, producing
a set of mutants.

• For each mutant, executing the specified JUnit test, and
recording whether the test detects a failure.

• Reporting the proportion of mutants detected.

Jumble allows the user to specify a number of different
mutation methods, but by default two types of mutations are
enabled. The first involves conditionals, where a condition in
an if, while, do, and for statements, is replaced by its
negation. The second default mutation type is for arithmetic
operators, where arithmetic operator is replaced by another
according to a predefined table - for instance, the “+” operator
is replaced with “-”. Only the default mutation types were
used in our experiments.

19

3.2 Sample cases as source test data

For our experiment, we required some QAP instances that
could serve as the basis for a suitable source test set. Rather
than generating our own QAP instances, we started with some
sample instances from the QAPLIB library of quadratic as-
signment problem instances, which is widely used in the QAP
research community as a testbed to determine the performance
of new exact and approximate solvers. [10].

The nature of our experiment meant that even the small-
est problems in QAPLIB were too slow to be practical. More
tractable QAP instances were created by selecting a contigu-
ous, randomly selected subset of the factories and locations
in a problem instance in QAPLIB. The use of contiguous
subsets, rather than just selecting random factories and loca-
tions, was on the basis that many of the problem instances
in QAPLIB seemed to have the shortest distances to numeri-
cally contiguous factories, and many had quite sparse weight
matrices, with the vast majority of non-zero weights to near
neighbours. By this measure, we hoped to retain the “flavour”
of the original problems.

Even so, the limited computing resources available made it
impractical to apply Jumble mutations to many different test
cases. Only a few test cases were therefore tried with each
metamorphic relation, but using a large number of mutants.

In this study, for most problems only three problem in-
stances were used as the source test cases (referred to as t1, t2
and t3 in Table 1). 768 mutants were tried with each test case.
For the “merge” relations, two source test cases are required,
and that the two source test cases must be of different sizes.
For these relations, three additional QAP instances, slightly
smaller than t1, t2, and t3, were created by the same shrink-
ing procedure. These new QAP instances were paired with
the corresponding ti to provide the necessary second source
test for the merge relation.

3.3 Testing procedure

For each selected QAP instance and each metamorphic re-
lation (or pairs of problem instances in the case of the “merge”
metamorphic relation), a JUnit test case was created. The JU-
nit test executes the source test case, the follow-up test case,
and checks whether the specified metamorphic relation holds,
and succeeds or fails accordingly. Jumble was then used to
repeatedly apply the JUnit test to all the different mutated ver-
sions of the QAP solver. The proportion of mutants that were
detected was recorded.

4 Results

Table 1 shows the proportion of mutants killed by running
the three test cases and the various metamorphic relations. For
the merge relations, as noted previously, two source test cases
of different sizes were created to apply this relation. For these

Metamorphic Relation Mutants killed (%)
t1 t2 t3

Oracle 71 73 75
Relabelling 13 13 14
Add (zero weight) 25 25 25
Add (weight) 75 74 74
Merge (zero weight) 21 22 24
Merge (weight) 77 74 76

Table 1. Proportion of mutants killed by meta-
morphic relations

relations, therefore, the column ti should be read as “ti and
another, smaller, source test case”.

It is not surprising that the oracle case did not kill all mu-
tants, simply because a single test case is not necessarily a
failure-revealing input for any specific mutant. What may
be slightly more surprising to the reader is that the perfor-
mance of two of the metamorphic relations, “Add (weight)”
and “Merge (weight)” is higher than that of the oracle. This
can also be explained in terms of the number of test cases exe-
cuted. Effectively, “Add (weight)” executes two test cases for
each source test case, and “Merge (weight)” executes three
test cases for each pair of source test cases, while testing us-
ing the oracle only involves the execution of one test case. An
error revealed by any of the source or follow-up test cases may
violate the metamorphic relation and hence reveal the failure.

The results show dramatic differences in the effectiveness
of different metamorphic relations - the “Relabelling” rela-
tion detected around 13% of mutants, whereas the “Merge
(weight)” relation detected around 75% of mutants. This
shows that selection of metamorphic relations is vital for the
effective application of metamorphic testing

Furthermore, we observe that a seemingly minor difference
in a metamorphic relation - the difference between “weight”
and “zero weight” for both the “Add” and “Merge” meta-
morphic relations - results in dramatic differences in failure-
revealing effectiveness. It is interesting to consider why
this small difference contributed to such contrasting failure-
revealing effectiveness. There are a number of possible ex-
planations. One explanation, discussed in [11], is that the
“weight” versions of the metamorphic relations led the pro-
gram execution patterns in the follow-up test cases and the
source test cases to be more divergent, giving more chance
for a bug to be exposed. If so, this indicates that testers should
choose relations that encourage divergent execution patterns.

There are, of course, a wide variety of other metamor-
phic relations that could be tried for this problem. One prop-
erty of the QAP, (and many other optimization problems),
is that a problem instance may have multiple optimal solu-
tions. This makes it difficult to devise metamorphic rela-
tions based on the mapping of factories to locations, rather
than the total cost. However, making metamorphic relations

20

conditional may make this easier. For instance, if problem
instance Q has assignments a and total cost t, we create a
follow-up problem instance Q′ identical to Q except that one
randomly selected weight value wm′(i, j) = wm(i, j) + ε,
where ε is a positive constant. We can unconditionally say
that t ≤ t′ ≤ t + ε ∗ cm(i, j). However, two other conditional
metamorphic relations exist. If the assignment for the optimal
solution for Q′ is still a, the total cost c must increase by pre-
cisely ε · cm(i, j). Furthermore, if the cost increase is strictly
smaller than ε · cm(i, j), a′ the assignment for the optimal
solution to Q′, must be different to a.

In this experiment, we have used an exact solver that
guarantees to find a globally optimal solution to the QAP.
In practice, heuristic approximation algorithms are typically
used; under such conditions, the metamorphic relations above
would not be suitable. Some work has already been conducted
in applying metamorphic testing to heuristic algorithms [12].

The dramatic difference in effectiveness of different meta-
morphic relations suggests it would be desirable to have some
method to screen a set of metamorphic relations to find an ef-
fective subset. This study suggests that mutation analysis may
prove useful for this purpose.

5 Conclusion

In this study, we have shown that metamorphic testing can
be effectively used to find faults in an exact QAP solver.

To our pleasant surprise, we found that it was relatively
easy, even for non-experts in the problem domain, to come
up with effective metamorphic relations. Even given the rel-
atively small scope of this study, we feel that this is a strong
indication of the likely practical utility of this approach.

Our results suggest that the metamorphic testing approach
is very likely to be useful for ensuring the quality of other
solvers of hard optimization problems, given the difficulty of
verifying the correctness of their solutions.

The simplicity of metamorphic testing suggests that rela-
tively inexperienced practitioners, or even end users, can per-
form useful verification using this technique. The tester can
specifically target the properties that are important for their
own use of the software. Furthermore, the technique is very
straightforward to describe, and requires only a small amount
of domain knowledge to apply.

Acknowledgements

This project was supported by the Natural Science Founda-
tion of China (Grant No.60421001) and Australian Research
Council (ARC LX0776490).

References

[1] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic
testing: a new approach for generating next test cases,”

Hong Kong University of Science and Technology, Tech.
Rep. HKUST-CS98-01, 1998.

[2] J. W. Gavett and N. V. Plyter, “The optimal assignment
of facilities to locations by branch and bound,” Opera-
tions Research, vol. 14, no. 2, pp. 210–232, March 1966.

[3] Wikipedia, “Quadratic assignment problem —
wikipedia, the free encyclopedia,” 2007,
[Online; accessed 12-October-2007]. [Online].
Available: http://en.wikipedia.org/w/index.php?title=
Quadratic assignment problem&oldid=139133382

[4] P. Pardalos, F. Rendl, and H. Wolkowicz, “The quadratic
assignment problem: a survey and recent develop-
ments,” in Quadratic assignment and related problems
(New Brunswick, NJ, 1993), P. Pardalos and H. Wolkow-
icz, Eds. Providence, RI: Amer. Math. Soc., 1994, pp.
1–42.

[5] H. T. Lau, A Java Library of Graph Algorithms and Op-
timization. Chapman and Hall/CRC, 2007.

[6] S. Beydeda, “Self-metamorphic-testing components,” in
Computer Software and Applications Conference, 2006.
COMPSAC ’06. 30th Annual International, Chicago,
Illinois, USA, September 2006, pp. 265–272.

[7] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau,
“Integration testing of context-sensitive middleware-
based applications: a metamorphic approach,” Interna-
tional Journal of Software Engineering and Knowledge
Engineering, vol. 6, no. 5, pp. 677–703, 2006.

[8] A. Gotlieb and B. Botella, “Automated metamorphic
testing,” in Proceedings of the 27th International Com-
puter Software and Applications Conference (COMP-
SAC 2003), 2003, pp. 34–40.

[9] Reel Two, “Jumble website.” [Online]. Available:
http://jumble.sourceforge.net/

[10] R. E. Burkard, S. E. Karisch, and F. Rendl, “QAPLIB
- a quadratic assignment problem library,” Journal of
Global Optimization, vol. 10, no. 4, pp. 391–403, 1997.

[11] T. Y. Chen, D. Huang, T. H. Tse, and Z. Q. Zhou, “Case
studies on the selection of useful relations in metamor-
phic testing,” in Proceedings of the 4th Ibero-American
Symposium on Software Engineering and Knowledge
Engineering (JIISIC 2004), 2004, pp. 569–583, Madrid,
Spain.

[12] A. C. Barus, T. Y. Chen, D. D. Grant, F.-C. Kuo, and
M. F. Lau, “Testing of heuristic methods: a case study
of a greedy algorithm,” in preparation.

21

Towards a Theoretical Model for Evaluating the Acceptance
of Model-Driven Measurement Procedures

Nelly Condori-Fernández, Oscar Pastor
Department of Information Systems and Computation

Valencia University of Technology
Valencia-Spain

{nelly,opastor}@dsic.upv.es

Abstract

Software development based on transformation models
has resulted in increasing interest in full automatic
software measurement from conceptual models. In this
paper, we propose a theoretical model for evaluation
of the extent to which a model-driven measurement
procedure would be accepted in practice. We identified
a number of factors that could affect perceived
usefulness and ease of use, and which would in turn
affect the intention to use.

Keywords: acceptance model, software measurement,
model driven process, functional size

1. Introduction

Software measurement, considered in the literature as
essential for software product and process
improvement, has not yet been accepted in practice. A
study reported that 21.1% of software professionals
contacting the Software Engineering Institute from
2004-2005 did not use a measurement method [1].
Another study showed that less than 10 percent of
practitioners classified metrics programs as positive
[2].
In our experience, one important reason for this gulf
between researchers and practitioners is a lack of
confidence among practitioners, who view manual or
semi-automatic software measurement as a complex
and difficult undertaking.
However, with the appearance of the model-driven
development process, several proposals have arisen for
automatic measurement of specific artifacts developed
at early stages and in particular contexts
[3][4][5][6][7].
This paper aims to explore the various factors that
affect practitioners’ perceptions, and how such
perceptions can affect the acceptance of a model-
driven measurement procedure in practice.

A number of models exist for evaluating the
acceptance of new techniques and technology, in
particular the Technology Acceptance Model (TAM)
[8], which is considered the most applicable model in
many usage scenarios. The Method Evaluation Model
(MEM) [9], which uses the same TAM constructs, was
the first to be applied in the context of Functional Size
Measurement (FSM) procedures ([4], [10]).
From preliminary results obtained with MEM, we
define an acceptance model for model driven
measurement procedures, identifying particular factors
that affect perceptions of usefulness and ease of use.
The structure of the paper is as follows. In section 2 we
present a brief overview of the literature. Section 3
presents our proposal to evaluate the acceptance of
FSM procedures. Finally, we present our conclusions
and suggest further work

2. Literature Review

According to Cooper and Zmud [11], acceptance is
one of the stages in the diffusion of technological
innovations, and is defined from an employee
perspective. This means that an organization’s
personnel are induced to commit to Information
Technology application usage. Acceptance must not be
confused with adoption; for Cooper and Zmud,
adoption is defined as stage where negotiations are
started in relation to the decision to adopt the
innovation and mobilizing of organizational and
financial resources for doing so.

The acceptance of technology has been investigated
in a number of different fields (Internet-based health
applications [11], multimedia information systems for
learning [12], CASE tools [13], etc.). However, in the
software measurement field few papers on this subject
were found in the literature. *

* This work has been supported by the SESAMO project, ref.
TIN2007-62894 and co-financed by FEDER.

22

Among the relevant literature is the proposal of
Umarji and Emurian [14] focused on evaluation of the
likelihood of acceptance of a metrics program. Their
model takes as input organizational culture, and the
nature of the metrics program.

Gopal et al. [15] researched the influence of
institutional factors on the assimilation of metrics in
software organizations. They also identified a set of
determinants for metrics program success [16]. These
determinants are divided into organizational and
technical variables.

In our research we do not deal with in-depth
organizational variables, since our proposal focuses on
measurement procedure acceptance from a software
practitioner’s perspective and on the intrinsic nature of
software measures.

To define our acceptance model, we first present
our experience using MEM [9] in the functional size
measurement context.

3. A Theoretical Model for Evaluating the
Acceptance of FSM Procedures

In this section, we define a model for evaluating the
acceptance of FSM procedures in practice by means of
the extension of a theoretical model.

3.1. Previous research: MEM and FSM
In the last seven years we have been working on

functional size measurement at early stages of the
model-driven development process, defining and
empirically evaluating three FSM procedures: 1)
OOmFP [4], a measurement procedure designed for
sizing conceptual schemas in function points; 2)
OOmFPweb [4], extended procedure to size Web
applications; and 3) RmFFP [6], a procedure designed
to measure size from object-oriented functional
requirements specifications.

The empirical evaluation of these FSM procedures
was carried out by applying MEM [9], with the results
of this evaluation reported in [4] and [10]. MEM
combines Rescher’s theory of pragmatic justification
[17], and Davis’s Technology Acceptance Model
(TAM) [8]. The core of the MEM consists of the same
perception-based constructs as the TAM, but which
were adapted to evaluate Information System design
methods. These constructs are called the Method
Adoption Model (MAM).
• Perceived Ease of Use: the extent to which a person

believes that using a particular method would be free
of effort.

• Perceived Usefulness: the extent to which a person
believes that a particular method will be effective in
achieving intended objectives.

• Intention to Use: the extent to which a person
intends to use a particular method.
We used MEM in its original form, and analyzed its

applicability to functional size measurement, based on
an integrative review of these three empirical
evaluations reported in [18].

Only one of the MEM relationships was
corroborated. This means that the intention to use an
FSM procedure is influenced more significantly by
perceived usefulness than by perceived ease of use. In
addition, the relationship between perceived usefulness
and ease of use was not significant for the FSM
procedures context.

We therefore came to the conclusion that perceived
usefulness should not only be evaluated with respect to
the effectiveness of the FSM procedure in achieving
objectives intended by the users, but that other factors
should be included.

3.2. Extending the MAM to evaluate FSM
procedures
We have extended the MEM core (MAM) by the
inclusion of the factors that influence perceptions of
usefulness and ease of use when users are using a
model driven FSM procedure (see Figure 1). Two
types of factors were identified:
• Intrinsic Factors corresponding to quality and

tangibility of results, and the minimum number of
actions required for calculating the functional size
using an automated measurement procedure.

• Extrinsic Factors corresponding to the experience
and job relevance of the software practitioner.

Next, we describe each of the factors included in our
proposed model.

Figure 1. Model for evaluating acceptance of an
FSM Procedure

3.2.1. Quality of results. According to the ISO/IEC
14143-3 report [19], certain performance properties of
an FSM method have to be taken into account when
analyzing the quality of results. These properties are

23

expressed in terms of accuracy, repeatability,
reproducibility and convertibility:

Accuracy: closeness of agreement between a
quantity value obtained by measurement and the true
value of the measurand.
Precision: closeness of agreement between quantity
values obtained by repeated measurements of a
quantity, under specified conditions, i.e. repeatability
and reproducibility.
Convertibility: this is defined as the ability to convert
the results obtained by applying two or more FSM
Methods in the measurement of the same set of
Functional User Requirements.

Automated measurement achieves precision.
Therefore, we consider accuracy and convertibility as
quality properties that may influence the usefulness
perceived by the users when they use a Model-Driven
FSM procedure. We therefore propose that:
P1: There will be a positive relationship between
Quality of results and Perceived Usefulness

3.2.2 Tangibility of results. This factor is also called
result demonstrability, which has been refined by
Moore and Benbasat for information systems and is
derived from Innovation Diffusion Theory used in the
sociology field [20].
In our case, even if a measurement procedure produces
effective (accurate, precise and convertible) results, if
these results are not interpreted by an indicator (they
are “indistinct”), users will have difficulty
understanding the usefulness of the measurement
procedures.
For this reason, we have redefined this factor as the
extent to which an individual believes that the results
of using a FSM procedure can be observable and
understandable. Thus we propose:
P2: There will be a positive relationship between
Tangibility of Results and Perceived Usefulness

3.2.3. Minimum actions. Previous empirical studies,
[4], [23] corroborated that for manual measurement,
measurement productivity1 has a positive effect on
perceived ease of use. However, this variable is
irrelevant for fully automated FSM procedures. We
believe that perceived ease of use could be influenced
by the minimum number of actions necessary for the
obtaining of the functional size. Therefore, we propose:
P3: There will be a positive direct relationship
between Minimum Number of Actions required to
obtain the functional size and perceived ease of use.

3.2.4 Job relevance. It is possible for a model-driven
measurement procedure not to be perceived as useful

1 Number of size units that can be measured per unit of time.

even though the procedure provides accurate and
convertible results, possibly because the use of the
FSM procedure is not relevant for the job type (e.g.
executive, project manager, designer, etc.) of the
software practitioner concerned.
We have redefined job relevance as the extent to which
an individual believes that an FSM procedure is
applicable and relevant to his or her job. Thus we
intend to examine whether:
P4: There will be a positive relationship between Job
Relevance and Perceived Usefulness

3.2.5 Experience. Various studies assert that subjects
with direct hands-on experience would be more likely
to hold stronger perceptions as to ease of use and
perceived usefulness of a technology, based on the
subjects’ ability to generate more beliefs and to
extrapolate from past behaviors related to their
experience [21],[22]. We hypothesize that
measurement and modeling experience should have a
strong effect on user’s perceptions. For instance, less
experienced modelers may be unable to adequately
understand the software artifact to be measured, which
could cause erroneous perceptions regarding usefulness
and ease of use of an FSM procedure.
We define the experience factor as knowledge or skill
gained in use measurement and development methods
over a period of time.
Thus we propose the following:
P5: There will be a positive relationship between
measurement and modeling Experience and Perceived
Ease of use.
P6: There will be a positive relationship between
measurement and modeling Experience and Perceived
Usefulness.

3.2.6 External factors. These are factors that do not
depend on the measurement procedure in itself, but on
the organization as a whole. These include where the
business follows trends in the market based on
advertising and marketing or peer company use, or has
business priorities giving rise to time or cost
constraints, or the maturity level of an organization
[16]. We intend to determine whether these external
factors influence the intention to use a Model Driven
FSM procedure. Thus, we propose the following
premise:
P7: There will be a relationship between External
Factors and the intention to use.

4. Conclusions and further work
We have defined a theoretical model to evaluate the

acceptance of model-driven measurement procedures
from an individual perspective. This model was

24

defined by means of the extension of the MEM core
(MAM), by including two types of factors that
influence perceptions of usefulness and ease of use
(intrinsic and extrinsic factors).

We have considered result quality to be a primary
and intrinsic factor that will affect the intention to use
model driven measurement procedure. As these results
cannot in themselves be interpreted, another intrinsic
factor was used to evaluate whether obtained results
are understandable by practitioners when using an
estimation model (are tangible). Finally, as this
measurement is automated, manual measurement
productivity has not been considered. The minimum
actions required to obtain functional size in a model
driven context have been taken into account.

With respect to extrinsic factors that will influence
perceptions of usefulness and ease of use, we have
considered the factors that affect the practitioner’s
viewpoint when using a measurement procedure (e.g.
level of experience, job relevance and organizational
factors).

Finally, we plan to carry out an empirical study to
verify causality relationships between both extrinsic
and intrinsic factors and .the MAM constructs.

References

[1] Kasunic M., State of Software Measurement
Practice Survey, Carnegie Mellon, Software Engineering
Institute, 2006, www.sei.cmu.edu/sema/presentations/stateof-
survey.pdf
[2] Daskalantonakis M., A Practical View of Software
Measurement and Implementation Experiences Within
Motorola, IEEE Trans. Software Eng., vol. 18, pp.998-1010,
Nov. 1992.
[3] Abrahão S., Gomez J., Insfran E. Mendes E., A
Model-Driven Measurement Procedure for Sizing Web
Applications, Conference on Model-Driven Engineering
Languages and Systems (MODELS 2007), Nashville, TN,
USA, September 30-Octuber 5, 2007, LNCS Springer, 2007.
[4] Abrahao S., Poels G., Pastor O. A Functional Size
Measurement Method for Object-Oriented Conceptual
Schemas: Design and Evaluation Issues. Software & System
Modelling, 5(1): 48-71, Springer Verlag, 2005.
[5] Azzouz S., Abran A., “A Proposed Measurement
Role in the Rational Unified Process and its Implementation
with ISO 19761: COSMIC-FFP” in Software Measurement
European Forum, Rome, Italy, 2004.
[6] Condori-Fernández N., Abrahão S., and Pastor O.,
On the Estimation of Software Functional Size from
Requirements Specifications, Journal of Computer Science
and Technology (JCST), Springer, 22(3): 358-370, 2007.
[7] Abrahão S., Condori N., Olsina L., and Pastor O.,
Defining and Validating Metrics for Navigational Models,
9th IEEE International Software Metrics Symposium
September 2003, Sydney, Australia, IEEE Press, pp. 200-
210.

[8] Davis F. D., "Perceived Usefulness, Perceived Ease
of Use and User Acceptance of Information Technology",
MIS Quarterly, vol. 3, no. 3, 1989.
[9] Moody D. L., The method evaluation model: a
theoretical model for validating information systems design
methods, 11th European Conference on Information Systems,
ECIS 2003, Naples, Italy 16-21 June 2003.
[10] Condori-Fernández N., Pastor O., An Empirical
Study on the Likelihood of Adoption in Practice of a Size
Measurement Procedure for Requirements Specification,
Sixth International Conference on Quality Software (QSIC
2006), October 2006, Beijing, China, pp. 133-140.
[11] R.B. Cooper and R.W Zmud, “Information
Technology Implementation Research: A Technological
Difussion Approach”, Management Science, 36(2):123-139,
1990.
[12] W. G. Chismar, S. Wiley-Patton, Does the
Extended Technology Acceptance Model Apply to
Physicians, 36th Annual Hawaii International Conference on
System Sciences, IEEE Computer Society, Big Island, USA,
January 2003, pp. 160-167.
[13] Chau P.Y. K., An empirical investigation on factors
affecting the acceptance of CASE by systems developers,
Journal on Information and Management, Elsevier, 30(6):
269-280, 1996.
[14] Umarji M.and Emurian H., Acceptance Issues in
Metrics Program Implementation, Proceedings of the 11th
IEEE International Software Metrics Symposium, IEEE
Computer Society, 2005, Washinton,USA, pp. 10-29.
[15] Gopal A., Krishnan M.S., Mukhopadhyay T.,
Impact of Institutional Forces on Software Metrics Programs,
IEEE Trans. on Software Eng, 31(8):679-695, August 2005.
[16] Gopal A., Krishnan M.S., Mukhopadhyay T., and
Goldenson, Measurement Programs in Software
Development: Determinants of Succes, IEEE Transaction on
Software Eng., 28(9):863-875, 2002.
[17] Rescher, N., Methodological Pragmatism: Systems-
Theoretic Approach to the Theory of Knowledge, Oxford:
Basili Blackwell, 1977.
[18] Condori-Fernández N., Pastor O., Analyzing the
Applicability of a Theoretical Model in the Evaluation of
Functional Size Measurement Procedures, Proceedings of the
Nineteenth International Conference on Software
Engineering & Knowledge Engineering, SEKE 2007,
Boston, Massachusetts, USA, July 9-11, 2007, pp. 736-739.
[19] ISO, “ISO/IEC 14143-3: Information technology -
Functional size measurement - Part 3: Verification of
functional size measurement methods”, 2003.
[20] Rogers, E. Diffusion of Innovation. 4th ed. Free
Press, New York, 1995.
[21] Venkatesh, V., Morris, M. G., Davis, G. B., &
Davis, F. D. User acceptance of information technology:
Toward a unified view. MIS Quarterly, (27:3), 425-478, 2003
[22] Irani T., If we build it, will they come? The effects
of experience and attitude on traditional-aged students' views
of distance education, International Journal of Educational
Technology, 2(1):1-12, July 2000.
[23] Condori-Fernández N., Pastor O., Evaluating the
Productivity and Reproducibility of a Measurement
Procedure. ER Workshop on Quality on Information System,
LNCS Springer, 2006, Tucson Arizona, pp. 352-361.

25

Knowledge Transformation from Task Scenarios to View-based Design Diagrams

Nima Dezhkam and Kamran Sartipi
Dept. Computing and Software, McMaster University, Hamilton, ON. L8S 4K1, Canada

{dezhkan, sartipi}@mcmaster.ca

Abstract

A large body of research in software requirement engi-
neering domain has been dedicated to enhancing the struc-
ture of task scenarios using scenario schemas and pre-
defined structures. However, less attention has been paid to
the application of schemas in extracting design knowledge
from scenarios. In this paper, we propose a schema-based
technique to extract the design knowledge embodied in the
text of scenarios and represent them using multi-view de-
sign diagrams. In this context, we define a framework and a
scenario syntax that allow for generating a set of structured
scenarios that cover the requirements of a software system.
We define a novel scenario schema to parse the informal
text of scenarios and populate an objectbase to maintain
the design knowledge building blocks. Consequently, a set
of guidelines are defined to incrementally build design dia-
grams for software views such as data and function. As a
case study, the design diagram generation for a restaurant
system is presented.

KEYWORDS: Knowledge; Transformation; Scenario;
Schema; Design; Multiple Views; Object base.

1 Introduction

Scenario-based knowledge extraction from requirements
has attracted significant attention within the requirement en-
gineering field [13]. Scenarios are represented in a variety
of formal and informal methods ranging from simple text
and graphical media to relational algebra [6]. In this paper,
we define a scenario as “a structured narrative text describ-
ing a system’s requirements in terms of system-environment
interactions at business rule level”. Scenarios are consid-
ered as easy-to-use and effective means in different phases
of software engineering process, such as: requirement elic-
itation and analysis, design representation, code develop-
ment, testing, and maintenance [11, 8, 10, 14]. A wide
range of research in knowledge extraction from software re-
quirements attempt to investigate: the enhancement of sce-
nario generation by using scenario schemas or pre-defined

structures [3, 17]; scenario analysis and knowledge extrac-
tion [2]; and design-related document generation [15, 16].

In this paper, we introduce a novel technique to trans-
form the knowledge from scenarios into well-formed de-
sign diagrams in two views of data and function. In this
technique scenarios are generated using domain knowledge
and in conformance with a regular expression syntax that
imposes a structure to the scenario representation. The pro-
posed approach allows us to reuse the domain knowledge
and business rules within the scenarios through a scenario
template knowledge base. Further, the generated structured
scenarios are parsed using a novel scenario schema to pop-
ulate an objectbase of design related entities and depen-
dencies. The populated objectbase serves both as a data
source during the design diagram construction and as a
valuable electronic asset of design knowledge to be ana-
lyzed, augmented, and used during the maintenance phase
of the software system. Finally, the information in the ob-
jectbase is used to create standard diagrams, such as Entity-
Relationship diagram (ER) for data view, and function dia-
gram for function view.

The contributions of this paper include: i) a framework
to transform the structured knowledge of the scenarios into
view-based design diagrams; and ii) a novel schema that al-
lows for decomposing the scenarios into an objectbase of
design-related entities and dependencies. As a case study,
the design diagram generation for a fast-food restaurant sys-
tem is presented.

2 Related work

The proposed approach in this paper relates to the liter-
ature for capturing and representing knowledge from task
scenarios for various purposes. We present several ap-
proaches and discuss their similarities and contrasts with
our work.

Anton and Potts [1] discuss different representations of
scenarios in object oriented software engineering and re-
quirements engineering. Jarke et al. [9] present a review on
approaches to scenario-based requirement engineering and
research issues.

26

Lamsweerde et al. [5] introduces KAOS methodology
that supports requirements extraction from high-level goals,
and assigns objects and operations to the various agents in a
system. Their meta-model has similarities with our schema,
however our approach aimed at extracting design diagrams
after capturing the requirements.

In [6] a formal representation of scenarios using tabu-
lar expression is introduced in order to simplify the tasks
of scenario validation, verification, and integration. In [3] a
schema for semantic model of scenarios is defined to help
requirement refinements. Leite et al. [7] aid the process of
scenario construction and management by structuring sce-
narios using a conceptual model along with a form-oriented
language. However, in addition to requirement elicitation
and validation, our framework transforms the generated
structured scenarios into design diagrams. Damas et al.
[4] propose tool-supported techniques to generate behav-
ior models from end-user scenarios, whereas we extract de-
sign diagrams from scenarios. Hufnagel et al. [16] present
a scenario-driven object oriented requirements analysis to
support design of a system. This approach does not define
a scenario schema and also it is methodology dependent. In
[12] a method for modular representation of the scenarios
is proposed that supports the reusability of the scenarios in
different design contexts. This approach is similar to ours
in the sense that it attempts to define a structure for the sce-
narios.

Overall, the significance of our approach is that we gen-
erate scenarios using semi-structured templates and trans-
form the knowledge within the text of scenarios into design
relevant knowledge using guidelines that provide a repeat-
able and view-based design reconstruction process.

3 Proposed framework

In this section, we discuss the steps for transformation of
the knowledge embodied in the text of scenarios into design
knowledge represented by two views data and function of a
software system. These steps are presented using the frame-
work of Figure 1. In a nutshell, the proposed framework
generates a set of structured scenarios and uses a schema to
parse these scenarios into ingredients of the view-based de-
sign representations. The proposed framework consists of
three stages, as follows.

3.1 Stage 1: scenario generation

This stage consists of generating a set of structured text-
based scenarios that conform with a regular expression syn-
tax. To facilitate scenario generation and controlling the
format and vocabulary of the generated scenarios, a pre-
defined set of domain-specific templates can be utilized.

schema

Function
view

Incremental
design

construction

(S
ta

ge
 1

)
(S

ta
ge

 3
)

(S
ta

ge
 2

)
D

es
ig

n
co

ns
tr

uc
tio

n
Sc

en
ar

io
de

co
m

po
si

tio
n

Sc
en

ar
io

ge
ne

ra
tio

n

scenariosscenarios

Generate
scenario

Actor, Information, Action
Objectbase:

Set of
candidate

Set of
qualified

Requirements
against
Validate

Knowledge base:

Requirements:

− Application domain
− Business rules

− Scenario templates

scenario syntax

Add structured scenarios

Conform
with

Data
view

Map onto
sceneario

Figure 1. The proposed design construction
framework from scenarios.

Consequently, at the end of this stage a set of qualified sce-
narios are produced that cover a part or the whole of the
system requirements.

Scenario structure. We define a structure for scenarios
that is imposed by the regular expression syntax in Figure
2 and the semantics that are defined by the application do-
main’s business rules. In this scenario syntax, Actor, Action,
and WorkingInformation are the entity-types and action-
types that will be defined in Section 3.2. Each scenario
consists of a sequence of one or more Actors, Actions, and
Working Information, each of which can have between zero
or more Constraints. In this form we can generate syntacti-
cally correct scenarios which will be further decomposed to
populate the objectbase in Section 3.2 and generate design
diagrams in Section 3.3.

Scenario templates. In order to facilitate generation
of structured scenarios and reuse of the captured domain
knowledge and vocabulary, the proposed framework
leverages a tool to populate a knowledge-base of scenario
templates which are organized to store the structured
scenarios in a specific application domain. This allows a
software engineer to assemble scenarios using a repository
of domain-specific vocabulary that is maintained for a
software domain. Figure 3 illustrates a sample scenario
template form for a fast-food restaurant system. This form
consists of fields such as: Actor, Information, and Action,
where each field possesses a vocabulary of corresponding
business terms. The generated scenario at the bottom of the
form is a proper assembly of the terms selected from these
fields.

27

Scenario : {Actor + {Constraint}0..N}1..N + {Action + {Constraint}0..N}1..N + {Working information +
{Constraint}0..N}1..N

Figure 2. Regular expression syntax for scenario generation, where “+” and “0..N” represent com-
position and range, respectively.

Figure 3. Scenario generation template form
for a fast-food restaurant system.

3.2 Stage 2: scenario decomposition

In this stage, the qualified scenarios are mapped onto
the proposed scenario schema in Figure 4 which allows us
to parse the structured scenarios and generate instances of
classes Goal, Actor, Working information, Action, and their
corresponding dependencies that are defined in the scenario
schema. The generated instances incrementally populate
an objectbase of design knowledge that is used to generate
design-related diagrammatic representations.

Using the class diagram representation of the scenario
schema in Figure 4 the texts of the structured scenarios are
parsed and the resulting instances of the classes are stored in
the objectbase. The objectbase is represented as a group of
columns, where each column stores the instances of a class
in the scenario schema that belong to different scenarios. In
other words, a scenario (as a row) in the populated object-
base consists of the instances of the relevant classes of the
scenario schema that are stored in different columns, and a
unique index that identifies the scenario.

As shown is Figure 4, in our model every instance of
the Scenario class is composed of one or more instances
of Actor, Working information, and Action classes, and
zero or more instances of Dependency class. Every Action,
Actor, and Working information is associated with zero
ore more Constraints. Moreover, every Scenario instance
is associated with one or more instances of Goal class.
In the rest of this section the classes of the proposed

Human

information

System

Working

Data
1..*

dependency
Data

Scenario

Is−part−of Has /
Belong−to

Dependency

Is

1..* 1..*

Follow

Action
dependency

Precede

Goal

Actor

Is−associated−with

Constraint

1..*

0..*0..*

1..*

1..*

1

0..*

1..* 0..*

InternalInput Output
action actionaction

Action

Is−parallel−with

Figure 4. Scenario Schema to parse a sce-
nario and populate an objectbase.

scenario schema are introduced along with examples from
a fast-food restaurant system domain.

Goal: represents the reasons and the desired effects for
which the subject system has been produced and used. A
goal can be functional which corresponds to performing a
task, or objective which refers to achievement of a quality
for the system. Examples of goals in a fast-food restaurant
system are as follows: handling payment (functional),
preparing food (functional), and shortening order prepara-
tion time (objective).

Actor: an actor is a “human” or a “system” or a
“component of a system” that interacts with other actors
during the execution of the scenarios. Examples of actors
in a restaurant system include: order taker (human),
raw material supplier (system), or food assembly station
(component of a system).

Action: an action is an activity that is performed by an
actor during the execution of the scenarios. Generally, an

28

action manipulates an instance of Working information.
Actions can be categorized into three different types of
Input, Internal, and Output, based on the scope of the
system. Examples include: taking order (input), computing
the price of an order (internal), and delivering food (output).

Working information: refers to the information that
is manipulated (exchanged, transported, communicated,
operated on, stored, etc.) by the scenario’s actor during
the execution of the scenario’s actions. Examples are:
customer’s order, raw material, menu item, and item price.

Dependency: refers to a binary relationship between
two instances of the classes Actor, Action, or Working infor-
mation. When needed, the multiplicity of the participants
in a dependency should be mentioned in the dependency in-
stance. In such a case, the dependency can be represented
by a quadruple with the multiplicity of each participant pro-
ceeding it.

In our schema, a dependency can be of type Data de-
pendency or Action dependency. Data dependency can be
one of the following subtypes: Is, e.g., “order taker Is an
employee”; Is-associated-with, e.g., “every menu item Is-
associated-with a recipe” (or (1,menu item,1, recipe)); Has,
e.g., “every menu item Has a name”; Belong-to, that is the
inverse1 of Has, e.g., “an ID Belongs-to an employee”; Is-
part-of, e.g., “a kitchen Is-part-of a restaurant”.

Action dependency can be one of the following subtypes:
Precede, e.g., “order payment Precedes order delivery”;
Follow, that is the inverse of Precede, e.g., “order prepara-
tion Follows order taking”. Is-parallel-with, e.g., “sending
order to assembly station Is-parallel-with sending order to
preparation station”.

The proposed scenario schema in Figure 4 includes a
Constraint class that associates any quantifiable constraint
to Data, Action, and Dependency classes. Examples of dif-
ferent types of constraints include: capacity, value range,
ordinal, timing, privilege, etc. As an example, a restaurant
system may have “younger than 10” as a constraint asso-
ciated with actor of some scenario, in order to perform a
specific action such as “offering kids deal”.

3.3 Stage 3: design construction

In this section, we discuss the guidelines that transform
the contents of the objectbase obtained in Stage 2 into
design diagrams. Entity-Relationship (ER) and function
diagrams are the most intuitive and relevant diagrams
that can be directly extracted from the objects within the
objectbase and represent data view and function view of

1For some dependencies, their inverse dependencies are also included
in the schema to facilitate back tracing of dependencies in the objectbase.

the system, respectively.

Data view. The following guidelines specify the gener-
ation of ER diagrams from the objectbase:

Data view step I. Extract all instances of Actor, Working
information, and Data dependency classes from the object
base and apply the following rules on them:

1. Instances of Actor and Working information are candidate
entities/attributes.

2. Instances of Is dependency imply generalization and inheri-
tance relationships, i.e., A Is B, means A is sub-entity of B,
or B is super-entity of A.

3. Instances of Is-associated-with dependency imply candidate
association relationships.

4. Instances of Has and Belong-to dependencies are used to
identify the attributes of the entities, i.e., A Has B (or B
Belongs-to A) means B is an attribute of entity A.

5. Instances of Is-part-of dependency imply candidate decom-
position relationships.

6. Candidate entities/attributes that never appear on the right-
hand side of a Has dependency (or left-hand side of a Belong
to) dependency are entities and not attributes.

7. Candidate entities/attributes that appear on either side of a Is,
Is-associated-with, or Is-part-of relationship are considered
as entities.

8. Candidate entities/attributes that appear on the left-hand side
of a Has dependency (right-hand side of a Belong to depen-
dency) are considered as entities.

9. Candidate entities/attributes that appear on the right-hand
side of a Has dependency (or left-hand side of a Belong to
dependency) and do not apply in any of the rules vi-viii, are
considered as the attributes of the entity on the other side of
that dependency.

Data view step II. Depict every entity by a rectangle,
every attribute of an entity as a bubble connected to it and
label them by their names. Every relationship between two
entities can be represented by a line connecting them. Label
every relationship according to the type of dependency it
came from, e.g., “is”, “is-part-of”, etc.

Function view. Function view of a system is well
represented by function diagrams. The following guideline
specifies the generation of function diagrams from the
objectbase.

Function view step I. Extract all instances of Action, Ac-
tion dependency, and Constraint classes from the object
base and apply the following rules on them:

1. Instances of Action class are the functions.
2. Instances of the Follow and Precede dependencies determine

the time-order of execution of the functions. To simplify
the diagram generation, transform all the Precede depen-
dencies to Follow, i.e., for all functions f1 and f2, change
f1Precedef2 to f2Followf1.

29

3. The participants of a Is-parallel-with dependency must be
executed concurrently.

4. The condition(s) for a function to follow another is deter-
mined by the Constraints related to the function, actor, and
working information in the corresponding scenario that the
“following” appears.

Function view step II. Generate Follow+ relationship
(the transitive-closure of the Follow), i.e., f1Follow+f2

means there exists a set of functions gi where, f1 Follow g1,
g1 Follow g2, ..., gn Follow f2.

Function view step III. Sort the functions in ascending
order based on the number of the functions they follow, i.e.,
based on the number of times they appear on the left hand
side of a Follow relationship.

Function view step IV. Start from the beginning of the
sorted list, depict the first function (name A) with a square
and label it by its name. List all the functions that Follow
A. If the list contains only one function (name B), depict B
and connect A to B with an arrow. If the followers list con-
tains more than one function (name B, C, ...), then a choice
condition has occurred. If there are any pair of functions
(name B and C) in the list that have an Is-parallel-with de-
pendency, connect A to B and C with arrows and an AND
bubble. Otherwise the functions are connected using an OR
bubble. Next, all arrows are labeled with the triggering con-
dition(s) obtained in rule “4” above. Finally, remove A from
the list and repeat Function view step IV, until the list is
empty.

The functions in the function view correspond to the ac-
tions performed by the actors in the system, and can be con-
sidered as candidate methods of classes in the detailed de-
sign of the system. Also, the sequence and the AND and OR
relationships between the functions reflect the design deci-
sions that should be considered during the implementation
phase of the system.

The above guideline can be semi-automated. User in-
volvement is required in cases of conflicts or inconsisten-
cies, such as duplicate usage of actor or action names in
different roles, etc. In such cases user can be prompted to
perform manual resolution.

The realization of the scenario to design transformation
will be presented as a case study in the next section.

4 Case study: Fast-food Restaurant System

In this section, the results of applying the proposed
framework to the case of a fast-food restaurant system is
presented.
4.1 Stage 1: scenario generation

The following scenarios that conform with the proposed
scenario syntax in Figure 2 were generated using our pro-

prietary scenario generation tool. Note that for simplicity
in demonstration, the following scenarios demonstrate little
interactions and few conditions.
• Scenario #1: “Order taking station computes and reports
the price of the orders.”
• Scenario #2: “Order taking station sends the paid orders
to assembly station.”
• Scenario #3: “Order taker logs into the OT station using
ID and password.”
• Scenario #4: “Order taker initiates orders.”
• Scenario #5: “Order taker adds and removes (edit) menu
items of an unpaid order.”
• Scenario #6: “Order taker enters the amount of money
received from the customer (cash-in) to OT station.”
• Scenario #7: “Order taker defers the payment of orders.”
• Scenario #8: “Order taker reviews the orders.”
• Scenario #9: “Order taker calls-back unpaid orders.”
• Scenario #10: “Order taker returns the change (and
receipt) for the order.”
• Scenario #11: “Order taker sends the cash exceeding
cash limit to the cash safe.”
• Scenario #12: “Order taker logs out from his/her ID.”

4.2 Stage 2: scenario decomposition

At this stage, the scenarios were mapped onto the pro-
posed scenario schema to instantiate different class in-
stances and the resulting instances are stored in the object-
base. Table 1 presents a part of the objectbase that is pop-
ulated with instances of Data and Action and five Depen-
dency classes from Scenarios #1 to #10 above.

4.3 Stage 3: design construction

In this stage we followed the guideline presented in Sec-
tion 3.3 to construct the diagrams for data and function
views.

Data view. Candidate entities/attributes are stored in
different Data columns (i.e., Actor|System, Actor|Human ,
and Working information) of the objectbase. Similarly,
the dependencies among these candidates are stored in the
objectbase (under Is, Belong-to, ... columns). A part of the
the ER diagram for the restaurant system (i.e., order taker
component), constructed using the guideline for Data view
is shown in Figure 5.

Function view. The list of extracted functions sorted
by Follows+ relationship is shown in Table 2. Also, the
extracted dependencies between these actions are stored
in different Action dependency columns of the objectbase.
The function diagram for the order-taker component of
the restaurant system (constructed using the guideline for
Function view) is shown in Figure 6.

30

Table 1. A part of the objectbase created from the scenarios #1 to #10.
Index Actor|System Actor|Human Working information Action|Input Action|Internal Action|Output

1 OT Station - order,price - compute price report price

2 OT Station, ASM station - paid order - - send paid order to ASM station

3 - order taker,OT station ID&password - login to system -

4 - order taker order - initiate order -

5 - order taker menu item,unpaid order - add/remove menu item -

6 - order taker,OT station cash-in enter cash-in - -

7 - order taker order - defer payment -

8 - order taker order - review -

9 - order taker unpaid orders - call-back -

10 - order taker change/receipt - - return change/receipt

Index Is-associated-with Belong-to Is-part-of Follow Precede
1 - (price,order) (report price, compute price) (report price, compute price) -

2 - - (1,paid order,1,order) (send paid order to ASM station, report price), ... -

3 - (ID&password,order taker) - - (login to system, send paid order to ASM station), ...

4 (1,order taker,n,customer order) - - (initiate order, login to system) (initiate order, compute price)

5 (n,menu item,1,order) - - (edit order, initiate order), ... (edit Order, compute price), ...

6 - (cash-in,order) - (enter cash-in, report price), ... (enter cash-in, send paid order to ASM station), ...

7 - - - (defer payment, edit order), ... -

8 - - - (review orders, login to system) -

9 - - (1,unpaid order,1,order) (call-back unpaid orders, login to system) (call-back unpaid orders, enter cash-in), ...

10 - (change/receipt,order) - (return change/receipt, enter cash-in), ... (return change/receipt, send paid order to ASM station)

paid

(cash limit)cash

cash safe

order
take

works in

order
unpaid

ordersation

(ID,password)

order taker menu itemconsists

(price,cash−in,change)

OT

Figure 5. Generated Entity-Relationship dia-
gram for the order taking component.

The generated design diagrams and the existing knowl-
edge in objectbase will enable us to extract other design di-
agrams such as class diagram of the system. Figure 7 illus-
trates the complete class diagram of the restaurant system.
This diagram is obtained from the ER diagram of the sys-
tem that was generated in the proposed framework. The
space limitation of the paper does not allow us to provide
the required guidelines.

5 Discussion and conclusion

In this paper, we presented a systematic and semi-
automatic approach for transforming the design knowledge
within task scenarios onto a set of design diagrams. We pro-
posed a framework with three major stages of scenario gen-
eration, scenario decomposition, and design construction.

Table 2. List of actions in order taking com-
ponent and corresponding to Follow relation.

Index Action Follows+

1 Login using ID & password -
2 Logout the system 1
3 Review orders 1
4 Initiate order 1
5 Call-back unpaid orders 1
6 Edit orders 1,5
7 Compute price 1,5,6
8 Report price 1,5,6,7
9 Defer order payment 1,5,6,7,8
10 Enter cash-in 1,4,5,6,7,8
11 Return change & receipt 1,4,5,6,7,8,10
12 Send order to assembly station 1,5,6,7,8,10,11
13 Send excess cash to cash safe 1,4,5,6,7,8,10,11,12

The task scenarios are structured by the means of a regular
expression syntax and can be reused through a knowledge-
base of scenario templates. A scenario schema has been
proposed as the core of the approach that allows us to de-
compose scenarios into design entities and dependencies as
the means to populate an objectbase. The generated ob-
jectbase would maintain the building blocks that allow the

31

OR

ID & Password

order
payment of

Defer

Enter
cash−in

Return

receipt

cash safe
cash to

Send excess

price
Report

price
ComputeAdd/remove

menu items
to/from orderorder

Initiate

Review
orders

 using
Login

Logout
the system

orders
unpaid

Call−back

change and

Send order to
assembly

station

OR

Figure 6. Generated function diagram for or-
der taking component.

− role

Material
− name
− quantity

Menu Item

− price

Paid Order Unpaid Order

��
��
��
��

��
��
��
��

− price
− cash−in
− change

nInventory Staff 1PreparerManager

1 n

mm

n

m

n n n

m
Chute

− name
− quantity

1 1 Cash Safe
− balance − balance

Cash

1

n

1

n
1

1
1

Preparation AssemblyInventory
− cash limit
− cash balance

n
Order Taking

Order
Assembler Order Taker

Station
− type
− No.

Staff

− ID
− password

Figure 7. Generated class diagram of the
whole restaurant system.

engineer to generate the design diagrams for two views of
the software system using common-practice modeling.

We compared the constructed Entity Relationship dia-
gram in Figure 5 with the similar diagram generated for the
same restaurant system by a software engineer. In this com-
parison 6 out of 8 entities for the order taking component
were the same in both diagrams which indicates a promis-
ing result. The proposed technique provides a disciplined
and structured approach to requirement-to-design transfor-
mation process within the knowledge engineering field. The
proposed scenario schema provides a clear understanding
of the major building blocks of the software system’s func-
tional entities and their relationships. The populated ob-
jectbase serves both as a data source during the design dia-
gram construction and as a valuable electronic asset of de-
sign knowledge to be analyzed, augmented, and used during

the maintenance phase of the software system. Specifically,
the objectbase can be mined to extract more general design
decisions that is not feasible by a human-based analysis.

References

[1] A. Anton and C. Potts. Representational framework for scenarios of
system use. In Requirements Engineering, volume 3, pages 219–241,
1998.

[2] L. Chung and K. Cooper. A knowledge-based cots-aware require-
ments engineering approach. In SEKE ’02: Proceedings of the 14th
international conference on Software engineering and knowledge en-
gineering, pages 175–182, New York, NY, USA, 2002. ACM Press.

[3] C.Potts. Scenic: A strategy for inquiry-driven requirements determi-
nation. In Proc. RE’99: International Symposium on Requirements
Engineering, Limerick, Ireland, June, 1999.

[4] C. Damas, B. Lambeau, and P. Dupont. Generating annotated be-
havior models from end-user scenarios. IEEE Trans. Softw. Eng.,
31(12):1056–1073, 2005.

[5] R. Darimont, P. Massonet, and A. Van Lamsweerde. KAOS: An En-
vironment for Goal-Driven Requirements Engineering. In Proceed-
ings of the ICSE’98, pages 1–2, 1998.

[6] J. Desharnais, R. Khedri, and A. Mili. Representation, validation
and integration of scenarios using tabular expressions. Journal of
Formal Methods in Software Development. Special issue on tabular
expressions, 2002.

[7] J. C. S. do Prado Leite, G. D. S. Hadad, J. H. Doorn, and G. N.
Kaplan. A scenario construction process. Requirements Engineering,
5(1):38–61, 2000.

[8] Haumer, P. Pohl, and K. Weidenhaupt. Requirements elicitation and
validation with real world scenes. In IEEE Transactions on Software
Engineering 24, pages 1036–1054, 1998.

[9] M. Jarke, T. X. Bui, and J. M. Carroll. Scenario management: An
interdisciplinary approach. Requir. Eng., 3(3/4):155–173, 1998.

[10] E. Nasr, L. McDermid, and G. Bernat. Eliciting and specifying re-
quirements with use cases for embedded systems. In Proceedings of
the 7th International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS’2), pages 350–357, January 2002.

[11] B. A. Nuseibeh and S. M. Easterbrook. Requirements engineering:
A roadmap. In A. C. W. Finkelstein (ed) ”The Future of Software En-
gineering ”. (Companion volume to the proceedings of the ICSE’00),
2000.

[12] J. Ralyte. Reusing scenario based approaches in requirement engi-
neering methods: Crews method base. In REP’99, pages 305–309,
1999.

[13] A. Sutcliffe. Scenario-based requirements engineering. In Proceed-
ings of the International Conference on Requirements Engineering
(RE’03), pages 320– 329, 2003.

[14] A. G. Sutcliffe. Scenario-based requirements analysis. Requirements
Engineering Journal, 3(1), 1998.

[15] Y. E. Tsai, H. C. Jiau, and K.-F. Ssu. Scenario architecture - a
methodology to build a global view of oo software system. In
COMPSAC, pages 446–451, 2003.

[16] W. Wang, S. Hufnagel, P. Hsia, and S. M. Yang. Scenario driven
requirements analysis method. In Proceedings of the Second Inter-
national Conference on Systems Integration, pages 446–451, 1992.

[17] H. H. Zhang and A. Ohnishi. A transformation method of scenarios
from different viewpoints. In APSEC 2004, pages 492–501, 2004.

32

PSPCAT: A PSP Data Collection and Analysis Tool

Chien-Hung Liu Shu-Ling Chen Yu-Chun Huang

Department of Computer Science and Department of Management Department of Computer Science and

Information Engineering Information Technology Information Engineering

National Taipei University of Technology Southern Taiwan University National Taipei University of Technology

Taipei, Taiwan 106 Tainan, Taiwan 701 Taipei, Taiwan 106

Email:cliu@ntut.edu.tw Email:slchen@mail.stut.edu.tw Email: s2598023@ntut.edu.tw

Abstract— The discipline of Personal Software Process (PSP)
can help developers to understand their ability, improve their
software process, and increase their productivity and software
quality. However, to improve the software process, developers
need to gather their own process data. This does impose sub-
stantial overhead to developers. This paper presents an Eclipse
plug-in tool that can help developers to measure and analyze
their software process based on the principles of PSP. Specifically,
the program size, process time, and defect data can be collected
automatically or semi-automatically using the tool. In addition,
the tool can provide valuable process information, such as the
size and time statistics, defect distribution, and productivity, to
help developers to assess their performance and to improve their
software process.

I. INTRODUCTION

The Personal Software Process (PSP) [1], [2] was proposed

by Watt S. Humphrey to help developers to improve their

personal software process. The main idea of the PSP is to

understand and improve software process through planning,

tracking, measuring, and analyzing the defined process. It has

been shown that, by adopting the PSP practices, developers

can significantly reduce the number of defects, increase the

software quality and productivity, and improve the predictabil-

ity of software process [3], [4]. This facilitates developers to

deliver high quality software with less development time and

cost.

Although the PSP practices can help developers to improve

their performance, developers must collect their own process

data, such as the size of programs, the time spent on each

process phase, the number of injected and removed defects,

the types of defects, and the defect fix time, to evaluate their

process. However, gathering these process data can be time-

consuming and error-prone even though the PSP framework

has provided many well-designed forms to help developers

recording their process data. The data gathering still involves

lots of work and requires to be done consistently and carefully,

which imposes a large amount of overhead to developers.

Thus, a supporting tool that can help to reduce the overhead,

avoid the human errors introduced in the data collection,

and facilitate the process analysis has become critical for

developers to use PSP.

Although there have been several PSP tools [5], [6], [7], [8],

[9] that can support PSP data collection, most of the tools are

not integrated with an Integrated Development Environment

(IDE) tool. This makes developers have to use a PSP tool,

such as a spreadsheet, to manually record their process data

while using an IDE tool to develop their programs. The

separation of data gathering and program development tools

causes inconvenience and additional tool-switching overhead

to developers. It also increases the possibility of making

mistakes in recording the process data.

This paper proposes a PSP supporting tool for Eclipse

platform [10], called the PSP data Collection and Analysis

Tool (PSPCAT), to assist developers to collect their PSP

data automatically or semi-automatically in the development

phase. Eclipse is an open source programming platform and

has been widely used in software community. In particular,

Eclipse provides a Plug-in Development Environment (PDE)

[11] that can enable plug-in tools to be integrated with Eclipse

and to access the resources of Eclipse workbench. With the

PSPCAT, developers can write programs and gather their

process data using Eclipse without switching tools so that the

data collection overhead can be reduced and the data accuracy

can be improved.

The PSP can help developers to improve their software

process. However, not all the developers are familiar with the

PSP framework and follow the PSP defined process. In order

to support most developers to gather their process data, the

PSPCAT is designed to provide three data collection modes:

automatic, semi-automatic, and manual modes with different

levels of data accuracy. Developers can choose one of them

according to their preferences or familiarity with the PSP.

Moreover, to gather the defect data automatically, the PSPCAT

can extract the compiling and testing error messages from the

Eclipse JDT compiler and JUnit [12] and compute defect fix

time automatically based on how the defects are selected to

remove by the developers. In addition, through analyzing the

accumulated historical data, the PSPCAT can provide various

process analysis reports, such as the project summary, the

trends of quality and productivity, and the statistics of defects,

time, and program size. These reports can help developers to

understand their current process performance and analyze the

causes to improve their software process.

The rest of the paper is organized as follows. In the next

section, existing PSP supporting tools are briefly reviewed.

Sections 3 and 4 describe the approaches used by PSPCAT to

gather the PSP time and defect data, respectively. Section 5

33

presents the architecture design and the uses of the PSPCAT.

The last section summarizes the conclusions and describes our

future work.

II. RELATED WORK

In this section, we briefly review several PSP data collection

and analysis tools and make a comparison between these tools

and PSPCAT.

Personal Software Process Studio (PSPS) [5] is proposed to

facilitate the PSP discipline. It supports the tables and forms

required for the entire PSP framework from PSP0 to PSP3.

Basically, the PSPS allows developers to manually record

the program size, time, and defect data. In addition, it pro-

vides PSP size estimation and project planning forms, design

templates, project summary report, and Process Improvement

Proposal (PIP) tables. The major deficiency of the PSPS is

that developers need to keep track of the process data by

themselves and have to manually record the data into the

PSPS.

PSP Process Dashboard [6] is an open source PSP tool that

provides all the scripts, tables, forms, standards, and analysis

reports defined in the PSP. The PSP Process Dashboard

completely advocates the PSP framework. It supports all the

process definitions from PSP0 to PSP3 and, for each process

definition, it includes all the process phases from the planning

to the postmortem phase. However, similar to the PSPS, the

PSP Process Dashboard is a standalone tool which is not

integrated with any IDE tool. Thus, it requires developers to

manually record their process data.

Hackystat [7] is an open source framework for automatic

collection and analysis of process and product data. The Hack-

ystat employs a client-server architecture. In particular, the

Hackystat has provided various clients (or sensors) integrating

with other tools, such as Eclipse, Emacs, JUnit, and Ant. These

sensors can gather process and product data and send to a

repository at server for further analysis. Developers can check

their process and product data and corresponding analysis from

the Hackystat server. Hackystat is able to collect the PSP data

automatically. However, many defect data, such as defect type,

defect injection and removal phases, and fix time, are not

gathered. This could pose some limitations on defect analysis.

PSP Assistant (PSPA) [8] is a client-sever PSP supporting

tool. The client of PSPA is an Eclipse plug-in that can

automatically gather the program size and some defect data.

Specifically, the PSPA can classify and rank the defects to

assist developers to analyze their performance. It also can con-

solidate the schedules and defect data of individual developers

into a schedule and defect library for the development team.

DuoTracker [9] is a tool for supporting software defect data

collection and analysis. The DuoTracker can be integrated

into a defect tracking tool, such as Bugzilla [13]. It allows

developers to view the defect records reported in the defect

tracking tool. The developers then can enter the PSP required

information for selected defects. In addition, by integrating

with the defect tracking tool, the DuoTracker can gather the

defects occurred beyond the compile and test phases.

Table I shows the comparisons of the PSPCAT and other

PSP supporting tools. In particular, the PSPCAT mainly fo-

cuses on the development phases of the process. It can avoid

the cumbersome introduced by tool-switching and gather PSP

data automatically or manually with different levels of data

accuracy. Moreover, the PSPCAT can automatically compute

the defect fix time and suggest the defect type. It also provides

several PSP analysis reports and can export the process data

in terms of XML format for the consolidation of team process

data.

III. THE COLLECTION OF THE PSP TIME DATA

In order to better understand and improve software process,

the PSP framework explicitly defines the process structure.

Basically, a defined process consists of several phases, such as

plan, design, code, compile, test, and postmortem. Developers

have to gather the time and defect data for each phase. Since

most developers employ the IDE tool only for developing

programs not for planning or designing the projects, the

PSPCAT is designed to gather the process data for the code,

compile, and test phases instead of the entire PSP process.

Because not all the programmers are familiar with the PSP

framework, the PSPCAT provides three data gathering modes:

automatic, semi-automatic, and manual modes with different

levels of data accuracy and user intervention to support most

programmers to gather their process data. Developers can

choose the data collection mode according to their familiarity

with PSP or their needs for data accuracy. For example, the

automatic mode can automatically track the process phases

and gather the time and defect data of each phase without

user intervention. However, this mode is unable to count the

interrupt time of the process since there is no way to determine

if the developers are thinking of the design or taking a break

when they are not interacting with the computer. As a result,

the time data gathered may not be fully accurate. To count

the actual time spent on each phase correctly, developers can

manually pause and resume the PSPCAT timer for each break

(manual mode) or they can manually modify the automatically

recorded time data to reflect the interrupt time (semi-automatic

mode).

Moreover, the Eclipse supports continuous compilation in

order to save the compilation time. This means that, when

developers are writing code, the Eclipse will continuously

compile the programs and show the syntax errors found so far.

In such a case, there is no specific compile phase as defined in

the PSP process structure. However, if the developers would

like to analyze their process in detail, they may want to

disable the continuous compilation in the Eclipse and to get

their time spent on the compile phase. To support this, the

PSPCAT gathers the time data of compile phase in the semi-

automatic and manual modes. Table II lists the differences

among the three data collection modes supported by PSPCAT.

Basically, the automatic mode can change the process phase

automatically, but it does not consider the compile phase and

interrupt time. The manual mode requires developers to switch

the process phases and record the interrupt time manually. The

34

TABLE I

THE COMPARISONS OF PSPCAT AND OTHER PSP TOOLS

Name Time Logging Defect Logging LOC Counting Project Summary/Analysis Reports Data Export
PSP Process
Dashboard

manual manual manual project plan summary (PPS), analysis (full support) no

PSPS manual manual manual PPS, analysis (full support) no
Hackystat auto auto (no defect type & fix time) auto process summaries, analysis yes
PSPA auto auto (no defect type & fix time) auto PPS, analysis (schedule, defects) yes
DuoTracker N/A semi-auto N/A N/A no
PSPCAT manual/auto manual/auto manual/auto PPS, analysis (quality, time, defect, size) yes

TABLE II

THE DIFFERENCES AMONG THE PSPCAT DATA COLLECTION MODES

Differences Auto Mode Manual Mode Semi-Auto Mode
Supported
Process
Phases

code, test code, compile,
test

code, compile,
test

Change of
Phase

automatic manual automatic (allow
manual change)

Time Calcu-
lation

automatic (no
interrupt time)

automatic (allow
to pause/resume
timer & change
data)

automatic (allow
to pause/resume
timer & change
data)

Interrupt or
Break

not support support support

Defect Col-
lection

automatic (no
compile phase)

automatic automatic

Cyclic Pro-
gramming
(class level)

support support support

Process
Analysis
Reports

productivity,
quality, defect,
time, size (no
compile phase)

productivity,
quality, defect,
time, size

productivity,
quality, defect,
time, size

semi-automatic mode is similar to the automatic mode, except

it allows the recorded data to be updated manually.

It should be noted that the developers may not exactly

follow the order of process steps defined in the PSP framework

which requires the process phases to be changed sequentially.

For example, developers can finish all the coding first and

then compile and test the program; or they can code a little

and test a little. To count the time spent on each phase

without user involvement (i.e., automatic mode), the PSPCAT

has to automatically track the current process phase of the

project under development. To achieve this goal, the PSPCAT

considers the start and stop of coding, compile, and test

tasks as different states. The various events invoked by the

developers or JUnit, such as creating a new class, exiting

Eclipse, and invoking JUnit, are considered as transitions

between the states. By listening to these events and computing

the time period between the start and stop of the tasks, the

PSPCAT can obtain the time that developers spend on each

task (i.e., phase).

Figure 1 shows the task state diagram used to track the

process phases in the automatic mode of the PSPCAT. The

PSPCAT will detect the events occurred and change the

states accordingly. For example, the occurrence of new class

event indicates that the coding task is started. Likewise, the

occurrence of “file save” event suggests that the coding task

Fig. 1. The state diagram used to track the process phases (automatic mode)

is stopped. Thus, the time spent on the code phase can be

obtained by computing the time period between the start and

stop of the coding task. Similarly, the process will change from

the code phase to the test phase when developers create a new

test class, lunch the Eclipse debug function, or invoke JUnit.

The process will remain at test phase until the Eclipse debug

function is terminated or all the JUnit test cases are passed.

IV. THE COLLECTION OF THE PSP DEFECT DATA

As compared with the time data collection, the gathering

of the defect data is more time-consuming and error prone.

Thus, the major focus of PSPCAT is to reduce the defect

data collection overhead while increasing the data quality.

To reduce human involvement, the PSPCAT employs two

techniques to obtain the defect data automatically through

(1) inserting a listener at Eclipse workbench to observe the

compiling error messages; and (2) using the extension points

provided by JUnit to obtain the execution results of test cases.

The former allows the PSPCAT to gather the compiling defect

data in the compile and test phases and the later allows the

PSPCAT to collect the functional defect data in the test phase.

Note that the PSP defect data include the time when the

defect was found, the defect number, the defect type, the

defect injection phase, the defect removal phase, the defect

fix time, and a brief defect description. Based on whether the

defect data can be automatically obtained, the PSPCAT either

collects the data directly or simply gives a default value. For

example, to gather the defect descriptions, the PSPCAT obtains

35

the error messages directly from the Java compiler and JUnit.

For gathering the defect types, the PSPCAT will initially assign

the type of syntax error to those defects found by the compiler

and the type of function error to those defects revealed by the

JUnit. After reviewing the defect, developers can change the

initial value and provide an appropriate defect type for the

defect if necessary.

Moreover, to compute the defect fix time automatically, the

PSPCAT exploits the “Goto” function provided by Eclipse.

The “Goto” function basically allows developers to double

click on an error message appeared in the Eclipse problems

view so that the cursor of the Java editor will automatically

move to the location of the corresponding error. It can help

to locate the defect that developers would like to fix. Thus,

by listening to the “Goto” event, the PSPCAT can obtain the

defect that the developers may possibly aim to fix and record

the start time (denoted as Tstart) for removing the defect.

After changing and recompiling the code, if the error does

not appear in the problems view, the PSPCAT will consider

this error being removed and record the stop time (denoted as

Tstop) for fixing the defect. Thus, the defect fix time (denoted

as Tfix) for this error can be computed using the following

equation:

Tfix = (Tstop − Tstart)/N, (1)

where N is the number of defects disappeared in the problems

view due to this code modification. Since developers may

not use the “Goto” function to fix a defect, the PSPCAT

considers three possible debugging practices: (1) All defects

are removed using the “Goto” function; (2) No defects are

removed using the “Goto” function; and (3) Only part of the

defects is removed using the “Goto” function. For the first

case, the defect fix time can be computed by simply using

equation (1). For the second case, the PSPCAT does not know

which defect is going to be fixed by developers. Under such

circumstance, the PSPCAT considers the defect fix time of

each individual error as the average time spent on fixing a

defect. Assume that the process is in the compile phase, the

total number of compiling errors found is Ntotal, and the time

spent on the compile phase is Tcompile. The average fix time

for each compiling error can be obtained using the equation

below:

Tfix = Tcompile/Ntotal. (2)

For the last case, the PSPCAT uses equation (1) to compute

the fix time for those defects removed through using the

“Goto” function. The fix time for the remaining defects is

derived from equation (2). Suppose that the process is in the

compile phase, the total number of defects removed by the

“Goto” function is Ngoto, and the total time to fix these defects

is Tgoto. The average fix time for the remaining defects then

can be derived from the following equation:

Tfix = (Tcompile − Tgoto)/(Ntotal − Ngoto). (3)

In addition to compute the fix time of compiling defects,

the PSPCAT also derives the fix time for the functional defects

appeared in the JUnit failures window. The computation of fix

time for the functional defects is similar to that of fix time for

the compiling defects since the JUnit also supports the “Goto”

function allowing developers to double click on a failure test

method in order to open the test method in the Java editor.

V. THE ARCHITECTURE DESIGN AND THE USES OF THE

PSPCAT

In this section, the system architecture of PSPCAT is briefly

described and some screen shots are provided to illustrate

the uses of the PSPCAT. Figure 2 shows the architecture

design of the PSPCAT. Basically, the PSPCAT consists of four

subsystems. Each of the subsystems is described briefly as

follows:

• The Data Collection Subsystem (DCS) mainly focuses on

the gathering of process data, including the project plan

summary, size, time, and various defect data.

• The Controller and Plug-in Subsystem (CPS) manages

the interactions among the subsystems and the Eclipse

platform. In particular, the CPS controls the changes of

the PSP phases, observes various Eclipse events through

the workbench, and accesses the project information

through the Eclipse workspace.

• The Data Analysis Subsystem (DAS) provides the PSP

project plan summary and various statistic analysis re-

ports based on the collected process data, such as the

size and time trends, productivity, defect distribution, and

quality analysis.

• The Data Management Subsystem (DMS) mainly sup-

ports the management of the gathered process data. It

provides the repository for the historical project data and

the functionality to export and upload the data to external

server.

Fig. 2. The architecture of the PSPCAT

To use the PSPCAT, developers first need to enable the

data collection and specify the data collection mode and data

repository. Once the data collection is enabled, the process

36

Fig. 3. Examples of the size, time, and defect logs in PSPCAT

Fig. 4. An example of the PSPCAT project plan summary

data of the project under development can be gathered auto-

matically or manually. The gathered data are then shown in the

corresponding log views. Figure 3 presents the log views for

the size, time, and defect data. Developers can insert, delete,

update, or sort out the data records in each log view.

After a project is completed, the PSPCAT can analyze the

process data logs and provide the PSP plan summary for

the project. As shown in Figure 4, the project plan summary

includes the overall summary of the project and the statistics of

the collected size, time, and defect data. Based on the gathered

data, the PSPCAT also provides process analysis reports that

can help developers to examine and improve their software

process. Figure 5 shows some examples of the process analysis

reports provided by PSPCAT.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented an Eclipse plug-in tool called PSP-

CAT to support automatic PSP data collection and analysis.

By integrating with the Eclipse platform, the proposed tool

Fig. 5. Examples of process analysis reports provided by PSPCAT

can reduce the tool-switching overhead and the possibility

of making mistakes in gathering process data. In particular,

the tool provides three data collection modes with different

levels of data accuracy to support different needs of developers

and programming practices. The proposed tool also provides

various analysis reports to help developers to understand

their development performance and to improve their software

process.

Currently, the PSPCAT gathers only the PSP data in the

code, compile, and test phases. In the future, we plan to

enhance the PSPCAT to support the entire PSP framework.

Moreover, we plan to extend the PSPCAT to support the

Team Software Process (TSP) [14] based on the client-server

architecture. The process data of each team member collected

by the PSPCAT client can be consolidated at the PSPCAT

server so as to obtain the TSP data to analyze the team

performance and to improve the team software process.

REFERENCES

[1] W. S. Humphrey, A Discipline for Software Engineering, Addison
Wesley, 1995.

[2] Personal Software Process (PSP). http://www.sei.cmu.edu/tsp/psp.html
[3] P. Johnson and A. Disney, “The Personal Software Process: A Caution-

ary Case Study,” IEEE Software, Vol. 15, No. 6, November, 1998, pp.
85-88.

[4] J. Kamatar and W. Hayes, “An Experience Report on the Personal
Software Process,” IEEE Software, Vol. 17, No. 6, 2000, pp. 85-89.

[5] Personal Software Process Studio (PSPS).
http://www.cs.umt.edu/RTSL/dsstud/psp/psps.htm

[6] Software Process Dashboard Initiative.
http://processdash.sourceforge.net/

[7] Hackystat. http://code.google.com/p/hackystat/
[8] R. Sison, D. Diaz, E. Lam, D. Navarro, and J. Navarro, “Personal

Software Process (PSP) Assistant,” Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC’05), 2005, pp. 687-696.

[9] O. Akinwale, S. Dascalu, and M. Karam, “DuoTracker: Tool Support
for Software Defect Data Collection and Analysis,” Proceedings of the
International Conference on Software Engineering Advances, 2006.

[10] Eclipse. http://www.eclipse.org
[11] PDE. http://www.eclipse.org/pde/
[12] JUnit. http://www.junit.org
[13] Bugzilla. http://www.bugzilla.org/
[14] TSP. http://www.sei.cmu.edu/tsp/tsp.html

37

A Systematic Method for Process Tailoring Based on Knowledge Reuse

Xiao-yang He, Ya-sha Wang*, Yu-xin Teng and Jin-gang Guo
Institute of Software, School of Electronics Engineering and Computer Science,

 Peking University, Beijing 100871, China;
Key laboratory of High Confidence Software Technologies (Peking University),

 Ministry of Education, Beijing 100871, China

Abstract Process tailoring largely depends on experts'
knowledge and might be time-consuming, costly and
error-prone. Actually, process tailoring knowledge should
be captured, documented and reused for future projects. To
address this problem, a systematic method for process
tailoring is proposed. The factors that strongly influence
process tailoring are recognized as process drivers. The
reusable process tailoring knowledge is organized by
packages. Each package contains a certain process driver
and its impact on the process framework which is the
general process for tailoring. Aided by a conflict resolving
model which checks and resolves possible conflicts
between different packages, the packages can be reused for
generating a project-specific process. A case study of RUP
tailoring is presented to validate the method proposed.�

1. Introduction
A well-defined software process is critical to improving

software productivity and quality. Many a software process
framework has been published, such as Rational Unified
Process(RUP)[1], V-Modell XT[2] etc., which provides a
good starting point in software process construction.
However, they have to be tailored, downscaled and
specialized to the context of use[3, 4].

Certain factors that strongly influence process tailoring
have been recognized, for example, system scale, system
complexity and time pressure of the project. Generally,
experts make tailoring decisions based on the perceiving of
the factors in a given context and the knowledge of the
factors’ influence on the process. These factors are named
as process drivers in this paper.
 According to [3], the practice of adjusting a standard
software development process to accommodate differences
among projects is called tailoring. So far, process tailoring

The work is funded by Grant 2006AA01Z189 from Hi-Tech Research
and Development Program of China and Grant2005CB321805 from the
National Key Basic Research of China.

*Corresponding author

largely depends on experts' knowledge, and might be
time-consuming, costly, and error-prone[4, 5]. To address
this problem, a systematic way for process tailoring based
on knowledge reuse is proposed.

Our method consists of two steps. (1) Capturing and
documenting the reusable knowledge of process tailoring.
The reusable knowledge is packaged in the light of process
drivers. Each package contains the information of a certain
process driver and its influence on the process. (2)
Tailoring the process by reusing the packaged knowledge.
A conflict resolving model, which is abbreviated to conflict
model, give support to resolve possible conflicts when more
than one package is applied to process framework.

2. The Method for Process Tailoring
The purpose of this paper is to improve the effectiveness

and efficiency of process tailoring by capturing and sharing
the tailoring knowledge within the organization. The
knowledge is explicitly documented and organized as
reusable process tailoring packages.

There are two principal roles. The first one is Process
Engineer who is in charge of capturing the process tailoring
knowledge and developing the tailoring packages for reuse
in different projects, while the other one is Project Manager
who is responsible for creating project-specific process with
reuse of the tailoring packages. The process of the method
is presented with UML activity diagram in Figure 1.

Generally, Process Engineer has abundant knowledge of
the process framework, as well as the insight into the
development situation of the organization. He is responsible
for identifying process drivers from different aspects (e.g.
project, organization, person and product). These drivers
characterize the profile of development situation, and each
driver defines some project-specific requirement of the
process which can be transformed into process tailoring
operations on the process framework. For example, the new
system development project requires more user-developer
interaction than the existing system modification project.
The Process Engineer may identify a process driver, which
is called new system development. This process driver
requires supplementing some user interaction activities and

38

adding additional prototype-development iteration into the
process framework; furthermore, the activity of analyze the
difference between the existing system and new system

requirement in the process framework can be deleted. For
every process driver, Process Engineer should analyze
which process contents are impacted. If the existing process
could not fully meet with the requirements of process
drivers, new process contents are created. Process Engineer,
then, creates Process Tailoring Packages, which present
how process drivers impact the process contents. Process
Tailoring Package itself is not a complete software process
but externally defines the modifications to process
framework.

Project Manager analyzes the characteristics of the
project at hand and determines the project-specific process
drivers. For every process driver, a Process Tailoring
Package is selected. When more than one package is
applied to the process framework, conflicts may occur. In
this case, the project manager should resolve the conflicts
with the help of a predefined conflict model explained in
section 4

[Need Additional
Process Contents]

[Not need]

Process Engineer

Manage Process
Tailoring Packages

Determine
Process Drivers

Identify Impacted
Process Contents

Create New
Process Contents

Create Process
Tailoring Packages

[Occur conflicts]

Project Manager

Identify Project-Specific
Process Drivers

Resolve Conflicts

Check Consistency

Apply Process Tailoring
Packages to Process Framework

[Not occur]

Select Process
Tailoring Packages

Create Process Instance

Figure 1 Process of the Tailoring Method

. Finally, the project-specific process instance is

3.

tionships. It is
sh

 grouping of Tasks which can be broken
do

g, deleting and
modifying Work Definition respectively.

created.

Meta-model of Reusable Knowledge Packages
To effectively represent and organize the process

tailoring knowledge, a meta-model is proposed to
demonstrate the core concepts and their rela

own in Figure 2 with UML class diagram.
For the sake of concision and clarity, we only focus on

those fundamental concepts of process meta-model. A Work
Definition describes a unit of work with the clear purpose,
usually expressed in terms of creating or updating some
Work Products. Within a Work Definition, each performing
Role achieves a well-defined goal. Work Definition is the
abstract class of Activity and Task. Activity supports the
nesting and logical

wn into Steps.
A Process Driver focuses on a certain concern which the

process tailoring aims to handle. Every Process Driver is
associated with a Process Tailoring Package. A Process
Tailoring Package consists of one to more Impact Pieces
which describes the information of exactly one tailoring
operation. There are three classes named Contribute,
Suppress, and Replace implementing the abstract class
Impact Operation. They define the concrete types of
tailoring operation, which denote addin

Figure 2 Meta-model of the Reusable Tailoring Knowledge

How to identify the place where the conflict
oc

W

4. Conflict Resolution
Conflicts may occur when more than one Process

Tailoring Package is applied to process framework. The
conflicts result from different Process Tailoring Packages
attempting to modify the same Work Definition in different
way. For example, one Process Tailoring Package may
attempt to replace an activity while another one may want

In order to resolve the conflicts, two issues should be
concerned: (1)

to remove it.

curs? (2) What action should be taken if conflict occurs?
According to the place where the conflicts occur, two

types of conflict are identified. Assuming Work Definition
a and Wb are impacted by two Process Tailoring Packages,

say package Pa and Pb respectively. If Wa and Wb are
exactly the same Work Definition, a homo-place conflict

39

occurs. If Wa is a part of Wb (e.g., Wa is a sub-activity of
Wb), a hetero-place conflict occurs, vice versa. Considering
an example, a certain package demands delete an activity,
while another package requires replace a task in the same
activity, a hetero-place conflict appears.

(a) Homo-place Model (b) Hetero-place Model

n
Figure 3. C, S t the tailoring
op

ngineer.

�
 the development of operation system

rk

e reason is

Figure 3 C iction Model
The conflict models of these two types are shown i

onfl

and R respectively represen
eration Contribute, Suppress and Replace. Additionally, a

special mark (‘+’ / ‘-’) is added as the prefix of the Impact
Operation. Symbol ‘+’ means the Impact Operation directly
acting on the Work Definition; Symbol ‘-’ means the
Impact Operation acting on the sub-element of the Work
Definition. The cross units represents the action of conflict
resolution actually taken. Besides the typical Impact
Operation types, there are additional action types:
� N: Two operation types would not occur simultaneously.
� H: Operation actually adopted is up to Project E

Moreover, the reasons behind the operation ‘S’ are
further analyzed:

Not needed: the Work Definition is not needed at all. An
example is that
does not need the activity of “Design the Database”.

� Valueless: There is not enough time and effort to
implement a certain Work Definition, or the Wo
Definition would not bring any value.

Symbol ‘/’ separates the action types by the reasons behind
the operation ‘S’. The former action is taken if th
“Not needed”, or else the latter is taken.

Figure4 Conflict Checking and Resolving Algorithm
A conflict checking and resolving algorithm describe

wit is
ge

d

h pseudo code is shown in Figure 4. Firstly, a tree
nerated in terms of composition relationship between the

Work Definitions in process framework. Special marks are
added to corresponding node for every Impact Piece. Each
node is checked by post-order traversal then. If there is a
homo-place or hetero-place conflict, an action is taken
according to conflict model. If there is no conflict which
needs manual intervention, a tailored process is generated,
or else the places conflicts occur are pointed out.

Figure 5 Example of the Algorithm Applied
An example is shown to illustrate the algorithm

mention own in
Fi

alidation of the method proposed, we
mpany which specialized in software

de

d its
co

ed above. The initial status of the tree is sh
gure 5(a). The nodes are checked in turns by post-order

transversal. In Figure 5(b), the Impact Operation ‘R’ of
node 8 and the Impact Operation ‘C’ of node 9 are
transferred to node 6 and marked with ‘-’, so the mark of
node 6 is changed to “+S-R-C”. There is a hetero-place
conflict between “+S” and “-C”, thus the conflict is
resolved according to Figure 3(b). In particular, the
operation ‘S’ here is “Valueless” suppression, so the actual
tailoring operation adopted is ‘R’ and the mark of node 6 is
changed to “-R-C”. Now node 6 doesn’t have any other
conflict and its operation ‘R’ and ‘C’ is transferred to node
2. Other nodes are processed in the same way, shown in
Figure 5(c) and 5(d).

5. Case Study
For empirical v

applied it in a co
velopment of web-based solutions to general business.

The company had adopted RUP as its process framework
but process tailoring was carried out in an ad-hoc way, so it
showed great readiness to improve process tailoring.

First, we worked with the company’s experts to identify
those distinct characteristics of the organization an

mmon project types. After that we captured and
documented the knowledge of how these drivers impact the
RUP based on the experts’ previous experience. For

40

example, the driver of “High Usability” specially focuses
on analyzing user and usability requirements, and asks for
adding two new tasks into the activity of “Understand
Stakeholder Needs”. A process asset library is established to
store the reusable process tailoring knowledge.

A project of online bookstore made a request for tailoring
process. The size of project was small that only five
de

on, the method proposed
ca

 tailoring is a mandatory activity for
ng process framework, it strongly

de

d
re

s are not sufficient,
at

No single process is suitable for all software projects.

pted to the specific
t effort. Reuse of

th

rocess driver
is

he forthcoming SPEM v2.0 plans to separate
M

The Unified
Development Process. 1999: Addison Wesley
.

velopers were engaged within the duration of three to
four months. The customers of online bookstore are
members of the general public, not technical experts. Hence,
application usability must be high. The customers also pay
extremely attention to privacy protection and security of
transaction security. As a result, the drivers of “Small Size
Project”, “High Usability” and “High Security” are the
first-class concerns. Then the corresponding process
tailoring packages selected are applied to RUP to generate
project-specific process. For lack of space, the resulting
process is omitted in this paper.

With the accumulation of the process tailoring
knowledge within the organizati

n drastically improve the efficiency of tailoring.

6. Related Work
Although process

organization adopti
pends on experts’ knowledge[4]. The amount of research

done on process tailoring to date can be considered small.
It is shown that knowledge reuse can improve efficiency

and effectiveness of process tailoring[5]. Case-base
asoning is adopted to facilitate reusing the cases to

customize the target process [6, 7]. However, any two
projects are different, so a process successfully applied to
one project may not work in another[4]. Partitioning the
tailoring knowledge by process driver has much more
reusability and flexibility than the case. The knowledge
based inference technique is also utilized in [7] to derive
process. Every process driver is supported or deactivated by
a set of activities. The selected activities are integrated to
generate process. But it is very troublesome to combine
activities one by one. Its conflicts resolution is achieved by
constraining selecting incompatible drivers simultaneously.
Such a disposal is not reasonable in practice. Karlsson[8]
utilizes the concept of Configuration Packages which are
pre-made reusable configurations of a base method suitable
for a characteristic. Combining configuration packages will
result in overlapped activities and increase the overload of
tailoring effort. He just simply adopts priority-based policy
and leave human to deal with conflicts.

RUP itself contains configuration activities, which create
a Development Case. But these activitie

 least not considering reusability of tailoring knowledge.

7. Conclusions and Future Work

The process framework must be ada
context, which requires substantial up fron

e tailoring knowledge can drastically improve the
effectiveness and efficiency of tailoring.

This paper proposes a method for process tailoring based
on the concepts of process driver and process tailoring
package. Partitioning tailoring knowledge by p

propitious to narrow the focus at a time and improve
reusability. In particular, the process tailoring package
externally defines the changes to the process framework,
which provides more flexibilities than directly modifying
process framework. The way of applying process tailoring
packages to process framework is more efficient than that
of combining activities required by process drivers.
Moreover, the decision model and the algorithm proposed
provide the strong support for conflict checking and
resolving.

The meta-model proposed in this paper is based on the
Software Process Engineering Specification v1.1
(SPEM)[9]. T

ethod Contents from Process. More dedicated analysis
should be taken to deal with the new change.

Reference
1. Jacobson, I., G. Booch, J. Rumbaugh,

Software
Longman

2. V-Modell XT. Available
from: http://www.v-modell-xt.de/.
Ginsberg, M3. .P., L.H. Quinn., Process Tailoring and the

Engineering Institute.

1-6.

6.

rnational Conference on Case-Based Reasoning.

7.

ybrid Approach. International Journal of

8.

ation and Software Technology,

9.

Software Capability Maturity Model. 1995, Carnegie
Mellon University, Software

4. Pedreira, O., M. Piattini, M.R. Luaces, et al., A
Systematic Review of Software Process Tailoring. ACM
SIGSOFT Software Engineering Notes 2007. 32(3):

5. Peng, X. Knowledge Support in Software Process
Tailoring. in Proceedings of the 38th Annual Hawaii
International Conference on System Sciences. 2005.
87-95
Henninger, S., K. Baumgarten. A Case-Based Approach
to Tailoring Software Processes. in Proceedings of the
4th Inte
2001. 249-262
Ahn, Y.W., H.J. Ahn, S.J. Park, Knowledge and
Case-Based Reasoning for Customization of Software
Processes: A H
Software Engineering and Knowledge Engineering,
2003. 13(3): 293-312.
Karlsson, F., P.J. Agerfalk, Method configuration:
adapting to situational characteristics while creating
reusable assets. Inform
2004. 46(2004):619-633.
OMG, Software Process Engineering Metamodel
Specification, Version 1.1. 2005.

41

Linking Return on Training Investment with Defects Causal Analysis

Santiago Matalonga Tomás San Feliu Gilabert
Universidad ORT Uruguay Universidad Politécnica de Madrid

smatalonga@uni.ort.edu.uy tsanfe@mpsei.fi.upm.es

Abstract

In this paper, we present a process for linking
organizational training efforts with defects causal analysis
in software development organizations. The process is
being implemented in a CMMI maturity level 3
organization. Since causal analysis is not an expected
process area at maturity level three, key success factors
for the implementation of the process are identified and
analyzed. The conclusions were tested in this software
development organization. In order to do that, a pilot
project was selected and training was implemented to
support the process. The training results are analyzed in
order to validate the overall approach. The resulting work
provides a guideline for implementing causal analysis in
lower maturity organizations and establishes that the
implementation is viable in the target organization.

1. Introduction

Organizations nowadays invest large amounts of money
in their training programs. Just in the United States,
organizations invest an average of U$S 100 billion
annually [1]. Organizations invest in training under the
assumption that higher trained employees will result in
higher quality products and reduced costs.

Nevertheless, in spite of all this investment and effort,
organizations have not been so successful at providing
consistent data that will link the investment on
organizational training to organizational results.

Kirkpatrick’s four levels of training evaluation
establishes a framework against which organizations can
measure up its investment in training. Kirkpatrick’s four
levels are called: Reaction, where trainees feelings towards
the training are measured; learning, were trainees acquired
knowledge is measured; Transfer, in which a measure of
the amount of the Learned knowledge as actually put to
use in the work; and Results, were impact to the
organization’s bottom line results is measured.

In this paper we propose a process for an organizational
training department within a CMMI [2] maturity level 3
(CMMI L3), that addresses this problem. Our objective is

to design a training process that is able to present results at
Kirkpatrick’s “Results” level [3].

The key aspect for the successful implementation of our
process is the capability of the organization in defects
causal analysis. Since the Causal Analysis and Resolution
(CAR) process area belongs to maturity level 5 in the
staged representation of the CMMI model, we want to
make sure that the implementation of some causal analysis
specific practices is possible in a level 3 organization.

In the following section, we provide an overview of the
target organization, followed by our process proposal for
the training department. Then in section 4, , we provide an
analysis of the current state of causal analysis research. We
specifically focus on linking causal analysis to
organizational training. We finally provide data on the
implementation and validation of causal analysis sessions
within a maturity level 3 organization.

2. Brief description of the target
organization and its infrastructure

The organization we are working with has recently
obtained a maturity level 3 rating. It is a software factory
that provides customized software solutions to in-shore
and off-shore customers. Its development offices are
located in Uruguay, and it has sales offices in the
Caribbean and Mexico.

In the past two years, the organizational training
department has invested - in US dollars - the equivalent to
7% of billable working time of their software developers.
As a result, the training department needs to show the
organization the return of its investment.

A Microsoft Office SharePoint Server supports the
organizational measurement system. The SharePoint
Server allows for the interoperation with other Office
tools, for instance Microsoft Access is used for data
analysis needs and the front end for data recollection is
usually a Microsoft InfoPath form. The organization defect
tracking system is one example.

Currently, the training department is using the
described tools for its measurement needs. However, its
data repository is not yet linked to the defect tracking
system.

42

3. A description of our proposed process

This section describes the process we are deploying in
order to link organizational training results to defects
causal analysis. The idea is to make use of the information
available at a CMMI L3 organization. Specifically, we
want the training department to take advantage of the data
available in the organization’s defect tracking system. The
purpose is that the training department will monitor the
defect data in the system and will interpret the data as the
training needs of the organization’s development projects.
The training department will use this information to plan
training interventions specifically tailored to the
development projects needs. We expect that those
interventions will have positive results in the projects
quality, and that those results will be noticeable in a
reduction of the number of defects.

Figure 1 uses the diagram from the CMMI basic
process management areas [2] in order to help us illustrate
our process (items which come from the original CMMI
diagram are shown in grey color, items from our proposal
are left in white).

The first requirement of our process is that the defect
tracking system must support a classification scheme that
will allow for easier data analysis. IBM’s Orthogonal
Defect Classification (ODC) [4] is an example of one of
such schemes, and the one we have used as reference.
ODC is described in section 5.1.

In this process, when developers execute Verification
and Validation activities they are required to classify the
defects they log into the defect tracking system (arrow 1).
During the course of the projects life cycle, the execution

of Validation and Verification activities will populate the
Defect Tracking System database (QADataBase) with
classified defects (arrow 2).

At every project’s milestone, the development team
(arrows 3) holds causal analysis meetings. The objective of
these meetings is to provide the training department with
training proposals. The idea is that developers will take the
classified defect data (arrow 3) from the QADatabase and
identify which training they would have needed in order to
prevent some of the mistakes that triggered the defects
(arrow 4).

The training department will use both the classified
defects from the QADatabase and the outputs from the
causal analysis sessions in order to plan the training
interventions (arrow 5).

Arrow 6 represents the ultimate goal of this proposal,
which is the ability to show results in terms of Return on
Investment (ROI) [5]. Return on Investment is interpreted
as a Kirkpatrick’s “Results” level measurement. Return on
investment can be calculated by taking into account the
defect reduction that should be noticed after the training
department intervention. We expect to use the ROI
classical formula to calculate ROI:

100*()Benefits CostsROI
Costs

−
= [5].

As a first step into the implementation of this process,
we will turn our attention to validate arrows 3 and 4 of this
cycle. First, we will present a systematic review of
available literature about the implementation of causal
analysis process area in lower maturity organizations. Our
objective is to see if there have been previous attempts at

Figure 1 Overview of the Proposed Process

43

implementing causal analysis in a context similar to the
one we have described. If the review is successful, we will
turn our attention into developing and validating a
consistent classification scheme within the organization.

4. A review of causal analysis methodologies

Since Causal Analysis and Resolution (CAR) is a
CMMI L5 process area, we cannot expect to see a CAR
process deployed in a level 3 organization. Yet, the causal
analysis meeting is the critical success factor of our
process since the output of the causal analysis meeting
(arrow 3) is one of the inputs that the training department
will need in order to plan and deploy the training
interventions.

A systematic review [6] of the causal analysis
bibliography was carried out. Our objective was to answer
these two questions: A) Has anybody else tried to
implement CAR at a CMMI L3 organization? B) What are
people doing with the results of the CAR meeting?

Table 1 shows a summary of the results of the
systematic review on the implementation of causal analysis
in lower maturity organizations.

Table 1 Summary of the reviewed literature
Authors Is it a Lower

Maturity (L2 or
L3)
Organization?

Purpose of CAR
analysis

Buglione, L
et al. [7]

Yes N/A just the
challenge of
implementing it at
lower maturity
organizations

Bhandari, I
et al [8]

No Process
Improvement

Card D. N.
[9]

No Process
Improvement

Card D.
N.[10]

No Project Defect
Profile

Card D.
N.[11]

N/A Cost Saving by
Defect Reduction

Mitzukami
D.[12]

No Project Defect
Profile

Lezak M et
al. [13]

No Process
Improvement

Fredericks
M et al[14]

No Process
Improvement

Norman
E.F. [15]

N/A Defect Prediction

Bibi S. et al
[16]

N/A Project Defect
Profile and Defect
Prediction

Jacobs J. C.
et al [17]

N/A Project Defect
Profile and Defect
Prediction

In reference to our first question, we only found one
reference [7] which shows that CAR can be implemented
at a maturity level 3 organization (question A). The
research done by Buglione and Abram [7], describes how
it is possible to implement a CAR process area in
organizations that have not yet achieved higher maturity
rating. They base their implementation of the causal
analysis meeting using Ishikawa (or Fishbones) diagrams
[18] and defects have been classified using IBM’s
Orthogonal Defect Classification [4].

Finally, Table 1 shows that we have classified the
results of Causal Analysis in three categories (question B).
“Process Improvement” is the category that reports using
Causal Analysis results as an input to process
improvement initiatives. This use is aligned with [4] first
proposal of ODC. The “Project Defect Profile” category
represents initiatives that use defect data to compare the
actual project to the historical projects database of the
organization. They use Causal Analysis to understand
deviations from the historical data and to implement
corrective actions to their project and to the organization’s
process. In the “Defect Prediction”, we have seen attempts
to use artificial intelligence techniques to profile project’s
defects and to predict the number of remaining defects.
Finally, “Cost Saving by Defect Reduction”, means that
the implementation of causal analysis can provide cost
savings. All the results show the intended uses of causal
analysis as they are recommended in the CMMI model.
Unlike our research objective, none of the reviewed
authors have linked causal analysis to training needs.

5. Development and Validation of the
classification scheme

For a successful implementation of causal analysis
session, the organization must develop a classification
scheme that will enable developers to consistently classify
defects. This section starts by presenting an overview of
IBM’s ODC taxonomy, which has served as the
groundwork for our classification scheme. We then
describe our implementation and our results.

5.1. Reference classification scheme:
Orthogonal Defect Classification

At IBM [4, 20, 21] Defect Data classification has been
used to drive Software Process Improvement initiatives.
They call their process Orthogonal Defect Classification
(ODC). Within the ODC context, developers classify
defect data in orthogonal classifications. IBM proposes a
taxonomy for defect classification based on the source of
the defects:
• Education, in this category the developer did not
understand some aspect of the product or the process. This

44

category is further divided into education in base code,
education in new function, and other education, depending
on what was not understood.
• Communication, in this category the developer
did not receive the required information or the information
was incorrect.
• Oversight, in this category the developer failed to
consider all cases and conditions. Usually some detail of
the problem or process was overlooked. The developer
forgot something, had difficulty checking thoroughly, or
did not have enough time to be thorough.
• Transcript. In this category the developer knew
what to do and understood the item thoroughly but simply
made a mistake. Transcription errors are typically caused
by some problem in a procedure, for example, typing or
copying a list of items.

In relation to ODC we have reviewed the work by [19],
where they recognize the importance of having a
classification scheme that is consistent with the
organizations’ tools and culture.

5.2. Classification Scheme implementation
plan

The classification scheme was developed based on the
advice in [19]. In their work, the authors recognize the
benefits that the organizations can obtain if they take the
time to develop their own classification scheme consistent
with their information needs. As a result of this work, it
was decided to develop a classification scheme that was
suitable for our target organization. We divided the
deployment plan in four major stages (as shown in Table
2). In the first stage, we developed the custom
classification scheme. Secondly, the classification scheme
was deployed to the organization through its defect
tracking system (this is described in this section). Then,
training in developing classification ability had to be
implemented in order to achieve a reliable classification
capability within the organization (described in the
following section).

Table 2 Classification scheme deployment plan
Stage Activity

Organizations Capability Design and Validate
classification scheme

Deploy Classification
scheme

Modify defect tracking
system

Training Design and deploy
classification training
Evaluate training results

As we mentioned earlier, to minimize the rejection risk
of the classification deployment, it is important that the
classification taxonomy was consistent with its information
needs and culture[19]. A custom classification was
developed with the help of the practitioners. Furthermore,

the researchers established equivalence between the
organization’s classification and ODC (see Table 31).

The organization was already using a defect tracking
system whose defect states were the ones proposed by the
Microsoft Solution Framework for CMMI Process
Improvement [20]. Therefore, implementing the ODClike
classification went seamless in the developer’s culture.
The new classification scheme had to be implemented into
the defect tracking system front end (a Microsoft InfoPath
form template), which required only 4 hours work.

Table 3 Example of the organization’s defect
classification scheme

Defect
Category

Classification
Criteria

ODC
Category
Equivalence

Product
Integration Error

Interface
implementation
does not match
specification.
Changes are not
transferred to
lower layers.
Data not
transferred from
lower layers.

Communication

Error in use or
configuration of
user interface
controls

Controls 'Freeze'.
Paging not
working in
DataGrids.
DataGrids missing
headers.

Education

… … …

5.3. Description of the classification training
and its results

For a successful implementation of the causal analysis
meetings the developers must be consistent in their defect
classification across the organization. A training event was
prepared for the pilot project’s developers.

Three of the organization’s developers attended
training. One of the trainees (C1) was a senior developer
of the organization. The other two developers had
experience in the pilot project’s product line. Moreover,
since we wanted to simulate the turnover rate of the
organization, we included a fourth individual (O) to our
experiment. This fourth subject had no contact with the
organization and was given no training in the classification
scheme.

The training consisted on a 4-hour seminar split into 2
days. The seminar was prepared and given by one of the

1 Since defect data can be sensitive to the organization, we were asked to
show only what was strictly necessary to communicate our results.
Hence, we decided not to include the full classification scheme here.

45

researchers. This kind of training is the standard training
effort that this organization invests on a given process. The
organization’s training events of this kind are similar to the
ones described in [21]. During the seminar, an explanation
of the causal analysis meetings purposes was given to the
trainees. The classification scheme was presented with a
sample defect for each one of the 12 classification
categories.

For training evaluation, we provided the trainees with a
set of 31 defects which we asked them to classify. We
wanted a measure of how reliable the classification was
between the trained developers. For this objective we
applied Cohen’s Kappa [22] between each of the subjects
following a process similar to the one shown in [19, 23].
Cohen’s Kappa is a statistical measure of inter-rater
reliability, it is used to compare the level of agreement
between two subjects who are classifying the same data
set. We also applied the Kappa correlation to the outsider
(O), and to an expert classifier (E). Our intention was to
measure how the untrained individual rated against the
other subjects. Furthermore, we applied a Fleiss’ Kappa
[24] to the trained group, and to the trained group plus the
untrained subject. Fleiss’ Kappa is a statistical measure for
assessing the agreement of a number of subjects
classifying a fixed data set. We expect that the
examination of the results will show that trained
individuals score higher correlation values than untrained
individuals.

Table 4 shows the results for every pair: E represents
the expert rater (one of the analysts who helped develop
the classification). C1 – C3 represent the trained
developers and O represents the outsider. While Table 5
presents the Fleiss’ Kappa results with and without the
Outsider.

Table 4 Cohen's Kappa between subjects
Subjects Cohen’s

Kappa
significance

Subjects Cohen’s
Kappa

significance
E – C1 0,73 C1 – C3 0,47
E – C2 0,55 C1 – O 0,36
E – C3 0,52 C2 – C3 0,52
E - O 0,34 C2 – O 0,37
C1 – C2 0,62 C3 – O 0,30

Table 5 Fleiss' Kappa calculation results
Subject Group K agreement

E-C1-C2-C3 0,53
E-C1-C2-C3-O 0,44

Table 6 presents the significance agreement intervals
for both Cohen’s and Fleiss’ Kappas proposed by [25].
Based on this table, we set the objective for accepting
developers’ classification agreement in the “Substantial
Agreement” interval or above.

Table 6 Kappa significance table for Cohen and Fleiss
Cohen’s

Kappa
Significance

< 0 Poor Agreement
0.00 – 0,20 Slight Agreement
0,21 – 0,40 Fair Agreement
0,41 – 0,60 Moderate Agreement
0,61 – 0,80 Substantial Agreement
0,81 – 1 Almost Perfect

Agreement

Table 5 shows that the group did not achieve the target
score, which is an indication of the effectiveness of the
training. Nevertheless, the most remarkable result is that
the inclusion of an untrained individual does not reduce
the overall agreement significance.

The result on the exercise provides enough confidence
in that the developers (C1-C3) are able to consistently
classify defects according to the organization’s
classification scheme. Such results will enable the training
department to process the causal analysis meetings output
as input for specific training to the projects. In addition to
this, results also show the importance of training for
supporting the classification scheme.

The results in Table 4 show that training has effect on
the subjects’ ability to classify. This conclusion is drawn
from Table 4 where we can see that trained subjects score
higher agreement among themselves than when there are
compared with the untrained subject. On the other hand,
some of the trained subjects have failed to meet the 0,61
expected rate. We interpret this as an indication that
training can be improved. This conclusion is supported by
the fact that all three trained subjects scored correlations in
the same significance category (between 0,47 and 0,62). In
any event, the results have shown that with a 4 hour
training regular developers classify 50% better that junior
developers. And senior developers achieve a classification
ability that scores substantial agreement in the correlation
table. Finally, the comparison of the results with the
untrained subject proves that training has impact on the
classification ability of the developers. Taking into
consideration the inclusion of the untrained subject shown
in Table 5, it seems that the organization would do better
to improve the efficiency of the training given, rather than
achieving 100% training coverage of their developers.

6. Conclusions and future work

In this article, we have proposed a process that links
defect causal analysis to the training department. The
process enables an organizational training department to
show its contribution to the bottom line results of the
organization. We have taken the first steps into
implementing the process and we have also conducted a
verification of these first steps.

46

It was determined that the key point for the success of
the deployment of the process was the causal analysis
session. An effort was made to reviewing the current state
of the implementation of causal analysis in lower maturity
organizations. The result was that we were able to find
research that shows implementing causal analysis in lower
maturity organizations is possible.

We developed a custom classification scheme for the
organization, and cost-effectively modified the defect
tracking system to deploy it.

Training in that classification scheme was given to a
pilot project. The results show that training improves the
developers’ ability to classify defects.

In conclusion, causal analysis meetings have been
successfully implemented in a maturity level 3
organization. Previous experiences encourage us to affirm
that an implementation of the Causal Analysis and
Resolution process area can be achieved at a lower
maturity organization. We are now developing the
following steps to achieve a full implementation of the
proposed process.

7. References

1 Salas, E., and Cannon-Bowers, J.A.: ‘THE SCIENCE
OF TRAINING: A Decade of Progress’, Annual Review of
Psychology, 2001, 52, pp. 471-499
2 Chrissis, M.B., Konrad, M., and Shrum, S.: ‘CMMI :
guidelines for process integration and product improvement’
Addison-Wesley, 2007.
3 Kirkpatrick, D.L., and Kirkpatrick, J.D.: ‘Evaluating
Training Programs: The Four Levels’ Berrett-Koehler
Publishers, 2006.
4 Chillarege, R.: ‘Orthogonal Defect Classification-A
Concept for In-Process Measurements’, 1992
5 Phillips, J.J.: ‘Return on Investment in Training and
Performance Improvement Programs, Second Edition
(Improving Human Performance)’ Butterworth-Heinemann,
2003.
6 Kitchenham, B.: ‘Procedures for Performing
Systematic Reviews’, Technical Report TR/SE-0401-ISSN,
Keele University, UK, 2004, pp. 1353-7776
7 Buglione, L., and Abran, A.: ‘Introducing Root-Cause
Analysis and Orthogonal Defect Classification at Lower CMMI
Maturity Levels ’, 2006
8 Bhandari, I., Halliday, M.J., Chaar, J., Chillarege, R.,
Jones, K., Atkinson, J.S., Lepori-Costello, C., Jasper, P.Y.,
Tarver, E.D., Lewis, C.C., and Yonezawa, M.: ‘In-process
improvement through defect data interpretation’, IBM Syst. J,
1994, 33, (1), pp. 182-214
9 Card, D.N.: ‘Defect-causal analysis drives down error
rates’, 1993, 10, (4), pp. 98-99

10 Card, D.N.: ‘Managing Software Quality with
Defects’. Proc. Proceedings of the 26th International Computer
Software and Applications Conference on Prolonging Software
Life: Development and Redevelopment, Year pp. 472-474
11 Card, D.N.: ‘Learning from Our Mistakes with Defect
Causal Analysis’, 1998
12 Mizukami, D.: ‘Analyzing Defects Can Tell a LOT
About a Company’. Proc. SEPG Conference 2007, March 26 -
29, 2007 2007 pp. Pages
13 Leszak, M., Perry, D.E., and Stoll, D.: ‘A case study in
root cause defect analysis’, Proceedings of the 22nd international
conference on Software engineering, 2000, pp. 428-437
14 Fredericks, M., and Basili, V.: ‘Using Defect Tracking
and Analysis to Improve Software Quality ’, Crosstalk, 1999
15 Norman, E.F.: ‘A Critique of Software Defect
Prediction Models’, IEEE Transactions on Software
Engineering, 1999
16 Bibi, S., Tsoumakas, G., Stamelos, I., and Vlahvas, I.:
‘Software Defect Prediction Using Regression via
Classification’, Computer Systems and Applications, 2006. IEEE
International Conference on., 2006, pp. 330-336
17 Jacobs, J.C., van Moll, J.H., Krause, P.J., Kusters, R.J.,
Trienekens, J.J.M., and Semiconductors, P.: ‘Effects of Virtual
Development on Product Quality: Exploring Defect Causes’,
Software Technology and Engineering Practice, 2003. Eleventh
Annual International Workshop on, 2003, pp. 6-15
18 Ishikawa, K.: ‘Guide to Quality Control’ Asian
Productivity Organization, 1986.
19 Freimut, B., Denger, C., and Ketterer, M.: ‘An
industrial case study of implementing and validating defect
classification for process improvement and quality management’,
Software Metrics, 2005. 11th IEEE International Symposium,
2005, pp. 10 pp. %@ 1530-1435
20 Microsoft Solution Framework for CMMI Process
Guideance Available at http://msdn2.microsoft.com/en-
us/teamsystem/aa718802.aspx
21 Smith, C.: ‘Achieving organizational training
objectives with short course development’, 13th Conference on
Software Engineering Education & Training, 2000. Proceedings.
, 2000, pp. 32-38
22 Cohen, J.: ‘A Coefficient of Agreement for Nominal
Scales’, Educational and Psychological Measurement, 1960, 20,
(1), pp. 37
23 Henningsson, K., and Wohlin, C.: ‘Assuring fault
classification agreement-an empirical evaluation’, Empirical
Software Engineering, 2004. ISESE'04. Proceedings. 2004
International Symposium on, 2004, pp. 95-104
24 Fleiss, J.L.: ‘Measuring nominal scale agreement
among many raters’, Psychological Bulletin, 1971, 76, (5), pp.
378-382
25 Landis, J.R., and Koch, G.G.: ‘The Measurement of
Observer Agreement for Categorical Data’, 1977, 33, (1), pp.
159-174

47

Autonomous Reconfiguration Procedures for EJB-based Enterprise Applications

Thomas Vogel, Jens Bruhn, and Guido Wirtz
Distributed and Mobile Systems Group, University of Bamberg

Feldkirchenstraße 21, 96052 Bamberg, Germany
th.vogel@gmail.com, {jens.bruhn|guido.wirtz}@uni-bamberg.de

Abstract

Enterprise Applications (EA) are complex software systems
for supporting the business of companies. Evolution of an EA
should not affect its availability, e.g., because of a temporal
shutdown, business operations may be affected. One possibil-
ity to address this problem is the seamless reconfiguration of
the affected EA, i.e., applying the relevant changes while the
system is running. Our approach to seamless reconfiguration
focuses on component-oriented EAs. It is based on the
Autonomic Computing infrastructure mKernel that enables
the management of EAs that are realized using Enterprise
Java Beans (EJB) 3.0 technology. In contrast to other
approaches that provide no or only limited reconfiguration
facilities, our approach consists of a comprehensive set of
steps, that perform fine-grained reconfiguration tasks. These
steps can be combined into generic and autonomous recon-
figuration procedures for EJB-based EAs. The procedures
are not limited to a certain reconfiguration strategy. Instead,
our approach provides several reusable strategies and is
extensible w.r.t. the opportunity to integrate new ones.

Keywords: maintenance, seamless reconfiguration, EJB

1. Introduction

Enterprise Applications (EA) are complex software systems

for supporting the business of a company. According to

Lehman’s laws [10] software implementing real world appli-

cations like EAs must continually evolve, else their use and

value would decline. The need for system evolution origi-

nates, e.g., from failures, inefficiencies or changes of the busi-

ness or of the system environment that lead to new or chang-

ing requirements for EAs. Thus, system evolution can be

categorized as corrective (removing software faults), adap-
tive (adjusting the system to the changing environment), or

perfective (enhancing or improving the functional and non-

functional system characteristics) (cf. [15, 18]). Due to the

critical role of an EA within a company this evolution should

not affect the availability of an EA and therefore the business

operations. Otherwise, the company might miss business op-

portunities and loose reputation and trust. One approach to

address this problem is the seamless reconfiguration, i.e., ap-

plying the relevant changes to the system while it is running.

Except of delays in the response time reconfiguration should

be transparent to the clients of the EA. This post-deployment
runtime evolution can be seen as one critical challenge in soft-

ware evolution [14]. To cope with this issue, the modularity

of software systems, as proposed by the concept of Compo-
nent Orientation (CO) [19], and the automation of system

maintenance tasks, as described by the vision of Autonomic
Computing (AC) [4, 8], can help. With the mKernel system

[1, 2] a generic AC infrastructure is available that enables

comprehensive management of component-oriented EAs that

are realized with the Enterprise Java Beans (EJB) 3.0 tech-

nology [3]. Based on mKernel, we provide a comprehensive

set of steps, that are customizable and perform fine-grained

reconfiguration tasks. These steps can be combined flexi-

bly to generic and autonomous reconfiguration procedures for

EJB-based EAs. Each of these procedures realizes a certain

reconfiguration strategy, i.e., a certain way to perform a re-

configuration. Currently, our approach provides four reusable

strategies that serve as templates for easing the planning and

execution of a concrete reconfiguration.

The rest of the paper is structured as follows: Section 2

provides an overview to the background, namely system re-

configuration, CO and the AC infrastructure mKernel. Sec-

tion 3 discusses related work, while section 4 presents our ap-

proach of reconfiguration procedures. Finally, the last section

gives a conclusion and an outlook on future work.

2. Background

After introducing the basics of system reconfiguration, the

concept of CO and relevant aspects of the EJB standard are

presented. Finally, we describe how mKernel combines EJB

with the vision of AC.

2.1. System Reconfiguration

The architecture of a software system is the high-level orga-
nization of [its constituent] computational elements and the
interactions between those elements ([5], p.269). In this con-

text, according to [13], there are two general approaches for

software reconfiguration: parameter adaptation and compo-
sitional adaptation. The first one modifies variables of one

or more elements that determine their behavior. The second

one addresses structural reconfiguration through addition and

removal of elements, including the manipulation of connec-

tions among them (cf. e.g. [9, 15, 17]). The weakness of

parameter adaptation is that it allows only changes that were

anticipated during development, because the elements have to

provide the variables and react appropriately to their modifi-

cations. In contrast, compositional adaptation is intended for

the dynamic and unanticipated reconfiguration of a system.

48

For carrying out a reconfiguration, two objectives are to be

considered and desirable [9]. First, the reconfiguration should

minimize the disruption to the system, i.e., the affected part of

the system may notice delays but no failures, while the rest of

the system should be able to continue its execution normally.

Thus, reconfiguration should be carried out seamlessly. Sec-

ond, a consistent state of the system must be preserved dur-

ing and after reconfiguration. Consequently, a reconfigura-

tion, like, e.g., the replacement of an element, may require to

place the affected part of the system in a consistent state be-

fore structural changes are performed. A state is consistent if

the affected elements are quiescent [9], i.e., none of them is

currently engaged in servicing a request and none of them will

initiate a request. Furthermore, no requests initiated by non-

affected elements are forwarded to affected ones. To reach a

quiescent state, requests that are currently serviced must be

finished. New requests must be blocked except those which

are needed to finish servicing ones. Otherwise, some elements

are not able to reach a quiescent state and end up in a dead-

lock. Quiescence of the affected part of the system gives new

elements the opportunity to be initialized in a state which is

consistent with the rest of the system, and elements to be re-

moved the opportunity to leave the system in a consistent state

[9]. In case of an element replacement, this may include the

need for transferring the internal state of a replaced element

to a replacing one [15, 16].

How to apply changes are questions of reconfiguration

strategies. In [16] the three strategies Flash, Non-Interrupt
and Interrupt are presented. The Flash strategy reconfigures

one element without concerning about other elements. Re-

configuration takes place immediately without handling ex-

isting interactions and the states of the affected elements. No

state transfer is performed and existing connections to old el-

ements are not updated. Therefore, these connections become

invalid and are likely to cause errors. Finally, the system may

become inconsistent. Consequently, Flash does not always

perform a seamless and consistent reconfiguration. Neverthe-

less, it can be used, amongst others, for parameter adaptation

or for reconfiguring elements not being critical for the con-

sistency of the application. In contrast, the other strategies

preserve consistency of the system and perform a seamless

reconfiguration. The Non-Interrupt strategy supports the ex-

change of elements without the need for quiescence, hence

reducing system disruption significantly. Both elements, the

old one that is going to be replaced and the replacing one, are

active. An intercepting facility forwards requests of already

existing sessions to the old one and requests of new sessions

to the replacing one. After all sessions on the old element

have finished, it can be removed and only the new element is

used. This strategy does not require a state transfer. It requires

that the two elements can be used concurrently. The Interrupt
strategy transfers the affected part of the system into a quies-

cent state before reconfiguration takes place. The states of the

affected elements and existing connections between elements

are handled, such that, e.g., an element replacement can be

performed without causing any failures. After reconfigura-

tion, the affected part of the system is released at once from

the quiescent state, such that it can be assured that all elements

and connections are reconfigured appropriately, before resum-

ing their execution. Comparably with the other strategies, an

advantage of requiring quiescence is that, e.g., an underlying

database is not used during quiescence, which enables its con-

sistent modification or transfer. Consideration of strategies is

important to find the best way to reconfigure a system.

2.2. Component Orientation

The concept of Component Orientation (CO) [19] is a

paradigm for the development of software systems in a mod-

ular way through functional decomposition. Such systems are

composed of modules, called Components. A component en-

capsulates a certain functionality and provides it through con-

tractually specified Interfaces. A component may use services

from other components through their provided interfaces. An

interface required by a component is called Receptacle. Con-

sequently, a component-based system can be seen as a col-

lection of loosely-coupled modules which collaborate among

each other through their interfaces. Furthermore, a compo-

nent can be deployed independently and is subject to com-

position by third parties [19]. Thus, CO addresses the com-

plexity during development and deployment by modularity of

requirements, architectures, designs, implementations and de-

ployments. This modularity supports the partial reconfigura-

tion of component oriented systems.

The Enterprise Java Beans standard (EJB), version 3.0,

[3] is a component standard for the realization of component-

oriented EAs on top of the Java programming language. It

defines a sound component model that is based on so called

Enterprise Beans, or Beans for short. There are two types

of beans considered in the standard, namely Message Driven
Bean and Session Bean. The former one is intended to be

accessed through asynchronous message passing, and the lat-

ter one provides interfaces to access its encapsulated func-

tionality. Session beans can be either stateless or stateful.
An instance of a stateful session bean is exclusively used by

a single client and retains its client-specific Conversational
State across multiple invocations. In contrast, an instance of

a stateless session bean is not exclusively used by a client.

Moreover, each invocation from a client on the same reference

may be executed on different instances. Thus, all instances of

one stateless session bean are equivalent, and their states are

client independent. Receptacles can be declared for session

and message driven beans through EJB References. These

can be connected to interfaces provided by session beans.

Beans may be customized through Simple Environment En-
tries which can be interpreted as a kind of property. Before

deploying beans, they must be configured, i.e., their proper-

ties must be set and their corresponding receptacles and in-

terfaces must be connected. As unit of deployment the EJB

standard defines the EJB module that must contain at least one

bean. In the EJB context, parameter adaptation is performed

through setting bean properties, and compositional adapta-

49

tion through (un)deploying modules and manipulating con-

nections between beans. However, after the deployment of a

module into an EJB Container, the runtime environment for

components, the configurations of beans can not be changed.

2.3. Autonomic Computing and mKernel

The vision of Autonomic Computing (AC) [4, 8] addresses the

management of systems at runtime. Its basic idea is to assign

low level, administrative tasks to the managed system itself

to disburden human administrators. The system manages it-

self according to the goals specified by the administrator. Au-

tonomous management covers the four aspects self-healing,

self-protection, self-optimization, and self-configuration. The

last aspect addresses reconfiguration explicitly. Furthermore,

each aspect can be mapped to at least one of the different kinds

of system evolution discussed in section 1, namely corrective,

adaptive, and perfective.

The mKernel system [1, 2] provides a generic AC infras-

tructure for EJB-based autonomous applications. It includes

a comprehensive Application Programming Interface (API)

of sensors and effectors through which the managed applica-

tion can be inspected and manipulated by a higher level facil-

ity. Through this API, mKernel provides a reflective view, the

meta level, of the managed application, the base level. Both

levels are causally connected [11]. This reflective view en-

ables the management of the application at three different lev-

els of abstraction. The Type Level addresses information re-

garding types of the constituting elements of the managed ap-

plication, i.e., artifacts being the result of development. The

Deployment Level concentrates on a concrete configuration

of the managed application that is deployed into a container.

Finally, the Instance Level addresses the bean instances and

interactions among them. With this multi-level view, subtle

management operations are possible. As discussed in sec-

tion 2.2, the EJB standard limits the configuration of bean

properties and connections among beans to the deployment

time, but mKernel enables the modifications of them at run-

time. Together with supporting the lifecycle of EJB modules,

mKernel provides runtime support for parameter and compo-

sitional adaptation. Nevertheless, the EJB specification is not

violated or restricted by mKernel. Developers of EJB mod-

ules do not have to follow special guidelines beyond those of

the EJB standard during development to enable the manage-

ability of modules through mKernel. Thus, the developer can

solely focus on the application logic while a preprocessing

tool weaves the sensors and effectors into the EJB module.

This approach maintains the idea of Separation of Concerns.

Furthermore, mKernel is realized as a plugin for an existing

EJB container and does not require any adjustments of the

container implementation.

3. Related Work

Our approach to seamless reconfiguration is inspired by the

work of Rosa, Rodrigues and Lopes [16] who present a frame-

work for message-oriented systems that supports a fixed set

of reconfiguration strategies. In contrast to their work, our

approach is extensible w.r.t. the integration of new strategies.

Moreover, the replacement of strategy elements is supported

which provides additional flexibility. We support separation

of concerns, because developers of EAs do not have to con-

sider reconfigurations during development. Finally, the de-

ployment and instance level are explicitly addressed, espe-

cially the transfer of conversational states of stateful session

bean instances is supported. Our work addresses a different

application area, namely EJB-based EAs.

Göbel and Nestler [6] extend the EJB specification by

adding one more bean type, namely a composite bean. This

composite encapsulates runtime adaptation by selecting dif-

ferent sub-components of the composite. Thus, the developer

must consider this extension to the standard and only antici-

pated reconfiguration is possible that depends on the internals

of the composite. Jarir, David, and Ledoux [7] enhance the

EJB container to provide limited reconfiguration by intercept-

ing calls to impose user-defined functionality. More possibil-

ities are provided by Rutherford et al. [17], though their work

is restricted to reconfiguration at the deployment level. They

consider the management of the deployment lifecycle of mod-

ules and the modification of properties and of connections of

beans. Nothing is said about the handling of bean instances,

i.e., replacing bean instances together with their possible con-

versational states is not considered. In contrast, Matevska-

Meyer, Olliges, and Hasselbring [12], who confine reconfig-

uration to redeploying modules, recognize the problem of the

state transfer. They conclude that stateful beans are not safe

to structural changes and provide no solution. Finally, the

research group of the Peking University Application Server
(PKUAS) [20] has implemented an own EJB container that

incorporates the necessary technological facilities for updat-

ing modules including bean instances and state transfer. Thus,

they consider the deployment and instance level. But they do

not support higher-level facilities, like reconfiguration strate-

gies that may simplify the role of administrators.

4. Autonomous Reconfiguration Procedures

Our approach to seamless reconfiguration of EJB-based EAs

covers parameter and compositional adaptation. To meet vari-

ous reconfiguration needs we identified and provide a compre-

hensive and complete set of customizable and reusable steps,

that are described in table 1. The first column contains identi-

fiers for the steps. The second column covers a short descrip-

tion of the particular step. Each step performs a special recon-

figuration task, like, e.g., the deployment of a module (step a)

or the establishment of connections between beans (step l).
Steps are realized by so called executors that are based on the

mKernel API. This is depicted on the left hand side in the re-

configuration model in figure 1. Our implementation provides

default executors for all steps, except the step that is intended

for reconfiguration of databases. Nevertheless, administrators

have the freedom to provide custom executors for arbitrary

50

ID Step dep. F NI I I/NI

a
Deployment of the new EJB module. Setting the Simple Environment Entries and con-

necting the EJB Reference of its beans.
/ 1 1 1 1

b
Declaration of the quiescence region which comprises those beans or whole modules

that must be quiescent at a later point in time. For module replacement, this region is

the module which is going to be replaced.

/ - - 2 2

c
Start tracking and collecting session bean instances of beans of the quiescence region to

get to know the instances that are handled with step f .
b - - 3 3

d
Initializing the quiescence, i.e., initializing the blocking of calls on the instances of beans

of the quiescence region. The region becomes quiescent after finishing current calls.
b - - 4 6

e Waiting until the quiescence region becomes quiescent. d - - 5 7

f Extracting the state of stateful session bean instances being collected because of step c. c, e - - 6 8

g Extracting the database that underlies the quiescence region. e, f - - 7 -

h Transfer or modify the database. g - - 8 -

i Starting of the new EJB module. a 2 2 9 4

j
Modifying (optional) and injecting the states, being extracted at step f , to newly created

instances of the corresponding stateful session beans of the new EJB module.

f , h,

i
- - 10 9

k
Publishing the references of the new bean instances that have been the target of the

transfer of step j. Client components holding references to replaced stateful session bean

instances are provided with the corresponding new reference to the replacing instance.

j - - 11 10

l
Re-route connections that are newly established. The source of the these connections

are client components of the new/old EJB module and the target of these connections

shifts from the beans of the old EJB module to the beans of the new EJB module.

h, i 3 3 12 5

m

Re-route already existing connections, i.e., clients of the old module holding references

to bean instances of the old module are provided with new references to bean instances

of the new module. In case of an I or I/NI this step only considers connections whose

targets are bean instances which have not been transferred. Connections to transferred

bean instances are already covered by step k. In case of NI this step is optional and only

consistently applicable if the target of the connection is a stateless session bean instance.

h, i - 4 13 11

n
Release the quiescence region, i.e., blocked calls and eventually blocked bean instance

lookup requests are released and continue executing through using the reference already

held before quiescence or the reference provided in steps k, l or m.

d, h,

k, l,
m

- - 14 12

o
Stop and optionally undeploy the old EJB module if the old module is not used any more,

or in case of the F strategy, should not be used any more through existing connections.

g, k,

l, m
4 5 15 13

Table 1. Reconfiguration procedures and their steps

steps replacing the default ones. In this way, special require-

ments for reconfiguring concrete applications can be fulfilled.

Figure 1. Reconfiguration Model
The provided steps are the basis for the strategies (see fig-

ure 1). Therefore, steps can be combined into generic and

autonomous reconfiguration procedures. A procedure must

fulfill the dependencies between its constituting steps. The

third column of table 1 contains the steps each step depends

on transitively. A ’/’ depicts that the particular step does not

depend on any other step. Starting a new EJB module, e.g.,

requires that the module has been deployed before, therefore

step i depends on a. Nevertheless, as some steps may be op-

tional, corresponding dependencies need not to be met. For

the case, that no state transfer is necessary, steps c, f , j and

k can be omitted, and the step of stopping the old EJB mod-

ule (o) does not depend on step k, but only on g, l and m.

Consequently, these dependencies are influenced by a con-

crete arrangement of steps that may skip optional steps and

by the concrete modules and beans each step is addressing.

However, dependencies can be used to find basic restrictions

in ordering the steps or potentials for parallel execution of

steps. There exists, e.g., no dependency between the steps

a and b, such that they can be executed in arbitrary order or

even in parallel. The reusability of each step, the flexibil-

ity in ordering the steps and the possibility to omit optional

steps enable various combinations of steps into generic re-

configuration procedures. Each procedure realizes a certain

51

reusable reconfiguration strategy. Therefore, administrators

can develop custom strategies, that may be derived from oth-

ers or that may be completely new ones. Even, a dynamic

arrangement of steps during runtime is possible, resulting in

ad-hoc strategies (see figure 1). Our approach provides the

four strategies Flash (F), Non-Interrupt (NI), Interrupt (I),

and Interrupt/Non-Interrupt (I/NI). Besides the first three

ones, already presented in section 2.1, we identified I/NI as

an additional new strategy for replacing modules. It is a mix-

ture of the strategies I and NI . Its idea is that the new and old

module are running concurrently, but newly created sessions

are forwarded to the new module and start processing immedi-

ately. Already running sessions on the old module will not run

until they finish, like it is done with the NI strategy. In con-

trast, they are driven into a quiescent state and their instances

of the stateful session beans are transferred to the new mod-

ule, where finally the sessions continue their processing. The

advantage of I/NI is that system disruption is minimized be-

cause newly created sessions are not blocked from servicing

requests. Therefore, the underlying database must be usable

by both modules concurrently. Furthermore, the old module

is removed from the system consistently.

In the following, we discuss in detail how the four strate-

gies F , NI , I and I/NI can be applied for the case of re-

placing an EJB module with an alternative implementation.

Therefore, each of the last four columns of table 1 describes

a realizing procedure for the corresponding strategy. The en-

tries of these columns are to be read as follows. A step that is

not applicable or available within a strategy is denoted with a

’-’. Otherwise, the number indicates the position of this step

within the procedure.

For the F strategy only the deployment level is relevant

since existing bean instances and connections among them

are not handled. The other strategies distinguish between al-

ready existing connections and newly established connections

of bean instances, hence considering the instance level of the

application. Re-routing a connection before it is created is

always possible. Re-routing existing connections is feasible

if the target of the connection is a stateless session bean, be-

cause the states of stateless session bean instances are client

independent (see section 2.2) and both beans, replaced and

replacing one, provide the same functionality. However, if

the target is a stateful session bean, an existing connection

can only be modified consistently if the conversational state is

transferred to the corresponding target instance, otherwise the

client-specific state would get lost. As described in section 2.1

a state transfer requires quiescence of the affected beans, i.e.,

all instances of the affected beans must be quiescent. Reach-

ing quiescence is simplified by the EJB standard because bean

instances are per definition non-reentrant and are not allowed

to perform any kind of thread handling. Quiescence is per-

formed by the steps b, d, e and n. Another motivation for qui-

escence is the need to transfer or modify the database (steps

g and h) that underlies the modules, i.e., the old and the new

module must be either quiescent or in a stopped state. This

is addressed by the I strategy. In summary, a state transfer

(steps c, f , j and k) is only required if stateful session beans

are involved and an I or I/NI strategy should be used. With-

out state transfer and database reconfiguration there is no need

for quiescence, hence F or NI are the preferable strategies.

For each step being part of a concrete strategy an execu-

tor must be assigned. A step executor may define input and

output parameters. Inputs represent information required for

an appropriate execution and information about execution re-

sults are provided through outputs. Outputs can be mapped to

inputs of subsequent executors. E.g., our executor implemen-

tation for step f outputs the extracted conversational states

which are used as inputs for the executor of step j. At strategy

level, inputs can also be specified. These can be connected

to those executors inputs for which no matching outputs are

given. Likewise, outputs can be defined for a strategy that

provide information about execution results of an instantiated

strategy to an administrator. Therefore, executor outputs can

be connected to strategy outputs. To sum up, a concrete strat-

egy consists of a set of steps together with their executors,

specifications of inputs and outputs at the strategy level, and

mapping specifications between parameters. In addition to the

dependencies described in the third column of table 1, these

mappings may introduce additional dependencies. A strategy

is valid if there are no circular dependencies and if all executor

inputs are connected either to strategy inputs or outputs of pre-

ceding executors. As long as the dependencies are fulfilled,

the order of steps may change within a procedure. Thus, it is

conceivable that a strategy is realized by several procedures,

i.e., different orders of steps. The procedures described in the

last four columns of table 1 reflect the provided implementa-

tions. For a concrete reconfiguration need, an administrator

must provide a reconfiguration plan, i.e., a strategy must be

chosen, instantiated and configured. Consequently, the plan

consists only of the selected strategy and of values for strategy

inputs (see right hand side of the figure 1). During execution,

parameter values are injected to the relevant step executors.

Therefore, the reconfiguration can be executed without fur-

ther interaction need. Thus, an administrator only needs to

know what a strategy is doing, but not how it is realized.

Our current implementation supports all four aforemen-

tioned strategies to replace one EJB module with an alterna-

tive implementation of this module. The reconfiguration plan

for each strategy requires only the identifiers of the replaced

module and of the replacing module type as input values to

perform the reconfiguration autonomically. Nevertheless, the

following restrictions must be fulfilled.

1. The replacing module must provide implementations for

at least those interfaces that are provided by the replaced

module and referenced by clients. This implies that the

replacing module must fulfill the same contracts speci-

fied by these interfaces as the replaced module.

2. Each interface identified through restriction 1 must be

implemented by exactly one session bean inside both,

replaced and replacing modules.

3. For all required EJB References of each of the session

beans providing at least one of the interfaces identi-

52

fied through restriction 1, there must exist appropriate

providers. An appropriate provider is a session bean

which is not part of the replaced module. If the provider

is part of the replacing module, this restriction must hold

recursively. All EJB References of providers not being

part of the replacing module must be connected to inter-

faces, recursively.

4. For each bean of the replaced module, there exists one

bean in the replacing module that provides at least the

same interfaces w.r.t. restriction 1.

5. For stateful session beans, the state transfer at instance

level is only performed for those fields of the replaced

bean - regardless of their access modifiers - for which

there exists a matching counterpart in the replacing bean.

In this context, two fields are matching if they have the

same name and type in both, the replacing and the re-

placed beans.

Though these restrictions are imposed on modules, the alter-

native implementation of the replacing module may eliminate

failures in the behavior of the replaced one or it may be a more

efficient implementation. Additionally, the integration of new

functionality through adopting new or enhanced interfaces by

the replacing module is possible.

5. Conclusion and Future Work

With this paper we presented a flexible approach to seam-

less reconfiguration of EJB-based EA that need not to be

anticipated during EA development, hence it maintains the

idea of separation of concerns. By providing generic and

reusable procedures an administrator is freed from handling

fine-grained reconfiguration tasks for each reconfiguration

need. Instead of prescribing how a reconfiguration should be

applied, the administrator can choose between several strate-

gies. Thus, the role of the administrator is reduced to select-

ing an appropriate strategy and creating a reconfiguration plan

that configures a generic procedure for a concrete reconfigu-

ration need. The reconfiguration is performed autonomically.

As future work, it would be desirable if a mixture of the

presented strategies could be applied for the replacement of a

module, i.e., a strategy is applied only to a subset of beans of

the module instead to all of its beans. Thus, disjoint subsets

of beans can be reconfigured individually. Perhaps, this can

be even broken down to the instance level. Finally, first con-

siderations are made to weaken the restrictions of our current

executors, e.g., to enable the replacement of n modules with

m modules. Additionally, we investigate x-to-y relations for

the bean replacement instead of only x-to-1 relations.

References

[1] J. Bruhn, C. Niklaus, T. Vogel, and G. Wirtz. Comprehen-

sive support for management of Enterprise Applications. In

Proceedings of the 6th ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA 2008), pages

755–762, Doha, Katar, March 2008. IEEE.

[2] J. Bruhn and G. Wirtz. mKernel: A Manageable Kernel for

EJB-based Systems. In 1st ICST/ACM International Confer-
ence on Autonomic Computing and Communication Systems
(Autonomics 2007), Rome, Italy, October 2007. ACM.

[3] L. DeMichiel and M. Keith. JSR 220: Enterprise JavaBeans,

Version 3.0: EJB Core Contracts and Requirements. 2006.
[4] A. G. Ganek and T. A. Corbi. The dawning of the autonomic

computing era. IBM Systems Journal, 42(1):5–18, 2003.
[5] D. Garlan and D. E. Perry. Introduction to the special issue on

software architecture. IEEE Transactions on Software Engi-
neering, 21(4):269–274, 1995.

[6] S. Göbel and M. Nestler. Composite Component Support for

EJB. In WISICT ’04: Proceedings of the Winter International
Synposium on Information and Communication Technologies,

pages 1–6. Trinity College Dublin, 2004.
[7] Z. Jarir, P.-C. David, and T. Ledoux. Dynamic Adaptability of

Services in Enterprise JavaBeans Architecture. In Seventh In-
ternational Workshop on Component-Oriented Programming
(WCOP’02) at ECOOP, 2002.

[8] J. O. Kephart and D. M. Chess. The Vision of Autonomic

Computing. Computer, 36(1):41–50, 2003.
[9] J. Kramer and J. Magee. The evolving philosophers problem:

dynamic change management. Transactions on Software En-
gineering, 16(11):1293–1306, Nov 1990.

[10] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski.

Metrics and Laws of Software Evolution-The Nineties View.

Proceedings of the Fourth International Software Metrics Sym-
posium, pages 20–32, 1997.

[11] P. Maes. Concepts and experiments in computational reflec-

tion. In OOPSLA ’87: Conference proceedings on Object-
oriented programming systems, languages and applications,

pages 147–155, New York, NY, USA, 1987. ACM.
[12] J. Matevska, S. Olliges, and W. Hasselbring. Runtime recon-

figuration of J2EE applications. In 1st French Conference
on Software Deployment and (Re)Configuration, DECOR04,

pages 77–84, 2004.
[13] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng. Composing

Adaptive Software. Computer, 37(07):56–64, 2004.
[14] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,

R. Hirschfeld, and M. Jazayeri. Challenges in Software Evolu-

tion. Eighth International Workshop on Principles of Software
Evolution, pages 13–22, 5-6 Sept. 2005.

[15] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-

based Runtime Software Evolution. In ICSE ’98: Proceedings
of the 20th international Conference on Software Engineering,

pages 177–186, Washington, DC, USA, 1998.
[16] L. Rosa, L. Rodrigues, and A. Lopes. A framework to sup-

port multiple reconfiguration strategies. In Proceedings of the
First International Conference on Autonomic Computing and
Communication Systems (Autonomics 2007), 2007.

[17] M. J. Rutherford, K. M. Anderson, A. Carzaniga, D. Heim-

bigner, and A. L. Wolf. Reconfiguration in the Enterprise Jav-

aBean Component Model. In CD ’02: Proceedings of the
IFIP/ACM Working Conference on Component Deployment,
pages 67–81, London, UK, 2002. Springer-Verlag.

[18] E. B. Swanson. The Dimensions of Maintenance. In ICSE ’76:
Proceedings of the 2nd International Conference on Software
Engineering, pages 492–497, Los Alamitos, CA, USA, 1976.

[19] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2002.

[20] Q. Wang, F. Chen, H. Mei, and F. Yang. An Application Server

to Support Online Evolution. In International Conference on
Software Maintenance, pages 131–140, 2002.

53

Cross-Language Clone Detection

Nicholas A. Kraft, Brandon W. Bonds, and Randy K. Smith
Department of Computer Science

The University of Alabama
Tuscaloosa, AL 35487, USA

{nkraft,bbonds,rsmith}@cs.ua.edu

Abstract

Code duplication is a common software development
practice that introduces several similar or identical seg-
ments of code, or code clones. In addition, there is currently
a trend towards the use of multiple languages in the devel-
opment of software systems. While there has been much
work on clone detection and increased interest in studies of
multi-language software systems, there have been no stud-
ies of code clones that span multiple languages, which we
term cross-language code clones. In this paper we de-
scribe an approach for cross-language clone detection. We
then introduce a tool, which is based on the CodeDOM li-
brary that is included with the Microsoft .NET Framework,
to demonstrate the existence of cross-language clones in a
real software system that contains both C# and Visual Ba-
sic.NET source code. Because our clone detection algo-
rithm operates on a tree structure, other tree-based clone
detection algorithms could be substituted in the implemen-
tation of our tool.

1. Introduction

Code duplication is a common software development

practice that introduces several similar or identical seg-

ments of code, or code clones, and has many forms: lan-

guage construct recurrence, pattern or paradigm adherence,

framework reuse, and copy-paste replication. There are

some advantages to duplicating code; developer productiv-

ity can be improved through the use of copy-paste to quickly

replicate functionality. However, there are also important

disadvantages to duplicating code; program comprehensi-

bility, maintainability, and correctness can all be adversely

affected by code duplication practices, particularly copy-

paste replication. For example, when a change is to be

made to a duplicated piece of code, a developer must de-

termine whether the change should be made to all duplicate

instances (clones) of that code. If the developer makes an

incorrect determination, or accidentally misses a duplicate

instance, then a bug is introduced.

Because code clones can have a negative impact on sys-

tem quality, techniques and tools to eliminate code clones

have been proposed. For example, techniques for automatic

refactoring have been described [3, 5] and tools to guide

manual refactoring [12] and to allow meta-level refactor-

ing [4] have been developed. However, studies have shown

that some code clones are inherent and that their elimina-

tion is not always desirable [15, 16]. Therefore, additional

techniques, such as linked editing [38], are needed to mit-

igate the unneccessary maintenance costs associated with

code clones [11].

Irrespective of the benefits or drawbacks attributed to a

code clone or a category of code clones, techniques and

tools to detect code clones are needed, and much work

on clone detection has been performed. These techniques

and tools use as inputs a variety of program representa-

tions, including source code [1, 2, 8, 14, 25], parse or ab-

stract syntax trees [5, 9, 13, 19, 20, 37, 39], abstract seman-

tic graphs [28], and program dependence graphs [17, 22].

Furthermore, these techniques and tools use a variety of

matching approaches, including string or token compari-

son [1, 2, 8, 14], metric comparison [28], hashing [5], sub-

graph isomorphism [17, 22], feature vectors [19, 13], fre-

quent item sets [25, 39], suffix trees [20, 37], and struc-

tural abstraction [9]. Direct comparisons and evaluations

of some of these techniques and tools are provided in the

literature [6, 33].

While several of the aforementioned clone detection

techniques can be adapted to multiple languages [32] and

some of the aforementioned clone detection tools accept

more than one source language (for example, CCFinder [14]

can detect code clones in Java, C, C++, C#, Visual Basic,

and COBOL programs), all of the techniques and tools fo-

cus on detecting same-language code clones, that is, code

clones for which each associated code segment is written

in the same source language. However, there is currently

a trend towards the development of heterogeneous soft-

54

ware systems in which multiple languages are used. The

Microsoft .NET Framework [29], which leverages a com-

mon byte code format and virtual machine to allow pro-

grams written in different languages to interact, is a cen-

tral actor in this trend. While this trend has caused in-

creased interest in studying multi-language software sys-

tems [18, 27, 26, 30, 35], there are currently no approaches

for detecting code clones that span multiple languages or

studies of such clones.

In this paper we describe an approach for detecting code

clones that span multiple languages, which we term cross-
language code clones. Our approach is complementary to

other clone detection techniques, as we are focused pri-

marily on issues associated with detecting cross-language

code clones and not on the mechanics of clone detection.

We also introduce a tool, C2D2, that implements cross-

language clone detection for the .NET Framework. We then

apply C2D2 to two subsystems of a real, open-source soft-

ware system, MonoTM [31]. Our results demonstrate the

existence of cross-language code clones, specifically code

clones that span the C# and Visual Basic.NET languages.

The rest of the paper is organized as follows. In Section 2

we provide background information about the libraries that

we use to implement our cross-language clone detection

system, C2D2, and in Section 3 we provide an overview

of C2D2. In Section 4 we describe a case study and report

our results. Finally, we discuss related work in Section 5

and conclude in Section 6.

2. Background

In this section we provide background information

about the Code Document Object Model (CodeDOM) and

NRefactory. Both are libraries that we use to implement our

cross-language clone detection system, C2D2.

2.1. CodeDOM

The Microsoft .NET Framework includes the Code Doc-

ument Object Model (CodeDOM) library, which provides

a language-independent metamodel for representing source

code [7]. CodeDOM exists primarily to allow developers

of programs that emit source code, such as the Visual Stu-

dio.NET forms designer, to emit source code in multiple

programming languages from a common representation. A

CodeDOM graph is a graph of CodeDOM nodes that rep-

resent the logical structure of source code and can be used

both to generate source code in any language for which an

implementation of the ICodeGenerator interface is pro-

vided.

CodeDOM is similar to other metamodels for abstract

syntax trees [10, 21] but is more similar to the Dagstuhl

Middle Metamodel (DMM) [23] and the Common Meta-

Model (CMM) [36]. Like the DMM and the CMM, Code-

DOM provides classes that represent many common object-

oriented language constructs, including namespaces, type

declarations (classes, structs, and enumerations), methods,

fields, exceptions, and control statements. Also like the

CMM, CodeDOM provides classes that represent state-

ments and expressions, and is extensible. The expressive-

ness of CodeDOM is limited by the necessity of providing

the option to generate code in any language in the .NET-

family. Thus, CodeDOM can express only constructs that

are available in all .NET languages.

Language constructs that are not directly supported by

CodeDOM can be represented using a generic node, or

“snippet” node. However, in many cases, source code can

be restructured to avoid the use of snippets. For example,

the switch statement is not present in all .NET languages,

but can be restructured as a series of if statements. Such

a restructuring ensures that the desired functionality can be

achieved across all .NET languages.

2.2. NRefactory

Microsoft implements the interfaces in the CodeDOM li-

brary that allow a developer to populate a CodeDOM graph

programmatically, but they do not implement the interfaces

that would allow a developer to populate a CodeDOM graph

from existing source code. The SharpDevelop IDE [34]

includes the NRefactory library, which provides parsers

for both C# and Visual Basic.NET; each of these parsers

builds an internal abstract syntax tree (AST) representation

of the input program. The CodeDomOutputVisitor class of

NRefactory traverses the internal AST to produce a Code-

DOM graph that represents source code that is semantically

equivalent to the source code provided as input to the parser.

However, because the expressiveness of the CodeDOM is

limited, the source code generated from the produced Code-

DOM graph may not be syntatically identical to the original

source code.

3. C2D2

In this section we present our cross-language clone de-

tection system, C2D2, including an overview of the system,

a description of changes we made to NRefactory, and the

details of our clone detection algorithm.

Figure 1 illustrates an overview of the C2D2 system,

which takes as input one or more C# or Visual Basic.NET

source files and produces as output a listing of detected

clones. The source files, which are shown in the upper left

of the figure, are read by the convertor component, which

is shown towards the lower left of the figure. The convertor

component converts each source file to a CodeDOM graph

55

Figure 1. Overview of C2D2. Dashed lines repre-
sent “use” dependencies. Solid lines represent data flow.
Tabbed files are provided by the user. Clouds represent in-
ternal data structures. Lined files are generated by the sys-
tem.

by passing it to the NRefactory library, which is shown

in the lower left of the figure. The connector component,

which is shown in the lower middle of the figure, connects

the collection of CodeDOM graphs produced by the con-

vertor component to form a unified CodeDOM graph. The

detector component, which is shown in the lower right of

the figure, detects clones in the unified CodeDOM graph

produced by the connector component. Output of the detec-

tor component is a clone report that lists the detected code

clones.

3.1. Changes to NRefactory

We made several changes to the NRefactory library to fix

bugs and to provide new functionality. With these changes,

the CodeDOM graphs produced by the NRefactory parsers

are usable for clone detection. Our corrections and addi-

tions to the NRefactory code are located primarily in the

CodeDomOutputVisitor class. For example, in C# the

using keyword can be followed by either an expression or

a statement; however, only the expression case was handled

by the version of NRefactory that we downloaded (version

2.2.0.2532). We added code to handle the statement case.

The parsers provided by NRefactory annotate some (but

not all) AST nodes with line and column numbers, but do

not propogate this information to the produced CodeDOM

graphs. However, CodeDOM allows graph nodes to be an-

notated with a dictionary of user data via the UserData
property. We leveraged this property to add line and col-

umn numbers (along with other auxilary data provided by

the NRefactory lexers and parsers) to the nodes in the Code-

DOM graph.

Our efforts to correct and enhance the NRefactory li-

brary are ongoing. Despite our efforts, there remain C#

constructs that are either not properly parsed or not prop-

erly translated to CodeDOM; we are not yet able to obtain a

CodeDOM graph for NRefactory due to these deficiencies.

Nonetheless, our initial efforts allow the CodeDOM graphs

produced by our modified version of NRefactory to be used

for our feasibility study.

3.2. Clone Detection Algorithm

We utilize a hybrid token/tree-based algorithm for clone

detection. Tree-based detection algorithms tend to be

slower and more complex than token-based algorithms, so

we wished to use a token-based algorithm to complete our

feasibility study of cross-language clone detection. How-

ever, our input structure is a tree, not a token stream; thus,

we created a hybrid token/tree-based algorithm.

The first step in our algorithm is to traverse the tree that

underlies the unified CodeDOM graph and to create and

store a string token for each leaf node in the tree. We per-

form the traversal depth-first to allow each interior node in

the tree to access the tokens of its children during the traver-

sal. An interior node stores the tokens of its children in a list

and in prefix order. After traversal of the tree is complete,

the list in the root node contains the token for each node in

the tree, and so on down the tree. During the traversal, we

also store each tree node in a list of nodes of the same type;

one list exists for each CodeDOM node type.

Our matching algorithm is based on the Levenshtein dis-

tance algorithm [24]. The Levenshtein distance between

two strings is the minimum number of character insertions,

deletions, or substitutions required to transform one of the

strings into the other string. We adapt this algorithm to work

on lists of tokens representing CodeDOM nodes (recall that

each CodeDOM node in the tree, except for a leaf node,

contains the list of tokens for its children), which in turn

represent code segments. We determine the minimum num-

ber of token insertions, deletions, or substitutions required

to transform one list of tokens into the other list of tokens.

We store our results in a data structure that stores the num-

ber of tokens cloned and the percentage matching (cloning)

between two lists of tokens (code segments).

We only apply our matching algorithm on CodeDOM

nodes of the same type. This is equivalent to only applying

the algorithm on AST nodes of the same type, or to only

attempting to match code segments of the same syntactic

form. By intelligently applying our matching algorithm we

reduce the complexity of the clone detection process and

greatly improve performance. In addition, we eliminate the

possibility of detecting a clone that crosses a block bound-

ary; thus, we retain a key advantage that tree-based clone

detection approaches have over token-based approaches.

Our matching algorithm takes four parameters. The first

parameter specifies a minimum number of tokens that a list

may contain to be considered, and the second parameter

56

Percentage Matching Tokens Matched

Total 30–40 40–50 50–60 60–70 70–100 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70+

of Clones 8,029 7,347 361 188 10 0 0 805 4,328 2,590 278 25 3 0

Table 1. Cross-Language Clones. The number of cross-language clones detected by C2D2, categorized by percentage
matching and by tokens matched.

static public void EmitInt (ILGenerator ig, int i)
{

switch (i){
case -1:

ig.Emit (OpCodes.Ldc_I4_M1);
break;

...
default:

if (i >= -128 && i <= 127){
ig.Emit (OpCodes.Ldc_I4_S, (sbyte) i);

} else
ig.Emit (OpCodes.Ldc_I4, i);

break;
}

}

Shared Sub EmitLoadI4Value(ByVal Info As EmitInfo, \
ByVal I As Integer, \
ByVal TypeToPushOnStack As Type)

TypeToPushOnStack = \
Helper.GetTypeOrTypeBuilder(TypeToPushOnStack)

Select Case I
Case -1

Info.ILGen.Emit(OpCodes.Ldc_I4_M1)
...
Case SByte.MinValue To SByte.MaxValue

Dim sbit As SByte = CSByte(I)
Info.ILGen.Emit(OpCodes.Ldc_I4_S, sbit)

Case Else
Info.ILGen.Emit(OpCodes.Ldc_I4, I)

End Select
Info.Stack.Push(TypeToPushOnStack)

End Sub

Figure 2. Example Cross-Language Clone. A portion of a cross-language clone detected by C2D2. The left side of the
figure lists a C# code segment from mcs/constant.cs and the right side of the figure lists a Visual Basic.NET code segment
from vbnc/source/Emit/Emitter.vb. The full clone spans lines 805–855 of mcs/constant.cs and lines 1384–1414 of
vbnc/source/Emit/Emitter.vb, and has a percentage matching of 58 (69 of 118 tokens matched).

specifies the corresponding maximum number. These pa-

rameters can be used to reduce the number of matches at-

tempted by the algorithm; please note that these parameters

specify the numbers of tokens a list may contain to be con-

sidered by the algorithm and not the numbers of tokens that

a clone may contain. The third parameter specifies a mini-

mum percentage matching. This parameter can be used to

filter clones that do not reach the specified percentage of

similarity. Finally, the fourth parameter specifies whether

to attempt to detect same-language clones (in addition to

cross-language clones).

4. Case Study

In this section we describe a case study used to evaluate

the feasibility of our approach. We use the C# and Visual

Basic.NET compilers from Mono [31], version 1.2.6, as the

test case. We chose these compilers because they are open-

source and are part of a large, multi-language software sys-

tem. Furthermore, as compilers for a common back end (the

.NET runtime environment) they are likely to have common

functionality in their code generators.

The C# compiler, mcs, consists of 38 C# files that

contain 49,216 lines of non-blank, uncommented, non-

preprocessed source code. The Visual Basic.NET com-

piler, vbnc, consists of 422 Visual Basic.NET files that

contain 52,161 lines of non-blank, uncommented, non-

preprocessed source code. Thus, our test case totals 460

source files and 101,377 lines of source code. Before run-

ning C2D2 on the test case, we configured it as follows:

minimum number of tokens (50), maximum number of to-

kens (200), minimum cloning percentage (30), and attempt

to detect same-language clones (no). We performed all ex-

periments on a workstation with an AMD AthlonTM 64 X2

3800+ processor and 1 GB RAM; the operating system is

Microsoft Windows XP Professional SP2 32-bit. Using the

above configuration and the test case as input, the total ex-

ecution time for C2D2 is 21 minutes and 23 seconds (wall

clock time).

Table 1 summarizes the results of the execution. A to-

tal of 8,029 cross-language clones were detected; however,

7,708 of the detected clones had a percentage matching of

less than 50, leaving only 198 clones with a percentage

matching of 50 or greater. Of those 198 clones, only 10 have

a percentage matching of 60 or greater and none have a per-

centage matching of 70 or greater. At first glance, these re-

sults do not appear to demonstrate the existence of meaning-

ful cross-language clones. Yet, the example clone illustrated

57

in Figure 2 shows that percentage matching is a potentially

misleading metric for cross-language clones detected using

our algorithm. Figure 2 illustrates a cross-language clone

that consists of a segment of C# code and a segment of Vi-

sual Basic.NET code. If it were not for the stack manipula-

tion performed in the Visual Basic version of the code then

the functionality would be identical. This example clone is a

type 3 clone [6], i.e., a clone in which identifiers have been

changed and statements have been changed, added, or re-

moved (added in this case). However, the percentage match-

ing for the clone is only 58% (69 of 118 tokens matched),

which might seem low.

Despite the discovery of the cross-language clone illus-

trated in Figure 2 and others, when compared to the re-

sults of other clone studies, the number of detected clones

with a significant percentage matching appears to be low

for the amount of code included in the test case. There

are several possible explanations for this. First, as noted

above, percentage matching seems to be a misleading met-

ric for evaluating cross-language clones detected using our

algorithm. Second, Mono simply might not have many

cross-language clones; this seems likely given that differ-

ent projects within Mono often have disparate development

teams. However, this would indicate that study of addi-

tional multi-language software systems is warranted. We

plan to undertake such studies in the future. A third pos-

sibility is that C2D2, while capable of finding some cross-

language clones (as demonstrated above), might miss other

cross-language clones. This could be due to the clone de-

tection algorithm employed. Again, this would indicate that

further study, including applying more advanced tree-based

clone detection techniques, is warranted.

5. Related Work

In this section we discuss related work, which we divide

into two categories: (1) studies of clones and (2) studies of

multi-language software systems.

5.1. Studies of Clones

Many techniques and tools for clone detection exist.

These techniques and tools operate on a variety of program

abstractions, including strings [1, 2, 8], tokens [14, 25],

trees [5, 9, 13, 19, 20, 37, 39], and graphs [17, 22, 28]. Be-

cause our approach detects clones on a tree structure, other

tree-based clone detection algorithms could be substituted

for the one we present.

Studies investigating the presence of code clones in

single-language software systems have found significant

amounts of duplicated code within these systems. These

studies, known as clone coverage studies, suggest that it

is not uncommon to have over 20% cloned code in a soft-

ware system. For example, CCFinder detected almost 30%

cloned code in version 1.3.0 of the JDK [14], and CP-

Miner detected over 22% cloned code in version 2.6.6 of

the Linux kernel [25]. In addition, one study reported over

59% cloned code in a COBOL payroll application [8].

5.2. Cross-Language Studies of Multi-Language
Software Systems

There is currently a trend towards the development of

heterogeneous software systems in which multiple lan-

guages are used [18]. This trend has caused increased in-

terest in studying multi-language software systems. Topics

of interest include modeling, usability, tool support, as well

as maintenance processes, which would include clone de-

tection and evolution.

Linos, et al. [27] and Moise and Wong [30] present stud-

ies of cross-language dependencies found in software sys-

tems written in C/C++ and Java. Strein, et al. [35] present

an approach to cross-language program analysis for refac-

toring and a prototype tool that handles both C# and Visual

Basic.NET; however, they do not leverage CodeDOM for

their implementation. Finally, Linos, et al. [26] present an

approach to computation of metrics on MSIL (Microsoft In-

termediate Language). Their ultimate goal is to determine

whether computation of metrics at the MSIL level is as ef-

fective as computation of metrics directly on source code.

6. Conclusions and Future Work

The current trend towards the use of multiple languages

in the development of software systems introduces new

challenges for software comprehension and software main-

tenance. Many techniques and tools for clone detection,

elimination, and removal have been described in the litera-

ture, and some of this literature addresses the problem of ap-

plying these techniques and tools to software systems writ-

ten in a variety of languages. However, none of these tech-

niques or tools have been applied to multi-language soft-

ware systems with a focus on detecting code clones that

span multiple languages.

In this paper we introduced an approach for detecting

code clones that span multiple languages, which we termed

cross-language code clones. Our approach complements

other clone detection techniques, as it is focused on is-

sues of detecting cross-language code clones and not on

the mechanics of clone detection. We described an ap-

proach for cross-language clone detection and presented a

tool, C2D2, that implements cross-language clone detection

for the .NET Framework. Our experimental results demon-

strate the existence of cross-language code clones, specifi-

cally code clones that span C# and Visual Basic.NET.

58

As future work we propose to enhance the usability and

interoperability of C2D2 by producing output files that can

be read by existing clone visualization systems, to inte-

grate more advanced tree-based clone detection techniques

into C2D2, and to perform more extensive studies of multi-

language software systems.

References

[1] B. S. Baker. On finding duplication and near-duplication in

large software systems. In WCRE, pages 86–95, July 1995.
[2] B. S. Baker. Parameterized duplication in strings: Al-

gorithms and an application to software maintenance.

SICOMP, 26(5):1343–1362, Oct. 1997.
[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and

K. Kontogiannis. Partial redesign of java software systems

based on clone analysis. In WCRE, pages 326–336, October

1999.
[4] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond tem-

plates: A study of clones in the STL and some general im-

plications. In ICSE, pages 451–459, May 2005.
[5] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and

L. Bier. Clone detection using abstract syntax trees. In

ICSM, pages 368–377, November 1998.
[6] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.

Comparison and evaluation of clone detection tools. TSE,

33(9):577–591, Sept. 2007.
[7] Code Document Object Model.

http://msdn2.microsoft.com/library/system.codedom.aspx.
[8] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-

pendent approach for detecting duplicated code. In ICSM,

pages 109–118, August/September 1999.
[9] W. Evans, C. Fraser, and F. Ma. Clone detection via struc-

tural abstraction. In WCRE, pages 150–159, October 2007.
[10] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, and T. Gyi-

mothy. Towards a standard schema for C/C++. In Proceed-
ings of the 8th Working Conference on Reverse Engineering,
Stuttgart, Germany, pages 49–58. IEEE Computer Society,

Oct. 2001.
[11] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of

Code Clones and Change Couplings, volume 3922 of LNCS,

pages 411–425. 2006.
[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES:

Refactoring support environment based on code clone anal-

ysis. In SEA, pages 222–229, November 2004.
[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:

Scalable and accurate tree-based detection of code clones.

In ICSE, pages 96–105, May 2007.
[14] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-

linguistic token-based code clone detection system for large

scale source code. TSE, 28(7):654–670, July 2002.
[15] C. Kapser and M. Godfrey. “Cloning considered harmful”

considered harmful. In WCRE, pages 19–28, October 2006.
[16] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empir-

ical study of code clone genealogies. SEN, 30(5):187–196,

Sept. 2005.
[17] R. Komondoor and S. Horwitz. Using slicing to identify

duplication in source code. In SAS, pages 40–56, July 2001.

[18] K. Kontogiannis, P. Linos, and K. Wong. Comprehension

and maintenance of large-scale multi-language software ap-

plications. In ICSM, pages 497–500, September 2006.
[19] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and

M. Bernstein. Pattern matching for clone and concept detec-

tion. JASE, 3(1/2):77–108, July 1996.
[20] R. Koschke, R. Falke, and P. Frenzel. Clone detection us-

ing abstract syntax suffix trees. In WCRE, pages 253–262,

October 2006.
[21] N. A. Kraft, B. A. Malloy, and J. F. Power. An infrastructure

to support interoperability in reverse engineering. Informa-
tion and Software Technology, 49(3):292–307, Mar. 2007.

[22] J. Krinke. Identifying similar code with program depen-

dence graphs. In WCRE, page 301, October 2001.
[23] T. C. Lethbridge, S. Tichelaar, and E. Ploedereder. The

Dagstuhl Middle Metamodel: A Schema for Reverse Engi-
neering, volume 94 of Electronic Notes in Theoretical Com-
puter Science, pages 7–18. Elsevier B.V., May 2004.

[24] V. I. Levenshtein. Binary codes capable of correcting dele-

tions, insertions, and reversals. Soviet Physics Doklady,

10(8):707–710, 1966.
[25] Z. Li, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-

paste and related bugs in large-scale software code. TSE,

32(3):176–192, Mar. 2006.
[26] P. Linos, W. Lucas, S. Myers, and E. Maier. A metrics

tool for multi-language software. In SEA, pages 209–218,

November 2007.
[27] P. K. Linos, Z. Chen, S. Berrier, and B. O’Rourke. A tool

for understanding multi-language program dependencies. In

IWPC, page 64, May 2003.
[28] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the

automatic detection of function clones in a software system

using metrics. In ICSM, pages 244–253, November 1996.
[29] Microsoft .NET Framework.

http://msdn.microsoft.com/netframework/.
[30] D. L. Moise and K. Wong. Extracting and representing

cross-language dependencies in diverse software systems. In

WCRE, pages 209–218, November 2005.
[31] Mono. http://www.mono-project.com/.
[32] M. Rieger. Effective Clone Detection Without Language

Barriers. PhD thesis, University of Bern, Switzerland, 2005.
[33] C. K. Roy and J. Cordy. Scenario-based comparison of clone

detection techniques. In ICPC, June 2008. To appear.
[34] SharpDevelop IDE. http://www.sharpdevelop.net/.
[35] D. Strein, H. Kratz, and W. Löwe. Cross-language program

analysis and refactoring. In SCAM, pages 207–216, Septem-

ber 2006.
[36] D. Strein, R. Lincke, J. Lundberg, and W. Löwe. An exten-

sible meta-model for program analysis. IEEE Transactions
on Software Engineering, 33(9):592–607, Sept. 2007.

[37] R. Tairas and J. Gray. Phoenix-based clone detection using

suffix trees. In ACMSE, pages 679–684, March 2006.
[38] M. Toomim, A. Begel, and S. L. Graham. Managing dupli-

cated code with linked editing. In VL/HCC, pages 173–180,

September 2004.
[39] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone de-

tection in source code by frequent itemset techniques. In

SCAM, pages 128–135, September 2004.

59

Software Maintenance Maturity Model(S3mDSS)
A Decision Support System

Alain April1, Naji Habra2, Arnaud Counet2

(1)École de Technologie Supérieure, Montréal, Canada
(2)Faculté Universitaire Notre-Dame de la Paix, Namur, Belgium

aapril@ele.etsmtl.ca ,nha@info.fundp.ac.be , acounet@info.fundp.ac.be

Abstract - Maintaining and supporting the
software of an organization is not an easy task, and
software maintainers do not currently have access to
decision support systems (DSS) to evaluate strategies
for improving the specific activities of software
maintenance. This article presents a DSS which helps
in locating best practices offered by a software
maintenance maturity model (S3m). The contributions
of this paper are: 1) to instrument a maturity model
with a DSS tool to aid software maintenance
practitioners in locating specific best practices that
could help them answer their questions.

I. INTRODUCTION

 Knowledge transfer of a large number of best
practices, described in a maturity model, has proved
difficult [1]. This is especially true during the training
stage of an assessor or a new participant in a process
improvement activity. It is also challenging to quickly
refer to, or access, the right practice, or subset of
practices, when trying to answer specific questions
during or after a process maturity evaluation.

The software maintenance maturity model S3m
contains a large number of software maintenance
concepts and information which are structured in
many successive levels [2], [14]. The first level is
labelled ‘process domains level’, and regroups the
maintenance practices in 4 process domains (process
management, maintenance request management,
software evolution engineering and support to software
engineering evolution). Each process domain is broken
down into one or more key process areas (KPAs).
These KPAs logically group together items which
conceptually belong together. As an example all
training related practices are grouped into one KPA. A
KPA is further divided into roadmaps with one or
more best practices, spanning five maturity levels. The
complete S3m has 4 domains, 18 KPAs, 74 roadmaps
and 443 best practices. It would be beneficial to have a

decision support system (DSS) to help access this
complex structure and large amount of information. A
potential solution to this problem would be to develop
a decision based system for the S3m. This DSS could
be available for both maintainers and maintenance
clients. The proposed modelling of a software
maintenance DSS was based on the van Heijst
methodology [3], which consists of constructing a task
model, selecting or building an ontology [4], mapping
the ontology onto the knowledge roles in the task
model and instantiating the application ontology with
this specific domain knowledge. According to van
Heijst, there are at least six different types of
knowledge to be taken into account when constructing
such a system: tasks-goals, problem-solving methods,
task instances, inferences, the ontology and the domain
knowledge (see Fig.1). Van Heijst uses the different
types of knowledge in a more generic way than we do
in this document.

 Fig.1. The different components of knowledge models [3]

60

For van Heijst, domain knowledge refers to a
collection of statements about the domain [4]. The
domain of this specific research is software
maintenance, and it is divided into 4 process domains.
Examples of statements are presented in section 3. At a
high level, the ontology refers to a part of the software
maintenance ontology [5] presented in section 4. The
problem solving methods and tasks are described at
length in section 5. The tool environment and
conclusion, as well as future work, are presented in
sections 6 and 7. Section 2 begins by presenting the
goals of the S3m architecture.

II GOALS OF THE S3M ARCHITECTURE

 The S3m was designed as a customer-focused
benchmark for either:

 • Auditing the software maintenance capability of a
service supplier or outsourcer; or

 • Supporting the process improvement activities of
software maintenance organizations.

To address the concerns specific to the maintainer, a
distinct maintenance body of knowledge is required.
The S3m is also designed to complement the maturity
model developed by the SEI at Carnegie Mellon
University in Pittsburgh [6] by focusing mainly on
practices specific to software maintenance. The
architecture of the model locates the most fundamental
practices at a lower level of maturity, whereas the most
advanced practices are located at a higher level of
maturity. An organization will typically mature from
the lower to the higher maturity level as it improves.
Lower-level practices must be implemented and
sustained for higher-level practices to be achieved.

III S3M ARCHITECTURE AND KNOWLEDGE

STATEMENTS

 Software maintainers experience a number of
problems. These have been documented and an attempt
made to rank them in order of importance. One of the
first reported investigations was conducted by Lientz
and Swanson [7]. They identified six problems related
to users of the applications, to managerial constraints
and to the quality of software documentation. Other
surveys have found that a large percentage of the
software maintenance problems reported are related to
the software product itself. This survey identified
complex and old source code which was badly
documented and structured in a complex way. More
recent surveys conducted among attendees at
successive software maintenance conferences [8]
ranked perceived problems in the following order of

importance (see Table 1). These are also examples of
knowledge statements about the domain of software
maintenance. Key to helping software maintainers
would be to provide them with ways of resolving their
problems by leading them to documented best
practices.

TABLE I
TOP MAINTENANCE PROBLEMS [8]

Rank Maintenance problem

1 Managing fast-changing priorities
2 Inadequate testing techniques
3 Difficulty in measuring performance
4 Missing or incomplete software documentation
5 Adapting to rapid changes in user organizations
6 A large number of user requests in waiting
7 Difficulty in measuring/demonstrating the

maintenance team’s contribution
8 Low morale due to lack of recognition
9 Not many professionals in the field, especially

experienced ones
10 Little methodology, few standards, procedures or

tools specific to maintenance
11 Source code complex and unstructured
12 Integration, overlap and incompatibility of

systems
13 Little training available to personnel
14 No strategic plans for maintenance
15 Difficulty in meeting user expectations
16 Lack of understanding and support from IT

managers
17 Maintenance software running on obsolete

systems and technologies
18 Little will for reengineering applications
19 Loss of expertise when employees leave

There is a growing number of sources where software
maintainers can look for best practices, a major
challenge being to encourage these sources to use the
same terminology, process models and international
standards. The practices used by maintainers need to
show them how to meet their daily service goals.
While these practices are most often described within
their corresponding operational and support processes,
and consist of numerous procedures, a very large
number of problem-solving practices could be
presented in a DSS which would answer their many
questions about those problems. Examples are
presented in section 6. Maintenance client problems
could also be linked to these internal problems because
of the impacts it can occur. When using the software
maintenance ontology in the DSS, it was necessary to
consider the structure of the maturity model
relationship between the many process domains,
roadmaps and practices. This problem is addressed
next.

61

 Fig.2. Part of the software maintenance ontology of (Kitchenham and et al., 1999)

IV ONTOLOGY OF THE SOFTWARE
MAINTENANCE BODY OF KNOWLEDGE

 We elected to implement only a subset of the
ontology developed by Kitchenham et al. [5] and Ruiz
et al. [9] for the initial trial of this research project. The
Kitchenham ontology was chosen because its author is
well known in Software Engineering maintenance.
Other software maintenance ontologies could also be
used [9], [10] and [11] to enhance the Kitchenham at
al. proposal. Fig. 2 describes the different maintenance
concepts considered surrounding a software
maintenance activity. Software maintenance is highly
event-driven, which means that some maintenance
activities are unscheduled and can interrupt ongoing
work. This subset of the ontology represents many, but
not all, the concepts involved in responding to the
questions related to the first problem identified by
Dekleva [8]: “Managing fast-changing priorities”.
Maintainers agree that this is the most important
problem they face. How can they handle the fast-
changing priorities of the customer? Solutions to this
problem are likely to be found by using many paths
through the maintenance concepts of the ontology.
Navigation through these concepts should lead to
associated concepts which are conceptually linked and
likely to contribute to a solution, like the need for
better event management, change control, maintenance

planning, Service Level Agreements, maintenance
manager negotiation, training, procedures, and so forth.
Many more concepts must be involved to contribute to
all aspects of the solution, but our purpose is to show
the utility of a DSS in the software maintenance
domain, and it therefore starts with a constrained
number of concepts. Maturity models typically include
the detailed best practices that could be of help in
solving this type of problem. The main issue is that the
best practice locations and their interrelationships are
hidden in the layered architecture of the maturity
model, specifically in its process domains, KPAs and
roadmaps. It is therefore necessary to find a way to link
this layered architecture with the maintenance concepts
of the ontology and proceed to analyze the tasks
required to build a DSS to support the maintainers in
their quest for solutions. The next section describes the
navigation concepts that have been implemented in
S3mDSS. The user of the DSS navigates using a
sequence of tasks that will lead him through a further
sequence of tasks.

V HIGH LEVEL VIEW OF S3M DSS

 In [3], the first activity in the construction of a DSS
is the definition of task analysis. Task analysis begins,
at a high level, with a definition of an index of terms.
This index includes words commonly used in software
engineering (see Figure 3). From this index, a subset of

62

more restrictive words is identified. This subset is a list
of keywords recognized specifically in software
maintenance. Each keyword is then connected to one
or more maintenance concepts. A maintenance
concept, in software maintenance, is a concept found in
the Software Maintenance Body of Knowledge and
ontology (see Fig. 2). Every maintenance problem
identified by Dekleva [8] has been translated into a
case problem and connected to the software
maintenance ontology. Each case problem is then
linked to a set of themes (questions) which help the
user of the DSS to navigate into a part of the maturity
model that will propose recommendations in the form
of best practices. The link between the maintenance
concepts and the maturity model is made in the themes
concept. Themes are questions which have been
developed to hop from node to node in the ontology. A
close look at Fig. 2 reveals that the themes concept can
combine different maintenance concepts and, finally,
create a set of recommendations of the maturity model.
For every best practice, there is a linked theme (or
choice) from which the user can select (also called
facts) which will lead to a final specific set of
recommendations. This 1-1 matching between theme
and recommendation will contribute to a composed set
of recommendations directly adapted to the user
context. Above all of this, a distinction between
internal maintenance engineers and maintenance client
has been made. We think that the same problems are
involved for both side but we need to adapt the way we
ask. In this case, when a maintenance client uses the
system, themes are adapted to his understanding.

Fig.3. High-level view of S3m

Provided recommendations are some kind of invitation
to his maintainer to follow different rules. This could
both help maintenance enterprise but also client one.

 Expanding the 6 high-level tasks in Figure 3, we
propose 12 detailed tasks which will help identify a
subset of best practices related to the S3m.

VI DSS TOOL TECHNOLOGY

 Next we will explain the technology used as well as
an overview of the design of the DSS. Then we will
demonstrate how this DSS can be used to help a user
answer a question and how an expert populates a
complete case problem.

A. Technology and design

 The S3mDSS was built using Java, Java Server
Pages, JavaScript, CSS and HTML technologies. This
combination of technologies was selected for its easy
access via the Internet.

TABLE II
DSS QUESTIONS

Questions
A Are there training plans for to new maintenance

engineers about generic topics like management and
processes activities?

B Do maintenance engineers periodically update their
knowledge associated with the software and its
infrastructure they maintain?

C Are maintenance engineers trained and motivated to
perform well when using the processes/services and
their support role?

D Is there some training communication with customers
offered to software maintenance engineers?

E Do you use any internal benchmarking data to guide
the training of maintenance resources?

F Does the maintenance organisation have a training
budget?

G Are there plans describing the training needed for
each maintenance position and application software?

H Is there training time planned?
I Do senior maintainers familiarise new employees?
J Are training needs defined for both technical and

management responsibilities for each development
project?

K Do people working on the pre-delivery and transition
receive the training deemed appropriate by the
software developer?

Behind that, a SQL Server database was added in order
to manage the knowledge base. This choice was
justified by the lack of reactivity that XML parsing
proposed before. The architecture is based on a 3-tiers

63

model providing easy maintainability and is composed
of a presentation layer, a business layer and DAO
layer. The business layer design has been split into 2
parts: the first part regroups all the controlling servlets
and the second parts regroup all the business methods.
Servlets assure proper communication between the
presentation layer and the business layer while the
business methods communicate with the DAO
layer.Currently, more than 550 words and 70 keywords
have been introduced into the DSS. Five maintenance
problems identified by Dekleva have been introduced
and took 17 hours to complete.

 We estimate that there is still 2,000 hours required
to populate the knowledge base for all the S3m
practices for maturity 0, 1 and 2. The DSS has 3
different interface types: administrator, expert and
user. The administrator interface manages access rights
to the DSS, while the expert interface offers experts the
option of adding new index words, keywords,
concepts, cases, themes and recommendations. The
next section will demonstrate how the DSS helps a
user answer a specific question: How can I improve a
maintainers training? �

B. Helping a user answer a question

 First of all, the user enters a word that will identify
a suggested keyword that represents the topic he is
interested to obtain answers for. As an example, the
user enters: training. This keyword will guide the DSS
to the most closely related KPA and roadmap concepts
of its database. Currently, the DSS presents the
following keyword: maintenance training as a
feedback. In this same feedback the DSS presents the
maintenance concepts, which are related to this KPA
and roadmap, to the user.

 It also presents the concepts in order of priority.
This is done using a percentage of relevance linked to
each concept. The expert had previously established
this percentage. The user is then asked to choose one or
multiple concepts, maintenance human resources in
our example. The DSS presents the case problems
associated with this maintenance concept selected to
the user. It will present the case problems in order of
priority to the user. A percentage of relevance is also
related to each case problem. The expert has also
previously established this percentage. The user
chooses one or multiple case problems that represent
the closest is current problem, ex: little training
available to maintenance engineers in our example.
With this case problem, there are 11 themes presented

to the user in the form of questions (see Table 2). The
user will find facts for each practice (theme). He can
answer yes or no to any of the themes. In function of
the facts chosen, the system composed a set of
recommendations to the user. Figure 4 shows how the
DSS will recommend the following solution
(simplified for this paper): RecSet.

Fig. 4: DSS recommendation mechanism

Figure 5 (next page) shows an example of the user
layout in the previous case problem. The user layout is
made up of 4 dynamic tables representing all the
concepts we discuss before.

 Each table is displayed step by step by user
selection and associated with a help function. In the top
of the layout, a toolbar has been inserted to start every
research by typing a word into the system or selecting
a keyword. Next will show in practice how a
maintenance expert can enter a case problem into the
DSS.

VII EXPERT INTERFACE

 Fig. 5 (next page) show an example of the expert
layout. This layout asks experts to add, modify or
delete high level view elements. Expert can also add a
complete case to the DSS by respecting the following
recommendation, question, case problem, maintenance
concept, keyword and word order because of the links
between elements. Below the top table, a form is
proposed where expert can fill information like
element name, help content or links with upper or
lower elements.

 All existing elements are accessible by conventional
html lists and can be added very easily by selecting and
pressing a button. When validation button is pressed,
an additional form shown in Fig. 6 appear. Experts can
then complete association percentages between linked
elements. Note that experts can use HTML mark-ups
into recommendation text to add hyperlinks, lists or
tables.

64

Figure 5: S3mDSS user interface layout

X CONCLUSION AND FUTURE WORK

 Identifying the best practices in a maturity model is
a difficult task, considering their number and the
multiple possible answers associated with each of
them. Our proposal is that a DSS could help in finding
an appropriate recommendation. The next step in this
research project is to populate the DSS, validate the
results with experts in the domain and determine
whether or not the DSS is a useful support tool for
training on the content of the maturity model. The
S3mDSS is a working prototype and is available on
http://www.s3m.ca. Future work will consist of first
creating a higher level representation of the key users,
customers, maintenance managers and maintenance

engineers concerns. This will be helpful for users to
navigate first in all the software maintenance problems
before they can drill down to a specific area. Second
tasks will be to enhance the number of maintenance
problems and insert examples of how the case problem.
A case problem is an example of what other companies
have done to solve a specific issue. We have been
tracking the usage of the DSS for 2 years now and can
report on its usage. Although users will be able to find
a recommendation there is little evidence that this
information is helpful in their daily work. More
validation is required to see if a DSS in this very
unstructured and low maturity domain could yield any
benefit to an organization. More research will be
conducted this year with the help of master students
from the FUNDP from Belgium.

65

Figure 6: S3mDSS expert form layout

REFERENCES

[1] Abran, A., Moore, J. W., Bourque, P., Dupuis, R. and
Tripp, L.,Guide for the Software Engineering Body of
Knowledge (SWEBOK), Ironman version, IEEE Computer
Society Press: Los Alamitos CA,2004; 6-1-6-15, Montréal,
http://www.swebok.org [27 January 2005].
[2] A. April, J. Huffman Hayes, A. Abran, R. Dumke,
"Software Maintenance Maturity Model (SMmm): The
software maintenance process model", Journal of Software
Maintenance and Evolution: Research and Practice, 17(3):
May/June 2005:197
223.
[7] Lientz, B. and Swanson, E. (1981), Problems in
Application Software Maintenance, Communications of the
ACM, 24, 11, 763-769.
[8]Dekleva, S. M. Delphi Study of Software Maintenance
Problems, International Conference on Software
Maintenance (CSM 1992) (1992) IEEE Computer Society
Press: Los Alamitos CA

[9] Ruiz, F., Vizcaino, A., Piattini, M. and Garcia, F. (2004)
International Journal of Software Engineering and
Knowledge Engineering, 14, 3 323-349.
[10] Vizcaíno, A. Favela, J. and Piattini, M. A multi-agent
system for knowledge management in software maintenance,
KES 2003 (2003), Springer Verlag, Oxford, UK.
[11] Dias, M., G. Anquetil, N. and Oliveira, K. M. (2003),
Organizing the Knowledge Used in Software Maintenance,
Journal of Universal Computer Science, 9, 7 64-658.
[12] Counet, A. (2007), Mémoire de maîtrise, FUNDP,
Namur, Belgium.
[13] Desharnais, J.-M., Application de la mesure
fonctionnelle COSMIC-FFP: une approche cognitive,
UQAM, Montréal, 2004
[14] April, A., Abran A. and Dumke, R. Assessment of
Software Maintenance Capability: A model and its Design
Process, IASTED 2004, Conference on Software
Engineering (2004b), Innsbruck (Austria).

66

Odyssey-MEC: Model Evolution Control
in the Context of Model-Driven Architecture

Chessman Corrêa Leonardo Murta Cláudia Werner

Federal University of Rio de Janeiro

COPPE - System Eng. and Computer Science
{chessman, murta, werner}@cos.ufrj.br

ABSTRACT
Model-Driven Development aims to use models as first
class artifacts in software development. Therefore, the need
to control model evolution in this context became as impor-
tant as to control the evolution of source-code. In Model-
Driven Architecture, a target model is generated from a
source model through a transformation process. Conse-
quently, there is a relationship among them. However, these
models may evolve independently due to modifications,
making them inconsistent with each other. In this scenario,
traditional versioning is fundamental, but it is not sufficient
to control the evolution of different interconnected models
that represent the same software. In this paper, we propose
a server side transformation, synchronization and version-
ing approach to control the evolution of models.

Keywords
Version Control, Model Versioning, Model-Driven Devel-
opment, Model-Driven Architecture, Model Evolution.

1. INTRODUCTION
Model-Driven Architecture (MDA) is the Object Man-
agement Group (OMG) framework for Model-Driven De-
velopment (MDD) [18]. One characteristic of this approach
is the generation of a target model from a source model
using a transformation engine. It means that the software is
represented by different models, most of the time in differ-
ent abstraction levels.

In large software projects, multiple people assuming spe-
cific roles and located at different places may modify re-
lated models independently. For example, a PSM (Platform
Specific Model) generated from a PIM (Platform Independ-
ent Model) may need to be modified because it does not
have all the necessary details to derive the source-code. In
other words, models may need to be updated in order to be
used to generate other models or source code.

Since these models are related with each other, modifica-
tions applied to a model may create inconsistencies between
them. However, as these models represent the same soft-
ware, inconsistencies cannot be allowed. For example, in-

consistencies between PIM and PSM introduce some diffi-
culties to generate PSMs tailored to other platforms. This is
especially true if PIM level changes are made in PSM in-
stead. In this case, the generation of PSM to a new platform
would not have PIM details that exist in the other platform.
It means that if a MDD project aims to create software for
different platforms, PSMs of each platform have to be con-
sistent with the corresponding PIM and with PSMs of other
platforms. It is also true for models in the same abstraction
level.

Model versioning is essential to control model evolution.
However, if source and target models are versioned inde-
pendently, there will be no guarantee that they are consis-
tent with each other. Since these models have to evolve
together, versioning is not enough to control their evolution
in MDA context. Therefore, these models have to be syn-
chronized before versioned.

Models synchronization is achieved from round-trip engi-
neering through bidirectional transformations that preserve
previous versions of existing models. However, if a syn-
chronization tool is not automatically executed, software
engineers may forget to use them, leading to inconsistent
models.

Based on these facts, this paper proposes a server side
model transformation, synchronization and versioning ap-
proach to control model evolution in MDA.

The rest of this paper is organized as follows. Section 2
briefly describes the Model-Driven Architecture. Section 3
discusses the key aspects of our approach. Section 4 pre-
sents some related works. Finally, the conclusion and future
work are presented in Section 5.

2. MODEL DRIVEN ARCHITECTURE
OMG was inspired by constantly shifting infrastructures,
requirements changing, and new emerging technologies to
create the Model-Driven Architecture (MDA) [18]. This
approach considers models as first-class development arti-
facts and uses them not only for understanding and commu-

67

nication, but also for design, construction, deployment, op-
eration, maintenance, and modification of a system.

2.1 MDA Models
MDA specifies four kinds of models: Computation Inde-
pendent Model (CIM), Platform Independent Model
(PIM), Platform Model (PM) and Platform Specific
Model (PSM) [18]. CIM represents the system require-
ments. It takes into consideration domain concerns, such as
the vocabulary used by the domain practitioners. CIM
represents a view of the system without computational de-
tails. PIM is a view of the system considering computa-
tional solutions that aim to be generic to any platform.
Thus, it represents a system that can be tailored to multiple
platforms, assuming that these platforms are compatible to
the architectural styles adopted in the corresponding PIM.
PM provides the technical concepts, requirements, and ser-
vices of a specific platform. PSM is a view of a system
considering the platform details. It can be seen as a merge
of PIM and PM, augmented by some changes specific to the
target platform.

2.2 Model Transformation
Model transformation is the process of creating a target
model from a source model of the same system. Although it
could be made manually, the MDA approach aims at auto-
mating this operation. This is a key factor to the increasing
MDA adoption over traditional software development.

In forward engineering, a model-to-model transformation
uses the CIM and other information to generate a PIM.
Subsequently, another model-to-model transformation
combines PIM and PM to create the corresponding PSM.
Finally, PSM is used by a model-to-text transformation to
generate the source-code to the specific software platform.

A model transformation uses mappings to create target
model elements from source model elements. Mappings
provide specification of how one or more target elements
are derived from source elements. It also may have map-
ping rules based on specific marks, like stereotypes and
tagged values. For example, a PIM class with the stereotype
<<entity>> may generate an EJB (Enterprise JavaBean)
class for the JEE1 platform.

During model generation, the model transformation should
also generate the record of transformation. It includes the
traceability links between source and target model ele-
ments and informs which parts of the mapping were used
during the generation. It is an important resource to support
synchronization.

It is important to notice that CIM, PIM and PSM are in dif-
ferent abstraction levels. This mean that CIM-PIM and

1 http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

PIM-PSM transformations are vertical transformations
among different abstraction levels. However, it is also pos-
sible to generate models in the same abstraction level
through horizontal transformations, such as PIM-PIM and
PSM-PSM.

2.3 MDA Application
The application of MDA is relatively simple. It can be di-
vided into two main phases: infrastructure setup and trans-
formation. The infrastructure setup starts with the creation
of mappings based on a platform or a set of platforms.
These mappings will be used by transformations. In addi-
tion, the marks to be applied on a PIM may also be defined,
usually through a Profile [19].

After this initial setup, the software engineer uses a model-
ing tool to create a model (e.g., a PIM). Afterwards, that
model may be marked according to the available Profiles.
Finally, the transformation is executed, using the mappings
and the marked model to generate the corresponding model
(e.g., a PSM) and the record of transformation.

This scenario focuses on forward engineering. However, it
is also possible to occur reverse engineering transforma-
tions, generating a PIM from a PSM.

3. ODYSSEY-MEC
In this section we introduce Odyssey-MEC (Odyssey for
Model Evolution Control), a server side transformation,
synchronization and versioning approach to control MDA
models evolution.

In the following, we detail our approach presenting its ar-
chitecture, model infrastructure, model repository, model
versioning, model transformation, record of transformation,
element search, and model synchronization.

3.1 Architecture
The architecture of the approach is shown in Figure 1. It has
four types of repositories: Transformation Mappings, PIM,
PSM, and Record of Transformation. The Transformation
Mappings Repository (TMR) stores the transformation
mappings to be used by the transformation engine. These
transformation mappings are created by a transformation
engineer, as specified by Bacelo et al [1]. PIM and PSM
Repositories store PIMs and PSMs, respectively. It is
worth to notice that these repositories persist versioned
models. Moreover, each platform has its own PSM reposi-
tory. Record of Transformation Repository (RTR) stores
the Record of Transformations (RT).

Our approach comprises three main components to control
model evolution: Odyssey-VCS [15, 17], Odyssey-MDA
[1], and a synchronization engine (SE). It also uses a Trans-
action Manager (TM) component to control the synchroni-
zation and versioning process in a transaction context. The

68

Odyssey-VCS component is used for model versioning and
the Odyssey-MDA component for model transformation.

Odyssey-VCS has hooks that execute the TM and the SE
when a model is checked in. SE uses Odyssey-MDA to
generate target models, and Odyssey-VCS to access the
models to be synchronized and their versioning data. It also
uses RT as an auxiliary resource to synchronize the models.
Finally, an Odyssey-VCS client is used to communicate
with Odyssey-VCS server (it can be any CASE tool that
exports models through XMI 2.1 format). Odyssey-VCS
client communicates with Odyssey-VCS server through
Web Services [4].

Figure 1. Odyssey-MEC Architecture

3.2 Model Infrastructure
OMG chose UML (Unified Modeling Language) as the
standard modeling language for MDA. Therefore, our ap-
proach controls the evolution of UML models.

Although OMG uses MOF (Meta Object Facility) as UML
meta-model, Odyssey-MEC uses the Eclipse Ecore meta-
model [5]. The use of Ecore instead of MOF is not an ob-
stacle to control the evolution of UML models because
EMF uses XMI (XML Metadata Interchange) [20] for ex-
ternalizing UML models. Client tools just have to use the
same XMI version used by EMF (version 2.1).

3.3 Model Repository
Model repositories are used to store models. In our case, it
is necessary to store all versions of a model to control the
model evolution.

Due to the lack of versioning repositories for EMF, we
adopted Odyssey-VCS as our versioning component, as
detailed in Section 3.4.

3.4 Version Control
Version control is a key resource to control the evolution of
models during development and maintenance. It is used to

generate a history of model versions and maintain informa-
tion like when, why, and who has made modifications. This
history of model versions and modification information are
stored in a repository. The basic functionalities of version
control systems are: check-in (save a model into the ver-
sioned repository), check-out (get a model from the ver-
sioned repository), merge (join two models) and detect con-
flicts (identify concurrent modifications that cannot be re-
solved)[2].

Our model-based version control component is Odyssey-
VCS. This component has a client/server architecture and
offers all the requirements discussed above. It uses the EMF
reflective API to support the versioning of any UML model
element2. It can also execute external code trough hook
implementation.

Odyssey-VCS works at fine-grained model versioning. This
means that it is capable of identifying a new version of any
UML model element. When a model element is composed
from other model elements, if one of these elements is
changed, the composing model element also receives a new
version number. This is propagated recursively up to the
outer model element, frequently a model package.

3.5 Model Transformation
Model transformation depends on a set of mappings and
rules to create elements in a model from elements of an-
other model. There are different ways to generate a new
model using transformations [18]. Some existing ap-
proaches to model-to-model transformations are: ATL
(ATLAS Transformation Language) [11], Triple [3], Opti-
malJ [7]. UMT [16], UMLX [8], and Odyssey-MDA[1]. A
further discussion about transformation can be found in
[21].

One of the requirements for controlling model evolution is
the support for bidirectional transformations. This means
that transformations should be able to generate PSM ele-
ments from PIM elements, and PIM elements from PSM
elements. This feature is needed because different people
may be working over different models, and new elements
inserted in a PSM may have to be represented in its corre-
sponding PIM. From the approaches presented above, ATL
[11] and Odyssey-MDA [1] allow transformations in both
directions. However, ATL requires the writing of a particu-
lar transformation mapping for each direction. On the other
hand, Odyssey-MDA allows the specification of bidirec-
tional transformations in the same mapping. In addition, it
is also shipped with a tool for model marking, named Mod-
elMarker. Due to that, we adopted Odyssey-MDA as our
transformation engine component.

2 A model element is any UML element defined in its metamodel,

for example, a class, attribute, operation, component, associa-
tion, etc.

PIM RTR PSM

Odyssey-MDA

Synchronization
Engine

Hook pre-
checkin

Hook post-
checkin

Odyssey-VCS

Hook post-
checkin

Hook pre-
checkin

Odyssey-VCS

Transaction
Manager

Odyssey-VCS Client

TMR

69

Odyssey-MDA is capable to execute vertical and horizontal
transformations. Therefore, although this paper is focused
in vertical transformations, our approach can also be ap-
plied to control the evolution of models at the same abstrac-
tion level.

3.6 Record of Transformation
A record of transformation (RT) [18] is used to identify
source models from target models and vice-versa. This is a
very important resource to synchronize models, as it helps
to identify existing model elements that have to be updated
instead of being overwritten. Traceability links are particu-
larly important for the synchronization activity when some
relevant information is lost during the transformation [22].

In Odyssey-MEC approach, RTs are represented as a Tra-
ceability Links (TL). This is an Ecore model element that
we created to reference the source and target model
elements and the mapping that was used to generate the
target element. Traceability links are generated by our Od-
yssey-MDA component during model transformations.
Since more than one source or target model may be in-
volved in transformation, it is possible that more than one
traceability link references the same source element or tar-
get element.

3.7 Transaction Control
The synchronization and versioning of source and target
models should be performed in a transaction context. In
other words, if one of these steps fails, the whole process
has to be canceled to avoid model inconsistencies.

To solve this problem, we adopted a Transaction Manager
(TM) component that implement a two-phased transaction
commit. When a model is checked in, the Odyssey-VCS
pre-checkin hook uses TM to verify if there is any existing
transaction in progress. If not, it asks for a new transaction
and informs Odyssey-VCS that the model can be versioned.
Odyssey-VCS starts its own transaction to create the model
version. After versioning the model, Odyssey-VCS executes
the post-checkin hook. This hook initiates the transforma-
tion and synchronization process. During this activity, other
Odyssey-VCS instances may start their own transactions, as
well as RTR. If all Odyssey-VCS instances finish their
transactions successfully, TM navigates trough all Odyssey-
VCS instances asking them to confirm their transactions.
This also happens with RTR. Finally, the global transaction
is confirmed.

3.8 Element Search
The versioning process depends on finding prior element
versions. The synchronization process depends on finding
PIM and PSM elements that have a trace relationship. Due
to that, our element search occurs in two dimensions: time
(different versions) and space (different models).

UML model elements are identified in XMI files by unique
identifiers. Unfortunately, most tools do not preserve the
value of these ids when models are exported. Therefore,
this identifier cannot be used do identify model elements.
To solve this problem, Odyssey-VCS uses a unique identi-
fier as a tagged value.

The Odyssey-VCS meta-model has an element called Ver-
sion. This element represents a version of a UML model
element, and stores some versioning data, such as the ele-
ment version number. It also has references to the UML
model element it represents and references to the prior and
next versions. Therefore, there is a list of versions for each
element, which constitutes the element version history. This
version history is useful to find prior and next versions of
an element. However, due to the use of separate repositories
for PIM and PSM, elements in different models have their
own version history.

The combination of version history list and traceability
links can be seen in Figure 2. Together, these two references
make it possible to freely navigate from one version to an-
other and from an element of a model (e.g., PIM) to another
element of another model (e.g., PSM). This capability sup-
ports the versioning and synchronization processes dis-
cussed in Section 3.9.

Figure 2. Version, PIM and PSM references

3.9 Model Synchronization
Interrelated models have to be consistent with each other.
Therefore, it is necessary to synchronize them during de-
velopment and maintenance, but preserving prior modifica-
tions. The ability to automatically synchronize models
without information loss is called roundtrip engineering
[22], and the lack of this ability usually leads to legacy sys-
tems [13].

Odyssey-VCS is designed to control the evolution of inde-
pendent models. It means that this component alone is not
capable of controlling the evolution of models that have

RT
<<entity>>

Student
a1 : String
a2 : String

Version 1 Version 1 <<EJBean>>
Student

a1 : String
a2 : String

getA1() : String
getA2() : String
setA1(a1 : String)
setA2(a2 : String)

RT
<<entity>>

Student
a1 : Int
a2 : String

Version 2 Version 2 <<EJBean>>
Student

a1 : Int
a2 : String

getA1() : Int
getA2() : String
setA1(a1 : Int)
setA2(a2 : String)

Prior Next Prior Next

PIM PSM

70

traceability links among them. Therefore, it is necessary to
adopt a synchronization engine together with Odyssey-
VCS. This synchronization engine is triggered by Odyssey-
VCS hooks.

The synchronization engine, which is a component of Od-
yssey-MEC, depends not just on PIM and PSM version
control information, but also on existing record of trans-
formations of prior PIM and PSM versions. It also depends
on Odyssey-MDA to generate models.

When a model is checked in, Odyssey-VCS tries to create a
new version of the model. The Synchronization Engine
(SE) is executed only if there is no version conflict during
the versioning process. This avoids synchronization effort
in cases of conflicts. If there is no conflict, SE selects the
transformation mapping to be used and sends it to Odyssey-
MDA, together with the new model version that was
checked-in. Odyssey-MDA generates the target model
(TM) and the RT of each target element, and returns them
to SE. SE uses Odyssey-VCS of the target element to verify
if there is any existing version available. If no previous ver-
sion is found, SE considers the target model as a new mod-
el. In this case, SE checks in the target model using the
Odyssey-VCS repository designated to it.

If there is an existing version of the generated target model,
SE has to pre-process it in order to allow Odyssey-VCS to
match the model with its prior version. This pre-processing
starts with the recovery of versioning information. After
that, the versioning information is interwoven into the gen-
erated target model.

This pre-processing process is composed of the following
steps: (1) SE navigates trough all elements of the generated
target model; (2) Using the traceability link, SE finds the
related source model; (3) SE searches for the most recent
version that has a traceability link dependency to an ele-
ment of the target model; (4) When this element is found,
SE retrieves its version information and puts into the re-
spective generated target model element.

After the process is finished, SE checks in the model. It is
worth to notice that, at this moment, the generated target
model has all the necessary versioning information to allow
Odyssey-VCS to interpret it as a new version of a model
under version control. The generation of a new version of
the model element means that the differences between the
existing version and the checked-in version were merged. In
other words, the synchronization was performed. If some
conflicts occur during this merge process, all the operations
are canceled.

When a source element has traceability links to more than
one target element, the part of the transformation used to
generate the target element is used to identify the correct
element. This information is specified together with the

traceability link that exists between the source and target
models.

4. RELATED WORK
Gîrba et al. [10] proposes Hismo as a meta-model based
solution to control model versions. However, this approach
does not take into consideration synchronization and does
not support UML models.

Matheson et al. [14] proposed an architecture for capturing
models evolution in MDD. They suggest the use of a re-
pository centric solution that is independent from client
tools and stores model versions and their relationships in
fine granularity. XMI is proposed as the data exchange
mechanism for UML artifacts, and it uses XML and XML
Schema to specify the transformation specifications. Be-
sides the similarities with our approach, nothing was men-
tioned about the execution of model synchronization and
model versioning.

There are some other researches [6, 9, 12] that take model
evolution into consideration in some different ways, but do
not consider versioning and model synchronization, as we
do in our work.

5. CONCLUSIONS
This paper presented an approach to control the evolution
of MDA models considering the model synchronization and
versioning in a client/server architecture. Therefore, any
CASE tool that can export models using XMI format is a
potential client to Odyssey-MEC.

The way that PIM and PSM are versioned in Odyssey-MEC
eliminates the need of any special mechanism to synchro-
nize them. This synchronization is made when Odyssey-
VCS merges the model that is being checked in with its last
available version.

The client/server architecture of Odyssey-MEC makes it
possible to implement distributed MDD using the MDA
approach. The automatic model synchronization avoids the
errors that can be introduced during manual synchroniza-
tion. It also guarantees that models will always be consis-
tent.

Although this paper focused on PIM and PSM, models in
the same abstraction level may also be generated, synchro-
nized and versioned. This can be done via horizontal trans-
formation definitions during the MDD project creation.
Moreover, we were mostly focused in this paper on PIM
and PSM synchronization and versioning. Therefore, only
two abstraction levels where considered. However, the ap-
proach works with unlimited abstraction levels. In this case,
a PSM can be considered a PIM for the next abstraction
level. It is also possible to support PSM for multiple plat-
forms.

Currently, Odyssey-MDA works just with static models
(i.e., class and component models). It means that Odyssey-

71

MEC cannot synchronize dynamic models, such as se-
quence model. Nevertheless, Odyssey-VCS can still be used
to version control these models, but without synchroniza-
tion among them. Moreover, the current version of Odys-
sey-MDA is able to deal with just one model as input and
generates another model as output. Therefore, Odyssey-
MEC supports model evolution in a one-to-one basis.

Our next step is to evaluate the proposed approach by ap-
plying some selected cases that will take into consideration
conflict resolutions, forward and reverse transformations,
transformation mapping change, etc. The results will be
evaluated through precision and recall analysis [23], com-
paring them to the expected values.

As future work, we intend to: (1) expand our support to
CIM and source-code; (2) develop an additional tool to
help de visualization of MDA models evolution during the
project execution and system maintenance; (3) control the
evolution of transformation mappings and register in the RT
the version of the transformation mapping used during the
transformation; (4) expand our support to other UML
models, such as the behavioral models; (5) modify Odys-
sey-MDA to receive and generate more than one model;
and (6) use rules do control modifications that can be ap-
plied on interrelated models.

6. ACKNOWLEDGMENTS
Our thanks to the members of the Software Reuse Group at
COPPE/UFRJ, especially Hamilton Oliveira, Cristine Dan-
tas, Luiz Gustavo Lopes, João Gustavo Prudêncio, and
Natanael Maia, who contributed to Odyssey-VCS and Od-
yssey-MDA. We also want to thank CNPq for the financial
support.

7. REFERENCES
1. Bacelo, A., Maia, N. and Werner, C.M.L., Odyssey-MDA: A

Transformational Approach to Component Models. in Pro-
ceedings of Conference on Software Engineering and Knowl-
edge Engineering, (Boston, USA, 2007), 9-14.

2. Berczuk, S. Software Configuration Management Patterns:
Effective Teamwork, Practical Integration Addison-Wesley,
Boston, MA, USA, 2002.

3. Billig, A., Busse, S., Leicher, A. and Süb, J.G., Platform
Independent Model Transformation Based on Triple. in Pro-
ceedings of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware, (Toronto, Canada, 2004), 493-511.

4. Booth, D., Hass, H., McCabe, F., Newcomer, E., Champion,
M., Ferris, C. and Orchand, D. Web Services Architecture -
W3C Working Group Note, World Wide Web Consortium
(W3C), 2005.

5. Budinsky, F., Steiberg, D., Merks, E., Ellersick, R. and
Grose, T.J. Eclipse Modeling Framework: A Developer's
Guide. Addison Wesley, 2003.

6. Chen, F., Yang, H., Qiao, B. and Chu, W.C.-C., A Formal
Model Driven Approach to Dependable Software Evolution.
in Proceedings of 30th Annual International Computer Soft-
ware and Applications Conference - Cover, (Chicago, Illi-
nois, USA, 2006), 205 - 214.

7. Compuware. OptimalJ - Model-driven Java Development
Tool, 2007.

8. Eclipse. UMLX A Graphical Transformation Language for
MDA, 2007.

9. Engels, G., Küster, J.M., Heckel, R. and Groenewegen, L.,
Towards Consistency-Preserving Model Evolution in Pro-
ceedings ICSE Workshop on Model Evolution, (Florida,
USA, 2002), 129-132.

10. Girba, T., Favre, J.-M. and Ducasse, S.e. Using Meta-Model
Transformation to Model Software Evolution. Electronic
Notes in Theoretical Computer Science, 137. 57-64.

11. Jouault, F. and Kurtev, I., Transforming Models with ATL. in
Proceedings of the Model Transformation in Practice Work-
shop at MoDELS, (Montego Bay, Jamaica, 2005), 128-138.

12. Lin, Y. and Gray, J., A Model Transformation Approach to
Automatic Model Construction and Evolution. in Proceed-
ings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, (Long Beach, CA, USA,
2005), ACM, 448-451.

13. Maciaszek, L.A., Roundtrip Architectural Modeling. in Pro-
ceedings of the 2nd Asia-Pacifc Conference on Conceptual
Modeling, (Newscastle, Australia, 2005), Australian Com-
puter Society, Inc. , 17-23.

14. Matheson, D., France, R., Bieman, J., Alexander, R., DeWitt,
J. and McEachen, N., Managed Evolution of a Model Driven
Development Approach to Software-based Solutions. in
Workshop on Best Practices for Model Driven Development,
(Vancouver, Canada, 2004).

15. Murta, L.G.P., Dantas, H.L.R., Lopes, L.G.B. and Werner,
C.M.L. Odyssey-SCM: An Integrated Software Configura-
tion Management Infrastructure for UML Models. Science of
Computer Programming, 65 (3). 249-274.

16. Oldevik, J. UML Model Transformation Tool - Overview and
User Guide Documentation, 2004.

17. Oliveira, H., Murta, L. and Werner, C.M.L., Odyssey-VCS: a
Flexible Version Control System for UML Model Elements.
in International Workshop on Software Configuration Man-
agement (SCM-12) (Lisbon, Portugal, 2005), 1-16.

18. OMG. MDA Guide Version 1.0.1, Object Management
Group, 2003.

19. OMG. Unified Modeling Language (UML) Infrastructure
Specification. Version 2.0, Object Management Group, 2006.

20. OMG. XML Metadata Interchange (XMI) Specification.
Version 2.0, Object Management Group, 2005.

21. Sendall, S. and Kozaczynski, W. Model Transformation - the
Heart and Soul of Model-Driven Development. IEEE Soft-
ware, 20 (5). 42-45.

22. Sendall, S. and Küster, J., Taming Model Round-Trip Engi-
neering. in Workshop on Best Practices for Model-Driven
Software Development, (Vancouver, Canada, 2004).

23. Yates, R.B. and Neto, B.R. Modern Information Retrieval.
ACM press, 1999.

72

Analyzing the Impact of Attribute Noise on Software Quality Classification

Andres A. Folleco
Taghi M. Khoshgoftaar∗

Lofton A. Bullard

Abstract
A ubiquitous problem in software quality classification is

the presence of noise in measurement data. Noise can have
a tremendous effect on classification performance. Rela-
tively few studies, and none in the software quality esti-
mation domain, have considered the impact of noisy at-
tributes on classifier performance. This study investigates
the impact of attribute noise on the performance of 11 soft-
ware quality classification models. Noise was injected into
seven real-world software measurement datasets, initially
relatively free of noise. Attributes were ranked based on
their KS statistic to determine their predictive significance.
Those with higher rankings were injected with noise, in or-
der of decreasing KS statistic. If the number of attributes
injected with noise exceeded a threshold value found in this
study, the classification performance deteriorated.
Keywords: attribute noise, random forest, software quality
classification.

1 Introduction
The presence of noise in data is a recognized problem in

software quality initiatives [11]. Noise can significantly af-
fect the results and conclusions obtained from classification
performance studies. For example, in the software quality
estimation domain, models are built to distinguish program
modules that are likely to contain faults (fault prone or fp)
from those that are not fault prone (nfp). It is common in
mission critical systems [8], that the misclassification of fp
modules can threaten property and/or lives.

Relatively few studies, and none in software quality clas-
sification, have considered the impact of attribute noise on
classification performance. A considerable number of stud-
ies in the data mining and machine learning field have fo-
cused solely on the impact of class noise on classification
performance. In this study, we injected domain realistic at-
tribute noise into seven class-imbalanced1 real-world soft-

∗Readers may contact the authors through Taghi M. Khoshgoftaar, Em-
pirical Software Engineering Laboratory, Department of Computer Sci-
ence and Engineering, Florida Atlantic University, Boca Raton, FL 33431
USA. Phone: (561)297-3994, Fax: (561)297-2800.

1In binary classification, if one of the two classes has more program
modules, then the data is considered imbalanced relative to the class.

ware engineering measurements datasets, initially relatively
free of noise. The datasets were relatively cleansed of inher-
ent noise before the injection of simulated attribute noise.
Injecting noise into a dataset that already contains noise can
bias any empirical conclusions. Thus, the experiments in
this study were carefully designed to ensure result accuracy
and robustness. The attributes selected for noise injection
were ranked based on their KS statistic to determine their
class prediction significance. Those with higher rankings
were injected with domain realistic noise, in order of de-
creasing KS statistic [6].

The experimental results demonstrated that when the
number of attributes injected with noise was five or more,
or approximately 39% of the 13 independent attributes, the
impact on classification performance became more impor-
tant in this study. On the other hand, all classifiers had rela-
tively minimal impact on their performances when one, two,
three, or four of the most significant attributes were injected
with noise. This performance behavior provides evidence
that having moderate levels of attribute noise in software
measurement datasets is not nearly as important to classifi-
cation performance [11].

1.1 Related Work

Studies considering the impact of attribute noise on soft-
ware quality classification have not been found. Often, re-
lated studies in other domains have suggested that in many
cases, eliminating instances with class noise will improve
classification accuracy [3, 7]. Further, very few of these
studies have investigated the impact of attribute noise [18]
on classification performance. Typically, handling attribute
noise is more difficult than class noise [14, 18]. Class noise
occurs when a program module is labeled as belonging to
a class different than the one implied by its attributes, e.g.,
fp → nfp or when nfp → fp. Often, eliminating in-
stances which contain attribute noise is counter-productive,
because other attributes belonging to the deleted instance
can still contain valuable information. Zhu and Wu [18]
pointed out an important fact from real-world data: the
class information is usually much cleaner than commonly
assumed; and it is the independent attributes that usually

73

contain more noise. Our previous work [10] determined
similar findings, corroborating the importance of measuring
the impact of attribute noise on classification. In this study,
we used 11 classifiers and two performance metrics to in-
vestigate the impact of attribute noise on software quality
classification performance. No other related study has used
this many classifiers to investigate the impact of attribute
noise. In fact, to our knowledge, similar comprehensive ex-
perimental procedures to those used in this work have not
been reported in any other related studies.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the 11 classifiers used. The experimental
methodology is provided in Section 3. Experimental results
are presented in Section 4, and the conclusion is provided
in Section 5.

2 Classifiers

Every classifier used was implemented in the Weka
tool [17]. Default parameter changes were done only when
classifier performance improved significantly. C4.5 [13] is
a benchmark decision tree learning algorithm. Two differ-
ent versions of the C4.5 classifier were used. C4.5D uses
the default parameter settings in Weka, while C4.5N uses
no decision-tree pruning and Laplace smoothing [16]. The
random forest (RF100) classifier [2] uses bagging and the
‘random subspace method’ to build an ensemble of random-
ized decision trees which are combined to produce the fi-
nal prediction. RF100’s ‘Number of Trees’ parameter was
changed to 100 from its default value of 10. K nearest
neighbors [1] (kNN) classifiers were built with changes to
two parameters. The ‘distanceWeighting’ parameter was set
to ‘Weight by 1/distance’. Two different ‘kNN’ classifiers
were built using k = 2 and k = 5 and were denoted ‘2NN’
and ‘5NN’, respectively.

The support vector machine (SVM) classifier called
SMO in Weka had two changes to the default parameters:
the complexity constant ‘c’ was set to 5.0 and ‘buildLo-
gisticModels’ was set to ‘true’. By default, a linear kernel
was used. For a Multilayer perceptrons (MLP) classifier (a
type of neural network), the ‘hiddenLayers’ parameter was
changed to ‘3’ to define a network with one hidden layer
containing three nodes, and the ‘validationSetSize’ parame-
ter was changed to ‘10’ to cause the classifier to leave 10%
of the training data aside to be used as a validation set to de-
termine when to stop the iterative training process. Radial
basis function networks (RBF) are another type of artificial
neural network. The only parameter change for RBF was
to set the parameter ‘numClusters’ to 10. Naive Bayes (NB)
utilizes Bayes’s rule of conditional probability and is termed
‘naive’ because it assumes conditional independence of the
features. Logistic regression (LR) is a statistical regression
model for categorical prediction. RIPPER (Repeated Incre-
mental Pruning to Produce Error Reduction) is a rule-based

Table 1. Primitive Software Metrics
Total Lines of Code
Executable LOC

Line Count Metrics Comments LOC
Blank LOC
Code And Comments LOC
Total Operators

Halstead Metrics Total Operands
Unique Operators
Unique Operands
Cyclomatic Complexity

McCabe Metrics Essential Complexity
Design Complexity

Branch Count Metric Branch count

classifier and is named JRip [4] in Weka. The default Weka
parameters for these three classifiers were not changed.

3 Experimental Design
3.1 Experimental Datasets

The datasets used are from seven NASA software
projects: JM1, CM1, MW1, PC1, KC1, KC2, and KC3
which were obtained from the NASA Metrics Data Program
(MDP). Instances represent software modules with 21 soft-
ware measurements. Classifiers were built using 13 prim-
itive metrics2 as independent variables and a module-class
(binary) as the dependent variable, i.e., fp (fault-prone) or
nfp (not fault-prone). The minority class is represented as
the positive or fp class, while the majority class is repre-
sented as the negative or nfp class.

The RBCM noise filter was applied to these datasets in
order to identify and remove subsets of noisy instances [9].
Table 2 provides details about the seven initial datasets and
their respective cleansed versions. In this table, the #P col-
umn contains the number of positive (fp) examples, while
the #N has the number of negative (nfp) examples. The %P
column provides the percentage of positive examples rela-
tive to the total number of examples in a dataset, e.g., PC1
originally contained 1107 instances, of which 6.87% were
fp. After cleansing, 703 total instances remained of which
7.54% were fp. The cleansed datasets were used in this
work. These datasets were subjected to a methodical and
carefully designed noise cleansing process described in [9]
(also see Van Hulse [15] for a detailed discussion of the
noise cleansing procedure).

Table 3 shows the classification performance across all
classifiers obtained using each of the cleansed datasets. Ac-
cording to the AUC and KS performance metrics, the best
classification performance was obtained by using JM1. The

2The other metrics are derived from the 13 primitive ones in Table 1

74

Table 2. Dataset characteristics
Initial Cleansed

Data # P # N % P # P # N % P
JM1 470 2393 16.42 235 2210 9.61
CM1 48 457 9.50 39 277 12.34
MW1 31 372 7.69 20 291 6.43
PC1 76 1031 6.87 53 650 7.54
KC1 325 1782 15.42 271 1093 19.87
KC2 106 414 20.39 82 333 19.76
KC3 43 415 9.39 38 264 12.58

Table 3. Cleansed Datasets Performance
Data AUC Rank Data KS Rank
JM1 0.9987 1 JM1 0.9974 1
KC1 0.9977 2 KC1 0.9763 2
KC2 0.9922 3 PC1 0.9607 3
PC1 0.9915 4 KC2 0.9532 4
KC3 0.9865 5 KC3 0.9521 5
CM1 0.9837 6 CM1 0.9487 6
MW1 0.9767 7 MW1 0.9428 7
Avg 0.9896 Avg 0.9616

second best performance was obtained using KC1, and the
worst performance was obtained using MW1. The average
values (’Avg’ row) across all the cleansed datasets and clas-
sifiers were used as a baseline reference for performance
comparisons. Note that all datasets have nearly perfect per-
formance by the classifiers, further supporting the fact that
the datasets have been cleansed of noise significantly.

3.2 Performance Metrics

Traditional performance measures such as classification
accuracy, or its complement, misclassification rate, are in-
appropriate when dealing with the classification of class im-
balanced data. When as few as 1% of examples belong to
the positive class, a classifier can achieve an accuracy of
99% by simply labeling all examples as belonging to the
negative class. In a domain such as software quality clas-
sification, however, such a model is useless. Instead, two
performance metrics that consider the ability of a classi-
fier to differentiate between the two classes were used. The
Kolmogorov-Smirnov statistic [6] measures the maximum
difference between the empirical distribution function of the
posterior probabilities of instances in each class.

The second metric used was the Receiver Operating
Characteristic curve [12] (ROC). ROC curves graph true
positive rates on the y-axis versus the false positive rates on
the x-axis. The resulting curve illustrates the trade-off be-
tween detection and false alarm rates. Often, performance

metrics consider only the default decision threshold of 0.5.
ROC curves illustrate the performance across all decision
thresholds. For a single numeric measure, the area under
the ROC curve (AUC) is widely used, providing a general
idea of the predictive potential of the classifier.

3.3 Noise Injection Procedure

The attributes selected for noise injection were identi-
fied by the KS test at a 5% significance level [9]. The KS
two-sample test is a non-parametric statistical significance
test [5]. It is useful in determining the fp and nfp discrim-
inative quality of the attributes under consideration. The
greater the KS statistic for an attribute, the better is its dis-
criminative quality for segregating the fp instances from
nfp instances. Noise was injected at five levels - 10%,
20%, 30%, 40%, and 50%. Noise was first injected into
the most significant predictive attribute, creating a total of
35 derived datasets from the seven cleansed datasets. The
derived datasets from each cleansed dataset contain a dif-
ferent amount of corruption in that attribute. The next 35
datasets were obtained by corrupting both the most and sec-
ond most significant attributes. This procedure was repeated
until the seven most significant attributes were corrupted.
The results of six attributes injected with noise were ex-
cluded from this study because of similarities to the results
obtained when seven attributes were used. A noise level of
10% implied that the values for the selected attributes were
corrupted for 10% of the instances. The corruption was ob-
tained by replacing the given value with a randomly selected
value reflecting an instance of the opposite class, i.e., nfp
or fp. For a given injected noise level, the nfp and fp pro-
portions of the instances injected with noise was approxi-
mately the same as the nfp and fp proportions of the given
dataset. For example, if the given dataset had a proportion
of 70:30 for nfp:fp instances and if 100 instances were in-
jected with noise, then those 100 instances would consist of
70 nfp and 30 fp instances.

3.4 Experimental Design Summary

The models were trained using the derived datasets from
the cleansed datasets. 10-fold cross validation was used to
build and test the models. The datasets were broken into
10 partitions, where nine of the 10 partitions were used to
train the model, and the remaining (hold out) partition was
used to test the model. This was repeated 10 times so that
each partition was used as hold out data once. In addition,
10 independent repetitions of each experiment were done
to avoid any bias that may occur during the random selec-
tion process and to ensure the statistical significance of the
results. The results reported in the following sections rep-
resent the average of these repetitions. Noise was injected
in up to seven of the most significant attributes from each
dataset. There were five levels of noise, 10%, 20%, 30%,

75

Table 4. Overall Impact of Attribute Noise
Clean 1-attr 2-attr 3-attr 4-attr 5-attr 7-attr

AUC 0.9896 0.9875 0.9856 0.9812 0.9794 0.9651 0.9504
KS 0.9616 0.9506 0.9429 0.9310 0.9268 0.8987 0.8542

Table 5. Noise Impact on Classifiers by AUC

1-attr 2-attr 3-attr 4-attr 5-attr 7-attr
C4.5N 0.9826 0.9852 0.9815 0.9811 0.9667 0.9621

NB 0.9939 0.9919 0.9879 0.9833 0.9721 0.9499
MLP 0.9875 0.9875 0.9865 0.9850 0.9786 0.9456
RIPP 0.9764 0.9674 0.9547 0.9543 0.9367 0.9088
5NN 0.9946 0.9924 0.9887 0.9863 0.9816 0.9721

SVM 0.9941 0.9906 0.9941 0.9933 0.9647 0.9700
RF100 0.9989 0.9991 0.9973 0.9972 0.9907 0.9898

RBF 0.9661 0.9622 0.9618 0.9574 0.9438 0.9331
LR 0.9932 0.9929 0.9896 0.9925 0.9762 0.9662

C4.5D 0.9827 0.9832 0.9698 0.9666 0.9337 0.8956
2NN 0.9925 0.9890 0.9815 0.9768 0.9709 0.9608

40%, and 50%, eventually injected into these attributes.
Based on these experimental parameters, there were a to-
tal of 231,000 models built and evaluated.

4 Experimental Results
4.1 Noise Impact on Classification Performance

Table 4 contains the impact of attribute noise on clas-
sification performance averaged overall datasets and learn-
ers. The column labeled ‘Clean’ contains the performance
values obtained when using the cleansed datasets. The col-
umn labeled ‘1-attr’ contains the performance values over-
all learners and datasets when the most significant attribute
was injected with noise. The rest of the columns (labeled
‘2-attr,’ ‘3-attr,’ ‘4-attr,’ etc.) show the performance val-
ues when noise was injected into two, three, four, five,
and seven of the most significant attributes. Both metrics
showed that when there were five attributes injected with
noise (in the column labeled ‘5-attr’) a relatively large drop
in classification performance occurred. If we compare the
performance values from the ‘Clean’ column to the rest of
the performance values from the other columns, we can
clearly see the relative large performance decline in column
‘5-attr’. Furthermore, the largest performance losses were
4.0% for the AUC and 10.7% for the KS metric. These
losses were obtained by calculating the percent difference
between the ‘Clean’ baseline and the ‘7-attr’ column val-
ues.

Tables 5 and 6 contain the impact on each classifier’s per-
formance overall datasets and noise levels as the number of
attributes injected with noise increased. The best perform-
ing classifier (RF100) is bolded. Both tables show declin-
ing classifier performance as the number of attributes with

Figure 1. SVM Performance using JM1

injected noise is increased. Note that the right most col-
umn in these tables (showing seven corrupted attributes and
labeled ‘7-attr’) has the lowest classification performance.
The only exception to this trend in both tables is observed
in Table 5. In this table, SVM is bolded to show its perfor-
mance improvement when noise injection increased from
five to seven attributes. SVM’s unusual performance us-
ing JM1 can be used as an example of a classifier with un-
expected results in a particular case study and it is further
explored in Figure 1. Note that all classifiers maintained
very good performances when one, two, three, or four of
the most significant attributes were injected with noise.

Figure 1 shows SVM’s performance based on the av-
erage KS metric (in the y-axis) when using the derived
datasets from the best performing dataset, JM1 (AUC re-
sults are similar but not shown due to space limitations).
The x-axis has the number of attributes injected with noise
per injected noise level. At the lowest level of injected
noise, 10% (labeled at the bottom of the figure), SVM had
its largest performance loss when noise injection was in-
creased from four to five attributes. In contrast, SVM had
a relatively large performance improvement when noise in-
jection was further increased from five to seven attributes.
The classification performance was nearly perfect for the
first four attributes with injected noise, regardless of the
level of noise. In comparison to the other noise levels
(separated by the solid vertical lines in Figure 1), 20%,
30%, 40%, and 50%, SVM recorded its best performance
at the highest level of noise, 50%. This unusual SVM
performance can be partly explained as an anomaly in
the performance of this classifier when using the derived
datasets from JM1. Under no other experimental scenario
did SVM’s (nor any other classifier’s) performance resem-

76

Table 6. Noise Impact on Classifiers by KS

1-attr 2-attr 3-attr 4-attr 5-attr 7-attr
C4.5N 0.9620 0.9544 0.9422 0.9389 0.9026 0.8734

NB 0.9485 0.9372 0.9181 0.9036 0.8767 0.8117
MLP 0.9205 0.9195 0.9178 0.9092 0.8962 0.8106
RIPP 0.9527 0.9294 0.9033 0.9042 0.8877 0.8147
5NN 0.9482 0.9436 0.9404 0.9371 0.9245 0.8899
SVM 0.9654 0.9593 0.9541 0.9463 0.8977 0.8629

RF100 0.9860 0.9854 0.9746 0.9726 0.9500 0.9324
RBF 0.9241 0.9184 0.9135 0.9068 0.8778 0.8495

LR 0.9531 0.9521 0.9426 0.9492 0.9122 0.8714
C4.5D 0.9599 0.9495 0.9253 0.9202 0.8666 0.8134

2NN 0.9357 0.9228 0.9096 0.9064 0.8937 0.8669

Table 7. Overall Performance of Classifiers
AUCc AUCn Rn KSc KSn Rn

RF100 0.9997 0.9955 1 0.9912 0.9668 1
5NN 0.9974 0.9859 2 0.9623 0.9306 3

LR 0.9947 0.9851 3 0.9624 0.9301 4
SVM 0.9980 0.9845 4 0.9807 0.9309 2

NB 0.9959 0.9798 5 0.9619 0.8993 8
2NN 0.9948 0.9786 6 0.9535 0.9058 6
MLP 0.9908 0.9784 7 0.9404 0.8987 9

C4.5N 0.9824 0.9765 8 0.9661 0.9289 5
C4.5D 0.9811 0.9553 9 0.9619 0.9058 7

RBF 0.9767 0.9541 10 0.9444 0.8983 10
RIPP 0.9736 0.9497 11 0.9526 0.8956 11

ble the one obtained using JM1’s derived datasets.

4.2 Noise Impact on Classifiers

In this section we investigate the impact of attribute noise
on each of the 11 classifiers averaged over all datasets, all
noise levels and all attributes injected with noise. The im-
pact on performance using the JM1 and MW1 datasets is
also presented. Note that there are small disagreements be-
tween the AUC and KS values in Tables 7, 8, and 9. In
general, the top two or three performing classifiers have
very close values and rankings. This observation is also
true for the two lowest performing classifiers. The tables
have the same column format showing (from left to right)
the classifier name, the AUCc value obtained from the
cleansed datasets, the AUCn value obtained from the de-
rived datasets with injected noise, the derived ranking (Rn)
based on AUCn, the KSc value obtained from the cleansed
datasets, the KSn value obtained from the derived datasets
with injected noise, and the corresponding ranking (Rn)
from KSn. The best ranked classifier (RF100) is bolded
in the tables which are ordered by AUCn ranking.

Table 7 shows the impact of noise by the lower AUCn

values when compared to those values from AUCc. The
same trend is observed in the KS values. The rankings are
based on the AUCn and KSn values respectively. The best

Table 8. Performance of Classifiers using JM1

AUCc AUCn Rn KSc KSn Rn

RF100 1.0 0.9991 1 1.0 0.9962 1
5NN 1.0 0.9988 2 1.0 0.9941 3
2NN 1.0 0.9986 3 1.0 0.9926 4

LR 1.0 0.9985 4 0.9999 0.9950 2
MLP 1.0 0.9981 5 1.0 0.9897 5
RBF 0.9998 0.9956 6 1.0 0.9889 7

NB 0.9992 0.9955 7 0.9985 0.9846 10
C4.5N 0.9958 0.9949 8 0.9915 0.9893 6
C4.5D 0.9957 0.9919 9 0.9915 0.9879 8

RIPP 0.9951 0.9919 10 0.9906 0.9849 9
SVM 1.0 0.9682 11 1.0 0.9506 11

Table 9. Performance of Classifiers using
MW1

AUCc AUCn Rn KSc KSn Rn

RF100 0.9991 0.9814 1 0.9859 0.9113 1
SVM 0.9998 0.9758 2 0.9959 0.8952 2
5NN 0.9933 0.9747 3 0.9297 0.8923 3

NB 0.9942 0.9698 4 0.9564 0.8485 7
MLP 0.9991 0.9693 5 0.9883 0.8894 4

LR 0.9902 0.9674 6 0.9470 0.8834 6
2NN 0.9787 0.9595 7 0.8897 0.8464 8

C4.5N 0.9494 0.9550 8 0.9359 0.8865 5
C4.5D 0.9508 0.9215 9 0.9366 0.8315 9

RIPP 0.9370 0.9010 10 0.8966 0.8132 10
RBF 0.9519 0.8907 11 0.9085 0.7995 11

performance was obtained by the RF100 classifier, regard-
less of the levels of noise, number of significant attributes
with injected noise, dataset used, or metric used. The sec-
ond best performing classifiers were 5NN (as ranked by the
AUCn) and SVM (by the KSn). The classifiers most af-
fected by attribute noise were RBF and RIPPER.

Tables 8 and 9 show the performance of the classifiers
when using the derived datasets from JM1 and MW1 (see
Table 3 for datasets details). Both tables show the impact of
attribute noise by the lower AUCn values when compared
to those values from AUCc. The same trend is observed in
the KS values. The rankings are based on the AUCn and
KSn values respectively.

Table 8 shows RF100 as the best performing classifier,
followed by 5NN (for AUCn) and LR (for KSn). The
classifier most affected by noise was SVM. Recall that both
SVM and 5NN had the second best overall performance in
this study. We explained SVM’s performance when using
JM1 in the previous section with a particular emphasis on
the line plot shown in Figure 1. On the other hand, Ta-
ble 9 shows RF100 as the best performing classifier, with
SVM and 5NN as the second and third best classifiers re-

77

spectively. RBF and RIPPER had the lowest classification
performance. These results agreed with the performances
presented in Table 7 and were very similar to the results ob-
served from KC1, KC2, KC3, PC1, and CM1. The results
from these datasets were not presented due to space limita-
tions.

5 Conclusions

The quality of the software measurement data is of
paramount importance to software quality classification. As
the levels of attribute noise increased, every classifier’s per-
formance decreased. This behavior was observed by the
decline in the recorded AUC and KS values. Furthermore,
when the number of significant attributes injected with
noise increased, the classifiers’ performances decreased. A
threshold for this number of attributes was identified that
when reached or exceeded, it drastically affected classifi-
cation performance. The threshold value was determined
to be five attributes, or approximately 39% of the 13 at-
tributes in the datasets. In contrast, all classifiers had min-
imal impact on their classification performance when one,
two, three, or four of the most significant attributes were in-
jected with noise. This performance behavior implies that
moderate attribute noise is not as concerning to classifica-
tion performance as class noise. To our knowledge, this is
the first software quality classification study to report such
important empirical results.

The AUC and KS values were used to determine the
best and worst performing classifiers. The empirical results
conclusively demonstrated that the random forest ensem-
ble classifier obtained the best and most consistent classi-
fication performance in every experimental scenario. The
second best classifiers were SVM and 5NN. The classi-
fiers most affected by attribute noise were RBF and RIPP.
Based on these results, we strongly recommend the ran-
dom forest classifier for software quality estimation. Even
though SVM had very good overall classification perfor-
mance, when the JM1 dataset was used with SVM, we ob-
served the worst classification performance. At the lowest
level of injected noise, 10%, SVM had its largest perfor-
mance loss. This loss was observed in the KS and AUC
values when noise injection was increased from four to five
attributes. On the other hand, SVM had a relatively large
performance improvement when noise injection was further
increased from five to seven attributes. In comparison to
the rest of the noise levels, 20%, 30%, 40%, 50%, SVM
recorded its best performance at 50% (see Figure 1). These
results emphasize the importance of using high quality data
and carefully designed comprehensive experimental proce-
dures.

Future work will include the investigation and compari-
son of the results obtained from the injection of class noise.
Further research will consider both attribute and class noise,

and will include additional software measurement datasets.

References

[1] D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[3] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data.
Journal of Artificial Intelligence Research, 11:131–167, 1999.

[4] W. W. Cohen. Fast effective rule induction. In Proc. 12th Inter-
national Conference on Machine Learning, pages 115–123. Morgan
Kaufmann, 1995.

[5] W. Conover. Practical Nonparametric Statistics. John Wiley and
Sons, NY, 1971.

[6] D. J. Hand. Good practice in retail credit scorecard assessment. Jour-
nal of the Operational Research Society, 56:1109–1117, 2005.

[7] A. Karmaker and S. Kwek. A boosting approach to remove class
label noise. 5th International Conference on Hybrid Intelligent Sys-
tems, pages 206–211, 2005.

[8] T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Using regression trees
to classify fault-prone software modules. IEEE Trans. Reliability,
51(4):455–462, 2002.

[9] T. M. Khoshgoftaar, N. Seliya, and K. Gao. Detecting noisy instances
with the rule-based classification model. Intelligent Data Analysis:
An International Journal, 9:347–364, 2005.

[10] T. M. Khoshgoftaar and J. Van Hulse. Empirical case studies in at-
tribute noise detection. In Proceedings of the IEEE International
Conference on Information Reuse and Integration, pages 211–216,
Las Vegas, NV, August 2005.

[11] T. M. Khoshgoftaar, S. Zhong, and V. Joshi. Enhancing software
quality estimation using ensemble-classifier based noise filtering. In-
telligent Data Analysis: An International Journal, 6(1):3–27, 2005.

[12] F. Provost and T. Fawcett. Robust classification for imprecise envi-
ronments. Machine Learning, 42:203–231, 2001.

[13] J. R. Quinlan. C4.5: Programs For Machine Learning. Morgan
Kaufmann, San Mateo, California, 1993.

[14] C. M. Teng. Correcting noisy data. In Proceedings of the Six-
teenth International Conference on Machine Learning, pages 239–
248, 1999.

[15] J. Van Hulse. Data quality in data mining and machine learning.
Ph.D. Dissertation, Department of Computer Science and Engineer-
ing, Florida Atlantic University, Boca Raton, FL USA, May 2007.
Advised by T. Khoshgoftaar.

[16] G. M. Weiss and F. Provost. Learning when training data are costly:
the effect of class distribution on tree induction. Journal of Artificial
Intelligence Research, 19:315–354, 2003.

[17] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, California,
2nd edition, 2005.

[18] X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative
study of their impacts. Artificial Intelligence Review, 22:177–210,
2004.

78

An Adaptive Neural Network with Dynamic
Structure for Software Defect Prediction

Zhiwei Xu and Naeem Seliya
Computer and Information Science
University of Michigan – Dearborn

4901 Evergreen Road
Dearborn, MI 48128 USA
{zwxu,nseliya}@umich.edu

Weibiao Wu
Department of Statistics
University of Chicago

5734 S. University Avenue
Chicago, IL 60637 USA

wbwu@galton.uchicago.edu

Abstract

A timely software defect prediction activity is a useful
tool in improving the quality and reliability of software-
based systems. Such a model provides the quality im-
provement team with a guidance on which program mod-
ules, prior to system testing and deployment, should be al-
located the limited re-inspection and quality improvement
resources. Among existing software fault prediction tech-
niques, artificial neural networks are effective in extract-
ing the complex relationship between the different soft-
ware measurements of program modules and their asso-
ciated defect data. We present an innovative neural net-
work model that alleviate the various problems associated
with the traditional back-propagation neural network mod-
els. The proposed Adaptive Resilient Propagation Neural
Network (APROP) model for software defect prediction is
investigated with a case study of a real-world high assur-
ance software system. The APROP defect prediction model
is compared with the traditional back-propagation neural
network, and those results indicated a significant improve-
ment in fault prediction. A comparison with a non-neural
network model, Multiple Linear Regression, further vali-
dated the improved fault prediction of the proposed model.
The APROP model is not limited to software defect predic-
tion, and can be applied for other estimation problems dur-
ing software development, such as identifying critical test
cases for regression testing.

1. Introduction

Assuring good software quality and reliability is essen-

tial to any software development project, especially for high

assurance and mission-critical software systems. In soft-

ware engineering practice, various techniques and processes

are used improving the quality and reliability of software

products. Some of those techniques include software in-

spection [6], software redesign [11], formal requirements

analysis [16], and knowledge-based software quality mod-

els [3, 8, 15]. This paper focuses on the latter approach to

software quality improvement.

It is known that the presence of software errors and faults

has a direct impact on the achieved level of quality and re-

liability of software-based systems. Hence, reducing the

presence of software faults in program modules is a prac-

tical way to assure an improved level of software quality.

Knowledge-based software engineering includes quantita-

tive software quality estimation modeling and analysis. A

software quality prediction model is typically built by train-

ing a machine learner (prediction model) on known soft-

ware measurements and defect data collected from a prior

release or previously developed system. Upon validation,

the trained software quality model can be applied to pre-

dict the unknown defect data for program modules of the

currently under-development project.

The characterization of defect data (software quality)

varies from project to project, and depends on goals of the

software quality improvement team. In some cases, soft-

ware quality is expressed and evaluated in terms of member-

ship of program modules to different quality-based groups,

such as high-quality and low-quality. In other instances,

software quality is expressed and evaluated in terms of num-

ber of faults associated with different program modules. In

some other analysis, the amount of code churn required to

fix a reported problem is used to express and evaluate soft-

ware quality. We focus on number of faults in a program

module as the primary characteristic of software quality.

We present an innovative artificial neural network model

that overcomes several shortcomings of traditional neural

networks, and investigate its performance and viability as a

software quality prediction model. To demonstrate its bet-

79

ter performance for software fault prediction, the proposed

Adaptive Resilient Propagation Neural Network (denoted as

APROP) is compared with the traditional steepest gradient

artificial neural network (denoted as ANN). We also com-

pare the APROP model with a non-neural network software

quality model; and for that purpose, we use the Multiple

Linear Regression (denoted as MLR) prediction method.

The APROP neural network model is investigated with

a case study of software measurement and defect data ob-

tained from a real-world military command, control, and

communication system. We build three software fault pre-

diction models, i.e., based on the APROP, ANN, and MLR

models. The three models are compared for statistical sig-

nificance in their relative prediction performances. It is

shown that the proposed Adaptive Resilient Propagation

Neural Network model provides significantly better fault

predictions compared to both ANN and MLR models.

While other algorithms and models have been used for

software fault prediction, the focus of this paper is lim-

ited to presenting the APROP model as a viable and prac-

tical alternative to the traditional back-propagation neural

network. We also include MLR in our comparison with

APROP; however, a comprehensive comparison with other

prediction algorithms and models is out of scope for this pa-

per – in part due to paper size considerations. The applica-

tion of our APROP model is not limited to fault prediction,

and can be extended to predict other attributes in software

project development, e.g., identification of critical test cases

for regression testing.

The remainder of the paper is structured as follows: Sec-

tion 2 summarizes key related work in the literature; Sec-

tion 3 presents the Adaptive Resilient Propagation Neural

Network model; Section 4 summarizes Multiple Linear Re-

gression which we compare with the APROP model; Sec-

tion 5 describes our case study, and analyzes the obtained

empirical results; and, Section 6 concludes our paper and

includes suggestions for future research directions.

2. Related Work

A perfect software development environment would in-

clude software quality improvement activities being applied

to all program modules. However, limited resources avail-

able for re-inspections and quality improvement require a

targeted allocation of those resources for maximum soft-

ware quality improvement. The output of software qual-

ity estimation models are predictions that a development

team can utilize to identify high-risk or low-quality program

modules in the system. Knowledge-based software quality

estimation models generally include software quality classi-

fication models [5, 9], software fault prediction models [2],

and module-order models [7].

A software quality classification model aims to maxi-

mize return on quality improvement activities by guiding in

predicting which program modules are fault-prone or not-

fault-prone. A software fault prediction model estimates the

number of faults a given module for use as a guide to target

available resources to program modules that are likely to

have more faults. Finally, a module-order software qual-

ity model provides the quality improvement team with a

quality-based ranking of program modules which can then

be used for targeted software quality improvement efforts.

In the literature, one can find various methods and tech-

niques that have been investigated for building software

quality estimation models, including decision trees [9], re-

gression [15], case-based reasoning [3], soft computing

methods [7, 18], artificial neural networks [17], etc. This

paper does not include an extensive coverage of various

software quality prediction methods, as it is beyond its

scope. However, readers are provided with sufficient back-

ground material in the cited references.

3. Adaptive Resilient Propagation Network

Artificial neural networks (ANN) are systems that are de-

liberately constructed to make use of some organizational

principles resembling those of the human brain. ANN have

been studied for a long time since Rosenblatt [13] first intro-

duced single layer perceptrons. For multilayer neural net-

works, back-propagation [10, 14, 19] is the most popular

training algorithm.

We designed an adaptive resilient propagation neural

network (APROP) based on the resilient propagation, adap-

tive learning rate, momentum, and structure optimization

technique to overcome the inherent disadvantages of slow

training speed, large memory usage, potential diverge train-

ing problems, and local minimum associated with back-

propagation algorithms.

A typical neural network has the input layer, a num-

bers of hidden layers, and the output layer. Figure 1 shows

a feedforward multilayer neural network. The traditional

back-propagation algorithm adjusts the weights and basis

by application of a gradient to compute the influence of each

weight in the network with respect to a cost function E.

∂E

∂wij
= −

p∑

k=1

(d
(k)

i − o
(k)

i)f ′(net
(k)

i)x
(k)

j

However, training a multilayer network is usually a time-

consuming process, and it is not easy to achieve the global

optimal solution. Many algorithms have been proposed to

speed up the learning process and achieve better solutions.

For example, Martin Riedmiller and Heinrich Braun [12]

proposed adapting the partial derivative of weights to opti-

mize the learning process. APROP differs from traditional

80

}{ 1x

2x

1y

2y

hidden layer 1

hidden layer 2

output layer

input
vector

output
vector

Figure 1. A feedforward neural network

resilient propagation networks in that both its learning rate

and changes in weight derivatives are adaptive, and a grow-

ing method is used to automatically search for the opti-

mized structure. Making both learning rate and the weight

derivatives adaptive, and optimizing structure of networks

can achieve better prediction and a faster and more stable

learning process.

In summary, the ARPROP learning algorithm can be out-

lined in the following way. Consider a network with H lay-

ers, h = 1, 2, ..., H , and let nethi and oh
i denote the net input

and output of the ith unit in the h layer, respectively and wh
ij

denote the connection weight from oh−1

j to oh
i . Suppose the

network has m input nodes and n output nodes. There are p
pairs of training pairs {(x(k),d(k))} where k = 1, 2, ..., p.

1. Initialization: Choose a learning rate r, maximum

epoch number and training goal Egoal. Randomly se-

lect weights and basis for each neuron.

2. Training loop: Apply the kth input pattern to the input

layer (h = 1).

3. While not done: the whole set of training data has been

cycled through once.

(a) Forward propagation: Propagate the signal for-

ward through the network using

oh
i = f(nethi) = f

⎛

⎝
∑

j

wh
ij oh−1

j

⎞

⎠

(1)

for each i and h until the outputs of the output

layer oh
i have all been obtained.

(b) Output error measurement: Compute the error

value and error signals ∇Eh
i for the output layer:

E =
1

2

n∑

i=1

(d
(k)

i − oh
i)2

∂E

∂wij
= −

p∑

k=1

(d
(k)

i − o
(k)

i)f ′(net
(k)

i)x
(k)

j

∇Eh
i = r ∗ ∂E

∂wij

(c) Error back-propagation: Propagate the errors

backward to update the weights and compute the

error signals ∇Eh
i for the preceding layers:

For all weights and biases

∇wh
ij(n + 1) = fadapt(

∂E

∂wij
(n),∇wh

ij(n),

∂E

∂wij
(n + 1), r)

wh
ij = wh

ij + ∇wh
ij(n + 1)

where fadapt is an adaptive function.

(d)

∇wh−1

ij = f ′(neth−1

i

∑

j

wh
ij ∇Eh

i)

where h = H, H − 1, ..., 2.

(e) update learning rate according to r = 0.01
1+e−1.4∗E

4. One epoch iteration: End while

5. Stop training check: If the total error reach the training

goal Egoal or the epoch reach the set maximum, stop

training, otherwise go back to the training loop for the

next epoch.

81

The above APROP is for a fixed-node hidden layer ANN.

If the hidden layer units are few, however, the ANN’s learn-

ing ability is reduced, and the ANN may not converge and

can not remember any learning pattern. On the other hand,

if the hidden layer units are too many, the unnecessarily

complex network can easily result in over-fitting of the soft-

ware quality model. Hence, we empirically tried to find

an optimal number of hidden layer units for the ANN by

changing the number of nodes in hidden layer until the best

prediction quality was achieved.

Initially, the number of hidden layer units was made

equal to that of input nodes and then the number of nodes

in hidden layer was changed until the best prediction qual-

ity was achieved. The input data was randomly divided into

two subsets: (1) training data used to train the neural net-

works, and (2) validating data used to test the training qual-

ity. The structure of the neural network that had the best

training result was chosen.

4. Multiple Linear Regression

Multiple linear regression is a statistical method for esti-

mating a dependent variable as a function of independent

variables [1]. The model is based as an equation where

the dependent variable (number of faults in our study) is

expressed in terms of predictors (software metrics in our

study), and is generally given by,

ŷi = a0 + a1xi1 + · · · + apxip

yi = a0 + a1xi1 + · · · + apxip + ei

where, xi1, . . . , xip are the independent variables values,

a0, . . . , ap are the parameters to be estimated, ŷi is the de-

pendent variable to be predicted, yi is the actual value of the

dependent variable, and ei = yi − ŷi is the error in predic-

tion for the ith case.

The software measurement data is initially subjected to

statistical analysis for removing any correlation existing be-

tween independent variables and to remove insignificant in-

dependent variables. The process of determining the inde-

pendent variables which are significant is known as model

selection, and several methods exist. They are forward elim-

ination, stepwise selection and backward elimination. Here,

stepwise regression is used. Stepwise regression [1] selects

an optimal set of independent variables for the model. In

this process, variables are either added or deleted from the

regression model at each step of the model building pro-

cess. Once the model is selected, the parameters a0, . . . , ap

are then estimated using the least squares method.

Table 1. Software Product Metrics
Symbol Description

η1 Number of unique operators.

N1 Total number of operators.

η2 Number of unique operands.

N2 Total number of operands.

V (G) McCabe’s cyclomatic complexity.

NL Number of logical operators.

V N log2(η1 + η2) is Halstead volume

N̂ η1 log2 η1 + η2 log2 η2 is Halstead length.

LOC Lines of code.

ELOC Executable lines of code.

PROCS Number of procedures in a package.

COM Number of command lines.

BLNK Number of blank lines.

5. Software Project Case Study

5.1. System Description

We studied a large military command, control and com-

munication system implemented in Ada. The software

system was developed in a large organization by profes-

sionals using the procedural programming paradigm. The

fault/defect data from problem tracking reports generated

during the system integration and test phase. The defect

and software measurement data is aggregated at the module

level, where a program function or method is considered a

program module. The number of faults (Y) in a program

module is the dependent variable in our software quality

research, and is predicted by a set of software metrics col-

lected for the system.

The software metrics used in our case study are shown in

Table 1, and include Halstead’s, McCabe’s and Statement-

related product metrics [4]. The type and number of metrics

used for the case study system were primarily governed by

their availability, internal workings of the project, and the

data collection tools used. Other metrics, including soft-

ware process were not available. The use of the specific

software metrics in our study does not advocate their effec-

tiveness; hence, a different project may consider a different

set of software measurements for analysis [3].

The case study data consisted of all 282 program mod-

ules measured by the development team. To create an in-

dependent evaluation dataset, we apply data splitting and

randomly partition the original dataset into two subsets.

The fit or training dataset consisted of two thirds of the

program modules, while the remaining one-third formed

the test (evaluation) dataset. Using an independent set for

model evaluation provides unbiased software quality pre-

diction results. Table 2 provides some summary statistics

82

Table 2. Statistics for number of faults
Statistic Fit Data Test Data

Modules 188 94

Min. 0 0

Max. 29 42

Mean 2.27 2.56

Std. Dev. 4.65 5.88

on number of faults for the program modules in the fit and

test datasets.

5.2. Performance Metrics

The performance accuracy of a given fault prediction

model is evaluated with respect to the following metrics

computed for the test dataset: Average Absolute Error
(AAE), Average Relative Error (ARE), and the percent-

age of estimates that are within 20% (PRED(20)) and 25%

(PRED(25)) of the actual number of faults value. With re-

spect to the AAE and ARE performance metrics, lower val-

ues indicate better fault prediction accuracy. With respect to

PRED(20) (or PRED(25)), a model with perfect fault pre-

diction ability would have a PRED(20) (or PRED(25)) of

100% implying that it would estimate within 20% (or 25%)

of the actual number of faults, 100% of the time.

The AAE and ARE metrics are given by, AAE =
1

n

∑n
i=1

|yi − ŷi|, and ARE = 1

n

∑n
i=1

∣∣∣yi−ŷi

yi+1

∣∣∣, where n

is the number of modules in the test data, yi and ŷi repre-

sent the actual and predicted number of faults, respectively.

In the case of ARE, since the actual number of faults may

be zero, we add a “1” to the denominator to avoid division

by zero.

5.3. Empirical Results and Discussion

We applied the multiple linear regression model (MLR),

APROP, traditional steepest gradient neural network (ANN)

on the case study data, respectively. The multiple linear

regression model in this section predicted number of de-

fects in the software modules. These predictions were based

upon a selection of principal components after conducting

principal components analysis for 95% variance. The first

step of model selection was followed by fitting the model,

and finally analyzing of the quality of fit and prediction ac-

curacy of the software fault prediction model.

Stepwise regression selected V (G), NL, η1, η2 at the 5%
significance level. The following model was obtained using

the least-squares estimation technique.

Y = 0.054 + 0.0306 η2 − 0.0318 V (G)

+0.2310 NL − 0.0425 η1

Table 3. Prediction Accuracy for Models
Models AAE ARE PRED(20) PRED(25)

MLR 1.787 0.700 57.4% 57.4%

ANN 2.064 0.710 60.0% 60.6%

APROP 1.159 0.513 70.2% 71.3%

Each variable (software metric) in the model was significant

at α < 0.04. The quality of fit of the trained software qual-

ity model was indicated by an R2 = 0.738. Application

of the model to the test dataset yielded an average absolute

error of 1.787, i.e., AAE = 1.787.

In order to be consistent with the multiple linear regres-

sion, the neural network model used the same independent

variables (V (G), NL, η1, η2) as the multiple linear regres-

sion model. We built two neural networks. One is APROP

and the other is a traditional steepest gradient neural net-

work (ANN). We compared prediction performances of the

models based on the AAE, ARE, PRED(20), and PRED(25)

values computed for the test dataset. Table 3 shows that

APROP performed better than the other two methods.

Toward verifying the improved performance of APROP

against MLR, we conducted a paired t-test with AAE as

the response variable. The hypothesis test is formulated as,

μ(YMLR)

H0 : μ(YMLR(xi) − YAPROP (xi)) = 0

HA : μ(YMLR(xi) − YAPROP (xi)) <> 0

A 95% confidence interval of {0.065, 1.190} for the

mean difference between MLR and APROP doesn’t include

a zero, suggesting a significant difference between them.

An observed t = 2.21, which is greater than the critical

value t1−α ; n−1, where α = 0.05 and n = 94 (the number

of program modules in the test dataset) in this case study –

hence, t0.05 ; 93 = 1.66. The p-value for this test is 0.029.

The small p-value further suggests that the data are incon-

sistent with H0 : μ(d) = 0, that is, the two AAEs are

not close to zero. Therefore, we reject the null hypothe-

sis H0, and concluded that APROP’s AAE is significantly

lower than MLR’s in this case study.

We also conducted a paired t-test, with AAE as the re-

sponse variable, to evaluate the significance of APROP’s

fault prediction accuracy compared to that of ANN. The hy-

pothesis test is once again formulated as,

H0 : μ(YANN (xi) − YAPROP (xi)) = 0

HA : μ(YANN (xi) − YAPROP (xi)) <> 0

The 95% confidence interval for mean difference between

ANN and APROP is (0.046, 1.763), which doesn’t include

a zero and t = 2.09 is larger than critical value. Hence,

we reject the null hypothesis H0, and conclude that the

83

APROP model significantly reduces the AAE metric in this

case study.

6. Conclusion

A software defect prediction model can aid the soft-

ware quality improvement team in conducting a more fo-

cused quality improvement by identifying program mod-

ules likely to have more defects. We presented the Adap-

tive Resilient Propagation Neural Network as a valuable

alternative to the traditional back-propagation neural net-

work model for software defect prediction. The proposed

APROP model is shown to yield statistically significant

performance improvement compared to both the traditional

back-propagation neural network model and the multiple

linear regression model.

The black-box characteristic of artificial neural network

models make them less attractive to analysts, including

software practitioners. Hence, one has to consider both

model-comprehension and model-accuracy when determin-

ing which defect prediction model to use. When it comes

to absolute reduction of latent software faults, accuracy of a

defect prediction model should be more important. When it

comes to assessing the intricacies of the software develop-

ment process, a white-box software defect prediction model

is more attractive. As there is no one-solution-fits-all for

software defect prediction, the analyst should consider var-

ious models (including APROP) and decide which one best

suits their project’s quality improvement goals.

Future work will include: additional case studies with

other real-world software projects toward further validation

of the benefits obtained by the APROP model; developing

ways to further improve the architecture and performance

of the APROP model; and, extending the APROP model for

other software engineering prediction problems.

References

[1] M. L. Berenson, D. M. Levine, and M. Goldstein. Inter-
mediate Statistical Methods and Applications: A Computer
Package Approach. Prentice Hall, Englewood Cliffs, NJ,

USA, 1983.
[2] V. U. B. Challagulla, F. B. Bastani, Y. I-Ling, and R. A. Paul.

Empirical assessment of machine learning based software

defect prediction techniques. In Proceedings of the 10th
IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, pages 263–270. IEEE Computer

Society, February 2005.
[3] K. E. Emam, S. Benlarbi, N. Goel, and S. N. Rai. Compar-

ing case-based reasoning classifiers for predicting high-risk

software componenets. Journal of Systems and Software,

55(3):301–320, 2001. Elsevier Science Publishing.
[4] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rig-

orous and Practical Approach. PWS Publishing Company:

ITP, Boston, MA, 2nd edition, 1997.

[5] L. Guo, B. Cukic, and H. Singh. Predicting fault prone mod-

ules by the dempster-shafer belief networks. In Proceedings
of the 18th International Conference on Automated Software
Engineering, pages 249–252, Montreal, Quebec, Canada,

October 2003. IEEE Computer Society.
[6] M. Kalinowski and G. H. Travassos. A computational

framework for supporting software inspections. In Proceed-
ings of 19th International Conference on Automated Soft-
ware Engineering, pages 46–55. IEEE Computer Society,

September 2004.
[7] T. M. Khoshgoftaar, Y. Liu, and N. Seliya. Module-order

modeling using an evolutionary multi-objective optimiza-

tion approach. In Proceedings of 10th International Soft-
ware Metrics Symposium, pages 159–169, Chicago, IL,

September 2004. IEEE Computer Society.
[8] T. M. Khoshgoftaar and N. Seliya. Fault prediction model-

ing for software quality estimation: Comparing commonly

used techniques. Empirical Software Engineering Journal,
8(3):255–283, September 2003.

[9] T. M. Khoshgoftaar and N. Seliya. Comparative assess-

ment of software quality classification techniques: An em-

pirical case study. Empirical Software Engineering Journal,
9(3):229–257, 2004.

[10] Y. LeCun. A learning procedure for asymmetric network.

Cognitiva, 85:599–604, 1985.
[11] G. Masuda, N. Sakamoto, and K. Ushijima. Redesigning of

an existing software using design patterns. In Proceedings
of the International Symposium on Principles of Software
Evolution, pages 165 – 169, Kanazawa, Japan, November

2000. IEEE Computer Society.
[12] M. Riedmiller and H. Braun. A direct adaptive method

for faster backpropagation learning: The RPROP algorithm.

Proceedings of the IEEE International Conference on Neu-
ral Networks, pages 586–591, 1993.

[13] F. Rosenblatt. Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms. Spartan Books, New

York, 1962.
[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Paral-

lel Distributed Procesing, volume 1, chapter 8. MIT Press,

Cambridge, MA, 1986.
[15] N. F. Schneidewind. Body of knowledge for software qual-

ity measurement. IEEE Computer, 35(2):77–83, February

2002.
[16] E. Troubitsyna. Integrating safety analysis into formal spec-

ification of dependable systems. In Proceedings of the In-
ternational Parallel and Distributed Processing Symposium,

page 8pp. IEEE Computer Society, April 2003.
[17] Z. Xu and T. M. Khoshgoftaar. Software quality predic-

tion for high assurance network telecommunications sys-

tems. The Computer Journal, 44(6):557–568, December

2001. British Computer Society.
[18] Z. Xu and T. M. Khoshgoftaar. Application of fuzzy rule

extraction to minimize the costs of misclassification in soft-

ware quality modeling. In J. Lee, editor, Software Engineer-
ing With Fuzzy Theory. Physica Verlag, 2002.

[19] M. C. Yovitz, G. T. Jacobi, and G. Goldstein. Self Organiz-
ing Systems. Spartan Books, Washington, DC, 1962.

84

Evaluating the Accuracy of Call Graphs Extracted with the Eclipse CDT

Nicholas A. Kraft and Kevin S. Webb
Department of Computer Science

The University of Alabama
Tuscaloosa, AL 35487, USA
{nkraft,kwebb}@cs.ua.edu

Abstract

The Eclipse open source development platform has gar-
nered significant attention in recent years, largely due to
its extensible plug-in architecture. Many plug-ins that ana-
lyze program source code have been developed in academia
and industry; the majority of these plug-ins have used the
Java Development Tools (JDT) to analyze Java source code.
However, Eclipse also provides the C/C++ Development
Tooling (CDT), which has now reached version 4.0. If the
CDT is to become as successful a basis for implementations
of static analyses as the JDT, then the challenges of using
the CDT to build such static analyses must be investigated.
In this paper we present an evaluation of the accuracy of
call graphs extracted with the CDT. We present a CDT-
based subject system and a gcc-based oracle system, and
we evaluate the subject system using the oracle system. Our
evaluation gives special attention to features of C programs
that often cause difficulty for lightweight parsers, such as
the one provided by the CDT. These features include func-
tion pointers, macros, and conditional compilation. Our re-
sults identify areas where the CDT still needs improvement,
but also demonstrate the feasibility of using the CDT as a
basis for more advanced static analysis tools.

1. Introduction

Most modern integrated development environments

(IDEs) use a plug-in architecture, that is, an architecture

in which tool builders can augment the base functional-

ity of the IDE by defining extension modules (or plug-

ins). Eclipse [4], Microsoft Visual Studio [16], and Net-

Beans [19] are all examples of IDEs that use this architec-

ture. Many researchers have exploited these IDEs, espe-

cially Eclipse, to implement new techniques, such as static

analyses of program source code. Because these IDEs pro-

vide commonly required infrastructure components, includ-

ing parsers and static representations of source code, re-

searchers can focus their efforts on implementing their tech-

niques. In addition, these IDEs allow researchers to more

easily distribute their work to practitioners as well as to

other academicians.

Eclipse is an open source development platform that

has garnered significant attention in recent years — largely

due to its extensible plug-in architecture. Dozens of

publicly-available and commercial plug-ins are available for

Eclipse, including nearly 40 for analyzing program source

code.Perhaps the most well known feature of Eclipse is

its Java IDE, the Java Development Tools (JDT); most,

nearly all, Eclipse plug-ins that perform static program

analyses are based on the JDT. However, Eclipse also

provides a C/C++ IDE, the C/C++ Development Tooling

(CDT) [5], which has recently become more robust and has

now reached version 4.0.

The CDT provides two parsers (for C and C++, respec-

tively), each of which is hand-written with recursive de-

scent technology, performs neither type-checking nor se-

mantic analysis, and constructs a static internal representa-

tion from program source code. The internal representation

for each language models common language extensions,

such as GNU and Microsoft extensions, through the use of

special, dialect-specific nodes. The CDT also provides an

indexer that attempts to resolve all bindings, although bind-

ing resolution is not based on language semantics and is not

as accurate as type-checking or semantic analysis.

If the CDT is to become as successful a launching point

for implementations of static analyses as its breatheren the

JDT, then the challenges of building such static analyses

using the CDT must be investigated. In this paper we lever-

age the CDT to extract call graphs from the source code of

C programs and evaluate the accuracy of the extracted call

graphs by comparing them to call graphs extracted with an

oracle system. We selected the call graph for this accuracy

evaluation because it is a fundamental static program anal-

ysis that is needed to perform more advanced analyses such

as interprocedural data flow analysis. This evaluation will

be useful to other researchers who wish to understand the

85

current capabilities and shortcomings of the CDT with re-

gard to the implementation of static program analyses.

The rest of the paper is organized as follows. In Sec-

tion 2 we provide background information about the pro-

gram representations and the tools that we use to perform

our evaluation. In Section 3 we provide an overview of the

CDT–based system that we evaluate and the gcc-based sys-

tem that we use as our oracle. In Section 4 we describe

our accuracy evaluation and report our results. Finally, we

discuss related work in Section 5 and conclude in Section 6.

2. Background

In this section we briefly describe the program repre-

sentations and the tools that we use to perform our evalu-

ation. The three program representations that we describe

are static program representations, that is, they can be con-

structed from the program source code without using dy-

namic (run-time) information. The tools that we describe,

along with the CDT, serve as the bases for the tools which

we developed to perform our evaluation.

2.1. Static Program Representations

An abstract syntax tree (AST) is a pruned parse tree

from which nonterminals, keywords, punctuation, and other

nodes and edges that do not affect the semantics of the pro-

gram have been omitted. The AST is constructed by most

parsers in lieu of an unabridged parse tree and is the most

pervasive static program representation. An abstract se-
mantic graph (ASG) is an adorned AST to which nodes and

edges that represent semantic information about the pro-

gram, such as edges from variables to their declarations and

edges from type uses to their definitions, have been added.

The ASG is often the output of a compiler front end and

contains a wealth of information — one can construct many

other static program representations using only the informa-

tion found in an ASG [11].

A call graph is a directed graph in which the nodes rep-

resent the functions in a program and the edges represent

the potential calls to those functions. For example, given

two functions f0 and f1, an edge (f0, f1) appears in the set

of edges if there is a potential call to f1 by f0. The call graph

for a program is a directed acyclic graph (DAG) if the pro-

gram does not use recursion. A call graph extracted from

program source code is called a static call graph, while a

call graph extracted from a running program is called a dy-
namic call graph.

In strictly first-order procedural languages, call graph ex-

traction is straightforward; at each call site the target of the

call is directly evident from the source code. However, in

C (and C++), function pointers complicate call graph ex-

traction. Semantic information, such as type definitions and

bindings, are required to determine the target of a call made

through a function pointer. Furthermore, the lax syntactic

rules of C can make calls made through function pointers

difficult to distinguish from normal calls if certain conven-

tions are not followed.

2.2. GENERIC

The C/C++ compiler from the GNU Compiler Collec-

tion, gcc, uses an ASG to facilitate recognition, analysis,

and optimization of a program. Since version 3.0, gcc has

provided, via a command line flag, a facility for writing the

ASG for a translation unit to a text file. The schema for

the ASG representation stored in these text files, known as

TU files, is called GENERIC [15]. Several researchers have

used instances of GENERIC to perform program analysis,

comprehension, and visualization tasks [1, 9, 10, 14].

The g4re tool chain [12] includes a library, generic, that

provides parsing, storage, traversal, and serialization facili-

ties for working with GENERIC ASG instances. The input

to generic is a TU file, and the output is a gzipped XML

encoding of the input file or an in-memory representation

of the ASG. The TU file parser is implemented with a flex

scanner. A simple node list data structure stores the in-

memory representation, and several parameterized methods

traverse the leftmost child right sibling (LCRS) tree that un-

derlies the ASG.

3. Systems

In this section we describe the two systems that we cre-

ated for our evaluation: the subject system and the ora-
cle system. In Section 3.1, we describe the subject sys-

tem, which uses the AST provided by the CDT to extract

call graphs. In Section 3.2, we describe the oracle system,

which uses the ASG provided by gcc and the generic library

to extract call graphs. Both systems extract call graphs for

C programs.

3.1. Subject System

Figure 1 illustrates our subject system, which is an

Eclipse plug-in that takes as input a C program consisting

of one or more C files and produces as output an XML file

containing a call graph. The C files, shown in the upper left

of the figure, are read by the CDT, which is shown in the

lower left of the figure. For each C file, the CDT produces

one AST; the CDT provides a Visitor [7] base class from

which other plug-ins can inherit to traverse the in-memory

representation of each provided AST instance.

The cgce plug-in, shown in the lower right of Figure 1,

extends the CDT and other essential Eclipse components

(some of which are elided from the figure for clarity). The

86

Figure 1. Overview of Subject System (cgce).
Dashed lines represent “use” dependencies. Solid lines
represent data flow. Tabbed files are provided by the user.
Lined files are generated by the system.

cgce plug-in extends the Visitor base class provided by the

CDT to perform its AST traversals; during the traversals,

cgce collects and stores information about functions and

function calls. The CDT provides AST instances, not ASG

instances, so cgce must manage a symbol table to resolve

names; we built a partial symbol table to store information

about scopes, functions, and function pointers. The symbol

table that we manage allows cgce to detect calls to function

pointers that the CDT call hierarchy cannot; in addition, the

performance impact introduced by the symbol table is neg-

ligible.

After processing the information gathered during the

visit to create a call graph, the cgce plug-in writes the call

graph to an XML file, which is shown in the upper right of

Figure 1. The XML file stores the call graph hierarchically

by file and function; optionally, cgce can filter the call graph

by either of these criteria before the XML file is written. In

addition, cgce can filter the call graph based on the location

of the callee function.

The cgce plug-in is full-featured and provides much

more functionality than is described in the previous para-

graphs. Using cgce, a user can, within Eclipse, explore the

call graph in a hierarchical view or double-click the hierar-

chical view to jump to the definition of a function or to a

function call. In addition, cgce can produce a dot [8] file

that can be used to graphically view the call graph outside

of Eclipse.

Figure 2. Overview of Oracle System (cgc).
Dashed lines represent “use” dependencies. Solid lines
represent data flow. Tabbed files are provided by the user.
Lined files are generated by the system.

3.2. Oracle System

Figure 2 illustrates our oracle system, which takes as in-

put a C program consisting of one or more C files and pro-

duces as output an XML file containing a call graph. The

C files, shown in the upper left of the figure, are read by

gcc, which is shown in the lower left of the figure. For each

C file, gcc produces one TU file; the resulting set of TU

files, shown above center in the figure, is the input to the

cgc program.

The cgc program, shown in the lower right of Figure 2,

uses the generic library, which is shown below center in the

figure, to read TU files. The Visitor pattern [7] is used by

cgc to traverse the in-memory representation of each ASG

instance that it obtains from the generic library. During the

traversals, cgc collects and stores information about func-

tions and function calls. After processing this information

to create a call graph, cgc writes the call graph to an XML

file, which is shown in the upper right of Figure 2. The

XML file format produced by cgc is the same as that pro-

duced by the subject system; the filtering capabilities of cgc
are also the same as those provided by the subject system.

4. Accuracy Evaluation

In this section we describe our accuracy evaluation of

call graphs extracted with the CDT. In Section 4.1 we de-

scribe our technique, including the scope of our accuracy

evaluation and the rationale for our oracle system. In Sec-

tion 4.2 we describe our experimental setup. Finally, in Sec-

tion 4.3 we list the results of our experiments.

4.1. Technique

Researchers have given much attention to extracting ac-

curate and precise call graphs for the C language [3, 17].

87

Were it not for function pointers, call graph extraction for

the C language would be straightforward; thus, this atten-

tion has focused on function pointers. However, before

techniques for extracting call graphs in the presence of func-

tion pointers can be applied, accurate information about

functions, function pointers, and function calls (including

those through function pointers) must be obtained. In this

evaluation, we focus on determining whether this (accurate)

information can be obtained using the CDT.

In this evaluation, our oracle system, cgc, is gcc-based;

in particular, cgc extracts call graphs for C programs us-

ing the ASG provided by gcc. Our rationale for designating

cgc as the oracle system is based on an argument similar

to the one used by Murphy, et al. [18]. The argument is as

follows: during compilation, gcc builds an ASG and uses

that ASG to generate executable code; if the generated ex-

ecutable code is correct then the ASG from which it was

generated must be correct. Given that gcc is an industrial-

strength compiler and that it is used to compile a myriad

of widely-used programs, we can assume, with some confi-

dence, that the executable code generated by gcc is correct,

and, therefore, that the ASG used by gcc to generate that

executable code is also correct. Because cgc simply gathers

information from the ASG provided by gcc, we can reason-

ably designate it as our oracle system.

In addition to using our oracle system to evaluate the ac-

curacy of our subject system, we used the call hierarchy

view included with the CDT to validate our subject system.

There are limitations to the functionality of the call hierar-

chy view. For example, it does not build a call graph for

the entire program, but rather for one function at a time. To

ensure that we were correctly extracting all available infor-

mation from the CDT, we used the call hierarchy view as a

reference during development of our subject system. How-

ever, please note that, as described in Section 3.1, our sub-

ject system manages a partial symbol table. Thus, our sub-

ject system is able to extract more information about calls

to function pointers than the call hierarchy view.

4.2. Experimental Setup

We performed all experiments on a DellTM OptiPlexTM

755 workstation on which we installed the Slackware 12.0

operating system. We created all TU files with gcc ver-

sion 3.3.6. We used Eclipse version 3.3 and Java version

1.6.0_01 to develop and to execute our Eclipse plug-in. We

wrote an XSLT stylesheet to extract results from the XML

output files; we applied the stylesheet with Saxon-B version

8.9. Finally, we formatted and compared the resulting data

using a series of simple bash scripts.

We use the Apache HTTP Server [2], version 2.2.6, as

the test case for our evaluation. We chose Apache because

it is mature, open-source, widely-used, and makes exten-

System Subject Oracle

User Functions Defined 2,497 2,497

Undefined 21 21

Subtotal 2,518 2,518

Library Functions Subtotal 671 666

Functions Total 3,189 3,184

Table 1. Function Declaration Information. The
number of user functions and the number of library func-
tions reported by each system. A function is a user function
if it is declared in one of the source files for the test case
and a library function if not.

sive use of function pointers, which are a key element of

our evaluation. In addition Apache makes extensive use of

macros and conditional compilation, both of which are of-

ten difficult for lightweight parsers, such as those included

in IDEs, to handle properly.

The Apache source tree contains multiple support li-

braries, but we selected only files from the modules,

server, and os directories. Moreover, we only selected

Unix-specific files from the modules and os directories and

only selected files specific to the prefork version of the

mpm module. Finally, we did not select any test modules

from the modules directory. When generating the TU files

for the oracle system, we configured Apache to include all

available features.The test case resulting from our selections

and configuration consists of 212 files, including 61 header

(.h) files and 151 source (.c) files. The total size for the test

case is approximately 89K lines of non-commented, non-

preprocessed lines of source code (NCLOC).

As discussed in Section 3.2, the XML file format pro-

duced by the oracle system is the same as that produced

by the subject system; furthermore, the filtering capabilities

of both systems are also the same. Before performing our

experiments we configured each system to remove from its

extracted call graph all functions declared outside of the 212

files that comprise our test case, including all function calls

found within those functions. Note that we did not remove

calls to functions declared outside of the 212 files in the test

case as long as the function in which the calls were made

was not removed.

4.3. Results

Table 1 lists data about function declarations reported by

the subject system and the oracle system. A function dec-

laration is categorized as a user function if it is declared in

one of the 212 source files for our test case; otherwise, it is

categorized as a library function. Furthermore, a user func-

tion is categorized as defined if a corresponding function

body was found or as undefined if no corresponding func-

88

System Subject Oracle

Calls to Functions User 6,884 6,884

Library 8,842 8,809

Subtotal 15,726 15,693

Calls to Function Pointers Subtotal 515 525

Calls Total 16,241 16,218

Table 2. Function Call Information. The num-
ber of calls to functions and the number of calls to function
pointers reported by each system. A call to a function is
categorized as user or library depending on whether it was
a call to a user function or a library function.

tion body was found.

The data in Table 1 indicates that the CDT-based subject

system is in near total agreement with the gcc-based oracle

system with respect to the nodes in the call graph. The only

discrepancy is in the number of reported library functions;

this discrepancy is a result of the way that the subject system

detects library functions. The subject system reports infor-

mation about a library function only when that function is

the target of a reported function call. Thus, the discrepancy

in the data from Table 1 is an artifact of a misreported func-

tion call(s); a more detailed explanation follows.

Table 2 lists data about function calls reported by the

subject system and the oracle system. A function call is

categorized as a call to a function if the target of the call is a

user or library function; otherwise it is categorized as a call

to a function pointer. Furthermore, a call to a function is

categorized as user if the target of the call is a user function

or as library if the target is a library function.

The data in Table 2 indicates that there are function calls

which the subject system does not properly recognize. In

particular, the subject system reports 33 extra calls to library

functions and 10 too few calls to function pointers. Upon

further investigation, we discovered that some of these dif-

ferences were not the fault of the subject system, but rather

of the oracle system. These differences all resulted from

inlining; in total, 24 calls to strlen with a literal string pa-

rameter were inlined by gcc. However, we also discovered

flaws in the CDT centered around function pointers.

Next we discuss a C construct that is problematic for

the CDT and, hence, our subject system. On line 990

of the file server/vhost.c, a parameter func_cb, to

the function ap_vhost_iterate_given_conn has type

ap_vhost_iterate_conn_cb, which is an alias type

(typedef) for a function pointer. A call to func_cb on

line 1024 is not recognized by the CDT as a function call;

however, our subject system does correctly determine that

there is a function call on line 1024. Unfortunately, due to

the limited information in the partial symbol table, our sub-

ject system does not correctly report the call as a call to a

function pointer, but rather reports the call as a call to a li-

brary function. Calls to function pointers that are passed as

parameters account for six (6) of the extra calls to library

functions listed in Table 2. In addition, such calls account

for the five (5) extra library functions listed in Table 1.

We have accounted for 30 of the 33 extra calls and 6 of

the 10 too few calls to function pointers reported by our

subject system. The remaining three extra calls are caused

by problems the CDT has dealing with a combination of

function pointers and macros, namely with a macro ex-

pansion that defines a function pointer variable and a later

call through that variable. Curiously, this problem only ap-

peared three times, and was properly handled in other cases.

Nevertheless, this combination of a macro and function

pointer accounts for the three remaining extra calls to li-

brary functions and three of the four remaining too few calls

to function pointers reported by our subject system. As in

the previous paragraph, while our subject system misidenti-

fied these calls as calls to library functions, the CDT did not

recognize the function call at all.

Finally, on line 106 of the file server/util_pcre.c,

there is a call of the form (pcre_free)(preg->re_pcre).

The CDT does not recognize the function call, and the par-

tial symbol table managed by our subject system lacks the

information necessary to identify the call. This is due to

the function pointer pcre_free being defined in a library

header file, which our subject system ignores. We have now

accounted for all of the differences listed in Table 2.

5. Related Work

In this section we briefly review literature that relates to

our work. There are two primary categories of research

about call graphs: (1) extraction and (2) evaluation. We

briefly review this research, and we then review tools that

use the CDT to extract call graphs.

Milanova, et al. [17] apply the FA pointer analysis by

Zhang et al. [21] to the extraction of call graphs for C pro-

grams with function pointers. They compare a call graph

extracted using this analysis to the most precise call graph

that can be extracted with existing pointer analyses. They

conclude that the FA analysis can provide precision com-

parable to that of more expensive pointer analyses. Atkin-

son [3] describes a technique to improve the precision of

extracted call graphs for C program with function pointers.

The technique is parameterized by a pointer analysis and is

safe (it does not degrade the accuracy of the extracted call

graph). The supplied pointer analysis is augmented by func-

tion type information, and potential calls through function

pointers are filtered based on the results of the (improved)

pointer analysis. The focus of both of these techniques is on

improving the precision of extracted call graphs, not on ex-

tracting the accurate information needed to implement these

89

techniques.

Murphy, et al. [18] describe the most comprehensive

study of static call graph extractors to date. They empiri-

cally compare call graphs extracted from three software sys-

tems written in C by nine call graph extractors and present

both quantitative and qualitative findings. In addition, they

define a design space for static call graph extractors. Their

argument for their oracle system is similar to our argument

for our oracle system; however, their oracle system is not

based directly on a compiler. Instead, their oracle system

is based on a source-to-source translation tool that is based

upon an obsolete version of gcc.

Lhoták [13] contributes a call graph difference search

tool. The tool ranks edges in the call graph by their like-

lihood of causing significant differences among call graphs.

In addition, the author describes a complimentary viewer

that highlights certain differences among call graphs. Fur-

thermore, the author presents the ranking algorithm imple-

mented by the first tool and describes the results of a case

study. The focus of the case study is determining impreci-

sion in a static call graph by comparing it to a dynamic call

graph for the same program; the subject language for the

case study is Java.

We are aware of two other tools based on the CDT that

extract call graphs for C programs. The first of these tools is

the CDT itself. The most recent version of the CDT, version

4.0, includes the call hierarchy view, which shows the user

the callers of a function. However, the call hierarchy view

operates on only one function at a time – it does not build

a call graph for the entire program. The second tool is the

Eclipse Parallel Tools Platform (PTP) [6]. Recoskie and

Tibbitts [20] reported on the static analysis capabilities of

PTP, including a call graph extractor. However, they did not

report on the accuracy of the call graphs that they extract.

6. Conclusions and Future Work

In this paper we presented an accuracy evaluation of call

graphs extracted with the Eclipse CDT. We built a subject

system and an oracle system, and we evaluated the sub-

ject system using the oracle system. In our evaluation, we

used the Apache HTTP Server as our test case, because it is

open-source, is mature, is widely-used, and makes extensive

use of function pointers, macros, and conditional compila-

tion. Our evaluation can be viewed as a (partial) accuracy

evaluation of the AST produced by the CDT, and therefore,

as a (partial) accuracy evaluation of the C parser from the

CDT. The results of our evaluation show that the parser is

extremely robust, even in the presence of heavy use of func-

tion pointers and the preprocessor.

We plan to use the CDT to build a more comprehensive

source code analysis tool for the C language. We envision

a general purpose tool that will complement the existing

features of the CDT, as well as the Eclipse Parallel Tools

Platform (PTP). Our goal is to facilitate comprehension and

maintenance tasks of large software systems written in C,

including the Linux kernel and the GNU Compiler Collec-

tion.

References

[1] G. Antoniol, M. D. Penta, G. Masone, and U. Villano. Com-

piler hacking for source code analysis. Software Quality
Journal, 12(4):383–406, December 2004.

[2] Apache HTTP Server Project. http://httpd.apache.org/.
[3] D. C. Atkinson. Accurate call graph extraction of programs

with function pointers using type signatures. In APSEC,

pages 326–335, 2004.
[4] Eclipse – An Open Development Platform.

http://www.eclipse.org/.
[5] Eclipse C/C++ Development Tooling.

http://www.eclipse.org/cdt/.
[6] Eclipse Parallel Tools Platform.

http://www.eclipse.org/ptp/.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns. Addison-Wesley, 1995.
[8] Graphviz – Graph Visualization Software.

http://www.graphviz.org/.
[9] T. Gschwind, M. Pinzger, and H. Gall. TUAnalyzer - ana-

lyzing templates in C++ code. In WCRE, pages 48–57, 2004.
[10] B. N. Hoipkemier, N. A. Kraft, and B. A. Malloy. 3D visual-

ization of class template diagrams for deployed open source

applications. In SEKE, pages 232–235, 2006.
[11] N. A. Kraft, B. A. Malloy, and J. F. Power. An infrastructure

to support interoperability in reverse engineering. Informat-
ing and Software Technology, 49(3):292–307, March 2007.

[12] N. A. Kraft, B. A. Malloy, and J. F. Power. A tool chain for

reverse engineering C++ applications. Science of Computer
Programming, 69(1–3):3–13, December 2007.

[13] O. Lhoták. Comparing call graphs. In PASTE, pages 37–42,

2007.
[14] B. A. Malloy and J. F. Power. Exploiting UML dynamic

object modeling for the visualization of C++ programs. In

SoftViz, pages 105–114, 2005.
[15] J. Merrill. GENERIC and GIMPLE: A new tree representa-

tion for entire functions. In Proceedings of the GCC Devel-
opers Summit, pages 171–180, 2003.

[16] Microsoft Visual Studio.

http://msdn.microsoft.com/vstudio/.
[17] A. Milanova, A. Rountev, and B. G. Ryder. Precise call

graphs for C programs with function pointers. Automated
Software Engineering, 11(1):7–26, January 2004.

[18] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan.

An empirical study of static call graph extractors. TOSEM,

7(2):158–191, April 1998.
[19] NetBeans IDE. http://www.netbeans.org/.
[20] C. Recoskie and B. Tibbitts. C/C++ source code introspec-

tion using the cdt, March 2007. Presentation at EclipseCon

2007.
[21] S. Zhang, B. G. Ryder, and W. Landi. Program decomposi-

tion for pointer aliasing: A step towards practical analyses.

In FSE, pages 81–92, 1996.

90

A comparison of time tracking tools for software developers

Jouni Lappalainen, Lasse Harjumaa, Jukka Sirviö, Tytti Pokka,
Heidi Moisanen and Hanna Leskinen

University of Oulu, Department of Information Processing Science
P.O. Box 3000, FIN-90014 OULUN YLIOPISTO

jouni.lappapainen@oulu.fi

Abstract

This paper introduces a case study that was carried
out in a small Finnish software development
organization. The aim of the study was to evaluate
possibilities for establishing tool support for tracking
software developers’ working time. The organization
wants to improve their project management and effort
estimation processes and they need a lightweight,
tool-based approach for collecting and reporting the
working time data. We propose a categorization for
different types of time tracking tools and perform an
evaluation of tools from different categories.
Requirements for the tools and evaluation criteria are
derived both from literature and the case company.
DESMET method is utilized to rank the tools.

1. Introduction

Software measurement aims at providing quantitative
information about development processes in order to
estimate effort, time and costs that are required to
produce a software product. The measurement process
itself includes a wide variety of activities and specific
metrics. Resource estimation is one of the first key
elements to implement when establishing a predictable
software development process.

Estimates are typically based on historical data, and
recording, storing and analyzing process data is a
challenging task. Ensuring the accuracy of the data is
even more difficult, because different people can report
the same data differently. Software development is
human-centric, creative work, and measuring such
phenomenon always requires some assumptions to be
made. However, measurement is a necessity if an
organization wants to systematically manage and
improve their development processes.

Software tools can make the resource estimation task
easier by automating calculations and providing means
for collecting and storing the data [8]. This paper gives
an overview to time tracking tools that are available for
software developers. Furthermore, we introduce a
classification of time tracking tools and present an
evaluation of selected tools with the DESMET method.
The tool evaluation is a part of a case study
investigating deployment of software measurement
tools within a small software development organization.

The rest of the paper is organized as follows.
Chapter two introduces the research that have been
done in the area of time tracking tools. Chapter three
describes the research setting of this study.

2. Related work

Version control systems and bug tracking databases
have been identified useful tools for getting information
of software development projects in order to make
effort estimations. [1, 13] Reliable effort estimation is
crucial for estimating cost and schedule of a project,
and helps in risk assessment. For cost estimation,
several expert-based techniques [11] and algorithmic
models, such as COCOMO [2] have been introduced.
Effort estimation models can also have indirect benefits
in predicting the number of defects in software and
helps in making decision when to stop testing, for
example [14]. Algorithmic estimation models are usually
addressed to large projects. More lightweight methods
exist for making estimates in small or individual-based
projects. Such methods are the Personal Software
Process (PSP) [5] or LEAP toolkit [6], for example.

Several studies suggest that establishing a software
measurement successfully requires an adequate tool
support. Tools for automatic data collection and use of
persistent measures database are often listed among

91

the essential success factors of a measurement
framework. Examples of the articles and studies
highlighting the importance of correct tools for
measurement include [4, 17], for example.

Especially the PSP approach has given inspiration to
many time tracking tools, including Process Dashboard
(http:// processdash.sourceforge.net/), PROM [19],
Hackystat [9] and Jasmine [18]. In PSP, measurement
and analysis of historical development data is in key
role in making estimates of effort and product quality.

There is a wide variety of time tracking and effort
estimation tools. Even a spreadsheet application can
provide the basic set of templates and reports. In the
other end are sensor-based tools that can collect data
automatically and provide an extensive selection of
analysis reports based on the data. It may also be
useful to integrate process guidance and experience
base into the measurement tool [18].

Johnson et al. [6] introduce three generations of tool
support for gathering metrics on individual software
developers' work. The first generation is manual data
collection, developers logging their effort, size and
defect information in printed templates and forms. The
second generation includes more automated tools such
as Process Dashboard, where users can record data
through a relatively convenient user interface and the
tool provides different types of analyses on the data.
The third generation means fully automated
measurement, in which developers do not have to
worry about data logging or analysis.

Tools can also have some disadvantages, such as
context switching. The need to continuously change
between product development and process recording
software may cause inaccuracies in the data and
decrease the motivation to use the tools. Fully
automated data collection tools eliminate the need for
context switching. However, fully automated tools
cannot necessarily recognize breaks in developer’s
work correctly, and it may be needed to correct
automatically recorded data later on. Concerns on
privacy is another challenge with automation. [8]

3. Research setting

The case organization is a small division of a large
multinational company developing embedded systems.
The division that participated in the study is a software
development unit of about 20 software designers.

A study project for investigating time tracking
systems was established because the organization
wants to forecast the durations of their future projects.
The products of the company are getting more software

intensive and more attention has to be paid to the
software development processes than before.

The purpose of the study was to investigate
commercial and freeware solutions available for tracking
the work time of software developers. Currently the
organization utilizes simple time card system for that
purpose. It is connected to the access control so that
on arrival an employee clocks in for a specific project
number and the system marks the working hours for
that project. This system, and the information it
provides, is not adequate for the company’s needs in
future. The current system stores only information
about the projects the employees are currently working
on and how many hours they have spent on each
project. Even though the current system keeps record
of the working time on the project-basis, the
information is not detailed enough to really help in
planning future projects and estimating project
schedules and costs. The current system does not
support reporting on what specific tasks of the project
designers are doing. Such information would be
necessary in order to monitor the development effort
and identifying possible problems in the development
process. For example, distinguishing design,
implementation and testing efforts from each other is
essential for evaluating the quality of both product and
process.

The case organization wishes to establish a
historical development database with the new time
tracking system. Based on the historical data, schedule
and effort estimates could be made more accurately
than at the present. Furthermore, the estimation can be
targeted more precisely regarding the phases of the
development and individual tasks within a project.

For the purposes of this study the reference
framework used in the tool comparison is DESMET [12].
It is a two-part methodology for comparatory
evaluation of tools and methods in a given context for a
specific purpose. The first part of the DESMET method
includes the selection of an appropriate evaluation
method, and the second part the actual methods and
their descriptions. From the quantitative, qualitative
and hybrid evaluation methods available we chose the
qualitative feature analysis, which was most feasible
given the research setting.

Although the actual tool tests weren’t designed and
conducted as a part of a process utilizing the DESMET
method in the first place, it is used here to structure the
empirical findings. On the other hand, the feature
analysis selected as the evaluation method is usually
conducted based on the literature and documentation
available for the evaluation object. Therefore this

92

study, while using the test reports from the case
company tool evaluation tests, can be seen as fulfilling
the signs of a DESMET feature analysis.

It should be noted that the DESMET is designed for
the industry, to aid in selecting the best suited tool or
method for that context from the given set of
candidates. In this case the context is an industrial case
which is also a source for a part of the tool
requirements, so the use of the DESMET method is
justifiable also in this academic study.

4. Features used in evaluation

From the nine basic processes included in a feature

Table 1. Case -company originated features for
a tool to be evaluated in feature analysis.

Classifi-
cation Description

Prio-
rity

Data mgmt. Access to database is controlled 1

Data mgmt.
Database stores relevant modifiable raw
variables 1

Data mgmt.
All data stored in a web/intranet-server
database 1

Functional
Free choosing of project and phase
worked on 1

Functional
Worktime input must be possible also
“after-the-fact” 1

Functional
At least worktime calculations must be
automated 1

Functional
Tool must support customisable projects
and phases in them 1

Functional

Tool must support recording and
reporting times/phase, times/project,
times/user 1

Functional
Time granularity must be represented
accurately (hours and minutes) 1

Functional Support for multiple simultanious users 1

Functional
Privacy of personal data among
developers 2

Functional
Both estimated and actual times are
supported and they can be compared 2

Interface
Time tracking must be done by pushing
start/pause/stop -button(s) 1

Interface Support for existing operating systems 1

Interface
Support for multiple common file formats
(XML, HTML, txt) 1

Interface Compatibility with existing systems 2
Reporting Reports are accurate, stable and reliable 1

Reporting

Data collected: project, phase, people,
start time/phase, end time/phase, total
times 1

Reporting Reports based on historical data 1

analysis, the tool selection and its results are described
in more detail in the next section. This chapter
discusses the selection of required features for the
tools to be evaluated, their prioritization and their
scoring system. The level of rigour required cannot be
affected in this study, since the only available source of
information for the evaluator is the written test
documentation. Responsibility of carrying out the
evaluation is rather trivial in this case, and the analysis
of the evaluation results is presented in the results and
discussion section.

As feature analysis supports feature groups,
hierarchies and refinements, this study uses it to
classify the requirements on the main level to two
different groups: those identified by the case company
and those identified by the test team with the aid of
some scientific literature. [e.g. 3, 7, 8, 9, 16] Summary of
the requirements – which have been considered as
features that are studied from each tool in this study –

Table 2. Literature-based features for a tool to
be evaluated in feature analysis.

Classifi-
cation Description

Prio-
rity

Functional
Data is modifiable and
importable/exportable 1

Functional
System informs the user about status
and events 2

Functional
System should support mistake-free data
collecting 2

Interface
System should be customizable for
expected types of changes 2

Usability
System should not allow the user to
forget the use of the system 1

Usability
Tool usage must be as unobtrusive as
possible (few minutes / day) 1

Usability
High overall usability, especially on the
features used most often. 1

Usability
minimum need of investments and
involvment from management 2

Nielsen
System should speak the user's
language 1

Nielsen Consistent use of terms and concepts. 1

Nielsen
Minimize the amount of things the user
needs to remember 1

Nielsen
Flexibility for tailoring, efficiency for both
beginners and experts 1

Nielsen preventive error -approach 1
Nielsen provide help and documentation 1
Nielsen Provide easy exits 2

Nielsen Informative error messages 2
Nielsen Minimalistic design 2
Nielsen give feedback to user 2

93

are presented in Table 1 and Table 2. Each feature is
also attached with a scoring scheme, against which
each evaluated tool is ranked. For this study, a simple
yes/no scoring scale is adopted, indicating just the
presence of a feature in the tool without analysing the
level of the implementation of the feature. Priorities
(indicated with 1 and 2 in Tables 1 and 2. Priority 1 is of
higher priority) for each feature were devised along the
requirements by the case company.

Both main categories of features are further divided
into feature classes. These classes indicate if the
feature in question is mainly related to the domain area
–functionality of the system, how the data is managed
by the system, what kind of interfaces the system has
to other systems as well as the user, how the system
handles reporting of its data to different users, and
what kind of usability the system has. Generic usability
heuristics are incorporated into these features in the
form of Nielsen’s heuristics [15, 16].

5. Tool evaluation

For any evaluation framework to produce usable
results, an object of analysis is required. In this case
the DESMET method being comparative, a selection of
different tools is used. Based on initial set of
requirements (simple, multi-user tool for Windows
platform that has a free trial version available), some
tools were searched, found and selected to be
evaluated. By all means all possible project
management and time tracking systems were not tested,
from initial searches ten tools were selected for further
testing.

For this study, a representative sample of those ten
tools was attempted to find. This was done by
categorizing the tools according to their method of
gathering data, as per classification devised by the
testing [8, 10]. The categories for the tools were based
on the way the systems gather their data, the so-called
level of time tracking: manual, system-based, recording-
based or fully automatic tracking.

Manual tracking consists of methods that involve
the user writing times manually into some form of log,
like a timesheet, and then delivering those timesheets to
her supervisors. It has the advantage of being a very
flexible method, but also error-prone and time-
consuming way of tracking data.

System-based tracking is partly automated way of
data gathering, where each user submits her timesheet
to a system that allows supervisors to generate reports
from user data. It has the benefit of being more real-time
than completely manual method and fairly cheap as well

as easy way, but suffers from potential compatibility
problems with existing systems and its reliability is in
the end down to the user and how accurately she fills
her timesheets.

Recording-based tracking can also be described as
start-pause-stop -tracking, due to the fact that systems
that incorporate this method usually do so by
providing user with a user interface to start, pause and
stop the tracking with a single press of a button. From
the state of the tracker timesheets are automatically
filled, and reports generated as in system-based
tracking. Advantage of this method is that it provides
somewhat more reliable user data than system-based
trackers, since the filling of the timesheet is done more
simply and promptly when relevant – there's no need
for user to remember exact times when the system does
it automatically. As with any method, this also has
some drawbacks: Since it may distract the user from
other, more thought-intensive tasks at the time, the
motivation to use the system may not be high, thus
causing inaccuracies in collected data. Also the
monitoring of the time spent working away from the
computer is difficult, and usually must be done in a way
very similar to the system-based tracking method.

Completely automated tracking systems usually
function by attaching sensors or similar hooks to
different software tools that are used by the developers
as part of their development work. From the usage
statistic acquired via those sensors time and possibly
also other metrics can be calculated. On the obvious
positive side this way of collecting data is completely
unobtrusive and therefore suffers no inaccuracies due
to use of the tracking tool itself, but is more inaccurate
in its way of gathering off-computer working time. In
addition, the problem of resolving the quality of actual
work done (if any) while the sensors register activity in
tool usage remains problematic.

From the above categories, the following tools were
selected for this evaluation as being the most
representative of its class: For system-based trackers
and as sort of a “de-facto baseline” MS Project is
evaluated. For SPS-systems the Process/Team
Dashboard is used for evaluation, and Dovico
Timesheet is included as a system combining the
system- and SPS-approaches. Automatic systems
weren't tested with the case company, and thus are
evaluated here based solely on academic and possibly
other literature, are represented by the University of
Hawaii's Hackystat. For completely manual way of
tracking data no tool is selected – since it doesn't
necessarily use any.

94

6. Results and discussion

The last phases of the feature analysis consist of
analyzing the results and presenting them to interested
parties. In this case the presentation is done via this
paper, and the analysis we will provide here. All of the
five tools in this evaluation were assigned a true/fals e
value for each of the features identified to be relevant.
There were no predefined acceptance threshold of
values, but it was understood that the tool that had the
most desired features supported was the one that
thecase organization would consider to be selected.
The results are portrayed in table 3. Each row in the
table represents one class of features that were
analyzed. On the columns for those rows are the
numbers of features that were present in each tool,
columns therefore representing the tools in the
evaluation. One of the columns is labeled as “Max.
available”, which represents the maximum number of
features that were analyzed in each category. Compared
to these maximum values we can see that none of the
tools fulfils the requirements completely. Biggest
deviations from the maximum values are in the database
and usability feature categories. These are the topics
that the tool developers should pay attention to in
order to make their products more appealing to the
industrial users. On the other hand all tools scored well
in the functional and reporting feature categories.

When comparing the individual tools, it is evident
that MS Project that is probably the most widely-used
project management tool does not compare well to the
maximum values. Full automation as provided by the
Hackystat tool has also some shortcomings. These
problems stem from the fact that you cannot automate
all aspects of time tracking. The main issue with the
Hackystat tool concerns data collection capabilities. It
is not easily possible to track time while user is doing
work away from the computer. The Dovico Timesheet
and Project Dashboard are quite similar, which is not

too surprising since they represent the same SPS-tool
category in this evaluation. Main differences between
these two are in the database support they provide and
in usability characteristics. Although usability is rather
subjective measure, the support for relational databases
is surely something that industrial users desire.

It seems that a well-implemented SPS-type of tool is
better than current fully automated systems for time
tracking, but if full automation could be implemented
with more comprehensive time tracking support it
would be the best solution. This, as well as better SPS-
tool implementations are something that should be
investigated in further studies. In this study the case
organization decided to evaluate and pilot the Dovico
Timesheet tool more closely. The choice was made
between the Dashboard and Dovico Timesheet, but the
usability of the latter was perceived to be better.

This kind of evaluation benefits the case
organization, because it focuses attention to the
process of effort estimation and time management, and
thus improves both of them via the “Hawthorne-effect”.
A well-argumented tool selection fixes these processes
as well to some extent, but isn’t enough by itself.

Finally, the DESMET method works well for this kind
of evaluation, but if more than one person is involved
in defining the features and scoring them, it is very
likely that issues of subjectivity and difficulties in
communication arise. Especially the interpretation of
the meanings behind feature descriptions has to be
communicated carefully. If the communication
difficulties can be overcome an evaluation using the
DESMET method is very well suited for collaboration
and knowledge exchange between academia.

7. Conclusion
This study draws together requirements for time
tracking tools from a case company and relevant
academic literature. We found that a systematic
approach for evaluating the tools based on these

Table 3. Total features passed for each tool grouped by feature category.

MS Project Dashboard Dovico Hackystat
Max.

available
Functional 8 12 12 9 12

Nielsen 6 8 9 8 10
Interface 2 5 5 4 5
Usability 1 3 3 4 4
Database 0 0 3 2 3
Reporting 2 3 3 2 3

95

requirements is beneficial even though an ideal tool
would not exist. Requirements definition, evaluating the
tools and reflecting the entire process of effort
estimation and time management helps the organization
to identify potential process improvement areas.

We suggested a classification for time tracking
tools, partially based on literature and partially on
empirical observations during this study. Based on the
experiences gained from this case, instead of manual or
system-based approaches to time tracking, we suggest
either a well-implemented fully automated tracking tool
or a more comprehensive support via a SPS-tool to be
explored when selecting a time tracking tool.

The tool support for time tracking is an actively
studied area, but there remains a number of issues that
need further investigation. Before a fully automated
tool that covers all phases of data collection is
developed, the time tracking data is as accurate as the
people that track it.

References

[1] Atkins, D., Ball, T., Graves, T. & Mockus, A. Using
version control data to evaluate the impact of software
tools: A case study of the version editor. IEEE
Transactions on Software Engineering, 28(7): 625-637,
2002.

[2] Boehm, B., Clark, B., Horowitz, E., Westland, C.,
Madachy, R. & Selby, R.. Cost models for future
software lifecycles: COCOMO 2.0. Annals of Software
Engineering, vol. 1: 57-94, 1995.

[3] Faulk, S., Gustafson, J., Johnson, P., Porter, A., Tichy,
W. & Votta, L. Measuring HPC Productivity.
International Journal of High Performance Computing,
18(4): 2004.

[4] Fenton, N. & Neil, M. Software metrics: roadmap. In
proceedings of the ICSE - Future of Software
Engineering Track 2000, 357-370.

[5] Humphrey, W. S. Introduction to the Personal Software
Process. Addison-Wesley: Reading, MA, 1997.

[6] Johnson, P.M., Moore, C., Dane, J.A. & Brewer, R. S.
Empirically guided software effort guesstimation. IEEE
Software, 17(6): 51-56, 2000.

[7] Johnson, P. Project Hackystat: Accelerating adoption of
empirically guided system development through non-
disruptive, developer-centric, in-process data collection
and analysis. Univ. of Hawaii, technical report, 2001a.

[8] Johnson, P. You can’t even ask them to push a button:
Toward ubiquitous, developer-centric, empirical
software engineering. The NSF Workshop for New
Visions for Software Design and Productivity: Research
and Applications, Nashville, TN, 2001b.

[9] Johnson, P. Supporting development of highly
dependable system through continuous, automated, in-
process, and individualized system measurement
validation. University of Hawaii, technical report, 2002.

[10] Johnson, P. Ultra-automation and ultra-autonomy for
software engineering management of ultra-large-scale
systems. Proceedings of the 2007 Workshop on Ultra
Large Scale Systems, Minneapolis, Minnesota, 2007.

 [11] Jorgensen, M. A review of studies on expert estimation
of software development effort. Journal of Systems and
Software 70(1-2): 37-60, 2004.

[12] Kitchenham, B. DESMET: A Method for Evaluating
Software Engineering Methods and Tools. Technical
Report TR96-09. Dept. of Computer Science,
University of Keele, U.K., 1996.

[13] Mockus, A. & Votta, L.G. Identifying reasons for
software change using historic databases. Proceedings of
the International Conference on Software Maintenance,
120-130, 2000.

[14] Mockus, A., Weiss, D.M. & Zhang, P. Understanding
and predicting effort in software projects. Proceedings
of the International Conference on Software Engineering,
274-284, 2003.

[15] Molich, R., & Nielsen, J. Improving a human-computer
dialogue, Communications of the ACM, 33(3): 338-348,
1990.

[16] Nielsen, J., and Molich, R. (1990). Heuristic evaluation
of user interfaces, Proc. ACM CHI'90 Conf. (Seattle,
WA, 1-5 April), 249-256.

[17] Offen, R.J. & Jeffery, R. Establishing software
measurement programs, IEEE Software, 14(2): 45-53,
1997.

[18] Shin, H., Choi, H. & Baik, J. Jasmine: A PSP supporting
tool. Proceedings of the International Conference on SP,
73-83, 2007.

[19] Sillitti, A., Janes, A., Succi, G. & Vernazza, T.
Collecting, integrating and analyzing software
metrics and personal software process data. In
Proceedings of the 29th EUROMICRO Conference,
336–343, 2003.

96

RealSpec: An Executable Specification Language for Modeling Resources

Amir A. Khwaja
Intel Corporation
Austin, TX 78746

amir.a.khwaja@intel.com

Joseph E. Urban
Dept. of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

joseph.urban@ttu.edu

Abstract
Resource modeling is an important aspect of real-

time systems. However, resource modeling and
resource constraints are found to be lacking from
majority of real-time specification language. RealSpec
real-time specification language is proposed with
language constructs for defining and manipulating
both abstract data structuring and hardware system
resources. The paper provides details of abstract data
resources along with examples. The well known dining
philosophers’ problem is specified to demonstrate
language resource modeling features.

1. Introduction
Resource modeling and constraints are an important

aspect of real-time systems [1]. The timing behavior of
a real-time system depends not only on delays due to
process synchronization, but also on the availability of
shared resources [2]. As with timing constraints,
specifying physical resources and constraints on those
resources required by a computation has a key role in
determining the performance, quality, and correctness
of computation in real-time systems. Even though Lee
et al. pointed out the lack of resource modeling
consideration in the context of process algebra
formalism [2], the issue seems to be equally prevalent
for most real-time specification techniques. The lack
of resource modeling was also highlighted by a
comparison of real-time specification techniques [3].
A real-time specification should provide a highly
integrated and time-constrained resource modeling
approach along with interaction protocols in a platform
independent way [4, 5]. In addition, the specification
should provide the primitives to control and to keep
track of resource utilization.

This paper presents process and resource modeling
concepts and constructs in RealSpec, a real-time
specification language based on the functional dataflow
language Lucid [6]. In doing so, the language
semantics of Lucid are extended to include complex
data types with functions, a concept necessary for
defining resource objects. The selection of Lucid was
made to satisfy language design goals of functional
computation model, declarative nature, and freedom
from implementation bias. Moreover, Lucid supports
high parallelism by design with every equation within a
program representing parallel executing data flow nets.
The remainder of the paper is organized in the
following sections. Section 2 provides a synopsis of
the Lucid dataflow programming language. Section 3
briefly discusses the semantic extensions to Lucid to
add user defined algebras and objects. Section 4
introduces RealSpec specification language. Section 5
presents resource modeling concepts in RealSpec.
Section 6 applies process and resource concepts to the
specification of the dining philosophers’ problem.
Section 7 summarizes the paper.

2. Lucid Dataflow Programming Language
Lucid [6] is a functional dataflow programming

language based on Landin’s Iswim language [7]. The
statements in a Lucid program are equations defining
streams and filters, not commands for updating storage
locations as in the case of traditional imperative
programming languages. Hence, Lucid is a definitional
language. The equations in a Lucid program are
assertions or axioms from which other assertions can
be derived using the Lucid axioms and rules of
inference [8]. Hence, Lucid provides a formal system
where proofs of programs can be carried out [8]. The
Lucid programmer states exactly the output of a
program, but only suggests or indicates the

97

computations to be performed. The variables in Lucid
are regarded as dynamic objects and their values are
simultaneously updated at each computation step. The
following is a simple Lucid program example:
a + b

where
a = 2;
b = 5;

end;
In the above program the where clause is an

expression together with a set of definitions of
variables used in the expression.

Lucid allows functions to be defined by equations
where the equations within the where clause can use
other functions or variables defined in the clause. The
expression defining a function can also use the same
function so that recursive definitions are also possible:
fac(p)

where
fac(n) = if n < 2 then 1

else n * fac(n-1) fi;
end;

There is no requirement that a variable or function
be defined before it is used. In general, the order of the
definitions in a clause is irrelevant.

The simplest conditional expression in Lucid is the
primitive if-then-else. For example, the following
program takes two input streams x and y and outputs a
stream consisting of the maximum at each index value:
max(x, y) = if x <= y then y else x fi;
If x and y have values <5, 2, 10, 21, 7,…>

and <3, 9, 9, 13, 15,…>, respectively, then the
output stream would be <5, 9, 10, 21, 15,…>.

Lucid provides a binary operator fby (followed by)
for abstract iteration over sequences. The two
arguments of this binary filter are combined by taking
the first component of the first argument and appending
to it the stream corresponding to the second argument.
For example, if x and y are two streams <x0, x1,
x2, …> and <y0, y1, y2, …>, respectively, then x
fby y would be the stream <x0, y0, y1, y2,
…>. For example,
x

where
x = 1 fby x+1;

end;
This program defines x (the output) to be the stream

<1, 2, 3, 4, 5,…>, an infinitely varying
sequence. The first argument of fby primes the pump
that permits successive future values to be generated.

The binary operator asa (as soon as) computes by
repeatedly reading in pairs of values of its two
arguments until, if ever, the second argument has the
value true. Assuming a true is eventually read then the
value taken by the asa operator will be the value of
the first argument corresponding to the true value of
the second argument. For example, if x = <0, 1,
2, 3,…> and y = <false, true, false,
true,…>, then
x asa y = <1, 1, 1,…>
The next section provides extensions to Lucid

semantics for resource modeling.

3. User Defined Algebras and Objects in
Lucid

Lucid is based on a few fixed algebras such as
integers, reals, Booleans, and strings. However, in
order to be able to represent resources, Lucid needs to
be enhanced to include user defined algebras for
representing complex data types. Based on the Iswim
family of languages [7], data objects may have operator
nets or filters in addition to a set of variables. A Lucid
program then would be an operator net for this “data
with operator net”. Each instance of input and output
would be some form of this data with a specific internal
state based on the values of its member data types and
the internal operator nets. Thus, the instance variables
of a data object must themselves be full-fledged Lucid
streams resulting in streams of data objects which
contain a stream of data objects that are followed by
potentially an n number of streams [9]. This concept is
demonstrated below for a data object d with an internal
instance variable x, where t’ is the time index for d
stream and di represent object d with an updated state
based on its internal instance variable and manipulation
functions. For each di, the internal instance variable x
goes through a sequence of values indexed by t”:

t’=0 t’=1 t’=2 …
d0 d1 d2 �

t”=0 a0 � b0 � c0 �
t”=1 a1 b1 c1
t”=2 a2 b2 c2
…

Lucid is based on the unconventional idea that
computations do not terminate. The input to a Lucid
program which runs indefinitely is the infinite history
of the values ‘fed into’ it, and the output is the infinite
history of all the values produced [6]. Lucid, however,
allows writing programs whose actual output is finite.
To terminate a Lucid program, a special symbol eod
(end-of-data) is output that closes the output stream and

98

terminates the program normally. For example, the
program

3 fby 5 fby eod
will put 3 and 5 on the standard output and then
terminate. The semantics of the member functions of
data objects with internal streams is defined using the
terminated streams. Each call to a local function will
result in the data object function to be evaluated based
on the local where clauses followed by an implicit
eod. RealSpec uses the terminated stream semantics
for data object member function calls.

4. RealSpec: An Executable Specification
Language Based on Lucid

The following section introduces basic concepts of
the RealSpec executable specification language.

4.1. Active and Passive Objects

Two types of objects are modeled in RealSpec: active
and passive. Active objects are those which instigate
an action and are responsible for handling control to
other objects. Active objects can change their own
states and may utilize services of other passive objects.
Active objects have their own execution threads.
Passive objects are those which do not have their own
execution thread instead these passively wait for other
objects to require their services. Passive objects are
usually activated on receiving messages from other
objects. RealSpec uses active objects to model system
processes and passive objects to model system
resources.

4.2. System Definition

A system construct is used to model a system in
RealSpec. The system construct provides a context for
the rest of the specification and consists of the
declaration of system resources, statically defined
processes, process and thread creation order, and
global system level functions. A system definition in
RealSpec is specified using a system construct:
system s {

resources { … }
processes { … }
functions { … }

}

4.3. Process and Thread Objects

A process object is defined using a process
construct. A process construct consists of the keyword
process with process name followed by process
body within curly brackets. The body of a process
definition may consist of declaration for primitive data
variables, other active or passive objects, and a set of

process functions. The functions in a process are
Lucid-like declarative assertions. For example, a
process factorial that contains a single function
calcfac(int n) to calculate factorial can be defined
as follows:
process factorial() {

calcfac(int n)
where {

fac(int x) = if x < 2 then 1
else x * fac(x-1);

}
}

A process has a single execution thread by default.
However, a process may have as many threads as
possible. Multiple threads can be defined as part of a
process definition. In the example below, x gets the
value of x+1 if the executing thread is th1, indicated
by the property pid, otherwise x gets the value of
x*2:
process p() threads th1, th2 {

… x = 1 fby if pid == 0 then x+1
else x*2; …

}

The processes can also communicate with each
other via message passing using a pair of send and
receive thread functions. The message
communications can either be synchronous or
asynchronous. In the following example of
synchronous message passing with timeouts, p1 blocks
for 50 microseconds and p2 blocks for 75
microseconds:
process p1() {

… p2.send(data) @tout 50 us; …
}

process p2() {
… x = p1.receive() @tout 75 us; …

}

5. Resource Modeling in RealSpec
RealSpec supports modeling of system resources.

These resources consist of abstract data structure such
as semaphore, mutex, array, stack, and queue, and
hardware resources such as signal, analog IO, memory,
communication channel, and timer. The hardware
resources are the representation of various system and
hardware elements along with mechanisms for
manipulation of these resources by the specification
processes and functions. This paper focuses on the
abstract data resources.

Users can define new resources using a resource
construct. A resource construct consists of the
keyword resource with resource name followed by
resource body within curly brackets. The body of

99

resource consists of resource variable definitions and
resource functions. The variables and functions may
appear in any order.
resource <name>(<parameters>) {

<resource variables>
<resource functions>

}

Once defined, resources must be instantiated before
these can be used. The instantiation may be at the
system level, process level, or within other resources.

Semaphore and Mutex Resource: Semaphore
resource is defined for process and thread
synchronization. The resource is used to protect shared
resources and critical regions. The semaphore resource
is defined with two functions wait and signal, a
private integer counter, and a private queue of threads.
The parameter value is passed in by users as the
initial counter value at declaration. The optional
parameter pol may be used by users to define sleeping
thread wakeup scheme. RealSpec supports two wakeup
schemes, first-come-first-serve and priority based,
defined as constants. The resource is defined using
following schema:
semaphore(int value, int pol =

FCFS_BASED) {
int counter = value;
int policy = pol;
list pidqueue = [];
bool wait(generic p);
bool signal();

}

Consider an example where there are two rows of
ballroom dancers, leaders and followers, waiting in two
queues, A and B, before entering the dance floor.
When a leader arrives, it checks to see if there is a
follower waiting. If so, they can both proceed.
Otherwise, the leader waits. Similarly, when a follower
arrives, it checks for a leader and either proceeds or
waits. This problem can be represented in RealSpec by
two semaphores, leader and follower, both of
initial size zero:
semaphore leader(0);
semaphore follower(0);
process p1 {

dance() asa (leader.wait(p1)
asa follower.signal());

}
process p2 {

dance() asa (follower.wait(p2)
asa leader.signal());

}

If the leader arrives before follower, the leader
signals the follower which increments follower’s count
and leader goes to sleep as soon as follower signal is

successful since leader count is zero. When a follower
arrives, the follower signals the leader which wakes up
the leader. The follower counter is already greater than
zero, so the follower proceeds to dance. The leader
wakes up, checks the counter to be greater than zero,
decrements it and also proceeds to dance.

The mutex resource structure is identical to
semaphores with the difference that mutex private
counter value is always zero or one.

Stack Resource: A stack, also called a LIFO (last-in-
first-out), resource in RealSpec is defined by following
schema. The stack resource is multi-thread safe by
using internal semaphores and mutex resources.
stack(int value, int pol=FCFS_BASED)
{

list slist = [];
semaphore available(size, pol);
semaphore occupied(0, pol);
mutex m(pol);
int size = value;
generic operator<<(generic x, generic p);
generic operator>>(generic p);
int items();
bool full();
bool empty();
generic top();

}

The stack is internally modeled using a list variable
slist. Two semaphores available and
occupied are used for controlling read from empty
stack and write to a full stack. A mutex resource m is
used to lock and unlock stack access for a thread. The
write operator (<<) adds an item x to the top of the
stack as soon as the thread p writing to the stack locks
the stack. The calling thread is put to sleep within the
available semaphore if the stack is full. Likewise, the
calling thread is put to sleep within the mutex m if the
stack is locked by another thread. The write operator
returns the updated stack. The read operator (>>)
works in a similar manner and returns the item at the
top of the stack. Consider following specification
example using stack for evaluating a simple arithmetic
expression written in postfix notation. The is
current declaration is used for nested iteration by
“freezing” each individual expression in the input
stream into the variable in for parsing and evaluation.
stack s(10);
evaluate(input) = calc(s, in)

where {
in is current input;
calc(s, n) = if n == nil

then s >> result
elseif isdigit(hd(n))
then calc(s << hd(n),tl(n))
else calc(op(s, hd(n)), tl(n));

op(s, c) = case c of {

100

‘+’: s << (s >> two + (s >> one));
‘-’: s << (s >> two - (s >> one));
‘*’: s << (s >> two * (s >> one));
‘/’: s << (s >> two / (s >> one));

}
}

Queue Resource: A queue resource in RealSpec is
bounded to a fixed number of items meaning that it has
a specific capacity. Moreover, like stack, the queue
resource is multi-thread safe by using internal
semaphores and mutex resources. The queue resource
has a similar schema as the stack. The operations of
the write (<<) and read (>>) operators are different
such that << writes to the end of the queue and >>
reads from the front of the queue.

Array Resource: RealSpec provides single dimension
array resource. The array resource is multi-thread safe
by using internal mutex resource. The array resource is
defined by following schema:
array(int value, int pol=FCFS_BASED)
{

list alist = [];
mutex m(pol);
int size = value;
generic operator<<(generic x, generic p);
generic operator>>(generic p);
generic operator[](int index);

}

The write (<<) and read (>>) operators work in the
same manner as in stack and queue except that the
write or read is performed at the array location
identified by the index operator []. The following
example uses arrays to perform selection sort of a
stream of numbers sequences. The example assumes
that the input sequences have ten or less numbers. The
example also assumes that the input sequence has
already been read into the array a.
array a(10);
ssort(a, items) = a asa k == 0

where {
A is current a;
k = items-1 fby k-1;
a = A fby swap(a, imax, k);
imax = imax asa j == K+1

where {
K is current k;
A is current a;
j = 1 fby j+1;
imax = 0 fby

if (A[j]>>a) > (A[imax]>>b)
then j else imax;

}
swap(a, imax, k) = …

}

6. Dining Philosophers in RealSpec
Dijkstra invented the dining philosophers problem

as a synchronization problem [10]. Imagine that five

philosophers sit around a circular table with a plate of
spaghettis. However, there are only five forks
available. Each philosopher thinks. When a
philosopher gets hungry, the philosopher sits down and
picks up the two forks that are closest to the
philosopher. If a philosopher can pick up both forks,
the philosopher eats for a while. After a philosopher
finishes eating, the philosopher puts down the forks and
starts to think. The classic problem is used as a
specification example for RealSpec so focus can be
directed on the specification in RealSpec rather than
the problem itself. Also, it is assumed that the duration
between picking up left and right forks is zero avoiding
deadlock.

The problem is specified in RealSpec by declaring
five forks as mutex resources shared between five
philosopher process threads p1 to p5. The five forks
are defined as a list constant by enclosing within the [%
and %] brackets. A philosopher process is defined that
consists of five threads with eat and think functions.
When a process is created, all defined threads are
automatically created and start simultaneous execution.
Each philosopher represented by the five threads pi is
defined by the value of the function
eatandthink(). The function eatandthink()
is recursively defined in the where clause as an
equation with initial value of eat followed by the
value of think which in turn is followed by the call to
eatandthink() to represent repeatability of eating
and thinking for each philosopher. A philosopher starts
eating as soon as the philosopher has forks and the
duration of the eating is specified using temporal
operator @dur. The philosopher tries to lock two
adjacent forks represented by two adjacent mutex from
the forklist. If both forks are locked, the
philosopher starts eating; otherwise the thread is
suspended until both forks are available. The think
function works in the similar manner but does the
opposite things. The function unlocks the right fork as
soon as the left fork is unlocked followed by thinking
for duration thinktime.

7. Summary and Future Work
The paper presented RealSpec executable

specification language in general and resource
modeling concepts in in particular. RealSpec real-time
specification language is based on the functional,
declarative, dataflow programming language Lucid.
The abstract data resources were discussed in detail
and the resource concepts were applied to specify the
dining philosophers’ problem. A language compiler is
currently under implementation to be able to execute
and debug specifications of real-time systems in

101

RealSpec by extending existing Lucid compiler.

Acknowledgment
This material was based on work supported by the

National Science Foundation, while working at the
Foundation. Any opinion, finding, and conclusions or
recommendations expressed in this material are those
of the author and do not necessarily reflect the views of
the National Science Foundation.

References
[1] A. A. Khwaja and J. E. Urban, “A Framework for the

Evaluation of Real-Time Specification Techniques,”
International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), Vol. 16, No. 6,
December 2006, pp. 987-1014.

[2] I. Lee, P. Bremond-Gregoire, R. Gerber, “A Process
Algebraic Approach to the Specification and Analysis of
Resource-Bound Real-Time Systems,” Proceedings of
the IEEE, Vol. 82, No. 1, January 1994, pp. 158-171.

[3] A. A. Khwaja and J. E. Urban, “Comparison of Real-
Time Specification Techniques Using a Real-Time
Features Based Framework,” Proceedings of the 10th

IASTED International Conference on Software
Engineering and Applications, November 13-15, 2006,
Dallas, TX, USA, pp. 509-516.

[4] D. K. Hammer and M. R. V. Chaudron, “Component-
Based Software Engineering for Resource-Constraint
Systems: What are the Needs?” Proceedings of the
IEEE 6th International Workshop on Object-Oriented
Real-Time Dependable Systems, January 8-10, 2001,
Rome, Italy, pp. 91-94.

[5] J. A. Stankovic, “Real-time and Embedded Systems,”
ACM Computing Surveys, Vol. 28, No. 1, March 1996,
pp. 205-208.

[6] W. W. Wadge and E. A. Ashcroft, Lucid – The
Dataflow Programming Language, Academic Press,
London, 1985.

[7] P. J. Landin, “The Next 700 Programming Languages,”
Communications of the ACM, Vol. 9, No. 3, March
1966, pp. 157-166.

[8] E. A. Ashcroft and W. W. Wadge, “Lucid – A Formal
System for Writing and Proving Programs,” SIAM
Journal of Computing, Vol. 5, No. 3, September 1976,
pp. 336-354.

[9] B. Freeman-Benson, “Lobjcid: Objects in Lucid,”
Proceedings of the 4th International Symposium on
Lucid and Intensional Programming, April 29-30,
1991, SRI International, Menlo Park, California, USA,
pp. 80-87.

[10] E. W. Dijkstra, “Hierarchical Ordering of Sequential
Processes,” Acta Informatica, Vol. 1, No. 2, June 1971,
pp. 115-138.

system {
resources {

mutex f1, f2, f3, f4, f5;
}
processes {

philosopher threads { p1; p2; p3; p4; p5; };
}

}

process philosopher thread p1, p2, p3, p4, p5 {
eatandthink()

where {
eatandthink() = eat() fby think() fby eatandthink();
eat() = (eating asa hasforks) @dur eattime m

where {
eating = 'Philosopher ' ^ mkstring(pid) ^ ' is eating!';
hasforks = leftfork.lock() asa rightfork.lock();

}

think() = (thinking asa putforks) @dur thinktime m
where {

thinking = 'Philosopher ' ^ mkstring(pid) ^ ' is thinking!';
putforks = rightfork.unlock() asa leftfork.unlock());

}

forklist = [% f1, f2, f3, f4, f5 %];
rightfork = ith(pid, forklist);
leftfork = ith((pid+1)%5, forklist);
eattime = 5;
thinktime = 10;

}
}

Figure 1. Dining Philosophers Specification

102

PREDICTING CHANGE PROPAGATION IN OBJECT-ORIENTED
SYSTEMS: A CONTROL-CALL PATH BASED APPROACH AND

ASSOCIATED TOOL

LINDA BADRI, MOURAD BADRI & DANIEL ST-YVES

Software Engineering Research Laboratory
Department of Mathematics and Computer Science

University of Quebec at Trois-Rivieres
C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7

{Linda.Badri | Mourad.Badri | Daniel.St-Yves}@uqtr.ca

Abstract
Change impact analysis plays an important role in software
maintenance. It allows evaluating the possible effects of a
change. We present, in this paper, a static technique supporting
predictive change impact analysis for object-oriented systems
and associated tool. The technique uses a model based on
control-call flow graphs obtained by static analysis. The control-
call flow paths, generated in a compacted form from the model,
are used to predict change propagation. The technique we
present has been compared, according to several criteria (quality
of precision and performance), to two static impact analysis
techniques (call graph and slicing based techniques). We used
several versions of a Java project (JMOL). The results are
reported and discussed in the paper. We also give an overview of
the environment we developed to support the proposed approach.

1. Introduction

Maintenance is widely recognized as a very costly step of
the software development process [2, 3]. Two basic
activities of software maintenance are [1]: the
comprehension of the system and the evaluation of the
effects of a change. To understand the potential effects of
a change, a developer must first understand how the
system works [4]. To reduce the important costs of
software maintenance, it is necessary to ease the change
management process using approaches that allow, among
others, evaluating the potential effects of a change [5, 6, 7,
8, 9]. Furthermore, the complexity of interdependencies
between components of a software makes this task even
difficult [10, 11, 12]. A change to a software, however
small, can lead to unexpected ripple effects [13].
 Change impact analysis, often called Impact Analysis,
plays a crucial role in this context. It allows developers
and managers to evaluate the possible effects of a change
to the source code of a program [15, 16]. Impact analysis
information can be used to plan changes, to execute
changes, as well as to follow the effects of a change [14].
One of the main goals is to insure, in an iterative process,
the consistency of a system before and after a change was
implemented [17, 18, 19]. Impact analysis is often used to
evaluate the effects of a change after it was implemented
[13]. However, more proactive approaches could use
impact analysis techniques before it is implemented [5,
13]. In this way, they would allow developers assessing

and choosing, among several ways of implementing a
change, the solution presenting the lowest estimated
impact. Predictive approaches give a global overview of
the required efforts in terms of costs and planning [4, 13].
Barros et al. [1], among other authors, discussed the
importance of determining the effects of a planned change
before it is implemented. The predictive analysis of an
impact requires, however, that the maintainers specify the
approximate location where the planned changes will be
implemented. Impact analysis techniques can be divided
into two major classes [5]: traceability and dependence
analysis techniques. Impact analysis techniques can be
dynamic such as [13, 14, 24, 26], static such as [4, 10, 21,
22, 27, 29], or techniques combining both static and
dynamic analysis such as [23]. We focused in this paper
on static dependence analysis techniques.

We present a static technique supporting predictive
change impact analysis for object-oriented systems and
associated tool. The technique uses a model based on
control-call flow graphs (a reduced form of control flow
graphs) obtained by static analysis of the source code. The
atomic instructions of a control flow graph that do not
contain method calls are ignored. The control-call flow
paths, generated in a compacted form from the model, are
used to predict change propagation. Working at the
method level granularity makes the analysis more
appropriate in practice [13]. We conducted an empirical
study using several versions of a Java large project
(JMOL). The observed changes were collected from its
successive versions. The technique we present has been
compared, according to several criteria (quality of
precision and performance), to two static impact analysis
techniques (call graph and slicing based techniques). The
sets of potentially affected classes, returned by the three
techniques after a given change, were compared to the
observed changes. The results are reported and discussed
in Section 5.

The remainder of the paper is organized as follows.
Section 2 presents an overview of call graph and slicing
based impact analysis techniques. The impact analysis
technique we propose is presented in Section 3. Section 4
gives a brief overview of the developed tool. Section 5
presents the empirical study we conducted and discusses
the obtained results. Finally, we give some conclusions
and future work directions in Section 6.

103

2. Related work

 Impact analysis based on call graphs [21] considers
when a procedure P is modified, all the procedures called
by P (directly or indirectly) as potentially affected. Impact
analysis, in this way, can lead to imprecise results [13,
23]. In fact, we cannot determine, from a simple call graph
of a procedure P, what are the conditions related to the
propagation of the impact of a change from a procedure to
the other procedures. Moreover, call graphs cannot
capture the propagation of an impact resulting from the
return to a procedure [13]. This weakness was also
discussed in [23]. Call graphs capture the local structure
of potential calls. They ignore, however, the other aspects
related to their control. The behavior of calls is much
more complex that call graphs indicate. The first
experimentation we conducted and discussed in [27],
which focused on a partial comparison between the
proposed technique and call graphs based techniques,
confirmed the conclusions of several other researches. It
was limited, however, to an analysis of the size of the
returned impact sets and has not assessed their quality in
terms of precision. We implemented, for the needs of our
experimentation, two versions of call graph based impact
analysis (direct and indirect).
 Program slicing was introduced by Weiser in [30] to
support debugging and program comprehension. The
proposed algorithm is based on an analysis of data flow in
a control flow graph. It determines the parts of a program
that are potentially affected by the values of the variables
of a slice criterion [35, 18, 36]. Two sets of data are
defined: defined variables and referenced variables, for
each node (instruction) of the graph [31]. The Weiser
algorithm was adapted by several authors [32, 33, 29].
Bishop [34] focused on the improvement of the
performance (time) of impact analysis using traditional
slicing techniques. Others authors [18, 13, 14] assessed
the performance of static forward slicing and particularly
the size of the returned sets of potentially affected parts of
a program after a change. Wang et al [18] discussed the
role of program slicing in a ripple-effect process. They
implemented a prototype for the analysis of Cobol
programs using backward and forward slicing. They
concluded, after several experimentations, that the indirect
propagation returns a too large set of potentially affected

elements compared to a direct propagation. Furthermore,
according to [18], it is preferable to analyze iteratively the
direct results when performing a change process.
However, Wang et al. [18] did not explore the quality of
precision of the returned results. They did not precise
whether the direct results are better, in terms of quality of
precision, compared to those obtained indirectly. Law et
al. in [13] conclude that static slicing can be costly in
resources and can return imprecise results when dynamic
behaviors are analyzed. Moreover, program slicing is
difficult to implement [37]. An implementation of forward
slicing based on the approach of Weiser [30] was realized
in our work. We implemented, in fact, a version of static
forward slicing similar to the definition of Data Slicing of
Zhang et al. [38]. The algorithm we implemented focuses
on the identification of methods containing one or several
paths of impacted data. Starting from a control flow graph,
we adjust the intra and inter modular data dependence
links between the different atomic instructions (irreducible
instructions) of a method.

3. Control-call flow graph based impact analysis

Definition 1 : A control flow graph (CFG) is a directed
graph. The nodes of the graph represent decision points
(if-then-else, while, case, etc.), an instruction or a
sequential bloc of instructions. A sequential bloc of
instructions S is a sequence of instructions such that if we
execute the first instruction, we are sure to execute the
others, and always in the same way. A directed arc links
node Ni to node Nj if it is possible to execute the
instruction corresponding to Nj immediately after the one
associated to node Ni. The arcs of the graph indicate the
control from one node to another.

Definition 2 : A control-call flow graph (CCG) is a control
flow graph from which the nodes representing instructions
not leading to calls are removed.

 Let us consider the example of method M given in
figure 1.1. Si represents a sequence of instructions that do
not contain method calls. Figure 1.2 gives the body of
method M reduced to calls. The corresponding call graph
is given in figure 1.3. Finally, figure 1.4 gives the
corresponding control-call flow graph. The proposed
technique is organized in several steps.

 (1.1) (1.2) (1.3) (1.4)

Fig. 1. Portion of a method, its reduced form and corresponding call graph and control-call graph.

M

M1

M2

M3

M4

M5

M6

M

M1

Cond.1

M6 M5M4

M2 M3

Cond.2

Exit

M ()
{
 IF cond0 Then S1;
 Else S2;
 S3; M1();
 If cond1 Then M2();
 Else M3();
 While cond2 Do
 { M4();
 If cond3 Then S4;
 M5(); }
 M6();}

M ()
{
 M1();
 If cond1 Then M2();
 Else M3();
 While cond2 Do
 {
 M4();
 M5();
 }
 M6();
}

104

Fig. 2. Synthesis (reduced form) of several methods.

Step 1. Construction of control-call flow graphs: The
control-call flow graphs, corresponding to the different
methods of the program, are extracted by static analysis of
the source code.

Step 2. Generation of compacted control-call paths: From
the control-call flow graphs, we generate the control-call
paths in a compacted form. Starting from the compacted
paths, we can generate the set of reduced control-call paths
by eliminating unfeasible ones. The compacted paths allow
informing on the dynamic behavior of a program. This
represents an advantage relatively to dynamic approaches
that attempt to obtain these paths by analyzing and
compacting execution traces. Figure 2 gives the synthesis
(control reduced to calls) of several methods that we
consider to illustrate our approach. Figure 3 presents the
compacted control-call paths corresponding to the methods
of figure 2. We use several notations to express the control
in the call sequences. The notation {sequence} expresses
the iteration in the execution of the sequence (or part of a
sequence). The sequence in { } can be executed 0 or
several times. The sequence (sequence 1 / sequence 2)
expresses an alternative in the execution of the two
sequences. The sequence [sequence] expresses the fact that
the sequence between [] can be executed or not. Figure 4
illustrates some of control-call paths that can be deduced
from figure 3.

Step 3. Impact Analysis: Our technique considers, if we
plan a change on a method M, solely the impact that can be
propagated through any control-call flow path including
method M [27]. This principle was already used in [13].
Any method called after M, called by M, and any method
calling M is included in the set of potentially affected
methods.

4. Iterative Impact Analysis: A Supporting Tool

We developed a tool (JIAT: Java Impact Analysis Tool) as
a plug-in for the Eclipse development environment. Others
authors have also implemented their impact analysis tool
using the Eclipse API [23, 39]. It allows, in fact, the
creation of Abstract Syntax Tree (AST), which facilitates
the analysis of the code of a project. Their use makes also
the tool independent from the version of the Java language.
The architecture of the developed tool is given in figure 5.
The tool compiles, using Eclipse environment, a set of
AST for a given project. Then, the CCG engine converts
the AST in standard CCG structures for each method of the
project. Finally, the analysis engine uses the set of CCG to
generate the control-call flow paths and capture the
potentially affected classes (methods). The analysis
process is done in three steps:

Change location: The tool allows the user to indicate the
location of the planned changes. This is done by
positioning the cursor in a method from the Eclipse’s Java
file editor. An example is given in figure 6.

Analysis of change propagation: The user asks the tool to
do a change impact analysis from the position of the
cursor. The tool compiles the CCG and gives different
views of the results.

View of the results: The results are presented in two
different forms: textual and graphic. The textual view can
be interpreted as a list of affected classes and methods
(figure 7). Figure 7 shows two windows: the first one
shows the class or the method that will be modified and the
second one shows the set of classes (methods) that could
be impacted. The graphic view, shown in figure 8, allows
the user to have a global view of the extent of the
propagation of the change.

 M () M2() M6()
 { M1(); { M7(); { If cond4 Then M8();
 If cond1 Then M2(); If cond3 Alors M8(); M10();
 Else M3(); } }
 While cond2 Do M3() M8()
 { { {
 M4(); M8(); M9();
 M5(); } }
 }
 M6(); }

 Fig.3. Compacted control-call paths. Fig. 4. Some control-call paths.

1. M : M1 (M2 / M3) { M4, M5 } M6 M, M1, M2, M7, M8, M9, M6, M8, M9, M10

2. M2 : M7 [M8] M, M1, M2, M7, M8, M9, M6, M10

3. M3 : M8 M, M1, M3, M8, M9, M6, M10

4. M6 : [M8] M10 M, M1, M2, M7, M8, M9, M4, M5, M6, M8, M9, M10

5. M8 : M9 M, M1, M3, M8, M9, M4, M5, M6, M8, M9, M10

 M, M1, M2, M7, M8, M9, M4, M5, M4, M5, M6, M8, M9, M10

 ………

105

Eclipse JDT API ASTASTAST

Compile AST of
Class and Methods

CCG
Engine

use

ASTASTCCGCreate

REA
Engine

use

Impact
Set

Return Impacted
Methods

 Fig. 5. Impact analysis tool. 6. Location of a change.

Fig. 7. Presentation of the results in textual form. Fig. 8. Presentation of the results in graphic form.

Method instructions
{
...
}

Change
Propagation

Analysis

View of
the results

Need sub
analysis ?

Localisation of
Change

Correction of a
method

Yes

No

Return to previous
analysis

Creation of a
new

REA Process
Fig. 9. Iterative process for the construction of impacted sets.

The visualization of the propagation can be done,
according to the choice of the user, in two different ways:
the first shows the parts of the code that are directly
affected, and the second shows the parts that may be
affected indirectly. The user can select a class (method) in
the list of affected classes (methods) (figure 7, window 2)
and restart the analysis process. He can also return to a
previous state by selecting another class (method) in
window 1. We consider, for simplification reasons, solely
the set of elements (classes, methods) that are potentially
affected directly following a given change. The set of
impacted elements is constructed iteratively (figure 9). In
this way, the technique avoids managing eventual large

sets that can contain several non impacted elements. In the
process, only the elements that can be affected directly
following, for example, a modification to a method Mi are
considered. Let us suppose that this set is noted IMi. If
after the modification of Mi, another method Mj belonging
to IMi needs an adaptation, we can repeat the process that
consists on constructing the corresponding IMj set. This
process is repeated iteratively until there are no more
impacted methods by the change. In this way, we avoid
considering, for regression testing, a relatively large set of
methods that do not actually need to be tested again.

106

5. Case Study

5.1. Methodology and data collection

We conducted an empirical study using several
generations of an open-source Java project (JMOL,
available on www.sourceforge.net). JMOL is a free
application for the visualization of molecules for students,
educators and researchers in chemistry and biochemistry.
The project represents a concrete case study and was used,
among others, in [40]. The goal is, in particular, to
determine the precision of the considered approaches in
identifying the right impacted classes (methods) after a
change. In a first step, we identified between two
successive versions of JMOL the different instantiated
changes. The observed changes from one version to
another of JMOL were collected. We applied the selected
approaches: Call Graph (CG), Control-Call Graph (CCG)
and Forward Slicing (FS). The sets of potentially affected
classes (methods), returned by the three techniques, were
compared to the observed changes. The three techniques
were also compared using some performance criteria. Our
experiments followed a methodology similar to the one
used in [25]. We extended it by assessing the
performances of the three approaches.
 Identifying changes and impacted classes: We
compared (repeatedly for each version), using the binary
comparison tool of Eclipse, two major successive versions
of JMOL to identify the methods (classes) changed from
one version to the other. This allowed us to extract, for
each version, the set of changed methods (classes).
Moreover, when a programmer makes a change (initial
change) on a method for example, it is possible that other
methods will be modified (adapted) as a consequence of
the initial change. These changes (propagation) must be
identified. To identify the initial changes, we combined
the use of the binary comparison tool of Eclipse with a
manual analysis of the code. This task was not easy to
perform.
 Filtering the elements that do not induce propagation:
To construct adequately the set of elements that were
really affected, from one version to another, it is important
to filter the elements that do not generate a propagation of
change such as it is mentioned in [25]. Several changed
methods where ignored according to some criteria such as:
reformatting the code (adding spaces, empty lines),
changing informative elements (changing comments), etc.

5.2. Used metrics

Hassan et al. [25] defined two metrics to compare ripple-
effects analysis approaches. They proposed the metric
recall defined as the percentage of the number of elements
identified by an approach (PO) on the number of elements
that were really changed. This measure indicates the
sensitivity of the approach. For example, a recall of 0.3
signifies that the approach has correctly identified for
example 30% of the modified classes, but 70% of the
classes really modified were not identified. They
proposed also the precision measure defined as the
percentage of elements correctly identified by the
approach (PO) on the total number of identified elements
(P). For example, a precision of 0.5 implies that for two
classes returned by an approach, one of the classes is not
really impacted by a change.

5.3. Results and discussion

Collecting and analyzing data on changes from JMOL for
the assessment of three approaches was not easy. Our
experiments have been limited to the seven first versions
of the software, which presently count about 10 versions.
The collected data were significant enough to allow us to
complete our experiments. Table 1 gives some descriptive
statistics on the different versions of the project. We can
observe, among other things, that the size (number of lines
of code) has gone from 18357 to 30288. This represents
an increase of 65%. The number of classes was 237 and is
now 315 (33%). The number of methods has gone from
1073 to 1732 (61%). The transition from version 1 to 2
was not retained, because there was not enough data.
 Table 2 summarizes the obtained results. The three
evaluated approaches (implemented for Java programs)
are shown in the table: CGi (indirect call graphs), CGd
(direct call graphs), CCG (control-call flow graphs) and
FS (forward slicing). Column C indicates the number of
changed classes between two versions. The total number
of observed changes is 121. Column P notes the total
number of classes that each approach returned and column
PO notes the classes that were correctly identified by each
approach. CCG obtains a better sensitivity with a recall of
32%, higher than FS (22%), and CGd (30%). However, FS
obtains a precision of 58% where CCG obtains 48%. CGi
has the lowest precision. CCG gives better results than
CGd by having a better precision and recall. Compared to
FS, CCG is less restrictive in its analysis.

Table 1. Descriptive statistics on the different versions of project Jmol.

Versions # att. pub. # att. prot. # att. priv. # classes # méthodes LOC
1 100 47 569 237 1073 18357

1.1 155 48 585 256 1153 20228
1.2 155 48 588 259 1164 22548
2 65 35 575 206 950 18166
3 64 52 590 214 996 18666
4 59 54 535 225 956 19324
5 59 54 589 249 1079 21908
6 181 44 529 293 1656 28252
7 183 49 541 313 1718 29650
8 182 49 553 315 1732 30288

107

Table 2. “Recall” and “Precision” of the three approaches.

OCCURRED
C P PO Recall Prec. P PO Recall Prec. P PO Recall Prec. P PO Recall Prec.

2-3 15 64 11 0.73 0.17 15 7 0.47 0.47 23 7 0.47 0.30 6 5 0.33 0.83
3-4 20 42 10 0.50 0.24 15 4 0.20 0.27 5 3 0.15 0.60 4 2 0.10 0.50
4-5 14 25 7 0.50 0.28 10 6 0.43 0.60 12 7 0.50 0.58 16 6 0.43 0.38
5-6 43 50 18 0.42 0.36 19 10 0.23 0.53 19 10 0.23 0.53 43 8 0.19 0.19
6-7 29 17 8 0.28 0.47 17 5 0.17 0.29 18 7 0.24 0.39 1 1 0.03 1.00

121 198 54 0.49 0.30 76 32 0.30 0.43 77 34 0.32 0.48 70 22 0.22 0.58
average

REV
CCG

average average

CGi CGd

average

FS

Table 3. Performances of the three approaches.

AST Analysis Mem. AST Analysis Mem. AST Analysis Mem. AST Analysis Mem.
2-3 1638 10795 49.8 1695 156 47.1 1671 140 41.2 1695 10584 48.5
3-4 2096 12630 62.5 1971 174 50.1 1732 171 44.2 1826 10888 45.3
4-5 1834 11369 58.9 1957 130 52.6 1763 234 39.3 1544 11325 44.2
5-6 1988 16850 72.6 2011 195 59.1 2044 187 45.0 2054 16021 51.2
6-7 2808 46473 94.4 2305 265 75.0 2627 152 75.3 2614 27308 63.6

avg. 2073 19623 67.6 1988 184 56.8 1967 177 49.0 1947 15225 50.6

REV
FSCCGCGi CGd

Diagram 1. “Recall” vs “Precision”: class level. Diagram 2. Analysis time compared to the number of

classes and quantity of memory used by revision.

 Moreover, Zhang et al. report in [38] that they observe a
very short distance (in instruction granularity) of the
impact propagation by doing a dynamic FS. We also
observed a small distance for static FS. Diagram 1 gives a
global view on the sensitivity and precision of the
approaches. The more an approach follows the diagonal
line, the more its results are balanced (sensitivity and
precision). The more the approach is close to the higher
right corner, the more it is effective. FS obtains a high
precision compared to the other approaches, but obtains a
low recall. CGi obtains the best recall. It also obtains the
worst precision. CGd obtains a better precision compared
to CGi, but a low sensitivity. CCG seems to be more
effective than the other techniques. It gives results more
balanced than the other approaches (sensitivity and
precision - closest to the top right corner of the diagram).
 Table 3 reports on time, in milliseconds, for the
creation of an Eclipse AST structure for each approach, as
well as analysis time, which include the creation of their
respective dependence structures. The use of memory of

each approach is also noted for each experiment. From the
reported results, we can observe that on average the
creation of an AST takes 2 seconds. Both direct
approaches obtain the fastest results on analysis, which is
approximately 1/10 of seconds and is relatively fast. For
CGi and FS techniques, the analysis time is very imposing.
On average, they both take 19 and 15 seconds respectively
to give a result. To do 5 analyses CGi and FS take more
than a minute, while CGd and CCG techniques take less
than one second. The quantity of memory used is similar in
all approaches. This is due to the intensive use of Eclipse’s
AST to implement the approaches. CGi seems to be using
more memory than the others. The creation of matrices to
determine the indirect relations could explain a higher use
of memory. In diagram 2, we show also the required time
(left axis). Visually, it seems that there exists a link
between the increasing number of classes from one
revision to another, the required time to complete an
analysis, and the average quantity of memory used for all
approaches. The more there is information to analyze, the

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

0.00 0.20 0.40 0.60

P
re
ci
si
o
n

Recall

CGi CGd CCG FS

108

more the memory required by each approach increases.
This remark is also true for the required time.
Furthermore, the direct approaches are largely faster than
the indirect approaches and seem more or less influenced
by the increased number of classes between revisions.

6. Conclusions and future work directions

We presented, in this paper, a static technique supporting
predictive change impact analysis for object-oriented
systems and associated tool. The technique uses a model
based on reduced control flow graphs (control-call flow
graphs) obtained by static analysis of the source code. We
compared it according to several criteria (quality of
precision and performance) to two static impact analysis
techniques (call graph and slicing based techniques).
 We performed an empirical study using several
versions of a Java large project (JMOL). The obtained
results show that CCG and FS techniques are more precise
than CG based approaches. Moreover, CCG obtains a
better sensitivity than FS. However, FS obtains a better
precision than CCG. CCG seems to be more effective than
the other techniques. It gives results more balanced than
the other approaches (sensitivity and precision - closest to
the top right corner of the diagram). On the performance
level (analysis time), CCG is much faster than FS. In a
general manner, and taking into account the criteria used
for the assessment of the techniques, CCG technique seems
presenting a good compromise relatively to the other
techniques. The present study has also confirmed the
relevance of taking into consideration the control flow and
data flow in impact analysis. The unification of the two
approaches would be an interesting way to explore.
 Moreover, the tool supporting our approach can be
used to evaluate, by successive simulations of changes,
their estimated impact sets. This possibility allows
choosing, among several solutions for implementing a
given change, the one having the lowest estimated impact.
This presents an advantage compared to the FS approaches
which are applied generally after a given change is
implemented. As future work, we plan to: (1) Extend our
technique to take into account data flow, (2) and
experiment the new model.

Acknowledgments

This project was financially supported by NSERC
(National Sciences an Engineering Research Council of
Canada).

References

[1] S. Barros, Th. Bodhun, A. Escudie, J.P. Voidrot., Supporting Impact
Analysis : A semi automated technique and associated tool. In Proc. of the
1995 IEEE Conf. on Software Maintenance, pp. 42-51, Piscataway, NJ,
1995.
[2] Ian Sommerville, Software Engineering, Seventh edition, Pearson,
Addison Wesley, 2004.
[3] R.S. Pressman. Software Enginering: A partionner’a approach, 6th
edition, Mc Graw Hill, 2005.
[4] Michelle Lee, A. Jefferson Offutt and Roger T. Alexander.
Algorithmic Analysis of the Impacts of Changes to Object-Oriented
Software. IEEE, pp. 61-70, 2000.
[5] S.A. Bohner and R. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[6] J. Han. Supporting Impact Analysis and Change Propagation in
Software Engineering Environments, In Proceedings of the 8th Intl.
Workshop on Software Technology and Engineering Practice (STEP'97),
London, England, pp. 172-182, July 1997.
[7] V. Rajlich, Modeling software evolution by evolving interoperation
graphs. Ann. Softw. Eng. 9, 1-4, 235-248, Jan. 2000.
[8] Black, S. 2001. Computing ripple effect for software maintenance.
Journal of Software Maintenance 13, 4, 263, 2001.
[9] Sarita Basil and Rudolf K. Keller. Software Visualization Tools:
Survey and Analysis, 2001.
[10] Kung, D. C., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and Chen,
C., Change Impact identification in object-oriented software maintenance.
In Proc. of the International Conf. on Software Maintenance, pp. 202-211,
1994.
[11] Richard J.Turver and Munro Malcom, An early impact analysis
technique for software maintenance. Journal of Software Maintenance,
Research and Practice, 18(12):35-52, January-February 1994.
[12] L. Li and A. J. Offutt. Algorithmic analysis of the impact of changes
to object-oriented software. In Proc. of the IEEE International Conf. on
Software Maintenance, CA, USA, pp 171-184, 1996.
[13] J. Law, G. Rothermel. Whole Program Path-Based Dynamic Impact
Analysis. In Proc. of the International Conf. on Software Engineering, pp.
308-318, 2003.
[14] A. Orso, T. Apiwattanapong, and M.J. Harrold. Leveraging field data
for impact analysis and regression testing. In Proc. of European Software
Engineering Conf. And ACM SIGSOFT Symp. On the foundations of
software Engineering (ESEC/FSE’03), Helsinki, Finland, Sept. 2003.
[15] Barbara G. Ryder and Frank Tip. Change Impact Analysis for object-
Oriented Programs. In ACM SIGPLAN-SIGSOFT Worshop on Program
Analysis for Software Tools and Engineering, pages 46-53. ACM Press,
2001.
[16] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller and F. Lustman.
A change impact model for changeability assessment in object-oriented
software systems, Science of Computer Programming, Volume 45, Issues
2-3, , Pages 155-174, November-December 2002.
[17] Yau, S.S.; Collofello, J.S.; MacGregor, T., "Ripple effect analysis of
software maintenance," Computer Software and Applications Conference,
1978. COMPSAC '78. The IEEE Computer Society's Second
International , vol., no.pp. 60- 65, 1978.
[18] Yamin Wang and Wei-Tek Tsai and Xiaoping Chen and Sanjai
Rayadurgam 1996. The Role of Program Slicing in Ripple Effect
Analysis, In Proc of SEKE’96, p. 369-376, 1996.
[19] Haider Bilal, S Black. Using the Ripple Effect to Measure Software
Quality, Software Quality Management-International Conference, 2005.
[20] Wei Li and Sallie Henry. Maintenance support for object-oriented
programs. Journal of Software Maintenance, Research and Practice,
7(2):131-147, March-April 1995.
[21] S.A. Bohner. Impact Analysis in the Software Change Process : A
Year 2002 Perspective. In Proc. of the International Conf. on Software
Maintenance, 4-8 Nov. 1996.
[22] Briand, L.C., Wust, J., Lounis, H., Using coupling measurement for
impact analysis in object-oriented systems. Proc. of the IEEE
International Conf. on Software Maintenace (ICSM '99), 30 Aug.-3 Sept.
1999, pp.475 – 482.
[23] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia
Chesley. Chianti: A Tool for Change Impact Analysis of Java Programs.
OOPSLA’04, Vancouver, British Columbia, Canada, Oct. 24-28, 2004.
[24] A. Orso, T. Apiwattanapong, J.Law, G. Rothermel, and M.J. Harrold.
An Empirical Comparison of Dynamic Impact Analysis Algorithms. In
Proc. of the International Conf. on Software Engineering (ICSE’04), , pp.
491-500, Edinburg, Scotland, 2004.
[25] Hassan, A.E.; Holt, R.C., Predicting change propagation in software
systems, Proceedings. 20th IEEE International Conference on Software
Maintenance, vol., no.pp. 284- 293, 11-14, Sept. 2004.
[26] B. Korel and J. Laski. Dynamic slicing in computer programs.
Journal of Systems Software, 13(3): 187-195, 1990.
[27] Badri, L., Badri, M., and St-Yves, D. Supporting Predictive Change
Impact Analysis: A Control Call Graph Based Technique. In Proceedings
of the 12th Asia-Pacific Software Engineering Conference (APSEC'05) -
Volume 00 (December 15 - 17, 2005), IEEE Computer Society, 2005.

109

[28] S.S. Yau , J. S. Collofello. Some Stability Measures for software
maintenance. IEEE Transactions on Software Engineering, 6(6): pp. 545-
552, November 1980.
[29] S. Horwitz, T. Reps, and W. Binkley D. Interprocedural slicing using
dependence graphs. ACM SIGPLAN Notices, Vol. 39, Issue 4, April
2004.
[30] M. Weiser. Program slices: formal, psychological, and pratical
investigations of program abstraction method. PhD thesis, University of
Michigan, Ann Arbor, 1979.
[31] Sebastian Danicic. Dataflow Minimal Slicing, PhD. Thesis,
University of North London, 1999.
[32] L. M. Ottenstein and K. J. Ottenstein. The program dependence
graph in software development environments. SIGPLAN Notices,
Vol.19, pp. 177-184, 1984.
[33] J. Jiang, X. Zhou, and D. J. Robson. Program slicing for C, The
problems in implementation. IEEE Inter. Conference on Software
Maintenance, 1991.
[34] Luke Bishop. Incremental impact analysis for object-oriented
software, Master Thesis, Iowa State University, 2004.

[35] F. Tip. A survey of program slicing techniques. Journal of
Programming Language, vol. 3, pp.121-189, 1995.
[36] De Lucia, A. Program slicing: Methods and applications. In 1st IEEE
International Workshop on Source Code Analysis and Manipulation
(Florence, Italy, 2001), IEEE Computer Society Press, Los Alamitos,
California, USA, pp. 142-149, 2001.
[37] K. B. Gallagher. Some Notes on Interprocedural Program Slicing.
SCAM’04, Fourth IEEE International Workshop on Source Code
Analysis and Manipulation, 2004.
[38] Zhang, X., Gupta, N., and Gupta, R., A study of effectiveness of
dynamic slicing in locating real faults. Empirical Software. Eng. 12, 2
(Apr. 2007), 143-160, 2007.
[39] Jonathan Buckner, Joseph Buchta, Maksym Petrenko, Vaclav
Rajlich. JRipples: A Tool for Program Comprehension during
Incremental Change, IWPC, pp. 149-152, 13th International Workshop on
Program Comprehension (IWPC'05), 2005.
[40] Tsantalis, N.; Chatzigeorgiou, A.; Stephanides, G., Predicting the
probability of change in object-oriented systems, Software Engineering,
IEEE Transactions on , vol.31, no.7pp. 601- 614, July 2005.

110

A Qualitative Assessment of the Reverse Engineering Capabilities of
Unit Testing Tools for Understanding Java Programs

Andy Tinkham Scott Tilley Tauhida Parveen
Quality Assurance Department of Computer Sciences Department of Computer Sciences
GovDelivery, Inc. Florida Institute of Technology Florida Institute of Technology

andy@govdelivery.com stilley@cs.fit.edu tparveen@fit.edu

Abstract
The rise of agile methodologies and open source
software has led to the creation of several new tools
designed to help software engineers construct better
applications. One particular emphasis of these new tools
is the creation of unit tests. This paper describes a
qualitative assessment of the reverse engineering
capabilities of three unit testing tools (Agitar Software’s
Agitator, and the open source tools JUnit and
EasyMock) for Java programs. The focus of the
assessment is largely on how the unit testing tools can
assist in understanding existing code. The assessment is
structured using an existing Reverse Engineering
Environment Framework (REEF). The results of the
assessment suggest that unit testing tools can indeed aid
software engineers in understanding Java programs.

Keywords: program understanding, reverse engineering,
unit testing, qualitative, assessment, REEF, Java

1. Introduction

One area of software engineering tool functionality
that has grown rapidly over the past few years is that of
unit testing. This is due, in part, to the growing
popularity of Agile methodologies such as Extreme
Programming [9] or Scrum [12]. Many of these
development methodologies place a strong emphasis on
the developers creating robust unit test suites (often even
before the code itself is written) and executing these tests
frequently. Numerous tools, both commercial and open
source are available for creating unit tests. While these
tools have an established reputation for aiding in
developing unit tests, there are other uses to which they
can be put as well – in particular, they have inherent
abilities to aid program understanding by reverse
engineering.

This paper assesses the reverse engineering
capabilities of unit testing tools from the perspective of a

developer trying to gain understanding of an existing
program (in particular Java program for this research). A
reverse engineering framework REEF [14] is used to
assess the capability of program understanding of these
tools. The assessment is qualitative in the sense that the
unit testing tools are not evaluated according to absolute
ability, but rather according to the types of reverse
engineering activities that they support. The unit testing
tools that are considered in this paper are quite popular:
Agitator (from Agitar Software) [6], Junit [3], and
EasyMock [1].

The next section of the paper briefly describes
background for this research. Section 3 describes the
Reverse Engineering Environment Framework (REEF),
the instrument that it used to structure the assessment.
Section 4 describes the three unit testing tools examined
as a part of this study and the results of the evaluation
performed. Finally, Section 5 summarizes the paper and
discusses possible avenues for future work.

2. Background

Unit tests examine individual pieces (or units) of a
system. Units are generally classes or methods in a
typical object-oriented program, and unit tests focus on
the functionality contained within the unit. These tests
simply check that the unit behaves in the manner it was
designed. Unit tests are generally written by developers
in conjunction with the code that comprises the unit
being tested. Traditionally, developers have been
reluctant to create unit tests, to the lament of the testers
on those projects. Little tool support existed that was
used in practice, and developers had no training or
support materials for creating these tests.

The emergence of agile methodologies brought a
change to all this. Most agile methodologies put a strong
emphasis on creating and maintaining a suite of unit tests
to serve as a “safety net” to ensure that making changes
to the code (either to fix bugs or add new functionality)
does not break existing functionality. Test Driven

111

Development (TDD) is one form of agile software
development where the developer creates a single unit
test that fails. Then, the developer creates the simplest
code possible to make the test pass (without breaking the
others). Once the test passes (along with all the other
existing tests), the developer refactors the code to clean
it up, and then repeats the cycle, starting again with a
single test.

This pre-coding creation of unit tests serves as a
design method. Since the tests usually exist in a separate
class than the code they test, creating the test forces the
developer to think about the interface his or her code
provides from the perspective of using it from another
class. It also encourages the developer to identify the
domains of applicable values for the code, and the
circumstances that should cause exceptions. Another
benefit of unit tests often cited by proponents is the idea
of tests as documentation for the system. Since all code
can be tied back to a particular test that required the code
to be added, and the tests are executed with each change
to the code, these tests are kept in sync with the code.
They also serve as examples of what is expected of the
code – both for inputs and outputs, and for exceptional
conditions.

Both of these benefits are aided by and foster a deep
understanding of the program. The initial designing of
the code that goes into creating the test instills the
understanding in the original developer, and this
understanding then gets encapsulated in the unit tests,
where it is ready for future developers to quickly regain
when they have to work with the code. With the tools
facilitating this degree of program understanding, it
follows that these tools may be useful not only for
developing a system, but also for reverse engineering it
once it has been developed.

3. The REEF

Space limitations on this paper preclude an in-depth
description of the REEF’s entire structure here; the
interested reader is referred to [16] for more information.
The framework classifies reverse engineering tools
across five major dimensions: cognitive model support,
reverse engineering tasks, canonical activities, quality
attributes, and miscellaneous characteristics. This paper
focus on reverse engineering tasks, canonical activities,
and quality attributes only.

There have been a number of assessment
instruments developed whose goals include an
evaluation of the capabilities inherent in reverse
engineering tools to support activities related to program

understanding (e.g., [7],[8],[10]). The REEF has been
used to examine several different applications domains
(e.g., [15][17][18]). This paper represents the first time
the REEF has been used in the context of unit testing.
Reverse Engineering Tasks

The REEF identifies five reverse engineering tasks
as being the most important ones to consider. These tasks
are program analysis, plan recognition, concept
assignment, redocumentation, and architecture recovery.
Program analysis is pattern matching at a syntactic level,
plan recognition is pattern matching at a semantic level
in the programming level domain, and concept
assignment is pattern matching at a semantic level in the
application domain. Redocumentation is the recreation of
documentation for an existing system, while architecture
recovery recovers the overall design (architecture) of the
existing system.
Canonical Activities

The activities of reverse engineering can be
organized into three main groups: data gathering,
knowledge management, and information exploration .
These groups are derived from the classification of the
artifacts manipulated by reverse engineering into three
categories. Artifacts can be data (factual information);
knowledge (data along with relationships and rules
derived from that data); and information (knowledge
which is communicated based on a contextual selection
from all available knowledge).
Quality Attributes

Practitioners often refer to the attributes as the
“-ilities” as many of the attributes share that suffix.
Dependability, reliability, and usability are all examples
of a quality attribute. The REEF includes three of these
attributes as measures on which to compare tools:
applicability, extensibility, and scalability. Applicability
examines the subset of application and implementation
domains to which a given tool applies. Extensibility
looks at the mechanisms a tool provides for its end user
to extend and customize the tool’s capabilities, and
scalability looks at how well a tool can handle projects
of increasing size and complexity.

4. Assessment

Consider the following scenario: a developer is
tasked with understanding a Java program. This system
may or may not have much in the way of accurate
documentation, and it is the developer’s task to perform
some maintenance action on the system. Because
schedules are tight, the developer needs to get the
required understanding of the system as quickly as

112

possible, and ideally, there would be some method of
capturing the understanding to make it easier for the next
person who has to maintain the system.

The tools discussed in this section can help with this
task. Although the tools are primarily for unit testing,
they do have varying degrees of reverse engineering
capabilities that can be used in support of program
understanding. This section describes an assessment of
these capabilities according to the REEF.

4.1 Agitator

Agitar Software’s Agitator is a tool designed to
“agitate” code in order to find bugs in the code. This
agitation involves executing the code with various inputs
that are automatically generated by the tool. While the
code is being executed, Agitator makes observations of
conditions which are always or often true of the code.
These observations are then presented to the user who
determines which are supposed to be always true. The
observations that are supposed to be true are promoted to
assertions, and all further agitation runs of the code
check that the defined assertions always hold true.
Assertions can be assigned within specific contexts of
the application (so that a path that generates an exception
could have a different set of assertions than a normal
path through the code).

Reverse engineering tasks
Program Analysis. Agitator focuses on individual

methods of the classes it is testing and the parameters of
those methods. It also allows outcome partitioning of the
assertions. An outcome partition is one possible path
through the code. By default, Agitator provides
outcomes for the normal path through the code and any
exceptions it encounters while executing the code.
Additional outcomes can be created, however, lending
support to more complex situations and allowing for
more fine-grained assertions to be made about the code.
Both this partitioning of outcomes and the partitioning of
the assertions by class and method are examples of tasks
that can be categorized as a type of program analysis. In
both cases, it aids in the understanding of the program by
narrowing the engineer’s focus to one small part of the
code, and the assertions that are relevant to that one part.

Plan Recognition. Another reverse engineering task
that Agitator supports is plan recognition. The rules that
define where the experts are applicable serve as patterns
that the tool then matches against the system. These rules
allow filtering based on the names of classes or the
inheritance hierarchy of the code before an applicability
check is performed. This applicability check can then

apply any programmable criteria to determine if the
expert applies to the project, class, or method being
examined. Essentially, the rules are defining the clichés
to which the expert is relevant.

Redocumentation. A third reverse engineering task
supported by Agitator is redocumenting the program
through the creation of observations and assertions. As
observations are made and assertions identified about the
program under certain circumstances, these assertions
can then be recorded in Agitator. While it is difficult to
get the assertions out for use in other formats, Agitator
does provide the benefit of rechecking these assertions
on demand. This is particularly useful as changes are
made to the application–if a change is made to an
application that violates one of the assertions, it is found
during the next agitation run.

Canonical activities
Data Gathering. Agitator supports data gathering by

the static analysis of applying the experts to the code and
applying rules of coding style to the code. In addition,
Agitator performs dynamic analysis of the system while
the code being examined is executed and the
observations are being made about the code. This feature
aids in the act of reverse engineering as well, by
displaying the observations that it finds to be true or
almost always true (along with the values for which an
observation was not true).

Knowledge Management. The discovery element of
knowledge management is supported through the
creation of observations. As Agitator observes things
about the application, it may reveal information or
patterns that even the original developers did not
recognize. Agitator also helps in the evolution of
knowledge about the system, particularly as the system
changes. With a click of the mouse, the code can be re-
agitated. During this process, all the existing assertions
are verified to still be true, and new observations may be
made. These new observations or failing assertions may
reflect updated information about the code (thus
replacing old information) or they may reflect bugs that
have been introduced into the application.

Information Exploration. Agitator supports
information exploration by navigating through the
information about the code using the considerable
navigation capabilities built into Eclipse. Another
element of the information exploration activity is that of
analyzing the information. For reverse engineering,
Agitator largely does this through the assertions and
observations, though its flagging of code style violations
also does some analysis as well. The final element of this
activity is that of the presentation of information.

113

Agitator has multiple ways of presenting its information
—via Eclipse views displaying different aspects of the
agitation process, via graphical display within the source
editor itself, indicating how much coverage was
achieved by the agitation and presentation of information
through its Management Dashboard (a set of generated
Web pages providing overviews of the project).

Quality attributes
Applicability. Agitator only works for programs

written in Java. Because it is developed, marketed and
priced as a commercial software package, it is more
applicable to projects that have a substantial tools
budget, rather than the majority of open source or
freeware software being developed. Agitar does remedy
this to some extent by agitating some common open
source code and making the dashboards available for
these projects on their website.

Extensibility. Agitator exists as a set of Eclipse
plug-ins. Because of this, it is possible to augment the
functionality of the tool by installing one or more of the
many existing Eclipse plug-ins [5]. Agitator also
provides a high degree of end-user programmability.
While it provides many built-in factories and experts, it
also includes APIs so that end-users can develop their
own instances of these components as their project
requires them. It is also possible for additional assertions
to be created, using a Java-like syntax. This allows the
end user to program in assertions that are not based on
observations.

Scalability. Agitator scales to large projects fairly
well. Since each set of assertions applies to a single
outcome partition of a single method, and agitation is
done per class, it is feasible to have many classes and
methods while still focusing on just one at a time.

4.2 JUnit

JUnit is an open-source tool created by Erich
Gamma and Kent Beck, and is a member of a family of
tools collectively referred to as “xUnit” that span a
variety of programming languages. JUnit provides a set
of methods the developer can use to assert certain
conditions on the code. These assertions typically are
based on return values of methods in the code, but may
also involve other aspects of the environment or the
system being tested.

Reverse engineering tasks
Program Analysis. JUnit’s main function is to

execute tests against the application being tested. Each
time these tests are run provides an instance of the

reverse engineering task of program analysis. The tests
analyze the program, indicating what’s working as
expected and what is not. For reverse engineering, this is
useful if the tests were created along with the code. It is
also useful if maintenance has begun and changes are
being made to the code.

Redocumentation. The agile development
community argues that the code in the unit tests serves as
documentation and they are examples of how to call into
the methods being tested and a complete set of unit tests
illustrates the boundary conditions and constraints to
which the system is subject. With this idea of tests as
documentation, creating unit tests for an existing system
can be categorized as an element of the redocumentation
reverse engineering effort. At the end of the creation
process, an artifact (the test suites and cases) remain to
serve as documentation for the code, reducing the time
required for later engineers to work on the system.

Canonical activities
Data Gathering. The results of executing the tests

also serve as a source of data for the canonical activity of
data gathering. The tests serve as dynamic system
examination, and give insight into what works or what
hypotheses are correct.

Knowledge Management. JUnit’s tests also serve the
canonical activity of knowledge management. They can
be used to organize knowledge that has already been
obtained by grouping tests of similar functions or
contexts together. The tests can also be used to discover
additional knowledge about the application through the
encoding of hypotheses in the tests. As the tests pass or
fail, they confirm or disprove the hypotheses. Each of
these results adds to the knowledge available about the
system. The tests can be used to encapsulate experience
about the system once it is gathered. These tests can
either be pre-existent (created when the code was
originally written, as in TDD) or created based on the
results of other experience capture activities.

Quality attributes
Applicability. The xUnit family works with many

languages and each individual tool applies in much the
same way as described above. JUnit, in particular, works
with Java programs. By itself, it can be used for the
public and default level methods and fields of a class.
However, add-ons are available that extend the tool’s
reach to GUIs and private members [11].

Extensibility. JUnit is released as an open source
tool which means that anyone can download the source
code and extend the tool as they desire. It is also possible
to extend the default classes (through add-ons), leaving

114

the core JUnit code as is, and thus increasing the
potential user base for additional functionality.

Scalability. As with Agitator, JUnit tests focus on no
more than one unit each (and often there may be several
tests for that unit). This means that the only issue with
performance scaling is one of the time involved, both to
develop the tests and to execute them. Large suites of
JUnit tests may take 5-10 minutes to execute, but usually
the tests run in less time than that.

4.3 EasyMock

EasyMock is an open-source tool written by
Tammo Freese. It serves as more of a support tool for
unit testing than a tool for executing unit tests.
EasyMock allows its users to create a mock object which
functions as a proxy for a real object that is unavailable,
unpredictable, or otherwise difficult to test.

Reverse engineering tasks
EasyMock’s lack of standalone reverse engineering

capabilities means that it does not directly perform any
of the REEF’s reverse engineering tasks. Instead,
EasyMock supports the tasks of program analysis and
redocumentation by allowing the engineer to focus on
one piece of the application. It also provides the ability
to better control the return values of subsystems (such as
databases, for example) that make it easier to understand
the error handling code present in an application.

Canonical activities
Data Gathering. EasyMock aids in the canonical

activity of data gathering by performing dynamic system
examination. When a test containing EasyMock code is
executed, EasyMock examines the method calls made to
the part of the system that is being mocked. It then
validates these calls against the ones it was told to
expect. This can be helpful in understanding the flow of
actions in the system, particularly if the tests are
developed in an evolutionary fashion where few or no
expected calls are described, and each call that
EasyMock reports is verified and then added to the test.

Knowledge Management. EasyMock provides a
limited form of knowledge management. As the tests are
created with accurate expected results, they store the
knowledge of the order that went into creating the tests.
As more method calls are discovered, the tests can be
updated to reflect evolving knowledge about the system.

Information Exploration. EasyMock can aid
information exploration. Each time an EasyMock test
executes, it analyzes the inter-method calls being made
into the portion of the system being mocked. It then

confirms or disproves that these calls occur in the order
and with the parameters that are expected.

Quality attributes
Applicability. EasyMock can be used on any Java

application. Its design makes it much more suited to
cases where interfaces are used and classes are passed
into methods, and without the use of these language
features, substantial code changes may be required to use
the mock object created by EasyMock. These changes
run the risk of introducing bugs into the code being
reverse engineered, potentially taking the reverse
engineer down a path away from program understanding.

Extensibility. EasyMock is released as open source
software, meaning that anyone can extend its
functionality by editing the code.

Scalability. Like the other tools in this paper,
EasyMock focuses on units of code. This narrow focus
allows it to scale well to a large number of units, though
the time required for deploying and using the tool does
increase with the number of units.

5. Summary

This paper described an evaluation of the
capabilities of three unit testing tools in a situation where
reverse engineering of a system was required. A
summary of the canonical activity portion of the
evaluation across all three tools is included in Table 1.

Our evaluation of these tools revealed that unit
testing tools share several characteristics that make them
useful for reverse engineering in aid of program
understanding. For example, they have a narrow focus,
which allows them to scale up to large systems fairly
easily. The tools focus on units of code, which means
that the tools have the capability to gain access the
individual units. Because of the emphasis of frequent
execution of the tests, unit testing tools often serve to
encapsulate knowledge about the system that would
otherwise be lost. This aids in future maintenance efforts
by reducing the time it takes to get back up to speed.
Some areas that may prove useful to examine in the
future is that of the variation in language focus amongst
unit testing tools. For example, while the majority of the
xUnit family of tools are modeled on JUnit, some tools
are now beginning to evolve in different directions based
on the capabilities of their base languages. Nunit [4], and
TestNG [13] are trying to improve on the model
presented by JUnit and may have different impacts on
reverse engineering.

115

Finally, an area that could prove worthy of study is
the opposite of this research: the application of reverse
engineering tools to software testing. Since testers are
gaining understanding of what a program does when
they test it, it is quite possible that some of the tools of
reverse engineering might prove very helpful to them.

References

[1] EasyMock, online at http://www.easymock.org
[2] Jemmy, online at http://jemmy.netbeans.org/
[3] JUnit, online at http://www.junit.org
[4] NUnit, online at http://www.nunit.org/
[5] “Eclipse Plugins.”
[6] Agitator, online at http://www.agitar.com
[7] Armstrong, M. and Trudeau, C. “Evaluating Architectural

Extractors.” Proceedings of the 5th Working Conference
on Reverse Engineering (WCRE '98).

[8] Bellay, B. and Gall, H. “A Comparison of Four Reverse
Engineering Tools.” Proceedings of the 4th Working
Conference on Reverse Engineering (WCRE '97).

[9] Extreme Programming. URL: http://xprogramming.com/
[10] Gannod, G. and Cheng, B. “A Framework for Classifying

and Comparing Software Reverse Engineering and Design

Recovery Techniques.” Proceedings of the 6th Working
Conference on Reverse Engineering (WCRE '99).

[11] JUnit-Addons, online at http://junit-
addons.sourceforge.net/

[12] Scrum, online at http://www.controlchaos.com/
[13] TestNG, online at http://testng.org/
[14] Tilley, S. “A Reverse-Engineering Environment

Framework”. Carnegie Mellon University CMU/SEI-98-
TR-005, April 1998.

[15] Tilley, S. “Discovering DISCOVER.” Carnegie Mellon
University CMU/SEI-97-TR-012, October 1997.

[16] Tilley, S. “The Canonical Activities of Reverse
Engineering”. Annals of Software Engineering, vol. 9, pp.
249-271, 2000.

[17] Tilley, S. and DeSouza, M. “Spreading Knowledge about
Gnutella: A Case Study in Understanding Net-Centric
Applications.” Proceedings of the 9th International
Workshop on Program Comprehension (IWPC 2001: May
12-13, 2001; Toronto, Canada), pp. 189-198. Los
Alamitos, CA: IEEE Computer Society Press, 2001.

[18] Tilley, S. and Huang, S. “Evaluating the Reverse
Engineering Capabilities of Web Tools for Understanding
Site Content and Structure: A Case Study.” Proceedings of
the 23rd International Conference on Software
Engineering (ICSE 2001: May 12-19, 2001; Toronto,
Canada), pp. 514-523. Los Alamitos, CA: IEEE Computer
Society Press, 2001.

Agitator JUnit EasyMock

Data Gathering

System
Examination

Static Code rules, expert
application

No No

Dynamic Observation generation Test results Method calls
Mixed No No No

Document
Scanning

No No No

Experience
Capture

Observations/Assertion
s

Tests Expected results

Knowledge
Management

Organization Hierarchy of assertions Tests No
Discovery Observations Tests Actual call order

Evolution Rerunning assertions Changes
detected

Changes detected

Information
Exploration

Navigation
Selection Eclipse features No No
Editing Eclipse features No No

Traversal Eclipse features No No

Analysis

Types Assertions,
observations, code rules

Functionality Inter-method
communication

Levels Yes No No
Automation Yes Yes Yes

Presentation

Multiple Views Yes With add-ons No
Visualization
Techniques

Several views Green bar/Red
bar

JUnit results

User Interface Partially changeable Fixed Fixed

Table 1: Canonical Activities

116

Estimating Event Lifetimes for Distributed Runtime Verification

Christos Kloukinas, George Spanoudakis, Khaled Mahbub
Department of Computing, The City University, London, EC1V 0HB, UK

{C.Kloukinas, G.Spanoudakis, K.Mahbub}@soi.city.ac.uk
Abstract

Runtime system verification has been proposed as a form
of dynamic verification of software systems which can be
applied in settings where complete static verification or
exhaustive system testing is not practical. Runtime
verification checks properties against runtime events
generated during the operation of a system. Current
approaches to runtime verification assume that runtime
events are time-stamped by a single clock and, thus, can
be totally ordered. They also assume that events are
received by the reasoning engine in the same order as
they have been produced. These assumptions are
apparently true only in systems with a single clock. In this
paper, we present the extension of a framework for
runtime verification which can monitor distributed
systems, in which events are produced by different
components, each having its own clock.

1. INTRODUCTION
Runtime (or dynamic) system verification has been

proposed as a complementary approach to static system
verification and testing, which can enhance confidence in
the correctness of system operations by monitoring and
identifying violations of required system properties during
the normal system operation [3][6][10]. Runtime
verification is needed due to the inability to guarantee the
completeness of system models that have been used for
static analysis and the preservation of these models by
system implementations. It is also useful as it is difficult to
foresee all the different circumstances that may arise
during the operation of a system and therefore guarantee
that the assumptions, under which its correctness can be
statically proved, hold at runtime.

Typically, platforms for runtime verification (e.g. [6]
[9][11][20]) provide support for specifying formally the
properties of a system that should be verified at runtime,
identifying the events that should be available in order to
assess if certain properties are satisfied, capturing these
events at runtime, and checking for violations of the
required properties.

The main limitation of existing runtime verification
platforms is that they assume that the systems to be
monitored consist of components running on a single
machine. In such cases, the events of the system that is
being monitored are: (i) time stamped by a single clock,
(ii) totally ordered, and (iii) received by the monitor in the
same order as they are generated by the system that is
being monitored.

Whilst valid in the case of centralised systems, these
assumptions do not necessarily hold in cases of distributed
systems with components running on different platforms.
In such systems, runtime events may come from
distributed components operating with different time
clocks. Furthermore, distributed system components may
have different types of connections with the monitor and,
therefore, generate events which arrive at the monitor with
different communication delays and possibly in an order
that is not the same as the order of their generation.

Thus, in order to check properties involving events
from distributed components, a monitor would have to
overcome two problems: (i) to synchronise the clocks of
the various event sources, so that the timestamps of the
different events can be ordered and compared to each
other, and (ii) to establish until when a particular event
needs to be stored, so that it can reason about the system
properties in a sound way or, equivalently, to compute the
required monitoring lifetime of each event.

Consider, for instance, the case of monitoring the
availability of the communication channel between two
components C1 and C2 of a system by ensuring that the
dispatch of a request R from C1 (Event-1) will always be
followed by the receipt of R by C2 (Event-2) within a
specific time period. In this case, Event-2 may arrive at
the monitor before Event-1 due to different
communication delays in the relevant channels. Thus,
when the monitor receives Event-2 it will have to decide
for how long it should wait for Event-1 and wait for this
event before dropping Event-2 or otherwise it may report
a false violation of the availability of the communication
channel between C1 and C2. This would happen in cases
where, after dropping Event-2, the monitor receives an
Event-1 corresponding to it.

In this paper, we present an extension of a dynamic
verification framework described in [20] which addresses
these problems. The original framework monitors systems
against properties expressed in Event Calculus (EC) [19]
and was initially developed to support monitoring based
on events which are generated by a single source. The
extension of the framework that we present in this paper
enables it to monitor systems in which events are
generated by distributed sources having different clocks
and communication channels to the monitor.

The rest of the paper is organised as follows. In Section
2, we provide an overview of our monitoring framework
and the language that it uses to specify monitoring
properties. In Section 3, we propose a solution for

117

computing the lifetime of events that the framework
receives from distributed sources and show how these
lifetimes are used during monitoring. In Section 4, we
give an overview of related work and, finally, in Section 5
we summarise our work and outline directions for further
research.

2. MONITORING FRAMEWORK
2.1. Overview

As shown in Figure 1, the dynamic verification
framework that we have extended consists of a monitoring
manager, a monitor, a Network Time Protocol (NTP)
server, and communicates with different event collectors
attached to the components of the system that is being
monitored.

The monitoring manager has responsibility for
initiating, coordinating and reporting the results of the
monitoring process. Once it receives a request for
monitoring a specific set of properties, the manager
checks whether it is possible to monitor them and, if it is,
it sends the properties to be checked to the monitor, and
starts listening to events which are generated by different
types of external event collectors. These events are
received via TCP/IP sockets and sent to the monitor.

After receiving events from the manager, the monitor
checks whether they violate any of the properties given to
it. The monitor is a generic engine for checking violations
of EC formulas against a given set of runtime events.
During monitoring, it also takes into account information
about the state of a system that it derives from runtime
events using a special type of EC formulas called
assumptions (see Section 2.2). When a violation of a
property is detected, the monitor records it in a deviation
database which is polled regularly by the monitoring
manager to retrieve detected deviations.

Figure 1 : Verification framework

The framework assumes that the components of the
systems to be monitored have associated event collectors
that can capture events during their operation and send

them to the monitor. When a collector captures a runtime
event, it wraps it into an envelope with additional
information including the source of the event (i.e., the
component where it was captured) and a timestamp
indicating when the event was captured at the component.

To enable the synchronisation of event timestamps, the
framework incorporates components that realise the
Network Time Protocol [17] (i.e., a protocol based on the
clock synchronisation scheme described in [12]). The
implementation of this protocol allows event collectors to
compute the difference of their clocks with the clock of
the monitor at regular intervals. This difference is used to
transform timestamps taken according to the clock of each
collector into timestamps that express time in terms of the
monitor’s clock. This is achieved by implementing an
NTP client at each event collector and an NTP server at
the machine that hosts the monitor, as shown in Figure 1.
The NTP clients call the NTP server at regular intervals to
synchronise their clocks with the clock of the server. The
use of NTP can synchronise distributed clocks at a very
high level of accuracy since recent versions of NTP
(version 4) use a resolution of less than one nanosecond.

2.2 Specification of Properties
As indicated in Section 1, in our runtime monitoring

framework the properties to be monitored are expressed in
a language based on Event Calculus (EC) [19]. EC is a
first-order temporal logic language which can be used for
representing and reasoning about events and their effects
over time. An event in EC is an occurrence that takes
place at a specific instance of time (e.g., invocation of a
system operation, receipt or dispatch of a message) and
may have an effect. The effects of events are represented
by fluents. Fluents are conditions which may change over
time (e.g. a condition indicating that a system has received
a message) and are initiated and/or terminated by events.

The occurrence of an event in EC is represented by the
predicate Happens(e,t,ℜ(lb,ub)). This predicate denotes
that an instantaneous event e occurs at some time t within
the time range ℜ(lb,ub) (i.e., lb ≤ t ≤ ub) . The boundaries
lb and ub that define time ranges are specified as linear
expressions over time variables of Happens predicates in
an EC formula of the form:

lb = l0 + l1 t1 + l2 t2 + … + ln tn
ub = u0 + u1 t1 + u2 t2 + … + un tn

Given our focus on runtime system monitoring, the
events we consider represent invocations of system
operations, responses from such operations, or exchanges
of messages between different system components. Thus,
events have the following structure which captures the
information required for monitoring such system
interactions without affecting the overall expressiveness of
the framework with respect to standard EC:

event(_id, _sender, _receiver, _status, _sig, _source)

Event
Collector1

NTP
Client

NTP Client

Monitoring Manager

Monitor

NTP ServerC
O
M
P
O
N
E
N
T
A

Deviation DB

Verification framework
COMPONENT B

Event Collector2

118

In this structure:
� _id is a unique identifier of the event
� _sender is the identifier of the system component that

sends the message represented by the event
� _receiver is the identifier of the system component that

receives the message represented by the event
� _status is the processing status of an event (i.e.

whether or not its processing has started when the
monitor receives it)

� _sig is the signature of the dispatched message or the
operation invocation/response represented by the
event, comprising the operation name and its
arguments/result.

� _source is the identifier of the component where the
event was captured.
 Fluents are defined as relations between objects of the

form rel(O1, …, On) where rel is the name of a relation
which associates the n objects O1, …, and On. The
initiation or termination of a fluent f due to the occurrence
of an event e at time t is denoted in EC by the predicates
Initiates(e,f,t) and Terminates(e,f,t), respectively. An EC
formula may also use the predicates Initially(f) and
HoldsAt(f,t) to denote that a fluent f holds at the start of
the execution of a system and at time t, respectively.

The rules to be monitored at runtime are specified in
terms of the above predicates and have the general form
body � head. The meaning of a rule is that if its body
evaluates to true, its head must also evaluate to true. The
Happens predicates in a rule which have no constraints for
their lower and upper time boundaries are what we call
“unconstrained” predicates. During the monitoring
process, rules are activated by events that can be unified
with the unconstrained Happens predicates in them. When
this unification is possible, the monitor generates a rule
instance to represent the partially unified rule and keeps
this instance active until all the other predicates in it have
been successfully unified with events and fluents of
appropriate types or it is deduced that no further
unifications are possible. In the latter case, the rule
instance is deleted. When a rule instance is fully unified,
the monitor checks if the particular instantiation that it
expresses is satisfied.

An example of a rule that can be expressed in the EC
language of our framework is given by the formula below:

Rule 1: ∀ _eID1,_C1,_C3:String; t1:Time
Happens(e(_eID1,_C3,_C1, REQ, authorise(),
_C3),t1,ℜ(t1,t1)) � ∃ _eID2:String ; t2:Time
Happens(e(_eID2,_C3,_C1, REQ, authorise(),
_C1),t2,ℜ(t1+1,t1+10))

This rule states that when an event e(_eID1,_C3,_C1,
REQ, authorise(), _C3),t1,ℜ(t1,t1)) representing a call of
the operation authorise() in a component _C1 by a
component _C3 is dispatched, it must be followed by an
event e(_eID2, _C3, _C1, RES, authorise(), _C1)

represening the receipt of the call by _C1 in no more than
10 time units after the dispatch of call. Thus, Rule 1
expresses a bounded availability property for the
communication channel between the component _C3 and
other components of the system (_C1) since it requires
that the requests generated by _C3 are transmitted within a
bounded time period.

The unconstrained predicate in this rule is the
predicate Happens(e1

C3, t1,ℜ(t1,t1))1, since the lower and
upper bounds of its time variable are defined without any
references to other time variables in the rule. Thus, at
runtime, new instances of Rule 1 will be generated as soon
as an event that can be unified with this predicate is
received. Each of these rule instances will remain alive
until it is fully unified or until no further unification of an
event representing the receipt of a response of the call
dispatched by _C3 in the rule instance�is�possible.

Note that, as in the above example, our framework
requires all the constrained predicates in a rule to have
time variables with constrained upper bounds. This is to
ensure that rules can be verified. For example, if the
Happens predicate for e2

C1 in the head of Rule 1 did not
have an upper bound, then its absence would never cause
the monitor to flag the rule as violated, since the monitor
would always wait for some e2

C1 event at some point in
the future.

3. COMPUTING LIFETIME OF EVENTS
As we discussed in Section 1, the problem that arises

with the use of events which are generated by distributed
sources is two-fold: firstly we need to synchronise the
clocks of the different event sources so that the
timestamps of the events that they generate can be
comparable to each other and secondly we need to know
until when we need to store a particular event in order to
be able to reason about the system state and check rules.
The clock synchronisation that is performed through the
use of the Network Time Protocol (NTP) by our
framework solves the first problem but not the second.

To appreciate the second problem, consider Rule 1,
assuming without loss of generality that _C3 and _C1
denote both the source of the event and the clock of the
source system component where the event was captured.
As the occurrence of events of type e1

C3 in Rule 1 is
unconstrained, events of this type can instantiate the rule
during monitoring. Unlike them, events of type e2

C1 are
temporally constrained by e1

C3 events in the rule and
cannot, therefore, create new instances of the rule; they
can only be unified with existing rule instances.

1 e1

C3 is an abbreviated reference to the event e(_eID1,_C3,_C1, REQ,
authorise(), _C3), in which the subscript denotes to the event ID and
the superscript to the event source. Such abbreviated references are
used in the rest of the paper in all cases where other event variables
are not important.

119

Thus, if the monitor receives an event of type e2
C1, in

addition to unifying it with all the current instances of
Rule 1, it must keep it until there is no possibility to
receive an e1

C3 event that could be correlated with e2
C1

through Rule 1. This is necessary since if e2
C1 is dropped

and later the monitor receives an e1
C3 event with an earlier

timestamp than e2
C1, it would report a false violation of

Rule 1. The possibility of e1
C3 and e2

C1 events arriving at
the monitor in the opposite order of their occurrence
arises due to different (and dynamically changing)
communication delays in the channels that connect C1 and
C3 with the monitor or even attacks in these channels that
can cause the loss of events. Whilst keeping events of type
e2

C1 in this case is necessary for the soundness of the
monitoring results, the monitor must also ensure that it
keeps these events only for the maximum time that is
necessary for the soundness of the results. This is because
if the monitor keeps them longer the size of its event store
will increase monotonically with a deteriorating effect on
both the space and time required for monitoring. The
maximum time point until when events e2

C1 would need to
be kept by the monitor, in this example, can be established
by finding the maximum value of the time variable t1 of
e1

C3 events that satisfies the constraints: (1) t1 ≤ t2−1 and
(2) t2 ≤ t1+10.

In general, for a rule with n+1 Happens predicates,
there will be 2n+1 such inequalities to solve. This is
because one of the rule predicates is unconstrained (the
one firing the rule), the remaining Happens predicates
contribute two inequalities each, and we need an extra
equality to establish the exact value for the time variable
of the event in question (t2 in our previous example with
the e2

C1 events).
Figure 2 shows the algorithm for computing the

lifetimes of an event. According to this algorithm, when
an event e occurs, the set R(e) of rules which have
predicates that can be unified with the event e is
determined (this set includes rules that have event types
which are the same as the type of e or supertypes of it).
The set R(e) will include rules that may specify time
constraints for the event that cannot be fully evaluated yet.
Subsequently, the constraints of each rule in R(e) are
identified and expanded with an equality expressing that
the time variable of the predicate of the rule that has been
unified with e is equal to the timestamp of e (step 2.a).
Given the time constraint set that results from this process,
the algorithm computes the maximum possible value for
each of the time variables of the rule using the Simplex
method [8] (step 2.b.i). Subsequently, it groups the
different time variables according to the clock of the event
source they are related to (step 3), and generates a set of
all the conditions (Lifetime(e)) for computing the upper
bound of the lifetime of e (step 4). A condition in
Lifetime(e) states that e won’t be needed after the last
event that is seen from a channel which is relevant to e has

a timestamp (last_observed(cj)) that is greater than the
maximum possible value of the time variables grouped in
this channel’s group (see condition last_observed(cj)>
maxti∈Gj(max(ti))). The reason for using the timestamp of
the last event that has been observed from a clock in the
evaluation of the Lifetime(e) conditions is because events
are communicated to the monitor through TCP/IP sockets
which guarantee a FIFO transmission within the same
component (clock)-monitor channel. The conditions in
Lifetime(e) determine the lifetime of e since when their
conjuction becomes true, the lifetime of e will expire.

Compute_Lifetime(e):
1. R(e) = { r | r has a predicate p that can be unified with e}
2. Forall r ∈ R(e) do

a. CNr= {time constraints of r} ∪ {time variable of
predicate p that matches e = timestamp of e}

b. Forall ti ∈ CNr do
i. Find max(ti) given CNr

3. Group the time variables ti into as many groups Gj as the
different event sources (clocks) cj in R(e)

4. Lifetime(e) = ∪j ((last_observed(cj) > maxti∈Gj(max(ti))))

Figure 2: Computing the lifetime of an event – I

In our previous example, if Rule 1 is the only rule that
is being monitored and an event of type e2

C1 is observed at
t2=10, step 1 will produce the set R(e2

C1) = {Rule-1}, step
2.a will produce CNr = {t1 ≤ t2−1, t2 ≤ t1 + 10, t2 = 10},
step 2.b.i will produce the solutions max(t1)=9 and
max(t2)=10 by finding the maximum value of t1 for which
the constraints in CNr are satisfied, and step 3 will
produce two groups of time variables {t1} and {t2}, for the
two clocks C1 and C3, respectively. Finally, in step 4, the
lifetime constraint set for e2

C1 will be established as:
Lifetime(e2

C1) = {(last_observed(C1)>10),
(last_observed(C3) > 9)}.

It should be noted that our algorithm uses the Simplex
method, which has exponential complexity O(2n) (for a
problem with n variables [8]), to find the maximum time
of a time variable in step 2.b.i., although there are
algorithms with polynomial compexity (the worst case
complexity of Karmarkar’s algorithm [1], for example, is
O(n3.5)). This is because for small numbers of variables, as
the ones normally appearing in monitoring rules (n ≤ 10),
Simplex has better performance. Furthermore, the
algorithm of Figure 2 computes the maximum value of a
time variable for each rule separately, rather than
combining them into a single larger problem. This is
because the individual rule problems can be solved
independently and a larger set of rules would take more
time to solve due to the additional time variables (in
general 2n + 2m < 2n+m for n,m ≥ 2). Due to this approach,
once the individual rule systems have been solved, the
different time variables that are associated with events

120

coming from the same clock need to be grouped together,
as done in step 3 of the algorithm.

Note that at this step, the algorithm of Figure 2
assumes that the clocks/sources of the events in the rules
are fully specified when a rule is matched with an
incoming event. In the example of Rule 1 this is the case,
since the sender of an event e2

C1 (i.e. C3) is also the source
of events e1

C3. Thus, when Rule 1 is matched with an e2
C1

event, the identity of C3 becomes known. However, there
might be cases where the exact source of events that could
potentially be matched with a rule is not known after the
rule is matched with arrived events. Consider, for
instance, the following rule:
Rule 2:

∀ _eID1, _eID2, _U: String; _C1,
_C3: Terminal; _C2: Component; t1, t2:Time
Happens(e(_eID1,_C1,_C2, REQ, login(_U,_C1),
_C1),t1,ℜ(t1,t1)) ∧

 Happens(e(_eID2,_C3,_C2, REQ, login(_U,_C3),
_C3),t2,ℜ(t1,t2)) ∧ _C1 ≠_C3 � ∃ _eID3: String; t3:Time
Happens(e(_eID3,_C1,_C2, REQ-A, logout(_X,_C1),
_C1),t3,ℜ(t1+1,t2-1))

This rule requires that if a user _U logs in to a system
_C2 from a terminal _C1 and later he/she logs in again
from a different terminal _C3, he/she must have logged
out from the former terminal before the second login. The
rule effectively monitors cases where users are logged in
from different terminals at the same time. When an event
e(_eID2,_C3,_C2, REQ, login(_U,_C3), _C3) (or e2

C3 in
our abbreviated form) arrives at the monitor, its lifetime
will need to be estimated in reference to the maximum
possible values of time variables t1 and t3. In this case,
however, the algorithm of Figure 2 does not work, since at
step 3 it is not known which other terminals the user of
e2

C3 may be using or, equivalently, which source clocks
should be associated with the time variables t1 and t3.

Compute_Lifetime(e):
1. R(e) = { r | r has a predicate p which unifies with e}
2. Forall r ∈ R(e) do

a. CNr= {time constraints of r} ∪ { time variable of
predicate p that matches e = timestamp of e}

b. Forall ti ∈ CNr do
i. Find max(ti) given CNr

3. Group the time variables ti into as many group types TGu
as the different types of event sources cu in R(e)

4. Forall group types g ∈ TGu do
c. Forall the known sources j of type g do

i. Create a group Gj and assign copies of the time
variables of g to it

5. Lifetime(e) = ∪j {(last_observed(cj) > maxti∈Gj(max(ti)))}

Figure 3: Computing the lifetime of an event – II

To deal with such cases, we use an extension of the
algorithm, shown in Figure 3. The extended algorithm

initially groups time variables into groups corresponding
to the types of the event sources that are associated with
them in the rules. Then, for each of the source type
groups, it finds all the sources of the particular type that
are known to the system, creates different groups for them
and assigns copies of the time variables of each source
type to each of the source groups that were generated from
the type. Thus, if it is known that the system that is being
monitored with Rule 2 has 3 terminals, the algorithm of
Figure 3 will create different variable groups for each of
these terminals and assign copies of the time variables t1
and t2 to each of these groups.

Having computed the Lifetime(e) constraint set, upon
the arrival of an event e at runtime we use it to compute a
vector with the maximum time values for e with respect to
the different clocks related to it. For the ongoing example
of Rule 1, the vector of e2

C1 would be < 10, 9 >. The event
and its vector are then stored in the database of the
monitor. Also, when a new event arrives at it, the monitor
checks if the lifetime of some other events which depend
on the clock of the new event has expired. The above
process is shown in Figure 4.

1. Observe an event e
2. Update the global vector of observed clock values
3. Lifetime(e) = Compute_Lifetime(e)
4. Store e in the DB with its vector of different clock limits
5. Remove events from the DB if their clock limits have been

exceeded

Figure 4: Using event lifetimes

4. RELATED WORK
Forms of dynamic verification have been developed

and investigated in the context of program verification,
safety critical, and service centric systems.

In program verification, research has focused on the
development of programming platforms with generic
monitoring capabilities, including support for generating
program events at runtime (e.g. jMonitor [11]),
embedding specifications of monitorable properties into
programs and producing code that can verify these
properties during program execution (e.g. monitoring-
oriented programming [4] and [6]). There is also work
focusing on runtime verification of requirements
specifications [7]. However, metric time is not considered
in [4], [6], [7] or [11]. Runtime monitoring methods have
also been applied to autonomous safety critical systems
[16], as the testing of such systems is difficult and
resource consuming. In service-centric systems, dynamic
verification has focused on monitoring service level
agreements (SLAs) [2][20]. In safety critical systems,
early monitoring methods focused on detecting timing
failures and guaranteeing system responsiveness [9][15].
Though [15] supports timing constraints, it does not
support distributed monitoring. The distributed

121

monitoring of [9] on the other hand does not support
fluents or general expressions for time and does not
clarify how the bound of the size of the event histories is
decided. Event correlation has also been considered in
[18] where event observers are produced as transducer
automata recognizing and rewriting the input events.
Compared to our framework, the approach in [18] does
not support fluents or metric time.

The extension of the framework in [20] with the
capabilities described in this paper makes it possible to
verify complex properties, based on events captured from
distributed sources, thus, exceeding the capabilities of
other approaches.

5. CONCLUSIONS
In this paper we have presented extensions of the

monitoring framework described in [20] that render it
applicable to multi-clock distributed systems. Our
extensions address two of the problems of distributed
systems monitoring: (1) the need for synchronizing the
clocks of different event sources so that the events they
emit can be correlated, and (2) the estimation of the
lifetime of events within the monitor in order to ensure
that unknown transmission delays of other events that may
need to be correlated with them will not affect the
monitoring process. To address the first of these
problems, we have incorporated an implementation of the
NTP protocol in our framework. To address the second
problem, we compute the maximum lifetime of an event
by identifying, the constraints between the time variable
of the event and time variables of other events that co-
exist with it in rules and solving these constraints to find
the maximum possible lifetime for the event using the
Simplex method (see [12] for full details).

One possible optimisation of our solution is to
statically solve all the linear constraint systems at
initialisation, so as to only need to instantiate the specific
values of the different timestamps associated with a new
event and its related rules when the event arrives, instead
of solving the corresponding linear system each time. This
would require a symbolic solution of the linear constraints
system instead of the more straightforward numerical
solution which we currently employ. For this reason we
have decided against the symbolic solution in the current
implementation, and intend to examine this option once
we have gained more experience with the behaviour of the
current implementation in a distributed setting.

6. ACKNOWLEDGEMENTS
This work has been funded by the European integrated
research project Serenity (FP6-IST-2006-27587).

7. REFERENCES
[1] Adler I, et al. "An Implementation of Karmarkar's

Algorithm for Linear Programming". Mathematical
Programming, 44: 297–335, 1989.

[2] Ghezzi C., Guinea S., Runtime Monitoring in Service
Oriented Architectures, In Test and Analysis of Web
Services, (eds) Baresi L. & di Nitto E., Springer, 237-264,
2007.

[3] Barringer, H., Goldberg, A., Havelund, K., Sen, K. “Rule-
Based Runtime Verification”, 5th International Conference
on Verification, Model Checking, and Abstract
Interpretation (VMCAI’04), 2004.

[4] Chen, F., Rosu, G. “Towards Monitoring-Oriented
Programming: A Paradigm Combining Specification and
Implementation”. In Electronic Notes in Theoretical
Computer Science, 89(2), 2003.

[5] Clarke, E.M., Grumberg, O., Peled, D. “Model Checking”.
MIT Press 1999

[6] D'Amorim, M., Havelund, K. “Event-based runtime
verification of Java programs”, Proc. of 3rd Int. Workshop
on Dynamic Analysis, 2005.

[7] Feather M. S., Fickas S., Van Lamsweerde A., Ponsard C.
“Reconciling System Requirements and Runtime
Behaviour”, Proc. of the 9th Int. Workshop on Software
Specification & Design, 1998.

[8] Gale D. “Linear programming and the simplex method”.
Notices of the AMS, 54(3):364–369, Mar. 2007.

[9] Jahanian, F., Rajkumar , R., Raju, S. C. V. “Runtime
Monitoring of Timing Constraints in Distributed Real-Time
Systems”. Real-Time Systems 7(3):247-273, Nov. 1994

[10] Havelund, K., Ro�u, G. “An Overview of the Runtime
Verification Tool Java PathExplorer”, In Formal Methods
in System Design, 24(2):189-215, 2004.

[11] Karaoman, M., Freeman J. “jMonitor: Java runtime event
specification and monitoring library”. Proc. of 4th

Workshop on Run-time Verification, 2004.
[12] Mahbub K., Spanoudakis G., Kloukinas C., “V2 of

dynamic validation prototype”. Deliverable A4.D3.3,
SERENITY Project, http://www.serenity-forum.org.

[13] Marzullo K., Owicki S. “Maintaining the time in a
distributed system”. ACM SIGOPS Operating Systems
Review, 19(3):44–54, July 1985.

[14] Mills D. L. “Network time protocol (version 3)”. RFC
1305c, Network Working Group, Internet Engineering Task
Force (IETF), 1992.
http://www.ietf.org/rfc/rfc1305.txt?number=1305.

[15] Mok, A. K., Liu, G. “Efficient run-time monitoring of
timing constraints”. In Real-Time Technology and
Applications Symposium, 1997

[16] Nelson, S., Pecheur, C. “V&V for advanced systems at
NASA”, TASK NO: 10 TA-5.3.3 (WBS 1.4.4.5.3),
prepared for Northrop Grumman Corp,2002

[17] NTP, www.ntp.org
[18] Sanchez, C., Sankaranarayanan, S., Sipma, H., Zhang, T.,

Dill, D., Manna, Z. “Event Correlation: Language and
Semantics”, Proc. of Embedded Software (EMSOFT),
LNCS 2855: 323-339, Oct. 2003

[19] Shanahan M. P. “The event calculus explained”. In
Artificial Intelligence Today, Lecture Notes in Artificial
Intelligence, 1600:409–430, 1999.

[20] Spanoudakis G., Mahbub K.. “Non intrusive monitoring of
service based systems”. International Journal of
Cooperative Information Systems, 15(3):325–358, 2006.

122

ONTOLOGY-LEARNING SUPPORTED SEMANTIC SEARCH
USING COOPERATIVE AGENTS

Cheng Zhong1 Zilan (Nancy) Yang1 Mohsen Afsharchi2 Behrouz H. Far1

1 Department of Electrical and Computer

Engineering, Schulich School of Engineering,
University of Calgary, Canada

{czhong, zyan, far}@ucalgary.ca

2Department of Electrical and Computer
Engineering, University of Zanjan, Iran

afsharchim@iasbs.ac.ir

ABSTRACT

In this paper we present (1) a method for semantic search
supported by ontological concept learning; and (2) a
prototype multiagent system that can handle semantic search
and encapsulate the complexity of such process from the
users. Agents which conduct semantic search on behalf of a
user, deploy ontologies to organize structured and
unstructured documents in their corresponding repositories.
The ontology for each repository is individualized and
commitment to a common ontology is not required. The
agents can improve their search capability by learning new
concepts from each other. This method thus allows agents
dynamically establish common grounds on concepts known
only to some of them. The concept learning is realized by
analyzing positive and negative examples from other agents,
and/or taking votes in case of conflicts in the received
knowledge by involving other agents again.

Index Terms — multi-agent system, semantic search,
ontology, concept learning, semantic interoperability.

1. INTRODUCTION

In contrast with the traditional keyword search
technology which purely depends on the occurrence of
words in documents, semantic search denotes one or more
concepts in the context of other concepts. Understanding the
denotation of concepts can help retrieval part of search
engine understand the context of search, the activity the
users is trying to perform, thus drive expectations on the
categories of documents [6]. The essence of semantic search
is semantic interoperation towards denotation part in the
search phrase. Nowadays, general denotation procedures are
realized depending on ontology-oriented means, and
ontologies adopted are usually evolved and maintained in a
distributed way. Thus, multiplicity of ontologies raises the
issue of integration and renders the communication between
peers involved in a semantic search ineffective.

 Establishment of a common ontology for a certain
domain is one of the cornerstone among cooperative agents
(peers) participating in semantic search. However, agreeing
on a common ontology may not be realistic. In multi-agent
systems (MAS) research concerning agents’
communication, having a common ontology is only possible
when the design rationale, the concepts and meanings
assigned to the concepts as well as the context of applying
the concepts are shared. In other words, the agents must be
designed in such a way that all the domain concepts and
their meaning (i.e. semantics) should be provided in
advance. In heterogeneous MAS, for a single domain,
usually there is no agreement on the ontology among
developers, and for several domains, the potential
ontologies are large, unwieldy and may lead to less
resolution and higher abstraction.

Recently, the idea of having agents learn concepts from
each other has been suggested as a solution to improve
agent communication. For example, the work in [8] suggests
a method for learning a language and the work in [9] has
focused on interactions between two agents to learn a single
concept. In our previous work, we have presented a method
for agents to learn concepts from several peer agents [1-2]
and a method for verification of the learnt concepts [5].
 Euzenat in [4] defines semantic interoperability as the
faculty of interpreting the annotations at the semantic level,
i.e. to ascribe each imported piece of knowledge to the
correct interpretation or set of models. Possible levels of
interoperability needed to be considered when trying to
understand an expression from other systems are in
ascending order of semantic intensity:
� encoding: being able to segment the representation in

characters;
� lexical: being able to segment the representation in

words (or symbols);
� syntactic: being able to structure the representation in

structured sentences (or formulas or assertions);
� semantic: being able to construct the propositional

meaning of the representation;

123

� semiotic: being able to construct the pragmatic meaning
of the representation (or its meaning in context).
This model resembles humans’ natural communication

style that each semantic level can be achieved only if the
lower ones have been traversed. For example, people can
exchange useful information only if they have chosen a
language, and clarified meanings of concepts which are
critical to the topic. The idea of layered semantic
interoperability has already been applied to the WWW [3]
and is directly applied in our architecture of layered
semantic search.

In this paper we present a method and a system that uses
the ontology learning in a multi-layer semantic search. The
architecture and learning supported search mechanism will
be explained through the prototype system in Sections 2 and
3. The implementation details are provided in Section 4
followed by an example in Section 5 and conclusions in
Section 6.

2. LAYERED SEMANTIC SEARCH

ARCHITECTURE

Based on the semantic interoperability model [4], we

have devised the layered semantic search architecture as
illustrated in Figure 1. In this model peers can communicate
and conduct search at various levels. This layered
architecture will reduce complexity by breaking complex
semantic interoperability into smaller problems; it
standardizes interfaces between adjacent layers; it facilitates
modular engineering and development of search tools; and

it accelerates evolution of technology.

The model puts some constraints on the communication
between peers, namely:
1. One layer only talks with its peer layer on remote side

under some agreements (or protocols). These

agreements help both sides to settle natural languages,
encoding standards for exchanging information,
representation grammar of search phrase, etc.

2. A search phrase can be optionally initiated at any layer,
then will be passed down, layer by layer, to the bottom
layer (encoding layer). Each layer will add
corresponding annotation information to the search
phrase. Packaged phrase, finally, will be sent out.

3. Each layer can work relying on the ontology located on
the same layer of semantics.

Definitions of functionalities of layers of semantic
interoperability are given below.

The encoding layer, as base layer, defines encoding
format of data exchange, thus implicitly defines the
character sets of a natural language for exchanging a search
phrase. ASCII and Unicode are mainly used as encoding
formats. The lexical layer tokenizes the search phrase. At
this layer, important identifiers of ontology components are
identified. Functionality of this layer is not easily realizable
for some natural languages such as Chinese because
tokenization of sentences is a big issue due to the lack of
explicit delimiter, except for punctuation, to separate each
single word (or symbol). The syntactical layer identifies
concepts by structuring words following grammar at query
side, and it is capable of understanding the structured
representation to extract concepts at responding side. The
semantic layer provides ability to understand propositional
meaning of the representation of search phrase. The
semiotic layer provides ability to understand meaning of
the representation of search phrase in a context (specific
domain). The objective of this paper is to design and
implement a prototype semantic search system to study
annotation-learning workflow with focus on the lexical
layer.

 3. SYSTEM ANALYSIS AND DESIGN

The overview of prototype system for annotation-learning
workflow within lexical layer is shown in Figure 2. In this
system, software agents form a cooperative group to learn
and search concepts. Each agent is responsible for a local
unstructured data repository with a local ontology. The
agents are responsible for organizing documents in their
own repositories using any ontology they deem appropriate.
The agents also communicate with each other to respond to
search queries.

The system design assumptions, following the FIPA
guidelines (http://www.fipa.org) are:
a) MAS is a close cooperative group. It means that there

is, at least, one agent taking charge of registering
service. Any other agent joining the group needs to
register by offering its necessary information such
service type and access point.

b) There is, at least, one agent that provides yellow page
service to enable agents find each other.

Semiotic

Semantic

Syntactic

Lexical

Encoding

Semiotic

Semantic

Syntactic

Lexical

Encoding

Communication Channels

Figure 1. Architecture of layered semantic search

Peer1 Peer2

124

Figure 2. System overview

GAIA design methodology [10] is used to design the
MAS. Each individual agent currently holds 4 roles:
Document Annotator, Concept Learner, Register Handler,
and Concept Manager. IBM’s UIMA [7] is used to enable
dynamical annotation of documents, and, therefore, enable
classification of documents within their own repository. In a
later phase, we will utilize an addition Peer Finder role to
create an open cooperative MAS that enables agents
automatically find each other. Details of the annotator and
learner roles are explained below.

3.1. Document Annotator
Regular search usually is capable of finding tokens without
any relationship between them. The tokens are not able to
reflect domain-specific properties similar to atoms in early
chemistry which are unable to retain chemical properties of
a complex chemical substance.

The documents annotator in this project is aiming at
annotating “molecules”, special combinations of tokens, on
which some well-defined constraints are applied. Creating
such type of annotation, especially dynamically creating
annotations is a fundamental role, not only for concept
learning, but also for semantic search involving newly learnt
concept. As the following formula describes,

Annotation = Fconstraints(token1, token2, …).
Constraints can be, for example, window size, appearing
order within certain window size of text, etc. The annotation
process is depicted in Figure 3. The methods used in the
annotation process are:

CreateConceptHierarchy([concept], keyword1,
keyword2, …, CH1)
Annotator first creates a Concept Hierarchy (CH) using
received series of keywords. This CH directly goes into the
Annotation Engine (AE) to tell what is needed to be
searched from the document repository.

CreateAnnotationEngine (Type1, AE1)
This method takes CH as a parameter to dynamically build
Annotation Engine (AE) which is the algorithm’s container.

DoAnnotation(Annotator1, Doc1, Doc2, …)
Once annotation engine is created, it will be run against
repository to annotate and grab satisfying documents.

ReplyQuery(Annotated Documents, PositiveExamples,
NegtiveExamples)
This method takes charge of replying to query. In this
project, it also implements some specific filtering work such
as selection of positive examples and creation of negative
examples (see Section 3.2 for details).

3.2. Concept Learner
An agent knowing a concept is equivalent to having a
defined classifier for that concept. The classifier is a binary
function which decides whether a new incoming document
belongs to (or explains) the concept. The Concept Learner
role is used to generate this classifier.

We adopt a feature-based representation model to
represent concepts. That is, each concept is composed of a
set of features or keywords which are regarded as the best
representation of this concept. For each concept, there exists
a set of documents whose major topic belongs to this
concept. Those documents are called positive objects for
this concept. The list of features can be generated from the
positive objects using a simple statistics method [11]. The
similarity between a pair of concepts is defined as:
Sc1,c2: Similarity between concept c1 and concept c2
Nc1�c2: Number of documents that belong to both

concept c1 and concept c2 (with relevance
degree greater that a defined threshold)

Nc1Uc2: Number of documents that belong to either
concept c1 or concept c2.

Based on this definition for each concept set we have an
ontology matrix as shown in Figure 4. The values in this
matrix denote the similarity value between pairs of
concepts. For example, the similarity value between c1 and
c2 is 0.8, and there is no relationship between concept c1 and
c3 since the similarity value between them is zero.

Annotator:

Concept Hierarchy:
 Concept1 (f1, f2,…)
 ...

(concept1,…, keyword1,
keyword2,…)

Figure 3. Process of Documents Annotation

1. Create annotation
type system

3. Do annotation
upon documents

4. Reply query with
annotated documents

AE1:
Pre-defined processing
logics

2. Create
Annotation Engine.

125

c1 c2 c3
c1 1 0.8 0
c2 0.8 1 0
c3 0 0 1

Figure 4. Ontology Matrix

The learner is based on the training set available. For
each concept, we select a set of positive objects (documents
in this case) belonging to the concept and a corresponding
set of negative objects using the ontology matrix. For
example, if we want to create a classifier for concept c1, we
choose positive examples from the documents assigned to
concept c1. For negative examples, we choose documents
which belong to concept c3 because those documents do not
represent concept c1. This mechanism may not always lead
to an optimum learning and we have investigated other
algorithms [2]. Finally, using the positive and negative
examples, we adopt a data mining algorithm to train and get
the classifier for concept c1.

3.2.1. Concept Learning Process
We illustrate the learning process using the following
actions (see Figure 5).

Figure 5: Concept Learning Process

QueryConcept (“keyword1”, “keyword2”, …)
The learner agent will start the concept learning by issuing
action QueryConcept which will send the query to other
agents. The parameters it takes are a list of keywords
representing features of a potential concept.

SelectBestConcept (“keyword1”, “keyword2”, …)
On the receiver side, the agent first uses keywords to build
annotator dynamically which then is used to annotate the
candidate documents.

SelectPosEx(concept)
After getting the best concept and candidate documents
associated to this concept, the receiver agent will select a
given number of positive examples from the candidate
documents.
CreateNegEx (concept)

The receiver agent also performs this action to produce a
given number of negative examples for the concept based
on the ontology matrix.

ReplyQuery(pi, ni)
The receiver agent i sends back the positive (pi) and
negative (ni) examples to the learner agent.

Learn ((p1,n1), (p2,n2), …)
The learner agent will take all the documents transferred
from the teacher agents as the training documents to form a
new concept. We have examined various data mining
algorithms such as Naïve Bayes and SVM. If there are any
conflicting documents, they are dismissed. It means only
documents which are agreed by all the agents are regarded
as the documents under the new concept.

Integrate (concept)
With the new concept from the method Learn, the learner
agent will assign a temporary name to it and suggests it to
the administrator of the learner system. The administrator
can approve the concept, assigns a meaningful name to it
and add it to the local repository.

4. IMPLEMENTATION

4.1 System Architecture
Figure 6 shows the prototype system. Document Annotator
is developed using IBM’s UIMA (Unstructured Information
Management Architecture) [7]. IDE Eclipse Europa is
selected because it supports UIMA and Apache Tomcat
http://www.eclipse.org/europa/) which is used to deploy
document annotation service in this project. UIMA is
featured by type system in which the data has a type and a
set of attribute, value pairs [7], so that it is conceptually
identical to concept from our point of view.

4.2. Document Annotator
The components to fulfill actions CreateConceptHierarchy,
CreateAnnotationEngine, DoAnnotation, and ReplyQuery
need to be built to form a complete Annotator. Central task
is to deal with creation of type system.

4.2.1. Creation of Type System
According to type system definition specification [7], the
first step is to build XML-based type system descriptor.
Figure 7 shows an actual descriptor from the project. This is
an aggregate type system which is composed of several
basic primitive types. The lines enclosed by an oval
represent one type definition which includes name,
description, super-type name, and its features. UIMA
provides APIs to build class components to dynamically
adjust contents of descriptors and create a corresponding
Java class.

126

4.2.2. Creation of Annotation Engine (AE)
Developer of an annotator has to implement a standard
interface having several methods, such as initialize(),
process() and destroy() to embed processing logic into it.

There are two ways for creator to tell process() method
which types need to take and which types need to produce.
One is manually creating a component descriptor which is
XML-based document, like type system descriptor; another
is using APIs that come along with UIMA to dynamically
set this component descriptor. The latter is preferable
because developer can select input/output type system at
run-time. Immediately after the Annotation Engine is
created, the process() will take over to scan documents and
produce types as specified in AE descriptor.

Figure 7. A Type System Descriptor

4.3. Concept Learner
The Concept Learner role is responsible for implementing
action Learn which takes training documents as input, and
produces concept classifier.

4.4. Concept Manager
Concept Manager role helps agent to manage set of
concepts coming from three sources: newly learnt through
training, selected by experts of specific domain, and newly
learnt through semantic search. It need implement actions:
SaveConcept, RetrieveConcept.

5. ILLUSTRATIVE EXAMPLE

To illustrate semantic search-learning process, here we
provide a simple but illustrative example. In this scenario,
three existing repositories of documents concentrating on
software testing (Rtest), object-oriented analysis and design
(Roo), and agent-based software engineering (Ragent) are
created. Agent-based software engineering (Ragent) is
considered as the local repository.

In the local repository there are several documents: some
of them are about MAS methodology; some about other
concepts. The initial status, as shown in Figure 8, tells that
all documents, having not been annotated, are organized in
flat structure.

Figure 8. Snapshot of Initial Repository

Based on current status, a regular query, as shown in
Figure 9, is initiated. In this case, a user wants to know
“what the token Prometheus means in software
engineering”. Processing this query with no semantic search
(as depicted by empty “Concepts” box in Figure 9) will
return two documents, with completely different contents.
The document 03 is talking about Prometheus MAS design
methodology; meanwhile, the document 11 is about Greek
mythology which is apparently not the one that user
intended to receive.

To disambiguate search results, the agents will take the
following steps to kick off a semantic search:
1. A concept learning routine is started to evaluate returned

documents, through which new concepts, for example,
“agent” (including its features) is identified; it then will
be propagated within the group (see [11] for details).

Customer

Control

Document
Annotator

Concept
Manager

Concept
Learner

Register
Handler

Docs
Rep.

Concept
Rep.

Yellow
Pages

GUI

Figure 6. Architecture of Prototype System

127

2. Each agent, upon receiving this concept, will annotate its
own repository. Annotation procedure re-categorizes
repository by conforming to concept hierarchy. Figure
10 shows changes happened to repository R-agent.

3. New concepts will be added to the concept repository in
order to support decoding query phrase, or searching.

Figure 9. Illustration of Regular Search Procedure

Figure 10. Snapshot of Annotated Repository

Figure 11. Illustration of Semantic Search Procedure

Once these steps are completed, a next round of search
will start by involving the newly learnt concepts. Figure 11
shows a disambiguated result by sending query phrase
consisting of both keywords and concepts.

From the procedure explained above, we can conclude
that dynamical annotation guided by concept hierarchy is

capable of categorizing the repository, consequently,
making retrieval of documents more efficient.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a method and a prototype MAS
for semantic search-learning. This method is based on the
architecture of layered semantic interoperability. The central
procedure is composed of dynamical document annotation
and concept learning mechanisms to solve the problem of
semantic heterogeneity in distributed information
management with minimum overhead and no need to
commit to a common ontology. From the implementation,
we can conclude that the semantic search supported by
concept learning is a generative evolutional procedure. It is
started by a regular search leading to learning a new
concept. Then later the learnt concept is used in semantic
search, and the search resolution will improve.

Future work includes implementation of the role
PeerFinder which will lead to an open MAS. Also, research
efforts will be put on organizing concepts into a hierarchy
through learning. Finally, based on research achievements,
we will propose a protocol for search on other layers of the
semantic interoperability model.

7. REFERENCES

[1] M. Afsharchi, B.H. Far, J. Denzinger, “Ontology Guided

Learning to Improve Communication among Groups of
Agents,” Proc. AAMAS’06, pp. 923-930, 2006.

[2] M. Afsharchi, B.H. Far, and J. Denzinger, Learning Non-
Unanimous Ontology Concepts to Communicate with Groups
of Agents, Proc. IAT’06, IEEE Press, pp. 211-217, 2006.

[3] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein,
J. Broekstra, M. Erdmann, I. Horrocks, “Semantic Web: The
Roles of XML and RDF”, IEEE Internet Computing, 2000.

[4] J. Euzenat, “Towards a principled approach to semantic
interoperability,” A. Gomez-Perez et al (eds.) IJCAI’2001
Workshop on Ontologies and Info Sharing, Seattle, 2001.

[5] B.H. Far, A.H. Elamy, N. Houari and M. Afsharchi,
“Adjudicator: A Statistical Approach for Learning Ontology
Concepts from Peer Agents,” Proc. SEKE’07, 2007.

[6] R. Guha, R. McCool, E. Miller, “Using the semantic web:
Semantic search,” Proceedings of the WWW’03, 2003.

[7] IBM, “Unstructured Information Management Architecture
(UIMA)”, http://domino.research.ibm.com/comm/research_
projects.nsf/pages/uima.index.html, 2007.

[8] K.C. Jim, C.L. Giles, “Talking Helps: Evolving
Communicating Agents for the Predator-Prey Pursuit
Problem,” Artificial Life 6(3), 2000, pp. 237–254.

[9] A.B. Williams, “Learning to Share Meaning in a Multi Agent
System, Autonomous Agents and Multi Agent Systems 8(2),”
pp. 165–193, 2004.

[10] N. Wooldridge, and D. Kinny, “The GAIA methodology for
Agent-Oriented Analysis and Design,” 2000.

[11] Y. Zilan, C. Zhong, B.H. Far, “A Practical Ontology-Based
Concept Learning in MAS,” Proc. IEEE CCECE’08, (to
appear), 2008.

128

Automating a domain model aware reengineering methodology

Abstract—Program comprehension’s importance as a

research field has recently increased. In fact the task of
understanding the working of a program roughly
represents half of the maintenance costs. Our approach to
software comprehension is to map the high level models of
the system to the source code. The building of the models
follows the technique proposed in the Unified Process
(UP). The model recovery process, that has been presented
elsewhere, rested so far on manual techniques. But to offer
a real help to software maintainers, it should be automated.
This papers presents the tools we built to automate the
mapping of high level business and system models to the
source code. These tools use artificial intelligence
techniques to make heuristic search of the possible maps
between the models. After having explained the way we
solved the problem, the paper shows a comparison of the
performance of the tool as compared to the manual
application of the process on a real industrial software.

1. Introduction

It is commonly known that maintenance is the most
expensive part in the life cycle of a software system; it
represents between 60% and 90% of the total cost of a
program [8]. It is less commonly known (yet extremely
interesting) that almost two thirds of the maintenance cost
are devoted to software comprehension or understanding
[16]. The importance of program comprehension in
maintenance comes from the nature of reengineering. In
fact, before being able to restructure or re-implement a
legacy program it is necessary to understand its working
and its functional architecture [2]. During the process of
implementing a program, developer’s understanding of the
program grows since they have to keep in mind which
elements of the system satisfies what part of the
specifications. Unconsciously, developers build a mental
mapping between the problem domain elements (business
domain or real world) and the elements of the system
domain (source code) [20][23]. This mapping represents
their understanding of the program being developped. This
mental process agrees with the following definition of
program comprehension [1]:

“A person understands a program when able to explain
the program, its structure, its behavior, its effects on its

operational context, and its relationships to its application
domain in terms that are qualitatively different from the
tokens used to construct the source code of the program.”

The rebuilding of these mental mappings seems then
necessary for program comprehension. It allows
understanding of the system domain components by linking
them to business domain components. The surprising fact is
that most of the remarkable techniques for program
comprehension or reengineering fail to take domain
elements into account and focus mainly on the syntactical
features of the programs [3].

A reengineering methodology, relying as much on the
analysis of the properties of source code as on the existence
of the mapping between the domain and the code is
proposed in [3]. This methodology allows the construction
of a “bridge” between the source code of a program and its
analysis diagram (robustness diagram) as reconstructed
from the specifications. It is important to note that this
methodology has been empirically tested on a real life
legacy system [14] leading to the next natural step:
automating. This has been done using artificial intelligence
and knowledge engineering techniques. This article focuses
on these techniques and the results that have been obtained.

First, a brief reminder to our reengineering methodology
is given in section 2. Then, Sections 3 and 4 focus on the
system that has been built to automate the methodology. In
section 5, we discuss the results comparing them, when
possible, to the ones obtained manually by Jossi on the
same system [14]. Section 6 presents the related work in
domain-driven reverse-engineering and section 7 concludes
the paper by explaining the future work.

2. Reengineering methodology

The methodology presented in [3] is based on the
development process know as Rational Unified Process
(RUP) [15]. Its goals are:
� To rebuild the domain and system models that a

developer may have used during the forward
engineering of the program.

� To construct a mapping between these models and the
actual code of the system.

To tackle the reengineering problem in its greatest
generality, the methodology considers the documentation of

Javier Belmonte
University of Geneva
Geneva, Switzerland

belmont2@etu.unige.ch

Philippe Dugerdil
HEG-Univ. of Applied Sciences

Geneva, Switzerland
philippe.dugerdil@hesge.ch

129

the program as nonexistent and its original developers as
unavailable. The lack of these two information sources
forces the methodology to focus on the current state of the
program and its actual users. In fact, even if the actual users
of the program ignore everything about the implementation
of the program, they represent an invaluable source of
information on the business purpose and the features of the
system. Then, the methodology suggests that actual users
be consulted in order to gather information useful to rebuild
the domain and system models.

Therefore, our reengineering methodology can be split in
two phases, each one focusing in one of the two above-
mentioned goals. To ease global comprehension, we refer
to the normal way the RUP phases are developed as the
“forward” direction (this is represented by the gray arrow in
figure 1):

Figure 1: The two phases of our methodology.

The first phase focuses mostly on the re-documentation
of the functional specifications of the program and their
analysis. It is developed in the “forward” direction of RUP.
In the second phase, we rebuild a mapping between
analysis models and the source code of the programs. This
is performed “backwards”. The moment in the RUP
timeline where these two phases meet might be seen as the
moment in time where the mapping we’re trying to rebuild
was established by the original developers of the system. It
is also the moment in time at which the maintainers of the
program reestablish this knowledge.

A. First phase
The first phase focuses on re-building the business and

system models. This ends up with the System Use-Case
Model and the associated Analysis (Robustness) diagram. It
follows the disciplines of the RUP:
� Reconstruction of the business models, Business Use-

Case model and Business Analysis model.
� Reconstruction of the system models, the System Use-

Case model and the Analysis (Robustness) diagram
associated to every use-case.

The analysis diagram is built from the following analysis
objects stereotypes [15]: Boundary (interface to the external
world), Entity (information holder) and Control
(orchestrator of the use-case’s execution). Then, the above
mentioned models allow us to establish the traceability
links between the functional needs at the business level and
the analysis objects that represent the corresponding system
responsibilities.

B. Second phase
In this phase we concentrate on the mapping between the

system models, especially the robustness diagram and the
source code elements. By re-creating the links between the
analysis objects and the classes of the programs we are able
to close the traceability link from the high level business
models and the implementation [4]. To create these links
we use two kinds of techniques:
� Static analysis: this works on the static structure of

both the source code and the robustness diagram. They
are called static because they rest on the syntactic
features of the elements.

� Dynamic analysis: this works on the features of the
system that can only be observed at run-time. Most of
this information concerns the interactions between the
elements of the program, their frequency, their nature,
and their order. By executing the system we will
compare what actually happens inside the system with
what was supposed to happen (as documented by the
system models). We will then search for similarities
that lead to the mappings.

We perform post-mortem dynamic analysis i.e. we generate
an execution trace file during the execution of the system
that we analyze off-line. One of the problems of dynamic
analysis is to choose the scenario to execute on the system
i.e. what action should the user perform for the execution
trace to convey the required information [9]. Because of our
approach, we concentrate on the recovered use-case of the
system that represents what the users actually do with the
system. Then, we gathered an execution trace for every use-
case flow we recovered from the first phase of the
methodology. This execution trace holds a sequence of
operation invocations whose order is obviously correlated
to the user manipulations. This observation is central to our
reengineering methodology.

3. The platform

Three characteristics of both our methodology and the
problem we are trying to solve had a strong impact on the
way we implemented the platform:

1. We have described our approach to program
comprehension as a forward and backward application
of the RUP. Then, according to RUP, our methodology
is iterative and incremental as well [4].

2. Most of the information used to rebuild the program
and system models are gathered from the users. So, we
cannot be sure of their accuracy.

3. Human reasoning is a logical process in which new
information is obtained by evaluating previously
known information [22]. Therefore, the platform
should allow the revision of the old inferences in the
light of new information.

By the way, it is interesting to note that the iterative
nature of the RUP is at the same time necessary to the
simulation of human reasoning. Indeed, obtaining new

130

information can be seen as one iteration of the simulation.
Therefore, at each iteration, new information merges into
the group of known information. These information units
will be called facts from now on.

So far, it could seem that a production system (i.e. the
artificial technique to simulate reasoning by production
rules [17]) is all we need to perform the simulation.
However, such a production system could not easily deal
with uncertain facts. Then, our system should be able to
revise its reasoning while new facts are generated by the
production system. Consequently, we chose to adapt a TMS
(Truth Maintenance System) [7] to control the production
system as well as the set of facts produced and stored at
each iteration. The TMS works with a Knowledge Base
(KB) that holds all the facts generated by the production
system. As we said, human reasoning generates new facts
in an iterative fashion. This process could be decomposed
into several smaller and simpler reasoning units which,
together, perform the whole reasoning. These smaller
reasoning units are called inference rules in the TMS
paradigm.

Figure 2: Our system components and process.

Figure 2 shows a representation of the elements
composing our system: the KB and the set of inference
rules. Its execution can be described as follows: the
inference rules are applied iteratively on some of the facts
in the KB, the facts produced by the inference rules are
added to the KB at the end of each iteration. Then the TMS
engine is responsible for assigning a level of certainty to
each fact in the KB.

4. Mapping analysis objects to source code

There are two sources of information that are used to
perform the search of the mappings:
1. The description of the use-case flows.
2. The execution trace gathered while executing the

scenarios corresponding to the use-cases.
In fact, these are two representations of the same reality:

the performance of a business function by the system. The
first is located at the user level, the other at the system
level. Since the operations of the system are called in the
same order as the manipulation of the user, we should be
able to correlate both representations. Use-case flows
normally consist of a sequence of text-lines (steps)
expressing the interaction of the user with the system and
the response of the system. The information in this
representation is not formalized thus leading to subjective
interpretations. On the other hand, execution traces are
made up of a sequence of operations called during the

execution of the use-case, together with their actual
parameters and returned values, making no room for
misinterpretation. We considered that there were little
chances to succeed in comparing both representations
without first adding information to the use-case flows that
would bring them closer to the elements observed in the
execution traces.

Figure 3: Building the extended use-case flows

Robustness diagrams are built by analyzing the use-case
flows and determining which robustness diagram objects
are involved at each step [15]. Most of the times, this
mapping is not documented and generally lost because
there is no need to keep it at the end of system
development. In our case nevertheless, this relationship
between use-case flow steps and analysis objects is exactly
what we need to re-create. We then built the extended flows
for each use-case containing, for each step, the list of the
involved analysis objects. Figure 3 shows the process of
building the extended flows.

Finally, from a close examination of the execution trace
we realized that some of the modules are invoked all over
the timeline of the execution. Since no objects exhibit such
a behavior in the extended flow of the use-cases we pre-
filtered the execution trace by removing these
“omnipresent” modules since they are unmatchable.

A. Mapping the boundary objects
Boundary objects represent interfaces between the

outside world and the system. The matching technique is to
compare the positions of the occurrences of the boundary
objects in the extended flow of the use-cases and in the
execution trace. We should then be able to identify which
source code components are likely to implement what
boundary object. However, we cannot expect to observe an
exact match, mostly because the density of occurrences is
extremely different between the extended flows of the use-
cases and the execution trace. Indeed, while occurrences in
extended flows are a small multiple of the number of steps
in a use-case flow, which stays generally under 50, the
number of occurrences in a execution trace can easily count
in thousands.

131

To bring the two descriptions close enough to find
matches between their elements, two strategies are
developed:

1. Bring down the number of occurrences of elements to
analyze in the execution trace by filtering those that
cannot implement a boundary object, based on
syntactical considerations.

2. Summarize the multiple occurrences of a given element
in the execution trace with a function computing the
“density” of occurrence. This function allow us to bind
an occurrence of the boundary object in the extended
flow with the element of the execution trace that has
the highest density of occurrence at the same moment
in time.

Before talking about the actual implementation of these
strategies, we need to clarify some of the terms used in our
experimentation. The system on which our technique has
been tested is an industrial package software. It is a fat-
client kind of client-server system. The client is made of
240k lines of VB6 code. The server consists of 80k lines of
PL/SQL code accessing an Oracle database. In this paper,
for the sake of conciseness, we will concentrate on the
reverse engineering of the client part of this system. The
elements of the execution trace will be Visual Basic
procedures invoked during the execution of the UC flows.
These procedures belong to modules which represent the
level of granularity we target in our mapping process: the
analysis objects are mapped to VB modules.

The first strategy was performed manually by Jossi [14].
He manually selected, based on the extension of the file
name, the modules in the source code that implement a
window. This technique was easily automated on our
platform, reducing from 363 to 12 the number of modules
to look for in the trace file and from 27537 to 1954 the
number of events to analyze in the execution trace. This
filtering step has then become a proper inference rule in the
production system. We now have to look for the mappings
between the remaining modules and the boundary objects in
the extended flows of the use-cases.

Our technique is to compute a measure of closeness
between a module occurrence in the execution trace and a
boundary object occurrence in the extended flow. First, we
normalize the timeline of both descriptions, the extended
flow and the execution trace, to the interval [0..1]. Every
event will then take place in this normalized timeline. The
closeness measure is not only computed on the base of the
distance between occurrences but also on the following
concepts:
� Depth of the call: since the robustness object in the

extended flow of the use-cases are considered the key
object implementing the behavior they should be
readily visible in the execution trace. In other words
they should not be deeply nested in the execution call
chain. Then, we implemented the following heuristic:

the deeper the invocation in the call chain, the less
probable the match.

� Coverage: represent the extent of use of a module
along the timeline. The more the spread of the
occurrences of a module the larger the coverage.
Therefore we favor modules whose occurrences are
located in specific moment in time, over modules
whose occurrences are evenly distributed along the
timeline.

Finally, our closeness metric c is computed by the

following formula where d , p and v represent distance,
depth and coverage respectively:

 (1)

The values 1K and 2K have not yet been formally

investigated so far. In our implementation, we empirically
determined the best values by trial and error. The closeness
formula computes the match between a single occurrence of
a boundary object in the extended flow and an occurrence
of a module in the execution trace. Next we must compute
the match over the entire timeline of the execution of the
use-case. In order to display the result as a graphic, we
compute the moving average of the closeness value over the
timeline. The result is presented in figure 4. The resulting
value is called the “significance level” of a module to a
boundary object. In this figure, the vertical axis represents
the significance level of a particular module at the in time
represented by the horizontal axis.

Figure 4: Significance levels for modules.

To establish the final mapping, we took each boundary
object and computed, for every module, the mean of the
significance value for each of the objects occurrences. We
normalized the results for each boundary object so that their

21 111 KK

vpd
c �

�
�

�
�
	

��
�

�
��
�

	

132

sum was 1. This way we gave more importance to the high
significant modules without overlooking the significance of
other modules. The normalized values gave us a meaningful
way of ordering the mappings between each boundary
object and each module according to their likely match.

B. Mapping Entity objects
A first analysis of the modules used to access the tables

has shown that all access went through the same few
modules. In other words, there is no specificity of the
modules to the entity objects of the robustness diagram.
Therefore we decided that it would be more useful to re-
create the mapping between the entity objects and the
database tables that store the information represented by
these objects. As before, we compared the occurrences of
the objects in the extended flows of the UC and the table
access in the execution trace. Then, we need to analyze the
values of the parameters of the operations in the execution
trace to find the strings corresponding to SQL queries. This
activity has been automated by another heuristic rule.

Nevertheless, the mapping heuristic is different from the
one we used to map boundary objects because:

1. The mapping of an entity object to a table can be
observed as one global access or as many localized
accesses. Therefore, coverage does not play any role in
this mapping.

2. Unlike operations, there is no hierarchy of accesses to a
table. Therefore, there is no equivalent to the depth of
calls in the case of table access.

Distance between occurrences in the normalized timeline
is the only measurement that we use in this rule to compute
the closeness of the match. However, the mapping is much
fuzzier in the case of database tables than modules because:
� The same table might be used to store several

information items belonging to different entities.
� A table could be used in read mode to validate

information stored in another table.
Therefore we decided to manage the match between the
entity object occurrences and the table occurrence like the
symptoms and illnesses in medical problem solving. In
other words, the closeness between the object occurrences
in the timeline and the table occurrence in the timeline is
considered the symptom and a true correlation between
both items (object and table) as the diagnosis. Then, we
measure the specificity and sensibility of the relationship
between the symptoms and the diagnosis as a way to
evaluate the strength of the match. We proceed in two
steps: first we compute the sensitivity then the specificity.
To formalize the relationships between “symptoms” and
“diagnosis”, we use the following definitions:
� {T,O} represents the mapping between the table T and

entity object O (i.e. the diagnosis)
� T | O represents the closeness between the positions of

T and O on the timeline (i.e. the symptom). For the
closeness to be true, the distance between the
occurrence of the object and the table should not be

larger than 5% of the timeline. We estimated
empirically that a bigger distance would not let us to
conclude anything.

Figure 5 presents the truth table for the closeness
operator. We shall remark that the function is not defined in
the case where p and q are both absent.

Figure 5: Truth table of the function of closeness p|q.

1st step: sensitivity: it is computed as the probability to
observe a short distance between the table and the entity
objects if these elements are truly correlated:

� �O|T}O,T{
In order to approximate this probability, we made the

following supposition: the higher the probability of
)()(OTOT ����� , the less likely },{ OT . In other

words: � � � � },{ OTOTOT ������
However, since OTOTOT �������)()(and

given that the meaning of)|(OT� is OT � 1 (figure 5)
we have: � � },{| OTOT �� , which is equivalent to
equation (2). This means that)(OTP � is the likelihood
of },{ OT� .

 2nd step: specificity: it is computed as the probability to
not observe a short distance between the table and the entity
objects if these elements are not correlated

� �OTOT |},{ ��
Or equivalently: � � },{| OTOT
In order to compute this probability we assumed the

following: the more probable)|(OT , the more likely
},{ OT . Within this assumption, the probability of
},{ OT can be approximated by probability of)|(OT ,

which is the probability of)(OT � (figure 5).
By combining these two metrics we can build a formula

that, applied to every couple (table; entity object), gives us
measure of the likelihood of a true correlation between
them.

Let 1P be the value of)(OTP � (sensibility) and let’s
2P be the value of)(OTP � (specificity). We combine

these two results through the following equation of the
certainty of a match between T and O :

12 PPKc ��
 (2)

K is a constant allowing us to give more or less

importance to 2P according to the specific situation at
hand.

1 This holds because we are not interested in the cases

where both instances, T and O are absent.

133

5. RESULTS
In order to evaluate the performance of our heuristic-

based matching system we compared its results for the
mapping of the boundary objects to the ones obtained
manually by Jossi [14]. It must be noted that all the
mappings produced by our engine are weighted by the
certainty of the match. This is not the case in the manual
match performed by Jossi. Therefore, we cannot directly
compare a set of weighted matches to individual matches
obtained by hand. Then, we compared the most likely
matches produced by our engine to each match obtained
manually.

Our system produced 14 mappings and the manual match
16. The comparison between both techniques has shown
that 13 mappings were the same. This means that:
� Our system was able to correctly establish 81% of the

manual mappings.
� From the 14 selected mappings made automatically,

93% were correct.

 Boundary object Modules mapped

by Jossi
Modules mapped

by our system
1 Create a new folder VQPRO005.FRM VQPRO005.FRM

2 Context VQPRO005.FRM VQPRO005.FRM

3
Persons

VQPRO005.FRM
Z_RGEN00.FRM
VINDI001.FRM

VQPRO005.FRM

4 Address VQPRO005.FRM
Z_DGEN01.FRM

VQPRO005.FRM
Z_DGEN01.FRM

5 Address input VQPRO005.FRM
Z_DGEN01.FRM

VQPRO005.FRM
Z_DGEN01.FRM

6 Folder explorer VQPRO004.FRM VQPRO004.FRM

7 Step management FMENUPOP.FRM FMENUPOP.FRM

8 Evaluation VXTRT004.FRM VXTRT004.FRM
Z_ATTENT.FRM

9 Modalities VNINT001.FRM VNINT001.FRM

10 Intervention decision VNINT001.FRM VNINT001.FRM

11 Characteristics VNINT001.FRM
Z_ATTENT.FRM VNINT001.FRM

Table 1: Comparison of the manual and automatic
mappings.

Table 1: Comparison of the manual and automatic
mappings. shows the mappings that were obtained by Jossi
and by our automated system. At the same time, it shows,
by highlighting them, the mappings that are different
between the results of both techniques.

The mapping between tables and entity objects was not
performed by Jossi because of the high quantity of
information to process. Jossi limited his investigation to the
search of the modules that performed the accesses to the
database. It is not possible then to compare the results of
the inference engine with any previous results, as we did in
Table 1. Therefore, to analyze these results, we will
compare them to our expectations:
� A mapping should be created between tables and

objects whose occurrences are often close on the
timeline.

� A mapping should not be created between tables and
objects which are often far from each other on the
common timeline.

Figure 6 presents the results of the mapping of entities to
tables. The vertical axis represents the different tables. The
horizontal crosses shows the moment in time where the
table is accessed. The horizontal axis represents the
timeline on which we set the occurrence of the entity
objects. For example {entity1,T4} and {entity2,T3} satisfy
the first expectation. The candidate mapping {entity2,T4}
is rejected because their occurrences are close on one part
of the timeline only (about 0.6 in the normalized timeline).
In fact they are more often far from each other than close.

Figure 6: Results of the mapping of entities to the tables.

The tolerance to non-matches is controlled by the
parameter K. This let us keep {entity2,T2}, although there
are some non-matches along the timeline, but reject
{entity3,T5} because:
� T2 occurrences didn’t happen close to the occurrences

of any other entity object than entity2. Therefore, the
mapping was a lot more likely for entity2 than for the
other entities.

� T5 occurrences are close to more occurrences of
entity1 than entity3. Therefore, T5 was mapped with
entity1 with a higher value of certainty than with
entity3.

6. RELATED WORK

Domain models have long been acknowledged as a good
way to improve reverse engineering and program
understanding [19][18]. For example, in their Pioneering
work, DeBaud and Rugaber [6] and DeBaud [5] used an
executable domain model in the form of an object oriented
framework. This framework represents the concept of the
domain and helps the search for the corresponding concept
in the programs. Then, each time a concept is identified in

134

the program being reengineered, the corresponding class of
the domain is instantiated representing the result of the
reverse-engineering [6]. From this experiment, DeBaud [5]
remarked that domain models can efficiently guide software
artifact comprehension. However, their structure is
somewhat subjective and depends on the application. In
other words, in the same domain, many different “models”
can be represented. Therefore such a model must be
flexible to account for all the variations of the domain
concepts used in the program. Moreover DeBaud
highlighted the difficulty to match the granularity of both
the program code elements and the domain model. In
particular he mentioned the difficulty raised by the
delocalization of the concept in the program i.e. the lines of
code referring to a concept are often noncontiguous. It must
finally be noted that the domain model used in this work
represents programming concepts not business concepts.
This approach is quite similar to the work of Gold [12]
who, in its HB-CA system for concept assignment used a
knowledge base of programming concepts. In this work
also, the domain model does not represent business
concepts but programming concepts. For example, the
experiment reported refers to programming notions such as
“read file”, “write file”, “compute value”. Using this
knowledge, HB-CA is able to identify the segments of the
source code where files are written, read etc. Later, the
problem of non-contiguity of the source statement dealing
with a concept was solved by Harman, Gold et al. by using
slicing techniques [13]. Rugaber and Stirewalt used a
formal specification using an algebraic specification
language to model both the domain and the program being
reverse-engineered [18]. Their main purpose is to evaluate
the effort needed to reverse-engineer a program. Then they
build the model of the program and, using a code generator,
they generate a new system from the formal specification.
If the generated system is “close enough” to the original
system, the model of the system is considered adequate.
They can afterwards evaluate the reengineering effort based
on this model of the program. However, to construct it, they
first build a domain model that gives them expectations for
the concepts that might be represented in the code. Then
they build the program model. Next they link the program
model to the domain model, an operation called
“interpretation”. These connections help to understand the
system purpose and how the code fulfils that purpose. The
approach taken by Gall, Weidl and Klotsch [10][11][24] is
to build an object model of the main domain abstraction
implemented in the code, using all documentation and
expert advice available. This is considered the domain
model. Then the source code is analyzed to find candidate
software objects. Finally the two sets of objects are
matched using a similarity factor based on syntactic (name)
and semantic (data type) properties. Human expertise is
required to solve the many ambiguities that arise during this
process. Their experiments have shown that the amount of

code that the system could match against some domain
concepts is limited. In fact many program elements are left
without finding a suitable mapping. The conclusion we can
draw from this work is that the code associated to the entity
objects in a given program only represents a limited part of
the total amount of code.

7. CONCLUSION

The heuristic techniques we used to automate the match
between the objects of the robustness diagram and the
programming elements produced very encouraging results.
The main findings are:

1. The manual match between the objects in the
robustness diagram and the elements of the
implementation of the system can be automated.

2. The result obtained show that the automatic match can
outperform the manual match especially if the quantity
of information prevents any manual match to be done.

3. The implementation based on a production system
coupled with a TMS is a workable solution. In
particular, the processing time is reasonable with
respect to the amount of information to process. In
particular the processing of a trace of more than 25’000
events took less than a dozen of seconds in all our
experiments.

This system has been developed in Java as an Eclipse
plugin. It has been linked to a UML modeler so that the re-
constructed models of the program can be used as input to
the heuristic matcher. Future work ideas include:
� Extend the mapping engine to deal with higher

abstraction models built with the RUP methodology
like the Domain Object Model representing the key
abstractions in the domain.

� Extend the specificity / sensibility metrics to all
domain model objects.

� Improve the certainty calculation to better take into
account the iterations between several use-cases and
their partial matches.

8. REFERENCES
[1] Biggerstaff T.J., Mitbander B. G., Webster D. E. -

Program understanding and the concept assignment
problem. Communications of the ACM, vol. 37, no. 5,
pp. 72–82, 1994.

[2] Clayton R., Rugaber S., Wills L. – On the Knowledge
Required to Understand a Program. Proc. IEEE
Working Conference on Reverse Engineering
WCRE’98, 1998.

[3] Dugerdil P. - A reengineering process based on the
unified process. Proc. of the 22nd IEEE International
Conference on Software Maintenance. ICSM 2006.

[4] Dugerdil P. - Using RUP to Reverse Engineer a Legacy
System. The Rational Edge, September 2006.
www.ibm.com/developerworks/rational/rationaledge/

135

[5] DeBaud J.-M. - Lessons from a Domain-Based
Renegineering Effort. Proc IEEE WCRE 1996.

[6] DeBaud J.-M., Rugaber S. – Software Reengineering
method using Domain Models. Proc IEEE
International Conference on Softrware Maintenance
(ICSM) 1995.

[7] Doyle J. - A Truth Maintenance System. Artificial
Intelligence 12(3), 1979.

[8] Erlikh L. - Leveraging legacy system dollars for e-
business. IEEE IT Professional, vol. 2, no. 3, pp. 17–
23, 2000.

[9] Eisenbarth T., Koschke R. – Locating Features in
Source Code. IEEE Trans. On Software Engineering
29(3) March 2003.

[10] Gall H., Klosch R. Mittermeir R. – Using Domain
Knowledge to Improve Reverse Engineering. Int. J. on
Software Engineering and Knowledge Engineering
(IJSEKE), 6(3) 1996.

[11] Gall H., Weidl J. – Object-Model Driven Abstraction
to Code Mapping. Proc. European Software
engineering Conference, Workshop on Object-Oriented
Reengineering, 1999.

[12] Gold N. - Hypothesis-Based Concept Assignment to
Support Software Maintenance. PhD Thesis, Univ. of
Durham,UK,2000.

[13] Harman M., Gold N., Hierons R., Binkeley D. – Code
Extraction Algorithms which Unify Slicing and
Concept Assignment. Proc IEEE Working Conference
on Reverse Engineering (WCRE’02), 2002.

[14] Jossi S. - Reverse-engineering du système
d’information. Bachelor thesis, HEG - Univ. of Applied
Sciences, Geneva,Switzerland, 2006.

[15] Jacobson I., Booch G., Rumbaugh J., The Unified
Software Development Process. Addison-Wesley, 1999.

[16] Muller H.A., Tilley S.R., Wong K. - Understanding
software systems using reverse engineering technology
perspectives from the Rigi project. Proc.of the 1993
conference of the Centre for Advanced Studies on
Collaborative research. IBM Press, 1993.

[17] Nilsson N.J. - Principles of Artificial Intelligence.
Tioga Publishing, 1980.

[18] Rugaber S., Stirewalt K. – Model-Driven Reverse
Engineering. IEEE Software July/August 2004.

[19] Sayyad-Shirabad J., Lethbridge T.C., Lyon S. – A
Little Knowledge Can Go a Long Way Toward
Program Understanding. Proc IEEE Workshop on
program Comprehension (WPC) 1997.

[20] Storey M.A. – Theories, tools and research methods in
program comprehension: past, present and future.
Software Quality Journal 14(3), 2006.

[21] Tilley S.R., Smith D.B., Paul S. - Towards a
framework for program understanding. Proc. IEEE Int.
Workshop on Program Comprehension (WPC’96),
1996.

[22] van der Sraaten S. M., - Human deductive reasoning: a
formal logic versus a mental model theory. MS Thesis,
Rand-Africaans University, Johannesburg, South
Africa, May 2003

[23] von Mayrhauser a., Vans A.M. – Program
Comprehension During Software Maintenance and
Evolution. IEEE Computer, August 1995

[24] Weidl J., Gall H. – Binding Object Models to Source
Code: An Approach to Object-Oriented Re-
Architecting. Proc. IEEE Annual International
Computer Software and Applications (Compsac) 1998.

136

Explaining Product Release Planning Results Using Concept Analysis

Gengshen Du, Thomas Zimmermann, Guenther Ruhe
Department of Computer Science, University of Calgary

2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
{dug, zimmerth, ruhe}@cpsc.ucalgary.ca

Abstract
Objective: This paper aims to generate explanations from
a series of data points obtained from a decision support
system called ReleasePlanner® for supporting product
release planning and considered to be a black box.
Method: Concept analysis is applied to 1085 data points
received from running 10 scenarios of a real world
product release planning project with 35 candidate
solutions generated by ReleasePlanner®.
Results: Three main results are obtained: (1) patterns
between inputs and outputs; (2) impact of individual input
parameters on outputs; and (3) sensitivity level of outputs
in dependence of inputs.
Conclusion: Concept analysis is shown to be a feasible
technique for gaining more insight into the structure of
results obtained from a black box input-output system,
such as, but not limited to, ReleasePlanner®.

Keywords
Explanations, concept analysis, product release planning

1 Introduction
Product release planning involves decision making on
assigning features to different releases for incremental
software product development. It must simultaneously
consider several aspects, such as conflicting stakeholder
priorities and objectives, feature interdependencies, and
resource and risk constraints [15]. A decision support
system called ReleasePlanner® [13] has been developed to
support decision makers in the complex release planning
process. It is based on computationally efficient
optimization algorithms for the generation of a set of
alternatives solution having a proven degree of optimality.

However, the findings from a series of experiments
conducted with ReleasePlanner® users revealed that they
were reluctant to accept the solutions advised by this tool
[6]. Similar observation has also been made on other
systems [4] [10]. It was concluded in [1] that the major
problems are not technical problems, but people problems
in which people have very limited understanding on the
support they get from decision support systems. In
addition, according to [2], product release planning
problem is classified as a wicked problem [14] which is
hard to be precisely formulated. Thus the procedure
needed to solve product release planning problems (as

demonstrated in ReleasePlanner®) is more complex and
requires more in depth explanations to achieve good user
understanding on the tool support and its solutions.

How can we facilitate better understanding of the
ReleasePlanner® solutions? In this paper, a data analysis
technique called concept analysis [11] is applied for this
purpose. It is applied to investigate data within a specific
product release planning problem and identifies hidden
relationships between the project inputs and outputs. In
particular, three types of relationships are analyzed:

� Patterns between the input and output attributes
� Impact of individual input attributes on the outputs
� Sensitivity level of the outputs to the inputs

The answers to these three research questions provide
additional knowledge that is currently unavailable to users
of the ReleasePlanner® system. As a result, the users’
acceptance and trust level on the tool and its solutions is
expected to be improved.

The remainder of this paper is organized as the follows.
Section 2 gives an overview of product release planning
and the related decision support tool ReleasePlanner®.
Section 3 introduces the background of concept analysis.
In Section 4, a sample product release planning project is
investigated to demonstrate the application of concept
analysis. Section 5 analyzes and interprets the results in
the context of the three stated questions. Finally, Section
6 summarizes the research and outlines future research.

2 Product Release Planning
Many formal approaches have been proposed for product
release planning, such as incremental funding method [5],
cost-value approach [9], planning software evolution with
risk management [8], and hybrid intelligence (EVOLVE*)
[15]. The latter is used in this paper. This section gives a
short overview of this approach to the extent necessary to
understand and judge the results obtained from concept
analysis presented later in this paper. More details on the
method are available from [15].

2.1 Technical Formulation
In incremental product development, the goal of product
release planning is to select from a set of features F =
{f1,…,fn} and to assign them to one of K possible releases
each of them having a weight (relative importance) of �k
(k = 1…K). A release plan is described by vector x with

137

decision variables {x(1),…,x(n)}, where x(i) = k if feature
fi is assigned to release option k� {1,…,K}; and x(i) =
K+1 otherwise (i.e. the feature is postponed).

Two types of feature dependencies are considered:
coupling and precedence relationship. A coupling CC(fi, fj)
indicates that both features fi and fj must be released
jointly. A precedence PC(fi, fj) indicates that feature fi
cannot be released later than fj. Some features can be
fixed to certain release by the pre-assignment preassign-
x(i)=k, indicating that fi is fixed to release k.

The planning approach considers T resource types for
implementing the features. Capacities Cap(k, t) relate
each release k to each resource type t�{1,…,T}. Every
feature fi requires an amount of resources of type t r(fi, t).
Thus, each release plan x assigns feature fi to release k
expressed as x(i) = k, for all releases k and resource types
t, must satisfy �x(i)=k r(fi, t) � Cap(k, t).

A set of stakeholders S = {s1,…,sq} is involved in release
planning. Each of them has a relative importance � �
{�1,…,�q}. It is a nine-point ordinal scale that provides
differentiation in the degree of importance. The higher the
importance value is, the more important the stakeholder is.

In brief, the purpose of release planning is to provide the
most attractive features at the earliest releases to the most
important stakeholders. For the purpose of this paper,
Value(s, fi), Urgency(s, fi), and Competitiveness(s, fi) are
the three attributes of a feature’s attractiveness. Each
feature can be prioritized from these three criteria with the
value ranging from 0 to 9. These criteria are associated
with the weights �1, �2, and �3, respectively.

The three prioritization criteria are the basis to formulate
the objective of product release planning. The objective
function Utility(x) is defined as a linear combination of
the priority votes of stakeholders related to these criteria:

� �

�

K

k kixi
ik fiorityxUtility

1)(:
))(Pr()(�

where Priority(fi) is an aggregated priority of fi defined as:

���
 �

),((()(Pr 1
1

i

S

ss
si fsValuefiority

q

��

))),(),(32 ii fsenessCompetitivfsUrgency ��� ��

2.2 ReleasePlanner®
ReleasePlanner® [13] is a decision support system that
aims at performing systematic product release planning
based on computationally efficient optimization
algorithms. Users are able to perform what-if analysis to
pro-actively explore different scenarios defined by a
sequence of inputs of the same project under investigation.
In addition, the tool is capable of generating a set of
diversified solution alternatives for each instance.

A series of studies on ReleasePlanner® revealed that its
users tended to have higher confidence and trust on their
manual solutions than the ones generated more efficiently

by the tool [6]. The major reason is that the tool works in
a black box manner and the rationale of solution
generation is hard to understand by the users. This is even
more complicated because the users usually investigate
multiple scenarios with multiple solutions.

3 Concept Analysis
Concept analysis, firstly introduced in [17], is a theory of
data analysis to identify conceptual structures among a set
of data. It has been successfully applied to many fields
[12], including in software engineering [11].

In this paper, concept analysis is investigated to address
the three research questions presented in Section 1.
Another two techniques, i.e. rough set analysis and
dependency network analysis, have also been applied to
explain release planning solutions by ReleasePlanner® [7].
However, they can only deal with the first two research
questions and are not the focus of this paper. Detailed
applications of these two techniques are available at [7].

3.1 Basic Terminology
Concept analysis investigates the relations R between a
set of objects O, and a set of attributes A. The triple C =
(R, O, A) is called a formal context.

Def. 1 (Common Attributes and Common Objects):
For any set of objects b �O, the set of common attributes
having the same attribute value is called common
attributes related to b and is denoted by ca(b) = {a�A
|� o �b : (o, a)�R}. For a set of attributes A� A, their
common objects are co(A) = {o�b |� a�A : (o, a)�R}.

Def. 2 (Formal Concept): Each pair c = (b, A) with b =
co(A) and A = ca(b) is called a formal concept. It
demonstrates a pattern, i.e. relation, between b and A.

Def. 3 (Concept Lattice): All formal concepts for a given
context C are called a complete concept lattice in which
concepts can be partially ordered. If c1 = (b1, A1) and c2 =
(b2, A2) are two concepts in the context C, a partial order
c1 � c2 can be defined whenever b1 � b2 and A1 � A2.

Def. 4 (Greatest Lower Bound and Least Upper
Bound): The greatest lower bound of c1 and c2 is the
concept with objects b 1�b 2 and attributes held by all
objects in b 1�b 2. The least upper bound of c1 and c2 is
the concept with attributes A1�A2 and objects which have
all attributes in A1�A2.

3.2 An Illustrate Example
Applied to planning product releases, O constitutes the set
of features F to be assigned to different releases. The
input to and output from product release planning using
ReleasePlanner® form set A. Figure 1 shows a simple
example of concept analysis in this domain. The upper
part is a data table of feature set F = {f1,…,f4} defined
with the attribute set A = {a1,…,a3}. In this table, the
value of each attribute for each feature can be H, M, or L.

138

These values represent different value ranges. The lower
part of this figure shows the corresponding concept lattice
with all the concepts {c1,…,c8} and their order relations.
In this lattice, the values of the attributes in each concept
are also highlighted. Among all the concepts, c1 is the
most general one and c8 is the most specific one. Some of
the order relations among the concepts are c2 � c1, c3 � c1,
and c7 � c1. From this figure, we can also identify the least
upper bound and greatest lower bound of a set of concepts.
For example, c1 and c4 are the least upper bound and
greatest lower bound of c2 and c3, respectively.

Figure 1: Example concept analysis

4 Applying Concept Analysis to Explain
Product Release Planning Results

4.1 Sample Project
To illustrate the application of concept analysis to explain
results generated by ReleasePlanner®, we investigate on a
sample project based on the data from a real life product
release planning problem. As a summary, this project is
defined with the following inputs:

� F = 31 features {f1, …, f31} to be assigned
� K = 2 releases
� S = 18 stakeholders {s1,…,s18} with weights {�1,…, �18}
� Prioritization criteria Urgency(s,fi), Value(s,fi), and

Competitiveness(s,fi)
� T = 3 types of resources {Res1, Res2, and Res3}

The full details of this project setting can be referred to
http://pages.cpsc.ucalgary.ca/~dug/ConceptAnalysis. This
project setting and the results obtained from it are taken as
the baseline scenario. From this baseline, the tool user
also generates another 9 scenarios that the user thinks to
be the most important (but not necessarily the complete)
scenarios for investigation. Together these 10 scenarios
are used for what-if analysis which is useful and
important for product release planning, as discussed in
Section 2.2. For all these scenarios, in total 35 solutions
are generated by ReleasePlanner® for later analysis.

4.2 Data for Concept Analysis
With the above project settings, each feature fi in each
solution is associated with a data point used for concept
analysis (see Table 1). The selection of the attributes is
based on the experience of manual analysis of several
product release planning projects [15]. The first six input
attributes are relevant to stakeholder votes which are
considered in the objective function for planning. In
particular, ConfUrgency(fi), ConfValue(fi), and ConfComp(fi)
are the standard deviation between different stakeholders’
votes for each feature fi from the three criteria,
respectively. They indicate the degree of disagreement
among stakeholder opinions. The other six input attributes
address resource utilization and criticality of features.

Table 1: Data defined for concept analysis
Input Attribute Definition

AverageUrgency(fi)

AverageValue(fi)

AverageComp(fi)
�

�

�

18

1

18

1

),(
)(S

SS
S

S

SS
iS

i

fsUrgency
fencyAverageUrg

�

�

(similar for AverageValue(fi), AverageComp(fi))
RelConfUrgency(fi)

RelConfValue(fi)
RelConfComp(fi)

Re () ()
()

lConfUrgency f ConfUrgency f
AverageUrgency fi

i

i

(similar for RelConfValue(fi), RelConfComp(fi))

RestUtiRatio(fi)
(t = 1, 2, 3) �

 31

1
)Re,(

)Re,(
)(Re

i
ti

ti
it

sfr

sfr
fUtiRatios

RestCriticality(fi)
(t = 1, 2, 3)

)(Re it fyCriticalits

�

� 2

1
)Re,(

)Re,(
)(Re

k
t

ti
it

skCap

sfr
fUtiRatios

Output Attribute Definition
Release(fi) Release(fi)

Based on our previous experience on the analysis of these
attributes, each attribute is discretized according to Table
2. The purpose of discretization is to scale attributes with
continuous values to a nominal or ordinal scales.

Table 2: Discretization of the defined attributes
Input Attribute Value Range Discretization

AverageUrgency(fi) High [6, 9]
AverageValue(fi) Medium [4, 6)
AverageComp(fi)

A real number
in [0, 9]

Low [0, 4)
RelConfUrgency(fi) High [0.7, 1.0]

RelConfValue(fi) Medium [0.4, 0.7)
RelConfComp(fi)

A real number
in [0, 1]

Low [0.0, 0.4)
High [0.10, 1.00]

Medium [0.05, 0.10) RestUtiRatio(fi)
A real number

in [0, 1]
Low [0.00, 0.05)
No [0.00, 1.00]

Low (-0.01, 0.00) RestCriticality(fi)
A real number

in [-1, 1]
Medium [-1.00, -0.01]

Output Attribute Value Range Discretization

Release(fi)
An integer in

[1, 3] Not necessary

c8=({�},{a1 :H, a1 :M, a1 :L, a2 :H, a2 :M, a2 :L, a3 :H, a4 :M, a3 :L})

c5 = ({f2},{a1 :H,
a2 :M, a3 :L})

c1 = ({f1, f2, f3, f4,},{a3 : L})

c2 = ({f1,f2},{a1 :H, a3 :L})

Concept Lattice

c3 = ({f1,f3},{a2 :H, a3 :L})

Data Table (H: High M: Medium L: Low)

c4 = ({f1},{a1 :H,
a2 :H, a3 :L})

c6 = ({f3},{a1 :L,
a2 :H, a3 :L})

c7 = ({f4},{a1 :M,
a2 :L, a3 :L})

139

Based on the above definition and discretization, a table
with 1085 data points (35 solutions with each containing
31 features) is obtained for later concept analysis. The
complete table is available at the website provided earlier.

4.3 Concept Analysis of the Data
We used an open source library called Colibri/Java [3] to
perform concept analysis. It builds a concept lattice which
contains all patterns (concepts) for the data prepared in
Section 4.2. We then implemented a tool to traverse the
concept lattice to select only those patterns where the
distribution of the output values significantly changed
along the (subset) relations between these patterns. To test
significance, we used Fisher Exact Value and Chi Square
tests (significance level of p=0.01) [16]. Using our tool,
two filtered lattices were generated that contain the
patterns which affect the distribution of releases the most:

� Concept lattice #1 contains 64 patterns where the
likelihood of assigning a feature fi to release 1 is
increased by at least 45%.

� Concept lattice #2 contains 1093 patterns where the
likelihood of assigning a feature fi to any release, i.e.
1, 2 or 3 (postponed), is increased or decreased by at
least 30%.

The first lattice is essentially a part of the second one. The
details of these lattices are available at the website given
earlier and will be analyzed in depth in Section 5.

Table 3: Example record in the generated concept lattices
Context Res3Criticality(fi)_Low
Var AverageComp(fi)_High
�_R1 0.49 Context_R1 548 Context+Var_R1 118
�_R2 -0.3 Context_R2 339 Context+Var_R2 1
�_R3 -0.18 Context_R3 198 Context+Var_R3 0

Each filtered lattice consists of a number of patterns and
transitions between these patterns in the form shown in
Table 3. This table is read as, for all the 1085 cases in the
dataset, the distribution of features fi following the pattern
of “Res3Criticality(fi) = Low” (“context” part) is 548 data
points for release 1 (“context _R1”); 339 for release 2
(“context_R2”); and 198 for release 3 (“context_R3”).
The pattern of “Res3Criticality(fi) = Low AND Average
Comp(fi) = High” (“context” and “var”) is supported by
118 data points for release 1 (“context+var_R1”); 1 for
release 2 (“context+var_R2”); and 0 for release 3
(“context+var_R3”). The transition between these two
patterns can be understood as a rule: adding “Average
Comp(fi) = High” (“var”) to the “context” part increases
the likelihood of assigning a feature fi to release 1 by 49%
(“�_R1”), and decreases the likelihood to release 2 and 3
by 30% (“�_R2”) and 18% (“�_R3”), respectively.

5 Analysis and Interpretation of Results
In this section, we analyze the two lattices generated in
Section 4.3 from three perspectives: similarity of patterns,
importance of input attributes, and sensitivity of outputs.

The findings from these aspects contain new knowledge
that reveals the underlying relationships between the
inputs to ReleasePlanner® and its outputs, for the studied
sample project. They can be used as explanations for this
decision support system and its solutions.

5.1 Pattern Transitions and Data Similarity
Each generated concept lattice covers the most significant
patterns discovered from the product release planning
data used for concept analysis. These patterns are
presented in the “context” part and of the different
granularities, i.e. from the most general to the most
specific. A general pattern can be transformed to more
specific ones, and vice versa. By examining the
generalization or specification relationships among these
patterns, the transitions among the patterns become
visible. In addition, the discovered patterns demonstrate
the similarities shared among the data used for analysis.
Data that are categorized under a same pattern are of the
similarity as demonstrated by the pattern. For any two
patterns that can be generalized to the same more general
pattern, the two data sets supporting these patterns must
be similar to each other in the way that is represented
from the general pattern.

To illustrate the pattern transition and data similarity in
this sample project, the concept lattice #1 is analyzed for
simplicity. Any other lattices can be analyzed similarly.

Figure 2 shows the top four levels of patterns within this
concept lattice and the transitions of these patterns. The
complete transitions of all the patterns in this lattice can
be referred to the website provided earlier. In this lattice,
the most general pattern is #1, as shown in the very top of
the figure. It can be specified to pattern #2, #3, and #4 at
the second level. In this case, we say pattern #1 is the
generalization of pattern #2, #3, and #4. On the other
hand, pattern #2, #3, and #4 are the three specifications of
pattern #1. Each of these three patterns can be further
specified to other patterns until no more specific pattern
can be found. For example, one of the most specific
patterns is pattern #60. It follows the specification path of
pattern #1#3#6#41#50#60.

Figure 2: Transition of patterns (concept lattice #1)

8 {R3R,R1C,
R2C,R3C}

16 {AC,R1R,
R3R,R3C}

7 {R1R,R2R,
R1C,R3C}

17,18 {RCC,R3R,
R1C,R3C}

5 {R1R,R1C,R3C} 6 {R1R,R2R,R3C}

2 {R1C,R3C} 3 {R1R,R3C} 4 {R2R,R3C}

1 {R3C}

AV: AverageValue(fi)

R2R: Res2UtiRatio(fi)
R2C: Res2Criticality(fi)

RCV: RelConfValue(fi)
AU: AverageUrgency(fi)

R1R: Res1UtiRatio(fi)
R1C: Res1Criticality(fi)

RCU: RelConfUrgency(fi)

Legends:
AC: AverageComp(fi)

R3R: Res3UtiRatio(fi)
R3C: Res3Criticality(fi)

RCC: RelConfComp(fi)

140

Regarding the similarities shared among all the 1085 data
used for the analysis, all these data are the same in terms
of their values on the input R3C (Res3Criticality(fi)), as
illustrated through the most general pattern, i.e. pattern #1.
More similarity is discovered from the data #1 to #715
and #869 to #930 because these data points also share the
same value on the input attribute R1C (Res1Criticality(fi)),
besides on R3C. As a result, these data form a more
specific pattern, i.e. pattern #2.

These results can be interpreted as a type of explanations
on ReleasePlanner® solutions. If, in a solution, the release
assignment of a feature is supported by general pattern(s)
that are supported by a large number of data points, the
users are more likely to accept such result. Otherwise,
they might want to further improve the solution.

5.2 Importance Level of Inputs on Outputs
By examining all the found patterns (“context” part), we
can identify each input attribute’s importance level to the
output attribute, in our case the release. The assumption is
that the higher the number of the occurrence of an input in
the patterns is, the more important this input is in
determining the release value. However, an exception to
this assumption is that this number cannot be as high as
the total number of data used for analysis. The rational for
this exception is given later.

For this purpose, we investigate the second concept lattice
which provides more coverage than the first one on the
patterns inherent in the data. Figure 3 summarizes the
number of occurrence of each input in this concept lattice.
Res3Criticality(fi) appears to be the most important
attribute. It is in all the patterns and has the same value. In
other words, it has no influence at all on the distribution
of release. Res1Criticality(fi) and Res1UtiRatio(fi) are
important attributes which have different values. The least
important ones are AverageComp(fi), AverageUrgency(fi),
and RelConfComp(fi). Other input attributes have medium
level of importance.

of Occurrence of Each Input Attribute
(in All Existing Patterns)

0

200

400

600

800

1000

1200

Ave
ra

ge
Urge

nc
y(f

i)

Ave
ra

ge
Va

lue
(fi)

Ave
ra

ge
Com

p(
fi)

RelC
on

fU
rg

en
cy

(fi)

RelC
on

fV
alu

e(
fi)

RelC
on

fC
om

p(fi)

Res1
UtiR

ati
o(

fi)

Res
2U

tiR
ati

o(
fi)

Res
3U

tiR
ati

o(fi)

Res1
Criti

ca
lity

(fi)

Res
2C

riti
ca

lity
(fi)

Res
3C

riti
ca

lity
(fi)

In all patterns

Figure 3: Importance level of each input on the output

(concept lattice #2)

This part of the results provides the ReleasePlanner® users
with the explanations by identifying a subset of all the
defined inputs that play the most significant impacts on
the tool when it generates solutions.

5.3 Sensitivity Level of Outputs to Inputs
The generated concept lattices also check if adding a new
input attribute (“var” part) to the existing patterns
(“context” part) would change the distribution of release.
If the change is significant, this input is likely responsible
for such change, i.e. the output is sensitive to this input.
To observe the sensitivity of the output on each input, the
second concept lattice is used for analysis again. In
particular, we examine six types of how the “var” part
may impact on the distribution of releases:

� R1/R2/R3 +0.30: increase by at least 30% in the
distribution of assigning a feature fi to release 1, 2,
and 3, respectively

� R1/R2/R3 -0.30: decrease by at least 30% in the
distribution of assigning a feature fi to release 1, 2,
and 3, respectively

For each input, we first count its number of occurrence in
the “var” part of each record. For example, in the record
in Table 3, the input attribute AverageComp(fi) is in the
“var” part with 118 cases supporting the impact of R1
+0.30. Therefore its number of occurrence in this record,
for this type of impact, is 118. Then, by summing up such
numbers for all the records of the same impact type, we
obtain the total number of occurrence of this input. Figure
4 shows this number for each input based on the above
calculation. We assume that the higher this number is, the
more sensitive the output is to this input.

of Occurrence of Each Input Attribute
(as New Input Attribute to Existing Patterns)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ave
ra

ge
Urge

nc
y(f

i)

Ave
ra

ge
Valu

e(f
i)

Ave
ra

ge
Com

p(
fi)

RelC
on

fU
rg

en
cy

(fi)

RelC
on

fV
alu

e(
fi)

RelC
on

fC
omp(fi)

Res1
UtiR

ati
o(fi)

Res2
UtiR

ati
o(fi)

Res3
UtiR

ati
o(fi)

Res1
Criti

ca
lity

(fi)

Res
2C

riti
ca

lity
(fi)

Res3
Criti

ca
lity

(fi)

R1 +0.30 R1 -0.30 R2 +0.30
R2 -0.30 R3 +0.30 R3 -0.30

Figure 4: Sensitivity level of the output to each input

(concept lattice #2)

From this figure, RelConfUrgency(fi), Res3UtiRatio(fi)
and AverageComp(fi) have the most significant impacts
on the distribution of release. Specifically, release 1 is
most sensitive to RelConfUrgency(fi) and
AverageComp(fi) for at least 30% of increased
distribution, and to AverageComp(fi) for at least 30% of

141

decreased distribution. Release 2 is most sensitive to
Res3UtiRatio(fi) and AverageComp(fi) for at least 30% of
increased distribution. But they usually have no impact as
R2 -0.30 or R3 ±0.30. On the other hand, Res1UtiRatio(fi),
Res1Criticality(fi), and Res3Criticality(fi) almost never
contribute to any change by at least ±30% in any release.
Although they occur the highest times in the patterns in
Figure 3, their sensitivity levels are not as significant as at
least ±30% and cannot be reflected in Figure 4. The other
input attributes in general have medium level of
sensitivity on the output attribute.

The above results explain some sensitivity aspects of the
solutions generated by ReleasePlanner®. This kind of
knowledge reveals the degree of impact from changing
different input parameters. In case of uncertain data, the
rule of thumb is that the more robust a solution, the higher
chance of acceptance by the user.

6 Conclusions and Future Work
In this paper, a formal data analysis method called
concept analysis is combined with statistical hypothesis
testing to explain complex solutions recommended by
ReleasePlanner®, a decision support system for product
release planning. The results of our analysis of the data of
individual release planning projects contain additional
knowledge that is currently unavailable to the tool users.
Specifically, such knowledge explains the underlying
relationships inherent in the investigated data, in terms of
the underlying patterns between the input and output data,
as well as the importance and sensitivity levels of inputs
on outputs. These explanations intend to achieve better
understanding on the solutions of ReleasePlanner®, and
therefore higher acceptance level from the user side. To
demonstrate the application of concept analysis and
statistical hypothesis testing, a sample product release
planning project was investigated. Although the findings
presented in this paper are specific to the sample project,
the methodology of applying such analysis is generic
(since it treats the decision support system as a black box)
and can be applied to any other product release planning
projects, or other software systems in which explaining
complex solutions to users is necessary.

As a very important future work, empirical studies will be
conducted with ReleasePlanner® users in order to justify
the usefulness and effectiveness of the proposed method
for explaining the tool’s solutions. In addition, the results
obtained from the concept analysis, as presented in this
paper, only provides one type of explanations on
ReleasePlanner® solutions and it is by no means complete.
The explanations generated from this method are better to
be used with other types of explanations (e.g. the ones
discussed in [7]) that address the solutions from different
aspects. Therefore we will also investigate on how these
different types of explanations obtained from different
techniques are complimentary to each other so that they
can together provide the tool users with a more complete

view of explanations on the tool and its solutions.

Acknowledgement
The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
the Alberta Informatics Circle of Research Excellence
(iCORE) for their financial support of this research. Many
thanks are due to Daniel Götzmann and Christian Lindig
who provided the Colibri/Java implementation.

References
[1] M. J. A. Berry, G. S. Linoff: Data Mining Techniques: For

Marketing, Sales, and Customer Relationship Management (2nd
Edition), Wiley, 2004.

[2] P. Carlshamre: Release Planning in Market-Driven Software
Product Development: Provoking an Understanding. Journal of
Requirements Engineering, Vol. 7, 2002, pp. 139-151.

[3] Colibri/Java, available at http://code.google.com/p/ colibri-java/,
last accessed February 2008.

[4] F. Davis, J. Kottemann: Determinants of Decision Rule Use in a
Production Planning Task. Journal of Organizational Behavior and
Human Decision Processes, Vol. 63, No. 2, 1995 pp. 145-157.

[5] M. Denne, J. Cleland-Huang: The Incremental Funding Method:
Data Driven Software Development. IEEE Software, Vol. 21, No.
3, 2004, pp. 39-47.

[6] G. Du, J. McElroy, G. Ruhe: A Family of Empirical Studies to
Compare Informal and Optimization-based Planning of Software
Releases. Proceedings of the 5th International Symposium on
Empirical Software Engineering, Rio de Janeiro, Brazil, 2006, pp.
212-221.

[7] G. Du, G. Ruhe: Comparison of Two Machine Learning
Techniques for Explaining Results in Product Release Planning.
Submitted to Journal of Information Sciences, Special Issue on
Applications of Computational Intelligence and Machine Learning
to Software Engineering, 2008, 36 pages.

[8] D. Greer: Decision Support for Planning Software Evolution with
Risk Management. Proceedings of the 16th International
Conference on Software Engineering and Knowledge Engineering,
Banff, Canada, 2004, pp. 503-508.

[9] J. Karlsson, K. Ryan: A Cost-Value Approach for Prioritizing
Requirements. IEEE Software, Vol. 14, No. 5, 1997, pp. 67-74.

[10] L. Lethola, M. Kauppinen, S. Kujala: Requirements Prioritization
Challenges in Practice. Proceedings of the 4th International
Conference on Product Focused Software Process Improvement,
Vol. 3009, 2004, pp. 497-508.

[11] C. Lindig, G. Snelting: Assessing Modular Structure of Legacy
Code Based on Mathematical Concept Analysis. Proceedings of
the 19th International Conference on Software Engineering, Boston,
USA, 1997, pp. 349-359.

[12] U. Priss: Formal Concept Analysis in Information Science. Annual
Review of Information Science and Technology, Vol. 40, 2006, pp.
521-543.

[13] ReleasePlanner®, available at www.releaseplanner.com, last
accessed April 2008.

[14] H. W. J. Rittel, M. M. Webber.: Dilemmas in a General Theory of
Planning. Policy Sciences, Vol. 4, 1973, pp. 155-169.

[15] G. Ruhe, A. Ngo-The: Hybrid Intelligence in Software Release
Planning. Journal of Hybrid Intelligent Systems, Vol. 1, No. 2,
2004, pp. 99-110.

[16] L. Wasserman: All of Statistics: A Concise Course in Statistical
Inference (2nd Edition), Springer, 2004.

[17] R. Wille: Restructuring Lattice Theory: an Approach based on
Hierarchies of Concepts. In: Ordered Sets (Ed. I. Rival), Reidel,
Dordecht-Boston, 1982, pp. 445-470.

142

Weighted Static Code Attributes for Software
Defect Prediction

Burak Turhan, Ayse Bener

Dept. of Computer Engineering

Bogazici University

34342 Bebek, Istanbul, Turkey

{turhanb,bener}@boun.edu.tr

Abstract—It has been recently shown that defect predic-
tors built on the combination of log-filtering, InfoGain at-
tribute selection and Naive Bayes learner, outperform rule
based learners. Naive Bayes is a well known statistical tech-
nique that assumes the ’independence’ and ’equal impor-
tance’ of attributes, which are not true in many problems.
This paper addresses the ’equal importance’ of attributes as-
sumption of Naive Bayes. We show that with simple heuris-
tics, relevant weights can be assigned to attributes according
to their importance which improves defect prediction per-
formance. Furthermore, our proposed heuristics have linear
time computational complexities whereas choosing the op-
timal subset of attributes requires an exhaustive search in
the attribute space. We compare the weighted Naive Bayes
and the standard Naive Bayes predictors’ performances on
publicly available datasets both from Nasa and various small
and medium enterprises (SMEs) in Turkey. Our results in-
dicate that assigning weights to static code attributes may
increase the prediction performance significantly, while re-
moving the need for feature subset selection.

Index Terms—Metrics/Measurement, Complexity mea-
sures, Methods for SQA and V&V

I. Introduction

Quality of software is often measured by the number of
defects in the final product. Minimizing the number of
defects -maximizing software quality- requires a thorough
testing of the software in question. On the other hand, test-
ing phase requires approximately 50% of the whole project
schedule [1], [2]. This means testing is the most expen-
sive, time and resource consuming phase of the software
development lifecycle. An effective test strategy should
therefore consider minimizing the number of defects while
using resources efficiently.

Defect prediction models are helpful tools for software
testing. Accurate estimates of defective modules may yield
decreases in testing times and project managers may bene-
fit from defect predictors in terms of allocating the limited
resources effectively [3].

Defect predictors based on linear regression, discrimi-
nant analysis, decision trees, neural networks, Bayesian
networks and Naive Bayes classification have been anal-
ysed in previous research [4], [5], [6], [7], [8], [9], [10], [11].
Among these, Naive Bayes is reported to achieve signif-
icantly better performances than the other methods [8].

This research is supported in part by Bogazici University research
fund under grant number BAP-06HA104.

Naive Bayes assumes the independence and equal impor-
tance of attributes despite the fact that these assumptions
are not true in many cases. Nevertheless, Naive Bayes has
a good reputation for its prediction accuracy [12].

The number of research for relaxing the assumptions of
Naive Bayes has significantly increased in recent years.
These research focused on modifications to break the
conditional independence assumption and weighting at-
tributes [13], [14], [15], [16], [17]. All studies reported
results that are generally ’not worse’ than the standard
Naive Bayes, while preserving the simplicity of the model.

For the attributes that are used for constructing predic-
tors, some research prefer ranking the attributes for sub-
set selection [18], [8], and some use a ranking criteria for
attribute weight assignment [16], [19]. In fact, subset se-
lection corresponds to ’hard’ weighting of attributes, i.e.
assigning 0 or 1 for attribute weights.

This paper attempts to tackle the assumption of ”equal
importance of attributes” of Naive Bayes in defect pre-
diction context. Attribute weighting has been explored
to some extent for other problems such as cost estima-
tion. Auer et. al. employs attribute weigthing for anal-
ogy based cost estimation [19]. However, they assign ran-
dom weights to project features and search for the optimal
weigths. Similarly, neural network models for defect pre-
diction have inherent attribute weighting. However, neural
networks are non-deterministic and complex models that
require optimization of the network structure together with
many model parameters. Thus they require relatively large
number of data samples for building a predictor. In prac-
tice, usually a limited amount of data is available. Further,
the weights of the neural network model can not be easily
interpreted especially in complex networks.

Furthermore, previous studies employ feature subset se-
lection as a filtering step before learning a model. In brief,
they label the available static code attributes as ’useful’ or
’non-useful’ based on some threshold determined by vari-
ous attribute selection/ ranking methods. This approach,
subsetting, has three disadvantages:

1. A threshold value should be set carefully either with
extensive experimentation or manually.

2. An attribute labelled as useful is employed as if its
degree of usefulness is the same as the rest of the useful
attributes.

143

3. An attribute labelled as non-useful:
(a) may contain useful information, but is discarded by

the threshold value.
(b) may be useful in combination with other attributes,

but the attribute selection/ ranking method dis-
carded it [20].

In this paper we aim at removing these disadvantages
introduced by feature subset selection. For this purpose,
we propose attribute weighting along with several heuris-
tics for determining the degree of importance of static code
attributes. Recent research investigates integrating feature
selection into generic classification models [21]. While not
generic, our approach also integrates feature selection into
Naive Bayes [17], [16].

Considering defect prediction, we claim that all static
code attributes do not have equal effect on defect predic-
tion and they should be treated accordingly. Our goal is to
develop a methodology that permits the use of static code
attributes in terms of their relevance to defect prediction.
Menzies et.al. state that: ”how the attributes are used to
build predictors is much more important than which partic-
ular attributes are used” [8]. We also focus on how rather
than which.

We reproduce the experiments on NASA datasets by
Menzies et.al in order to construct a baseline for com-
parison. Furthermore, we include datasets collected from
SME’s, in order to justifiy the generalization of our results.
We aim at combining the best practices of the above men-
tioned studies for constructing robust and accurate defect
predictors. We use a weighted Naive Bayes classifier and
construct heuristics for accurate attribute weight assign-
ment. We propose to treat each attribute based on their
estimated importance and we search for empirical evidence
for the validity of our approach. Our results indicate that
assigning weights to static code attributes may increase
the prediction performance significantly, while removing
the need for feature subset selection. Although the com-
plexity of the proposed model is increased, we observe more
stable results.

II. Methods

A. Weighted Naive Bayes (WNB)

Standard Naive Bayes derivation can be obtained by
placing a special form of multivariate normal distribution,
as the likelihood estimate in the Bayes theorem. By spe-
cial form we mean that the off-diagonal elements of the
covariance matrix estimate are assumed to be zero, i.e. the
attributes are independent. In this case the multivariate
distribution can be written as the sum of univariate nor-
mal distributions of each attribute (See Equation 1). In a
classification problem we compute the posterior probabil-
ities P (Ci|x) for each class and choose the one with the
highest posterior. In general the logarithms are used for
computational convenience.

P (Ci|x) = −
1

2

d∑

j=1

(
xt

j − mij

sj

)2

+ log(P̂ (Ci)) (1)

While assuming the independence of attributes, a
weighting term can be introduced to reflect the relative
importances of attributes. Then Weighted Naive Bayes
can be written as in Equation 2 [16], [17].

P (Ci|x) = −
1

2

d∑

j=1

wj

(
xt

j − mij

sj

)2

+ log(P̂ (Ci)) (2)

Now that we have introduced another parameter, we
should find a way of estimating it accurately. For this
purpose we propose 8 heuristics, which are explained in
the next section.

B. Attribute Weight Estimation

We propose 8 heuristics mostly derived from attribute
ranking techniques in order to estimate weights for the
static code attributes. In all heuristics we compute the
rank values for the attributes and then derive weights by
normalizing over the sum of all rank values (See Equation
3). Thus, all weights are scaled to lie in the [0, 1] interval.
A complete list of heuristics used in this research is given
in Table I.

wj =
Rank(j)∑
i Rank(i)

(3)

First heuristics is based on the Principal Component
Analysis (PCA), which projects the data points onto or-
thogonal principal axes such that the variance in each axis
is maximized. We do not directly use PCA for dimen-
sionality reduction. Rather, we claim that attributes with
higher contributions for determining principal components
should have higher weights in the prediction method. In
our proposed heuristic, we use k eigenvalue and eigenvector
pairs that correspond to the 95% of the proportion of the
variance explained. Eigenvalues are written as λ1, λ2, .., λk

and eigenvectors are written as eid where i = 1..k, d = 1..D

and D is the number of attributes. Then the weight of
attribute d is estimated as a weighted sum of the corre-
sponding eigenvector elements as given in Equation 4.

wd =

∑
λieid∑
λi

(4)

Among proposed heuristics, GainRatio and InfoGain are
mainly used in decision tree construction to determine the
attributes that best splits the data [22]. Zhang and Sheng
use the GainRatio heuristic for attribute weight assign-
ment [16]. InfoGain is used in other studies for subset selec-
tion by ranking attributes [18], [8]. Our goal is to convert
these ranking estimates into attribute weights. For this
purpose we also evaluate OddsRatio, LogProb, ExpProb,
CrossEntropy and Kullback-Leibler (KL) Divergence.

In defect prediction context, these heuristics correspond
to the following: Given an attribute A,

• KL measures the similarity between the distributions
of defective and nondefective modules. The more
different the distributions, the higher the weight at-
tribute A has.

144

TABLE I

List of heuristics used in this study.

Heuristic Equation
PCA See text

Information Gain IG(x, A) = Entropy(x) −
∑

a∈A

|x=a|

|x|
Entropy(x = a)

Gain Ratio GR(x, A) =
IG(x,A)

SplitInfo(x,A)
, where SplitInfo(x, A) = −

∑
a∈A

|x=a|

|x|
log

|x=a|

|x|

KL Divergence DKL(x, A) =
∑

a∈A
p(x = a|pos) log(x = a|neg)

Odds Ratio OR(x, A) = log
∑

a∈A

p(x=a|pos)(1−p(x=a|neg))

(1−p(x=a|pos))p(x=a|neg)

Log Probability LP (x, A) = log
∑

a∈A

p(x=a|pos)

p(x=a|neg)

Exponential Probability EP (x,A) = exp (
∑

a∈A
p(x = a|pos) − p(x = a|neg))

Cross Entropy CE(x, A) =
∑

a∈A
p(x = a|pos) log p(x = a|neg)

TABLE II

Datasets

Name # Attributes # Modules DefectRate (%)

CM1 38 505 9

PC1 38 1107 6

PC2 38 5589 0.6

PC3 38 1563 10

PC4 38 1458 12

KC3 38 458 9

KC4 38 125 39

MW1 38 403 9

SQ1 36 113 23

SQ2 26 286 5

SQ3 29 36 22

SQ4 26 1360 6

SQ5 26 1925 3

• OddsRatio measures wheter defective modules are
more likely to occur than the nondefective modules.

• LogProb is the logarithm of the ratio of probability of
a module being defective over probability of a module
being nondefective.

• ExpProb is the exponentiation of the difference of
probability of a module being defective and proba-
bility of a module being nondefective.

• CrossEntropy is the average number of bits needed to
differentiate between the defective and nondefective
module distributions.

Assigning weights with these heuristics takes linear time.
On the other hand, ranking the attributes with these meth-
ods and then searching for an optimal subset requires both
an exhaustive search in the attribute space and the eval-
uation of performance with each candidate subset. We
expect to observe that the attributes that are discarded by
the subset selection methods would have relatively small
weights than the selected attributes.

III. Datasets

We have evaluated 13 datasets from different project do-
mains. Among these, 8 public datasets are obtained from
NASA MDP Repository [23]. These datasets are accepted
to reflect the common industrial software engineering prac-

tice. However, in order not to restrict the experiments
to datasets from a single company, we have also formed
5 more datasets (i.e. SQ datasets). These are collected
from SME’s in Turkey, which operate in different domains.
These entities do not have any certification yet for their
software processes, but some of them are in the process of
certification and all are among the leading companies in
their corresponding domains.

The projects in the SQ datasets include: embedded soft-
ware from a leading whitegoods manufacturer, software for
archieving media broadcasts for government audit, appli-
cation software from a national science council, software
for financial applications and telecommunication software.

Sample sizes of the projects vary from 36 to 5589 mod-
ules, which enables experiments in a broad spectrum of
project sizes. Each NASA dataset has 38 attributes static
code attributes (See [23], [8]). SQ datasets include 26 to 36
of the static code attributes available in NASA datasets.
In both datasets modules with error counts greater than
zero are assumed to be defective.

IV. Performance Measures

We have used probability of detection (pd) and proba-
bility of false alarm (pf) as the performance measures [8].
pd is a measure of accuracy for correctly detecting the de-
fective modules. Therefore, higher pd’s are desired. pf is
a measure for false alarms and it is an error measure for
incorrectly detecting the nondefective modules. pf is de-
sired to have low values. Since we need to optimize two
parameters, pd and pf, a third performance measure called
balance is used to choose the optimal (pd, pf) pairs. bal-
ance is defined as the normalized Euclidean distance from
the desired point (0,1) to (pd, pf) in a ROC curve [8].

Zhang and Zhang argue that using (pd,pf) performance
mesures in imbalanced classification problems is not prac-
tical due to low precisions [24]. On the contrary, Menzies
et.al argues that precision has an unstable nature and it
can be misleading to determine the better predictor [25].
They also give examples of low precision predictors that are
in use in SE industry. We also think that predictors with
high pd rate can be practical even when they have high pf
rate. Especially in mission critical and safety critical sys-
tems, detecting defects accurately with the cost of many
false alarms is affordable [25], [26], [27]. Furthermore, we

145

believe that this strategy is still more efficient than using
exhaustive testing. Thus, we argue that it would not de-
feat the purpose of defect prediction as Zhang and Zhang
claims [24].

In addition, we would like to point out that balance per-
formance measure should be used carefully for determining
the best among a set of predictors. Since it is a distance
measure, i.e. the distance of (pd,pf) to the optimal point
(0,1), a specific balance value defines a quarter-circle on
the ROC graph with radius of (1 - bal) and with the origin
(0,1). So, predictors with different (pd,pf) values can have
the same balance value. This does not necessarily show
that all predictors with the same balance value have the
same practical usage. As mentioned above, domain spe-
cific requirements may lead us to choose a predictor with
a high pd rank although it may also have a high pf rank.

V. Experiment Design

We have compared the best defect predictor reported so
far (log-filter, InfoGain attribute selection, standard Naive
Bayes [8]) with the Weighted Naive Bayes classifiers con-
structed by our proposed heuristics on NASA datasets.
Then we have evaluated the weighted Naive Bayes method
on SQ datasets to show the applicability of the model in a
wide range of company profiles. The experimental design
follows the framework suggested as a baseline by Menzies
et.al. [8]. We have also reproduced these experiments on
NASA datasets for comparison purposes.

We have applied log-filtering on the datasets before we
trained the predictor [8]. Then, we have used 10-fold cross-
validation in all experiments. That is, datasets are divided
into 10 bins, 9 bins are used for training and 1 bin is used
for testing. Repeating these 10 folds ensures that each bin
is used for training and testing while minimizing the sam-
pling bias. Each holdout experiment is also repeated 10
times and in each repetition the datasets are randomized to
overcome any ordering effect and to achieve reliable statis-
tics. Overall, we have performed 10x10=100 experiments
per heuristic for each dataset and our reported results are
the means of these 100 experiments for each dataset. We
have applied t-test with α = 0.05 in order to determine
the statistical significance of mean results. Since t-test as-
sumes normal distribution, analysis can be misleading in
case of skewness. In order to detect any skewness in the
distribution of the results, we also include box-plots. All
implementations are done in MATLAB environment.

VI. Results

(pd, pf, bal) results of 100 experiments for NASA and SQ
datasets are plotted in Figure 1 and Figure 2 repectively.
From these figures, we observe that Infogain(IG), Gain-
Ratio(GR) heuristics and standard Naive Bayes with log-
filtering(LNB) outperforms other heuristics. These three
methods show statistically significant performances than
others in all datasets. Thus, we only tabulate these three
methods’ mean (pd,pf,bal) values in Table III and Table
IV.

In NASA datasets, overall evaluation yields 5, 6 and

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

CM1

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

PC1

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

PC2

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

PC3

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

PC4

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

KC3

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

KC4

IG GR PCA OR LP EP CE KL LNB
0

0.5

1

P
er

fo
rm

an
ce

MW1

PD
PF
Bal

Fig. 1. Performance measures (pd, pf, bal) for Nasa datasets

IG GR PCA OR LP EP CE KL
0

0.5

1

P
er

fo
rm

an
ce

SQ1

IG GR PCA OR LP EP CE KL
0

0.5

1

P
er

fo
rm

an
ce

SQ2

IG GR PCA OR LP EP CE KL
0

0.5

1

P
er

fo
rm

an
ce

SQ3

IG GR PCA OR LP EP CE KL
0

0.5

1

P
er

fo
rm

an
ce

SQ4

IG GR PCA OR LP EP CE KL
0

0.5

1

P
er

fo
rm

an
ce

SQ5

PD
PF
Bal

Fig. 2. Performance measures (pd, pf, bal) for SQ datasets

4 wins for InfoGain, GainRatio heuristics and LNB re-
spetively. These results indicate that our proposed ap-
proach yields comparable and in some cases better results
than the ones reported on these datasets so far. InfoGain
and GainRatio heuristics achieve higher pd and pf values
compared to LNB. We argue that the projects that require
high reliability should have higher pd values. Since these
datasets have this requirement, InfoGain and GainRatio
based heuristics may be preferred over LNB.

In SQ datasets we observe a decrease in the average of
all performance metrics. This stems from the bad predic-
tions in SQ3 dataset. The results for SQ3 are (pd, pf,
bal) = (32, 20, 50). Excluding SQ3 from the average en-
hances the results. On the other hand, SQ3 dataset in-
cludes only 36 modules whereas the number of attributes
is 30. SQ3 results suggest that defect prediction becomes
a harder task and it lacks the desired performance in small
projects. However, this should be verified by testing on
additional small projects.

Figure 3 shows the boxplots of 100 balance results for IG,
GR and LNB. The leftmost and the rightmost lines in the
boxes correspond to the 25% and 75% quartiles and the line
in the middle of the box is the median. The notches around

146

TABLE III

Results for Nasa

Data IG+WNB (%) GR+WNB (%) LNB (%)

pd pf bal pd pf bal pd pf bal

CM1 82 39 69 82 41 68 83 32 74

PC1 69 36 66 69 35 67 41 12 57

PC2 66 22 72 66 20 72 70 15 76

PC3 81 37 71 81 37 71 59 15 69

PC4 89 32 76 88 27 79 92 29 78

KC3 85 28 77 78 25 76 47 14 61

KC4 80 34 72 78 33 72 79 32 73

MW1 64 32 66 71 37 67 44 07 60

Avg: 77 33 71 77 32 72 64 20 69

TABLE IV

Results for SQ

Data IG+WNB (%) GR+WNB (%)

pd pf bal pd pf bal

SQ1 73 38 67 73 38 67

SQ2 71 33 69 50 18 62

SQ3 32 20 50 32 20 50

SQ4 75 65 51 53 31 60

SQ5 87 24 81 68 7 77

Avg: 68 36 64 55 23 63

Avg (-SQ3): 77 40 67 61 24 67

the median correspond to the 95% confidence interval of
the median. We observe that the statistical signifinace of
the means also apply for the medians of the three meth-
ods in most cases. We should also note that it is a sign of
skewness if the medians are not centered between 25% and
75% quartiles. In most datasets, we observe such skewness.
The dashed lines in the boxplots indicate 1.5 times of the
interquartile range, i.e. the distance between the 25% and
75% quartiles. Data points outside these lines are con-
sidered as outliers. CM1, PC4, KC3 and MW1 datasets
have relatively large number of outliers in this sense. An-
other observation is that the weighting results are more
stable than standard Naive Bayes. Figure 3 shows that, in
all datasets, the spread of balance values are less than or
equal to that of Naive Bayes.

Figure 4 shows the same plot for SQ datasets. It is
clearly seen that the behavior on SQ3 dataset is different
from the others and the results are highly skewed due to
the small number of data samples in this dataset.

VII. Conclusion and Future Work

This paper presented an application of defect prediction
built on weighted static code attributes. We have used
several heuristics in order to estimate the weights of at-
tributes based on their relative importance. These heuris-
tics have linear computational times. We have evaluated
our approach on Weighted Naive Bayes predictor, which is
an extension of standard Naive Bayes. Our major contri-

0.2 0.4 0.6 0.8 1

IG

GR

LNB

Balance

M
et

ho
d

CM1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

IG

GR

LNB

Balance

M
et

ho
d

PC1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IG

GR

LNB

Balance

M
et

ho
d

PC2

0.5 0.6 0.7 0.8

IG

GR

LNB

Balance

M
et

ho
d

PC3

0.6 0.65 0.7 0.75 0.8 0.85 0.9

IG

GR

LNB

Balance

M
et

ho
d

PC4

0.3 0.4 0.5 0.6 0.7 0.8 0.9

IG

GR

LNB

Balance

M
et

ho
d

KC3

0.4 0.5 0.6 0.7 0.8 0.9 1

IG

GR

LNB

Balance

M
et

ho
d

KC4

0.2 0.4 0.6 0.8 1

IG

GR

LNB

Balance

M
et

ho
d

MW1

Fig. 3. Boxplots for Nasa datasets.

0.2 0.4 0.6 0.8

IG

GR

Balance
M

et
ho

d

SQ1

0.2 0.4 0.6 0.8 1

IG

GR

Balance

M
et

ho
d

SQ2

0 0.5 1

IG

GR

Balance

M
et

ho
d

SQ3

0.4 0.5 0.6 0.7 0.8

IG

GR

Balance

M
et

ho
d

SQ4

0.4 0.6 0.8 1

IG

GR

Balance

M
et

ho
d

SQ5

Fig. 4. Boxplots for SQ datasets.

bution in this research is to introduce a novel ”weighted
attributes approach” for defect prediction.

Condidering our motivation about the disadvantages of
subsetting, we have eliminated the need for a threshold
value, thus the most time consuming ’search for the op-
timal’ step is avoided. All availabe attributes are used
according to their estimated importances based on their
discriminative power for defect prediction i.e. less impor-
tant attributes are used with lesser weights. While some
attributes seem to have greater importance than others
for defect prediction, we believe in the notion that there
is not a magical set of attributes to achieve the best per-
formance. Moreover, automatic collection of static code
attributes does not cost much. Therefore, we encourage to
collect as many attributes as possible so that the weigthed
scheme choses how they will be used. It would then be
better to use all available attributes rather than explicitly
throwing away a portion of collected data with subsetting.

Our proposed approach performs at least equaivalent
and in some cases better than the currently best defect

147

predictor [8]. Although more parameters are introduced
by the weights, the predictions are more stable. Finally, it
has better time complexity and we generalize the results on
both NASA datasets and datasets collected from various
SME’s.

Though some research stated against using static code
attributes [28], [29], our results confirms the foundings of
Menzies et. al.[8]. This shows the applicability of defect
predictors based on static code attributes in a wide range
of companies and projects.

We should note that our datasets include an extreme
case (i.e. SQ3) with too few modules. We can comment
that exceptionally small projects has highly skewed predic-
tions with large variances. This is because there are not
enough data samples to learn a stable theory. A future
direction should be to focus on determining the necessary
number of data samples for stable defect predictors.

From a software practitioner’s point of view, these re-
sults are useful for detecting defects before proceeding to
the test phase. In this sense, test resources can be man-
aged more efficiently. Additionally, many companies in the
software market develop their standards or make use of the
best practices from industry, to determine the thresholds
for static code attributes in order to guide developers dur-
ing implementation. Our results indicate that the impact
of changes in static code attributes to the defect rate varies
for different attributes. Weights of the model can be inter-
preted as the attributes’ contribution to the defectiveness
of the modules and can be considered in code reviews.

One research direction is to examine the other assump-
tion of Naive Bayes, which is the ’independence’ of at-
tributes assumption. We have ongoing research to address
this problem by introducing multivariate distributions to
defect predictors in order to model correlations between
attributes.

Another future work is to measure attributes of module
complexities by taking the software structure into account.
Current static code attributes measure the complexites of
modules independently, whereas these modules are not in-
dependent of each other. We think that attributes incor-
porating the communications among modules would lead
better prediction performances.

References

[1] Mary Jean Harrold, “Testing: a roadmap,” in ICSE ’00: Pro-
ceedings of the Conference on The Future of Software Engineer-
ing, New York, NY, USA, 2000, pp. 61–72, ACM.

[2] Luay Ho Tahat, Atef Bader, Boris Vaysburg, and Bogdan Korel,
“Requirement-based automated black-box test generation,” in
COMPSAC ’01: Proceedings of the 25th International Com-
puter Software and Applications Conference on Invigorating
Software Development, Washington, DC, USA, 2001, pp. 489–
495, IEEE Computer Society.

[3] Qinbao Song, Martin Shepperd, Michelle Cartwright, and Car-
olyn Mair, “Software defect association mining and defect cor-
rection effort prediction,” IEEE Trans. Softw. Eng., vol. 32, no.
2, pp. 69–82, 2006.

[4] J. Munson and Y. M. Khoshgoftaar, “Regression modelling of
software quality: empirical investigation,” J. Electron. Mater.,
vol. 19, no. 6, pp. 106–114, 1990.

[5] John C. Munson and Taghi M. Khoshgoftaar, “The detection
of fault-prone programs,” IEEE Trans. Softw. Eng., vol. 18, no.
5, pp. 423–433, 1992.

[6] Frank Padberg, Thomas Ragg, and Ralf Schoknecht, “Using
machine learning for estimating the defect content after an in-
spection,” IEEE Trans. Softw. Eng., vol. 30, no. 1, pp. 17–28,
2004.

[7] Taghi M. Khoshgoftaar and Naeem Seliya, “Fault prediction
modeling for software quality estimation: Comparing commonly
used techniques,” Empirical Software Engineering, vol. 8, no.
3, pp. 255–283, 2003.

[8] Tim Menzies, Jeremy Greenwald, and Art Frank, “Data mining
static code attributes to learn defect predictors,” IEEE Trans.
Software Eng., vol. 33, no. 1, pp. 2–13, 2007.

[9] nana Elena Pérez-Mi and Jean-Jacques Gras, “Improving fault
prediction using bayesian networks for the development of em-
bedded software applications: Research articles,” Softw. Test.
Verif. Reliab., vol. 16, no. 3, pp. 157–174, 2006.

[10] Jean-Jacques Gras, “End-to-end defect modeling,” IEEE
Softw., vol. 21, no. 5, pp. 98–100, 2004.

[11] Norman Fenton, Martin Neil, William Marsh, Peter Hearty,
David Marquez, Paul Krause, and Rajat Mishra, “Predicting
software defects in varying development lifecycles using bayesian
nets,” Inf. Softw. Technol., vol. 49, no. 1, pp. 32–43, 2007.

[12] Pedro Domingos and Michael Pazzani, “On the optimality of the
simple bayesian classifier under zero-one loss,” Mach. Learn.,
vol. 29, no. 2-3, pp. 103–130, 1997.

[13] David D. Lewis, “Naive (bayes) at forty: The independence
assumption in information retrieval,” in ECML ’98: Proceedings
of the 10th European Conference on Machine Learning, London,
UK, 1998, pp. 4–15, Springer-Verlag.

[14] Zijian Zheng and Geoffrey I. Webb, “Lazy learning of bayesian
rules,” Mach. Learn., vol. 41, no. 1, pp. 53–84, 2000.

[15] M. Hall E. Frank and B. Pfahringer, “’locally weighted naive
bayes,” in Proc. of the Uncertainty in Artificial Intelligence
Conference, 2003, pp. 249–256.

[16] Harry Zhang and Shengli Sheng, “Learning weighted naive bayes
with accurate ranking,” in ICDM ’04: Proceedings of the Fourth
IEEE International Conference on Data Mining, Washington,
DC, USA, 2004, pp. 567–570, IEEE Computer Society.

[17] Mark Hall, “A decision tree-based attribute weighting filter for
naive bayes,” Knowl.-Based Syst., vol. 20, no. 2, pp. 120–126,
2007.

[18] Dunja Mladenic and Marko Grobelnik, “Feature selection for
unbalanced class distribution and naive bayes,” in ICML ’99:
Proceedings of the Sixteenth International Conference on Ma-
chine Learning, San Francisco, CA, USA, 1999, pp. 258–267,
Morgan Kaufmann Publishers Inc.

[19] Adam Trendowicz, Bernhard Graser, and Ernst Haunschmid,
“Optimal project feature weights in analogy-based cost esti-
mation: Improvement and limitations,” IEEE Trans. Softw.
Eng., vol. 32, no. 2, pp. 83–92, 2006, Member-Martin Auer and
Member-Stefan Biffl.

[20] Isabelle Guyon and André Elisseeff, “An introduction to variable
and feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–
1182, 2003.

[21] Huan Liu and Lei Yu, “Toward integrating feature selection
algorithms for classification and clustering,” IEEE Trans. on
Knowl. and Data Eng., vol. 17, no. 4, pp. 491–502, 2005.

[22] Ross J. Quinlan, C4.5: Programs for Machine Learning (Mor-
gan Kaufmann Series in Machine Learning), Morgan Kauf-
mann, January 1993.

[23] NASA, “WVU IV&V facility metrics data program,” .
[24] Hongyu Zhang and Xiuzhen Zhang, “Comments on ”data min-

ing static code attributes to learn defect predictors”,” IEEE
Trans. Softw. Eng., vol. 33, no. 9, pp. 635–637, 2007.

[25] Tim Menzies, Alex Dekhtyar, Justin Distefano, and Jeremy
Greenwald, “Problems with precision: A response to ”com-
ments on ’data mining static code attributes to learn defect
predictors’”,” IEEE Trans. Software Eng., vol. 33, no. 9, pp.
637–640, 2007.

[26] Burak Turhan and Ayse Bener, “Software defect prediction:
Heuristics for weighted naive bayes,” in ICSOFT 2007, 2007.

[27] Atac Deniz Oral and Ayse Bener, “Defect prediction for embed-
ded software,” in ISCIS 2007, 2007.

[28] Norman E. Fenton and Niclas Ohlsson, “Quantitative analysis of
faults and failures in a complex software system,” IEEE Trans.
Softw. Eng., vol. 26, no. 8, pp. 797–814, 2000.

[29] Martin J. Shepperd and Darrel C. Ince, “A critique of three
metrics,” Journal of Systems and Software, vol. 26, no. 3, pp.
197–210, 1994.

148

Predicting Software Project Size using Project Generated Information

Márcio de O. Barros

Postgraduate Information Systems Program – UNIRIO
Av. Pasteur 458, Urca – Rio de Janeiro, RJ – Brazil

marcio.barros@uniriotec.br

Abstract. In this paper we present a simulation based
approach to predict the expected probability distribution
that describes the size of a software project in a given
period in the future. Since the simulation strongly
depends on historical information, we propose the
collection of such data from version control systems,
which are well-known and widely used in the industry.
We discuss the information collection process and the
simulation model that is built and executed based on such
data. Finally, we present a case study in which we apply
the proposed approach to estimate the size of a large
software project on a three month time frame, comparing
simulation results with other estimation procedures.

Keywords: software estimation, software economics,
measurement and empirical Software Engineering.

1 Introduction
Size prediction is a hard problem for software projects.

Many are the external and internal forces that can
influence software growth, and the combined effect of
such forces may prove difficult to model. Nevertheless,
estimating future size is paramount as an early warning
sign of missing milestones and the need to negotiate
adjustment to project schedule and cost baseline. By
predicting the size of a software project in the near future,
a manager can identify whether the development team is
productive enough to attain the functionality necessary to
meet the next milestones within the desired time frame.
So, the manager can plan team allocation on maintaining
the software assets that are already constructed and the
new functions to be built.

Two perspectives are usually explored when
researchers propose a software project prediction method:
(a) modeling the project and its influence factors in great
detail, yielding complex simulation models that can be
executed under distinct scenarios to provide insight on the
future of the software project [1] [2] [3]; or (b) selecting a
small group of relevant influence factors, deriving
analytical formulations that explain the attributes under
estimation based on data from past projects, and applying
these equations to estimate the project at hand [4] [5].

While the first perspective demands knowledge about
the software project to build the simulation models, the
second perspective requires a selection criteria by which
past projects are chosen to provide data to estimate the
new one. Usually, this selection criterion is based on
similarity, a subjective and ambiguous term whose

interpretation may vary according to the different
concerns people present about the project. Also, external
drivers (such as consumer’s expected delivery date and
budget restrictions) may influence the selection of
“similar” projects, favoring those whose data yield
estimations for the current project within a feasible zone.
Finally, there may be issues regarding which data about a
past project is available, how such projects were
characterized, and how the information was stored.
Diversity on data formats, technology used, programming
language, development team, environment, and so on,
may require adjustments on the available datasets in order
to make them useful for the new project.

In this paper, we propose a simulation based approach
to predict the expected probability distribution for the size
of a software project in a given period, based on
information collected from the project itself. Our
fundamental assumption is that the most similar project to
the one requiring estimation is the project itself. Thus, past
information about the project is probably the best
estimator for its future performance. Version control
systems, like CVS [6] or SubVersion [7], commonly used
in many industrial software projects, provide the required
information. The approach is related to the second project
prediction perspective, since relevant factors collected
from past data are used to predict the future of the
software project. A case study regarding the application of
the approach is presented and its limitations are addressed.

The remaining of this paper is organized in five
sections. Section 2 presents concepts and definitions that
support the collection of information from version control
systems to feed the simulation model. Section 3 presents
the proposed simulation model and how results can be
drawn from it. Section 4 presents a case study where the
proposed approach is applied to a large software project.
Section 5 presents related work. Section 6 addresses some
limitations of the proposed approach and, finally, section
7 draw conclusions and directions for future work.

2 Collecting Information from Version Control
Configuration management tools have become well
known and widely accepted by the software industry [8].
The availability of free source tools for version control,
the growth of outsourcing and geographically distributed
development, and the need for larger development teams
drive the use of version control systems in medium and
large software projects.

149

Version control systems store every version of relevant
artifacts that compose a software project, thus maintaining
a history of changes done throughout the software life-
cycle. Version information, such as comments about the
changes that were made, completion date and developer in
charge, are attached to each version of an artifact. Version
control systems are commonly used to allow navigation
and retrieval of different versions of source code modules,
but research in the field is evolving to allow requirements,
design documents, project plans, and every other
document to be managed by these systems.

Therefore, over the years the central repository of a
version control system becomes a rich source of time-
related information about a software project. After some
development time, the repository is populated and the
information it holds can be used to estimate relevant
attributes for the project. So, instead of relying on “similar
projects”, our approach uses information from the project
itself to support estimation.

Before describing the simulation process that yields the
probability distribution for project size in a given period,
we need to formalize the information structure under the
control of a version control system. A version control
system manages several software project repositories. We
define a software project repository (SPR) as the finite set
of files (Fi) that compose a software project:

SPR = {Fi | 1 ≤ i ≤ N}

Each file composing a software project repository is
described by the directory in which it is located and an
ordered set of reviews (Ri). Each review (Ri,j) is described
by a unique identifier, the developer who committed the
review to the central repository, the moment when the
commit operation was executed, a comment describing the
changes, and the resulting source code.

Fi = (directory, Ri)
Ri = {Ri,j | 1 ≤ j ≤ M} � Ri,j.time < Ri,k.time, � j < k
Ri,j = (id, developer, time, comment, code)

Based on such definitions, we define the size function,
which represents the size of a given file review. The
function maps a concept from the space defined by the
reviews of a given file to the space of natural numbers,
where size is defined.

size (Ri,j): Ri � N

We also define the current operator, which returns the
last review committed in a given moment for a given file.
It allows us to define the size function against time,
measuring the size of the current review in that moment.

current (Fi, t) = Ri,j
�Ri,j.time ≤ t, Ri,j � Fi
�not � Ri,k: Ri,j.time < Ri,k.time ≤ t, � 1 ≤ k ≤ M

size (Fi, t) = size (current (Fi, t))

Finally, we define the diff and growth operators. The
first calculates the nominal size change observed from

time t1 to t2, t1 < t2, while the second calculates the
percentile size change in the period.

diff (Fi, t1, t2) = size (Fi, t2) – size (Fi, t1)
growth (Fi, t1, t2) = diff (Fi, t1, t2) / size (Fi, t1)

The selection of a metric to act as the size function is
not trivial. Lehman suggests counting the number of
source files as a size measure for large software projects
[9], while Godfrey and Tu [10] use lines of source code to
measure size. Moreover, [11] has shown that the number
of source code lines is high correlated to the number of
source files in large software projects and, therefore, these
metrics grow at roughly the same rate. We decided to use
lines of code because most size estimation procedures are
directly related to this measure, such as [4, 5].

Nevertheless, collecting information from version
control systems is a time consuming activity [12] that
must be automated to scale to large projects with many
thousands of files. We have developed a framework,
namely JCVS, which is able to collect information from
version control repositories and store such data to XML
files or database tables. These are easier to query for
project specific information than the poorly structured
textual files that compose the version control repository.
In the proposed approach, our major interest is related to
the number of lines of code in the files’ reviews, but the
framework is capable of retrieving the source code itself
and all the attributes presented in the former formulations.

3 The Simulation Model
The historical growth data about the files composing a

software project can be analyzed as a time series, that is, a
set of values observed in successive time intervals.
Converting time series to probability distributions (by
computing the number of times each value is repeated in
the series) is a practical procedure to highlight the series’
descriptive characteristics, such as average value and
variance. Moreover, by analyzing the correlations among
time series, we can describe how they behave together,
that is, how a change in one series is reflected in the other.

We propose the use of Monte Carlo simulation to
estimate the size of a software project in a given period
based on correlated probability distributions derived from
time series collected from the project’s version control
system. Monte Carlo simulation is a sampling technique
that estimates probability distributions for one or more
results, given distributions for a set of parameters. The
simulation process requires: (a) a finite set of parameters
with known probability distributions; (b) a finite set of
results, whose probability distributions will be estimated;
and (c) a model that states how given parameter values
yield a value for each result. Monte Carlo simulation
consists in several cycles, each generating a value for each
parameter (according to its probability distribution),
calculating results according to the rules and relations
prescribed in the model, and annotating these results.
After thousands of such cycles, thousands of values are

150

annotated for each result and their probability distribution
can be derived from these values. Monte Carlo simulation
is popular because it allows parameters to be described by
any type of probability distribution (such as the normal or
beta distributions) and model development does not
require specific knowledge on statistics or how to apply
operations upon probability distributions.

In our proposed estimation method, the parameters are
parts of the software project, being characterized by
probability distributions estimated from growth time
series extracted from version control systems; the single
result is the observed growth of the project; and the model
prescribes that the growth of the project is equal to the
sum of the nominal growth of its parts divided by project
size. So, the definition for both parameters and model
depends on how the project is broken into parts. Two
restrictions apply to this decomposition: (i) it must be
possible to collect growth time series for each part from
version control systems; and (ii) high correlated time
series must be grouped and treated as a single part1.

The first restriction allows two decomposition strategies:
to take each file composing the project as a part or to take
selected groups of files as a part. However, the second
restriction eliminates the first strategy, since for large
projects there would be thousands of composing files. In
such a situation, there is a large probability that there will
be any two files, Fi and Fj, so that changes to Fi will be
coincident to changes to Fj over time. This results in high
correlation among these time series, breaking the second
restriction. Thus, the remaining option is to divide the
project into file groups and treat each group as a part.

In the context of the proposed method, we define a
component as a group of files that are logically related to
each other in a project (for instance, they represent distinct
design aspects for the same concept or process). The
project must be divided into a set of complementary
components (Ck). We suggest using of the project’s
directory structure as a starting point for the division,
refining it according to the distribution of project features
among the source code distribution units (for instance,
packages in an UML model). The final set of components
must be so that each and every file in the repository
pertains to one and only one component.

SPR = {Ck | 1 ≤ k ≤ Z}
Ck = {Fi | 1 ≤ i ≤ N}
� � Fi � SPR � � Ck: Fi � Ck, 1 ≤ i ≤ N, 1 ≤ k ≤ Z
� � Fi � SPR, Fi � Ck � not � Cl: Fi � Cl,

1 ≤ i ≤ N, 1 ≤ k, l ≤ Z; l ≠ k

Given these definitions, we can define the size function
and the diff and growth operators for components. The

1 When using Monte Carlo sampling with correlated time series,

their correlations are organized in a symmetric matrix that
must be positive defined. This property cannot be observed if
two or more series present high correlation.

size function is defined below. The definition for the diff
and growth operators is straightforward.

�
�

�
N

i
ik tFsizetCsize

1
),(),(� Fi � Ck, 1 ≤ i ≤ N

After dividing the project into components, we collect a
growth time series about each component from the version
control system. These growth time series are calculated by
applying the following process: (a) build a time series for
the size of each project file, collecting these data directly
from the version control system, as presented in section 2;
(b) sum up the time series for the files that compose each
component, yielding a time series for the size of each
component; (c) apply the growth operator in a weekly
basis over each component size time series, resulting in a
weekly growth time series for each component.

The weekly basis was selected since we expect that our
approach will be used in medium or large size projects,
where development time is measured in months or years.
Using a monthly basis would leave few data points to
build the component’s probability distribution, while a
day seems too small a period to measure changes in
components’ sizes. Further investigation is required to
determine if the weekly basis can be generalized to any
project, independent of its size or any other characteristic.

Next, the growth time series for each component must
be analyzed to identify and eliminate outlier points. Such
outliers are common in software development, and they
are discernible as ripples in the growth time series as files
are reused into the component (upward ripple), files are
transferred to another component (downward ripple),
developers delay the commitment of large changes to the
central repository (upward ripple), or third-party code is
put under version control (upward ripple). We observed
that such ripples are more common early in the project
life-cycle or during the transition phase of a service
acquisition (such as third-party development). Since they
do not represent the expected behavior for the project,
these outliers must be eliminated before simulation.

Each weekly growth time series is then converted to a
probability distribution that describes the component in
the simulation process. Correlations among these time
series are calculated and organized in a symmetric matrix
where each row and column represents a component and
each cell conveys the correlation among the components
in its row and column. After sampling a growth value for
each component in a simulation cycle, such values are
applied to the correlation matrix in order to represent the
joint behavior of growth in components. Thus, we have a
set of correlated parameter values.

The simulation process also depends on the estimation
period, that is, the number of intervals after a given date
on which project size will be estimated. As data collection
is established in a weekly basis, the estimation period ()
is also expressed in weeks. Each simulation cycle samples
correlated parameter values 	 times, yielding 	 random
weekly growths for each component (Gt). The size of the
component after the estimation period is given by:

151

	

�

���	�
1

)1(),(),(
t

tkk GTCsizeTCsize

After simulating each component size 	 weeks ahead,
project size is estimated by summing up the sizes of its
components. So, each simulation cycle yields an estimated
project size and an estimated size for each component. By
executing thousands of cycles, the proposed approach
yields a probability distribution for project size and a
probability distribution for each component’s size.

4 Case Study
This section describes the application of the proposed
approach to a large scale system. The system is used by
financial institutions and financial departments of non-
financial companies to identify, analyze, and manage
investments in market, over-the-counter, and hedge assets.
It is under development since early 2005, with an average
team of ten developers, using object-oriented and software
component technologies. The software is developed using
an incremental process and is currently composed of about
500 KLOC distributed along 1,931 source code files.

In this case study we were interested in addressing the
ability of the proposed approach to estimate project size in
the future, comparing the estimated size to the observed
growth. We had version control data for the project since
February, 2005 to September, 2007. We designed the case
study so that such data was separated into two samples:
data from February, 2005 to June, 2007 was used to
parameterize the simulation model, while data from July,
2007 to September, 2007 was used as a test sample, being
compared to results achieved from simulation.

Based on an assessment of its directory structure and a
meeting with the system architect, the software project
was decomposed into fifteen components. Six of these are
under development since the project started (February,
2005), five others were started a year later (February,
2006), and the last four components were started about a
year and a half after development was commenced
(November, 2006). Though some components had version
control data available since February, 2005, we decided to
collect information only for the period when all
components were under development (that is, from
November, 2006 to September, 2007). This allowed us 34
weeks of sample data and 12 weeks of test data. Also, this
period would better reflect the actual productivity, since
the development team was smaller in the early stages of
the project life-cycle. Table 1 presents the size (in KLOC)
of each component after the 34 weeks of sample data (first
row) and after the 12 weeks of test data (second row).

Table 1 - Component sizes after the sample and test data periods

aux sdbb sass sinf srep sdec svar scfr
21,7 45,0 51,7 53,7 6,1 23,8 28,0 20,7
24,9 48,1 51,8 54,5 14,0 28,2 33,7 21,3

idbb iass iinf irep idec ivar icfr
24,5 19,5 47,3 10,3 20,7 50,8 13,2
25,8 19,8 53,1 12,4 22,5 57,5 13,2

Next, we created the growth time series for the
components, as presented in Section 3. By visually
inspecting these time series, we observed some outliers
and proceeded with an investigation with the system
architect to understand whether these outliers were valid
values that should be accounted for in the simulation or
there were reasons for these large growth variations that
should not repeat in the future. Therefore, we conducted a
qualitative outlier elimination based on information
gathered through interviews with the project architect,
instead of a model based, quantitative outlier elimination
procedure. This investigation revealed important issues
about project components:

 The six components built from February, 2005 (aux,
sass, sinf, sdec, svar, and scfr) were developed by
reusing code from a previous version of the same
system. So, their early development stages show high
growth (thousands of KLOC added in a single week),
which was not compatible with the effort dedicated to
the components and could only be related to the
inclusion of reused code. Therefore, data from the
early development stages should be suppressed from
the analysis. This was not an issue to the current case
study (which used information from November, 2006
on), but was recorded as a lesson learned for field
data collection;

 Two components (srep and irep) were developed by
an external company, being integrated to the project’s
version control system later in their development
process. So, the time series for these components
present large ripples as new code is integrated
monthly (due to a staged delivery schedule), instead
of a smoother daily integration. Moreover, the
maintenance of these components was transferred to
the company within the test data period. So, the large
growth ripples ceased and a moderate growth
behavior was observed. This could not be projected
by the components’ time series, since they reflected a
third-party development period. We decided to
estimate project size without these components, thus
eliminating their series from analysis;

 A component (aux) presented a “ladder style” time
series: a week presenting high growth was followed
by several weeks without development (that is,
growth very close to zero). By enquiring the architect
about this component, we discovered that it was
composed by utilities classes, many of them reused
from previous projects. The reuse of previous code
justified the “ladder-effect” in the time series, as
complete, quality code from other projects was
injected into the version control repository. We
decided to keep the component under analysis,
eliminating a single very large ripple that made the
component’s size double in a single week.

After removing the outliers from the time series, we
generated their probability distributions and calculated

152

their correlation matrix. The multivariate distribution was
submitted to the simulation process, yielding future size
distributions for each component. The distributions after
10,000 simulations are available at the URL http://www.
uniriotec.br/~marcio.barros/seke2008/ index.html.

Figure 1 presents the probability distribution for project
size 12 weeks after the sample data period, related
statistical information, and a comparison to the observed
size. The final project size (vertical line at 454.5 KLOC,
excluding the srep and irep components) is within the
boundaries of the probability distribution and close to the
region determined by its first standard deviation from the
average (469.7 to 510.1 KLOC).

Figure 1 - Probability distribution for future project size and
related statistics

We compared this result with a projection of system
size after 12 weeks using the growth of the whole system
as a single time series. Over the 34 sample data points, the
average growth for the whole system was about -0.91%,
which yields an expected size of 376.8 KLOC after the 12
weeks of test data. Thus, the error between the simulation
based estimation and the real system size after the test
period was about 7%, while a projection of system size
over the same period based on a single system growth
time series would generate an error rate of about 17%.

We also compared simulation results to estimation
based on exponential weighting the growth time series for
the whole system, a usual estimation procedure in time
series analysis. Exponential weighting uses a polynomial
based on a factor (λ) by which observations are weighted.
The polynomial is built so that recent observations have
more weight than older observations. The estimated
system growth (EG) is calculated as shown below.

EG = (Gt + λ.Gt-1 + … + λN.Gt-N) / (1 + λ + … + λN)
� Gt-K: observed system growth on time t-K

By varying the lambda factor from 100% to 70%, we
observed that estimation error for system size grows from

17% to 20%. Thus, correlations among component growth
time series play a fundamental role to estimation, which is
not captured by analyzing the single system growth path.

Analyzing the distribution for component sizes, we
observed that svar presented higher growth than expected
from past information, idbb presented lower growth, and
idec presented less growth variations than observed in the
time series. Questioning the architect about such results,
we were informed that new features were recently added
to the svar component (leading to higher growth than
expected), and that sample data captured a phase in which
new features were implemented in idbb, complementing
features that were earlier implemented in the sdbb
component (thus, test data represented an stabilization
period for such component, presenting lower growth).
Finally, the architect could not explain the large variability
in the idec component in recent, test data.

Thus, analysis results provide indications that the
proposed method may be useful to address project size in
the future. Moreover, analysis indicates that it can elicit
relevant questions about project component’s evolution,
useful to register project history and to predict future
behavior for the software project.

5 Related Work
The most typical approaches for using version control data
to provide insight upon a software project are based on
visualization. Many approaches, such as the Seesoft tool
[13], the Aspect Browser [14], and Augur [15], allow the
visualization of dependencies among changes to a
software project. Such tools usually summarize project
information in line lengths and/or color codes, allowing
thousands of data elements to be presented simultaneously
on a screen. However, these tools are not yet able to draw
conclusions from the data, leaving this task to the analyst.

Monte Carlo simulation has been used to draw the
evolutionary path of specific uncertainties in software
projects. Grey [16] and Hullet [17] present simulation
methods to estimate project schedule and cost baseline. In
[2], we see the use of Monte Carlo sampling to model
uncertain results of a system dynamics model, according
to probability distributions associated to its parameters.

To the best knowledge of the author, there is no attempt
to use size information from version control systems to
predict the future size of software projects. However, in a
recent paper Kitchenham et al [18] addressed the benefits
of using in-company estimation methods (that is,
estimation models based on information from previous
projects developed by the same company) instead of using
cross-company methods. It was observed that, in some
companies, in-company methods performed better than
cross-company models, thus enforcing that in-project data
may be useful for estimation.

6 Limitations of the Proposed Approach
Due to the nature of the information used to describe

the parameters of the simulation process, the proposed

Information KLOC Information KLOC
Observed Size 454,5 Estimated Size 489,9
Std Deviation 20,2 Median 487,3
1st Quartile 465,5 3rd Quartile 511,8

153

approach has some limitations. First, it is tightly related to
the coding activity, since version control systems are
usually used during such activity. However, we see
growing interest on using such systems before coding, to
store and evolve specifications, design diagrams, and
other artifacts created during project development. As
research in this direction unfolds, we probably will be able
to use other artifacts to support estimation.

Second, the approach cannot estimate project size early
in the life-cycle, since there must be “past information”
upon the project. We suggest that analogy estimation,
based on similar projects from the past, might be used to
provide a first estimation for the project. This estimation
can be refined as project information is made available in
version control systems. The combination of analogy and
project-based estimation strategies requires investigation
and is a future perspective for our research.

We also believe that the usefulness of the proposed
approach may vary according to the usage of different
project life-cycle models. Project-based estimation is
probably more useful when development is carried on
using an incremental or spiral life-cycle model, in contrast
to a waterfall life-cycle model, since the coding activity
(and generation of version control information) starts
earlier in the former models.

Other important aspect of the proposed method is that
estimation is solely based on the production of source
code lines. Though it may seem that many factors that
influence the growth of a software project are overlooked,
the method assumes that recent history will repeat itself in
the near future. Thus, the same factors that affected recent
production of source code lines will play their role again,
affecting production in the estimation time horizon. So,
we rely on a single relevant productivity indicator,
assuming that it captures the influence of other factors.

7. Conclusions and Future Perspectives
This paper presented a simulation process to estimate the
size of a software project in a given time horizon,
according to information collected from the project’s
version control system. The project is divided into
components, component size changes in the past are
calculated from version control data, probability
distributions are drawn to describe component growth
dynamics, and Monte Carlo simulation is used to estimate
the joint effect of these distributions upon project size.

Further investigation is being conducted to assess the
usefulness of the approach under distinct development
models. We intend to evaluate it under agile development,
process-oriented organizations, and distinct life-cycle
models. We also intend to provide better procedures for
the component division and outlier elimination stages of
the proposed approach. Moreover, since Monte Carlo
simulation is computer intensive, we can study version
control information on the perspective of time series
models, such as auto-regressive (AR), moving average
(MA) and integrated models (ARIMA).

Acknowledgments. The author would like to thank and
acknowledge the support from the Brazilian Research
Council (CNPq) and the Foundation for Scientific
Development of the Rio de Janeiro State (FAPERJ).

References
1. Abdel-Hamid, T., Madnick, S.E. Software Project

Dynamics: an Integrated Approach, Prentice-Hall Software
Series, Englewood Cliffs, New Jersey (1991)

2. Barros, M.O., Werner, C.M.L., Travassos, G.H.: Supporting
Risks in Software Project Management. Journal of Systems
and Software 70 (1-2): pg 21-35 (2004)

3. Pfahl. D., Al-Emran, A., Ruhe G.: A System Dynamics
Simulation Model for Analyzing the Stability of Software
Release Plans. Software Process: Improvement and Practice,
Volume 12: pg 475-490 (2007)

4. Boehm, B.W., Clark, B., Horowitz, E., Westland, J.C.,
Madachy, R.J., Selby, R.W.: Cost Models for Future
Software Life Cycle Processes: COCOMO 2.0. Annals of
Software Engineering. 1: 57-94 (1995)

5. Putnam, L.H. A General Empirical Solution to the Macro
Software Sizing and Estimating Problem. IEEE Transactions
on Software Engineering, Vol. 4, 345 – 361 (1978)

6. Concurrent Versions System. http://www.nongnu.org/cvs/
7. Subversion. http://subversion.tigris.org/
8. Voinea, L., Lukkien, J., Telea, A..: Visual Assessment of

Software Evolution, Science of Computer Programming,
Volume 65, pg. 222–248 (2007)

9. Lehman, M.M., Ramil, J.F.: An Approach to a Theory of
Software Evolution, International Workshop on Principles of
Software Evolution, Vienna, pg 10-11 (2001)

10. Godfrey, M.W., Tu, Q., Evolution in Open Source Software:
A Case Study, Proceedings of the International Conference
on Software Maintenance, San Jose, EUA (2000)

11. Herraiz, I., Robles, G., González-Barahona, J., Capiluppi,
A., Ramil, J.: Comparison between SLOCs and number of
files as size metrics for software evolution analysis, Intl.
Conference on Software Maintenance and Reengineering
(CSMR’06), Bari, Italy (2006)

12. Voinea, L., Telea, A.: An Open Framework for CVS
Repository, Querying, Analysis and Visualization, Intl.
Workshop on Mining Software Repositories, Shangai (2006)

13. Eick, S.G., Steffen, J.L., Sumner, E.E.: Seesoft — a Tool for
Visualizing Line Oriented Software Statistics, IEEE
Transactions on Software Engineering 18 (1992) pg 957–968

14. Griswold, W.G., Yuan, J.J., Kato, Y.: Exploiting the Map
Metaphor in a Tool for Software Evolution, Proceedings of
the International Conference on Software Engineering, IEEE
CS Press, Washington, USA, (2001), pp. 265–274

15. Froehlich, J., Dourish, P.: Unifying artifacts and activities in
a visual tool for distributed software development teams,
Proceedings of the International Conference on Software
Engineering, IEEE CS Press, USA, pp. 387–396 (2004)

16. Grey, S., Practical Risk Assessment for Project
Management. Wiley (1995), ISBN: 047193979X

17. Hullet, D., Schedule Risk Analysis Simplified. PM Network,
July (1996), pp 23 – 30

18. Kitchenham, B., Mendes, E., Travassos, G.H., Cross- vs.
Within-Company Cost Estimation Studies: A Systematic
Review. IEEE Transactions on Software Engineering,
Volume 33, Issue 5 (2007), pp 316 – 329

154

Supporting Reusable Component Selection with Use Case Gap-Based
Development Effort Estimation

Xin Zhou, Bonnie Ray, Chenhua Feng

IBM China Research Lab, Beijing 100094, China
{zhouxin, bonnier, fengch}@cn.ibm.com

Abstract
Reuse-based development effort is an important factor to
be considered when selecting appropriate reusable
components. However, it’s rarely considered very
seriously in current practice, as current methods for
estimation of reuse development effort rely heavily on
personal experience and different developers may provide
very diverse estimates. In this paper, we propose a
method - AREA (Asset Reuse Econometric Analysis) that
enables systematic evaluation of development effort for a
new software based on consideration of alternative
reusable components. The core components of the method
are a process guiding the evaluation and an algorithm for
calculating the effort based on use case gap analysis
between to-be developed new software and selected
reusable components. A proof-of-concept implementation
of AREA is introduced and the feedback acquired through
its pilot with a solution development team in IBM’s
Global Business Solutions Center (GBSC) is presented.

Keywords: software reuse, reusable component
selection, development effort estimation, use case gap

1. Introduction

Software applications are playing an increasingly critical
role in supporting daily business, and there is widespread
need for high quality software applications to be delivered
in very tight time schedule. Software reuse has been
considered a promising way for improving the quality and
productivity of software development via leveraging
validated reusable software components [1][2].
Among the issues and problems associated with software
reuse, the selection of suitable reusable components from
numerous candidates is a critical one [3]. The challenge
is to achieve appropriate balance among multiple
concerns: functional requirements, non-functional
requirements, technical compatibility, financial issues,
and so on. An overall reusable component selection
process and some general criteria for assessing the
suitability of potential reusable components are presented
in [4]. A strategy for managing risks in the components
selection is proposed in [5]. Kontio et. al present their
COTS (Commercial Off-The-Shelf) selection method –

OTSO and its case studies in [6][7]. Also there are
requirement engineering based methods for COTS
evaluation and selection, as introduced in [8][9]. These
existing works mainly focus on systematic selection
process, selection criteria definition technique, functional
and non-functional requirement based selection, and
decision making techniques. However, they rarely
consider the potential development effort for developing
the new software, leveraging a given set of candidate
reusable components. The lack of careful consideration of
reuse-based development effort may cause inappropriate
selection of reusable components, which increases the
possibility of higher cost and longer development
lifecycle and counteracts the benefit of reuse.
In this paper, we present AREA (Asset Reuse
Econometric Analysis), a method that enables systematic
evaluation of the development effort for each candidate
reuse approach based on alternative reusable components
selection. The core components of the method include a
process guiding the evaluation and an algorithm for
calculating the effort based on analyzing the use case gap
between to-be developed new software and selected
reusable components. A proof-of-concept implementation
is built for AREA and is currently being piloted with
solution development teams working at IBM’s Global
Business Solutions Center (GBSC), from whom
preliminary feedback has been acquired.
The remainder of this paper is organized as follows.
Section 2 describes the AREA process and algorithm.
Section 3 introduces a web-based AREA support tool. We
report the pilot of AREA in section 4. In section 5, we
conclude and propose some future works.

2. AREA Method

In this section, we will first describe the conditions on
which AREA is intended to be applied. Then, the overall
AREA process and the core use case gap-based
development effort calculation algorithm are presented.
Finally, we will give an illustrative example for better
understanding of the method.

2.1. Assumptions

155

In present reuse practice, various public or private
reusable component repositories [10][11] are set up to
accommodate reusable component information and
software developers search and/or retrieve reusable
components for reuse based software development. To
apply the AREA method, we assume that for each
reusable component registered in the repository, the
following affiliated artifacts can be found: its use cases,
its implementation work products, the traceability
between use case and work products providing
information on which work products realize which use
cases.

2.2. The AREA Process

Figure 1 describes the overall AREA process. There are
four major steps in the process: searching reusable
components, generating reuse approaches, calculating
development effort for each reuse approach, and
comparing all the reuse approaches considering their
development effort.

Figure 1: Overall AREA Process

First given the to-be developed new software, software
developers search a reusable component repository for
candidate reusable components that fully or partially
realize the whole or partial requirement of the to-be
developed software. For example, we might find three
candidate reusable components for required function “xml
parser written in java” and five candidate reusable
components for requirement “logging”.
In the second step, based on the search result, software
developers can generate multiple reuse approaches. For
example, in approach one, candidate reusable components
a, b and c will be reused, while in approach two,
candidate reusable components a, e, and f will be reused.

While generating the reuse approach, some factors are
usually considered by software developers, including the
to-be developed software’s architecture design, the to-be
developed software’s technical constraints, and the
interface compatibility of reusable components selected
for this approach, etc. It’s rare that a resulting reuse
approach can exactly match the requirements of the to-be
developed software. As a result, once we take one
approach, further efforts are required to supplement new
functions, to transform existing un-matched functions,
and to remove unwanted functions, and the effort size
depends on the degree of function added, transformed or
deleted. In order to calculate the development effort, we
need to clearly specify the gap between requirements of
the to-be developed software and the existing functions of
the individual components considered for reuse. As use
case [12] has been widely adopted as an effective way to
specify software functions, AREA recommends
specifying the requirement gap with use case gap metrics.
Use Case Points (UCP) estimation method estimates
software development effort based on external use cases
specifying the software’s functional requirements [13].
UCP method assumes that all use cases are to be
developed from scratch. Use case points are assigned
according to use case and actor’s complexity and adjusted
by a set of technical factors and environment factors. The
final effort estimation is calculated by multiplying UCP
by a statistical parameter PHperUCP (Person Hours per
UCP). Experiments [14][15] reveals that this method is
more accurate than expert estimation in industrial trials.
Our work differs from this in that we estimate the
development effort based on use case gap between to-be
developed software and reusable components, instead of
use case of the to-be developed software.
Table 1 provides a non-exhaustive list of the basic use
case gap metrics.

Table 1: Basic Use Case Gap Metrics

Object Metric Definition
(Weighted) Number of as-is actors
(Weighted) Number of new actors
(Weighted) Number of unwanted Actor
(Weighted) Number of to-be
transformed actors
(Weighted) Number of as-is flows
(Weighted) Number of new flows
(Weighted) Number of unwanted flows

Event
Flow

(Weighted) Number of to-be
transformed flows
(Weighted) Number of as-is EPs
(Weighted) Number of new EPs
(Weighted) Number of unwanted EPs

Extensio
n Point
(EP)

(Weighted) Number of to-be

156

For a given use case of the to-be developed software,
there are three scenarios when identifying reusable
components. The first case is that it represents totally
new functions and cannot find any similar reusable
component use case. The second case is that there is one
reusable component use case representing similar
functions as it does. The third case is that there are
multiple reusable component use cases which together
provide similar functionality.
Based on the clearly specified use case gap, we will
leverage the size and effort information of the reusable
components selected in current reuse approach to
calculate the potential development effort for the to-be
developed new software taking this approach. Our
ultimate purpose is not to provide a very precise
estimation on the development effort for resource and
schedule planning, but to provide software developers
with an additional effort related dimension for reuse
approach tradeoff. The effort calculation approach is
detailed in the following section

2.3. The Effort Calculation Algorithm

For the convenience of algorithm presentation, we first
define some notation as follows:

- The reusable components selected by current reuse
approach are denoted as C1, C2, …, Ck

- The use cases of the to-be developed new software
are denoted as T_UC1, T_UC2, …, T_UCn

- The use cases of a reusable component Ci are
denoted as R_UCi1, R_UCi2, …, R_UCim

- The reuse relationship between to-be developed
software use case and reusable component use case(s)
is denoted as (T_UCi, Set_of_R_UCi).

- The implementation work products related to a
reusable component use case set Set_of_R_UCi are
denoted as WP1_UCi, WP2_UCi, …

Considering the three scenarios about the similarity
between T_UC and R_UC introduced in previous section,
there may be none, one, or multiple reusable component
use cases in Set_of_R_UCi. The development effort E for
new software consists of the effort Enew for realizing those
use cases without leveraging any reusable components
and the effort Ereuse for realizing those use cases
leveraging reusable components.
Formula 1:

E = Enew + Ereuse
Formula 2:

Enew = � Effort of T_UCi, where |Set_of_R_UCi| = 0;
Formula 3:

Ereuse = � Effort of T_UCi, where |Set_of_R_UCi| > 0;

For the effort of T_UCi whose Set_of_R_UCi is empty,
we still need software developers to manually input a
development effort as there is no baseline for reference.
Summing these effort values comes to Enew.

For the effort of T_UCi whose Set_of_R_UCi is not
empty, we will calculate it based on the historical
development effort of the implementation work products
it reuses. Suppose the gap between T_UCi and
Set_of_R_UCi is denoted by PAi, PNi, PTi, and PDi. More
specifically, PAi denotes the percentage of
Set_of_R_UCi’s actors/event flows/extension points that
have the same counterpart from use case(s) in T_UCi. PNi
denotes the ratio of new actors/event flows/extensions
points in T_UCi to the total actors/event flows/extensions
points in Set_of_R_UCi. PTi denotes the percentage of
Set_of_R_UCi’s actor/event flow/extension point that has
similar but not equal counterpart from use case(s) in
T_UCi. PDi denotes the percentage of Set_of_R_UCi’s
actor/event flow/extension point that has neither similar
nor equal counterpart from use case(s) in T_UCi.
The effort calculation for this kind of T_UCi is defined by
formula 4. Here, we make an assumption that reusing as-
is from reusable components needs no effort.
Formula 4:
Effort of T_UCi = (PTi * TFi + PNi + PDi * DFi) * � Effort
of WPj_UCi, where |Set_of_R_UCi| > 0;
TFi (Transformation Factor) is a number denoting the
ratio of transformation difficulty to new development
difficulty. For instance, a TFi value 0.5 means that for use
case T_UCi, developing from scratch is twice as hard as
transforming based on existing implementation work
products. Similarly, DFi (Deletion Factor) is a number to
denote the ratio of deletion difficulty to new development
difficulty.

2.4. An Illustrative Example

In this section, we will use an example to demonstrate the
AREA process and calculation algorithm.

* Search Reusable Components
Suppose the to-be developed software S has three use
cases: T_UC1, T_UC2, T_UC3. The candidate reusable
components obtained from repository are C1 (with one use
case R_UC11), C2 (with two use cases R_UC21 and
R_UC22) , C3 (with two use cases R_UC31 and R_UC32)
and C4 (with one use case R_UC41). The use case
similarity relationship between the new software S and C1,
C2, C3, C4 are shown in Table 2.

Table 2: Use Case Similarity Relationship

Use Case T_UC1 T_UC2 T_UC3
C1 R_UC11 Yes No No

R_UC21 No Yes No C2 R_UC22 No No Yes
R_UC31 No No C3 R_UC32

Yes No No
C4 R_UC41 No Yes No

157

Also, software developers can get the historical
development efforts of implementation work products
realizing C1, C2, and C3 from repository, as listed in
Table 3.
Table 3: Historical Work Product Development Effort

Use Case Work
Product

Development
Effort

C1 R_UC11 WP11 20PHs (*)
R_UC21 WP21 45PHs C2 R_UC22 WP22 30PHs
R_UC31 WP31 30PHs C3 R_UC32 WP32 20PHs

C4 R_UC41 WP41 25PHs
(* PHs means PersonHours)

* Generate Reuse Approaches
Based on the preliminary analysis on above search results,
software developers generate two alternative reuse
approaches. For the first approach, C1 and C2 are reused.
For the second approach, C3 and C4 are reused.

* Development Effort Calculation for Reuse Approach 1
As in reuse approach 1, C1 and C2 will be reused by S, the
software developers compare the use cases of S and those
of C1 and C2. They get the values for use case gap metrics,
as listed in table 4.

Table 4: Use Case Gap for Reuse Approach 1

 PA PN PT PD
(T_UC1, {R_UC11}) 60% 20% 20% 20%
(T_UC2, {R_UC21}) 70% 30% 30% 0
(T_UC3, {R_UC22}) 90% 10% 10% 0

Suppose the transformation factor TF1 = TF2 = TF3 = 0.6
and deletion factor DF1 = DF2 = DF3 = 0.4, then the
calculation steps for reuse approach 1’s development
effort is:
(1) Effort of T_UC1

= (PT1 * TF1 + PN1 + PD1 * DF1) * � Effort of WPj_UC1
= (20% * 0.6 + 20% + 20% * 0.4) * (20)
= 8 PHs

(2) Effort of T_UC2

= (PT2 * TF2 + PN2 + PD2 * DF2) * � Effort of WPj_UC2
= (30% * 0.6 + 30% + 0 * 0.4) * (45)
= 21.6 PHs

(3) Effort of T_UC3

= (PT3 * TF3 + PN3 + PD3 * DF3) * � Effort of WPj_UC3
= (10% * 0.6 + 10% + 0 * 0.4) * (30)
= 4.8 PHs

(4) Ereuse
= Effort of T_UC1 + Effort of T_UC2 + Effort of T_UC3
= 8PHs + 21.6 PHs + 4.8 PHs = 34.4 PHs

(5) E = Enew + Ereuse
= 0 + 34.4PHs
= 34.4PHs

* Development Effort Calculation for Reuse Approach 2
As in reuse approach 2, C3 and C4 will be reused by S, the
software developers compare the use cases of S and those
of C3 and C4. They get the values for use case gap metrics,
as listed in table 5.

Table 5: Use Case Gap for Reuse Approach 2

 PA PN PT PD
(T_UC1, {R_UC31,
R_UC32})

50% 20% 40% 10%

(T_UC2, {R_UC41}) 80% 10% 20% 0
(T_UC3, {}) / / / /

Suppose the transformation factors TF1 = TF2 = 0.6 and
DF1 = DF2 = 0.4, then the calculation steps for reuse
approach 2’s development effort is:
(1) Effort of T_UC1

= (PT1 * TF1 + PN1 + PD1 * DF1) * � Effort of WPj_UC1
= (40% * 0.6 + 20% + 10% * 0.4) * (30+20)
= 24 PHs

(2) Effort of T_UC2

= (PT2 * TF2 + PN2 + PD2 * DF2) * � Effort of WPj_UC2
= (20% * 0.6 + 10% + 0 * 0.4) * (25)
= 5.5 PHs

(3) Ereuse
= Effort of T_UC1 + Effort of T_UC2
= 24PHs + 5.5 PHs = 29.5 PHs

(4) Enew = Effort of T_UC3 = 15 PHs, as estimated
manually by software developers

(5) E = Enew + Ereuse
= 15 PHs + 29.5 PHs
= 44.5PHs

* Compare between Reuse Approach 1 and 2
With the development effort calculation results gotten in
previous steps, software developers can learn that reusing
C1 and C2 for S will save 44.5 – 34.4 = 10.1 PHs effort
than reusing C3 and C4. Although it’s not the determinant
factor for developers to select reuse approach 1, software
developers can combine this factor with others (like the
price for getting reusable components for each approaches,
how developers skill availability for different approaches,
and so on), to support more precise decision making.

3. Proof of Concept Implementation

3.1. High Level Architecture

158

As depicted by Figure 2, major components of the AREA
support tool fall into four layers. Components in the
representation layer provide software developers with the
integrated interface for login, reuse approach design,
candidate reuse approach tradeoff, and so on. This layer
is implemented with JSP (JavaServer Pages)[16] and
Struts[17], both widely available technologies.
Components in the application layer provide core
functions, including user management, project
management, alternative reuse approach management and
estimation management. We use SCA (Service
Component Architecture)[18] to implement the
components in application layer.
Components in the data access layer provide convenient
and stable database access interfaces for application layer
components. iBatis[19] is used for the data access
components implementation.
The repository implemented with DB2 provides persistent
storage for user information, work product metrics,
software project profiles, reuse approaches, etc.

Figure 2: AREA Tool Architecture

3.2. Workflow

The architecture is designed to allow these functional
components and tools to be accessed in the context of a
collaborative workflow. Typically, a workflow would be
started whenever new software is proposed for
development. A project would be started to analyze the
development effort for candidate reuse approaches. First a
leading software developer would start a project for the
to-be analyzed software, and assign other developers to
work on the analysis using the Role assignment wizard.
From that point, the leading software developer can
monitor the project progress. The software developers
assigned to different roles would perform the profiling
and analytic tasks as prescribed in their role assignments.
Figure 3 shows the screenshot for use case gap specifying
task.

Figure 3: Specifying Use Case Gap

As prerequisite tasks are performed and completed,
individuals assigned to dependent tasks would be notified
that their tasks can and should be commenced. When the
analytical tasks are completed, all the software developers
can review the development effort calculation report and
start reuse approach evaluation.

3.3. Dashboard

The tool provides an estimation effort dashboard to the
software developers. The dashboard presents the
components in each reuse approaches, the use case
similarity relationship between new software use cases
and reusable component use cases, the detail information
about use case gap, the process and result of development
effort calculation. Then, software developers can drill
down into the details behind the effort result and
understand the effort in a scientific way.

4. Pilot and feedback

Version 1.0 of the AREA tool is currently being piloted
with solution development team working at IBM’s Global
Business Solutions Center (GBSC). The GBSC
developers who use AREA tool comment that: in their
previous reuse-based development practice, development
effort estimation is not typically considered when
selecting reusable components, as manual estimation of
the development effort relies heavily on personal
experience and different developers may give very
different estimation. With the AREA tool and its backend
method, the development effort calculation for candidate
reuse approaches becomes more scientific and it’s easier
for them to come to an agreement on the result as the
calculation process is explicit to all.
Also, the feedback from the pilot users drives new
requirements for further method enhancement and tool
development, which includes:
1) To extend the AREA method for considering Non-
functional requirement gap between new software and
reusable components while calculating the development
effort.
2) To integrate the AREA tool with Rational Software
Architect so that use cases, implementation work products,

159

and the traceability between them can be viewed in the
native environment.
3) To allow customizable calculation for use gap PA, PN,
PT, and PD based on basic use case actor, flow and
extension point gap metrics.
4) To provide more intuitive and interactive reporting.

5. Conclusion and Future Works

In this paper, we present the AREA method, which
enables systematic evaluation of development effort based
on alternative reusable components selection. The core
components of the method are a process guiding the
evaluation and an algorithm for calculating the effort
based on use case gap analysis between to-be developed
new software and selected reusable components. A proof-
of-concept implementation of AREA is built and being
piloted with a solution development team working at
IBM’s Global Business Solutions Center (GBSC).
Preliminary feedbacks reveal that the AREA tool and its
backend method make the development effort calculation
for candidate reuse approaches more scientific and it’s
easier for them to come to an agreement on the result.
In the future, we are going to enhance the method and tool
according to suggestions acquired in present pilot, and
continue the validation in more cases.

6. Acknowledgement

We thank Gopikrishnan Gopalakrishnan for leading the
AREA trial and giving the feedback. We also thank Paul
Borrel, William Tulskie and Liu Ying for illuminating
discussions.

7. References

[1] I. Jacobson, M. Griss, P. Jonsson, Software Reuse:
Architecture Process and Organization for Business
Success, ACM Press, 1997.
[2] J.E. Gaffney, T.A. Durek, Software reuse—key to
enhanced productivity: some quantitative models,
Information and Software Technology archive, Volume
31, Issue 5, pp. 258-267, 1989.
[3] Crnkovic, I., Component-based Software
Engineering–New Challenges in Software Development,
25th International Conference on Information Technology

Interfaces Proceedings, IEEE Computer society, 2003, pp.
9-18.
[4] J.S Poulin, J. M. Caruso, and D. R. Hancock, The
business case for software reuse, IBM Systems Journal,
vol. 32, 4. pp. 567-594, 1993.
[5] G. Kotonya and A. Rashid, A strategy for Managing
Risks in Component-based Software Development, 27th
Eruomicro Conference 2001 Proceedings, IEEE
Computer society, 2001, pp. 12-21.
[6] J. Kontio, OTSO: A Systematic Process for
Reuseable Software Component Selection, CS-TR-3478,
University of Maryland Technical Report, 1995.
[7] J. Kontio, A Case Study in Applying a Systematic
Method for COTS Selection, 18th International
Conference on Software Engineering Proceedings,
pp.201-209, 1996.
[8] COTSRE: A COmponenTs Selection Method Based
on Requirements Engineering, 7th International
Conference on Composition-Based Software Systems, pp.
220-223, 2008.
[9] A. Carina, C. Jaelson, CRE: A systematic method for
COTS components selection, XV Brazilian Symposium
on Software Engineering (SBES), 2001
[10] http://ram.tap.ibm.com/com.ibm.ram/home.faces
[11] http://uddi.xml.org/uddi-org
[12] I.Jacobson,M. Christerson,et al. ,Object- Oriented
Software Engineering: A Use Case Driven Approach,
Addison - Wesley, 1992.
[13] G. Karner, Resource Estimation for Objectory
Projects,
http://www.bfpug.com.br/Artigos/UCP/Karner%20-
%20Resource%20Estimation%20for%20Objectory%20Pr
ojects.doc, 1993.
[14] B. Anda, D. Dreiem, D.I..K. Sjoberg, and M.
Jorgensen, Estimating Software Development Effort
Based on Use Cases – Experiences from Industry, 4th
International Conference on UML, pp. 487-502, 2001
[15] B. Anda, Comparing Effort Estimates Based on Use
Cases with Expert Estimates, Proc. Empirical Assessment
in Software Engineering, 2002.
[16] http://java.sun.com/products/jsp/
[17] http://struts.apache.org/
[18] http://www.ibm.com/developerworks/cn/webservices
/ws-sca/
[19] http://ibatis.apache.org/

160

A Project Scheduling Method Based on Human Resource Availability

Lizi Xie , Junchao Xiao1 , Dapeng Liu , Qing Wang 2,1 2,1 1

1 Institute of Software, Chinese Academy of Sciences
2 Graduate University of Chinese Academy of Sciences

{xielizi, xiaojunchao, liudapeng, wq}@itechs.iscas.ac.cn

Abstract

Organizational resource constraints should be
taken into consideration when making a software
project plan, as resource problems are one of the main
causes of software project failures. Most of the
resource schedule methods focus on optimizing
resource allocation for a fixed project schedule. There
is a lack of methods that guides project schedule based
on resource constraints. Human resource is the most
important resource in software development. We
suggest a project schedule method that can satisfy both
the schedule constraints among tasks and
organizational human resource availability. It can
provide decision support for project managers in
making practical project schedule, such as helping
them to schedule project more effectively to ensure
high resource utilization rate, and providing useful
information for project plan modification and resource
plan creation.

1. Introduction

A practical project plan is an important assurance
for project success. According to IEEE standards [1-2]
for SPMP (Software Project Management Plan),
project schedule and resource allocation are the most
important parts of SPMP. The project would finish on
time only has enough resource been assigned.
Resource problem is one of the primary causes of
software project failures [3]. In order to enhance
organizational competitive edge and to ensure high
ROI (Return on Investment), how to use resource more
effectively is the key problem to solve for those large,
global-distributed software companies.

In CMMI for Development Version 1.2, project
resource includes “labor, machinery/equipment,
materials and methods” [4]. Different from traditional
industry processes, software development processes
mainly depend on human capability. Human is the

most important and complicated resource. William R.
Tracey, in Human Resources Glossary defines Human
Resources as: ‘The people that staff and operate an
organization’ [5]. The importance of human factors in
software development gained more and more
attentions [6]. How to take full advantage of human
resource is the pivotal question for software companies.

In software project management field, how to set up,
monitor and control project schedule effectively based
on resource constraints remains a key problem. That
human resource belongs to more than one departments
in matrix organizations (IBM, H ,), dynamic
project teams and multi-project environment make it
difficult to get a high utilization rate of human
resource:

1 The low visibility of human resource availability
makes project schedule according to resource status
difficult.

2 The size of the project and the complexity of
human resource make estimating the duration of the
project consistent with human resource availability
difficult.
 We suggest a project schedule method based on
organizational resource availability. The method first
describes organization’s human resource availability
and defines human resource constraints for a task, then
schedules tasks while assigning human resource to the
tasks. Some evaluation indicators and analysis
approach for the result are also offered to help project
manager to solve resource problem and improve the
project plan. Because organization’s resource
availability is considered during making project
schedule, the final project schedule is practical which
can guide the software development effectively by
avoiding potential resource problem.

2. Related works

PERT (Program Evaluation and Review Technique)
and CPM (Critical Path Method) [7] help project

161

manager to schedule tasks based on the constraints
among tasks and estimate the time limit for the project.
These methods are widely used in industrial fields, but
they do not consider resource constraints when
scheduling tasks, the resource utilization ratio can not
be ensured. The derived critical path is often
unpractical.

Critical-Chain [8-9] takes resource into
consideration based on CPM. But it focuses on project
schedule control, not the scheduling method.

Human resource is the core resource of software
companies. How to describe human capability and
manage human resource effectively is the key problem
of software project management [3] [10]. It seems that
most of the researches [11] on resource schedule
methods do not consider the characteristic of human
resource for optimization.

We proposed software process modeling based on
organization entity capability (OEC-SPM) [12-15].
Organization entities with similar capability are
modeled as a Process-Agent. Some descriptions of
human resource in OEC-SPM are adopted in this paper.

 The work in this paper stands on organizational
resource availability. We believe that a project
schedule which conforms to organizational resource
availability is a strong assurance for software project
success.

The rest of the paper is organized as follows:
Section 3 describes the two kinds of constraint in
project scheduling. The method will be explained in
section 4. In section 5, an example is offered to
illustrate the usage of our method. Section 6 discusses
the conclusion and future work.

3. Schedule constraints and resource
constraints

3.1. Basic concepts

Some concepts in our research scope are described as
following:
(1) Role and role set
RS (Role Set) = { , , } 1Role 2Role 3Role

Role is the description of capability and
responsibility of human resource when executing a
task. For example:

RS = {Designer, Programmer, Tester}
(2) Task and project
Task is the low level work package in WBS [1-2]. Its
cost, workload, duration, work product and resource
requirement can be easily recognized. We define task
as follows:

T (Task) = {TN, R, ED, APR, ISD, IFD, PSD, PFD,
HRA, NHRA}
TN is the task name. R indicates that only the person
who has the role can execute the task. ED is the
estimated duration of the task. APR is the amount of
estimated human resource required by the task. ISD is
the ideal start date of the task without considering
resource constraints. IFD is the ideal finish date of the
task without considering resource constraints. PSD and
PFD stand for the plan start date and plan finish date
of the task after resource allocation. HRA is the
human resource list assigned to the task. NHRA is the
number of human resource assigned to the task.
For example, T = {module C development,
Programmer, 7, 4, 2008-3-26, 2008-4-1, 2008-4-1,
2008-4-9, {“jack”, “tom”}, 2} means the task called
‘module C development’ needs four programmers to
work together for 7days. The ideal start date is 2008-3-
26, The ideal finish date is 2008-4-1. The plan start
date is 2008-3-28, and the plan finish date is 2008-4-3.
The task has two human resources assigned, they are
jack and tom.
A software project consists of many tasks.
SP (software project) = { , , } 1Task 2Task 3Task
(3) Human resource

Task will be executed by the assigned human
resource. It will run normally only when the assigned
human resource has the capability needed and has
enough time. We describe human resource as follows:
HRS (Human Resource Set) = { , , } 1HR 2HR 3HR
HR (Human Resource) = {N, RS, WC}
N (Name) is the name of human resource. RS (Role
Set) contains roles that human resource can act as. WC
(Work Calendar) is the time table of human resource.
It indicates which days are free and which are
occupied by tasks.
WC (Work Calendar) = { , , } 1Day 2Day 3Day
Day = {Date, Task}
Day.Task null indicates that the human resource is
free on that day. Day.Tas null indicates that the
work day is occupied by the task.
Assumption1: It is assumed that ED and APR of a
task is reasonable. Task schedule and resource
allocation will follow these estimated values. The
analysis and evaluation of the result are also based on
them.
3.2. Schedule constraints among tasks

Definition1. T.Pre-Tasks: Other tasks which can
impact T’ schedule are defined as T.Pre-Tasks.

162

Constraints among tasks mainly lie in schedule
constraints because of work products. They can be
easily recognized by project manager. T.Pre-Tasks can
be empty, which means the task is independent. When
T.Pre-Tasks are not empty, each task in T.Pre-Tasks
may have four kinds of schedule constraints (Table 1)
with T. They are SS (start-start), SF (start-finish), FS
(finish-start) and FF (finish-finish).

Table 1. Four kinds of schedule constraints
Type Explanation Figure
SS B.PSD>=A.PSD

SF B.PFD>=A.PSD.

FS B.PSD>=A.PFD

FF B.PFD>=A.PFD.

T.Pre-Tasks can be divided into four sub sets based on
the four constraint types. They are: T.Pre-Tasks.SS,
T.Pre-Tasks.SF, T.Pre-Tasks.FS, and T.Pre-
Tasks.FF. The tasks in each sub set have the same
type of schedule constraint with T. The schedule of T
should satisfy the following four SC (schedule
constraints):
SC1. SS-All: T.PSD >= T.Pre-Tasks.SS.MPSD
MPSD (Max Plan Start Date) is the latest plan start
date of all the tasks in the given task set.
SC2. SF-All: T.PFD >= T.Pre-Tasks. SF.MPSD
SC3. FS-All: T.PSD >= T.Pre-Tasks.FS.MPFD
MPFD (Max Plan Finish Date) is the latest plan finish
date of all the tasks in the given task set.
SC4. FF-All: TPFD >= T.Pre-Tasks.FF.MPFD

Task schedule result must satisfy the four
constraints above (SC1-SC4), otherwise the project
execution will be affected by schedule conflicts.
Definition2. T.ISD: The later date of T.Pre-
Tasks.SS.MPSD and T.Pre-Tasks.FS.MPFD is called
T.ISD (ideal start date).
Definition3. T.IFD: The later date of T.Pre-Tasks.
SF.MPSD and T.Pre-Tasks.FF.MPFD is called T. IFD
(ideal finish date).
Definition4. T.SD: The number of days between
T.ISD and T.PSD is called T.SD (schedule delay).
When T.SD > 0 we say that T is delayed.

3.3. Resource constraints of task

Project schedule should satisfy resource constraints
besides the four schedule constraints. When assigning
human resource to tasks, three RC (Resource
constraint) should be considered.

RC1: T.R HR.RS
RC2: HR { HR | HR.WC.Day.Date .PSD,
T.PFD]} HR.WC. Day.Task = null
RC3: T.APR =T.NHRA
RC1 means that the assigned human resource must
have the ability of the desired role. RC2 means that the
assigned human resource must have enough spare time
in the given duration of the task. Humans who satisfy
RC1 and RC2 can be assigned to the task. When the
human resources of the task satisfy all the three
constraints, the schedule and resource of the task can
be decided.
Definition5. HR.NET (Number of Executable
Tasks): The number of un-assigned tasks which
satisfy RC1 and RC2 with HR is called HR.NET.

4. Project schedule method based on
resource availability

4.1. Method of resource allocation and project
schedule

The main framework of the method is shown in
figure 1.

Figure 1. Main framework of the method

The detailed process flow is shown in figure 2. When
scheduling tasks, we try to let the tasks start as early as
possible, and we have an assumption below
considering the characteristic of human resource.
Assumption2: We assume that it is a strong
assurance for high productivity that the human
does the same job continuously. Too much
alternation among different tasks will lead to low
work efficiency.
Inputs: Task set (SP), Human resource set (HRS)
Process flow:
Step1: Get task set (ts) = {T | T SP T.Pre-Tasks =
�};
Step2: Call Allocation (ts);
Step3: Get task set (ts) = {T | T SP T.Pre-Tasks

� {M|M T.Pre-Tasks M.HRA = null} = �
T.NHRA=null};
Step4: Call Allocation (ts);
Step5: if {T | T SP T.HRA = null} �, go to step
3; else go to step 6;
Step 6: Allocation finish.
The detailed process flow of some core functions are
described in pseudo codes as following:

163

Function Allocation (ts)
{
 get all tq of ts (tq is a permutation of ts);
 for each tq
 {
 copy HRS to tq.HRS;
 for each task T in tq
 {
 Call Process(T, tq.HRS);
 }
 Re-calculate ISD and IFD of the
tasks whose HRA is null in SP;
 get the plan finish date of project
which is recorded as PFDP;
 }
 Choose the tq which has the earliest PFDP;
 Update SP and HRS according to the chosen
tq and tq.HRS;
 }
}

Figure 2. The detailed process flow

Function Process (T, HRS)
{
Get the number N of humans who have the role which
T requires;
Set the smaller one of N and T.APR as the target
resource amount Y;
Update HR.NET for all humans in HRS;
Ordered all the HR in HRS by ascending HR.NET;
T.PSD = T.ISD;
Do
{
 T.PFD = getPFD(T);
 Search the human combination which can
satisfy RC1, RC2;
 If the size of human combination = Y
 {
 Break;

 }
 T.PSD = T.PSD +1;
} while (true);
T.SD = T.PSD – T.ISD;
Update T.HRA;
Update the work calendar of the human in HRS;
}
Function getPFD (T)
{
If (T.PSD+T.ED>=T,IFD) return T.PSD+T.ED;
If (T.PSD+T.ED<T.IFD) return T.IFD;
}

After all the tasks have been processed, we can get
a practical project schedule which accords with
schedule constraints and organizational resource
availability.

4.2. Indicators for result evaluation

In order to evaluate and analyze the results, we
define three indicators as following:
Indicator 1: RUT (Resource Utilization rate of the
Task) = ED / (PFD D + 1).
RUT>1 indicates that human resources of the task are
overloaded. RUT<1 indicates that the human resource
may have much more spare time during executing the
task.
Indicator 2: RST (Resource Satisfaction rate of the
Task) = NHRA / APR.
RST<1 indicates that the resource is not enough for the
task.
Indicator 3: DTP (Delayed Task rate of the Project) =
Number of tasks whose SD > 0/ Number of tasks in the
project.
DTP > 0 means that there are tasks which can not start
in time because of resource limitation.

These indicators can help project manager evaluate
the result and find the root cause of abnormity. For
example, if RUT<1, the project manager could assign
additional work to the human resources to raise the
resource utilization rate. If RUT>1, the project
manager has to modify ED and APR of the task to
avoid schedule risk. If RST<1 or DTP>0, new
employees might be employed, or let the relative
human resource delay less important tasks.

5. Example

5.1. Case design

Take a typical small software project for example.
The plan start date of the project is assumed as 2008-4-
1. The project manager wants to know the probable

164

finish date of the project when considering resource
status. The software is divided into two modules (A
and B). The role set is defined as RS = {D (Designer),
P (Programmer), T (Tester)}. The tasks are listed in
Table 2. The schedule constraints among tasks are
shown in Table 3. The human resource status is shown
in Table 4. Holidays are not considered for
simplification.

Table 2. Tasks in the project
ID Name R ED APR
T1 System design D 14 3
T2 A detailed design D 10 2
T3 A development P 6 2
T4 A test T 4 2
T5 B detailed design D 10 2
T6 B development P 7 2
T7 B test T 4 2
T8 Integration test T 10 3

Table 3. Schedule constraints among tasks
ID Pre-Tasks and SC ID Pre-Tasks and SC
T1 Null T5 T1-FS
T2 T1-FS T6 T5-FS
T3 T2-FS T7 T6-SS, T6-FF
T4 T3-SS, T3-FF T8 T4-FS, T7-FS

Table 4. Human resource availability
ID RS WC (Days occupied by other projects)
P1 D P 2008-05-05---2008-05-14
P2 D P 2008-04-10---2008-04-20
P3 D P T 2008-05-04---2008-05-10
P4 D P T 2008-04-25---2008-04-26
P5 T 2008-04-15---2008-04-23
P6 T 2008-05-15---2008-05-25

5.2. Resource allocation and task scheduling

At first, we schedule tasks considering only the
schedule constraints. After implementing the method
in section 4.2, we get the scheduling result show in
Figure 3.

Figure 3. Gantt chart when resource

constraints are not considered
The project duration is 41 days which is perfect

because all tasks can start as early as possible. The
project will finish on 2008-5-11, but it is impractical
because resource constraints were not considered.

Now we implement our method to this case. First
we will process tasks which have no Pre-Tasks.
T1.ISD=2008-4-1, T1.IFD=2008-4-14. The satisfying
resource combination is {P1,P3,P4}. T1.PSD=2008-4-
1, T1.IFD=2008-4-14. Then we will process other

tasks which have no unscheduled Pre-Task. {T2, T5}
is our next target. We find that {T2, T5} can’t start
synchronously because there is not enough resource
available. We will decide to delay which task using the
method in section v4.1. The task set has two
permutations: tq1={T2, T5} and tq2={T5, T2}. The
schedule results of the two different permutations are
shown in Table 5.

Table 5. Two optional schemes

We will calculate the ISD and IFD of the other
tasks based on the two results. The finish date of the
project is 2008-5-21 for tq1, and 2008-5-20 for tq2.
We will choose tq2 to continue our approach.

{T3, T6} is the next target. Schedule the tasks in the
same way until all the tasks have been processed.
Finally the project schedule result is shown in Figure 4,
and the task attributes are shown in Table 6.

Figure 4. Gantt chart when resource

constraints are considered.
Table 6. Task attributes after resource

allocation
ID PSD PFD HR SD
T1 2008-04-01 2008-04-14 P1 P3 P4 0
T2 2008-04-25 2008-05-04 P1 P2 10
T3 2008-05-05 2008-05-10 P2 P4 0
T4 2008-05-05 2008-05-10 P5 P6 0
T5 2008-04-15 2008-04-24 P1 P3 0
T6 2008-04-27 2008-05-03 P3 P4 2
T7 2008-04-27 2008-05-03 P5 P6 0
T8 2008-05-11 2008-05-20 P3 P4 P5 0
Different from the schedule in Figure 3, the final

duration of the project has been extended to 50 days.
The overall schedule is longer but more practical
because it can guarantee that all the tasks can be
executed with enough resource. The black cycle in
Figure 4 indicates the root cause of schedule delay. T2
will be delayed for 10 days because of limited human
resource. Also, both T6 and T7 can not start as early as
we expected in Figure 3.
5.3. Result analysis

We can use the three indictors in section 4.2 to
analysis the schedule result. Indictors for tasks are
shown in Table 7. The DTP is 2/8=0.25. From the
value of the indictors two problems are discovered.

 T PSD PFD Human
T2 2008-4-15 2008-4-24 P1 P3 {T2,T5}
T5 2008-4-25 2008-5-5 P1 P2
T2 2008-4-25 2008-5-5 P1 P2 {T5, T2}
T5 2008-4-15 2008-4-24 P1 P3

165

Table 7. RUT and RST of each task
ID RUT RST ID RUT RST
T1 1 1 T5 1 1
T2 1 1 T6 1 1
T3 1 1 T7 0.57 1
T4 0.67 1 T8 1 1

 (1) RUT < 1: The RUT of T4 and T7 is below 1.
Project manager could assign additional tasks to P5
and P6 during the execution of task T4 and T7.
(2) DTP > 0: The causes of this abnormity are task T2
and T6 (T2.SD=10, T6.SD=2). That P2 does not have
enough time during 2008-4-15 and 2008-4-20 causes
T2 could not start in time. We will not discuss T6
because it is not on the critical path now.

Project manager may wonder whether hiring a new
designer is necessary. Supposing a new designer P7 is
added to the HRS, after implementing our method, we
could get the schedule result shown in Figure 5, and
the task attributes are shown in Table 8.

Figure 5. Gantt chart with a new designer

Table 8. Task attributes with a new designer
ID PSD PFD HR SD
T1 2008-04-01 2008-04-14 P1 P3 P7 0
T2 2008-04-15 2008-04-24 P1 P3 0
T3 2008-04-25 2008-04-30 P1 P2 0
T4 2008-04-25 2008-04-30 P5 P6 0
T5 2008-04-15 2008-04-24 P4 P7 0
T6 2008-04-27 2008-05-03 P3 P4 2
T7 2008-05-01 2008-05-04 P5 P6 4
T8 2008-05-05 2008-05-14 P4 P5 P6 0
The project duration would be 44 days after hiring a

new designer. The different result will help the project
manger to make decisions. After considering all the
other factors the project manager can decide whether
hiring a new man or delaying some assigned tasks of
the key human resources, or that even 50 days is
acceptable.

The case is simple but the usage of our method is
illustrates clearly. It is proved that our method can
provide decision support for project managers in many
aspects, such as making practical project schedule,
reaching high resource utilization rate, optimizing
project plan and generating human resource plan.

6. Conclusion and future work

In this paper, we propose a method for project
scheduling and resource allocation with consideration
of both schedule constraints and resource constraints.
Our method can offer decision support for project
managers when making practical project plan. It can

help software companies to achieve higher resource
utilization rate.

Future work will focus on assistant tools
development. The method will be integrated with
Process-Agent technique. Optimized human resource
allocation method using simulation technique will be
further researched.

Acknowledgments: This work is partially supported
by the National Natural Science Foundation of China
under grant Nos. 60573082, 60473060, 90718042, the
Hi-Tech Research and Development Program (863
Program) of China under grant No. 2006AA01Z185,
2007AA010303, as well as the National Basic
Research Program (973 Program) of China under grant
No. 2007CB310802.
7. References

[1] IEEE Std 1058-1998, IEEE Standard for Software Project

Management Plans

[2] IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information

Technology-Software life cycle processes-Implementation

considerations.

[3] Kathy schwalbe, “Information technology project management”,

2e, Thomson Learning

[4] CMMI for Development, Version 1.2. Software Engineering

Institute, 2006

[5] William R. Tracey: “The Human Resources Glossary”, Saint Lucie

Pr

[6] Tom DeMarco and Timothy Lister,: “Peopleware: Productive

Projects and Teams”, 2e. Dorset House Publishing Company,

1999.

[7] Harold kerzner: “Project management: a system approach to

planning, scheduling, and controlling”. 9e

[8] Goldratt E.M,: “Critical Chain”. The North River Press Publishing

Corporation .Great Barrington, 1997.

[9] Leach L P : “Critical chain Project Management” , Artech House

Professional Development library.2000

[10] PMI, Project Management Body of Knowledge 2004

[11] Brucker P: “Scheduling Algorithms” Springer Verlag. 2001.

[12] X. Zhao: “An Agent-Based Self-Adaptive Software Process

Model”. Journal of Software, 2004.03, Vol. 15, No. 3, Mar. 2004

[13] Q. Wang: “Software Process Management: Practices in China”. M.

Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840,

pp. 317-331

[14] Qing Wang: “A Process-Agent Construction Method for Software

Process Modeling in SoftPM”. Q. Wang et al. (Eds.):

SPW/ProSim 2006, LNCS 3966

[15] Lei Zhang: “A Tool to Create Process-Agents for OEC-SPM from

Historical Project Data”, ICSP2007, LNCS 4470, pp.84-95

166

Estimating the Effort of Independent Verification and Validation
in the Context of Mission-Critical Software Systems – A Case Study

Haruka Nakaoa, Adam Trendowiczb, Jürgen Münchb
a Japan Manned Space Systems Corporation, Ibaraki, Japan

bFraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
haruka@jamss.co.jp, {Adam.Trendowicz, Juergen.Muench}@iese.fraunhofer.de

Abstract

The ability to generate sufficiently accurate effort esti-
mates can be seen as a key success factor for multi-
organizational projects focusing on the development of
large and critical software systems. This is caused, for in-
stance, by the need for synchronizing multiple development
and verification and validation processes. Paradoxically,
effort predictions in the critical software systems domain
are still relying on human judgment. This requires much
overhead and its reliability depends largely on the exper-
tise and individual preferences of the involved experts. In
particular, verification and validation by independent en-
tity (IV&V) needs an estimation method that supports nego-
tiating and managing IV&V costs in the context of sparse
measurement data and low availability of domain experts.
In order to address these problems, in this paper we pro-
pose applying a hybrid effort estimation method called Co-
BRA® for estimating effort for IV&V of mission-critical
software systems. When applied in an industrial context,
CoBRA® improved estimation accuracy and precision by
about 40%, on average, compared to experts estimates and
OLS regression.

1. Introduction

The average company spends about 4 to 5 percent of its
revenue on information technology, with those that are
highly IT-dependent - such as financial and telecommuni-
cations companies - spending more than 10 percent on it [5].
Now, a great part of those investments is wasted because
software organizations are still proposing unrealistic soft-
ware costs, work within tight schedules, and, in conse-
quence, finish their projects behind schedule and budget
(about 50% of projects), or do not complete them at all
(more than 25% of projects). Moreover, even though pro-
jects are completed within a target plan, the functionality
and quality of products delivered are usually cut to fit this
plan [11]. This indicates that software project planning is a
critical success factor of a software project.

Project planning in the safety-critical domain is particu-
larly important and difficult at the same time. Large func-
tional constraint, high quality requirements, and involve-
ment of several independent parties make it much more
challenging to plan mission-critical projects than to plan

ordinary, non-critical software development projects. In
that context, effective synchronizing activities of all in-
volved parties are a key factor for project success. One ex-
ample activity requiring such synchronization is verifica-
tion and validation done by an independent organization, or
independent verification and validation (IV&V). A mis-
match between the IV&V plan and the overall project plan
may lead to significant delays or (in extreme cases) to the
skipping of certain IV&V activities. In consequence, the
whole mission might be exposed to the high risk of a sig-
nificant loss of money, and, in the worst case, injury or
death of people. Yet, comprehensive support for planning
and managing IV&V is missing.

Effort estimation approaches proposed by the research
community have traditionally focused on planning and
tracking classical, in-house software development. Effort
estimation methods that grew upon those objectives focus
on providing exact estimates. They do not, however, sup-
port an easily understandable, systematic and reliable
analysis of the most relevant causal effort dependencies.
Even though an accurate prediction is provided, software
practitioners have hardly any support to prevent potential
project overruns. In the short-term perspective, this would
mean a lack of a solid basis for effectively mitigating pro-
ject risks, and in the long-term perspective, a limited ability
to identify process improvement areas and to learn. More-
over, estimation methods promoted by the research com-
munity require large data sets, whereas methods commonly
employed by industry extensively involve domain experts.

All those aspects significantly reduce the applicability of
existing estimation methods in the IV&V context, where
reliable and comprehensive project management has to be
provided despite the minimal availability of quantitative
data and human expertise.

In this paper, we propose applying the Cost Estimation,
Benchmarking, and Risk Analysis method (CoBRA®)
[12][17] to estimate the effort of the IV&V of mission-
critical software systems. CoBRA® is a hybrid method that
combines analytical and expert-based estimation. It pro-
vides a systematic way to transform various sources of or-
ganizational knowledge (minimal set of measurement data
and expert judgment) into a transparent and reusable effort
model that supports achievement of a variety of project
management objectives, such as risk management or nego-

167

tiating of project costs.
The remainder of the paper is organized as follows: Sec-

tion 2 briefly characterizes the IV&V context. Section 3
gives an overview of existing software effort estimation
methods, followed by a more detailed description of the
CoBRA® method in Section 4. Section 5 presents the em-
pirical results of an industrial application of CoBRA® for
planning the effort of IV&V, followed by lessons learned
(Section 6) in the study. The paper ends up with a brief
summary and conclusions given in Section 7.

2. Independent Verification and Validation

2.1. Characteristics of IV&V
Independent verification and validation (IV&V) can be

defined as a process where software work products gener-
ated by a development team are verified and validated by a
completely independent organizational entity. Independ-
ence is considered here [7] in terms of technical, manage-
rial, and financial independence. IV&V is typically applied
in the context of safety- or mission-critical software sys-
tems, such as space and nuclear plant systems.

The typical constraint of IV&V, as compared to classi-
cal in-house V&V, is limited information on processed
artifacts. On the one hand, there is limited knowledge about
the software development environment; on the other hand,
IV&V has to handle various types of mission-critical sys-
tems. This variety does not allow for collecting many his-
torical project data. Moreover, involvement of three sites
(customer-, development-, and IV&V-entity) in the soft-
ware development process contributes to frequent and un-
predictable requirements change.

In that context, managing an IV&V project’s resources
is critical and difficult at the same time.

2.2. Objectives of Effort Estimation

Besides traditional estimation objectives such as precise
planning and tracking software resources, project needs
decision-making support. In particular, explicit identifica-
tion of factors having the greatest impact on IV&V cost and
their quantitative impact should be supported. Identification
of customer-specific factors (e.g., level of customer sup-
port) may be used to justify and negotiate IV&V costs that
cannot be influenced by the IV&V supplier. On the other
hand, identification of the IV&V supplier’s characteristics
(process and human capabilities) that have the greatest im-
pact on increased IV&V costs will allow targeting im-
provement actions to specific process areas and improving
the efficiency of IV&V. In consequence, project risks can
be mitigated timely and critical organizational processes
can be improved.

2.3. Current Effort Estimation Practices

A survey about current estimation practices at Japan
Manned Space Systems Corporation (JAMSS) revealed that

measurement data from around 10 already completed pro-
jects have been collected within the past 10 years. However,
the data suffered from significant incompleteness (around
20% of missing data) and large variability – due to the high
uniqueness of the considered projects. Since hardly any
data-driven estimation method that would meet the estima-
tion objectives (Section 2.2) can be applied reasonably,
estimates are typically based on the judgment of one or
more domain experts. Although sparse project data are
available, experts based their estimates solely on personal
experiences. One of the reasons is that the available simple
size measures, such as pages of software requirements
document, are believed not to reflect the amount of IV&V
effort reliably. Yet, expert-based estimation did not provide
satisfactory support for project management. First, the reli-
ability of the estimates depends largely on individual exper-
tise and preferences of involved domain expert. In conse-
quence effort estimates are not accurate and vary widely
across projects (see Table 4 and Table 5 in Section 5.5).
Moreover, estimation costs much effort each time it is per-
formed, and since it does not provide any explicit effort
model, it hardly supports decision making in a project.

3. Related Work

Numerous types of estimation methods have been de-
veloped over the last decades. In this section we provide a
brief overview of existing estimation methods from the
viewpoint of their applicability in the context of IV&V. For
a comprehensive review and comparative evaluation of
existing methods, please refer to [16].

Existing effort estimation methods differ basically with
respect to the type of inputs they require and the form of
the estimation model they do provide. With respect to input
data, we differentiate between three major groups: data-
intensive, expert-based, and hybrid methods (combining
available data and expert knowledge in order to come up
with estimates). Among the data-intensive methods, some
require past project data for building customized models
(define-your-own-model approaches), others provide an
already defined model, where factors and their relationships
are fixed based on a set of multi-organizational project data
(fixed-model approaches). The major advantage of fixed-
model approaches is that they, theoretically, do not require
any historical data to be applied. Those methods might be
especially attractive in the IV&V context, where very
sparse (if any) data are typically available. Yet, in practice,
fixed models, such as COCOMO [2][1], are developed for
a specific context (typically different from IV&V) and are,
by definition, only suited for estimating the types of pro-
jects for which the fixed model was built. The applicability
of such models for the IV&V context is, in practice, very
limited. In order to improve their performance, a significant
amount of organization-specific project data would be re-
quired for calibrating the generic model. In that case, the

168

little usefulness of the fixed-model approaches for IV&V
effort estimation would not differ much from the define-
your-own-model approaches, which require a significant
amount of context-specific data to build customized effort
models [15]. Application of the define-your-own-model
methods in the context of IV&V is further limited by the
additional requirements of specific methods. Parametric
approaches, such as regression [14], for instance, make
several assumptions about underlying project data (com-
pleteness, normal distribution, etc.) that are rarely met in
the software domain. Non-parametric methods originating
from the machine learning domain, such as artificial neural
networks (ANN) [3] or Decision Trees/rules [15], make
practically no assumptions about the data but are quite sen-
sitive to their parameter configuration and there is usually
little universal guidance regarding how to set those parame-
ters. Thus, finding appropriate parameter values requires
some preliminary experimentation.

In contrast to data-intensive methods, expert-based es-
timation does not require any project measurement data
because estimates are based on the judgment of one or
more human experts [2]. Expert estimation is, in fact, com-
monly used in the software industry (including IV&V). It
does, however, have several significant limitations. First,
much effort is required each time estimation is performed,
and the reliability of the outputs it provides largely depend
on the expertise and individual preferences of the human
experts involved. Moreover, since the rationale underlying
final estimates is not modeled explicitly, there is hardly any
support for effective decision making in a project (risk
management, process improvement, project scope negotia-
tions, etc.). Recently, a few hybrid methods have been pro-
posed to cope with deficits of data-intensive and expert-
based estimation. They combine a reduced amount of both
measurement data and human expertise to provide more
reliable estimates with limited estimation overhead. Em-
pirical applications [17][10] report on their higher estima-
tion accuracy and stability when compared to data- or ex-
pert-based methods. Moreover, methods that employ ex-
plicit causal effort modeling (e.g., CoBRA® [17]) have
proven to greatly contribute to the achievement of a variety
of organizational objectives, such as risk management or
process/productivity improvement.

4. The CoBRA® Method

CoBRA® [12][15] is a hybrid method combining data-
and expert-based effort estimation approaches. CoBRA®
the method is based on the idea that project effort consists
of two basic components: nominal project effort and an
effort overhead portion as presented below.

Nominal effort is the effort spent only on developing a
software product of a certain size in the context of a hypo-
thetical “ideal” project that runs under optimal conditions;
i.e., all project characteristics are the best possible ones

(“perfect”) at the start of the project. Effort overhead is the
additional effort spent on overcoming the imperfections of
a real project environment, such as insufficient skills of the
project team. In this case, a certain effort is required to
compensate for such a situation, e.g., team training has to
be conducted. In CoBRA®, effort overhead is modeled by a
causal effort model that consists of factors affecting project
effort within a certain context. The causal model is ob-
tained through expert knowledge acquisition (e.g., involv-
ing experienced project managers).

OverheadEffort SizetyProductivi NominalEffort
Effort Nominal

��

����� ������ ��

(1)

��

�
�

i j
jiij

i
ii

Multiplier)FactorEffort Indirect ,FactorEffort (

)FactorEffort (MultiplierOverheadEffort

(2)

An example is presented in Figure 1. The solid and
dashed arrows indicate direct and indirect relationships,
respectively. For instance, Requirements volatility has a
direct impact on development effort. The strength of this
negative influence on effort may, however, be modified
(compensated) by Disciplined requirement management
(indirect influence). The effort overhead portion resulting
from indirect influences is represented by the second com-
ponent of the sum shown in (2).

Figure 1: Example of a Causal Effort Model

The influence on effort and between different factors is
quantified for each factor using experts’ evaluation. The
influence is measured by means of effort overhead, i.e., a
relative percentage increase of the effort above the nominal
project. In order to capture the uncertainty of evaluations,
experts are asked to give three values: the maximal, mini-
mal, and most likely cost overhead for each factor (triangu-
lar distribution).

The second component of CoBRA®, the nominal project
effort, is based on data from past projects that are similar
with respect to certain characteristics (e.g., development
type, life cycle type) that are not part of the causal model.
These characteristics define the context of the project. Past
project data is used to determine the relationship between
cost overhead and costs (see equation #1). Since it is a sim-
ple bivariate dependency, it does not require much meas-
urement data. In principle, merely project size and effort
are required, whereby both can be measures using any valid
metric representing project size and effort.

169

Based on the quantified causal model, past project data,
and current project characteristics, an effort overhead
model is generated using a simulation algorithm (e.g.,
Monte Carlo). The probability distribution obtained could
be used further to support various project management ac-
tivities, such as effort estimation, evaluation of effort-
related project risks, or benchmarking. More details regard-
ing the CoBRA® method can be found in [12][15].

5. Case Study

5.1. Context of the Study
The study was performed in the context of JAMSS, a

company that performs IV&V of space software systems
(embedded software domain). JAMSS has been, for in-
stance, supporting IV&V for critical space software sys-
tems created by the Japan Aerospace Exploration Agency
(JAXA) for more than 10 years.

In this study, we focused on IV&V of the software re-
quirements specification documents using the document
review technique. The document review process starts with
a risk analysis to identify a software system’s operational
risks. Software requirements are then reviewed in more
detail based on their operational risks with respect to one or
more review objectives. In principle, there were six review
objectives [8] (Table 2): (O1) risk analysis, (O2) state tran-
sition completeness and consistency, (O3) design com-
pleteness for exceptional behavior, (O4) timing correctness
and consistency, (O5) interface correctness and consistency,
and (O6) traceability.

There were three domain experts involved in the study
(Table 1) who provided their knowledge to build the effort
overhead model. The main fields of expertise covered by
involved experts included: software product quality &
safety assurance (SPQSA), software safety reviews (SR),
and safety assurance in operation (SAO).

Table 1. Involved domain experts
Expert Expertise Domain experience

[#years]
Estimation experience

[#projects]
1 SR 7 8
2 SPQSA 8 9
3 SAO 4 6

As project measurement data, the number of document
pages was selected as the size of a software requirement
because even if the complexity of a requirement complexity
is related to the effort for reviewing a document, the docu-
ment itself has to be read by the IV&V team in order to
find out what this complexity is.

IV&V effort data from five projects were collected for
each project. In practice, because some IV&V objectives
were not addressed, effort data were not collected for each
IV&V objective except for one project. Therefore, weekly
working statuses of IV&V were used to abstract the effort
for each IV&V objective. Measurement data available for
the estimation included size and effort. Size was measured

in pages of software requirements for objectives O1 to O5
and system specification (software and hardware) for ob-
jective O6 additionally. The effort was measured in person-
days (PD).

Table 2. Review objectives considered in the study
Id Objective #projects
O1 Risk analysis 5
O2 State transition completeness/consistency 5
O3 Design completeness 5
O4 Interface completeness/consistency 4
O5 Timing consistency/correctness 3
O6 Traceability with correctness 5

5.2. Study Objectives

The objective of the study was to validate accuracy and
precision of CoBRA in the context of JAMSS IV&V (com-
pared to expert judgment and Ordinary Least Squares
method) and its contribution to the achievement of defined
organizational objectives (Section 2.2).

5.3. Study Design

5.3.1. Effort Estimation Procedure

Motivated by its numerous benefits, the CoBRA®
Method was proposed as best fitting the effort estimation
capabilities and objectives of JAMSS. First of all, CoBRA®
proposes a systematic way to build an explicit and reusable
effort model based on both implicit knowledge of domain
experts and sparse measurement data. Moreover, it pro-
vides on the output a transparent and intuitive model of
causal effort dependencies specific for the context where it
was applied. The first step of the effort estimation proce-
dure included development of the CoBRA® model using
the knowledge of the involved domain experts and meas-
urement data (size and effort) from already completed (his-
torical) projects. For each of the six IV&V objectives speci-
fied in the study (Table 2), a separate CoBRA® model was
developed. After the CoBRA® models had been created,
each was validated on the historical data in a leave-one-out
cross-validation experiment.

5.3.2. Study Hypotheses
In order to effectively support achievement of the estima-
tion objectives, the outputs of CoBRA® need to be reliable.
In our study, we evaluate reliability byvalidating the pre-
dictive performance of the estimation outputs, measured in
terms of predictive accuracy and precision. We expect that
CoBRA® will outperform the currently employed expert-
based estimation as well as the Ordinary Least Squares
method (OLS), one of a few data-driven methods that are
applicable in the study context (due to very sparse meas-
urement data). This leads us to two study hypotheses:

H1. CoBRA® provides more accurate and more precise esti-
mates than estimation based on expert judgment.

H2. CoBRA® provides more accurate and more precise esti-
mates than estimation based on OLS.

170

5.3.3. Evaluation of Estimation Performance
The effort models created in the study effort models

were evaluated with respect to their predictive performance.
We define predictive performance as the ability of the ef-
fort model to provide accurate and precise estimates. Esti-
mation accuracy refers to the nearness of an estimate (Ê) to
the true value (E). In order to remain comparable to other
estimation studies, we use common estimation error meas-
ures and accuracy measures [4], such as relative error (RE
in equation #3) and mean magnitude of relative error
(MMRE).

� � iiii EEERE /ˆ �
 (3)
The Conte’s RE and MRE measures are the subject of

common criticism in the software research community [6].
One of the alternative measures of estimation error pro-
posed is the so-called z measure (equation #4) [6]. It quan-
tifies the ratio of the estimate to the actual value

iii EEz ˆ/
 (4)

Estimation precision refers to the degree to which sev-
eral estimates are very close to each other (i.e., the scatter
in the data). For the purpose of comparability to other stud-
ies, we adopt the Pred.m measure. The Pred.m measures
the percentage of estimates that are within m% of MRE [4].
In our study, we use m = 25% as typically employed in
software estimation studies. Moreover, we adopt relative
standard deviation (RSD) (5) proposed by [6] for software
effort estimation as uncorrelated with size (Si) (which is a
weakness of classical standard deviation measures).

� ��
1

/ˆ
1

2

�

�

�

n

SEE
RSD

n

i
iii

 (5)

5.4. Study Execution

During the study execution, six CoBRA® models were
created for each of the IV&V objectives.For each model,
domain experts identified several factors (Table 3) that are
responsible for the variance of IV&V efficiency for a cer-
tain objective (Figure 2).

5.5. Results and Interpretation
This section presents the results of the empirical study.

Table 4 and Table 5 present the aggregated measures of the
predictive performance. In order to test the significance of
the observed effects, appropriate statistical test were per-
formed [13] (at � = 0.05). The results of a Shapiro-Wilk W
test indicated that the MRE and z results come from normal
population; in that case, a parametric Paired T-test for ho-
mogeneity of means was used. Since the RSD data violated
the normality assumption, a non-parametric Wilcoxon
Matched-Pairs Signed Rank test was used. Note that expert
estimates were available for a subset of the past projects
considered (indicated as n in Table 4 and Table 5). Finally,
as we were afraid that for such a small data sample, statisti-
cal tests would not have enough power (�-1 � 80%), we

performed a power analysis.

Figure 2. Overall efficiency of IV&V

Table 3. Effort factors considered in the study
Factors influencing IV&V efficiency Objectives
Domain experience of the IV&V team O1-O3
Requirements volatility allowed within an initial contract O2-O4, O6
Novelty of applied IV&V technique O3
Number of system’s interfaces to other (sub)systems O4, O6
Time pressure in the last IV&V phase O5
Level of risk assessment done by a supplier or customer O1
Fault Tree Analysis done by IV&V company O1
Timing consistency objective included in IV&V O5
Field Programmable Gate Array (FPGA) review performed O5
New (inexperienced) personnel involved in IV&V O1

5.5.1. Hypothesis H1
The results of the empirical investigation (Table 4) sug-

gest that, in principle, CoBRA® provides noticeably more
accurate estimates than either expert judgment or OLS for
all considered IV&V review objectives (a few exceptions
are marked in gray). For example, it improves MMRE by
70% and 40%, on average, compared to OLS and domain
experts, respectively. Only few of the obtained results are
statistically significant at the chosen � level (marked in
bold). As expected, in most of the cases, statistical signifi-
cance testing did not provide meaningful results (�-1 <<
80%). The only powerful results are marked in italics.
Summarizing, we conclude that hypothesis H1 is valid.

Table 4. Effort estimation accuracy

 CoBRA OLS Expert
Obj. MMRE Mean z MMRE Mean z MMRE Mean z n
O1 18.2% 97.9% 60.0% 44.1% 42.7% 57.3% 2
O2 25.4% 96.6% 34.0% 66.0% 37.1% 116.5% 4
O3 22.4% 101.% 32.1% 73.0% 36.0% 64.0% 3
O4 24.1% 98.6% 33.2% 66.8% 44.4% 55.6% 3
O5 39.6% 105.8% 46.3% 63.0% 72.2% 94.4% 3
O6 24.5% 93.1% 44.5% 55.5% 13.8% 88.8% 2

5.5.2. Hypothesis H2

The analysis of estimation precision (Table 5) suggests
that, in principal, CoBRA® noticeably outperforms both
expert judgment and OLS for all considered IV&V review
objectives (a few exceptions are marked in gray). For ex-
ample, it reduces RSD by 54% and 40%, on average com-
pared to OLS and domain experts, respectively. Similar to
accuracy, in most of the cases, statistical significance test-

171

ing did not provide meaningful results (�-1 << 80%).
Summarizing, we conclude that hypothesis H2 is valid.

Table 5. Effort estimation precision

 CoBRA OLS Expert
Obj. Pred.25 RSD Pred.25 RSD Pred.25 RSD n
O1 80.0% 26.3% 20.0% 74.0% 00.0% 71.3% 2
O2 60.0% 10.7% 60.0% 17.6% 25.5% 12.6% 4
O3 60.0% 15.1% 60.0% 42.1% 33.3% 22.6% 3
O4 50.0% 09.9% 50.0% 20.6% 00.0% 17.3% 3
O5 00.0% 07.7% 33.3% 12.5% 33.3% 15.0% 3
O6 80.0% 07.8% 40.0% 28.1% 100.0% 01.9% 2

5.6. Threats to Validity

Several threats to the validity of the presented case study
were identified. First, the very sparse project measurement
data available prevented us from achieving sufficient power
of performed statistical tests. Moreover, expert estimates
used to compare CoBRA®’s performance were available
only for some of the past projects considered in the study.
Finally, the conclusions drawn in the study are limited to
the specific context of IV&V reviews at JAMSS. Generali-
zation of the study findings requires further replications.

6. Lessons Learned

The following practical lessons were learned while ap-
plying the CoBRA® method for estimation effort of IV&V:

(LL1) Effort estimation scope: Since IV&V activities
differ depending on the objective of IV&V, the scope of
effort estimation (the context for which an effort model is
built) should be limited to a single IV&V objective. Total
effort is the sum of effort over all objectives.

(LL2) Size and complexity of review: The complexity of
a document under review should be considered as an effort
driver beyond simple size measures, such as number of
document pages.

 (LL3) Effort drivers: Considering effort drivers other
than size is a very important aspect of effort modeling. We
experienced that a single factor may multiply effort by as
much as 10 times (e.g., a complete lack of risk assessment
already done by a software supplier may increase the effort
of independent risk analysis by up to 20 times). Such an
effect is impossible to investigate based only on historical
size and effort data.

7. Summary

In this paper, we proposed adapting the CoBRA® soft-
ware estimation method to predict the effort of independent
verification and validation (IV&V). The method provides a
potential solution to estimation problems in the context of
IV&V. By integrating data- and expert-based estimation,
CoBRA® requires minimal amounts of project measure-
ment data and reduces the involvement of domain experts.
As a result, it provides a reusable model that supports stra-

tegic project/process objectives, such as risk management
for effort overrun for each IV&V objectives. At the same
time, as reported by several empirical studies, it provides
accurate and precise estimates.

When applied in the context of an example IV&V or-
ganization, CoBRA® proved to provide more reliable esti-
mates than both the expert-based estimation currently ap-
plied and ordinary regression (OLS) - one of few data-
intensive methods applicable in the IV&V context. It im-
proved the accuracy and precision of estimates by 40%, on
average. At the same time the method provided a transpar-
ent, context-specific effort model that supported IV&V
practitioners in achieving project and process management
objectives (e.g., negotiating project scope or improving the
effectiveness of IV&V activities).

References

[1] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E.
Horowitz, R. Madachy, D. Refer, and Steece B. Software Cost Esti-
mation with COCOMO II, Prentice Hall, 2000.

[2] B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.
[3] G. Boetticher, “An Assessment of Metric Contribution in the Con-

struction of a Neural Network-Based Effort Estimator”, Proc. Int’l
Workshop Soft Computing Applied to Soft. Eng., 2001, pp. 59-65.

[4] S.D. Conte, H.E. Dunsmore, V.Y. Shen, Software Engineering Met-
rics and Models. The Benjamin-Cummings Publishing Company, Inc.
1986.

[5] R.N. Charette, ”Why Software Fails [Software Failure],” IEEE Spec-
trum, vol. 32, no. 9, Sept. 2005, pp. 42-49.

[6] T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit, ”A simulation study
of the model evaluation criterion MMRE,” IEEE Trans. Soft. Eng.,
vol. 29, no. 11, Nov. 2003, pp. 985-995.

[7] IEEE Std. 1012-2004, IEEE Standard for Software Verification and
Validation, IEEE computer Society, June, 2005.

[8] N. Kohtake, A. Katoh, N. Ishihama, Y. Miyamoto, T. Kawasaki, M
Katahira, “Software Independent Verification and Validation for
Spacecraft” Proc. IEEE JAXA Aerospace Conference, 2008.

[9] M. Lother, R. Dumke, “Point Metrics. Comparison and Analysis,” in
Current Trends in Software Measurement (ed. R. Dumke, A. Abran),
Shaker Publ., 2001, pp. 228-267.

[10]E. Mendes, ”A Comparison of Techniques for Web Effort Estima-
tion,” Proc. Int’l Symp. Emp. Soft. Eng. & Meas., Madrid, Spain, 20-
21 Sept., 2007, pp. 334-343.

[11]T. Menzies, J. Hihn, ”Evidence-based Cost Estimation for Better
Quality Software,” IEEE Software, vol. 23, no. 4, 2006, pp. 4-6.

[12]M. Ruhe, R. Jeffery, I. Wieczorek, “Cost Estimation for Web Appli-
cations,” Proc. Int’l Conf. Soft. Eng., 2003, pp. 285-294.

[13]D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedure, (3rd ed.), Chapman & Hall/CRC; 2003.

[14]P. Sentas, L. Angelis, I. Stamelos, G.L. Bleris,. ”Software Productiv-
ity and Effort Prediction with Ordinal Regression,” J. Inf. & Soft.
Tech., vol. 47, no. 1, Jan. 2005, pp. 17-29.

[15]Q. Song, M. Shepperd, M. Cartwright, C. Mair, ”Software Defect
Association Mining and Defect Correction Effort Prediction,” IEEE
Trans. Soft. Eng., vol. 32, no. 2, 2006, pp. 69-82.

[16]A. Trendowicz, “Software Effort Estimation – Overview of Current
Industrial Practices and Existing Methods,” Tech. Rep. 06.08/E,
Fraunhofer IESE, Kaiserslautern, Germany, 2008.

[17]A. Trendowicz, J. Heidrich, J. Münch, Y. Ishigai, K. Yokoyama, N.
Kikuchi, “Development of a Hybrid Cost Estimation Model in an It-
erative Manner,” Proc. Int’l Conf. Soft. Eng., 2003.

172

Unified Basic Concepts for Process Capability Models

Clenio F. Salviano and Adriana M. C. M. Figueiredo
Centro de Pesquisas Renato Archer – CenPRA

Rod. D. Pedro I, km 143,6 – CEP 13069-901 - Campinas, SP, Brazil
Clenio.Salviano @ { cenpra.gov.br, gmail.com }, Adriana.Figueiredo @ cenpra.gov.br

Abstract
This article introduces a set of unified basic concepts for
Process Capability Models for the unification, generali-
zation and modeling of views of the structure and ele-
ments of relevant models, with more similar granularity
of its leaf elements. This set is part of an ongoing re-
search effort to evolve the current Software (and Sys-
tems) Process Improvement area towards a Model Dri-
ven Process Capability Engineering for Knowledge
Working Intensive Organizations. The set is imple-
mented in Eclipse Ecore. Its evaluation includes the
modeling of a unified view of CMMI-DEV and ISO/IEC
15504-5 models as relevant examples.

Keywords
Software Process Improvement (SPI), Model-Driven
Engineering (MDE), and Knowledge Working

1. INTRODUCTION
In a panel on Research Directions in Software Process
Improvement (SPI), David Card pointed out that SPI
“has become a driving force in the global software in-
dustry. … [however the majors SPI] approaches today
are considered competitors. In reality they are all based
on very similar concepts and techniques. The packaging
obscures the underlying principles. Eliciting and refining
underlying principles is the role of science” [1].

This article introduces a set of unified basic concepts as
a proposal for the underlying principles of Process Ca-
pability Models that are a relevant part of SPI (now
redefined as Software and System Process Improve-
ment). SPI was established as a “driving force in the
global software industry” around the development and
successful usage of the Capability Maturity Model for
Software (SW-CMM) [2]. Nowadays, the Capability
Maturity Model Integration for Development (CMMI-
DEV) [3], the successor of SW-CMM, and the ISO/IEC
15504-5 Exemplar Process Assessment Model for Soft-
ware Engineering (ISO/IEC 15504-5) [4] are the domi-
nant reference models for SPI. A more generic term –
Process Capability Model – is proposed to mean all
good practices reference models organized with the
concept of Process Capability. Three more generic terms
are also introduced: Process Capability Area, Process
Capability Level and Process Capability Profile.

Process Capability Area is a set of related specific “what
to do” good practices. Process Capability Level is a set
of related generic “how good to do” good practices.

Process Capability Profile is a model of a process, under
the aspect of process capability, composed of pairs of a
process capability area at a process capability level.
The article is organized as follows. This first section is
an introduction to the article. The second section
presents the research context and methodology. The
third section defines goals. The fourth section introduces
a class diagram for the unified basic concepts. The fifth
section describes CMMI-DEV and ISO/IEC 15504-5
views. The sixth section provides evaluation against the
goals. The seventh section presents related and future
work. Finally the eighth section presents conclusions.

2. RESEARCH CONTEXT
The set of unified basic concepts introduced in this ar-
ticle is part of an ongoing research effort [5, 6, 7, 8]
proposing a Model-Driven Process Capability Engineer-
ing for Knowledge Working Intensive Organizations
(MDPEK) for the evolution of the current SPI area.

MDPEK is a Model Driven Engineering (MDE) [9, 10]
for improving knowledge working (including software
and system working) intensive organization, identifying
and acting in relevant processes based on the concept of
process capability, integrated with the organization
strategy to better business results, driven by a Process
Capability Profile defined with elements from one or
more Process Capability Models [8]. The models are, for
example, CMMI-DEV, ISO/IEC 15504-5, iCMM,
eSCM-SP, OPM3, COBIT, ITIL, COMPETISOFT and
MR-MPS and/or process capability views of different
types of good practices models, such as ISO 9001,
PMBOK, EFQM, SWEBOK and Agile Methodologies1.

MDPEK focus on knowledge working processes, as
defined first by Drucker [11]. In this sense, Process
Capability Models not related with software or systems
may also be used, as for example, the Process Capability
Model for University Research Laboratories [12].

This research effort uses an industry-as-laboratory ap-
proach as proposed by Potts [13]. Potts argues that the
traditional research-then-transfer approach is inadequate
because it treats research and its application by industry
as separate, sequential activities.

Following the industry-as-laboratory approach, a
MDPEK exemplar methodology (named as PRO2PI for

1 These fourteen models are well known. References for them

are available elsewhere, for example, in Salviano [6, 8].

173

Process Capability Profile to Process Improvement) has
been developed and applied in the industry together with
the development and utilization of MDPEK and the set
of unified basic concepts [5, 6, 7, 8].

The set of basic concepts introduced in this article is the
result of the second phase of a project in this research
effort. Phase 1 is a proposal and initial specification as
described by Salviano [6]. Phase 2 is the development
and implementation of a revised version and the model-
ing of CMMI-DEV and ISO/IEC 15504-5 models as
examples.

3. RESEARCH GOALS AND METHODOLOGY
To guide the activities of the second phase, a main goal
and five unfolded
objective goals
are defined. The
main goal is that
the unified basic
concepts represent
a useful proposal
for the underling
basic concepts of
Process Capabili-
ty Models. The
first unfolded
objective goal
(Goal 1) is that
the set of unified
concepts general-
ize and unify the
structure of
CMMI-DEV and
ISO/IEC 15504-5
models. The Goal
G2 is that it has
fewer, more ge-
neric and more
flexible key basic
concepts than the
CMMI-DEV and
ISO/IEC 15504-5
models.

The Goal G3 is
that it supports the
mapping and
unification of the
elements of
CMMI-DEV and
ISO/IEC 15504-5
models. The Goal
G4 is that it sup-
ports a hierarchy
of elements and
represents the leaf elements with more similar granulari-
ty, than the correspondent elements of CMMI-DEV and
ISO/IEC 15504-5 models.

Finally, the Goal G5 is that it supports the definition of
process capability profiles with any combination among
the elements of available models, reusing elements,
preserving the original models and without the need to
create new models.

4. ������ CLASS DIAGRAM FOR THE UNIFIED
BASIC CONCEPTS

The set of unified basic concepts for Process Capability
Models is represented as the ������ Class Diagram as
illustrated in Figure 1 defined with TopCased [15], an
Eclipse Modeling Framework [14] plugin to the defini-
tion of metamodels based on Ecore.

Figure 1 – ������ Class Diagram in Eclipse Ecore

In Figure 1, for legibility’s sake, the words Process, Ca-
pability and Profile are replaced by Proc, Cap and Prof.

174

An organization defines and uses a ProcessCapability-
Profile as a model of its current or future process. A
ProcessCapabilityProfile is composed of one or more
ProcessAreaCapabilityProfiles. Each ProcessAreaCa-
pabilityProfile is a ProcessCapabilityArea at a Process-
CapabilityLevel. Each ProcessCapabilityArea and each
ProcessCapabilityLevel is composed of one or more
ProcessOutcomes. Each ProcessOutcome is composed
of one or more PracticeElements.

A ProcessCapabilityModel is a collection of one or
more ReferencePractices. ReferencePractice is an ab-
stract super class for (with the exception of ProcessCa-
pabilityModelElements) all Process Capability Model
elements, including the ProcessCapabilityModel itself.
There are four attributes for ReferencePractice: id (iden-
tification), name, def (definition) and desc (description).
ProcessCapabilityModelElements is a collection of all
ReferencePractices. A ReferencePractice may refer to
one or more PracticeGuidances. ProcessCapabilityMo-
del and PracticeGuidance are two concrete subclasses of
ReferencePractice. There are also three more subclasses
of ReferencePractice: the abstract classes PracticeEle-
ment, PracticeGroup and PracticeSystem.

PracticeElement has four subclasses: ProcessOutcome,
BasePractice, WorkProduct and Resource. Practice-
Group has two subclasses: ProcessCapabilityArea and
ProcessCapabilityLevel. PracticeSystem has two sub-
classes: ProcessCapabilityProfile and ProcessAreaCa-
pabilityProfile.

ProcessAreaCapabilityProfile represents a ProcessCa-
pabilityArea at a ProcessCapabilityLevel. ProcessCapa-
bilityProfile is a collection of one or more ProcessA-
reaCapabilityProfiles. A ProcessCapabilityProfile is a
collection of one or more ProcessAreaCapabilityProfile.

Each ProcessCapabilityArea and ProcessCapabilityLe-
vel is a collection of one or more PracticeElements. A
PracticeElement is a collection of one or more Proces-
sOutcomes. A ProcessOutcome is a collection of one or
more BasePractices, zero or more WorkProducts and
zero or more Resources. ProcessOutcome, BasePrac-
tice, WorkProduct and Resource are subclasses of Pro-
cessElement.

The concrete class ProcessAreaCapabilityProfile is a
connection between PracticeSystem and PracticeGroup.
The concrete class ProcessOutcome is a connection
between PracticeGroup and PracticeElement.

ProcessCapabilityArea, ProcessCapabilityLevel, Pro-
cessOutcome, BasePractice and ProcessCapabilityPro-
file are modeled with two more subclasses each, using
the Composer Design Pattern [16]. This design pattern
addresses the need to compose objects into tree struc-
tures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of ob-
jects uniformly. Each one of these classes is modeled as
an abstract class with two concrete subclasses each: the

first one models the composition relation (with the
Comp suffix) and the second one models the leaf ele-
ment (with the suffix Leaf). The composition and the
leaf element use as a name the aggregation of the initials
of the root element name (PCA, PCL, PO, PP, PCP and
PCM) followed by the suffix Elem or Comp.

The class diagram in Figure 1 is named ������ because
its shape resembles the drawing in the cover of Milton
Nascimento´s album named Geraes [17]2.

Figure 2 – ������ Diagram and Geraes Album Cover

5. CMMI-DEV AND ISO/IEC 15504-5 VIEWS
This section is a partial unified view of the complete
modeling of CMMI-DEV and ISO/IEC 15504-5 models
that is described in a technical report [18].

A CMMI-DEV´s Process Area is modeled as a Pro-
cessCapabilityArea composed of one, two or three lower
level ProcessCapabilityAreas. Those lower levels Pro-
cessCapabilityAreas correspond to the CMMI-DEV´s
Specific Goals. There are twenty-two process areas and
forty-eight specific goals in CMMI-DEV. The process
areas are organized into four process area categories.
Each process area category is modeled as a higher level
ProcessCapabilityArea. Therefore these three CMMI-
DEV concepts (process area category, process area and
specific goal) are modeled as ProcessCapabilityAreas in
three levels of composition.

The CMMI-DEV Project management process area
category, for example, is modeled as a ProcessCapabili-
tyArea composed of six lower levels ProcessCapabili-
tyAreas (with ids “PP”, “PMC”, “SAM”, “IPM”,
“RSKM” and “QPM”). The PP ProcessCapabilityArea,
for example, is composed of three lower levels Process-
CapabilityAreas (with names “Establish Estimates”,
“Develop a Project Plan” and “Obtain Commitment to
the Plan”. Each one of these three lower levels Process-
CapabilityAreas is a ProcessCapabilityAreaLeaf, while
each one of the two higher levels ProcessCapabilityA-
reas (“Project Management” and “Project Planning”) is
a ProcessCapabilityAreaComp.

2 The idea of an icon is inspired in Favre on the S Mega-Pattern: “The

shape of the S pattern has been chosen to directly mimic the layout
of the piece of art One and Three Chairs from Kosuth” [9, p. 6].

175

The four original CMMI-DEV process area categories,
twenty-two process areas and forty-eight specific goals
are modeled as forty-eight ProcessCapabilityAreaLeafs
and twenty-two ProcessCapabilityAreaComps concrete
classes. These twenty-two ProcessCapabilityArea-
Comps are the four process area category and the eigh-
teen process areas with two or three specific goals. The
four process areas with only one specific goal are mod-
eled as ProcessCapabilityAreaLeaf because there is no
difference between the original process area and its one
specific goal.

A CMMI-DEV specific goal is a ProcessCapabilityA-
reaLeaf composed of ProcessOutcomes. There is no
concept of outcome in CMMI-DEV. A specific goal is
composed of specific practices. In order to model an
outcome, each specific practice is modeled as an out-
come and as a practice. The outcome is the practice
rewritten with the passive voice. The specific practice
“SP 1.1 Elicit Needs”, for example, is modeled as a
BasePractice (id “SP 1.1”, name “Elicit Needs”, and def
“Elicit stakeholder needs, expectations, constraints, and
interfaces for all phases of the product lifecycle”) and as
a ProcessOutcome (id “Out 1.1”, name “Needs are eli-
cited”, and def “stakeholder needs, expectations, con-
straints, and interfaces for all phases of the product life-
cycle are elicited”).

An ISO/IEC 15504-5´s process is modeled as a Pro-
cessCapabilityArea. There are forty-eight processes in
ISO/IEC 15504-5 model that are organized in nine
process groups. Each ISO/IEC 15504-5 process groups
is modeled as a higher level ProcessCapabilityArea. The
ISO/IEC 15504-5 process groups are further organized
in three process categories. Each ISO/IEC 15504-5
process category is a higher level ProcessCapabilityA-
rea. Therefore, these three ISO/IEC 15504-5 concepts
(process category, process group and process) are mod-
eled as ProcessCapabilityAreas in three levels of com-
position.

The ISO/IEC 15504-5 organizational life cycle process
category, for example, is modeled as a ProcessCapabili-
tyArea (name “Organizational”). This ProcessCapabili-
tyArea is composed of four lower levels ProcessCapabi-
lityAreas (with names “Management”, “Process Im-
provement”, “Resource and Infrastructure” and
“Reuse”). The Management ProcessCapabilityArea, for
example, is composed of six lower levels ProcessCapa-
bilityAreaLeafs.

An ISO/IEC 15504-5 outcome and its correspondent
base practices are a ProcessOutcome with BasePractic-
es. Each base practice corresponds to one or more out-
comes. When a base practice corresponds to more than
one outcome, it is decomposed in a way that each ele-
ment corresponds to only one outcome. The ISO/IEC
15504-5 Risk management process, for example, is a
ProcessCapabilityArea with six ProcessOutcomes. The
first ProcessOutcome is modeled with desc equal to “the

scope of the risk management to be performed is deter-
mined”. This first ProcessOutcome has only one Base-
Practice (id “MAN1.BP1”, name “Establish risk man-
agement scope”, and desc “Determine the scope of risk
management to be performed”).

A CMMI-DEV process capability level is a ProcessCa-
pabilityLevel composed of one, two or ten lower level
ProcessCapabilityLevel. Those lower levels ProcessCa-
pabilityLevel are named Generic Goals in CMMI-DEV.
There are six process capability levels in CMMI-DEV
and seventeen Generic Goals.

An ISO/IEC 15504-5 process capability level is a Pro-
cessCapabilityLevel, composed of zero, one or two low-
er level ProcessCapabilityLevel. Those lower levels
ProcessCapabilityLevel are named Process Attribute in
ISO/IEC 15504-5. There are six process capability le-
vels and nine process attributes in ISO/IEC 15504-5.

The six original CMMI-DEV process capability levels
and the six original ISO/IEC 15504-5 process capability
levels are modeled as six ProcessCapabilityLevels com-
posed of zero, one, two or three lower level ProcessCa-
pabilityLevels. As both sets are based in the measure-
ment framework of ISO/IEC 15504, they are similar.
But they are not equivalent. Therefore, each set is mod-
eled separated, but using a similar structure in order to
facilitate further composition among them.

The ISO/IEC 15504-5 “Managed process” capability
level and the CMMI-DEV “Managed process” capabili-
ty level are modeled as ProcessCapabilityLevel (id “2”
and name “Managed process”). This capability level is
defined in ISO/IEC 15504-5 as composed of two
process attributes (PA2.1 and PA2.2). The corresponded
capability level in CMMI-DEV is defined as composed
of ten Generic Practices (GP2.1 to GP2.10). The corres-
pondent ProcessCapabilityLevel is modeled as com-
posed of three lower levels ProcessCapabilityLevels.
Table 1 describes these three lower levels ProcessCapa-
bilityLevels, identified in column “Unified Leaf PCL”.
Some of the original Generic Practices and Outcomes
are divided into two parts, identified as (p1) and (p2), in
order to allow a correspondence to the other model.

Using the contents of Table 1 as a guide, the capability
levels of the original CMMI-DEV, the original ISO/IEC
15504-5 and a unified view, can be modeled. They use a
subset of the same fourteen ProcessCapabilityLevel-
Leafs. Unified 2.1.1, 2.1.6 and 2.3.4 exist in CMMI-
DEV but not in ISO/IEC 15504-5. Unified 2.1.2, 2.2.1
and 2.2.2 exist in ISO/IEC 15504-5 but not in CMMI-
DEV. A similar table is produced for capability level 3
(with also three ProcessCapabilityLevelLeafs), for capa-
bility level 4 and 5 (each one with two ProcessCapabili-
tyLevelLeafs).

A CMMI-DEV staged representation is modeled with
four ProcessCapabilityProfiles, each one representing a
maturity level.

176

Table 1 - Example of Unified View

Generic Practices
for CMMI-DEV
Generic Goal 2

Unified
Leaf
PCL

Outcomes for ISO/IEC
15504-5 Process Attributes

2.1 and 2.2

Id Name Id Id Name

GP
2.1

Establish Organi-
zational Policy

2.1
.1

 2.1.2
PA 2.1
a)

Objectives for the
performance are
identified;

GP
2.2

Plan the
Process

2.1.3
PA 2.1
b) (p1)

Performance of the
process is planned;

GP
2.3

Provide
Resources

2.1.4
PA
2.1
e)

Resources and infor-
mation necessary are
identified, (…);

GP
2.4

Assign Re-
sponsibility

2.1.5
PA 2.1
d)

Responsibilities and
authorities are
defined, (…);

GP 2.5 Train People 2.1.6

2.2.1

PA 2.2
a)

Requirements for
the work products
are defined;

 2.2.2
PA 2.2
b)

Requirements for
documentation and
control are defined;

GP
2.6

Manage
Configura-
tions

2.2.3
PA 2.2
c)

Work products are
appropriately identi-
fied, (…)

GP
2.9

Objectively
Evaluate
Adherence

2.2.4
PA 2.2
d)

Work products are
reviewed and ad-
justed as necessary ;

GP
2.8
(p1)

Monitor and
Control the
Process

2.3.1
PA 2.1
b) (p2)

Performance of the
process is moni-
tored;

GP
2.8
(p2)

Monitor and
Control the
Process

2.3.2
PA 2.1
c)

Performance of the
process is adjusted
to meet plans;

GP
2.7

Identify and
Involve Relevant
Stakeholders

2.3
.3

PA 2.1
f)

Interfaces between
the involved parties
are managed.

GP
2.10

Review
Status

2.3.4

The abstract class PracticeElement and its concrete
subclasses ProcessOutcome, BasePractice, WorkPro-
duct and Resources represent the elements of the origi-
nal specific and generic goals of CMMI-DEV, com-
posed of specific and generic practices and sub-practices
and typical work products, and the original outcomes,
base practices, work products and resources from
ISO/IEC 15504-5.

6. EVALUATION
As an evaluation, the achievements of the five objectives
goals are commented. The achievement of Goal G1 is
evidenced by the modeling of CMMI-DEV and ISO/IEC
15504-5 models. The achievement of Goal G2 is evi-
denced by the number of key concepts. Seven explicit
key CMMI-DEV concepts (process area, specific goal,
process area category, process capability level, generic

goal, maturity level, capability profile) and one key
implicit concept (process area capability profile) are
modeled with four key concepts of the class diagram
(ProcessCapabilityArea, ProcessCapabilityLevel, Pro-
cessAreaCapabilityProfile and ProcessCapabilityArea).
Four explicit key ISO/IEC 15504-5 concepts (process,
process capability level, process capability profile and
process attribute) and one key implicit concept (individ-
ual process capability profile) are modeled with the
same four key concepts of the class diagram. For Practi-
ceElement, four explicit key CMMI-DEV concepts (spe-
cific practice, generic practice, typical work product and
sub practice) are modeled with four key concepts of the
class diagram (BasePractice and WorkProduct). Six
explicit key ISO/IEC 15504-5 concepts (outcome, base
practice, work product, generic practice, generic re-
source and generic work product) are modeled with the
four key concepts of the class diagram (ProcessOut-
come, BasePractice, WorkProduct and Resource). As
the same eight key concepts cover twelve CMMI-DEV
concepts and eleven ISO/IEC 15504-5 concepts, this
goal is considered satisfied.

The achievement of Goal G3 also is evidenced by the
description of how the key elements of both models are
modeled. The achievement of Goal G4 is evidenced by
an analysis of what elements from CMMI-DEV and
ISO/IEC 15504-5 are modeled as ProcessCapabilityA-
reaLeaf and ProcessCapabilityLevelLeaf. There are
differences in terms of granularity among the original
twenty-two process areas from CMMI-DEV, among the
original forty-eight processes from ISO/IEC 15504-5,
and between the two models as well. The Project Man-
agement process from ISO/IEC 15504-5 is similar to the
set composed of two CMMI-DEV process areas: Project
Management and Project Monitoring and Control. These
two process areas have five specific goals. In order to
make feasible the relationship among these two models,
both, the ISO/IEC 15504-5 process and the pair of
CMMI-DEV process area, are modeled as five Process-
CapabilityAreaLeafs. The forty-eight original ISO/IEC
15504-5 processes are covered by seventy-two Process-
CapabilityArea, and, the original twenty-two process
areas of CMMI-DEV are covered by forty-eight Pro-
cessCapabilityArea, with almost all of them already
included in the seventy-two from ISO/IEC 15504-5.

The achievement of Goal G5 is evidenced by the class
ProcessCapabilityModelElements as a collection of all
elements. The reference to the elements is the only self-
contained reference and allows the reuse of each element
in any model.

7. RELATED AND FUTURE WORK
Mappings, comparisons and harmonization among con-
cepts and elements from Process Capability Models in
general, and from a CMMI-DEV model and ISO/IEC
15504-5 model in particular, have been done elsewhere,
as for example, by Lepasaar et al. [19], Alexandre and

177

Habra [20] and Rout and Tuffley [21]. The iCMM and
MR-MPS models combine elements from a CMMI
model and ISO/IEC 15504-5 model. All of these related
works address the goals G1 and G3, but they do not
address the goals G2, G4 and G5.

Siviy and Kirwan [22] present an initial reasoning
framework for harmonizing process improvement efforts
when multiple improvement technologies and models
are in use. ������ is a specific proposal, based in
process capability, for that reasoning framework.

As a future work, a phase 3 of the project is under way
in which ������ is under another revision in order to
support the concepts of the other models listed in section
2. A preliminary analysis pointed out that most of these
concepts are already supported. This revision is also a
consolidation of the unified basic concepts as a complete
formal specification and implementation Process Capa-
bility Profile Metamodel in order to define a consensual
agreement on how elements of a process should be se-
lected to produce a given Process Capability Profile. The
concept of metamodel is used as proposed by Favre [9]
and Bézivin [10].

8. CONCLUSION
This article proposes ������ class diagram as a set of
unified basic concepts for Process Capability Models,
addressing the issue identified by Card [1]. The class
diagram is evaluated against five defined goals, includ-
ing the modeling of CMMI-DEV and ISO/IEC 15504-5
models. This proposal is part of an ongoing research
effort to evolve the current SPI area towards MDPEK
and PRO2PI. The class diagram helps the understanding
the concepts of Process Capability Models independent
of how a particular model implemented these concepts.
This proposal is a relevant step towards a process capa-
bility profile metamodel that will support MDPEK and
PRO2PI and therefore the consistent utilization of ele-
ments from multiple models to process improvement.

ACKNOWLEDGMENTS
The authors would like to thank all people from many
projects and institutions and the anonymous reviewers
for their comments and suggestions.

REFERENCES
1 Card, D. N.: Research Directions in Software Process

Improvement. In 28th IEEE International COMPSAC
Conference, pp. 238--239, Hong Kong, China (2004)

2 Paulk, M. C., Weber, C. W., Curtis, B. and Chrissis,
M. B.: The Capability Maturity Model, Addison-
Wesley, 441 pages (1994)

3 Chrissis, M. B., Konrad, M., Shrum, S.: CMMI:
Guidelines for Process Integration and Product Im-
provement, 2nd Edition, Addison-Wesley (2007)

4 ISO/IEC, ISO/IEC 15504 - Information Technology -
Process Assessment – Part 5: An exemplar Process
Assessment Model (2006)

5 Salviano, C. F., Jino, M., Mendes, M. J.: Towards an
ISO/IEC 15504-Based Process Capability Profile Me-
thodology for Process Improvement (PRO2PI), in
Proc. of The Fourth International SPICE Conference,
Lisbon, Portugal, p. 77-84, April 28-29 (2004)

6 Salviano, C. F.: Uma proposta orientada a perfis de
capacidade de processo para evolução da melhoria de
processo de software (in Portuguese) (A proposal ori-
ented by process capability profiles for the evolution
of software process improvement), PhD thesis, FEEC
Unicamp, Campinas, SP, Brazil (2006)

7 Salviano, C. F. and Jino, M.: Towards a {(Process
Capability Profile)-Driven (Process Engineering)} as
an Evolution of Software Process Improvement. In:
EuroSPI Industrial Proc, Finland, p. 12.26-37 (2006)

8 Salviano, C. F.: Model-Driven Process Capability
Engineering for Knowledge Working Intensive Or-
ganization, accepted for publication in The Eighth In-
ternational SPICE Conference, Germany, May (2008)

9 Favre, J-M: Foundations of Model (Driven) (Reverse)
Engineering: Models - Stories of The Fidus Papyrus
and of The Solarus, www-adele.imag.fr/mda (2005)

10 Bézivin, J.: On The Unification Power of Models, in
Software and System Modeling – SoSym, 4(2), p.
171-188 (2005)

11 Drucker, P.: Landmarks of Tomorrow - A Report on
the New 'Post-Modern' World, Harper & Row, New
York (1959)

12 Silva, J. L. da, Nabuco, O. F., Salviano, C. F., Reis,
M. C., and Maciel Filho, R.: Strategic Management in
University Research Laboratories, in Proc. Fourth In-
ternational SPICE Conference, South Korea (2007)

13 Potts, C.: Software-Engineering Research Revised,
IEEE Software, 10(5), pp. 19-28, Sep. (1998)

14 Eclipse Modeling Framework, at www.eclipse.org
15 TopCased plugin, http://www.topcased.org/
16 Gamma, E., Helm, R., Johnson, R. and Vlissides, J.:

Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley (1994)

17 Nascimento, M.: Geraes Album, EMI-ODEON(1977)
18 Salviano, C. F. and Figueiredo, A. M., Unified Basic

Concepts of Capability Model for CMMI-DEV and
ISO/IEC 15504-5 Models, CenPRA TecRep., (2008)

19 Lepasaar M., Mäkinen T., and Varkoi T.: Structural
comparison of SPICE and continuous CMMI, In the
Proc. of SPICE Conference, pp. 223-234, Italy (2002)

20 Alexandre, S., and Habra, N. UML modeling of five
process maturity models. Tech. Rep. LQL-2003-TR-
02, CETIC-FUNDP, Charleroi-Namur (2003)

21 Rout, T. P., and Tuffley, A.: Harmonizing ISO/IEC
15504 and CMMI, in Software Process Improvement
and Practice, 12(4), pp. 361-371 (2007)

22 Siviy, J. M. and Kirwan, P.: Process Improvement in
Multimodel Environments: Past, Present, Future.
Software Engineering Institute, Carnegie Mellon Universi-
ty, USA, slides presented at SEPG Conference (2008)

178

Systematic Approach to Risk Management in Software Projects through
Process Tailoring

Lisandra M. Fontoura2,3 and Roberto Tom Price1
1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre RS, Brazil 91.501-970
2Centro Universitário Franciscano (UNIFRA)

Santa Maria RS, Brazil 97010-032
3Universidade Regional Integrada do Alto Uruguai e Missões

Santiago RS, Brazil 97700-000
e-mail: lisandra@urisantiago.br, tomprice@inf.ufrgs.br

ABSTRACT
In order to be effective in the generation of high quality
products, a software process must suit the application
domain, the organization’s unique features, the development
teams and the specific characteristics of the project. On the
other hand, software projects involve development risks,
depending on the complexity of the project, the team
expertise, the technology deployed and many other factors.
In this paper, a systematic approach is proposed to manage
risks in software development projects through process
tailoring. This approach aims at adapting a process to a
specific project, with the objective of minimizing its
exposure to its identified risks. Goal/Question/Metric plans
are defined to monitor risks. Some developed case studies
are presented.

1. INTRODUCTION
Tailored software processes are required so that projects
can adopt development methods, techniques and practices
according to their specific needs. The Software Engineering
Institute (SEI), through Capability Maturity Model
Integration (CMMI), proposes that organizations define a
standard process, common to all the organizations’ projects,
and tailor this process according to the specific
characteristics of each process [11]. However, process
tailoring is not a simple task; it requires knowledge and
experience in the software process. While a process is
tailored, the characteristics of the project and of the
environment must be taken into account. Dependable
software development [15] for instance, requires particular
environment features, tasks, and support tools to support the
formalization of specifications, to demonstrate program
correction and to create software replication, among others.
Planned development process models [11] highlight
detailed identification of processes activities and tasks and
are suited to projects where a system quality improvement
is required to make the projects more manageable, and to
forecast dates and costs. These process models guide the
team as they develop the work [11]. Agile models highlight

flexibility, being suitable to development of software with
unstable requisites, by small teams of highly skilled
developers [11]. Both agile and planned approaches have
context-dependent shortcomings that, if are not addressed,
can lead to project failures. The challenge is to balance the
two approaches to take advantage of their strengths in a
given situation while compensating for their weakness [2].

Keeping the processes descriptions is important because
they allow reusing the organizations’ knowledge and
processes to be assessed and improved [14]. Reusing
processes is a way of reusing experience and knowledge,
making possible to create a collection of reusable processes,
which can be inter-connected to instantiate new and more
complex processes. To produce high quality software in a
competitive way, on schedule and within costs previously
estimated, it is also necessary to manage the risks involved
in the software development of a specific project [5].

This paper proposes a systematic approach - Project Risk
Management Approach (PRiMA), which aims at tailoring
the organization’s process, to be used in a specific project,
inserting in it preventive and corrective actions for the
prioritized risks of the project. The preventive actions to
risks are described as process and organizational patterns,
since those catch successful practices in software
management and can be used in the elaboration or
improvement of the software processes [4]. The
organization’s standard process and the organizational and
process patterns related to the risks that they intend to
prevent are stored in a knowledge base that must evolve
with time based on the developers experience. This makes it
possible to reuse a usable set of software process assets that
improve process performance across the projects and
provide a basis for cumulative, long-term benefits to the
organization [14].

A Project Risk Management Approach Tool - (PRiMA-
Tool) was developed to support the use of the systematic
approach proposed. This tool allows that the organization’s
standard process to be tailored to meet the specific needs of

179

a project, inserting in the project process, actions to prevent
and monitor risks. As the tailoring result, a website is
created with the description of the process for the project.

The paper is outlined as it follows: Section 2 shortly
introduces organizational and process patterns; Section 3
explains the systematic approach proposed to manage risks
in software projects, called PRiMA; Section 4 describes
PRiMA-Tool. In Section 5 some case studies are presented.
Section 6 mentions some related work, and in Section 7
conclusions and future works are suggested.

2. ORGANIZATIONAL AND PROCESS
PATTERNS
According to Coplien [4], successful software organizations
use the same organizational and process patterns in the
software development. These patterns are not found in less
productive or not so successful organizations [4]. A pattern
describes the essential part of a solution for a recurrent
problem in a specific context [8]. Organizational and
process patterns catch successful practices in the
management of software development [4] and can be used
to model a new organization and a new development
process for a project, or also to improve an existent process.
When put into practice together in an organized way,
process patterns can be used to create software processes
for the organization. Process patterns are considered blocks
of reusable processes that can be used
to tailor the software process to find
the specific needs of the organization
[4].

In this work, the organizational
knowledge to prevent risks is
described through rules that associate
one or more risks to one or more
patterns to which they propose a
solution, preventing or minimizing
the risks. The rules are associated
with project contexts, where they
work better. [7]. Rules have an
accuracy factor, which measures the efficiency of patterns
associated in risk control. A factor of 0 (zero) means the
patterns does not help at all, while a factor of 10 means the
patterns can be applied to completely eliminate the
associated risks. The accuracy factor can be adjusted, by
users, from real experiences of the use of the rule. The
project context is identified in terms of three criteria, using
an approach similar to Cockburn [3] and Boehm [2]:

- Defects Criticality: The possibility of loss associated with
the occurrence of a defect. It ranges from loss of comfort
(1) to the loss of many human lives (5);
- Team Size: The number of people involved is also an
important factor considered by Cockburn [3]. The larger the
project team, more intermediate documents must be
produced to coordinate the work;

- Team Skill: Boehm [2] extends Alistair Cockburn´s
classification of people, and uses it as an important factor to
balance between agile and plan-driven methodologies. The
classification ranges from: people who are unable or are
unwilling to collaborate (level -1) to people who can revise
a method, breaking its rules to fit an unprecedented new
situation (level 3). The team skill is calculated according to
the percentage of people classified in the levels of
understanding.
The association of patterns to risks was based on the
existing knowledge in published books and articles as
[2][11][14][1][12] and in catalogues of existing patterns
[4][8]. Figure 1 shows examples of risk association rules,
such as the risk ambiguously or imprecisely written
individual requirements to patterns that intend to prevent it
in different project contexts. Different rules are associated
to the same risk in different contexts. For example, Rule 1
has as goal to prevent risk in projects with planned
characteristics – large teams with medium abilities and
software of low criticality [4][12], while Rule 2 will be
used to select patterns in dependable projects – high skill,
medium teams and high criticality [4][15], and Rule 3 will
be used in projects with agile characteristics – high skill,
small teams and medium criticality [1][8]. The above
associations of risks to patterns are examples; the
organization has to adjust and tune them to its reality and to
elaborate new rules according to its needs.

Figure 1 - Association of Patterns to Risks

An important characteristic of a process pattern is that it
describes what must be done, but not exactly the details of
how to do it [4]. It is necessary to identify the process
elements required in the deployment of each pattern
associated to the risks in a software process. Figure 2 shows
process elements required to the deployment of the pattern
ScenariosDefineProblem, as an example extracted from
Coplien [4]. This association is based on the description of
the pattern and on the practices described by models such as
the CMMI [14], and by processes such as RUP [12], XP
[1], PMBOK or by authors as Pressman [11], Sommerville
[15], among others.

The activities, proposed by Rational Unified Process (RUP)
[12], Develop Vision, Find Actors and Use Case and Detail

180

a Use Case are associated to the pattern Scenarios Define
Problem (from Rule 1), as another example. Due to the
readability of Figure 2 only the activity Find Actors and
Use Cases was completely described, according to the
description of RUP [12]. The process elements required to
the insertion of this activity in a software process are
highlighted in Figure 2. The activities, process elements
associated to it, the patterns and the association rules are
inserted in a knowledge basis.

Figure 2 – Association of Pattern to Process Elements

3. PROJECT RISK MANAGEMENT
APPROACH
The aim of the approach is to allow the elaboration of
software development process for a specific project. This
process has the objective of minimizing the project
exposure to its identified and measured risks, according to
the context of the project. Figure 3 shows the sequence of
activities proposed by PRiMA.

Figure 3 – Project Risk Management Approach

In the activity Identify Project Risks, the risks that may
affect the project are identified. To help the project manager
in this activity, the use of a common checklist of most
frequently occurring risks is suggested [7].

To identify risks, the team members must be interviewed
and group sessions must be organized with the team and
with stakeholders involved in the project [5]. The process of
identifying risks must not be limited to checklists proposed
in the scientific literature. It is possible, for example, to
create a list from the major problems that took place in the
organizations past works, as suggested by DeMarco and
Lister [5].

Considering that there can be a great number of
identified risks for a project, each of a distinct
nature and impact, in the activity Priorize the
Risks, the risk exposure (RE) technique is
employed to give priority to the risks that have
more impact on the project and high or medium
probability of taking place. Risk exposure, also
called risk impact or risk factor, is the product
of the probability of a non-satisfactory result to
occur, and the loss associated to this non-
satisfactory result. This work uses a 0 to 10
scale in order to measure the probability and
the loss of each risk. Quantifying risks by risk
exposure provides a relative priority order for

all the identified risks. The project manager defines if all
the risks identified will be handled, or just the ones with RE
higher than a threshold. The cost to manage all the risks can
be very high and risks with low probability of occurrence or
low loss may not justify the cost to treat them [5].

The activity Select Patterns defines how to recover from the
knowledge base, the patterns which aim to prevent the
prioritized risks for a specific project [7]. In section 2 we
described the proposed mechanism to select patterns from
an organizational knowledge base.

The activity Tailor the Process for the Project describes
how the process can be tailored to integrate the patterns
selected to prevent the risks, resulting in the process defined
for a project. The process tailoring is based on a process
framework that integrates 1. the activities to be performed
in all projects, 2. organizational patterns as preventive or
corrective actions to risks, 3. GQM plans associated to
risks. Each organization must define its own framework or
tailor this to meet its specific needs. In the framework are
described process tailoring guidelines and process
configuration aiming to facilitate the tailoring task. The
guidelines describe how to tailor process elements
according to the size and formality of the project. Process
configurations are pre-defined process models, aiming to
meet typical projects or process improvement models, such
as CMM. The framework structure is briefly described in
section 3.1 of this paper.

During the project, it is necessary to monitor the risks to
ensure that risks factors stay within the planned thresholds
or to take some actions when they fall beyond the
quantitative targets. In the activity Elaborate the GQM Plan
to Monitor the Risks, the GQM Plan is defined. The GQM

181

Plan details the metrics that must be collected to answer the
questions associated to the goals of the plan. The GQM
goals must be formulated in the following way “Analyze the
<object of study> aiming <goal> as regards to the <focus>
in the point of view of <point of view> in the following
context <context>". Table 1 shows, as an example, a GQM
Plan to monitor the risk ambiguously or imprecisely written
individual requirements.

Table 1. GQM Plan: Ambiguously or imprecisely
written individual requirements risk

Risk: Ambiguously or imprecisely written individual requirements
Goal: Analyze the project with the purpose of monitoring the
requirements definition from the viewpoint of the development team.
Question: Did the users
validate the project
requirements documents?

Metric 1: Percentage of Validated
Requirements by the client
RVRC = (amount of requirement
documents validated/ total amount of
requirement documents) *100

The risk monitoring is based on the metrics defined in the
GQM Plan. The measures are stored in historical basis to be
used in future estimates and in the project control. The
metrics help the project manager to Monitor the Project
Risks, providing visibility to their progress. The project
manager must identify when corrective actions must be
taken because the probability of occurrence of risk is
growing. The probability of a risk to occur is defined by
comparing the measurements done with pre-established
thresholds. As results of the project risk monitoring, two
situations may occur: 1. the measurements are within the
acceptable thresholds, and a management action is not
required; 2. the measurements are beyond the allowed
thresholds, being necessary the execution of the activity
Select patterns again to select other preventive actions to be
inserted in the software project process.

At the end of any iteration, or periodically, the risks
identified and prioritized for the project must be reviewed.
In this review new risks may be identified, generating the
need of tailoring the process again, and therefore new
preventive actions can be included in the process to be used
in the next iteration.

3.1 Framework
The basis of the tailoring task is a process framework, from
which different processes can be instanced by the selection
of process elements, previously defined by the organization.
The framework is composed of a knowledge base, tailoring
guidelines and process configuration.

The knowledge base comprises: software risks; instances of
process elements (activities, roles, artifacts, disciplines,
tools) used in the definition of software processes; activity
diagrams describing the sequence of execution of activities
by discipline; organizational and process patterns; rules of
association patterns to risks; preventive actions describing
the process elements needed to be deployed in patterns
stored in the knowledge base; and goals, questions and
metrics used to monitor risks.

Tailoring guidelines and process configurations are
proposed to facilitate tailoring and definitions of the
organization’s process tasks. Process configurations are pre-
defined process models, which include a set of process
elements - they can be used as a starting point to define the
organization’s own process. These models were defined
from well known processes or methodologies described in
the literature. In the framework implemented with PRIMA-
tool the following process configurations are suggested:
simplified processes, as essential RUP [12], which
describes a small set of elements to use the RUP in a
project; complete, as RUP [12] and XP [1]; or extended to
fulfill software improvement models, as RUP CMM Level 2
and RUP CMM Level 3. These process configurations are
examples; every organization will define its process
configurations according to its needs. SW-CMM and
CMMI [14] consider that guidelines must be elaborated
describing how to tailor the standard process of the
organization to meet the specific needs of the project. These
process tailoring guidelines are associated to the process
elements and describe a list of alternatives to tailor a
specific element. Process guidelines help the designer in
tailoring processes, describing alternatives to tailor process
elements according to the size and formality of the project.
The guidelines are textual descriptions that describe details
of how tailoring must be done to each process element [14].

4. PRIMA-TOOL
An experimental environment was developed composed of
two tools: Pattern-Based Methodology Tailoring Tool
(PMT-Tool) and Project Risk Management Approach Tool
(PRiMA-Tool). PMT-Tool module was developed by Júlio
Hartmann [7]. PMT-Tool is responsible for cataloguing the
process patterns and associating them with the software
risks by means of preventive rules, as well as selecting the
pattern to prevent prioritized risks in a specific project.
PRIMA-Tool module is responsible for the elaboration of
the project software process, from organization’s standard
process tailoring, inserting in it the selected patterns to
prevent the project risks and defining the
Goal/Question/Metric Plans to manage the project risks.
Having concluded the project process tailoring, Prima-Tool
generates a website with the description of the defined
process for the project to be consulted by developers,
managers and process engineers. The tools are available for
interested readers to play with at
http://www.urisantiago.br:8080/prima/.

5. CASE STUDIES
Two case studies were carried out to validate the proposed
framework. The case studies were made based on two
software projects developed at a university, which will be
called Y University. The projects show different
characteristics, being one of the projects goal to develop a
financial system in one of the Y University campuses
(Fin$oft Project), while the other project goal is to develop

182

an academic system in a distributed way, by teams located
at three different campuses of the same university
(@cadSoft Project). Y University standard process is very
simple, and it is based on a small subset of RUP activities,
proposed by Essential RUP [12]. Table 2 shows in column
2, the activities that make the Y University standard
process.

The team that will develop the Fin$oft software is
composed of a project manager, two developers, two
trainees and the Computing Center Coordinator, who is the
Senior Manager of this project. The team is classified as a
high-skilled team, as developers are experienced in the
programming language employed and have already
developed similar systems. The defined risks for the Fin$oft
project are: failure to manage end user expectations,
misunderstanding the requirements, conflict between user
departments, scope and goals are not clearly defined, and
non-realistic schedule and budget. Among the pattern list
suggested by the PRiMA Approach, the patterns selected
were: EarlyAndRegularDeliverXP, PlanningGame,
OnSiteCustomer, ConstantRefactoring, BuildPrototype,
DocumentedSoftwareEstimate, SimpleDesign, SizeThe-
Schedule and DocumentedConfigurationManagementPlan.

Column 3 in table 2, shows the activities to be added to Y
University’s standard process (column 2) to form the
specific process for the Fin$oft Project. The team that is
developing Fin$oft financial software is small, with
developers who are knowledgeable on the technology to be
used in the project. The client is within the campus where
the system will be developed, so the project configuration
can use most of the agile methodologies. The main patterns
suggested by PRiMA are those that aim to provide more
agility to the organization standard process, based on RUP.

Another case study, @cadSoft academic software is being
developed by three teams, totalizing 22 people: 3 project
managers, 8 developers, 10 trainees and 1 senior manager,
based on the Y University administrative area. The team is
classified as average skilled, due to the large number of
trainees and the fact that the team does not master the
technology chosen for the system development. The defined
risks for the @cadSoft project are: lack of a methodology
for the project, lack of required knowledge/skill in the
project, misunderstanding the requirements, introduction of
new technology, wrong development of functions of user
interfaces, unfeasible design, and lack of top management
commitment to the project.

Table 2. Organization’s standard process and Fin$oft’s and @cadSoft’s defined processes

Discipline Organization’s Standard Process Fin$oft @cadSoft

Requirements

Develop Requirements Management
Plan

Write User Story
Divide User Story
Priorize User Story
Develop a System Prototype
Validate a System Prototype

Find Actors and Use Cases
Structure the Use Case Model
Detail a Use Case
Review Requirements

Analysis and Design

Architectural Analysis
Class Design
Database Design

Write Tasks Asses Viability of Arch. Proof-of-concept
Construct Architectural Proof-of-concept
Describe the Run-time Architecture
Implement Innovative Idea
Review the Architecture
Review the Design
Validate Innovative Idea

Implementation
Execute Developer Tests
Implement Design Elements

Execute Unit Tests
Implement Tasks
Refactor Code

Execute Unit Tests
Refactor Code
Review Code

Test
Define Test Approach
Define Test Details

Execute Acceptance Tests
Write Acceptance Tests
Write Unit Tests

Execute Acceptance Tests
Write Acceptance Tests
Write Unit Tests

Deployment
Create Deployment Unit
Develop Support Materials

Configuration and Change
Management

Confirm Duplicate or Rejected CR
Review Change Request
Submit Change Request
Update Change Request

Establish Change Control
Process
Write CM Plan

Establish Change Control Process
Write CM Plan

Project Management

Compile Software Development Plan
Develop Business Case
Develop Iteration Plan
Identify and Assess Risks
Initiate Project
Iteration Acceptance Review
Lifecycle Milestone Review
Prepare for Phase Close-out
Prepare for Project Close-out
Project Acceptance Review
Report Status

Accept Task
Classify by Risk
Collect Metrics
Define Iteration Scope
Define Control Processes
Define the Scheduler
Define Velocity
Develop Measurement Plan
Elaborate Release Plan
Estimate Task
Estimate User Story
Monitor Status Project
Negotiate the Scheduler Team
Negotiate with Customer

Assess Iteration
Initiate Iteration
Iteration Planning Review
Plan Phases and Iterations
Project Approval Review
Project Planning Review
Project Review Authority (PRA) Review

Environment
Select and Acquire Tools
Set Up Tools
Tailor the Process for the Project

 Develop Development Case
Review the Software Process for the
Project

Training
 Identify Training

Execute Training

183

Among the suggested patterns listed to prevent risks, the
following were selected: ConstantRefactoring,
SoftwareLifeCycleIsDefined, EarlyRegularDeliverRUP,
ScenariosDefineProblem, ShunkWorks, ArchitectureTeam,
ProjectProcessIsDefined, PeerReviews, ApprenticeShip,
SeniorManagementReview and DocumentedConfiguration-
ManagementPlan. Column 4 shows the activities added to
the Y University standard process (column 1) to form the
specific process for the @cadSoft Project.

In the @cadSoft Academic System’s process, the situation
presented is opposed to that of the Fin$oft, because the
team is distributed in different campuses, and the customer,
in this case the University administrative area, is far from
the development teams, the team is composed of many
trainees, who usually stay in the team only for short periods.
The most relevant patterns, suggested by PRiMA-Tool, are
patterns which aim to provide more planning and
documentation to the software process. Considering the
difficulty in face to face communication in distributed
teams, documents are generated so that the teams can
communicate and keep informed.

PRiMA helps the process designer on performing the
process tailoring. However, the process designer role is
fundamental, and her careful empirical consideration and
evaluation is necessary in order to tailor an adequate
process for a given project. The tool is helpful because it
suggests the most suitable patterns to the project,
accordingly to the data which is recorded in its repository.
It saves the time of the process designer to browse through
dozens or even hundreds of patterns which are available.

6. RELATED WORKS
The proposed framework in this paper differs from other
risk management approaches by proposing organizational
and process patterns as risk preventive actions and for
tailoring the organization’s software process to prevent the
risks identified for the project.

Gnatz et al [6] propose a framework to describe software
processes. They do not consider quality standards or
models during tailoring. Kiper and Feather [10] propose
probabilistic models to manage risks, while this work uses
risk exposition quantification. Probabilistic models are
more complex and difficult to be used. Keshlaf and Hashim
[9] propose a model for risk management and a tool, called
SoftRisk, to support the process. It does not define how the
risks are monitored and controlled during the software
project. Roy [13] proposes a framework, called ProRisk, to
manage risks in software projects. The framework requires
a detailed analysis of the organization and the scope of the
project to develop a group of risk factors and organize them
in a way to reflect the different risk perspectives, making its
use difficult.

7. CONCLUSIONS AND FUTURE WORKS
This article proposes a Project Risk Management Approach
– PRiMA - which makes it possible to instantiate
development processes tailored according to the identified
and prioritized risks of the development project. The aim of
tailoring is to elaborate a defined process to a project
suitable to the project’s context, taking advantages of agile
methods, planned or hybrid, while preventing identified
risks for the project. The approach presented in this paper is
limited by the difficulties of validating the empirical
knowledge of experienced process designers, software
engineers and project managers, expressed as patterns and
risk resolution rules. Nevertheless, it has a strong and
original contribution to structure a systematic approach for
capturing this knowledge and assisting process designers
and project managers on leveraging it. The approach
suggests that the use of risk analysis combined with
organizational patterns is a promising way of overcoming
the limitations of existing software process improvement
frameworks. The information stored in the knowledge base
can be updated and must improve with time and as the team
gets more experience. Results of post-mortem analysis of
projects can help in this task. Future works include the use
of a workflow management system to create environments
to support the execution of processes defined from PRiMA.

8. REFERENCES
[1] Beck, K. Embracing Change with Extreme Programming. IEEE

Computer, Oct. 1999.
[2] Boehm, B; Turner, R. Using Risk to Balance Agile and Plan-Driven

Methods. IEEE Computer, June 2003.
[3] Cockburn, A. Agile Selecting a Project’s Methodology. IEEE

Software, New York, v. 17. n. 4, p. 64-71, July 2000.
[4] Coplien, J. Sofware Patterns. Originally published by SIGS Books

and Multimedia, 1996.
[5] DeMarco, T. Lister, T. Waltzing with Bears: Managing Risk on

Software Projects. Dorset House Publishing Company, 2003.
[6] Gnatz, M. et al. The Living Software Development Process.

Software Quality Professional, Milwaukee, v.5, n.3, June 2003.
[7] Hartmann, J.; Fontoura, L. M.; Price, R. T. Using Risk Analysis and

Patterns to Tailor Software Processes. SBES, 2005.
[8] Hillside. Patterns Library. 2003. http://hillside.net/patterns/.
[9] Keshlaf, A. A.; Hashim, K. A Model and Prototype Tool to Manage

Software Risks. Asia-Pacific Conference on Quality Software, 2000.
[10] Kiper, J. D.; Feather, M. S. A Risk-based Approach to Strategic

Decision-Making for Software Development. 38th Hawaii
International Conference on System Sciences, Australian, 2005.

[11] Pressman, R. Engenharia de Software. 6. ed. McGraw Hill, 2006.
[12] Rational Software Corporation. Rational Unified Process, version

2003.06.12. Cupertino, 2003.
[13] Roy, G. G. A Risk Management Framework for Software

Engineering Practices. Australian Software Engineering Conference,
2004.

[14] Software Engineering Institute, Capability Maturity Model
Integration, Version 1.1, Carnegie Mellon University, 2002.

[15] Sommerville, I. Engenharia de Software. Pearson Education, 2007.

184

PROCESS TAILORING BASED ON WELL-FORMEDNESS RULES

Eliana B. Pereira1, Ricardo M. Bastos1, Toacy C. Oliveira2

1Faculty of Informatics, Pontifical University Catholic of Rio Grande do Sul, Brazil
E-mail: {epereira,bastos}@inf.pucrs.br

2School of Computer Science, University of Waterloo, Ont., Canada

E-mail: toacy @csg.uwaterloo.ca

Abstract1

Process tailoring consists on the manipulation of an
existing software process to incorporate new elements or
remove existing ones. However, it is essential to constrain
tailoring activities to guarantee certain properties hold in
the tailored process. Therefore it is necessary to define a
properly mechanism for process tailoring capable to
maintain the consistency and compliance of the resulting
process. In this paper, we propose the use of a set of well-
formedness rules required to ensure tailoring of standard
software development process based on RUP process.

1 INTRODUCTION

The efforts to implement standard software development
processes across large organizations have gradually
increased in the last years. Because the product quality is
associated to the process utilized in its construction [1] the
goal is to adopt a well-defined process in software
development.

The use of a standard software development process
may allow the improvement of performance, predictability
and reliability of the work processes; and the increase of
productivity [2]. Furthermore, it also facilitates the
implementation of the process capability maturity models
such as ISO/IEC 15504 and Capability Maturity Model
Integration (CMMI).

Nowadays, many “off-the-shelf” processes that facilitate
the initial job of deciding the process elements have been
suggested by the academy and industry. The most known
one is the Rational Unified Process (RUP) [3] proposed by
IBM Rational, which provides information regarding
activities and tasks for software development and
management.

However a “one process to fit all project needs”
approach does not work in software development [4]. As
each project is unique in terms of business domain,
customer requirements and technology [2], there is a need
to adapt the standard software development process to the

1 Study developed by the Research Group in Software Quality

of the PDTI, financed by Dell Computers of Brazil Ltd. with
resources of Law 8.248/91.

requirements and the specific context of each project [5],
[6].

The act of adjusting and/or particularizing the terms of a
standard software development process to accommodate
differences among projects is called tailoring [7]. It implies
adding, deleting and/or modifying elements, and changing
relationships. The result of tailoring activities is a bespoke
software process, which is called project-specific software
process.

Nevertheless, though recent studies have recognized the
importance of process tailoring, it is important to stress the
difficulties related to this task. Park et al. [5] and Xu [2]
highlight as the lack of knowledge support may make
tailoring a difficult task. Fitzgerald et al. [8] discuss some
issues about how agile methods are used and tailored in
practice, once there is not much knowledge about tailoring
of agile methods. Yoon et al. [9] show the problems one
might face in order to maintain the consistency between the
tailored process and the standard software development
process.

The main goal of this paper is to present a set of well-
formedness rules based on a process metamodel to
constrain tailoring activities as something that may
contribute to some of the issues mentioned above. The
well-formedness rules are based on the RUP metamodel
[10]. We believe that these rules facilitate software
development organizations to guarantee consistency on
their tailored processes with their standard software
development processes.

The paper is laid out as follows. Section 2 presents the
relevant literature on process tailoring and describes how
process tailoring is supported in the RUP. Section 3 shows
the well-formedness rules. In Section 4, an example of
usage is described followed by conclusions.

2 BACKGROUND

2.1 Process Tailoring

Nowadays, it is widely accepted that a standard software
development process should be tailored to fit the needs of
the projects context [11]. Important capability maturity
models such as ISO/IEC 15504 and CMMI recommend

185

tailoring standards before applying them to a specific
project. For instance, CMMI, a current version of the SW-
CMM, assumes that the best way to support the variation of
the processes is to provide tailoring guidelines associated
with the standard software development process to answer
specific needs of the organization projects. These
guidelines should specify which elements can be modified
from standard software development process as well as in
which circumstances this occurs. ISO/IEC 15504, on the
other hand defines that organizations must have a strategy
for tailoring projects assets. It implies the establishment and
maintenance of a standard set of processes and strategies
for tailoring project's needs. The processes should indicate
applicability and expected performance, and identify
detailed tasks, activities and associated artifacts.

Software development processes such as RUP, XP and
OPEN also consider process tailoring. They provide some
guidelines to orient the deletion of the non-applicable
elements, addition of required elements, and modification
of existing elements for a particular project.

Process tailoring is also not new in the literature [12]
and it has recently become a target of attention to the
software engineering community. Some researchers have
been focusing their attention on project characteristics that
influence tailoring decisions [13], [14]. The same issue has
also been studied or understood as a “contingency factor”
[15], [16]. Other authors have involved the knowledge
management on process tailoring [2], [17].

The main interest of this paper is to guarantee the
consistency between the tailored process and the standard
software development process. A review of the literature
though shows few studies addressed to this aspect. Yoon et
al. [9] have proposed a systematic method to formalize a
standard software development process, process tailoring
and to verify the tailored process. The authors describe a set
of tailoring operations to preserve the dependency
relationships among the elements of the standard software
development process. Although the authors have considered
the conformity between the standard software development
process and tailored process and suggested some operations
for this purpose, their study have not considered several
mandatory software process elements such as roles, tools,
phases, etc.

Welzel et al. [18] have developed a method to process
tailoring (ProcePT) based on a process model called GV-
Model. The process model is formed by activities and
artifacts that must be tailored in the project context. GV-
Model provides a set of 90 conditions to hold the deletion
of these activities and artifacts. The authors have also
developed a tool to support the GV-Model in PROLOG.
However, the limitations of this research are the same
found in [9]. Additionally, the artifact deletion is the only
tailoring operation considered.

Although some studies have tried to cover the standard
compliance there is the need for additional research on the
area, as it can be seen in a recent systematic review on
process tailoring [6].

2.2 RUP and Process Tailoring

RUP is a software engineering process that can be adapted
for a very large class of software systems, different
apllication areas, different types of organizations and
different project sizes. The act of “adapting the process” is
what RUP calls by process tailoring. Bearing in mind that
two projects within the same organization may also be
different, RUP indicates the use of process tailoring for
each software project. The result of this tailoring is part of
what RUP calls a development case. A development case
describes all activities, roles, artifacts, and templates that
must be used in a software project.

To support process tailoring RUP provides a specific
discipline called environment. The environment discipline
focuses on the necessary activities to configure the process
for a project. Besides, guidelines and white papers on
tailoring RUP for different types of projects and domains
are also available. The problem related to the guidelines
and the environment discipline is their informallity, that is,
no reference about RUP metamodel can be found on them.
As a consequence it is not possible to verify the consistency
of the tailored processes.

In this sense, we verify the need of a suitable
specification of tailoring rules based on the process
metamodel. Without these rules, it is impossible to
guarantee the integrity of the relationships among the
elements that compose the metamodel according to the
standard software development process. Moreover,
considering the complexity and the amount of elements that
compose RUP, the process tailoring activities is
impracticable without an automated support. In order to
achieve that, it is necessary to specify a set of rules
compliant to the process metamodel.

3 WELL-FORMEDNESS RULES TO
RUP PROCESS TAILORING

The approach of this research to tailor RUP process is
composed by a set of well-formedness rules to process
tailoring. The rules lead to some tailoring operations that
preserve dependency relationships among the elements that
compose RUP process. These rules are based on an
extension of original RUP metamodel presented in [19],
which captures the elements and relationships required on
tailoring activities. The extended metamodel is shown in
Figure 1. The included classes in this metamodel from the
original RUP metamodel are three: Task, Sub-artifact and
Optional. And, the new relationships are: the self
relationships of the Workflow Detail, Activity, Task and
Sub-artifact classes and the relationship referred to as
modifies created between the Activity and Sub-artifact
classes.

The operations aimed by the well-formedness rules are
to delete or add elements to RUP process. It has been
developed rules for elements such as Disciplines, Workflow

186

Details, Activities, Artifacts and Sub-artifacts. It is
important to note as mentioned above that sub-artifacts do
not exist in the original RUP metamodel. So, it has been
defined a new class in the proposed metamodel to this
element, once it allows the representation of the parts of an
artifact. The concept of sub-artifacts is required to the
process tailoring since not all artifacts are generated by only
one activity. Sometimes parts of an artifact can become
from distinct activities. Thus, sub-artifacts are necessary in
order to allow the deletion of an activity which is
responsible for producing a sub-artifact no longer
demanded for the software process. As a consequence, it is
possible to select which parts of an artifact are necessary
for a specific project during the process tailoring.

3.1 Tailoring Operation: Addition

As the UML multiplicity allows to refer to the number of
objects in one class that can be related to one object in the
related class and can be used on both sides of a relationship,
it is considered that the well-formedness rules to addition
operation are all expressed in the proposed metamodel.
Thus, in order to add an element, the process engineer must
respect the relationships of the added element only with
other process elements. Details of the well-formedness
rules to addition operations are provided bellow. Here, due
to space constraints, we have decided not to illustrate the
rules with tables as done in the following subsection.

Activity Addition: Adding activities instances implies
in at least one relationship with the workflow detail element
to indicate where the activity will be executed. Moreover, a
responsible role for the activity execution and the related
activities (precedent and subsequent ones) of the new
activity must be defined. If necessary, the process engineer
may associate tools to the new activity and create tasks to
detail its execution. As activities have a clear purpose,
usually expressed in terms of creating and/or updating

artifacts, the process engineer may also associate the
artifacts used by the new activity. Here, the process
engineer uses the Sub-artifact class and the relationships
referred to as consumes, produces and modifies to indicate
which specific parts of an artifact will be consumed – in
this case those mandatory or optional –, produced and/or
updated by the new activity.

Workflow Detail Addition: When a workflow detail is
added, at least one relationship with activity, discipline and
phase instances must be created. In addition, related
workflow details (precedent and subsequent ones) must be
defined.

Sub-artifact Addition: When a process engineer
wishes to produce additional information for a specific
project he/she may add new sub-artifacts, which will be
part of an artifact. In this tailoring operation, the process
engineer must define at least one responsible role and
optionally other roles that will update the new sub-artifact.
The relationships referred to as consumes, produces and
modifies may be used to associate the new sub-artifacts to
different activities. Moreover, if the new sub-artifact has
some kind of dependency relation to other sub-artifacts it
must be created by the process engineer, who is also
responsible for creating a relationship between the sub-
artifact and an artifact.

Artifact Addition: Since we define an artifact as a set
of sub-artifacts, the artifact addition operation implies in
sub-artifacts addition. Thus, when an artifact is added at
least one sub-artifact also must be included. However, it is
known that when a process engineer applies the standard
process to a small-size project or rapid application
development, he/she may wish to manage process in
higher-level to reduce workload and not to split an artifact.
In this case, it is advisable to create for each artifact one
sub-artifact with the same name of the artifact only. In
ProTTo (our prototype cited in Section 4) it was
implemented in the artifacts inclusion funcionality an
option for process engineers to choose whether the included
artifact need to be split or not. Thus, when an artifact is not
split ProTTo automatically creates one sub-artifact with the
same name of the included artifact.

Discipline Addition: Discipline addition is not
supported since RUP disciplines cover all areas about
software development.

3.2 Tailoring Operation: Deletion

Since RUP covers a large variety of development software,
deletion operations are very common on process tailoring.
For some of these operations, well-formedness rules are
guaranteed in the present extended metamodel through
UML relationships and its multiplicities. For instance, the
composition relationships of the Discipline, Activity and
Artifact classes, which define that the deletion of any of
these elements implies in the deletion of its parts. However,
many of the well-formedness rules can not be expressed
using UML class model. So, we explain in a systematic
way each deletion operation proposed in the present

Figure 1 - The Extended RUP Metamodel

187

approach. Bellow, all of them are illustrated with tables,
since we may not express all well-formedness rules through
the present extended metamodel as mentioned before. The
tables show all affected elements by each tailoring
operation and present a specific rule associated to each of
them. Addiotionally, each rule contains a numeration to
facilitate its identification.

Activity Deletion: Deleting activity istances of a
standard software development process must be used only
for optional activities (see the mandatory attribute of the
Activity class in the Figure 1). In this operation, all activity
tasks are deleted, since activities can be composed by tasks
(see rule #9 of the Table 1). Moreover, related activities
(precedent and subsequent ones) have to be connected in
order to redefine the process workflow (see rule #1 of the
Table 1). If a deleted activity produces sub-artifacts, it will
be necessary to remove them from the activity (see rule #6
of the Table 1). In this case, if a removed sub-artifact has a
dependency relationship with other sub-artifacts or it is
mandatory consumed by other activities, other elements
will have to be deleted (see rule #2 and #6 of the Table 1).
Finally, all the associations of the deleted activity with the
Role, Workflow Detail and Sub-artifact class have to be
eliminated (see rule #3, #4, #5, #7 and #8 of the Table 1).

Workflow Detail Deletion: When a process engineer
does not want to perform a group of related activities in a
specific discipline he/she can delete workflow details. To
do so, he/she must check whether the phases, activities and
discipline related to the deleted workflow detail keep at
least one relationship with another workflow detail. The
phases, activities and disciplines that do not have other
relationships also have to be deleted (see rule #1, #2 and #3
of the Table 2). It will also be needed to connect related
workflow details (precedent and subsequent ones) (see rule
#4 of the Table 2).

Table 1 - Well-Formedness Rules to Activity Deletion

#1 Related Activities (precedent and
subsequent ones) must be connected.

Activity #2 Activities that consume the sub-artifacts
(only the not optional ones) deleted by the
activity must be eliminated.

Tool
#3 All the associations among the activity and

tools must be eliminated.
Workflow
Detail

#4 All the associations among the activity and
workflow details must be eliminated.

Role
#5 All the associations among the activity and

roles must be eliminated.
#6 Sub-artifacts produced by the activity and

its dependent sub-artifacts must be deleted
(this can imply in deletion of the other
activities).

#7 Sub-artifacts consumed by the activity must
have its relationships eliminated.

Sub-
artifact

#8 Sub-artifacts modified by the activity must
have its relationships eliminated.

Task #9 All tasks of the activity must be deleted.

Table 2 - Well-Formedness Rules to Workflow Detail Deletion

Activity #1 All relationships with activities must be
deleted. If some activities no longer have
relationship with other workflow details,
they also must be deleted.

Discipline #2 Workflow detail must be deleted from the
discipline. If the discipline no longer has
workflow details, it also must be deleted.

Phase #3 All relationships with phases must be
deleted. If some phases no longer have
relationship with other workflow details they
also must be deleted.

Workflow
Detail

#4 Related workflow details (precedent and
subsequent ones) must be connected.

Artifact Deletion: When an artifact is deleted its sub-

artifacts must be deleted, too (see rule #1 of the Table 3).
However, it will usually lead to other deletion operations
(e.g. artifact deletion implies in executing deletion
operation for all sub-artifacts of the deleted artifact).

Table 3 - Well-Formedness Rules to Artifact Deletion

Sub-
artifact

#1 All sub-artifacts of the artifact must be deleted.

Sub Sub-artifact Deletion: Sub-artifact deletion is used

to produce an artifact with different formats and levels of
formality. Thus, when a process engineer wants to produce
a less formal artifact he/she may delete pieces of this
artifact, what can make it simpler. In order to delete a sub-
artifact, a process engineer has to check if it is produced on
software process or not. If so, he/she also has to delete its
production activity (see rule #2 of the Table 4).
Additionally, the process engineer must detele the sub-
artifact of the artifact which it is associated and eliminate
its associations with the Role class (see rule #1 and #4 of
the Table 4).

Once the deleted sub-artifact is used by other activities,
the process engineer must check whether it is mandatory or
not. The activities where it is mandatory must be deleted
(see rule #3 of the Table 4). Similarly, the process engineer
has to check if the deleted sub-artifact has dependency
relationships with other sub-artifacts, since these sub-
artifacts also have to be deleted (see rule #5 of the Table 4).

Discipline Deletion: Deleting disciplines is
implemented in the present approach following its use in
RUP process, once some disciplines can be optionally
performed (as Business Modeling, for example). In our
approach, when disciplines are deleted the process engineer
has to delete its workflow details (see rule #2 of the Table
5). Additionally, he/she has to eliminate the associations of
the deleted discipline with the LifeCycle class (see rule #1
of the Table 5).

Table 4 - Well-Formedness Rules to Sub-Artifact Deletion

Artifact #1 Sub-artifact must be deleted from the artifact.
If the artifact no longer has sub-artifacts, it

188

also must be deleted.
#2 The activity that produces the sub-artifact

must be deleted.
Activity

#3 The deleted sub-artifact must be disconnected
of the activities. If some of these activities
depend on the artifact to be performed they
also must be deleted.

Role #4 The association between the sub-artifact and
roles must be deleted.

Sub-
artifact

#5 The dependent sub-artifacts of the sub- artifact
also must be deleted.

Table 5- Well-Formedness Rules to Discipline Deletion

LifeCycle #1 The discipline must be deleted from the
lifecycle. If the lifecycle no longer has
disciplines, it also must be deleted.

Workflow
Detail

#2 All workflow details of the discipline must
be deleted.

4 EXAMPLE OF USAGE

We have applied the well-formedness rules to tailor RUP
process in ProTTo – the tool prototype based on the
proposed metamodel and on well-formedness rules to
process tailoring [20]. We have considered the
Requirements and Analysis & Design disciplines of RUP
process as the standard software development process and
we have tailored them by deleting some activities
considered as optional on RUP process. Such activities are
listed in Table 6.

Table 6 – Deleted Activities on Process Tailoring

Requirement Discipline Activities
Develop Requirements Management Plan (Deleted)
Find Requirement Attributes (Deleted)
Analysis and Project Discipline Activities
Perform Architectural Synthesis (Deleted)

 In each deletion operation the side effects of the remained
process elements were analysed, thanks to the impact
analysis functionality available in ProTTo. This
functionality allows any deletion operation, made in the
process, to be propagated through out the various related
elements. Thus, the affected elements are indicated by alert
icones before the deletion is executed. Figure 2 illustrates
the interface used in ProTTo to process tailoring. In this
figure number 1 indicates the part of the interface used to
perform the tailoring operations. Number 2 and number 3
illustrate how a standard software development process is
viewed in ProTTo. It is also possible to see an example of
impact analysis in the figure in Number 2 and 3.

The first deleted activity in this example was the
Develop Requirements Management Plan. This activity was
performed in the standard software development process in
a unique workflow detail called Analyse the Problem. Some
partial results of the impact analysis can be found in Table
7. It shows tailoring operation led to the additional deletion

of 2 artifacts, 8 sub-artifacts, 1 activity and 8 tasks.
Moreover, the impact analysis shows that some
relationships had also to be deleted, such as relationships
among the deleted sub-artifacts and the activities that had
consumed or modified them. Additionally, another impact
caused by the tailoring operation, not shown in Table 7, is a
process workflow change, that is, some deleted activities
(Develop Requirements Management Plan and Find
Requirement Attributes) were removed from the parallelism
structures they had been configurated to work parallely
with other activities in the workflow details in
Requirements discipline.

We have also deleted the Perform Architectural
Synthesis activity in the Perform Architectural Synthesis
workflow detail. For this operation, the results of the impact
analysis are shown in Table 8. Note that besides the
exclusion of the Perform Architectural Synthesis activity
other elements had also to be deleted. In this case, the
tailoring operation led to the additional deletion of 1
artifact, 4 sub-artifacts and 5 tasks. Here, the process
workflow had been changed for a second time in order to
arrange the sequence of the activities execution in Perform
Architectural Synthesis workflow detail.

5 CONCLUSIONS

In this paper, we have proposed capable well-formedness
rules to lead the process tailoring. The main contribution of
these rules is to guarantee the consistency between the
tailored software process and the standard software
development process in order to avoid tailoring
unconformities. In this paper, the focus has been on RUP
process. However, we consider it possible to use this
approach in other processes such as XP and OPEN, once
these processes can also be tailored to specific projects. In
this case, well-formedness rules must be adjusted
considering the metamodel of each process.

 REFERENCES

[1] Fuggetta, A., 2000. Software Process: A Roadmap. In: Future
of Software engineering Limerick Ireland, ACM.

1

2

3

Figure 2 - Interface in ProTTo to Process Tailoring

189

Table 7 - Partial Results of the Impact Analysis to Delete the Develop Requirements Management Plan Activity

Element Instance Reason Well-Formedness Rules
Sub-artifacts of the Requirement
Management Plan Artifact

Sub-artifacts produced by the Develop
Requirement Management Plan activity

Activity Deletion Operation
Rule #6

Sub-Artifact

Sub-artifacts of the
Requirement Attributes Artifact

Dependent sub-artifacts of the Requirement
Management Plan artifact

Activity Deletion Operation
Rule #6

Requirement Management Plan Artifact produced by the Develop
Requirement Management Plan activity

Activity Deletion Operation
Rule #6

Artifact

Requirement Attributes Artifact produced by the Find Requirements
Attributes activity

Activity Deletion Operation
Rule #6

Activity Find Requirements Attributes Activity produces the sub-artifacts of the
Requirement Attributes artifact that depend of
the Requirement Management Plan artifact

Activity Deletion Operation
Rule #6

Tasks of the Develop
Requirement Management Plan
Activity

Task

Tasks of the Find Requirements
Attributes Activity

All tasks of the deleted activities must also be
deleted.

Activity Deletion Operation
Rule #9

Table 8 - Partial Results of the Impact Analysis to Delete the Perform Architectural Synthesis Activity

Element Instance Reason Well-Formedness Rules
Sub-artifacts of the Software
Architecture Document Artifact

Sub-artifacts produced by the Perform
Architectural Synthesis activity

Activity Deletion Operation
Rule #6

Sub-Artifact
Sub-artifacts of the Deployment
Model Artifact

Sub-artifacts produced by the Perform
Architectural Synthesis activity

Activity Deletion Operation
Rule #6

Artifact Deployment Model Artifact produced by the Perform
Architectural Synthesis activity

Activity Deletion Operation
Rule #6

Task Tasks of the Perform
Architectural Synthesis activity

All tasks of the deleted activities must also be
deleted.

Activity Deletion Operation
Rule #9

[2] Xu, P., 2005. Knowledge Support in Software Process

Tailoring. In: Proceedings of the 38th Hawaii International
Conference on System Sciences (HICSS).

[3] Kruchten, P., 2000. The Rational Unified Process: An
Introduction. Upper Saddle River, NJ: Addison-Wesley.

[4] Lindvall, M., Rus, I., 2000. Process Diversity in Software
Development. In: Institute of Electrical and Electronic
Engineers - IEEE.

[5] Park, S., Na, H., Park, S., Sugumaran, V., 2005. A Semi-
Automated Filtering Technique for Software Process
Tailoring Using Neural Network. In: Expert Systems with
Applications Journal.

[6] Pedreira O., Piatiini M., Luaces M. R., Brisaboa N. R., 2007.
A Systematic Review of Software Process Tailoring. In:
ACM SIGSOFT Software Engineering Notes, Volume 32.

 [7] Ginsberg, M. P., Quinn, L. H., 1995. ProcessTailoring and the
Software Capability Maturity Model. Technical Report.

[8] Fitzgerald, B., Hartnett, G., Conboy, K., 2006. Customizing
Agile Methods to Software Practices at Intel Shannon. In:
European Journal of Information Systems.

[9] Yoon, I., Min, S., Bae, D., 2001. Tailoring and Verifying
Software Process. In: Institute of Electrical and Electronic
Engineers - IEEE.

[10] Bencomo, A., 2005. Extending the RUP, Part 1, viewed
Dezember 02, 2007, < http://www.ibm.com/developerworks
/rational/library/05/323_extrup1/index.html>.

[11] Fitzgerald B., Russo N. L., O’kane T., 2003. Software
Development Method Tailoring at Motorola, In:
Communications of the ACM.

[12] Basili, V. R., Rombach, H. D., 1987. Tailoring the software

process to project goals and environments. In: Proceedings of
the 9th International Conference on Software Engineering
Software.

[13] Cockburn, A., 2000. Selecting a Project’s Methodology. In:
Institute of Electrical and Electronic Engineers - IEEE,
July/August.

[14] Machado, L. F. C., 2000. Modelo para Definição de
Processos de Software na Estação TABA. Master’ Thesis.
COPPE/UFRJ, Brazil.

[15] Rolland, C., Prakash, N., Benjamen, A., 1999. Multi-Model
View of Process Modeling Requirement Engineering. Berlin:
Springer-Verlag.

[16] Kraiem, N., Bourguiba, I. Selmi, S., 2000. Situational
Method for Information System Project. In: International
Conference on Advances in Infrastructure for e-Business, e-
Education, e-Science, and e-Medicine on the Internet.

[17] Xu, P., Ramesh, B., 2003. A Tool for the Capture and Use of
Process Knowledge in Process Tailoring. In: Proceedings of
the 36th Hawaii International Conference on System Sciences.

[18] Welzel, D.; Hausen, H. L., Schmidt W., 1995. Tailoring and
Conformance Testing of Software Processes. In: IEEE.

[19] Pereira, E. B., Bastos, R. M. e Oliveira T. C., 2007. A
Systematic Approach to Process Tailoring, In: International
Conference on Systems Engineering and Modeling - ICSEM,
Haifa, Israel.

[20] Pereira, E. B., 2005. Uma Proposta para Adaptação de
Processos de Desenvolvimento de Software Baseados no RUP,
Master’ Thesis. Faculty of Informatics. Pontifical Catholic
University of Rio Grande do Sul – PUCRS.

190

Non-invasive software process data collection for expert identification

Andrea Janes, Alberto Sillitti, Giancarlo Succi
Free University of Bolzano/Bozen, Center for Applied Software Engineering

{ajanes, asillitti, gsucci}@unibz.it

Abstract

Software companies depend heavily on knowledgeable

employees. Competence and skills management are
essential instruments to understand how to employ the
available skills in an optimal way.

Unfortunately, implementing knowledge management
strategies like competence and skills management is
challenging because resources, time and effort are
required before benefits become visible.

This paper shows an approach to collect non-
invasively (i.e., without requiring any effort by
developers) data about “who” is working on “what”
during software production.

We present two examples to show how to answer three
questions: “who is the expert of a specific part of the
code?”, “who should do pair programming with
whom?”, and “what knowledge gap arises if a specific
developer leaves?”.

1. Introduction

Competence management and expert identification are

activities within the field of knowledge management
which aim to find out who knows what [1]. This
information can serve various purposes, e.g., to find the
right employees to staff new projects [2], to match
positions with skills [3], or to support software
maintenance [4].

In distributed environments or in larger development
teams knowledge about who wrote a particular piece of
code, who knows about a particular set of classes, who is
responsible for a particular requirements document is
essential. According to [5], software developers apply just
as much effort and attention determining whom to contact
in an organization as they do getting the job done.

To partly solve this problem, this paper proposes a
measurement framework to extract knowledge about who
knows what about software development artifacts (such as
source code, documents, slides, spreadsheets, etc.) non-
invasively, i.e., without the need by the developers to
spend time on documenting their knowledge within a
knowledge management system.

The information that is extracted builds on the idea that
the programmer’s activity, i.e. the adding, modifying,
deleting, reading of code is an indicator of the knowledge
that the programmer has about that part of the code [6].

Other approaches such as expertise recommenders,
which suggest who has expertise in particular parts of the
program also base their recommendations on this
assumption. Tools such as Expertise Recommender [7],
EEL [8], and Expertise Browser [9] make
recommendations based on commits to source code
repositories.

The objective of the expert identification measurement
framework is twofold: the primary goal is to track the
time spent editing the artifacts that are created during the
software development process, such as documents, source
code, spreadsheets, etc. to infer the user’s knowledge on
that artifact. Additionally, data that describes the artifact
being accessed is also collected to allow the retrieval of
an artifact using its properties as search criteria.

2. Related work

Examples of existing implementations can be

categorized within two groups depending if the
knowledge about who knows what has to be provided by
the users of the system or if it is extracted from other
sources.

Examples of tools of the first group are the StepStone
Skills & Competency Management Module [10] or SAP
ERP Human Capital Management [11] in which
employees maintain their own or the skill profiles of their
subordinates.

A common problem of knowledge engineering is how
to generate knowledge with as less effort and resources as
possible [12]. Asking employees to maintain their
knowledge profile takes time which means that it will
generate costs since if experts spend time sharing
knowledge, they will be less productive [13].

To overcome this barrier to adopt knowledge
management, tools that try to extract knowledge
automatically from existing artifacts who knows what
were developed. Two examples are AnswerGarden [14]
which creates a knowledge repository storing the
questions and answers exchanged between help desks and
their clients and ActiveNet [15] which extracts knowledge

191

from the e-mail traffic, instant messaging, and digital
workspaces that employees use in their every days’ work.

Proposals like the “Knowledge Dust to Pearls
Approach” [13] build on the AnswerGarden approach to
refine the collected knowledge into “experience pearls”
that are collected in form of an “experience base” for the
purpose to be reused for the planning of future activities.

3. Measurement framework

To extract the desired knowledge from the ongoing

software development process, we developed a
measurement framework that is able to identify on which
artifact a user is currently working on, to read properties
of the artifact currently accessed, how long it is accessed,
and to store this information in a central database. It was
our focus during development that all steps can be done
non-invasively, i.e. without the need for the developer to
interact with the knowledge management system.

We use the period of time spent on a part of the system
as an indicator of the knowledge of a developer. As a
developer works on a system, he or she gains knowledge
about the domain of the system, the development process
used to build the system, and the design and
implementation of the system [16]. Previous studies such
as [6], or implementations such as [7] and [9] have shown
that activity as a knowledge indicator can be used to build
a model of what a programmer knows about a code base.

Currently our measurement framework can identify
artifacts accessed using the Microsoft Office suite 1
(Word, Excel, PowerPoint, Visio, Frontpage, and
Outlook), the OpenOffice.org office suite2 (Writer, Calc,
and Impress), and software development environments
such as Microsoft Visual Studio3, Eclipse4, NetBeans5,
and IntelliJIDEA6.

The mentioned applications allow to read the currently
accessed artifact through a provided API. We developed a
set of measurement probes (one per application) that
constantly poll these applications about the current
artifact accessed. As soon as the reported value changes,
the amount of time passed since the last change is written
to the local log file together with the current date, time,
user name and name of the artifact accessed. In regular
intervals the so collected log is transferred to a central
server.

We assume that the API of the application to observe
provides a function getCurrentArtifact() that we use to
access the current artifact modified by the user (in most of

1 Microsoft Office. http://office.microsoft.com
2 OpenOffice.org. http://www.openoffice.org
3 Microsoft Visual Studio, http://msdn2.microsoft.com/vs2008/products
4 Eclipse.org, http://www.eclipse.org
5 Sun NetBeans, http://www.netbeans.org
6 JetBrains IntelliJIDEA, http://www.jetbrains.com/idea

the cases this is the artifact that is currently on focus). The
following pseudo code describes how one measurement
probe (i.e. an application of our measurement framework
connected to the API of an application to observe)
collects data.
 initialize user with the current user
 initialize app with the application name
 initialize artifact using getCurrentArtifact()
 initialize start with the current date and time

 while application to observe is running
 // we want to collect data with the
 // granularity of one second so that
 // our application does not consume
 // too many resources on the machine
 // of the developer
 wait for 1 second
 if getCurrentArtifact() <> artifact then
 set now to the current system date and time
 set duration to now - start

 append user, app, artifact,
 start, duration to the local log file

 set artifact = getCurrentArtifact()
 set start = now
 end if
 end while

The pseudo code above shows how the probe
constantly polls the observed application and generates an
entry in the local log file if the current artifact changes.
The so obtained activity log files are transferred to a
central database where all data is stored. The three steps,
artifact identification, local data caching, and data transfer
are illustrated in figure 1.

What we consider as the concrete artifact depends on
the application: within Microsoft Office and OpenOffice
it is a file. This means that we track the accesses and
modifications of the properties of files. Within
programming environments we consider the method as
the artifact, i.e., the time spent editing, adding, deleting a
method is the highest granularity of the data that is
collected. This data can be aggregated later e.g., at the
class, namespace, or file level.

The measurement unit of time is seconds, which is then
aggregated to hours or days on reports.

The result of the data collection step consists of
artifacts, properties of artifacts, and the sequence of
accesses on the artifacts (see figure 2). In this way, the
described measurement framework collects when, who
accesses which artifact, and – to allow the filtering of
artifacts – logs properties that describe the artifacts
accessed by the user.

Collecting data about the ongoing software production
without the direct intervention of the developer has been
proposed also in other contexts than Knowledge
Management: e.g., the HackyStat tool [17], which can be
used to collects metrics about produced artifacts to better
control the software development process and to give

192

feedback to developers about the impact of their work on
quality properties of the developed software.

4. Data analysis

To help users searching for experts within the system

described above, we categorize the collected time spent
editing artifacts according to different criteria.

For example, if the source code of a specific company
is organized in such a way that the namespace indicates
the component of the software system, it is reasonable to
group the time spent per artifact by namespace. In this
case, knowing the namespace, i.e. the component, helps to
find who dedicated the most time accessing artifacts
within that namespace, i.e. the employee with the most
knowledge of this component, the expert [6].

Figure 1. Overview of the framework

Other examples for classifying the access duration are
the project name, prefixes of class names (e.g., “test” to
find the testing experts), or types of documents.

To be able to change the rules easily, we use Prolog
rules to define how the data should be classified (using
Interprolog [18] as a bridge between Java and Prolog).

Within Prolog we define a set of predicates that
correspond to the properties collected by the measurement

framework which allow access to the table “properties”
(see figure 2) within Prolog.

Figure 2. EER diagram of the measurement

framework

Currently the following predicates are available for the
use within Prolog rules:

a) path(X, N): true, if the artifact with the id X is a
file stored within the folder with the name N (N is
specified as a Prolog array, i.e. ['c', 'a', ‘b’] for the
namespace “c:\a\b”);

b) file(X, N): true, if the artifact with the id X is a file
with the name N (without path);

c) class(X, N): true, if the artifact with the id X
represents a class with the name N;

d) method(X, N): true, if the artifact with the id X
represents a method with the name N;

e) namespace(X, N): true, if the artifact with the id X
is contained within the namespace N (N is
specified as a Prolog array, i.e. ['a', 'b'] for the
namespace “a.b”).

f) access(Y, U, X, S): true, if the access with the id Y
by the user U to the artifact X lasted S seconds.

g) access_date(Y, D): true, if the access with the id Y
occurred on the date D.

To define a classification of the artifacts, we expect
that the predicate classification_artifact(T, X, C) exists
and that it returns true if an artifact with the id X is

artifacts
id

name

access
duration

artifact_type
id

name

user
id

name

timestamp

properties
value

property_type
id

name

timestamp

Step 3: transfer the collected
data to a central server

Step 1: identify the active artifact

Server

OpenOffice Calc

Microsoft Visual
Studio

Mozilla FireFox

Spreadsheet

C# class Web page

Data transfer
daemon

Step 2: store data about identified
 artifact in local log file log

Database

193

contained in the class with the name C according to the
classification criteria with the name T.

To classify the records stored within the table access
(e.g. to classify certain accesses within a certain time
range to a specific category) we expect that the predicate
classification_access(T, A, C) exists and that it returns
true if an access with the id A is contained in the class
with the name C according to the classification criteria
with the name T.

The resulting classifications are cached within the
database so that they can be easily queried using SQL.
Figure 3 shows the EER diagram of how the
classifications of artifacts and accesses to these artifacts
are stored within the database: classifications can be made
according to different criteria. For example, it is possible
to classify artifacts according to their importance and
according to their size.

All criteria T that the classifying Prolog predicates
classification_artifact and classification_access return are
stored within the table classification_criteria. All classes
C used within the two classification predicates are stored
in the table classification_classes.

Figure 3. EER diagram of how the classifications of
artifacts and accesses are stored in the database

5. Examples

In the following two examples we will show how the

described measurement framework can be used to address
expert identification and skill management issues.

5.1. Example 1

In the following example we describe the analysis of

experts within a case study carried out for a company in
the domain of industrial automation, which, for
confidentiality, in the following we call “Acme”.

Acme’s IT department consists of about 50 employees,
23 of them are developing software for internal use.

We installed our measurement framework and
collected the time spent per method, class, namespace,

and file. Within Acme, the developers agreed that the
development effort should be grouped on the namespace
level, considering only the first two packages since the
first package for them represents always the name of the
project and the second package the name of a main
component.

If, e.g. a class is contained within the namespace
a.b.c.d, we attribute all the time spent editing in this class
to the class a.b.

Therefore, as rules, we defined the predicate
first_two(X, H1, H2, R) so that it is true if H1 and H2 are
the first two elements of the array X and R is the
remainder of the array:

first_two(X, H1, H2, R):-namespace(X, Y),
 [H1|T1] = Y, [H2|R] = T1.

Now, classification_artifact(T, X, C) can be defined as

follows:

classification_artifact(T, X, C) :- T=expert,
 first_two(X, H1, H2, R),
 concat(H1, '.', P1), concat(P1, H2, C).

This means that for the type of classification expert, we

consider an artifact with the id X part of the class C, if the
first two packages of the namespace of the artifact X
correspond to the name of C.

To visualize the data obtained using our measurement
framework, every tool able to connect to a database using
JDBC can be used, we used OpenOffice Calc7 to query
the database and to generate a pivot table of the format as
shown in figure 4.

In this table, all classification items accessed within the
analyzed period are shown as lines, the users accessing
these classification items as columns. Within the pivot
table the single values represent the sum of time spent by
the specific user on a specific classification item.

Figure 4. Schema of the pivot table to visualize the

effort distribution

In this way, calculating the ith largest value of time
spent on each classification item, we obtain the ith expert
of that classification item. Within Acme, we used
percentages (the time spent in relation to the time spent by
the top expert) to ease the understanding of the resulting
pivot table.

7 OpenOffice.org Calc, http://www.openoffice.org/product/calc.html

Sum of time spent per
classification item

C
la

ss
ifi

-
ca

tio
n

Users

artifacts access

classification_criteria
id

name

classification_classes
id

name

194

In the example shown in table 1, user 2 has almost the
same amount of experience as user 1 considering classes
within namespaces starting with project1.a, but he is the
only one that has experience with classes within
project2.c.

Within our case study we formatted the table above to
ease the understanding of the data for the user: we color
the cells in dark green if the value is above 90% and in
light green if it is above 50%.

The column “Experts” shows the number of users
within the current line with values above 50%. If in this
column the number of users is equal to 1, this means that
there is only one user that knows about that part of the
code. Within the case study we colored these cells in red.

Users

 User1 User2 User3 Experts

C
la

ss
ifi

ca
tio

n project1.a 100% 90% 2

project1.b 10% 100% 1

project2.c 100% 1

project3.d 10% 100% 1

Table 1. Example of pivot table representing the
knowledge of each user about the code within a

classification item

To summarize, using the mentioned measurement
framework and a tool to query the obtained data such as
OpenOffice Calc, it is possible to:

a) determine the ith expert of a specific part of the
code, assuming that the time spent in adding,
modifying, and updating reflects the knowledge of
the code,

b) to show the experience of a specific user,
c) to evaluate the knowledge gap that will occur if a

specific user will leave.

Point c) addresses the problem that when a person with
critical knowledge leaves an organization, this creates
severe knowledge gaps. It is crucial to understand what
knowledge is lost to prevent valuable knowledge from
disappearing. Additionally, knowing which knowledge
disappeared can help to decide which skills are needed for
the new employee and on which areas he or she should
work on.

5.2. Example 2

Acme is using Extreme Programming [19] as software

development methodology.
Within agile methodologies, the focus lies on “working

software over comprehensive documentation” [20]. The
produced source code is considered the most valuable

asset, representing the knowledge of the development
team. This knowledge has to be shared among team
members using practices like “pair programming”
(meaning that all code has to be programmed in two) or
“common code ownership” (meaning that the entire team
is responsible for the source code and that everybody has
the right to modify everything) [19].

Users
 User1 User2 User3

C
la

ss
ifi

ca
tio

n project1.a 100% 90% 20%

project1.b 80% 80% 100%

project2.c 90% 100% 80%

project3.d 70% 100% 80%

Table 2. Example of pivot table representing the
knowledge of each user about the code within a
classification item (considering only the last 6

months)

In such contexts it is important that all know
everything about the produced code. A measurement
framework as described here can be used to determine the
knowledge of different developers about different
subparts of the code and could be extended to recommend
who should do pair programming with whom to optimally
distribute the knowledge.

In the case of Acme, we decided to consider only the
time spent in the last half year as an indicator of
experience. If e.g., a programmer for more than half year
did not dedicate time in the development of a specific
component he or she had to do pair programming with
one of the developers currently working on that part to be
up to date with the last modifications.

For this we defined the predicate
classification_access(T, A, C) as follows:

classification_access(T, A, C) :- T=expert,
 access_date(A, B), parse_time(B, C),
 get_time(D), E is D-C, E < 259200, C=pp.

This means that for the type of classification expert, we

consider an access to an artifact with the id X part of the
class pp (pair programming), if the access date (obtained
as a string B and converted to the Prolog timestamp C) is
not less than six months (259200 seconds) ago.

Within our SQL query we sum up all the accesses
belonging to the class pp.

As in the example 1 we used OpenOffice Calc to
visualize this data. The resulting table is formatted in the
same way (see table 2 for an example), just that now the
data shows who worked on which classification item (i.e.
the first to elements of the namespace) during the last 6
months.

195

In the example in table 2 it is visible that user 3 should
to pair programming either with user 1 or user 2 for the
next requirement on the component project1.a.

6. Acknowledgements

I thank Tadas Remencius for his support on this article.

7. References

[1] Rus, Ioana and Lindvall, Mikael., "Guest Editors’
Introduction: Knowledge Management in Software
Engineering." IEEE Software, 2002, Issue 3, Vol. 19, pp.
26-38.
[2] Becerra-Fernandez, Irma., "Searching for experts on
the Web: A review of contemporary expertise locator
systems." ACM Trans. Inter. Tech., New York, NY,
USA : ACM, 2006, Issue 4, Vol. 6, pp. 333-355.
[3] Becerra-Fernandez, Irma., "Facilitating the Online
Search of Experts at NASA using Expert Seeker People-
Finder." [ed.] Ulrich Reimer. s.l. : CEUR-WS.org, 2000.
PAKM. Vol. 34.
[4] Sarkar, Santonu, Sindhgatta, Renuka and Pooloth,
Krishnakumar., "A collaborative platform for application
knowledge management in software maintenance
projects." New York, NY, USA : ACM, 2008. Compute
’08: Proceedings of the 1st Bangalore annual Compute
conference. pp. 1-7.
[5] Perry, Dewayne E, Staudenmayer, Nancy and Votta,
Lawrence G., "People, Organizations, and Process
Improvement." IEEE Softw., Los Alamitos, CA, USA :
IEEE Computer Society Press, 1994, Issue 4, Vol. 11, pp.
36-45.
[6] Fritz, Thomas, Murphy, Gail C and Hill, Emily.,
"Does a programmer’s activity indicate knowledge of
code?" New York, NY, USA : ACM, 2007. ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering. pp. 341-350.
[7] McDonald, David W and Ackerman, Mark S.,
"Expertise recommender: a flexible recommendation
system and architecture." New York, NY, USA : ACM,
2000. CSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work. pp.
231-240.
[8] Minto, Shawn and Murphy, Gail C., "Recommending
Emergent Teams." Washington, DC, USA : IEEE
Computer Society, 2007. ICSEW ’07: Proceedings of the
29th International Conference on Software Engineering
Workshops. p. 5.
[9] Mockus, Audris and Herbsleb, James D., "Expertise
browser: a quantitative approach to identifying expertise."
New York, NY, USA : ACM, 2002. ICSE ’02:

Proceedings of the 24th International Conference on
Software Engineering. pp. 503-512.
[10] , Skills & Competency Management Software by
StepStone Solutions. [Online] StepStone . [Cited: March
11, 2008.] http://www.stepstonesolutions.com/Solutions/
Skills_Competency_Management/Skills_Competency_M
anagement.php.
[11] SAP ERP Human Capital Management. [Online]
SAP. [Cited: March 11, 2008.] http://www.sap.com/
solutions/business-suite/erp/hcm/index.epx.
[12] Rus, Ioana, Lindvall, Mikael and Sinha, Sachin
Suman., Knowledge Management in Software
Engineering. DACS State-of-the-Art-Report, The Data &
Analysis Center for Software (DACS) is a Department of
Defense (DoD) Information Analysis Center (IAC). 2001.
http://www.cebase.org:444/umd/dacs_reports/kmse_-
_nicholls_final_edit_11-16-01.pdf.
[13] Basili, V, et al., "An Experience Management
System for a Software Engineering Research
Organization." Washington, DC, USA : IEEE Computer
Society, 2001. SEW ’01: Proceedings of the 26th Annual
NASA Goddard Software Engineering Workshop. p. 29.
[14] Ackerman, M S and Malone, T W., "Answer Garden:
a tool for growing organizational memory." New York,
NY, USA : ACM, 1990. Proceedings of the ACM
SIGOIS and IEEE CS TC-OA conference on Office
information systems. pp. 31-39.
[15] , ActiveNet - Facilitating Real-Time Collaboration.
[Online] Tacit Software. http://www.tacit.com/products/
activenet/technology.html.
[16] Susan Elliott Sim, Richard C. Holt., "The Ramp-Up
Problem in Software Projects: A Case Study of How
Software Immigrants Naturalize." 1998. 20th
International Conference on Software Engineering.
[17] Johnson, Philip M, et al., "Beyond the Personal
Software Process: metrics collection and analysis for the
differently disciplined." Washington, DC, USA : IEEE
Computer Society, 2003. ICSE ’03: Proceedings of the
25th International Conference on Software Engineering.
pp. 641-646.
[18] Calejo, Miguel., "InterProlog: Towards a Declarative
Embedding of Logic Programming in Java." [ed.] José
Júlio Alferes and João Alexandre Leite. Lisbon, Portugal :
Springer, 2004. Logics in Artificial Intelligence, 9th
European Conference, JELIA 2004, Lecture Notes in
Computer Science 3229. Vol. 3229, pp. 714-717. DOI
10.1007/b100483. ISBN 3-540-23242-7.
[19] Beck, Kent and Cynthia, Andres., Extreme
Programming Explained. Embrace Change. 2nd Edition.
Amsterdam : Addison-Wesley Longman, 2004. ISBN
0321278658.
[20] Beck, Kent, et al., Manifesto for Agile Software
Development. [Online] 2001. http://agilemanifesto.org.

196

Using XML Patterns to Guide Perturbation Based Testing of Web
Services

Paulo N. Cruz Filho

paulonei@inf.ufpr.br

DInf-UFPR - Federal University of Parana

Brazil CP: 19081, CEP: 81531-970

Silvia Regina Vergilio

silvia@inf.ufpr.br

DInf-UFPR - Federal University of Parana

Brazil CP: 19081, CEP: 81531-970

Abstract

Web Services contribute to decrease costs and solve
integration problems in web applications. On the other
hand, they bring some complications to test activity and
demand specific testing techniques and tools. In this
context, the perturbation based approach has been suc-
cessfully explored. Perturbation operators modify XML
and SOAP messages that are then used as test data.
However, the set of proposed operators are not com-
plete. Considering this fact, in this paper, a new per-
turbation approach is introduced based on XML pat-
terns associated to UML models. In this way, the ap-
proach considers semantic aspects related to other kind
of faults. The implementation aspects and evaluation
results of the introduced approach are also discussed.

Keywords: XML, fault-based testing, perturbation
testing

1 Introduction

Web Services (WS) are software programs that op-
erate independently to offer services over the Internet
to other software programs, including web applications
and other WS [16]. They are developed to allow inter-
operability among technologies, as well as, protocols,
platforms and operating systems. WS are a well-known
implementation of the Service Oriented Architecture
(SOA), which conceptually defines a structured data
exchanging model, providing the applications the abil-
ity to be loosely coupled with limited knowledge of each
other implementations.

With the advent of Internet, the use of WS is cres-
cent. They contribute to minimize costs and to solve
integration problems in web applications. However,
they demand specific testing techniques and tools and
have been considered a challenge by many authors [7].
This fact is due to their specific characteristics. They
are more widely distributed and heterogeneous. They
involve multiple standards and protocols than tradi-
tional software, moreover, the absence of a user inter-
face makes it harder to apply a test procedure, due to
the loss of controllability. Moreover, WS admit changes
of data flow among software components at execution
time, what is called dynamic integration.

Bloomberg [2] presents several aspects involving
Web Service testing. For example, WS make exten-
sively use of XML technology [14] to exchange data
among applications, thus, testing interactions based on
XML messages is a very important aspect to be tested,
contributing to Web Service quality assurance. The
SOAP protocol [15] (basis of the Web Service technol-
ogy) is an XML message that carries information and
is responsible for invoking WS over the Internet.

Considering these different aspects, some works ad-
dress Web Service testing [1, 3, 9, 10, 11, 13]. In [11]
a framework that converts WSDL specifications into
test scenarios is described. In [3] Finite State Ma-
chines are used to model and test the WS behavior.
Heckel and Lohmann explore the use of contracts [9].
In [1, 10, 13] a method based on data perturbation
of XML and SOAP messages is explored. XML mes-
sages are modified and used as test data for testing
the interaction between pairs of WS. The method can
be applied without knowledge about the implementa-

197

tion of the WS and has presented promising results in
terms of revealed faults. However, the explored per-
turbation operators consider only syntactic aspects to
generate the test data. Semantic aspects related to the
data specification need to be considered because they
can generate test data related to other kind of faults.
With the objective of improving efficacy in terms of
revealed faults, this paper introduces an XML pattern
driven data perturbation approach.

The introduced approach makes use of UML-XML
mapping techniques [5] and XML structural pat-
terns [8]. To perturb an original XML message, the
XML vocabulary, given by a schema and its corre-
spondent UML model, is analysed. According to the
pattern found in the schema, the original message is
perturbed and used as test data. The idea is to con-
sider the meaning of XML vocabularies to generate test
data and to reveal specific faults related to the seman-
tics of the XML messages. In this sense, the approach
is adequate for applications that use XML vocabular-
ies modeled with UML language and can be viewed
as complementary to the existent perturbation testing
approaches.

The remaining of this paper is organized as follows.
Section 2 shows related works on WS testing. Section
3 overviews XML-UML mapping techniques and pat-
terns used in the introduced perturbation approach.
Section 4 describes and illustrates the XML pattern
guided approach. Section 5 experimental results from
an evaluation study and comparisons with traditional
operators. Section 6 concludes the paper.

2 Web Service Testing

There are many issues involving Web Service test-
ing [2], for example: testing SOAP messages; test-
ing WSDL files; testing the publish, find and bind
capabilities of a SOA; testing Web Service consumer
and producer emulation; testing synchronous and asyn-
chronous capabilities; etc. Some works address these
issues. Tsai et al [11] describes a framework that con-
verts WSDL specifications into test scenarios. In [12], a
method for test data generation based on the topology
of WS is proposed. Heckel and Lohmann [9] explore
the use of contracts. Bultan et al [3] propose the use of
Finite State Machine to model and test the behavior
of composite WS. The model is composed by multi-
ple peers that communicate with asynchronous mes-
sages. However, the test can also be conducted consid-
ering a peer-to-peer model. For this kind of model, the
works [1, 10, 13] address the use of modified XML and
SOAP messages to test WS.

In [10], Offutt and Xu have introduced an approach

based on data perturbation for Web Service testing.
The idea is to modify request messages by using some
mutation operators. It is similar to mutation test-
ing [6], however, the difference is that the mutants
are actually the test cases to be used to test the Web
Service. Similar works that have the same objective
are [1, 13]. In [1] a tool, named SMAT-WS, is de-
scribed and used in the test of nine WS.

Perturbation Based Testing of WS has been success-
fully applied. Experimental results show that this ap-
proach is fault-revealing. It can be considered a promis-
ing testing approach to test interactions of XML based
components of SOA applications such as WS. It is in-
dependent on how the application (or service) is imple-
mented. Another advantage is that test data genera-
tion can be easily automated. A disadvantage is that it
is not possible to determine whether the set of opera-
tors is complete. The proposed operators, for example,
only consider syntactic aspects of XML documents. Se-
mantic aspects related to the data specification need to
be considered. In the Section 4 we introduce a new kind
of perturbation approach, guided by XML patterns.

3 XML Patterns Based on UML

The use of UML to define XML vocabularies
presents some advantages: 1) UML allows the visual-
ization and representation of XML structures through
standardized diagrams; 2) ability to capture the se-
mantics of the XML model; and 3) easy reading for
humans. Some works address XML-UML mapping
techniques. In our work we use the approach pro-
posed by Carlson [5] and supported by the tool hyper-
Model [4]. The main concepts from the approach are
illustrated in Figure 1. The UML classes are mapped
to complexType definitions. In addition to, an element
is declared, with the same type of the complexType
of the class. The attributes and associations of the
classes are mapped to XML elements. The used con-
tent model was <sequence>, which makes possible to
list the class elements, with their multiplicity restric-
tions. The UML inheritance is mapped using XML
Schema inheritance.

In [8], the idea of using UML models to establish
XML patterns is introduced. The idea is to provide
patterns to XML documents that are expressed with
visual models. Two kinds of models are explored: de-
sign patterns related to Web applications and patterns
more directly related to the structure of UML models
used to model XML vocabularies.

Table 1 displays a summary of the main XML pat-
terns. To illustrate the patterns, we will use the sim-
plified XML vocabulary from OASIS Universal Busi-

198

Figure 1. UML-XML mapping proposed by
Carlson

Table 1. XML Structural Patterns
Pattern Description
homologous expresses the association between two
association concepts in different contexts
recursive models a relationship among elements
association defined in a recursive way
multiple models, as a singular class, an element
reference that can be referenced by multiple classes
homologous establishes a group of derived classes
derived from a same basis class, which can present

class relationships amongst themselves

ness Language (UBL) [4] shown in Figure 2. It models
the transport of hazardous items, in which the tem-
perature control is fundamental. In this fragment,
we identify two groups of Homologous Associations.
The first includes the associations MaximumTemper-
ature and MinimumTemperature, the second one con-
tains EmergencyTemperature and FlashpointTempera-
ture. This vocabulary also presents the pattern Multi-
ple Reference. Different classes refer to class Tempera-
ture.

4 Using XML Patterns for Test Data
Generation

In this section, we explore the use of XML struc-
tural patterns for test data generation and introduce
perturbation testing based on patterns. The idea is to
consider the meaning of XML vocabularies to gener-

Figure 2. OASIS Universal Business Lan-
guage Vocabulary Fragment

ate test data and to reveal specific faults related to the
semantics of the XML messages. The approach can
be applied in applications that use XML vocabularies
modeled with UML.

Initially, we introduced and implemented a set of
four perturbation operators. The operators have the
same name that the original pattern. To apply an op-
erator, the correspondent pattern is identified in the
XML vocabulary associated to the WS being tested,
given by a schema and its respective UML model. In
this way, we identify an element. According to a pat-
tern, we decide the transformation to be applied and
the element will be changed, removed, etc. Values in
the message are changed by other possible ones present
in a library of vocabulary instances. The perturbed
message is then used as test data. The operators are:

a) HA (Homologous Associations): changes at-
tribute values of a class related to an association A by
the attribute values of the same class related to the
homologous association B.

Consider again the vocabulary from Figure 2. The
pattern Homologous Associations shows two different
classes linked through two or more associations, which
reveal the specific meaning of the relationships. The
perturbation in the XML message, defined consider-
ing the pattern HA, consists of changing the data that
corresponds to an association by the data related to
other arbitrary homologous association. This way, the
semantics of the message is altered to a different se-
mantics, but possibly very close and coherent regard-
ing the original meaning. For example, the application
of HA can generate a test message that involves the
MaximumTemperature and MinimumTemperature as-
sociations. A message relative to the hazardous items
transport could present the following fragment to de-
fine the temperatures:

<HazardousItem>

199

<TechnicalName> Plumbum Nitrate II

</ TechnicalName>

...

<HazardousGoodsTransit>

<TransportEmergencyCardCode> 51

</ TransportEmergencyCardCode>

...

<MaximumTemperature>

<Measure> 27 </ Measure>

...

</ MaximumTemperature>

<MinimumTemperature >

<Measure > 10 </ Measure>

...

</ MinimumTemperature>

</ HazardousGoodsTransit >

</ HazardousItem >

Suppose that the chosen element to be perturbed
is MaximumTemperature that has the measure value
27 for this instance. The developed perturbation al-
gorithm will substitute this value by the content of a
MinimumTemperature element, found in some instance
of a given XML document. For example, consider that
there is an instance with value -7 for MinimumTem-
perature, such as:

...

<MinimumTemperature >

Measure > -7 </ Measure>

...

</ MinimumTemperature>

...

When perturbing the previous instance, the value of
MaximumTemperature of the item being perturbed will
be substituted by the value of MinimumTemperature of
the second instance. The resulting instance is:

...

<MaximumTemperature>

<Measure> -7 </ Measure>

...

</ MaximumTemperature>

<MinimumTemperature >

Measure > 10 </ Measure>

...

</ MinimumTemperature>

...

In the perturbed instance the value for the maxi-
mum temperature is smaller than the value of the mini-
mum temperature. This message can produce a failure,
if such situation was not considered in the implemen-
tation of the web service being tested.

b) MR (Multiple References): changes at-
tribute values of a class A related to a reference of
class B by attribute values of A related to a reference
of another class C.

Figure 3 presents a fragment extracted from
UBL [4]. The class Country is referred by three other

Figure 3. Multiple Reference Perturbation

Figure 4. Homologous Derived Perturbation

classes. An example of perturbation is to change the
value of attribute Name from class Country correspon-
dent to the address of a client by other value corre-
spondent to the source country of an item.

c) HD (Homologous Derived): changes at-
tributes values of a derived class by common attribute
values of the homologous derived class.

Consider the fragment of W3C XML Schema for
Schemas vocabulary [4] of Figure 4. There are two de-
rived classes for Element. The common attribute value
of minOccurs (or maxOccurs) of TopLevelElement is
changed by the attribute value of LocalElement.

d) RA (Recursive Association): in general, a
document that follows this pattern corresponds to a
tree hierarchy. The operator changes this hierarchy.
Each element in the tree is changed by its predecessor
(or successor) in the hierarchy. Consider the fragment
of eBay XML API vocabulary [4] of Figure 5 and the
following message:

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Body>

<ns1:processCategory

xmlns:ns1=’’http://soapinterop.org/’’>

<name xsi:type=’’xsc:string’’>processors</name>

......

</ns1:processCategory>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope ...>

The store is divided in categories and each derived
category has its own subdivisions represented in a tree.
A computer store has a division of components, which
is divided into monitors and processors categories.

200

Figure 5. Recursive Association Pattern

An example of perturbation for the above message
that uses RA operator is to change the value “proces-
sors” either by “monitors” or “computers”, which are
other categories in the hierarchy.

5 Case study

To make possible a better analysis of the proposed
data perturbation guided by XML patterns, and to al-
low its practical application, a tool -called PDDP (Pat-
tern Driven Data Perturbation Tool) - was developed.
The fundamental artifacts for PDDP are: the SOAP
message in which the perturbations are applied; the
vocabulary definition used in the components commu-
nication; a library of vocabulary instances, used to de-
rive the perturbed messages.

The initial SOAP message is used as a model to cre-
ate the perturbed messages, where we have at least one
modification of an element in the XML sub-tree that
is encapsulated in the element Body of the SOAP pro-
tocol. The vocabulary definition is supported by tool
hyperModel, driven to the Carlson mapping method.
The XML Schema generated by hyperModel is used as
an input for PDDP. The instances in the library that
obeys the defined vocabulary are the source of elements
used for the generation of perturbed messages.

A study was accomplished with PDDP to evalu-
ate the applicability of the proposed perturbation ap-
proach and the efficacy of the operators in comparison
with the traditional ones. To do this, we used the same
system of WS used in the experiment reported in [1],
as well as its results.

The system was tested during its development and
the found faults are not seeded. It is composed by
nine WS and integrates other systems that involve fi-
nancial, administrative and structural government con-
trols. Each Web Service was submitted individually
to PDDD. During the execution of the tests we had
free access to the database, so that results of the op-
erations could be verified. Two input XML files were
supplied: an XML Schema with the vocabulary defini-
tion, generated by hyperModel tool; and an XML file
with instances of valid elements, according to the XML
Schema. For each Web Service a valid initial message

Table 2. Test Cases and Faults
Web Service Test Cases Effective Found

Test Cases Faults
WS1 16 4 2
WS2 19 2 1
WS3 9 1 1
WS4 13 3 1
WS5 9 0 0
WS6 9 1 1
WS7 14 2 2
WS8 11 2 2
WS9 12 3 2
Total 112 18 12

Table 3. Operator Efficiency
ML I N BE IN

Traditional 14.81 29.63 38.89 6.61 4.65

Operators VI S B U
25.56 35.19 16.67 29.63

Semantic HA RA HD MR
Operators 29.16% 27.77% 0% 20.14%

was given, from which the perturbed messages were
derived.

Table 2 presents, for each Web Service, the number
of test cases generated, the number of test cases that
revealed faults and the total of faults found. From this
result, we can analyse the contribution of each oper-
ator by analysing the total number of generated test
cases and the number of revealed faults. MR operator
presented the greatest contribution (72.2%). It is the
most common pattern found in the model; the opera-
tors HA (8.3%) and RA (11.1%). On the other hand,
the operator HD did not contribute to reveal faults.
However this low contribution can be explained by the
nature of the used WS. The parameters perturbed by
the HD pattern correspond to a user login, which is
related to a password. It is observed that the user vali-
dation mechanism is simple and did not present faults.

Table 3 presents results comparing the semantic and
traditional operators.1 The efficiency is defined as the
quotient between the number of test cases that revealed
faults for a specific operator and the total number of
test cases generated by the same operator.

The semantic operators present similar efficiencies.
This does not happen with the traditional ones. If we
consider the general efficiency (the great average), the
efficiency of the semantic operators (21.2%) is compa-
rable to the efficiency of the traditional ones (19.2%).

Other point to be considered is the type of faults
found by each group of operators. The operators have
distinct characteristics and because of this, reveal dif-

1
This table shows the following traditional operators (results ex-

tracted from [1]): Mod Len (ML), Incomplete (I), Null (N), Bound-

ary Extension (BE), Inversion (IN), ValueInversion (VI), Space (S),

Boundary (B) and Unauthorized (U).

201

ferent kind of faults. The traditional operators revealed
faults related to validation of parameters. The seman-
tic ones, generates valid messages, which are test cases
with greater probability of revealing faults related to
the application business logic. This can explain the
reasons why the number of faults found by the seman-
tic operators was smaller than that revealed by the
traditional operators. To reveal faults related to the
application businesses logic is something more ambi-
tious and more difficult.

6 Conclusions

This paper explored the use of XML structural pat-
terns in the test activity. Data perturbation techniques
were extended and applied to test the communication
of components that exchange XML messages. The re-
sult was the proposition of the pattern driven data per-
turbation approach.

The traditional perturbation operators only consider
syntactic aspects: limit values, restrictions about data
types and multiplicity definitions. The use of patterns
to guide perturbation testing allows the generation of
test data considering the meaning of the XML vocab-
ulary. So the chance of generating significant test data
is greater, as well as, the probability of revealing other
kinds of faults.

We implemented a supporting tool that makes the
use of the approach practical and shows its applicabil-
ity. An evaluation experiment was conducted with a
real system. The efficiencies of the introduced opera-
tors are very similar. However, the number of gener-
ated test cases and revealed faults are related to the
characteristics of the vocabulary and found patterns.

When compared with traditional operators, the re-
sults point out that both groups of operators are com-
plementary. The semantic operators contributes to re-
veal other kind of faults. They reveal faults related to
the application businesses logic validation specially to
the communication vocabulary. The traditional ones
reveal faults more related to the parameter validation.

The pattern based perturbation testing is adequate
for applications that use XML vocabularies modeled
with UML language. In this work, the approach was
explored for WS testing. However, it can be applied in
other applications that not necessarily exchange mes-
sage over the Internet or network. For example, to
test the communication among modules of a system
through XML messages defined according to some vo-
cabulary. A possible extension for this approach is to
explore the use of other models, such as ER.

References

[1] Almeida Jr, L.; Vergilio, S.R. Exploring Perturbation
Testing for Web Services. In: IEEE Intern. Confer. on
Web Services, 717-726, October 2006.

[2] Bloomberg, J. Report: Testing Web Ser-
vices. White paper of report for Parasoft
SOAPTest, 2002 (accessed January 2006).
http://www.parasoft.com/jsp/templates/misc/soap/
web services excerpt.pdf.

[3] Bultan, T.; Fu, X.; Hull, R.; Su, J. Conversation spec-
ification: A New Approach to Design and Analysis of
e-service Composition. In: 13th Intern. World Wide
Web Confer. 2003.

[4] Carlson, D. hyperModel Tool.
http://www.xmlmodeling.com/.

[5] Carlson, D. Modeling XML Applications with UML.
Addison-Wesley, 2001.

[6] DeMillo, R. A.; Lipton, R.J.; Sayward, F.G. Hints on
Test Data Selection: Help for Practicing Programmer.
IEEE Software, 11:34-41, April 1978.

[7] Di Lucca, G. Testing Web-Based Applications: the
State of the Art and Future Trends. In: QATWBA’05
- Workshop of the Intern. Computer Software and Ap-
plications Confer. (COMPSAC), pp. 65. 2005.

[8] Cruz Filho, P.N. Teste de Software Baseado em Per-
turbação de Dados Dirigida por Padrões. In: Master
Thesis, DInf-UFPR, June 2007 (in Portuguese).

[9] Heckel, R.; Lohmann, M. Towards Contract-based
Testing of Web Services. Electronics Notes in Theo-
retical Computer Science, v. 82(6), 2004.

[10] Offut, J.; Wuzhi, X. Generating Test Cases for Web
Services Using Data Perturbation. In: Workshop on
Testing, Analysis and Verification of Web Services.
July 2004.

[11] Tsai, W. T.; Paul, R.; Song, W.; Cao, Z. Coyote: An
XML-based framework for Web services testing. In:
7th IEEE Intern. Symposium on High Assurance Sys-
tems Engineering. October 2002.

[12] Tsai, W-T; Wei, X.; Chen, Y.; Paul, R.; Xiao, B.
Swiss Cheese Test Generation for Web Services Test-
ing. IEICE Transactions on Information & Systems, v.
88(12). December 2005.

[13] Wuzhi, X.; Offut, J.; Luo, J. Testing Web Services by
XML Perturbation. In: IEEE Intern. Symposium on
Software Reliability Engineering. November 2005.

[14] W3C. Extensible Markup Language (XML) 1.0.
http://www.w3.org/XML. October 2000.

[15] W3C Recommendation, SOAP Specification, June
2003. http://www.w3.org/TR/soap/.

[16] W3C. Web Services Description Language
(WSDL) - W3C Recommendation, May
2001.http://www.w3.org/TR/wsdl.

202

Translating OWL Specified Domain Knowledge to Aspect Oriented Model

Juanzi Li, Xinyu You, Xiaoying Bai
Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, China
{ljz,yxy}@keg.cs.tsinghua.edu.cn, baixy@tsinghua.edu.cn

Abstract- OWL is a good candidate to establish the
platform-independent machine-interpretable model of
domain knowledge in an easy-to-understand, easy-to-use
approach. It can also provide strong support for
automatic model transformation and inconsistence
checking by ontology reasoning mechanisms. Much
research has been investigated to integrate ontology
model with object-oriented models. However, current
transformation methods suffer from the problems
including code scattering, tightly coupling between classes
and missing of structural and semantic information. To
address the problems, the paper proposed an aspect-based
approach to translate OWL ontology to AspectJ model. In
this way, the knowledge can be separated from the code in
the modelling phase and then integrated with the code
automatically in the implementation phase. With the
support of ontology technique, the OWL-specified domain
model can be easily verified, reused and adaptive to
changes. The proposed approach enables the
externalization and automatic integration of the domain
knowledge in the traditional object-oriented programming.

1. Introduction
Inaccurate requirement understanding, complex

software design and difficult code reuse are the important
problems in software development. Various methods have
been proposed to solve these problems, and model driven
architecture (MDA) is an effective one. MDA aims at
describing requirement using a platform-independent
model and then translating the model to the
implementation of the system [1]. The models in MDA
include static structure model and event workflow, and
static structure model is used more frequently in practical
programming. How to describe the static structure model
properly and how to adapt the change of static structure
model in the implementation of the system are two
problems in software development. We found that OWL
ontology [2] is a good candidate to do this work. Thanks
to its capacities of describing the domain knowledge
preciously, OWL ontology is easy to understand and easy
to use. At first, OWL ontology can bridge the gap between
the requirement and design in software development.
Secondly, OWL ontology can promote the software
reusability because OWL itself is an open and platform

independent mark-up language. At last, OWL can promote
the automatic software development in model
classification and inconsistence checking by using
inference for OWL ontology.

At present, there exists a reasonable research to map
OWL ontology to software programming languages such
as Java. Most of the work focused on mapping OWL into
object oriented (OO) model. Because of the differences
between description logic and OO system, these methods
have some problems such as meaning missing and
structure inconsistent.

This paper provides a mechanism for mapping OWL
ontology into aspect oriented model. By this mapping
strategy, we can solve problems that existed in mapping
OWL to OO model, and we have finished the translation
tool based on it. The proposed approach enables the
externalization and automatic integration of the domain
knowledge in the traditional object-oriented programming.

2. Related Work
For the similar concept and relation, most research work

was focused on mapping OWL ontology to OO model. In
model translation, OWL ontology is translated some kinds
of OO model language such as Java. Such good examples
are Kazuki [3] proposed by David Rager, RDFReactor [4]
proposed by Benjamin Heitmann, and Jastor [5] proposed
by Ben Szekely.

Currently, all proposed methods focused on translating
OWL ontology into OO model. As [6-7] stated: there exist
fundamental differences in understanding OWL and OO
system. For example, there is no class description in OO
model. Especially, property in OWL ontology is
independent of class, while the property in OO belongs to
a part of class. Some problems of mapping OWL ontology
into OO model are code scattering, tightly coupling
between classes, and Code concentration.

A. Code Scattering.
As shown in Figure 1, in the OWL ontology, Property1-

3 are three resources independent of two classes A and B.
When we map this ontology into OO model, the code of
Property2 will be scattered into Class A and Class B. This
results in the problem of code maintenance. That is, if

203

Property2’s description is changed, we need to change the
code in both two classes synchronously.

Fig. 1 Mapping OWL property to OO model

B. Tightly Coupling between Classes
In order to mapping the relationships between classes,

translating model will obtain a lot of coupling
relationships. As shown in Figure 2, to express the
semantic of equivalent relationship between ClassA,
ClassB and ClassC, six relationships in OO model are
generated which make the coupling relationship are rather
complex.

Fig. 2 Mapping equivalentClass to OO model

C. the Missing of Structure Information
Because OWL ontology and OO model have

fundamental differences in structure description, translated
OO model can not reflect the structure of OWL ontology.
It makes the mapped model difficult to be understood. As
shown in Figure 3, the property description and class
description which are represented clearly in the OWL
ontology are mixed together in OO model after translation
as described in the right of Figure 3.

Fig. 3 Structure mapping between OWL ontology and OO model

As stated above, these addressed three challenges in
model translation and also are the main concerns of this
paper.

3. Mapping Principals from OWL Ontology to
AO Model

As we know, there are two reasons which cause these
problems. One is different structure between the OWL
ontology and the OO model, and the other is the difference
in description capacity of these two models language. To
solve these problems, we try to find another programming
model which is more flexible than OO model, and which
is more suitable for the OWL ontology model.

In recent years, aspect oriented (AO) programming are
becoming widely used to overcome the limitations of OO
programming model [8]. AO programming introduces a
new modular unit, called "aspect", for the specification of
crosscutting concerns. It organizes the crosscutting
relationships between objects by using weaving
mechanism so that it can decoupling the relationship
between objects and help to concentrate software's code.
Aspect oriented model can express the syntactic and
semantic features of the OWL ontology rather properly.
By taking advantage of “aspect” module unit and its
flexible crosscutting weaving mechanism, the problems
addressed in translating the OWL ontology into OO model
translation can be properly solved.

A. Code Concentration
AO model can encapsulate OWL elements including

both class and property while keep their independence of
each other. As shown in Figure 4, the properties in the
OWL ontology can be mapped into AO model
independently, and also these property aspects can be
weaved into corresponding classes by inter-type
declarations. It makes the codes be able to concentrate on
the separate properties aspects.

Fig. 4 Mapping OWL property to AO model

B. Decoupling Class Relationships
In AO model, we can generate an independent aspect

for the relationships between multiple classes. As shown
in Figure 5, AspectEquivalent is an aspect to show the
equivalent relationship, the equivalent relationships
between three classes A, B and C can be obtained by
weaving AspectEquivalent into these classes respectively
and only three relationships are needed.

204

Fig.5 Mapping equivalentClass to AO model

C. Structure Consistency
The model generated by AOP is finer-grained and

flexible, and it keeps the model structure consistency
between the OWL ontology and the translated AO model.
This makes the transformed model easily understandable,
and also the transformed codes are easy to be maintained
and reused. In our proposed method, three kinds of
elements including class, class description and property in
the OWL ontology are mapped to class, class description
and property aspect respectively in the AO model. As
shown in Figure 6, compared with mapping into OO
model, mapping into AO model can keep the structure of
the OWL ontology very well.

Fig. 6 Structure mapping between OWL ontology and OO model

In the following, we will propose a comprehensive
translation method to map the OWL ontology into a
general AO model using AspectJ [9]. Two principals are
used throughout the translation. For the part of the OWL
ontology, which is consistent with the OO model, we use
the mapping method used in the mapping from the OWL
ontology into the OO model. For the other part which are
inconsistent with OO model in the OWL ontology such as
class description, properties and restriction, we propose to
aspects and weaving mechanism to perform the translation.

4. The Mapping from OWL Ontology into AO
Model

In the translation, we first define interface IThing to be
the ancestor of all mapped classes, it corresponds to class
Thing in the OWL ontology. Each generated class has a
unique id property which is set in the class constructor
corresponding to the class name in OWL ontology. In the
following, we will give the translation methods in detail.

A. OWL Class and Class Description
Referring to the class mapping method proposed by

Aditya Kalyanpur [10], we make use of the well matching
between the OWL class and the AspectJ code to perform
the class mapping as follows. Each OWL class is mapped
into an interface and an implementation class. The class
description and class’s restrictions on properties are
mapped into a class description aspect in AspectJ.

1) Class
A class in the OWL ontology is mapped into an

interface and implementation class in AspectJ. For
example, class A in the OWL ontology will be mapped
into interface IA and interface implementation class CA in
AspectJ.

2) subClassOf
A subClassOf B in OWL is mapped into a inherit

relationship between interfaces of two mapped classes IA
and IB in AspectJ.

3) equivalentClass
Let OWL the equivalent class map into the interface

with the same properties, and each equivalent relationship
between classes is mapped into an equivalent relationship
aspect. In this aspect, we declare these equivalent classes
to implement all these equivalent interfaces. For example,
A and B are two equivalent classes, in the equivalent
relationship aspect, we create following AspectJ codes:

declare parents:(A||B) implements IA,IB;

Based on the interface programming, class A and class B
can be used alternately so that the semantic of equivalent
between class A and B can be expressed.

4) intersectionOf
In the OWL ontology, the A intersectionOf (B, C)

represents that class A has the characteristic which both
class B and class C has. We can translate it to this code in
class description aspect:

declare parents : IA extends IB, IC;

In this way, IA will get the all characteristic of IB and
IC.

5) unionOf
In the OWL ontology, unionOf has the opposite

meaning with intersectionOf. We use this code to express
it:

declare parents: (IB || IC) extends IA;
6) disjointWith
In the class description aspect, we can define a function

with the same function name which returns a different
type for all the member interfaces of this relationship. It
can avoid these interfaces being extended or implemented
by a same interface or class. So it can express the semantic
of disjoint relationship in OWL ontology.

7) complementOf
A complementOf B in OWL represents two complement

classes. In the class description aspect, let IA and IB are

205

two interfaces extend from the most top interface IThing.
Then, we use the mapping method of disjointWith to make
them be disjoint with each other, at last we can use class
pattern expressions to let all interfaces which do not
extend from IB extend from IA. So the mapping can be
described as:

public IA IA.forDisjoint (){…}
public IB IB.forDisjoint (){…}
declare parents:(!IThing && IThing+ &&(!(IB
+))) extends IA;

8) oneOf
We check the value of object’s id property in its

constructor. If the id does not belong to the id set which is
defined in the OWL oneOf statement, an exception would
be thrown out.

9) Cardinality
We set a pointcut for the property setter in the class

description aspect, and define an advice to check the
number of items in the list of property values before this
pointcut, if the number of items is not consistent with the
cardinality, an exception is generated. In this way, we can
separate the property restriction from the property
definition and we can define different property restrictions
for the same property in different classes. For example, in
the OWL ontology, the cardinality of property P restricted
on class A is 1, it will map into the AspectJ codes in class
description aspect which is described as:

pointcut setP(List arg):set(List IA.P)&&
args(arg);
before (List arg):setP(arg){

if(arg.size()!=1)
throw new CardinalityException(…);}

10) hasValue
In the same way, we can use the similar mapping

method with the cardinality mapping to check whether the
list of the property values contains the object with correct
object id.

11) someValuesFrom/allValuesFrom
We use the similar methods with the cardinality

mapping to check if the objects in the list of the property
values belong to right classes.

B. OWL Properties
OWL properties consist of the description of property

constructs, the characteristics of properties and relations to
other properties. Following gives the mapping from the
property descriptions in the OWL ontology to AspectJ

1) domain
Domain describes the classes which have the properties.

It defines which classes could have the properties. In the
mapping into property aspect, the domain class points out

a target classes set which the property to be weaved into.
Firstly, we define a domain interface which represents all
the domain classes. Secondly, we add the property to the
domain interface by using inter-type declares. Finally, let
the interfaces in the domain extend from the domain
interface.

For example, person and publisher are two domain
classes of property hasContact. In the property aspect, we
define:

private List IhasContactDomain.hasContact;
declare parents:(IPerson||IPublisher) extends
IhasContactDomain;

If the classes in domain changed in the OWL ontology,
we only need to modify the weaving target set
(IPerson||IPublisher).

2) range
Range is used to describe the data type of property’s

value which a property can take. We use a list to represent
all the property values in AspectJ, and check the type of
all items in this list when setting the value of property.

For example, property hasContact has the range of class
Contact, it can be mapped into:

public void IhasContactDomain.setHasContact
(List values){
…//check the values listed in the list, if the
value is not the types defined in the list, an
exception will be thrown out.
this.hasContact = values;}

3) Functional
Functional property is a property that can have only one

(unique) value y for each instance x, i.e. there cannot be
two distinct values y1 and y2 such that the pairs (x,y1) and
(x,y2) are both instances of this property. In the mapping,
when setting the property value, we can check the number
of items in the list of property values. If the number is
greater than 1, then an exception is thrown out.

4) InverseFunctional
InverseFunctional property means that this property

value is unique in this system. In the property aspect, we
maintain a property value list for all the Objects which
have this property, and check the value when the property
value is set. If the value has been existed, an exception is
thrown out, else set the value and add it to the list.

5) Symmetric
A symmetric property is a property for which holds that

if the pair (x,y) is an instance of P, then the pair (y,x) is
also an instance of P. In the mapping, we use P(a,b) to
indicate that object a has property P with value b.
Symmetric property P (a,b) means P(b,a). In the property
aspect, we add code to make b.P=a after a.P is set as b.

6) Transitive

206

The transitive property P means that P(a,b),
P(b,c)=>P(a,c). To describe its semantic, we add a
function to return all the transitive values. It means, for
object a, the function will return b and c. For b, the
function will return c.

From above description, for an OWL ontology
described in OWL-DL, we can translate it into AspectJ
codes which maintain the semantics of the ontology
properly.

5. Implementation and Experiment
Based on the mapping principals and mapping rules

described in section III and IV, we implemented a model
translation tool which named OWL2AspectJ to translate

the OWL ontology into AspectJ code. The input is a valid
OWL document and the output is its corresponding
AspectJ codes.

We use JDK1.5 as the running environment and use
protégé OWL API as the OWL parser. For an OWL
document input, the translation tool first parses the
document using the parser and then maps it into AspectJ
code automatically according to the mapping strategy
proposed in the paper.

Using the OWL ontology presented in
http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#
as an example, after the translation, we can get the
AspectJ code as shown in Figure 7:

Fig. 7 Translated AspectJ codes structure

Where, win.clas contains all codes generated from
classes and class descriptions in wine ontology. clas.interf
contains the interfaces of the classes. clas.cla defines all
the implementation classes. clas.cap contains the class
description aspects. In the property mapping, wine.prop
contains the codes generated from properties and their
characteristics in OWL ontology. Where, wine.prop is the
aspect of properties, and wine.prop.domainrange
corresponds to the interfaces of domain and range. These
codes are independent of each other, the aspects of classes
and properties are interacted through the AspectJ weaving
mechanism.

For the classes in ontology wine, after translation, three
independent parts of codes are generated. They are the
class interface wine.clas.interf.IWine, interface
implementation class wine.clas.cla.CWine and class
description aspect wine.clas.cap.AWine. The most
important codes are defined in the part of AWine, it can
operate on IWine by weaving mechanism to keep the
semantic of the ontology. For the properties in Wine
ontology such as hasColor, after translation, property
aspect wine.prop, the interface of property domain
wine.prop.domainrange, the interface of the property
range wine.prop.domainrange, and IhasColorRange are
generated respectively. The main codes are in AhasColor,
and it can be weaved into corresponding classes.

6. Evaluation of the Mapping
In section IV, we have described the mapping method

for the classes and properties in the OWL ontology in
detail. Here, we use two examples to test whether the
transformed codes can express the semantic presented in
the OWL ontology.

Example 1: ConsumableThing and
NonConsumableThing are two complement classes, we
use following program to test the generated codes.
IWine w=new CWine();
if(w instanceof IConsumableThing)
System.out.println("w is ConsumableThing");
if(w instanceof INonConsumableThing)
System.out.println("w is NonConsumableThing");
IRegion r=new CRegion();
if(r instanceof IConsumableThing)
System.out.println("r is ConsumableThing");
if(r instanceof INonConsumableThing)
System.out.println("r is NonConsumableThing");

We could get the following result:
w is ConsumableThing
r is NonConsumableThing

This test indicates that the generated codes can classify
wine and region into ConsumableThing and
NonConsumableThing correctly.

Example 2: We also test the class description on oneOf
for class WineColor by the following code:

IWineColor wc=new CWineColor("White");
It runs correctly. Then we run :

207

IWineColor wc=new CWineColor("blue");

The program throws an exception:
wine.exception.OneOfException: blue is not one
of {White Rose Red}

It indicates that generated codes can use the exception
processing to constrain the semantic of oneOf.

7. Benefits from the Model Translation
The OWL ontology has high powerful expressive

capacity and the AO model has high flexibility in
programming. Using the translation from the OWL
ontology into AO programming model may get following
advantages.

A. Readability and Maintainability of Translated Code
How to keep the consistency between document and

code has been a challenge in software development. The
OWL ontology is build based on the concepts and
relationships of a specific domain, and it can be easily
understood by human and at the same time currently we
have some OWL ontology editor tools with friendly user
interface. On the other hand, the AO model is high
consistent with OWL ontology in structure description. So
we can use OWL ontology as the document of code and
furthermore we can read, maintain and reuse the codes by
using the OWL document. Once the OWL ontology is
changed, software developers can quickly locate the code
to be modified instead of calling translation again which
can avoid overwriting the previous information.

B. New Programming Model Benefiting from the Code
Structure of Property Independence

In the traditional OO programming model, property is
treated as a class element and it is tightly coupled with one
class. In fact, one property can exist in multiple classes. In
this case, when a property changes, we have to modify the
class codes with which each property is connected. It may
result in the problem of code maintenance. Using the
mapping method proposed in this paper, we can constrain
the modification in the property itself. Also, if different
classes have different requirements for this property, we
can define the property restrictions in the classes.

As we know, in the translated AspectJ codes, each
property has an interface to present its domain. In the
development, we can deal with this property instead of
considering the objects related to the property so that it
provides a flexible programming model. For example, a
cart is represented as a list of commodities object with
different class. If we want to get the total price of all these
commodities in the cart, by using traditional method, we
need to know all items class before adding up their price.
Now, we can only process the price’s property
independently and do not need to consider their real

classes. What we should do is to cumulate the price by
seeing all the items as the instances of IPriceDomain.

C. Rich Semantics of OWL Ontology would Bring New
Characteristics to Programming

Translating the OWL ontology into the AspectJ code
can maintain the semantics of the ontology and bring out
some new characteristics for programming model. For
example, in a marketing system, all classes are classified
into two complement classes, consumable thing and
inconsumable thing, and each has different characteristics.
If we add a new inconsumable class A into the system and
class A did not extends from any inconsumable class, class
A will be seen as an inconsumable thing and get all
characteristics of inconsumable thing automatically.

8. Conclusions
This paper proposed a new method to mapping OWL

ontology to AspectJ. The methods can translate most
elements in OWL DL into AspectJ code, and the
translated codes can express the semantic of OWL
ontology and is high consistent with the OWL ontology in
both structural and semantic description. With the
development of software and knowledge engineering,
MDA based software development and ontology based
knowledge management have been widely used. The
convergence of these two fields shows a promising trend
in software development. OWL ontology gives the well
defined semantic model in the requirement domain, in the
software development, developers can extract the OWL
ontology they are concerned with. Then, the translation
from the ontology to AspectJ can be performed to generate
the corresponding aspect model to be the static structure of
the system. At last, the further development can be made.
In this way, we could speed up the software development
and reduce the development investment.

References
[1] A. G. Kleppe, J. B. Warmer and W. Bast, MDA Explained: The

Model Driven Architecture: Practice and Promise, Addison-
Wesley Professional, 2003.

[2] M. K. Smith, C. Welty and D. L. McGuinness, "OWL Web
Ontology Language Guide," W3C Recommendation, vol.10, 2004.

[3] Kazuki: http://projects.semwebcentral.org/projects/kazuki/
[4] RDFReactor :http://ontoware.org/projects/rdfreactor/
[5] Jastor :http://jastor.sourceforge.net/
[6] H. Knublauch, D. Oberle, P. Tetlow and E. Wallace, "A semantic

web primer for object-oriented software developers," in Proc.
2006 World Wide Web Consortium.

[7] IBM Sandpiper Software, Ontology Definition Metamodel, 2005
[8] J. D. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-

Oriented Programming in Java, John Wiley & Sons, Inc. New
York, NY, USA, 2003.

[9] R. Miles, AspectJ Cookbook, O'Reilly Media, Inc., 2004.
[10] A. Kalyanpur, S. Battle and J. Padget, "Automatic mapping of

OWL ontologies into Java," in Proc. 2004 Software Engineering
and Knowledge Engineering.

208

MAPLE: a Maintenance Approach for Pattern-
enabLed rEconfiguration of SOA-based

enterprise application
Songlin Hu, Ying Liang, Jiuming Tian, Yicheng Song

�
Abstract--Service-Oriented Architecture (SOA) is widely

adopted as a way to reach flexible integration of enterprise
system, and Event Driven Architecture (EDA), which enables
complex event processing as well as asynchronized
communication among systems, is also attracting more attentions.
The deployment of such an environment makes it possible for
organization to improve interoperability and agility, and brings
about new challenges to the maintenance and evaluation of the
whole system at the same time. The paper first analyzes problems
retrieved from a real engineering scenario, and proposes the
MAPLE approach to implement two-level abstraction by reusing
and reconfiguring of business and technical patterns. As showed
by a legacy system integration experience in a Textile and
clothing manufacture company, it provides a practical route to
achieving maintenance and evolution of the EDSOA (Event
Driven SOA)-based enterprise application.

Index Terms--Maintenance and evolution; SOA based system;
Event driven; Business pattern; Enterprise integration pattern;
Textile and clothing manufacture.

I. INTRODUCTION
S a popular paradigm, SOA is becoming a hot topic both
in industry and academy. It shows some unachievable

high level advantages when combined with event technologies,
and is now treated as a fairly good choice for building large
scale systems as well as reuse and integration of legacy
systems.

Topics in early stage of the whole lifecycle of conducting a
SOA based system have been the focuses of works in service

This work was supported in part by the Chinese National High-Tech.

R&D Programa under Grant 2006AA04Z158 and 2006AA01A106, and the
National Basic Research Program, China, under Grant 2007CB310805 and
2005CB321807.

Songlin Hue is with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: husonglin@ict.ac.cn).

Ying Liang is with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: liangy@ict.ac.cn).

Jiuming Tian is with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100910, China. He is also with Graduate
University of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
tianjiuming@ict.ac.cn)

Yicheng, Song is with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100910, China. He is also with Graduate
University of Chinese Academy of Sciences, Beijing 100049, China. (e-mail:
songyicheng@software.ict.ac.cn).

computing area. The maintenance and evolution of such a
system is becoming popular recently [1]-[2]-[3], but only a
few current works have been presented to discuss it.

The objective of maintenance here is to modify the existing
system while preserving its integrity. As a consequence,
problems including expression of changes, impact analysis,
change propagation, and revalidation should be tackled.

Even though the SOA based system, power by loose-
coupled building block and flexible composition mechanism,
has the potential ability to be adaptive to the changing
requirements, it is still challengeable to have the complicate
system reliably “reconfigured” according to new situations.

To achieving the goals mentioned above, the MAPLE is
put forward here to describe and manage the relationships
between technology and business models via two level
abstractions, and enables maintenance by reuse and
reconfiguration of the relationships. The objectives we are
aiming at would be broken into two levels: the first one is
BPEL reconfiguration in response to changes in business
model, the second one is high level service reconfiguration in
response to changes of usage of certain resources.

The paper is organized as below: the first section gives an
overview of related work, engineering background, and
presents the challenges generated from real application
scenarios. The MAPLE approach is introduced in Section 2,
including conceptual idea of pattern based two-level
abstraction. Section 4 shows the whole framework along with
roles for it. In Section 5, our application experience in a
Textile and clothing manufacture company is illustrated. At
last, conclusions and future works are presented.

II. RELATED WORKS, BACKGROUND & MOTIVATION

A. At Process Level
Whether it is named as abstraction or not, abstraction of

process has been studied to improve the capability of process
modeling and execution. Recently, semantic web service
composition has been focus of famous SOA research groups,
like Meteor-s [5] and SWARD [6], which can achieve
semantic abstraction of services, and facilitate dynamic
service selection at run time. While at the same time, model-
driven BPEL management creates another way to process
abstraction. IBM has put forward a product to map UML
model to BPEL [7], allowing process modeler to create UML

A

209

at first, and then map the UML models to corresponding
BPEL. Similarly, Aalster proposes an approach and related
algorithms to translate Petri-net to BPEL model [8]. The
process modeler who is familiar with Petri-net-Like workflow
can indirectly build BPEL without know the technical detail
of BPEL languages.

In practice, the logic of BPEL is always much too
complicated than the logic of business level processes,
especially for the processes with asynchronized events as well
as service invocations. With event driven features, the BPEL
implementation of the business logic has to be fulfilled by
using “receive”, “onMessage”, ”Correction” etc., which make
the diagraph of the business process “stretched” or totally
changed. The logic of BPEL is also affected by available
services. Moreover, the users who want to use model driven
BPEL approach should have to be familiar with technical
models like UML, which is also hard for business user to
grasp. Obviously, it is necessary to find a new way to enable
the IT manager in the serving stage to adjust the processes to
meet new requirements.

R
ej

ec
t

A
pp

ro
av

e

Se
nd

 N
ot

ifi
ca

tio
n

of
 C

lo
th

Sa

m
pl

e
m

an
uf

ac
tu

rin
g

to
 A

-C
A

D
 sy

st
em

G
et

 r
at

io
 fr

om
 A

-C
A

D

Sy
st

em

In
fo

rm
at

io
n

ch
ec

ki
ng

D
at

a
ex

ch
an

ge
In

fo
rm

at
io

n
 L

og
gi

ng

W
rit

e
ra

tio
 in

fo
rm

at
io

n
to

 E
R

P
sy

st
em

Fig. 1. Process model from business point of view

Fig 1 illustrates a real business level process. It describes

the business logic for a data exchange procedure between
legacy ERP and CAD systems. At the beginning, a
notification is sent to a CAD workstation with initial data as
soon as the ERP system receives a new order, and the design
result will be exchanged back to the ERP system after the
CAD designer finishing the task assigned. During the
exchange procedure, a manager of the ERP system will verify
the data, check to see whether to accept the data or not. If the
data is rejected, the CAD designer will get the feedback, and
executing the task again.

The process digraph looks sample from business point of
view, while the corresponding BPEL model has to be
designed as the one showed in Fig 2. It is obviously that it is
far from practice to map the business level process like Fig 1
to an executable BPEL by using formalized specifications and
automatic algorithms. It is essential to find another way to
implement the abstraction.

In practice, due to the management standards or routines,
organization structure and the functionalities assigned to the
departments, there exist lots of similarities among business
logics. The idea here is to take advantage of the patterns to
construct the relationship between business view and technical
view of the process, and to facilitate the design or
modification of processes by reusing or reconfiguring the
patterns. With the support of patterns, maintenance of BPEL
can be achieved by reconfiguring high level process, while

detecting dependency and impact of BPEL could be executed
automatically, and the changing of BPEL could be
implemented with automatic algorithm and sometimes with
user interaction if needed.

Fig. 2. BPEL model for Fig 1.

B. At Service Level
At service Level, wrapping of legacy system to web

services can be treated as a kind of abstraction [9]. A service
in one process can also be a set of abstract interfaces for
another process. Abstraction can be semantic description of
service interfaces using Meta-data or ontology as well. In this
paper, we focus on high level abstraction of service by using
Enterprise Integration Pattern (EIP) [10]-[11].

S2 S1

Recipient List Point to Point

Fig. 3. Service Level Abstraction using EIP

Asset in an enterprise can be utilized in different way at

different time. For example, in our engineering project,
information A generated from ERP system is sent by process
1 to one CAD workstation. After a period of time, it is asked
to be sent to a design group that contains a number of CAD
workstations. Here, we can define one services S1, and
generate S2 just by changing the integration pattern it uses.

The integration style for both of them is messaging. The
Messaging System for S1 is message channel (point to point),
while S2 should adopt message router (Recipient List).

Patterns like Translator and Message router can also be
used to enable data transformation and complex message
Routing. In this way, we can define services for different
usage, which can enable service level abstraction�.

210

III. MAPLE
Fig 4 gives a conceptual view for two-level abstraction.

Process level abstraction is to build abstract business level
process based on business pattern, while EIP based abstraction
is a kind of service abstraction, which constructs abstract
service using integration pattern.

Se
rv

ic
e

L
ev

el

A
bs

tr
ac

tio
n

CAD 1

ERP

Web-Site
Database CAM 2 CAM 1router

CRM
CAD 2

CAD 3 CA

CAD ...
router

Business
Level Process

Mapping
Rules

RMI MQ SOAPJDBC

Pr
oc

es
s e

 L
ev

el

A
bs

tr
ac

tio
n

E
IP

 B
as

ed
A

bs
tr

ac
tio

n

Utilization

Fig. 4. Two-Level Abstraction

A. Business Template
In this approach, we use business template to describe

business level process, BPEL, and the relationships between
these two to represent a particular kind of business pattern. It
is defined as following:

< business template >::= <ID>< business process >< BPEL
Template >< Mapping Rules >
<business processes> ::= < service component >< logic
node >
<service component> ::= < Messaging component >< RPC
component >
<logic node>::= <sequence activity ><pick activity >< flow
activity >< while activity >< start activity >< end activity >
< BPEL Template > ::= < BPEL File >{< WSDL Files >}*
< Mapping Rules >::= {< service component >< BPEL
Object >}*

Mapping rules are the relationships between Service

Components in business level process and Objects in BPEL, it
only contain elements that users can modify without
interfering with the whole process logic for a particular
pattern. So far, 4 BPEL objects, namely: Invoke, receive,
onMessage and reply activity, are involved in our approach.
The validity of mapping rules should be guaranteed by
template designers.

Service component mapping is mainly related to several
elements in the BPEL and WSDL files, the specific
relationship are listed as follows:

RPC component is related to “Invoke”, while the Message
component could be “Receive”, “onMessage”, or “reply”. Any
change to these two components will affect some other
relevant elements besides themselves.

The operations allowed in a business pattern are:
Component changing: the operation is to change a

component in business level process. It will result in change
of related BPEL object. The system will synchronize
reconfigure relevant elements, and will ask for user interaction
to edit “Assign” objects if needed.

Component adding: the operation is to add a sequential or
parallel component to the business level process.
Corresponding object and relevant elements will be added to
the BPEL.

Component deletion: the operation is to delete a
component if it has no relationships with other components.
Corresponding object and relevant elements will be deleted

Assign Modification: the operation is to modify the
variables and their relations in “Assign” object. It is utilized to
guarantee the validation of data flow.

The overall procedure for reuse of one pattern contains
four steps: 1) Reconfigure the Pattern by an operation; 2)
Automatically Detect impacts; 3) Read parameters and
messages information from WSDL file for the service being
change, and automatic change the partial structure of the
BPEL, d; 4) Ask for user interaction to modify BEPL
“Assign” object for data flow if needed.

TABLE I
RELATED ELEMENTS THAT WILL BE AFFECT BY CHANING OF PARTICULAR KIND

OF COMPONENT
 Component
Elements

RPC Messag

WSDL file Y
import Y
partnerlink Y
partnerlinktype Y
variable Y Y
assign Y Y

B. Enterprise Integration Pattern
We propose abstract service based on Enterprise

Integration Pattern. An abstract service shows high level view
of one operation of service to users, from which the users can
get the information of how the service works. It describes the
EIP used by the services, corresponding end points and
pattern dependent components it will use. The definition of
Abstract Service is described as below:
<Abstract Service>::=<ID><Operation><WSDL><EIP
pattern><End points><Pattern dependent Components>

Pattern dependent Components is the component related
to particular pattern, like Message Router component or
Message Translator component.

The abstract service can be directly mapped to the
deployment files of the end points in the Enterprise Service
Bus product like ServiceMix.

211

IV. FRAMEWORK AND ROLES

A. MAPLE Framework
The framework for MAPLE is illustrated in Figure 5.

Besides tools that are already provided by current venders,
like BPEL tools, ESB, Portal and IDE, four modules are
added to facilitate the MAPLE approach, including:

Debugger

BTE

BPEL Designer BPEL deployer

Portal

BPEL Engine

SAM

PTM

ASR

Management Interface ESB

Fig 5. MAPLE Framework

Service Abstraction Manager (SAM): the SAM is the

toolkit for designing abstract services using different
enterprise Integration pattern. The configuration information
of abstract services will be restored in Abstract Service
Repository.

Abstract Services Repository (ASR): Repository for
abstract services. BPEL designer and BTE will use it to get
service and related WSDL file. It also maintains abstraction
information that contains relationship among service and the
endpoints related to it according to certain EIP. It can be used
by BTE and BPEL designer.

Business Template Editor (BTE): It is utilized to model
business level processes, and to edit mapping relationships
between business level processes and BPEL. Changes of
BPEL can be achieved by configuring the template, and the
creation of new process can be done in the same way to
generate new template with modified business level process
and BPEL. The service components can be selected from ASR.

Business Template Mapper (BTM): Mapping changes of
business level process to BPEL, detect impacts by rule and
modify related objects in response to the changes.

The first two are used to manage service level abstraction,
while the others are developed for process level abstraction.

B. Roles for the framework
Mattsson[12] has presented preliminary ideas on the roles

required for developing, evolving and maintaining SOA-based
systems. The roles are categorized into 7 groups, namely:
SOA Front end support, Back end support, Traditional Back
end support, SOA design, SOA management, Quality
Assurance, Business Project Members[]. Here, we focus on
roles for the maintenance evolution system, especially the
roles closely related to the Framework, while ignoring the
others. The roles are:

Interface developer: The role belongs to Traditional Back
end support group, and is responsible for developing and
verifying interfaces based on legacy systems to meet the
requirement of Service Abstraction Manager. It works in

initial and evolution stages.
ESB Component developer: Responsible for designing,

developing, testing of additional building blocks for
integration and management, like logging service, auditing
services, etc. The Service Components are plugged into
Enterprise Service Bus as well. It works in initial and
evolution stages.

Service Abstraction Manager: Responsible for managing
original service end points and Service components, as well as
data transformation rules deployed to ESB. The role creates
abstract services by using suitable Enterprise Integration
Pattern, and maintains the routing configuration in response to
changing requirements of services. It can be treated as the
combination of Service Developer in SOA Back-End Support
group and Service Designer in SOA Business Process Design
group. It works in initial, evolution and serving stages.

Business Process Orchestrator: The role develops BPEL
based on the business process provided by Business Process
Architect. It belongs to SOA Business Process Design Group.
It works in initial and evolution stages.

Business Template designer: Designs business templates
according to Business patterns. It has the responsibilities of
both Business Process Manager in SOA Back-End Support
group and SOA process manager in SOA Management group.
It works in evolution and serving stages.

Process maintenance manager: The role utilizes the
template defined by Business Template designer to construct
new BPEL or to reconfigure the process, so as to implement
small changes. It is similar as Business Process Manager in
SOA Back-End Support group. It works in serving stage, and
can also be used to rapidly create processes in evolution stage.

Interface developer and ESB component developer uses
IDE like eclipse, Business Process Orchestrator uses BPEL
designer, while the others will use the new modules in figure 5.
SAM and SAR are tools for Service Abstraction n manager,
Business Template designer and Process maintenance
manager will use BTE and ASR.

V. CASE STUDY
The approach proposed in this paper has been applied in an

ongoing integration project for a large textile and clothing
Manufacture Company. The company owns 23 categories of
IT systems like: D/CAM/CIM, PDM, ERP, etc. The
integration project was launched to cope with the problem
mentioned above in early 2007. After requirement analysis, a
high level business process is draw to illustrate the overall
collaboration process for order-driven manufacture.

By analyzing the business process, we find that the atomic
process of the enterprise can be separated into several
categories: The first category involves data exchange of
fabric rate, fabric width, size scale, operation schedule, etc.;
the second category involves management of the samples,
files, production schedules etc.; the third category involves
verification of cutting consumption, patch control etc. Each
category contains large number of atomic service. Obviously,
it will take great efforts to implement realization and

212

maintenance all of these processes. This paper proposes a new
method which simplifies the creation and adjustment of
processes by means of classifying the business processes with
the similar logic, refining the business patterns, designing and
generating business templates.

Clothing Manufacturing Process

Pr
oc

es
s

IT
 re

so
ur

ce
s

V
en

de
r

C
ro

ss
 d

ep
t.

pr
oc

es
se

s

PlanningPlanning R&dR&d Storage Storage CuttingCutting ManufacutreManufacutreFinantialFinantial

ERP CAD:PDM
ERP

ERP CAM ERP

INV gerber lectra INV gerber lectra

CAM ERP

Yangge gerber lectraYange

Dept.

Business
flow

Activity

Fig. 6. Overall procedure and related business Patterns

Fig.7 shows an example of event-driven data exchange

pattern, which includes 8 steps. The BPEL implementation
related to this process has the same structure with the BPEL
showed in figure 2.Figure 8 shows some parts of the BPEL
framework in the basic template.

B

A 1 data arrived

2. Trigger Event

3. Data transferring

4 Write Data to B

5. Disposal

6 Data updated

7 Exchange auditing
And Logging

8 Write Data to A

Fig. 7. The procedure for Event driven Data Exchange pattern

……
<bpel:process……xmlns:ns1=”http://ict.ac.cn”
 xmlns:ns2=”http://ict.ac.cn/xsd” ……>
<bpel:import…… location=ServiceLocation
 namespace="http://ict.ac.cn"/>
<bpel:import…… location=AServiceLocation

http://ict.ac.cn/xsd"/

ns2: WriteDatatoASoapIn" /

"ns2: WriteDatatoASoapOut" /

ns2:listType</b

"WriteDatatoA"

ns2:ServiceSoap"/

xmlns:ns3="http://sizeratio.example.org"
xmlns:ns4="http://erpservice.example.org/"
xmlns:ns5="http://sizeratio.example.org/xsd"

"http://sizeratio.example.org"
http://127.0.0.1:8080/axis2/services/SizeRatio?wsdl

"http://erpservice.example.org"
 "http://10.61.0.11/ERPWriter/?wsdl" />

ns4: WriteSizeRatioSoapIn" /

"ns4: WriteSizeRatioSoapOut" /

ns4:listType</b

"WriteSizeRatio"

ns4:ServiceSoap"/

namespace=" >
……
<bpel:variable name="messageIn"
 messageType=" >
<bpel:variable name="messageOut"
 messageType= >
……
<bpel:copy>
<bpel:from…… >……</bpel:from>
<bpel:to part="parameters" variable="MessageIn">
 <bpel:query> pel:query>
</bpel:to>
</bpel:copy>
……
<bpel:invoke inputVariable=" MessageIn "

operation= outputVariable="MessageOut"
partnerLink="ERPPL"
portType=" >

……
</bpel:process>

……>
<bpel:import…namespace=
location= />
<bpel:import…namespace=
location=
……
<bpel:variable name="messageIn"
 messageType=" >
<bpel:variable name="messageOut"
 messageType= >
……
<bpel:copy>
<bpel:from…… >……</bpel:from>
<bpel:to part="parameters" variable="MessageIn">
 <bpel:query> pel:query>
</bpel:to>
</bpel:copy>
……
<bpel:invoke inputVariable=" MessageIn "

operation= outputVariable="MessageOut"
partnerLink="ERPPL"
portType=" >

……
</bpel:process>

Fig. 8. A set of BPEL information for one invoke node filled with grey in Fig.
1. The words in italics are about the node.

……
<bpel:process……xmlns:ns1=”http://ict.ac.cn”

xmlns:ns2=http://ict.ac.cn/xsd”

Fig. 9. A set of BPEL information for a specific invoke node. It is generated
by change the empty invoke node to an existing service. The Business Mapper
will retrieve information from related WSDL file, and automatically modify
the BPEL files.

Fig. 10. The system user interfaces when run the BPEL to implement an event
driven data exchange process between ERP and CAD systems.

The process showed in Fig 1. one can be generated from
this template. Suppose ERP is treated as system A, and the
user select a ERP write operation “WriteSizeRatio” in the
service located in “http://10.61.0.11/ERPWriter/?wsdl” to take
the place of the “WriteDatatoA” operation in the basic
template. BTM will read information from the WSDL, and
map the change to the BPEL. Figure 9 shows the generated
template, with the operation replacement. In BPEL code, the
words in italics are differences between basic template and
generated template.

213

In this process, abstract services are configured using
different pattern. For example, in step 2, event generated in
the ERP system is wrapped to be a JMS message. Since the
event should be used by another process, publish subscribe
pattern is utilized, where the end point acts as publisher and
the abstract service acts as subscriber.

After generating new BPEL for the ratio Data exchange
between ERP and CAD systems, it can be deployed to the
platform. Figure 10 illustrates some user interfaces.

VI. CONCLUSION
A maintenance approach for SOA based system is

proposed based on two-level abstraction, which provides a
practical way to facilitate reconfiguration of SOA processes
and abstract services. Experiences accumulated in our first
stage application in a real SOA based project prove that it can
achieve easy-to-use reconfiguration without introducing
unexpected effects to the whole system.

The future works includes improving the framework,
implementing new functionalities for the new modules,
formalized study on the descriptions of business template and
abstract service, etc. Semi-automatic generating and validating
of business pattern itself based on BPEL can be an interested
topic as well.

VII. REFERENCES
[1] Grace Lewis, Dennis Smith, Kostas Kontogiannis, Scott Tilley, Mira

Kajko-Mattsson, Ned Chapin, “A Research Agenda for Maintenance &
Evolution of SOA-Based Systems,” IEEE International Conference on
Software Maintenance, Oct. 2007, Paris, France, pp.481-484.

[2] Kostas Kontogiannis, Grace Lewis, Dennis Smith, Marin Litoiu, Hausi
Muller, Stefan Schuster, Eleni Stroulia, “The Landscape of Service-
Oriented Systems: A Research Perspective,” International Workshop on
Systems Development in SOA Environments, 2007. pp.1 – 1.

[3] Kajko-Mattsson, Mira Lewis, Grace A. Smith, Dennis B, “Evolution
and Maintenance of SOA-Based Systems at SAS,” Proceedings of the
41st Annual Hawaii International Conference on System Sciences, 2008,
pp. 119-119.

[4] Keith H. Bennett , Václav T. Rajlich, “Software maintenance and
evolution: a roadmap,” 2000 Proceedings of the Conference on The
Future of Software Engineering, pp.73-87.

[5] Cardoso Jorge, Sheth Amit. “Semantic e-workflow composition,”
Journal of Intelligent Information Systems,2003,21(3):191 225

[6] S. R. Ponnekanti and A. Fox. “SWORD: A developer toolkit for Web
service composition,” In Proceedings of the 11th World Wide Web
Conference, 2002, pp. 83 107

[7] KEITH M, “From UML to BPEL:Model Driven Architecture in a Web
services world,” http://www.ibm.com/developerworks/webservices/
library/ws-uml2bpel/.

[8] VAN DER AALST W M P., LASSEN K B, “Translating Unstructured
Workflow Processes to Readable BPEL: Theory and Implementation,”
Information and Software Technology, vol. 50, pp.131-159, Feb. 2008.

[9] Sneed, H.M. AneCon GmbH, Vienna, Austria, “Integrating legacy
software into a service oriented architecture,” Proceedings of the 10th
European Conference on Software Maintenance and Reengineering, pp.
11 -14.

[10] Gregor Hohpe, Bobby Woolf, “Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions, “Addison-
Wesley Professional, 2003

[11] Umapathy, K, Purao, S., “Designing Enterprise Solutions with Web
Services and Integration Patterns,” 2006 IEEE International Conference
on Services Computing, pp. 111 – 118

[12] Kajko-Mattsson, Mira; Lewis, Grace A.; Smith, Dennis B, “A
Framework for Roles for Development, Evolution and Maintenance of
SOA-Based Systems,” Proceedings of the 29th International Conference
on Software Engineering Workshops, 2007. pp:117

VIII. BIOGRAPHIES

Songlin Hu was born in Shanxi province, China, on
Oct. 20, 1973. Songlin received Bachelor and Master
Degrees from the Taiyuan University of Technology,
and receive PHD degree from Beihang University in
2001..

He is now working in the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China. His special fields of interest included Service
computing, distributed event based system, and
Enterprise Application Integration..

Ying Liang was born in Beijing, P.R.China, on May 31,
1962. She graduated with a Bachelor's degree of
Engineering from Tsinghua University. She is a senior
engineer of the Institute of Computing Technology of
Chinese Academy of Sciences. Her current research
interests include software integration and service
computing.

Jiuming Tian was born in Tengzhou, Shandong
Province, P.R.China, on April 8, 1983. He graduated
from University of Science & Technology of China in
2005 and now is receiving postgraduate education in the
Institute of Computing Technology, Chinese Academy
of Sciences. His research interests include workflow,
web services composition and BPEL.

Yicheng Song was born in Wuhan, P.R.China, on
December 17, 1984. He graduated from Wuhan
University in 2006 and now is receiving postgraduate
education in the Graduate University of the Chinese
Academy of Sciences. His research interests include
algorithms design techniques and analysis; Service-
Oriented Architecture and the structure of operation
system.

214

Reliability Oriented QoS Driven Composite Service Selection Based on
Performance Prediction

Lei Yang Yu Dai Bin Zhang

College of Information Science and Technology, Northeastern University
yanglei@mail.neu.edu.cn

Abstract

In order to improve the reliability of composite
service, this paper proposes an approach of reliability
oriented composite service selection. Firstly, a service
reliability model which integrates request processing
reliability and transmission reliability is proposed. In
order to compute the transmission reliability, a semi-
Markov model based performance prediction is used.
Finally, we put the proposed reliability model into QoS
driven service selection. Experimentations show that
the proposed selection approach have better
performance in preserving the reliability of composite
service than traditional QoS driven selection approach.

1. Introduction

As web services operate autonomously within a
highly variable environment (the Web), as a result of
which their QoS may evolve relatively frequently,
either because of internal changes or because of
changes in their environment [1], such dynamic
properties highlight the problem of QoS driven service
selection.

Most previous works divides QoS and reliability
into two different research fields and studies them
separately. However, in reality, QoS and reliability are
closely related and affect each other. Let us take one of
QoS attributes, response time, as an example. The
response time of composite service is a random
variable affected by many factors. First, there are many
services available on the Web with different request
processing speeds. Thus, the response time can vary
depending on which service is used for executing the
task in the composite process. Second, some service
can fail during its execution. So the response time is
also affected by the processing reliability. Third, the
communication links can fail during data transmission.
Thus, the transmission reliability affects the response
time as well. Then, when tasks are assigned to services
with better response time and worse reliability, the

failures of any service and any communication link
will make the entire composite service incomplete.
This will cause a re-selection to bind new services,
which inversely increase the response time of
composite service. Thus, this paper attempts to select
composite service in order to maximize the QoS of
composite service considering the effect of reliability
as well.

 In this paper, we propose an approach of reliability
oriented composite service selection. Key to our
approach is the proposed model of service reliability.
Such reliability model integrates request processing
reliability and transmission reliability, which can be
used for evaluate the reliability of services. Meantime,
a semi-Markov model is used to quantify the reliability
of service. Then, reliability oriented QoS driven
composite service selection is presented.
Experimentations show that the proposed selection
approach have better performance in preserving the
reliability of composite service than traditional QoS
driven selection approach.

2. Related Works

As web service is a kind of software on the Web,
traditional reliability model for evaluating the software,
such as Ref.[2], can be used to quantify the request
processing reliability. However, as web service
existing on the Web, the state of Network (such as load
and throughput) will affect the reliability of service.
Thus, when it is to model the reliability of service,
traditional model for quantifying reliability of software
cannot be directly used in the field of service
composition.

In the researching field of service composition,
researchers [3] use the successful execution rate of a
service with the maximum expected time frame to
quantify the reliability of a service. This approach is
relatively simple. In Ref. [4], the researcher uses a
Possion Distribution to quantify the reliability of grid
service with the assumption that the data transmission

215

speed and failure rate of Network is a constant value.
However, such assumption do not always hold true.
Such reliability model cannot reflect the reliability of
service in many situations.

Compared with the above works, we model the
service reliability as an integration of request
processing reliability and transmitting reliability.

3. Performance Prediction for Reliability
Modeling

3.1 Preliminaries

In this section, we introduce some basic concepts
that will be used in the remainder of the paper.

Definition 1. QoS of Atomic Service. For an
atomic service s (which only contains one operation),
the QoS of s can be defined as: QoS(s)=<Qt(s), Qp(s)>,
where:
� Qt(s) is the response time of s.

Qt(s)=tp+R/Vtransmission, where tp is the request
processing time; R is the amount of data needed
to transmit between s and the execution engine
and Vtransmission is the transmission speed.

� Qp(s) is the cost of invoking s.
From the definition, the change of request

processing time, the transmission speed and the cost
will influence the QoS of the service. The affected
QoS of service will in turn influence the QoS of
composite service. Cost for invoking a service is
published by the service provider. The request
processing time relies on the number of requests in the
waiting list and the processing speed of the computer.
The transmission speed is affected by the network.
Compared with the changes caused by service
providers, changes of the request processing time and
transmission speed will be changed more frequently.
Such change will affect the performance of service.
The reliability of the service is to evaluate the degree
to which the service can serve the request as
announced QoS.

Thus, in this paper, we will based on the following
assumption to model the service reliability:

(a) failure at different service and communication
links is independent; (b) from the time of sending
request to the service to the time of receiving the result
from the service, data transmission speed is a constant
value; (c) the failure rate of processing the request is a
constant value; (d) the cost for invoking a service is
never changed.
3.2 Model of Service Reliability in Context of
Composition

QoS reflects how a service can implement the
function with certain performance. In context of

composition, service reliability represents the degree to
which service can serve the request as estimated QoS.
In the following, we will discuss how to model the
service reliability.

In the context of composition, the earliest start time
etij of component service j for task i in the composite
process can be computed as Eq.(1).

! "
#$

#
%
&

'�

 (

0,0

0,max

k

ktet
et

kukuik
ij

(1)

Where, task k (k<i) is the one that will be invoked
before task i and tku is the response time of candidate
service u for task k.

As web service existed in the complex Internet
environment, the reliability of service should not only
consider the processing reliability as most software,
but also take into account of transmission reliability. In
this paper, we model the service reliability as an
integration of request processing reliability and
transmitting reliability. To quantify request processing
reliability, common software’s reliability model [2] is
used. To quantify transmitting reliability, as it relies on
the current state of the Network, the holding time in
current state and the predicted duration, we quantify
the transmitting reliability based on a semi-Markov
based performance prediction. In the following, we
will give the definition of reliability of service.

Definition 2. Reliability of Service. Reliability of
atomic service s in composite service CS is the
probability that a request is correctly responded with
the estimated time frame, which can be defined as
follows: R(s, CS)=<Rp(s, CS), Rt(s, CS)>, where
� Rp(s, CS) is the request processing reliability,

which can be defined as Eq.(2):
� � t

p eCSsR ��
, (2)
Where, � is the failure rate of service when
processing a request; t is sum of response time of s
and earliest start time of s in CS; Eq.(2) is a
common in software’s reliability, which has been
justified in both theory and practice [2].
� Rt(s, CS) is the transmitting reliability. We

will show how to quantify it in section 3.3.
� The overall reliability of service s can be

computed as Eq.(3)
� � � � � �CSsRCSsRCSsR tp ,,,)
 (3)

Definition 3. Reliability of Composite Service.
Reliability of composite service CS is the
probability of that all the component service
execute correctly, which can be defined as Eq.(4):

� � � �� �* ��

v

v CSsRCSR ,11 (4)

Where, sv is a component service of CS.

216

3.3 Performance Prediction for Quantifying
Transmission Reliability

We introduce discrete time semi-Markov model [5]
for the prediction.
 Definition 4. States of Data Transmission Speed. We
use th_VQ to signify the threshold of data transmission
speeds in Qualified state.
� If V(t)>= th_VQ, then ST(t) =Qualified state;
� If 0<V(t)<=th_VQ, then ST(t)=Soft Damage

state;
� If V(t)=0, then ST(t)=Hard Damage state.
Definition 5. Semi-Markov Model for Data

Transmission Speed. Let � be the state space of data
transmission speed �={1, 2, 3}. Z={Zt; t>=0} is the
random procedure on �. If the following conditions
are true, we call that Z={Zt; t>=0} is a semi-Markov
process.
� If current state is i, the next state will be entered

is j with probability Pij. Especially, Pii=0;
� Given that the next state entered will be j, the

time it spends at state i until the transition occurs
is a holding time t with distribution Fij(t).

Let Hi(t) be the distribution of holding time in state
i, Hi(t)= � ��)

j
ijij PtF . The average holding time in state

i can be signified as μi. According to lemmas [5] of
semi-Markov model, there exists stationary
distribution �=[�1, �2, �3] and for each �j, it can be
computed as Eq.(5). Also, let Pi the steady-state
occupancy probability of state i, it can be computed as
Eq. (6).

1;
3

1

3

1

 ��

 i
i

i
ijij P +++ (5)

�

j
jj

ii
iP

�+
�+ (6)

In order to predict the future state, it is required to
get the context related to data transmission speed.
 Definition 6. QoS-Related Context. The QoS-related
context observed by observation o can be defined as
QC(o)=<tob, v, stob >, where tob is observing time; v is
the observed data transmission speed at tob; stob is state.
 The aim of prediction can be described as: if the
current state is i, current time is t and the holding time
in current state is d, we need to predict the probability
of the data transmission speed Vf at future time tf above
the expected speed Ve. Let j be the state Ve belongs to.
To solve this problem, we will consider the following
two situations:
� State j is same to i
In this situation, the probability can be a sum of the

probabilities in the situations with no transition from t

to tf and situation with at least one transition. Then, the
probability can be computed as Eq. (7).

� � � �� �
� � � �� �
� � � � � �� �

� �� � � �
� � � �� � � � � �

� �
1

1
1

1
1

dH
dHdttH

PVF
dH

dttH
VF

dDttdDdiZVVP

dDdttDVVP
dDVVP

i

ifi
iei

i

fi
ei

ifite

ifie

ie

f

�

���
))��

�

���
)�

,��((�
�,�

,��,�,

,�, (7)

� State j is different from i.
If state j is different from i, it means that there exist

at least one transition during the duration from t to tf.
Then, the probability can be computed as Eq. (8).

� � � � � �� �
� � � � � �

� �� � � � � �
� �dH

dHdttH
PVF

dDttdDdPjZPVVP

dDttdDdjZVVP

i

ifi
je

ifite

ifite

f

f

�

���
))�

,��(()
),

,��((�
�,

1
1

(8)

According the prediction of transmission speed,
the transmission reliability of service s in the context
of composition, can be computed as Eq.(9):

� � PCSsRt
, (9)
Where, P can be either computed as (7), or (8),

according to the current state of service.

4 Reliability Oriented QoS Driven
Composite Service Selection

Reliability oriented QoS driven composite service
selection is to maximize the QoS of composite service
considering the effect of reliability as well. The
problem of such selection can be described as (10).

� �
� �

� � cv

t
cv

t

vv

RCSR
QCSQts

CSF

-
.

 .

 max
 (10)

Where, CSv={(t1, s1, k1),…, (ti, si, ki), …, (tn, sn,kn)}, here,
tv is the task in composite process and sv,kv is the
service selected for tasl tv; Qc

t is the constraint of
response time; Rc is the reliability constraint; F is the
fitness function which considers both QoS and
reliability of the composite service and can be
computed as (11).

� � � � � � � �vR
p

pv
p

p
t

tv
t

tv CSRw
uCSQ

w
uCSQ

wCSF)��
�
�

�
�
�
�

	 �
)��

�
�

�
�
�
�

	 �
)

//
(11)

Where wt, wp and wR are the weights (0<=wt, wR,
wp<=1, wt+wp+wR=1). � and μ are the standard
deviation and average of the QoS values for all
potential composite services.
 Such problem can be mapped into a multi-constraints
satisfying problem. Several approaches [6] can be used
for solving such problem. As the limitation of this
paper, we will not discuss how to use the algorithm to
solve such a problem in detail.

217

5. Experimentations

Experimentation 1 is used to test the effectiveness

of the proposed semi-Markov model based QoS
predicting approach. Simulate test set of data
transmission speed according to the Gaussian
distribution. The threshold of failure probability is 0.9.
The size of QoS-related contexts is 100000. Compare
the relation among predicted result, predicting interval
and the observation interval between two neighboring
contexts. Table.1 gives the result (OQ is the
observation interval between two neighboring QoS-
related contexts in QCS; N is the number of predictions;
R is the average accurate rate of the predictions.

Table. 1. Semi-Markov Based Predicted Result

OQ=0.5s OQ=0.1s OQ=0.05s
I=
10

I=
60

I=
180

I=
10

I=
60

I=
180

I=
10

I=
60

I=
180

N 300 300 300 200 200 200 150 150 150
R% 95 86 80 97 93 83 98 95 92

Table.1 shows that if the observation interval
between two neighboring contexts is smaller and the
predicting interval is shorter, the prediction will be
more accurate. When the observation interval is short
enough, although predicting interval is a little bigger,
the accurate of prediction will be better also. Thus,
through minimizing observation interval, the accuracy
of prediction result can be improved.

 Experimentation 2 is used to test the reliability of
composite service. Randomly generate 10 abstract
composite processes. Select the composite service for
each composite process. Simulate test sets of data
transmission speed according to the Gaussian
distribution and set IQ=0.1s, the threshold of reliability
is 0.95. Simulate change of data transmission speed
according to Gaussian distribution from the beginning
time of composite service execution to the completing
time of composite service execution, after selection.
Compare the response time of composite service. The
result is shown in Fig 1.

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10

composite service

R
es

po
ns

e
tim

e
of

 c
om

po
sit

e
se

rv
ic

e(
s)

The constraint on
response time

Reliability Oriented
QoS driven
selection
QoS driven
selection

Fig. 1. Comparison of Re-Selection Numbers

Fig 1 shows that the composite service selected by

the proposed reliability oriented QoS driven service
selection approach always has better response time
than the one selected by QoS driven approach. This is

because that during the selection process, not only the
QoS of composite service is considered, but also the
reliability of composite service is respected in our
approach. Thus, the more reliable composite service
will always meet the constraint of response time.

 The above experimentations show that the proposed
approach is more effective in preserving the reliability
of composite services.
6 Conclusions

In order to maximize the QoS of composite service
considering the effect of reliability as well, we propose
an approach of reliability oriented composite service
selection. Model of service reliability is proposed.
Then, we put such model into the problem of reliability
oriented QoS driven composite service selection.
Experimentations show that the proposed selection
approach have better performance in preserving the
reliability of composite service than traditional QoS
driven selection approach.

Acknowledgement

This work is supported by the National Natural
Science Foundation of China under Grant
No.60773218.

References

[1] L. Z. Zeng, B. BENATALLAH, “QoS-Aware
Middleware for Web Services Composition”, IEEE
Transactions on Software Engineering, 2004, 30(5),
pp.311-327.
[2] M. Xie, Y.S. Dai, and K.L. Poh, “Computing
Systems Reliability: Models and Analysis”, Kluwer
Academic, 2004.
[3] G. Huang, L. Zhou, X.Z. Liu, H. Mei and S.C.
Cheung, “Performance Aware Service Pool in
Dependable Service Oriented Architecture”, Journal of
Computer Science and Technology. 2006, 21(4),
pp.565-573.
[4] Y.S. Dai, G. Levitin, and K. S. Trivedi,
“Performance and Reliability of Tree-Structured Grid
Services Considering Data Dependence and Failure
Correlation”, IEEE Transactions on Computers. 2007,
56(7). pp.925-936.
[5] M. Malhotra, A. Reibman, “Selecting and
Implementing Phase Approximations for Semi-Markov
Models”, Communication Statistics-Stochastic Models,
1994, 9(4), pp. 473-506.
[6] R. Fleteher, “Practical Methods of Optimization”,
New York, John-Wiley and Sons, 1981.

218

Abstract—RSS (Rich Site Summary, or Really Simple Syndication)
is widely used for notifying readers of updated information on
blogs and feeding news to readers quickly. RSS is very simple, and
so is mostly used as a web service. However there is no
satisfactory search engine which works for RSS. The reason is that
RSS is continuously modified, and the structure of general search
engines is ineffective to collect information from RSS sources.

In this paper, we discuss a web crawling algorithm, and
propose a structure for an RSS crawler which is geared toward
collecting and updating RSS in the Web2.0 environment. The
proposed method (1) uses visited domain name history to predict
the location of the RSS of a new seed URL, and (2) updates RSS
information adaptively, based on some update-checking heuristics.
These approaches can serve as cornerstones for an efficient and
effective RSS search engine.

Keywords—Web2.0, RSS, Crawler, Adaptive Revisit manager

1. Introduction

Web2.0 [1] is a next generation web service paradigm
which is different from past technologies. In this paradigm,
information providers and users are engaged in interactive
communications about their demands and needs [2]. RSS
(Rich Site Summary or Really Simple Syndication), a novel
XML based technique in the Web2.0 environment, is used
for transferring data easily, and notifying readers of updates
to blogs via RSS reader applications or meta-blogs almost
in real-time.

Historically, RSS has been used to refer to “Rich Site
Summary,” “RDF Site Summary” and “Really Simple
Syndication.” It is a data format based on XML, used to
supply update information on websites with frequent
content updates [3]. RSS is very simple, and so is mostly
used as a web service especially on blogs. People can
subscribe to an RSS “feed” with an RSS reader application.
The feed lets people know that new information is available
even though they do not visit the website, and people can
use the reader application to categorize contents to their
taste.

In response to the increasing use of RSS, sites have
emerged which offer an RSS reader-like portal service,

such as “allblog.net” and “naaroo.com” in Korea. These
sites are called meta-blogs. People can add their RSS
address to the meta-blogs by themselves. The meta-blogs
check updates of registered blogs and categorize contents
like news articles for portal sites. However the meta-blog is
inconvenient because they involve passive registration of
RSS by personal bloggers. Also people can only search for
registered contents, and so the search results of portal
contents are limited to narrow topics.

Development of a search engine specifically for RSS is
needed to solve these problems. Generally speaking, a web
search engine consists of three parts: a crawler, an indexer,
and a searcher [4,5]. The crawler collects information from
websites, and the indexer manages an index of gathered
information to support fast retrieving. The searcher offers
searching results based on the index. There are studies on
RSS gathering, but the results have been less than
satisfactory thus far. In this paper, we propose an RSS
crawler that takes advantage of the features of RSS. This
proposed RSS crawler makes use of gathered domain
information to find the location of RSS from seed URLs.
Furthermore it adaptively checks the updates from sites of
collected RSS with an RSS manager. To do this, the RSS
manager keeps information on the update time of each RSS
feed.

The rest of the paper is organized as follows: Section 2
offers a brief overview and related work of the search
engine and RSS. Section 3 describes the proposed RSS
crawler with emphasis on the RSS crawling algorithm for
effectively gathering RSS update information and on the
structure of the RSS manager for adaptive updates of RSS
feeds. Section 4 gives a comparison between our proposed
approach and some existing work. Finally, in Section 5, we
conclude the paper with remarks on future works.

2. Related Work

2.1. Web Crawler and RSS Search Engine

One of the most important reasons for Google to
become a tremendously successful company in the web

Design of an RSS Crawler with Adaptive Revisit Manager

Bum-Suk Lee
1
, Jin Woo Im

1
, Byung-Yeon Hwang

1
, and Du Zhang2

1
 Department of Computer Scinece and Engineering, The Catholic University of Korea, 43-1 Yeokgok

2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
{bslee,cukfan,byhwang}@catholic.ac.kr

2 Deptartment of Computer Science, California State University, Sacramento, U.S.A.
zhangd@ecs.csus.edu

219

service field is that Google has developed a search engine
that crawls the enormous web very effectively. Google uses
a totally automatic crawler and a specialized page-rank
algorithm [6]. The days to register and categorize website
information manually by humans are long gone. Most of
the web search engines nowadays use some sort of
automatic crawling algorithms.

There are researches for developing RSS crawler by
various researching group [7-10]. Among them, beta version
of Feedshow.com was developed by French researchers in
2006. It gathers RSS with crawler and provides a search
engine. Furthermore Bloglines.com and Blogpulse.com are
developed with their own RSS aggregator. However most of
these services cannot adequately satisfy people's demands
and needs, because the searching results are too limiting to
fine useful information. Also ranges of the results are
limited to their locality, such as Europe or the States. It
seems that the problem stems from the lack of some
effective crawling algorithm for aggregating RSS and from
the disconnection between the web service and the features
of RSS which update frequently.

There is also interest in developing the RSS indexer.
Brooks and Montanez introduced autotagging and
hierarchical clustering into the blogosphere [11]. The
automatically generated tags were useful to help users with
their choices. However these tags could not be combined
with each other in any meaningful relationships, so people
had to connect them by hands. It is acknowledged in the
paper that the autotagging algorithm needs to be improved.

2.2. Features of RSS

RSS is updated when new content is added on a website
or blog. The period of the updates is determined by the
preferences of the information provider or the character of
the service type. RSS can be located in the same URL-
subpath as the blog in some cases, such as WordPress (an
installable type blog) and Blogger (a joinable type blog),
which are the two most popular blogging tools in the world.

The period of update is important in the collection of
information from RSS. The internet has been growing
consistently over the past two decades, and a large number
of web pages are newly created every day. Furthermore the
bloom of blogs results in new contents every day, with
frequent updates all over the world. These voluminous
newly created web pages far exceed the ability of search
engines to crawl and process, so the revisit period for a
particular website to check its update may be far longer
than the update period of the site itself. This causes
deterioration in the quality of search results, because the
results may not contain the most recently updated contents
until the crawler revisits the websites that appear in the
search results.

This situation gets worsened especially in blogs. Many
people post their thoughts about life and social issues, and

often discuss these issues with other people. However many
events happen everyday, so information and issues that
people need and are interested in change fast.

Precision and recall are the popular evaluation measures
for search engines. Precision is the percentage of related
documents with keywords in the results. Recall is the ratio
of number of related documents with matching keywords
returned by a search to the whole number of related
documents. A search engine with a long revisit period often
cannot show newly updated information. As a result, the
recall quality of the search engine deteriorates. On the other
hand, while frequent revisits can improve recall quality,
they cause unnecessary network traffic and maintenance
costs.

A main feature of RSS in both installable type of blogs
and joinable type of blogs is that RSS is located in the same
subpath as the blog, and so we can gather RSS easily based
on the domain information without visiting all URL links.
With the addition of a new module to use domain
information, we can improve crawling speed.

3. Proposed RSS Crawler

3.1. Gathering RSS with Domain Information

The main use of RSS is for blogs and news feeds.
Between these two types of web services, blogs use RSS
mostly widely. Accordingly, we can design an RSS crawler
which gathers RSS by considering the typical features of
blogs. The most commonly used blogs belong to either the
installable and joinable type, such as WordPress or Blogger.
In installable type blogs, people install the blog application
on a hosted site in their own domain, while people join and
get sub level domain access in the joinable type.

People have their own domain and web server in the
case of installable type blogs. For example, WordPress has
to be installed on a web server, and so its RSS is located in
the same sub-path, assuming the owner did not change
when they installed it. This feature is also applied with
other kinds of installable type blogs. Therefore when the
crawler visits a blog, it can recognize which kind of
installable blog application is used while reading any web
pages on that domain. With proper storage and indexing of
these kinds of information, the crawler can find the location
of an RSS without visiting all links.

Blogger is a representative example of the joinable type
of blogs. In this case, the blog creates a sub level domain
with a user ID, so if a user joins with ID “tom” then, the
address of the blog might be generated as
“http://tom.blogspot.com/”. Joinable blogs which generate
sub level domains have a feature that allows RSS to be
found in the same sub path location as the blog.

In this paper, we propose a path manager that uses the
domain and path information when it crawls. The path
manager analyzes and stores information about current

220

pages, and predicts the location of RSS in the current
domain. The structure of the proposed crawler is shown in
Figure 1. The crawler in Figure 1 has two features which
are different from normal search engine crawlers: (1) a part
for comparing domain information, and (2) a part for
checking whether the blog is an installable type or a
joinable type.

In the first step, the path manager checks that there is a
visited upper level domain based on the top-level domain
and second-level domain. This helps the crawler find RSS
quickly in the case of joinable type blog. Next, the crawler
checks whether the blog is an installable type, if there is no
matched domain. The crawler identifies an installable type
blog based on the pattern of path links and text. These can
be analyzed and maintained during the crawling process. If
the seed URL is based on either an installable or joinable
type of blog, the crawler may find the location of RSS, and
it can reduce unnecessary visits to find RSS.

Figure 1. A structure of crawler for gathering RSS.

3.2. Adaptive Revisit Manager

In this subsection we describe an adaptive revisit
method to check updates of RSS based on the update period
of gathered RSS. Generally speaking, web crawlers revisit
gathered websites occasionally to check updates and find
errors in URL connections. RSS is more efficient on
websites which are frequently updated than less visited
websites. Furthermore information consumers are greatly
satisfied when the RSS always includes recent information.
Accordingly, the meta-blog and RSS reader applications
have to provide recent information to satisfy people. The
proposed crawler analyzes the <pubDate> element in
gathered RSS, and uses it to predict the next update time.
The <pubDate> element includes a date and time in the
form: “<pubDate>Wed, 16 Jan 2008 01:51:44
+0900</pubDate>”. With this information we can
determine when the website is updated: daily or on specific
day such as on Saturday. The crawler predicts next update
time based on analyzed data, and revisits the RSS at that

time. This adaptive revisit method is based on the posting
pattern of the information provider.

The proposed crawler considers three pieces of
information in the <pubDate> element: (1) The update time
interval. The crawler finds the time interval of update, e.g.,
daily or weekly. This can be calculated from date
information. (2) The day of the week. Posting a new article
is the result of human work. People have their own life
patterns, so the analysis of the day of the week can be an
important clue. (3) The update time. A frequently updated
time is also based on human patterns, and so we can expect
that it is an effective indicator. Hence the crawler can revisit
during frequently updated time to reduce the gap between
posting time and revisit time. Based on the aforementioned
heuristics we can expect an improvement in the recall
quality of our search results.

Next we introduce an analysis method to be utilized by
the adaptive revisit manager. This method analyzes
gathered RSS files and applies a statistical method on the
day of week and an adaptive method on time. Let 	u denote
the probability of future day's update. Let U and be the
value of recent updated data (U is constantly 1) and the
mean of past updated data respectively. The algorithm
estimates the using =
u/
w where
w is a whole period
for all data and
u is a number of days where there exist
updated data. Table 1-(a) shows the presence or absence of
updated data in a sample RSS. In this example,
w is 45 and

u is 25, so is almost 0.556.

Table 1. Presence or absence of update in a sample RSS.
Sat. Sun. Mon. Tue. Wed. Thu. Fri.

1 0 0 0 1 1 0

1 0 0 0 1 0 1

1 1 0 1 0 1 1

1 1 1 1 1 0 0

1 1 1 0 1 0 0

0 1 0 0 1 0 0

1 1 1

(a)
Sat. Sun. Mon. Tue. Wed. Thu. Fri.

6/7 5/7 3/7 2/6 5/6 2/6 2/6

(b)

The term � is a weight factor that controls the rate of
convergence of the algorithm (always at 0.9), and � is a
statistical weight factor that is calculated from the mean of
update on the day of week. The � can be calculated
according to Table 1-(b). The statistical weight factor of
Tuesday which is a next day of the latest update is
0.333(2/6) in this example. Finally the probability is
estimated using Pu=��U+(1-�) . We determine 0.5 as the
threshold. Here, the probability value is 0.355. It is smaller
than the threshold, so we can predict that there may not
exist an update on the next day. After that the algorithm
recalculates an update probability of the day after tomorrow
(Wednesday). In this case
w increases to 46. With the same
method, =25/46 0 0.543 and � is 0.833(5/6), and so 	u is

221

0.804. We know that most likely there will be an update on
Wednesday.

4. Comparison

In this section we compare our approach with some of
the similar web services. Table 2 summarizes the
comparative results. The similar web service providers
include: Google, Feedshow, Bloglines, Blogpulse, and
Allblog.

Table 2. A comparison with similar web services.

Search Engine with Crawler Meta-blog
Our approach Google Feedshow Bloglines Blogpulse Allblog

Method for
collecting RSS

RSS
crawler

web
crawler

RSS
crawler

RSS
crawler

RSS
crawler

register RSS
by hands

Method for
checking update adaptive static static static static adaptive

Times until
Update reflection short long long short normal normal

As we mentioned in this paper, our approach consists of
two major components. (1) The crawler that crawls RSS
efficiently with gathered domain information. It reduces
useless out-links so as to find RSS fast. (2) Revisit manager
that is based on an adaptive and statistical method for
checking updates. This helps to reduce the cost for
checking the updates, and to promptly reflect the updates as
soon as they occur. Google has absolutely nice performance
but its method for checking updates takes too much time.
Performance of Feedshow is very poor while Bloglines and
blogpulse are in good performance range. However
Bloglines checks updates once an hour and Blogpulse
checks it once a day, thus creating unnecessary checking
cost. Allblog is a different kind of service. It is a meta-blog,
and people register their RSS to share with others. Its
checking update strategy is adaptive according to frequency
of RSS update. On balance, our approach can provide
efficient performance with low update-checking cost.

5. Conclusion

RSS is the most widely used information distribution
technique in the Web2.0 environment. It is an open standard
for transferring data efficiently based on XML. RSS is
widely used in many fields such as news and blog feeds,
and data transferring on mash-up services. However, the
state-of-the-practice in the field is that few existing RSS
search engines is efficient and effective. As a result,
development of better RSS search engines is critically
needed.

In this paper, we described the design of an RSS crawler
which gathers and updates RSS efficiently. The crawler, the
main part of a search engine, is a tool to visit the vast World
Wide Web and collect data. Commonly the crawler
recursively analyzes out-links of web pages starting from a
seed URL, but this method wastes too much time and

network traffic to work efficiently for RSS. Furthermore we
wanted to design a crawler just for gathering RSS
effectively. The proposed RSS crawler in this paper has two
main features: (1) It gathers RSS easily based on path and
domain analysis of installable and joinable type blogs,
which represent the majority of RSS use. (2) It revisits
gathered RSS adaptively based on update pattern analysis
of the period, day of the week, and time of updates on the
target site.

The proposed RSS crawler appears to gather RSS more
efficiently, and the adaptive revisit method can improve
recall quality of the search results. The proposed method
offers the possibility of reducing wasted time on crawling,
and improving recall quality. For future work, we intend to
implement the proposed RSS crawler and evaluate its
performance.

References

[1] T. O’Reilly, “What Is Web2.0: Design Patterns and
Business Models for the Next Generation of Software,”
self published on www.oreilly.com, 09/30/2005.

[2] D. E. Millard and M. Ross, “Web2.0: Hypertext by Any
Other Name?,” In Proc. of ACM Conf. on Hypertext
and Hypermedia 2006, pp. 22-25, 2006.

[3] RSS version 2.0 Specifications,
http://blogs.law.harvard.edu/tech/rss, 2003.

[4] S. Brin and L. Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” Computer Networks,
Vol. 30, No. 1-7, pp. 107-117, 1998.

[5] N. Blaž, “A Survey of Focused Web Crawling
Algorithms,” In Proc. of the Conf. on Data Mining and
Warehouses, 2004.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
PageRank citation ranking: Bringing order to the web,”
Unpublished Manuscript, 1998.

[7] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M.
Roussopoulos, and M. Welsh, “Cobra: Content based
Filtering and Aggregation of Blogs and RSS Feeds,” In
Proc. of the 4th Symposium on Networked Systems
Design and Implementation, pp. 29–42, 2007.

[8] X. Li, J. Yan, Z. Deng, L. Ji, W. Fan, B. Zhang and Z.
Chen, “A novel clustering-based RSS aggregator,” In
Proc. of 16th Int’l Conf. on WWW, pp. 1309-1310,
2007.

[9] S. Buraga and T. Rusu, “Search Semi-Structured Data
on Web,” In Proc. of the 7th Int’l Symposium on
Automatic Control and Computer Science, 2001.

[10] D. Chmielewski and G. Hu, “A Distributed Platform
for Archiving and Retrieving RSS Feeds,” In Proc. of
the 4th Annual Int’l Conf. on Computer and
Information Science, pp. 215-220, 2005.

[11] C.H. Brooks and N. Montanez, “Improved Annotation
of the Blogosphere via Autotagging and Hierarchical
Clustering,” In Proc. of the WWW2006, 2006.

222

QuickPay Online Payment Protocol

Jian Dai Mark Stamp
Department of Computer Science

San Jose State University

ABSTRACT In this article, we propose a new
online payment protocol, QuickPay, which is
built as a middleware framework for online
payment and other online financial transactions.
We provide the general design of the QuickPay
system by describing its business and technical
goals, system architecture, major players, and the
relationships among the players. To show how
QuickPay works, we discuss one specific
application in some detail. We demonstrate that
QuickPay can provide an effective and secure for
online payments.

Keywords
Security, online payment, micropayment

INTRODUCTION

Online payment systems are designed to
facilitate online purchases involving various
amounts of money [3, 5, 8]. Online payments
present several challenges, such as Trust between
physically separated customer and vendor;
anonymity of customer; instant payment; low
processing cost; etc. [6, 9].

At present, many online payment systems have
been developed. Based on their design principles
and characteristics, we can roughly classify them
into the following three categories: Token-based
Systems [2 8, 7, 10, 12]; Account-based System
[1]; and Protocol-based Systems [4].

Based on our analysis of existing online payment
systems, we propose QuickPay as a generic
online payment application which, in our
estimation, provides an optimal tradeoff among
the competing demands for security,
effectiveness and cost. QuickPay has also been
designed so that it can be used for the widest
possible variety of commercial activities.

QUICKPAY REQUIREMENTS

We believe the following business requirements
are the most critical to the success of a system
such as QuickPay.

Openness - QuickPay can accommodate users
who use other online payment systems.
High scalability - QuickPay is able to support
additional customers and vendors without any
impact on existing customers and vendors. This
implies that there is no performance bottleneck
in the system.
Independence and open plugin - Here, we
mean that QuickPay supports different online
financial transaction with different sets of
protocols. Each set of protocol can plugin to the
framework freely and independently.
Isolation - By isolation, we mean that
QuickPay’s users (vendor, broker, or customer,
as discussed below), can have their own
implementation for QuickPay’s protocols. Their
implementations are isolated from each other.
Security at low cost - This implies that
QuickPay provides reasonable security (as
compared to existing online payment systems),
with a low overall cost.
Standard user interface - This means that
QuickPay will have a standard user-friend
interface for end users.

ARCHITECTURE

QuickPay is designed as a middleware
application based on HTTP, Web Services, and
other related open source protocols. In addition,
we assume that in most cases, customers do
online shopping from their own dedicated
domains, such as home computers so that we can
tie customer “identification” with specific
machines. Secondly, we assume that a broker
(who is responsible for settling accounts) has
much less motivation to cheat as compared to
vendors and customers, due to the broker’s long-
term interest in commissions.

QuickPay defines four main player roles for the
system, as discussed below and illustrated in
Figure 1.
System Host is the central controller and
administrator for the whole QuickPay system.
This is the only component that can be trusted by

223

all other players and it has the most
authentication information on the other parts.
Vendor represents anybody (usually an
ecommerce website) that is selling products
(tangible or intangible) online and intending to
use QuickPay to collect payments.
Financial Broker is an entity (typically, a
financial institution) that serves to facilitate
payments for online purchases on behalf of its
customers (i.e., End Users in QuickPay). A
Financial Broker is a trusted partner and is
expected to have a long-term relationship with
the System Host.
End User.is the final player role in QuickPay. In
business term, an End User is generally regarded
as a person who wants to use QuickPay to pay
for his or her online purchase. In technical term,
an End User represents an installation of
QuickPay’s client-side software, which is
bonded to a machine (desktop, laptop, Palm,
Internet Phone, or other).

System Host

End User

Vendor
Financial Broker

Wallet

PayCard

Machine-binding

plugin

Transient, Order based

Binding with exist account

Perm Member

Transient, Order based

Loose Account

Figure 1

In addition to these player roles, the QuickPay
system also defines two client-side software
components. The Wallet is a browser plug-in
software component provided by the System
Host. It provides a standard QuickPay client side
graphical user interface; maintains the necessary
client-side data; and handles all of the online
communication between End Users and other
parts of the system. A PayCard is a Wallet plug-
in software component provided by the Financial
Broker.

Among these players, the System Host and a
Financial Broker have the closest and most fully
trusted relationship. Instead of serving End Users
directly, QuickPay is designed to work with a
Financial Broker, which in turn serves its End
Users.

The System Host knows an End User based on
the End User’s Wallet, which contains a unique
identifier assigned by the System Host and is
bonded to a single physical machine. The
Financial Broker deals with its End Users via
PayCards. An End User obtains a PayCard if and
only if he or she has an existing account with the
host Financial Broker.

Anyone who wants to sell a product or service
online can join QuickPay as a Vendor and use
QuickPay to collect payments. Theoretically, all
a Vendor needs is a unique Vendor ID from the
System Host. Note that the Vendor only has an
order-based one-time relationship with End
Users and Financial Brokers.

QUICKPAY PROTOCOLS

As mentioned above, QuickPay is composed of a
set of independent protocols. Considering the
fact that it is not possible to cover all the
protocols in this short article, we will briefly
introduce the support protocols and then use the
micropayment protocol as an example to
describe some of the most common
characteristics of the protocols. See [13] for
complete details of the QuickPay protocol.

QuickPay Support Protocols QuickPay defines
a set of support protocols. Their main purpose is
to take most of the security burden from
application protocols so that those application
protocols can perform with relatively high
security at low cost. For example, in QuickPay,
an End User is designed to pay for an order to its
Financial Broker indirectly. To support this
feature, QuickPay employs an administration
protocol, Add-PayCard, which serves to bond an
End User (represented by its Wallet) to an
existing account in an individual Financial
Broker (represented by its PayCard).

Generally, administration protocols run much
less frequently but are more critical for overall
system security as compared to application
protocols. Consequently, the implementation of
these protocols can rely on high-security
algorithms with relative high cost.

224

Example: Micropayment protocol. The
Micropayment protocol must run at very low
transaction cost in order to support mini-sized
online orders. To achieve this goal, the QucikPay
micropayment protocol is designed with the
emphasis on performance over security. In
addition, QuickPay shifts some security burden
to administration protocols in order to improve
the performance of this protocol.

System Host

End User

Vendor
Financial Broker

Msg 1.2: Register Order

Msg 2: Confirm Order

Msg 1.1: Submit Order

Msg 3: Deliver Order

Msg 4: Log Order

Figure 2

The QuickPay micropayment protocol consists
of four steps and 5 messages as illustrated in
Figure 2. The process starts when the End User
submits an order to a Vendor, as represented by
Message 1.1 in Figure 2. Note that this message
contains information about the active Financial
Broker. Simultaneously, the End User registers
the order with the Financial Broker with
Message 1.2, the integrity of which should be
guaranteed by Financial Broker. After receiving
the message, the Vendor will send a
confirmation message (Message 2) to the
Financial Broker. If the Financial Broker finds
that the order has been registered by the End
User, it commits to pay for this order on behalf
of the End User; otherwise, it will deny the
order. The Vendor will then deliver the order to
the End User (Message 3) only if it obtains a
commitment for payment from the Financial
Broker; otherwise, it will deny the order. Once
the order has been delivered to the End User, the
End User will send a log message (Message 4) to
the System Host so that System Host can track
the order.

In this Micropayment protocol, all of the online
transactions are public and in plaintext format.
There is no direct security implementation
applied to the transaction of these messages. The

payment commitments of the Financial Broker
made here are temporal, and will be finally
settled in a batch settlement process. Note that
the System Host is not directly involved in the
payment transaction, but it does monitor the
whole process indirectly by keeping track of
orders.

DISCUSSION
As mentioned above, the central issue faced by
online payment systems is how to achieve a
reasonable tradeoff between transaction costs
and payment security. Instead of focusing on
trying to protect sensitive data at low costs with
specialized algorithms, QuickPay is aimed at
cutting the transaction cost (and, simultaneously,
the value to the attacker) of the sensitive data
that is transmitted. To accomplish this, QuickPay
implements a set of unique strategies.

Unlike account-based payment system,
QuickPay uses device-base (such as IP address)
authentication. This greatly reduces the overhead
of a transaction. As well known, spoof attack is
the main security of such authentication. Besides
taking advantage from built-in protection in
standard protocol (such as TCP) and the fact that
it is difficult for spook attackers to get response
for their false request, QuickPay also designed
additional protection for such attack. For
example, the order-registration design can be
used by Financial Broker to filter DoS attack and
deny forgery orders from impersonate Vendor.
The offline support of System Host can be used
to reduce DoS attack against it.

QuickPay supports a finite set of Financial
Brokers, whose information is public and static.
Therefore, it is easy for a Vendor to identify a
Financial Broker and it is difficult for an attacker
to commit a false payment by impersonating a
Financial Broker.

QuickPay requires a Financial Broker to
guarantee the integrity of the transaction between
its Payment Card and its host, and the Financial
Broker only commits to a registered order. An
attacker cannot make a forgery of the order
unless he or she can register it, which would, in
practice, be very difficult, if not impossible.

For most existing payment systems, the
transaction process is linear. If any step in the
payment chain is broken, the system is
compromised. Suppose that such an application
has two steps. If the security risk for each step is

225

5%, then the overall risk would be almost 10%
since

10% 0 9.75% =1-(1-0.05)(1-0.05)

In contrast, QuickPay uses a collateral
verification strategy. That is, for each payment
request, the Financial Broker obtains information
from both the End User and the Vendor. Under
this approach, to obtain a 10% security risk for
the overall process, each step in QuickPay can
afford a security risk of about 33% to each
component, since

10.9% = 0.33*0.33

In other words, QuickPay can tolerate a much
looser security implementation, which allows for
much lower transaction costs, as compared to
traditional payment systems.
.
Protection of passwords and other crucial user
information is one of the most critical security
issues (especially in account-based system), and
it is costly to protect users’ personal information
during a payment transaction. In QuickPay, all of
the players except for the Financial Broker do
not have End User personal and/or Financial
Information and there is no need to exchange
such information during payment transactions.
As a result, QuickPay itself bears no direct cost
to protect such security-related information.

With many existing payment system, customers
need to submit some credentials to vendors and
those credentials potentially can be abused by
malicious vendors to, for example, make
fraudulent transaction. In QuickPay, the payment
commitment is based solely on individual orders.
Consequently, a commitment cannot be readily
reused to collect any additional fraudulent
payment.

CONCLUSION
In this article, we outlined QuickPay, an efficient
online payment protocol designed for different
types of online payment and other financial
transactions. By identifying and focusing on the
most common characteristics of different online
payment situations, QuickPay can significantly
outperform existing online payment applications.
We believe that QuickPay satisfies the core
requirements necessary to become a widespread
financial solution for a variety of online business
activities.

REFERENCES
[1] Anonymous, Case Study: PayPal,
http://digitalenterprise.org/cases/paypal.html,
September 30, 2004.
[2] Chi, Ellis "Evaluation of micropayment
Schemes" HP Laboratories Technical Report,
97-14, pp 1-29, Jan, 1997.
[3] Hallam-Bakeer, Phillip, "Micro Payment
Transfer Protocol",
http://www.w3.org/TR/WD-mptp-951122, 1995.
[4] IBM, "IBM Multi-Payment Framework
(version 1.2)" http://www-
306.ibm.com/software/genservers/commerce/pay
ment/mpf.pdf, 1999.
[5] Manasse, M. "The Millicent protocols for
electronic commerce" proceedings of the
1st USENIX workshop on Electronic commerce,
1995.
[6] MacKie-Mason, Jeffrey K. and White,
Kimberly, "Evaluating and Selecting Digital
Payment Mechanisms," in Interconnection and
the Internet, G. Rosston and D.
Waterman, eds. Lawrence Erlbaum, 1997: 113-
134.
[7] Micali, Silvio. and Rivest, Ronald L.
"micropayment Revisited" CT-RSA 2002.
[8] Palmer, Jonathan W. and Eriksen, Lars Bo
"Digital newspapers explore marketing on
the Internet" Communications of the ACM,
Volume 42 No 9 pp 33-40, September 1999.
[9] Pilioura, Thomi "Electronic Payment
Systems on Open Computer Networks: A
Survey" work paper http://wwwi.wu-
wien.ac.at/public/ehandel/Zahlung_Ueberblick.p
df
1999.
[10] Rivest, Ronald L. and Shamir, Adi
"PayWord and MicroMint: Two simple
micropayment systems" Lecture Notes Computer
Science, 1318, pp 307-314, 1998.
[11] Shirkey, Clay, "Fame vs Fortune:
micropayment and Free Content",
http://shirky.com/writings/fame_vs_fortune.html
, September 5, 2003.
[12] Yang, Beverly and Garcia-Molina, Hector
"Emerging applications: PPay:
micropayment for peer-to-peer systems"
Proceedings of the 10th ACM conference on
Computer and communication security, October
2003.
[13] Dai, J., QuickPay: and online payment
protocol, Masters Report, Department of
Computer Science, San Jose State University,
2006.

226

Sharing Application Logic across Programming Language Boundaries

Dennis S. Patrone Bina Ramamurthy
Department of Computer Science and Engineering, University at Buffalo

{dpatrone, bina}@cse.buffalo.edu

Abstract – As network-enabled devices and computerized
services become ubiquitous in a breadth of applications, it
is imperative that distributed system architectures enable
components to communicate effectively and efficiently in
heterogeneous environments. Standardized application-
level network protocols are currently the most popular
communication solution but a significant amount of
flexibility is then lost at the network boundary. We propose
an interaction model for distributed systems that will allow
application knowledge in the form of programming logic to
be shared across platform and programming language
boundaries. We define an XML-based meta-language for
describing application logic which is not targeted toward
any one specific programming language, environment, or
machine stack (real or virtual). Distributed applications
can use this specification to exchange logic such as the
details of application-level protocols in heterogeneous
environments at runtime. This removes the distributed
system’s dependency on standardized and generalized
application-level protocols. Distributed systems can also
exchange algorithmic solutions to specific problems
(knowledge dissemination), removing the need for any
network-based communications to a centralized server.
These freedoms will ultimately enable a distributed system
that is more efficient, scalable, and adaptable than the
current state of the art.

1. OVERVIEW

Distributed system components need to be able to
communicate effectively and efficiently with each other
regardless of their respective hardware platforms, operating
systems, and programming languages (henceforth referred
to in this paper simply as a system's “environment”).
Current state-of-the-art in distributed system architectures
provides only a partial solution. These systems generally
achieve environment-independence by defining
standardized, over-the-wire protocols that are targeted
toward data sharing and request/response communications.
Any environment can communicate with any other
supported environment across network boundaries using the
chosen standardized protocol. However, a significant
amount of computational expressiveness is lost from the
original programming language due to the inability of

systems to share application logic across these language
boundaries.

We propose an architecture which will allow distributed
system participants to share not only data and method
invocation requests, but actual application logic among
heterogeneous components. We define an Extensible
Markup Language (XML)-based meta-language, called the
Application Logic Markup Language (ALML), which will
allow distributed applications to share application
knowledge in the form of data manipulation and flow
control across language boundaries. The logic shared can
include service-defined, client-side execution logic to create
and modify application-level network protocols, allowing
services to tune application-level protocols at runtime based
on system-wide concerns such as usage patterns, network
stability, and system loads. We hypothesize that a
distributed system built on an ALML foundation will
provide the basis for a more efficient, scalable, and
adaptable distributed system than is possible using current
state-of-the-art in platform- and language-independent
distributed system technologies.

2. MOTIVATION

Current distributed technologies can be categorized into
two broad architecture paradigms: message passing
architectures and mobile code architectures.

2.1 Message passing architectures
Message passing architectures (e.g., CORBA [1], Web

Services [2]) define system interfaces and network protocols
to share data and remote procedure calls among
heterogeneous components. Since the network traffic is
defined as part of the standard, these architectures are often
environment-independent and highly interoperable. They
achieve this independence and interoperability at the cost of
network flexibility. Their protocols defined independently
of specific applications, and are therefore generally unable
to exploit knowledge about a specific system’s usage
patterns, data flow, or other critical information which could
help it potentially operate more effectively.

2.2 Mobile code architectures
Mobile code architectures (e.g., Java’s Remote Method

Invocation (RMI) [3]) on the other hand allow executable
code to be shared from one distributed network node to

227

another. This code can contain implementation details on
how the sender is going to modify the application-level
protocol to improve performance for a given situation. The
code could also contain algorithms that instruct the receiver
how to perform a given function itself. These architectures
are generally homogeneous in nature, at least at the
communication level. This homogeneity is required for
both ends of the communication pipe to be able to interpret
the instructions that are communicated. While significantly
more flexible with respect to controlling network bandwidth
consumption and overall system performance (e.g., CPU
utilization, remote request latency, etc) than message-
passing architectures, expecting anything but prototypes and
the smallest of real-world systems to be homogeneous is
unrealistic.

2.3 A hybrid approach
Our goal is to create a distributed architecture that is a
hybrid of these two approaches. This will be accomplished
by combining the environment-independence of the
message passing architectures with the protocol-
independence of the mobile code architectures. As a first
step, we are proposing the ALML specification as a “virtual
language” to capture the application logic generally encoded
in language-specific source code. An ALML-based
distributed system is an environment-independent
architecture with many of the benefits of a mobile-code
architecture. These benefits include the ability to change
network protocols at runtime and to inject new “knowledge”
into clients at runtime. The significant distinction from
other mobile-code architectures is that the information
shared across the network in ALML is defined in a higher-
level conceptual description of application logic rather than
code compiled for a specific (virtual) machine stack. This
logic description enables the system developer's intent to be
interpreted and executed on the client side in any
environment. Ultimately, this enables a mobile code
architecture which also is environment-independent.

3. RELATED WORK

The Jini Network Technology architecture exhibits
many of the dynamic benefits ALML is striving to reach [4].
However, Jini achieves these benefits in a “virtual platform-
dependent” way, relying on a Java Virtual Machine (JVM)
to interpret the compiled, shared application logic defined in
Java’s bytecode. Even though Java and .NET’s Common
Language Runtime (CLR) are technically platform
independent by themselves, they are defined as different
virtual machines and are not portable across their virtual
boundaries. That is, Java bytecode will not execute on the
CLR, and .NET’s Common Intermediate Language (CIL)
will not execute on a JVM. By specifying and sharing logic

in portable XML, ALML allows the same logic
representation to be interpreted in both, as well as any other
existing and yet-to-be-defined, environments.

Reference [5] describes the general use of XML in
distributed systems: a method to share data across the
network. The XML specification allows application-
specific tags to be defined. These tags are used to qualify
data for storage and transfer in an environment-independent
way. However, XML is simply a file-format specification
and therefore details such as how to get XML files from one
component to another in a distributed system are not
included. Also, the meaning of the XML tags are not
generally codified in XML but rather specified externally.
So while XML may help applications understand distributed
data it does not solve the data distribution problem. ALML
adds the architecture-defined tags, their meanings, and
bootstrapping protocols necessary to enable a distributed
logic-sharing system.

Reference [6] proposes using XML to describe the
behavioral specification (preconditions and postconditions)
of using distributed resources. This is one step toward
allowing distributed systems to better self-organize, but still
requires compile-time knowledge about the application wire
protocol in order to share this information. This approach
only describes what will happen; it does not allow the
service to describe how it will happen. XML has been
proposed as its own programming language (e.g., [7], [8]).
These languages have been targeted at their own unique
runtime environments. Our language is not targeted at any
one runtime environment but is a formal way to capture
application logic that can be interpreted and executed in any
number of environments. Turning that logic into an
executable process is left to the end-consumer, maintaining
the portability across environments. XML has also been
used to define purpose-specific languages for modeling
various processes in different applications (e.g., [9], [10]).
ALML is an attempt to develop a general-purpose language
which can be used by any application to describe the
necessary flow of control and application logic in order to
achieve some goal. Rather than defining purpose-specific
XML tags, ALML defines generalized programming
structures and flow-control statements allowing distributed
systems to develop their own specialized capabilities.

4. APPLICATION LOGIC MARKUP LANGUAGE

The ALML architecture, shown in figure 1, is built on
top of existing (and yet-to-be-defined) environments. The
ALML specification and its corresponding XML schema
definition (XSD) define the ALML logic grammar. A wire
protocol for ALML-aware clients to “find and bind” with
ALML-enabled services is included. A library (defined in
ALML) provides generally useful utilities to ALML clients.

228

And an ALML engine can be included to process and
interpret ALML logic definitions on the client-side.

FIGURE 1: A HIGH-LEVEL VIEW OF THE ALML ARCHITECTURE.

While services can utilize ALML internally, this is not
a requirement. Services need to provide an ALML-defined
proxy via the find-and-bind protocol but need not execute
the proxy logic at runtime themselves. The ALML proxy
provided to the client will be interpreted in the client’s
environment, executing whatever application logic that
service implementation defines.

4.1 The ALML specification
The ALML specification is an XML schema definition

(XSD) which defines the ALML grammar and upon which
the ALML system is built. The XSD includes standard
object-oriented concepts including class definitions,
packages or modules for grouping related classes, member
variables, and methods. Standard flow-of-control constructs
are also provided (e.g., looping, conditionals). The ALML
specification is strongly typed, defining it own set of
primitives. Standard visibility constructs are also provided.

4.2 The ALML find-and-bind protocol
The ALML distributed system will require a

bootstrapping process which will allow clients to find
desired services on the network and obtain the ALML-based
proxy definitions at runtime without human intervention.
While the specific details of this protocol have not yet been
defined, it is expected that the specification will at a
minimum provide multiple ways to locate a desired service
such as the capabilities a client desires, definition of service
attributes, and specific service addressing. The protocol
should also operate over both UDP (broadcast for locating
on a local network) and TCP (“well-known” locations for
fixed installations and operation across routers and
firewalls. Finally, the protocol will utilize widely accepted
and supported application-level protocols (e.g., HTTP) and
addressing mechanisms (e.g., URI) when appropriate.

4.3 The ALML library
The ALML library contains a set of classes that are

guaranteed to be available to all ALML-compliant execution
systems. This library provides useful capabilities that
ALML services can make use of without implementing a
significant amount of ALML code themselves and without
requiring an extensive amount of XML to be downloaded to
clients each time an ALML service is invoked. The library
also provides hooks for ALML engines to provide certain
capabilities which are tied to the specific client-side
environments. The necessary library classes are still to be
determined, but it is expected that standard mathematical
operations (e.g., sin, cos, sqrt), networking objects (e.g.,
sockets), and standard input and output mechanisms will be
a part of the toolset.

4.4 The ALML engine
An ALML engine is implemented for each supported

environment. It is responsible for interpreting the XML-
defined logic into environment-specific executable
instructions at runtime.

5. LIZARD

A proof of concept system code-named Lizard is
currently under development. The system implements core
components of the ALML architecture in Java. It is being
used to help identify required library classes and gaps in the
ALML specification.

The proof-of-concept system is currently comprised of
two parts. The first is the ALML XSD and a set of Java
classes generated by JAX-B to operate over ALML XML
files. The second is a specialized Java class loader that per
request 1., converts a local ALML XML file into Java
source file, 2., compiles the generated Java source file using
the standard Java compiler javac, and 3., loads in the newly-
generated class for client applications to use.

This particular implementation is not a requirement of
an ALML engine; this is only a reference implementation.
The extra step of generating source and compiling it using a
Java compiler adds more overhead than having the ALML
engine directly interpret or internally compile the ALML
XML. However, this approach was chosen in the interest of
saving development time. Presumably once the
specification is well-defined, future implementations can
focus more on runtime performance and less on ease-of-
implementation.

As the system evolves, we plan to completely define the
basic requirements for the ALML system and library.
Currently only flow of control statements are supported.
We also intend to define and implement a find-and-bind
capability, including the ability to download ALML-related

229

files at runtime. Currently the system expects specific XML
files in the local standard class path.

6. EFFICIENCY, SCALABILITY, AND ADAPTABILITY

We hypothesize that a distributed system architecture
that supports sharing application logic will lead to systems
that are more efficient, scalable, and adaptable than systems
based on standardized network protocols. Distributed
systems based on standardized network protocols by
definition cannot modify network communications. These
systems utilize compile-time bound client-side proxies—the
code that communicates with the server over the network on
the client’s behalf. They are bound to the client at compile
time since the proxy details are completely defined as part
of the architecture’s protocol standardization. Distributed
systems that are capable of sharing application logic at
runtime (mobile code) can exploit situational knowledge by
deferring client-side proxy implementation details until
runtime and changing them at any time. The details can
then be tuned to any specific criteria which is important to
the specific system (e.g., minimize network utilization,
reduce latency, improve scalability).

6.1 Improving efficiency
Efficiency can be measured in a number of different

ways: network throughput, CPU utilization, memory
footprint, power consumption, etc. Every application will
have its own criteria and thresholds for acceptable
performance across scarce resources. Every protocol and
usage pattern will affect different performance
measurements uniquely. Selecting one generalized,
standardized protocol will introduce a design bias and
cannot possibly efficiently cover every situation. A system
which allows services to provide mobile code to define
smart proxies at runtime enables the system to react and
adjust to changing situations.

For example, consider a simple banking distributed
application with a Loan object that has three methods:

 void makePayment(double amount);
 double getBalance();
 double getPayoffAmount();

Ignoring the complexities of exception handling and
synchronization in distributed systems, we assume
“makePayment” reduces the loan’s principle by “amount”
less any interest payments (also ignored here). The method
“getBalance” return the loans current balance, or principle
yet to be repaid. The method “getPayoffAmount()” returns
the total amount to payoff the loan in one payment (assumed
to be the principle possibly plus some interest and/or bank
fees).

In defining an application-level network protocol, we
must consider the expected usage of the Loan object. If we
expect methods to be called individually and uniformly then
a simple request-response messaging system per method
may be appropriate. But if we expect the loan object to be
utilized in a batch processing system where “makePayment”
will be called n times (where n > 1) before a call to
“getBalance” we may be able to significantly improve
system performance by locally caching the total of all
“makePayment” calls on the client side, and then making a
single remote “makePayment” call to the service with the
cached total as the first step in a “getBalance()” or
“getPayoffAmount()” request. This level of batching will
reduce network utilization by saving (n-1) “makePayment”
requests being sent across the network. It will also reduce
CPU utilization on the client by saving (n-1) marshalling
and unmarshalling of remote requests. It further reduces the
CPU service load by also distributing the logic for adding
the payment (n-1) times to the client system. Finally, it
reduces system latency by saving (n-1) network round-trips.
And an even smart proxy could contain the logic for both
proxy types, and chose the appropriate protocol based on
usage patterns to even further improve overall system
performance.

A mobile code-based architecture does not
automatically solve the efficiency problem but rather
provides a framework in which system designers and
software engineers are able to solve distribution issues in a
domain-specific and application-aware way.

There is extra cost associated with setting up a
connection in a mobile code-based architecture, especially if
that code is interpreted. There are additional up-front costs
with respect to the network as the proxy code is
downloaded. There are additional costs to CPU usage as the
proxy code is compiled or interpreted on the first time it is
used. There is also additional latency introduced in the
initial call as the mobile definition is downloaded and
interpreted. These costs, however, should be constant and
therefore independent of n. Furthermore, in special
circumstances system clients could also be seeded with
initial proxies to further reduce initial connection costs
when required.

6.2 Improving scalability
As discussed in section 6.1, tuning application-level

protocols based on system usage can reduce demands placed
on specific resources and/or distribute the processing of a
distributed system, allowing the same software and
hardware to provide greater capacity. Even so, if that
capacity is reached, mobile code-based smart proxies can
continue to help by providing the ability to redirect entire
services, individual methods, and even specific requests
across multiple servers helping systems achieve scalability.

230

These redirections can be based on past performance,
current situations, or overall system goals—and all managed
internally to the smart proxy on the client, but without tight
client coupling. In some instances, the smart proxies can
contain the entire logic to perform algorithmic-based
services, further distributing the execution of a service
across client machines, but maintaining the algorithm
implementation definition at the service. If the algorithm
needs to be updated in the future, the single service
implementation is updated and the new algorithmic solution
will be automatically pushed to all clients. This maintains
the service distribution while helping with system
maintenance.

6.3 Improving adaptability
As detailed in section 6.1, a mobile code-based

architecture has the potential to enable smart proxies. These
smart proxies, in turn, enable a distributed system to adjust
runtime, application-level protocols to changing system
demands. Section 6.2 describes how a mobile code-based
architecture can also aid in adaptability when a service
method or set of methods have algorithmic solutions. The
algorithmic solution can be provided in the proxy, removing
the need for any client-side communication back to the
original service. The service is in effect “teaching” clients
how to perform the service for themselves. This is very
adaptable as clients can learn new “skills”, and services can
automatically update clients with improved algorithmic
solutions, code the manage additional requirements or to
handle emerging issues by changing the proxy
implementation being provided.

7. CONCLUSIONS AND FUTURE WORK

We have proposed the Application Logic Markup
Language (ALML) XML-based specification as a method
for distributed applications to share application knowledge
in the form of data manipulation and flow control across
programming language boundaries. Our motivation for this
work is to create a distributed system architecture which is
capable of creating more efficient, scalable, and adaptable
distributed systems than architectures based on standardized
network-level protocols can. We have developed a proof-
of-concept to show that describing application logic with an
XML schema and executing that logic within a specific
environment is possible. This is currently a work in
progress. We need to completely specify the ALML
language and determine if and how ALML can take
advantage of environment-specific libraries and target
platforms’ native capabilities. A find-and-bind protocol to
allow distributed systems to configure at runtime must also
be defined. With mobile code comes great security
concerns and these must also be addressed. Overall

efficiency of the ALML specification must also be
considered. For example a versioning mechanism for
ALML documents may be appropriate in order to allow
ALML engines to reduce redundancy when downloading
and interpreting ALML files. Finally, we must provide
ALML engine implementations in several diverse languages
to show the portability and efficacy of ALML.

8. REFERENCES

[1] Object Management Group. CORBA Specification,
Available at: http://www.omg.org/spec/CORBA/3.1/. January
2008. Accessed on: February 11, 2008.

[2] Booth, D. Haas, H., McCabe, F., Newcomer, E.,
Champion, M., et al. Web Services Architecture. 11
February 2004. Available at:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.
Accessed on: February 11, 2008.

[3] Sun Microsystems, Remote Method Invocation
Specification, Available at:
http://java.sun.com/javase/6/docs/platform/rmi/spec/rmiTOC.html.
Accessed on: February 11, 2008.

[4] Waldo, J. The End of Protocols, Available at:
http://java.sun.com/developer/technicalArticles/jini/protocols.html.
Accessed on: February 11, 2008.

[5] Deadman, R. “XML as a Distributed Application
Protocol”. Java Report, 1999, 4, 16-21.

[6] Mckee, P. and Marshall, I. “Behavioural specification
using XML”. Distributed Computing Systems, 1999.
Proceedings. 7th IEEE workshop on Future Trends of,
1999, 53-59.

[7] Plusch, M. and Fry, C. Water: Simplified Web Services
and XML Programming. 1. John Wiley & Sons, 2003.

[8] Klang, M. “XML and the art of code maintenance”.
Extreme Markup Languages. Proceedings of, 2003.

[9] Jordan, D, Evdemon, J (chairs), et al. Web Services
Business Process Execution Language Version 2.0. 11
April 2007. Available at: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf. Accessed on:
February 11, 2008.

[10] Workflow Management Coalition. Process Definition
Interface – XML Process Definition Language.
WFMC-TC-1025. Version 2.0. October 3, 2005.

231

Abstract— Reuse is widely considered key to improving software
productivity and quality. It appears in various forms – ranging from
independent binary components to highly abstract knowledge
codified as design patterns. Common to all these approaches is that
they involve different people working together to construct reusable
assets and adapt them to work in various contexts. In that sense,
reuse is impossible to achieve without collaboration. In this paper, we
therefore claim that collaboration should receive a higher profile in
reuse. First, we investigate the collaborative aspects in two selected
reuse approaches. We then show how they can benefit from
collaborative tools, i.e. wikis and collaborative development
environments, and propose a novel integration of the latter with
recently developed component retrieval systems.

I. INTRODUCTION
oftware reuse has been assigned a pivotal role in substantially
improving development cost, software quality and time-to-
market [1]. With the vision of software reuse solving the

“software crisis”, many new development paradigms, methods
and tools have been developed over the years. Nearly four
decades after Software Engineering emerged as a discipline, reuse
has retained most of its relevance in both academia and industry.
Reuse approaches have been successfully adopted in a number of
instances, e.g. Component-based Development (CBD) [2] and
design patterns [3]. However, its interpretation has gradually
shifted towards embracing any kind of knowledge that is reused
during the development process [4, 5].
Although it has long been recognized that reuse is not only a
technical but also a cognitive and social problem [6], the
collaborative character of reuse has remained largely uncovered.
Software development processes have recently become
increasingly distributed since often geographically dispersed
teams have to work together on large-scale development projects
[7]. That is why issues arising with collaborative software
development (CSD) have started to play a key role in software
engineering research [8]. Collaboration is particularly relevant in
the field of software reuse because it typically involves different
stakeholders working together horizontally, by crossing
organizational boundaries, and vertically, by cutting through
different aspects of software engineering processes.
In this paper, we therefore investigate how software reuse
approaches can be leveraged by taking a collaboration
perspective. The paper is separated into two main parts: In section
two, we study the fundamental relationship between collaboration
and reuse. We analyze two cases in order to better understand the
role of collaboration. In section three, we then show how
collaborative technologies can be applied to improve recent

component reuse technologies. Finally, we conclude by
summarizing our findings and identifying directions for future
work.

II. RELATIONSHIP BETWEEN COLLABORATION AND REUSE
Systematic reuse is commonly split up into the two dimensions
development for reuse and development with reuse [9].
Development for reuse deals with the creation of reusable
artifacts, while development with reuse deals with their utilization
in other contexts. The generic process steps included in these
dimensions are depicted in Figure II.1. First, a software artifact is
initially constructed with or without the intention of reusing it in
other contexts. However, in order to actually make an artifact
reusable there is always some kind of abstraction involved [10,
11]. Subsequently, the artifact is privately or publicly shared, e.g.
by publishing it in a repository. This will enable other people to
locate the artifact as a candidate for reuse. Development with
reuse involves the selection of a suitable artifact, which is
subsequently adapted to meet the requirements of a specific
context and integrated into a software system [10].
Collaboration between individuals, groups, departments and
organizations can be observed within the reuse phases as well as
at the transitions between them. In most successful reuse
scenarios, a dynamic interaction between development for and
with reuse can be observed. In order to examine this relationship
in more detail we take a closer look at collaboration in two
particular cases: First, we analyze design patterns as a highly

Synergizing Collaboration and Reuse in
Software Engineering

Stefan Seedorf*) and Oliver Hummel†)

University of Mannheim
 Chair in Information Systems III*), Chair of Software Engineering†)

D-68131 Mannheim, Germany
seedorf@wifo3.uni-mannheim.de, hummel@informatik.uni-mannheim.de

S

construction

sharing

abstraction

individual
group

department

organization

Development for reuse Development with reuse

selection

adaptation

integration

Context 1..N

R

collaboration scope:

feedback

II.1 Reuse process
232

successful example of knowledge reuse. Second, we investigate
the collaborative aspects of product-line engineering.

A. Case 1: Design Pattern Reuse
Background. Inspired by work of Christopher Alexander in civil
architecture [3], design patterns emerged in the early 1990s as a
highly successful technique for reusing software design and
architectural knowledge. A small group in the object-orientation
community came up with the idea of composing a catalogue of
recurring designs that would assist developers in writing object-
oriented software. The first systematic collection of design
patterns was published in the popular “Gang-of-four” book [3].
Today patterns are one of the most prominent examples for high-
quality knowledge reuse. A pattern describes a solution to a
common design problem [12]. Recurring experience about a
domain is distilled and captured in a way that makes this
knowledge easily acquirable by someone who does not have it
[13]. A pattern description consists of several elements: a pattern
name, a description of a problem, a solution, a context in which
the solution works and discussion of the consequences. It is
usually documented in text form, and optionally enhanced by
diagrams and sample code. Hence, a pattern is not a software
artifact that can be reused “as is”, instead always needs to be
located, assessed and interpreted by one or more developers
before it can be applied to a specific context.

Reuse process. Although patterns should not be seen as “ready-to-
use” recipes, they allow large scale reuse of development
experience. A design pattern may capture the experience of just
one developer; nevertheless it can be applied millions of times
[14]. The conception process follows a typical scheme: Since
designing software is a highly complex activity, developers use
abstractions to decompose the problem into smaller, more
manageable parts. The same or similar design decisions are made
for recurring problems. Since some of the designs turn out to be
better than others, learning processes are triggered. While a
developer uses reflection-in-action and gains more experience,
she is able to make tacit knowledge about “good designs”
explicit.
Once this kind of knowledge is conceptualized and documented
in the form of a pattern, it can be shared with other developers.
This can be done by publishing pattern catalogues in books or - in
a more participatory style – using Wiki systems such as [15]. If
other developers encounter a design problem, they can search
these media to investigate if a similar problem has been solved
earlier and been described as a pattern solution. Usually,
developers are able to narrow down a list of patterns to a few
interesting candidates. After carefully weighing the costs and
benefits of these candidates, one is selected and applied to the
problem at hand.
More experienced developers will be able to recall suitable
patterns and instantly decide about their suitability. Since they
have embodied the necessary knowledge, they can effectively
apply a wide range of patterns in various contexts. As part of a
feedback loop, the experiences made by applying patterns can
also be made explicit to create more specialized patterns or to
guide fellow developers.

Role of collaboration. Pattern reuse is characterized by
collaboration at different stages. First, a new pattern needs to be

conceptualized by one or more developers. Despite the fact that a
single developer may have the initial idea and knowledge
required to express a solution in the form of a pattern, it is likely
that it emerges when interacting with other developers who
encounter similar problems. A pattern is typically the result of
ongoing discussions about “good design solutions” to reoccurring
problems. In that sense, patterns capture collective developer
experience.
When a solution has repeatedly proven successful in several
cases, it is worth describing and publishing as a pattern. Patterns
can be shared by work teams and departments, but also by larger
communities. An example for the latter is the first Web-based
wiki, also known as Portland Pattern Repository, which was
constructed by Ward Cunningham in 1995 to allow patterns to be
collaboratively edited by an online community [15]. Unlike
choosing books or online repositories to publish patterns, wiki
systems provide a highly interactive approach to knowledge
exchange. Not only are developers with the same interests invited
to contribute patterns, it is also much easier to enrich the
knowledge base. Other developers can discuss the pros and cons,
provide links to related patterns or add examples in other
programming languages. Such interactive ways of collaboration
across organizational boundaries during the construction and
abstraction phase provide a powerful example for a Community-
of-Practice [16].
However, sharing a pattern is only one side of the reuse story,
because it needs to be identified and interpreted before it can be
successfully applied. Developers need background knowledge to
understand a pattern, e.g. in object-orientation and modeling
notations such as the UML, and they have to understand the
problem space to decide about its suitability. Just as design is seen
as a collaborative effort, so is the decision process of selecting
and applying patterns. To this end, patterns become a focal point
for both individual and collective learning. This leads us towards
a key role of collaboration in pattern reuse: “Not only do patterns
teach useful techniques, they help people communicate better and
reason about what they do and why” [14].
To summarize, we can distinguish two major forms of
collaboration in pattern reuse: on the one hand, they provide a
scalable collaborative approach to transferring their know-how
across projects, departments and organizations. On the other
hand, using a common language during design supports
developers in communicating architectural and design
knowledge. This allows developers to collaborate more
effectively in critical stages of the development process.

B. Case 2: Product Line Engineering
Background. Many software developing organizations create “a
family of similar, but slightly different, systems rather than a
single system” [17]. There is a potential to reuse the overlapping
functionality of these systems, which cannot not be tapped when
developing system by system individually. Software product lines
(or system families) were thus introduced to plan software reuse
right from the start. A software product line is a set of similar
software systems which are developed and maintained together
[18]. It typically consists of a product line architecture, a set of
software components and a set of products [19].
On the one hand, developing a product line can only be useful
when the systems have at least some features in common. This is
typically the case when choosing systems from the same

233

application domain. The commonalities of systems therefore
constitute the skeleton of a product line. On the other hand, there
are also variabilities that need to be taken into account. Variable
features are incorporated into the software assets to make them
customizable for individual systems. In Product Line Engineering
(PLE) it is therefore crucial to set the correct scope of a system
family and to plan the commonalities and variabilities ahead so
that the necessity of subsequent changes is diminished. Hence,
PLE has a deep impact on all phases of Software Engineering
processes, starting with requirements management. A number of
methodologies for PLE have been proposed, such as Foda [20],
PuLSE [21], and KobrA [17].

Reuse process. PLE is separated into two independent phases:
First, domain engineering deals with identifying the
commonalities and variabilities of the scoped products. A
domain-specific architecture with reusable components is
developed. Second, application engineering is the process of
developing individual products on the basis of a product line
architecture. Domain engineering is development for reuse, while
application engineering is development with reuse.
Unlike in individual systems development, the requirements of a
product family have to be collectively identified and analyzed.
Some of the products may already exist, others may be planned in
future. This makes the definition of a product line’s scope
difficult [21]. It is thus recommended that everything included by
a concrete product is part of the domain [22]. During domain
analysis a reference model is built from the concepts and
relationships in the scoped domain [23]. Together with the
commonalities and variabilities it frames the overall product line
architecture. The architecture is decomposed into reusable parts
that will be integrated into the individual products. All reusable
parts follow a generic design by capturing variability in the
domain. All reusable artifacts and documentation are made
available through a mutual component repository [23]. In
application engineering, only requirements of the dedicated
product are relevant. In the ideal case all artifacts have been
constructed during the domain engineering phase and can be
taken from the repository [23]. In order to meet the individual
product requirements, the generic artifacts are customized
according to the previously defined variation points. However,
the reuse process is not as straightforward in reality, because
product requirements are constantly evolving [24]. In an
evolutionary approach, the ability to provide feedback from
individual product development to product line development is
thus crucial.

Role of collaboration. Developing a software product line is
always a joint effort which involves stakeholders from different
organizational entities as well as disciplines. The collaborative
character of PLE, however, has only recently been stressed [25,
26]. In a systematic approach the product line scope and
supported features have to be negotiated previous to constructing
or reengineering reusable artifacts. Since the required business
and technical knowledge is distributed among many participants,
a mutual agreement has to be reached first. To this end, “a
collaborative approach can facilitate understanding the different
stakeholder concerns and converging on mutually acceptable
solutions” [26]. EasyWinWin [27] is proposed as an interactive
negotiation technique for reaching satisfactory agreement among

the stakeholders. Features and domains are prioritized according
to the expected costs and benefits. It is then decided what
becomes part of the reuse infrastructure.
Later, domain and application engineering activities have to be
coordinated so that double work is avoided. On the technical side,
the challenges are addressed by component-based approaches
such as KobrA [17]. Precise specifications make it possible to
develop components by independent providers and reassemble
them during application engineering. Splitting the software
lifecycle into domain and application engineering requires
feedback between the two phases – changes in the latter have to
be communicated to the domain layer. If these aspects of PLE are
not carefully considered, it is possible that the initiative fails to
bring the promised benefits.

C. Discussion
In the previous subsections, we analyzed the role of collaboration
in two reuse approaches that appear very different at first glance.
Design patterns are a leading example of reusing highly distilled
knowledge in the development process. PLE, on the other hand,
deals with systematically planning the reuse of software artifacts
in a family of similar products. In the first case, software
development is primarily seen as a creative, agile process. The
collaboration between producers and consumers can be
characterized as loosely coupled, because it is not necessary for
consumers to provide feedback. Nevertheless advancements in
design patterns are mainly driven by open communities who
contribute to the overall knowledge base and help to guide other
developers.
In contrast, the second case highlights the engineering perspective
on software development. Here, collaboration between domain
engineering and application engineering occurs not only during
the inception phase. Since the requirements are continuously
evolving, changes in individual applications have to be
propagated back to the domain level, driving the evolution of the
product line and thus naturally require a tight integration of
collaboration techniques.
At second glance, however, both approaches expose similarities
in terms of the underlying knowledge processes. Reuse can be
interpreted as a collaborative knowledge construction process
where knowledge is not seen as a commodity to be consumed,
e.g. by retrieving artifacts from a reuse repository, but something
that is collaboratively designed, constructed [28] and consumed.
Knowledge about the application domain, architecture or design
does not reside in one person’s head but is distributed across
disciplines, work teams or organizational entities. Therefore, the
reuse process has to be viewed as a process of knowledge
formation, where a shared mental model is created and
transformed to match an artifact’s varying contexts. The
challenge lies in creating an environment in which the underlying
knowledge processes such as externalization and combination are
effectively supported (cf. [29, 30]). To this end, communities-of-
Practice [16] provide flexible and informal ways of collaboration
in both design pattern reuse and PLE. They encourage people
with the same interest to engage and interact in a group, which
facilitates knowledge-sharing and social learning.
After characterizing software reuse as a collaborative process, we
will now look at how collaborative technologies can be enhanced
to improve current reuse practices.

234

III. ENHANCING COLLABORATIVE TECHNOLOGIES
TO SUPPORT REUSE

In section two we argued that reuse is an inherently collaborative
process. While this insight may appear apparent to many reuse
researchers and practitioners, it nevertheless has a profound
impact for the emergence of new reuse methods and tools. We
therefore introduce two key collaborative technologies in
software engineering and describe by example how they can be
enhanced to support core reuse tasks.

A. Wikis
In recent years, wikis have emerged as one of the most successful
collaborative technologies [31]. Wikis enable Web content to be
simultaneously edited by multiple users. One of the core
principles is to encourage every reader of a wiki page to become
an author as well – simply by editing the page content using a
wiki language. Because of the low entry barriers communities
have now got the opportunity to asynchronously work on a
common subject of interest. Nowadays the most successful
example of wikis is the Wikipedia. Wikis have also been widely
adopted for the documentation of software projects by both open-
source communities and enterprises.
Hence, wikis are an interesting candidate for addressing
collaborative issues in software reuse. Interestingly, the very first
wiki engine was developed for the shared development of design
patterns (see Sec.2.1). In most cases, however, wikis are solely
employed as a project documentation tool supporting the
accessibility of unstructured knowledge. For example, wikis often
serve as a simple problem/solution database. Only recently, has
the wiki paradigm been extended to realize more sophisticated
applications. These extensions already address specific reuse
problems or could easily be easily customized to do so. Advanced
usage scenarios of wikis in software and knowledge reuse
include:

1. Requirements engineering in PLE
2. Semantic matching of software components
3. Reusing knowledge models across software projects

We will now discuss these advanced applications of wikis in
more detail.

Requirements Engineering in PLE. Wikis have already been
proposed as a lightweight approach for requirements elicitation,
analysis, specification and management. The DisIRE (Distributed
Internet Based Requirements Engineering) method employs
Wikis for the distributed management of requirements [32]. The
wiki pages are structured in a way that a requirement
specification can be processed by external tools, e.g. to carry out a
cost-benefit analysis. DisIRE can be applied to support the PLE
scenario where the requirements of several products have to be
managed as one (see Sec. 2.2). This is due to the fact that PLE is
always a distributed process where the requirements need to be
negotiated by multiple stakeholders. Wikis are also an appropriate
tool for managing ongoing requirement changes, which is
indispensable for long-term projects such as PLE.

Semantic component matching. Component matching is not an
obvious feature of wikis. Nevertheless, recent semantic

extensions have made it possible to utilize wikis as collaborative
databases with machine-interpretable knowledge. Instead of
purely processing text information as in traditional wikis, page
content can now be decorated with semantic metadata. In this
case, a knowledge model can be automatically extracted. This
new generation of “semantic wikis” enables new applications in
software engineering.
Ontobrowse semantic wiki has been specifically developed to
support the sharing of architectural knowledge [33]. Pages are
interpreted as entities, i.e. concepts, relations and objects. The
wiki is thus no longer a “small web of formatted text pages” but a
knowledge base that can be automatically processed. In
Ontobrowse, a knowledge base is clearly separated into two parts:
a knowledge structure defined by one or more ontologies
(concepts and relations in a domain of interest) and instance
knowledge defined by individual objects with their property
descriptions. It is furthermore possible to add and modify text
descriptions for every page as in traditional wikis.
In order to apply Ontobrowse to component matching, one has to
set up the wiki in two steps. First, an ontology for software
components has to be specified. It defines a terminology for
describing software components, e.g. “component”, “interface”,
“method”, “input”, “output” and “business object”. Second, a
plugin is created which maps component descriptions in a
specific format (e.g. Java enterprise beans) to the ontology. The
wiki can then be configured to automatically crawl for component
descriptions in this format, extract the content and fill the wiki’s
knowledge base. Once the knowledge base has been initialized it
is possible to formulate a specification-based query, e.g. for all
components that use the business object “CheckingAccount” (see
Figure III.1).

III.1 A semantic component query in Ontobrowse

The wiki provides a user-friendly frontend for specifying
component queries and navigating component descriptions. Once
a suitable component has been identified it can be easily retrieved
if its location was inserted into the knowledge base.

Reusing knowledge models. In semantic wikis such as
Ontobrowse it is not only possible but also encouraged to reuse
the knowledge structure. Software projects setting up another
wiki instance are able to reuse existing knowledge models
(ontologies). Thus, reuse at the knowledge level is achieved.

235

Moreover, other knowledge models covering additional aspects
of a software project – such as requirements and project
management – can be added and refined as soon as they are
required for a specific task.

B. Collaborative Development Environments
In recent years, Collaborative Development Environments
(CDEs) have appeared as a new category of development tools
focusing not on individual productivity but supporting
collaborative activities appropriately [34]. Typical features of a
CDE are a versioned code repository for multi-side development,
an issue tracker, project management and analysis tools,
requirement management and documentation tools (e.g. wiki
engine). Most platforms provide a Web interface as well as
plugins for Integrated Development Environements (IDEs).
Prominent examples of CDEs include CollabNet/Sourceforge1,
Codebeamer2 and GForge3.
Although a CDE allows many software projects to be managed in
parallel, the potential for reuse across projects has yet to be
recognized. So far CDEs provide little support for collaborative
reuse of software components and code since common
configuration management software such as CVS or SVN does
not include support for targeted retrieval of reusable assets. In
other words, search possibilities are limited and do not go beyond
simple keyword matching even if a CDE includes source code in
its searching capabilities. An additional problem is often the lack
of awareness about potentially reusable software in large and
distributed organizations. Thus, the challenge is to enhance CDEs
with more sophisticated retrieval techniques for reusable material,
i.e. source or binary components.
Although [35] provided a good overview on component retrieval
techniques, the authors realized that none of them was actually
usable in practice. To date, it is also not clear what the best
approach for reusing components might be. Component-based
development approaches such as KobrA [17] propose component
selection based on a specification taken from the design of a
system. This, however, requires retrieval techniques for
components that go far beyond simple keyword matching.
Another aspect related to this is certainly the problem of filling a
repository with more than just a few hundred reusable
components [36] since historically companies were normally not
willing to open their intellectual property to researchers working
on this challenge. Thus, the retrieval techniques for older
prototypes were mostly too imprecise and not able to deal with
the large numbers of software (typically many thousands if not
millions of files) contained in the repositories of distributed
companies [37] today. Up until now it is also not clear whether
labor intensive approaches such as the previously mentioned
semantic wikis or semantic web services will scale for that large
number of reusable software.
In order to increase awareness of reusable components it is
furthermore desirable that developers in one project are informed
about similar software components in other projects without
actively searching for them. This leads us to the idea of so-called
proactive reuse recommendation tools that have first been

1 http://www.collab.net
2 http://www.intland.com
3 http://gforge.org

popularized by Ye’s CodeBroker [38] in the late 1990s. The basic
idea is that a developer does not need to invest extra effort into
querying the component repository – which can quickly lead to
developers not reusing anymore if a few attempts have failed,
according to [39] – since the reuse tool proactively searches for
reusable material in the background and is supposed to present
only those results that are likely to fit into the context a developer
is working on. Thus, we believe a high relevance of the reuse
results is crucial in this context. In an agile context the so-called
Extreme Harvesting approach [40] utilizing test-driven reuse is
able to deliver very precise reuse recommendations [37] based on
queries that can be automatically derived from test cases as they
are commonly used in agile development processes. Recently, the
main effort was to develop a test-driven reuse tool tightly
integrated into the Eclipse IDE in order to achieve fully proactive
reuse recommendations for developers. Its test-driven mode
requires a developer to apply an agile test-first development
approach where our tool is able to recommend reusable
candidates based on (JUnit) test cases a developer has just
created. These test cases contain enough syntactical and
semantical information to facilitate very precise
recommendations, especially if a potential candidate could have
been automatically tested in a secured (server-side) environment
as shown in the following figure.

III.2 Screenshot of test-driven reuse in Eclipse

Alternatively, the developer is designing or coding as normal in
his Eclipse environment. Meanwhile the recommendation tool is
automatically analyzing the structure of the class under
development and derives queries for the underlying component
repository. Potential candidates (based on a syntax analysis) are
immediately returned and proposed to the developer.
These features have been implemented in the Merobase search
engine4. Its Eclipse plugin for providing proactive
recommendations is called Code Conjurer5. The integration with
CDEs is simple because Merobase is able to automatically build a
unified index from a potentially large number of software
configuration management repositories such as CVS or SVN
from various company sites or even beyond company borders.
The recently finished version can thus be used within the scope of
collaborative development platforms. However, since it is not yet
clear, how metadata such as UML diagram etc. from a wiki can

4 http://merobase.com
5 http://merobase.com/plugin-manual.do

236

be integrated with the component retrieval server, we plan to
present a more detailed discussion on this at another occasion.

IV. CONCLUSION
In this paper, we have taken a collaborative perspective on
software and knowledge reuse. So far there has been very little
emphasis on its collaborative character. In order to clarify the role
of collaboration we have therefore analyzed two distinct reuse
approaches, namely design patterns and PLE. Design patterns are
a case of knowledge reuse, emphasizing the agile and
community-based perspective towards software development.
They enable design experience to be more easily transferred to
other developers. PLE, on the other hand, reflects the systematic,
engineering perspective. However, we have discovered that
collaboration plays a vital role in PLE as well. Especially,
community-based approaches are highly suited to support the
continuous evolution of a software product line.
In the second part, we then investigated collaborative
technologies that already receive a high profile in software
development organizations and open source communities. In
particular, software development wikis should receive an even
higher attention. We have learned earlier that design pattern reuse
inspired the development of wikis in the first place. In turn, one
should also consider using wikis in other scenarios, e.g. to support
requirements analysis for product families or matching reusable
software components. In order to tap the full potential of software
and knowledge reuse we call for a novel integration of recent
reuse recommendation systems into collaborative environments.
However, although the technical premises for semantic and pro-
active component retrieval are already fulfilled, they still need to
be integrated into CDEs. This will become our main focus in
future work.

V. REFERENCES

[1] J. Bosch, Design and use of software architectures: adopting and evolving a

product-line approach: ACM Press/Addison-Wesley Publishing Co., 2000.
[2] C. Szyperski, Component software: Addison-Wesley Reading, Mass, 1999.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software: Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1995.

[4] Y. Ye, "Supporting software development as knowledge-intensive and
collaborative activity," Proceedings of the 2006 international workshop on
Workshop on interdisciplinary software engineering research, pp. 15-22,
2006.

[5] V. R. Basili, G. Caldiera, and H. D. Rombach, "Experience Factory,"
Encyclopedia of Software Engineering, vol. 1, pp. 469-476, 1994.

[6] G. Fischer, "Cognitive View of Reuse and Redesign," IEEE Software, vol.
4, pp. 60-72, 1987.

[7] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, "An Empirical
Study of Global Software Development: Distance and Speed," International
Conference on Software Engineering, pp. 15-18, 2001.

[8] T. Hildenbrand, F. Rothlauf, and A. Heinzl, "Ansätze zur kollaborativen
Softwareerstellung," Wirtschaftsinformatik, vol. 49, pp. 72-80, 2007.

[9] I. Sommerville, Software engineering, 8th ed. Harlow, England; New York:
Addison-Wesley, 2007.

[10] C. W. Krueger, "Software reuse," ACM Comput. Surv., vol. 24, pp. 131-
183, 1992.

[11] P. Wegner, "Varieties of Reusability," Proc. ITT Workshop Reusability in
Programming, pp. 30-44, 1883.

[12] P. Stevens, "Software design patterns," Computing & Control Engineering
Journal, vol. 11, pp. 160-162, 2000.

[13] R. Helm, "Patterns, architecture and software," ACM SIGPLAN Notices,
vol. 31, pp. 2-3, 1996.

[14] D. Schmidt, "The Road to Reuse: Design Patterns," Proceedings of the 4th
International Conference on Software Reuse, 1996.

[15] Portland Pattern Repository, "WikiWikiWeb: http://c2.com/cgi-bin/wiki,"
2007.

[16] J. Lave and E. Wenger, Situated Learning: legitimate peripheral
participation: Cambridge University Press, 1991.

[17] C. Atkinson, Component based product line engineering with UML.
London; Munich: Addison-Wesley, 2002.

[18] P. Donohoe, Software Product Lines: Experience and Research Directions:
Springer, 2000.

[19] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl,
"Variability Issues in Software Product Lines," Proceedings of the Fourth
International Workshop on Product Family Engineering (PFE-4), pp. 11–
19, 2001.

[20] K. C. Kang, Feature-Oriented Domain Analysis (FODA) Feasibility Study:
Carnegie Mellon University, Software Engineering Institute, 1990.

[21] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen,
and J. M. DeBaud, "PuLSE: a methodology to develop software product
lines," Proceedings of the 1999 symposium on Software reusability, pp.
122-131, 1999.

[22] J. M. DeBaud and K. Schmid, "A systematic approach to derive the scope
of software product lines," Proceedings of the 21st international conference
on Software engineering, pp. 34-43, 1999.

[23] J. Bayer, S. Kettemann, and D. Muthig, "Principles of Software Product
Lines and Process Variants," PESOA-Report, 2004.

[24] P. Toft, D. Coleman, and J. Ohta, "A cooperative model for cross-divisional
product development for a software product line," Proceedings of the first
conference on Software product lines: experience and research directions:
experience and research directions table of contents, pp. 111-132, 2000.

[25] T. E. Fægri, T. Dingsøyr, L. Jaccheri, P. Lago, and H. van Vliet, "Exploring
Communities of Practice for Product Family Engineering," LECTURE
NOTES IN COMPUTER SCIENCE, vol. 3782, pp. 96, 2005.

[26] M. A. Noor, R. Rabiser, and P. Grünbacher, "A Collaborative Approach for
Reengineering-based Product Line Scoping," 2007.

[27] R. O. Briggs and P. Gruenbacher, "EasyWinWin: managing complexity in
requirements negotiation with GSS," System Sciences, 2002. HICSS.
Proceedings of the 35th Annual Hawaii International Conference on, pp.
10, 2002.

[28] G. Fischer, "The Software Technology of the 21st Century: From Software
Reuse to Collaborative Software Design", Proceedings of ISFST2001:
International Symposium on Future Software Technology, ZhengZhou,
China, 2001.

[29] O. Gendreau and P. N. Robillard, "Knowledge Conversion in Software
Development", Proceedings of the Nineteenth International Conference on
Software Engineering & Knowledge Engineering (SEKE'2007), Boston,
Massachusetts, USA, 2007.

[30] I. Nonaka and H. Takeuchi, The knowledge-creating company: how
Japanese companies create the dynamics of innovation. New York: Oxford
University Press, 1995.

[31] B. Leuf and W. Cunningham, The Wiki way: quick collaboration on the
Web: Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
2001.

[32] M. Geisser and T. Hildenbrand, "A Method for Collaborative Requirements
Elicitation and Decision-Supported Requirements Analysis," 2006.

[33] H.-J. Happel and S. Seedorf, "Ontobrowse: A Semantic Wiki for Sharing
Knowledge about Software Architectures", Proceedings of SEKE, 2007.

[34] G. Booch and A. Brown, "Collaborative Development Environments,"
Advances in Computers, vol. 59, pp. 1, 2003.

[35] A. Mili, R. Mili, and R. T. Mittermeir, "A survey of software reuse
libraries," Ann. Softw. Eng., vol. 5, pp. 349-414, 1998.

[36] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy Systems:
Software Technologies, Engineering Processes: Addison-Wesley, 2003.

[37] O. Hummel, W. Janjic, and C. Atkinson, "Evaluating the Efficiency of
Retrieval Methods for Component Repositories", Proceedings of SEKE,
2007.

[38] Y. Ye, "An Active and Adaptive Reuse Repository System", Proceedings
of 34th Hawaii International Conference on System Sciences, 2001.

[39] W. B. Frakes and S. Isoda, "Success factors of systematic reuse," Software,
IEEE, vol. 11, pp. 14, 1994.

[40] O. Hummel and C. Atkinson, "Extreme Harvesting: test-driven discovery
and reuse of software components", Proceedings of the IEEE International
Conference on Information Reuse and Integration, 2004.

237

Improving Component Container Development Process through Product Line
Engineering

Guoliang Liu, Yang Li, Jun Wei
Technology Center of Software Engineering, Institute of Software,

Chinese Academy of Sciences,
P.O.Box 8718, Beijing 100080, P.R.China
{glliu, fallingboat, wj}@otcaix.iscas.ac.cn

Abstract

Component containers play a key role as the
infrastructure of component-based distributed
applications. Nowadays, various kinds of
components are emerging to satisfy requirements of
developing applications on Internet. Hence, it’s
becoming more and more important to improve
development process of component containers with
software reuse methods. Product line engineering
has proven successful as systematical reuse method,
and is the best choice for component container
family comparing to other software reuse methods.
However, diverse understandings of CBSD concepts
and big difference among architecture of existing
component containers issue great challenges to
yield component container product line. In this
paper, we first standardize basic concepts of CBSD,
including component model and component
container, along with their relations. Feature model
of component containers is extracted based on these
concepts. Then we present architectural design,
including modules, interfaces and invocations, as
well as commonality and variability analysis, which
followed by product derivation process to produce
component container with product line through
several kinds of intuitive actions. Product line
architecture and product derivation process
comprise a component container product line,
named PLACE. A case illustrating development
process of a J2EE servlet container with PLACE
shows enhancement of reusability and effectivity of
the product line architecture.

1. Introduction

Component containers are cornerstone of
development of component-based distributed
applications, since they provide deployment and run-
time infrastructure following given component models
[2]. Container is responsible for creating and managing
component instances, allocating system resources
automatically, acting as interaction agent among
components and interpreting remote requests.
Functionalities provided to components are
encapsulated as infrastructure services, such as
transaction monitoring and logging, which are
transparent to client users of components.

Along with increasing component types, even more
(because of different versions of component
specifications) component containers are required.
However, most of them are not new, but variants of
previous built systems, which makes it essential to
reuse both design knowledge and existing code
systematically among component containers.

Software reuse refers to the use of previously
developed software resources in new applications.
Because less development effort to be made and
reusable software resources are rigorously tested,
software reuse can increase productivity and software
quality.

Most of current software reuse methods are
inappropriate as principal guideline for systematical
reuse of component container. Design pattern
(including architectural pattern) and reuse libraries are
excluded because of incomplete reusing scope, while
containers are too complex and diverse for domain-
specific reference architecture, framework and
generative methods. Product line engineering has
proven successful as systematical reuse method [3],
and is the best choice.

Product line engineering has become an important
and widely used approach for efficiently developing
portfolios of software products. This approach

238

produces order-of-magnitude economic improvements
compared to one-at-a-time software system
development [3]. In product line engineering, software
development process consists of two major processes
or life cycles: software product line engineering and
application engineering [12]. During software product
line engineering process, the commonality and
variability in the product line are analyzed in light of
the overall requirements of the product line. During
application engineering process, an individual
application that is a member of the software product
line is developed. Instead of starting from scratch, as is
usually done with single systems, the application
developers make full use of all the artifacts developed
during the software product line engineering life cycle.

In next section, challenges to apply product line
engineering to component container domain are
analyzed. And in Section 3, a product line of
component container, named PLACE, is presented by
giving its two major parts: product line architecture
and product derivation process. A case is given in
Section 4, in which a J2EE servlet container is
developed with PLACE, and shows improvement of
reusability and effectivity of the product line
architecture. After related works are compared in
Section 5, Section 6 concludes this article and gives
future works.

2. Challenges to Apply Product Line
Engineering to Component Container
Domain

The first challenge we are facing is requirement
modeling. Sources of requirements of component
container include component specifications and
existing component containers, and all of them
internally follow component-based software
development (CBSD) theory. However, different
explanations are adopted among component
specifications [1][2][10]. In order to build a product
line of component container, understanding of
concepts from CBSD must be unified.

Heineman and Councill define component,
component model and component model
implementation (a.k.a. component container) and their
relations in [2] as following, and as shown in Fig.1:

Definition 1 A component is a software element
that conforms to a component model and can be
independently deployed and composed without
modification according to a composition standard.
A component model defines specific interaction
and composition standards, while a component

model implementation supports the execution of
components and their assemblies that conform to
the model.

We will use Definition 1 as common
understandings of these concepts in this paper,
according to which component model will be used
instead of component specification, standard or other
terminology without confusing.

According to Definition 1, component model acts as
behavior and development guidelines of components
and component based software systems, which is also
requirement source of component container. We then
will use component model as base of feature modeling
of component container, as shown in Section 3.1.

Fig.1 Relationship among several concepts of CBSD

The second challenge is abstraction of architectural
design. Every component model has its own applicable
area, for example EJB is middle-sized business
component and web service is coarse-grained inter-
organization component, because of what EJB using
RMI/IIOP and JMS, supporting transaction and
persistence while web service using SOAP along with
WS-* specifications. Therefore, architectural design
difference between component containers is critical for
building product line.

Fortunately, basing on common understanding to
CBSD concepts what we talked in the first challenge,
component containers have common workflow
(server/client paradigm and remote request handling),
similar use cases (request handling, component
deploying, system monitoring etc.), so that can be
implemented by same set of architectural patterns and
variability realizing techniques [4], which is of great
help for handling design alternatives.

3. Product Line Architecture Design

3.1. Feature Modeling of Component
Container

According to existing domain modeling methods,
features are abstraction of services provided by and

239

Fig.2 Component Container Feature Graph

techniques used in applications, and they are used by
domain experts to communicate their idea, needs and
problems. Feature-oriented modeling technique was
first presented by Kang etc.[5]

Requirements of component container can be
divided into two categories: those from component
models and from container vendors. We call them
model requirements and customized requirements
respectively. Model requirements are explicitly
regulated through component specifications, interface
definition languages or protocol standards. Customized
requirements are those except model requirement,
which is proposed by container vendors basing on
marketing strategy, user desire, development cost or
state of practice. Features of product line are extracted
from common requirements of most products in it.
Therefore, features of component container consist of
model features and customized features respectively.
Layered relationships among features are shown in
Fig.2, in which higher layer in the tree indicates more
abstractive feature and lower layer means more
concrete feature.

3.2. Architectural Design of Container Product
Line – PLACE

In this section, we propose an architectural design
of container product line, named PLACE (Product
Line Architecture of component Container
Environment), which is based on analysis in former
sections as well as state-of-practice of architectural
design of component containers. Modules and their
relationship in PLACE are shown in Fig.3.

There are three kinds of architectural elements
present in Fig.3. Modules are depicted by boxes, while
interfaces are represented by black triangles on the
edge of module boxes. Inner or outer directions of
triangles show required interfaces or provided
interfaces respectively. And invocations are by lines
connecting pairs of interfaces. Modules, interfaces and
invocations with dotted lines mean optional elements,
while solid lines mean mandatory elements. Mandatory
elements exist in architectures of all products derived
from PLACE, comparing to optional elements which
are only in architectures of some products within the
product line.

We will introduce modules and their interrelations
briefly.

Protocol processor is responsible for parsing and
composing messages used to communicate with clients
through network protocols. It converts request
messages into in-memory objects, which are passed on
to service manager; meanwhile it also composes
response messages with results received from service
manager, and sends them back to clients. Sometimes,
protocol processor will invoke concurrency controller
to handle requests concurrently.

Service manager is in charge of request dispatching
as well as lifecycle managing of container services,
which includes loading, starting and stopping. After
protocol processor converts requests messages into
objects, service manager processes them with
intercepting container services, and then passes them
on to component manager. Sometimes service
manager also invokes concurrency controller to
provide container services with concurrency support,
or send run-time status to monitor.

Component manager integrates many
functionalities such as component invoking,
configuring, lifecycle managing, lifecycle events
notifying. Deployer invokes component manager when

240

Fig.3 Architectural Design of PLACE

deploying components or component applications.
When handling requests, component manager invokes
registry, state manager and instance manager
respectively, to look up, manage component states and
component instances. Component manager also
probably invoke concurrent controller to provide
concurrency support to its submodules.

Besides providing component instances with
environmental information, context manager also
receives and deals with invocations of run-time
container services, which are perform by invoking
service manager.

Monitor collects run-time information of container,
whose possible sources are component manager and
instance manager based on categories of information
in current containers.

3.3. Commonalities and Variabilities in
PLACE

Commonalities in PLACE include architectural
modules’ separation, relationships among them which
defined by abstract interfaces and data structure of
messages transformed among modules.

As shown in Section 3.2, these commonalities are
based on common requirements of all component
containers within PLACE according to feature graph in
Section 3.1. For example, Deployer module is
corresponding to ‘deployment’ feature in Fig.2, and its
interface provided to Component Manger defines
abstract methods as following. It accords to general
actions of deployment functionality.

interface Deployer {
 boolean deploy(ComponentIdentifier compId)

 throws DeploymentException;
 boolean undeploy(ComponentIdentifier compId)

throws DeploymentException;
}

Variabilities in PLACE can be classified into
functional variability and non-functional variability.
Functional variability includes adding or removing
functionalities, adjusting behaviors of or relationships
between modules, while non-functional variability
includes extensibility etc.

Developer will realize variability by choosing one
from design alternatives in product derivation process,
which is explained in next section.

3.4. Product Derivation Process

Designing containers with PLACE has two steps: 1)
product requirements analysis, during which architect
compares concrete component model against common
features in PLACE; 2) deriving concrete container
architecture from PLACE, including three kinds of
actions: specialization, removal and augmentation.

Specialization means to replace abstract modules
supporting generic features with concrete modules
supporting specific features. Removal means to remove
modules or invocations not needed by concrete
container, since requirements of every single container
are only subset of that of PLACE. Augmentation is to
add modules, interfaces or invocations implementing
requirements that are not covered by PLACE.

4. Case Study

ONCE platform [5] consists of a series of software
infrastructure products developed by Institute of
Software, Chinese Academy of Sciences. Several
representative component containers are included in
ONCE, such as Servlet, EJB, web service, Portlet and
BPEL containers.

Containers in ONCE have these following
characteristics: a) Component models of all these
containers are distributed component. b) For
development of reusable assets, all products should use
same programming language. Our choice is Java, since

241

most of them (EJB, Servlet, Portlet) belong to J2EE1
by Sun Microsystems, Inc., and the other two
component models are also compatible with it.

We have applied PLACE in design practice of
component containers in ONCE. Next, we will take
design process of a Servlet container as a example.

Servlet technology2 resides in representative layer
of three-layer architecture of J2EE applications, which
is responsible for generating user interface code and
handling interaction with clients. During development
of ONCE products, we proposed following
requirements to Servlet container to enhance usability:

a) Hot deployment, which means to deploy or
undeploy Servlet applications (in WAR files) at
run-time.
b) Web Administrative Console (WAC). User
can monitor and manage components and
component instances in Servlet container remotely
through web user interface, and also can monitor
components and instances by viewing various
statistics information provided by WAC, start or
stop deployed Servlet components. WAC should
also support remote deploying, which allow client-
side user to upload and deploy WAR files through
web browser.

Fig.4 Architecture of Servlet container derived
from PLACE

Comparing to PLACE architecture in Fig.3, Servlet
container’s architecture in Fig.4 shows the following
variabilities:

Specialization. Protocol Processor and Concurrency
Controller in PLACE are specialized to Http Processor
and Thread Pool respectively, depicted by boxes with
dark gray background. Protocol Processor follows

1 Which also known as Java EE now. Java EE at a Glance,

http://java.sun.com/javaee/
2 Java Servlet Technology, http://java.sun.com/products/servlet/

monolithic design since this Servlet container only
supports HTTP protocol, so it’s specialized into Http
Processor, and invocation parameters between Http
Processor and Service Manager are OnceHttpRequest
and OnceHttpResponse.

Removal. State Manager and related invocations are
removed, so are invocations from Service
Manager/Component Manager to Thread Pool, and
from Monitor to Service Manager. Removed
architectural elements are not in Fig.5 anymore.

Augmentation. Added parts include Remote
Management Console, Hot Deployer, Remote
Deployer and corresponding interfaces and invocations,
which are shown as boxes with shadow background
and bold lines

4.1. Discussion

In this case, only 3 of 12 modules are built from
scratch, while 7 of 12 modules’ definitions keep
unchanged comparing to those in PLACE. Although
development cost of different modules are very
different and some implementing code may be written
to complete modules’ functionalities, total
development time and cost is deduced remarkably.

While most of top-level modules being reused,
reusability of source code is increased too. For
example, thread pool which is originally developed for
EJB container can be reused without rewritten except
changing several parameters, such as size of thread
pool.

5. Related Work

One research area related to our work is domain
analysis [7] [8] [9]. Moon et al. [7] introduces a
process for developing domain requirements where
commonality and variability in a domain are explicitly
considered. Within their metamodel for domain
requirement, variation points are categorized into four
types: computation, external computation, control, and
data, which is similar to our classification of variations
in component models. They also identify computation,
external computation, and control variations in
BehaviorPRelements (a perspective along a timeline),
and data variations in StaticPRelements (a perspective
along static structure). Chastek et al. [8] and Mei et al.
[9] also propose interesting approaches to elicit and
model domain requirement, but they all focus on
requirement level of product lines, do not think about
design and implementation levels as we do in PLACE.

Our work is also inspired by publications on
component-based software engineering and component
models [1] [2] [10]. Lau et al. [1] classify component

242

models into a taxonomy based on commonly accepted
desiderata for CBD (Component-Based Development)
and evaluate categories with respect to these desiderata.
Lau et al. regard software component model as a
definition of semantics, syntax and composition of
components. As we already quoted in Section 1,
Heineman and Councill [2] define these concepts,
component, component model and component model
implementation, with each other. Szyperski et al. [10]
define component without component model, and tend
to look into component models and platforms from
technical and strategic perspective. The main
differences of our work are more detailed analysis and
narrowed scope, based on container product line point
of view. Their definitions of component models are too
coarse-grained to guide domain analysis and
architectural design.

6. Conclusion and Future Work

Software reuse can improve quality and
productivity of component containers, which is crucial
for fulfilling requirements of emerging component
models. Product line engineering is a promising
technique for systematical reuse of portfolios of
software products. However, applying product line
engineering is facing challenges including different
understandings of basic concepts from CBSD and
serious diversity among architectural designs of
existing component containers.

In this paper, we analyzed these challenges and
proposed PLACE: a product line of component
containers, which consists of two major parts: product
line architecture and product derivation process. Based
on common understanding of basic concepts and
feature modeling of component container, architectural
design reflects general modules’ separation, interfaces’
definition and interacting relationships among them,
while product derivation process shows practical
procedure to design a component container product
with PLACE with three kinds of intuitive actions. In
the end, a case shows effectiveness of PLACE by
illustrating development process of a Servlet container.

As future work, we are analyzing component
models with variability modeling techniques, such as
COVAMOF [11], to further reveal their
interrelationship, and making effort to generalize this
approach to apply to other product lines.

Acknowledgments. This work is partially supported
by the National Natural Science Foundation of China
under Grant No. 60573126; the National Basic
Research Program of China (973) under Grant No.
2002CB312005; the National High-Tech R&D Plan of

China (863) under Grant No. 2006AA01Z19B,
2006AA01Z180; the National Key Technology R&D
Program of China under Grant No. 2006BAH02A01.

References:
[1] Lau, K.-K., Wang, Z.: Software Component Models.

IEEE Transactions on Software Engineering, Vol.33,
No.11 (2007) 709-724

[2] Heinemann, G.T., Councill, W.T.: Component-Based
Software Engineering: Putting the Pieces Together.
Addison-Wesley (2001)

[3] Clements, P., Northrop, L.: Software Product Lines:
Practices and Patterns. Addison-Wesley (2002)

[4] Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of
variable realization techniques. Software Practice &
Experience, Vol.35 (2005) 1–50

[5] Kang, K.C., Cohen, S., Hess, J., et al: Feature-Oriented
Domain Analysis Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University (1990)

[6] Institute of Software, Chinese Academy of Sciences:
ONCE platform. http://www.once.com.cn

[7] Moon, M., Yeom, K.: An Approach to Developing
Domain Requirements as a Core Asset Based on
Commonality and Variability Analysis in a Product
Lines. IEEE Transactions on Software Engineering,
Vol. 31, No. 07 (2005) 551-569

[8] Chastek, G., Donohoe, P., Kang, K., Thiel, S.: Product
Line Analysis: A Practical Introduction. Technical
Report CMU/SEI-2001-TR-001, Software Engineering
Institute, Carnegie Mellon University (2001)

[9] Mei, H., Zhang, W., Gu, F.: A Feature Oriented
Approach to Modeling and Reusing Requirements of
Software Product Lines. Proceedings of the 27th
Annual International Computer Software and
Applications Conference (COMPSAC’03), IEEE
Computer Society (2003) 250-256

[10] Szyperski, C., Gruntz, D., Murer, S.: Component
Software: Beyond Object-Oriented Programming,
second edition. Addison-Wesley (2002)

[11] Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.:
COVAMOF: A Framework for Modeling Variability in
Software Product Families. Proceedings of 3rd
International Software Product Lines Conference
(SPLC 2004), LNCS 3154 (2004) 197-213

[12] Gomaa, H.: Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Addison-Wesley (2004)

243

* This work is supported by the Higher Education Commission of Pakistan
under the Program Overseas 2005-776582.

.NET Extensions to the �-Architecture Description Language

Zawar Qayyum*, Flavio Oquendo
University of South Brittany

VALORIA – BP 573 – 56017 Vannes Cedex, France
zawar.qayyum@univ-ubs.fr, flavio.oquendo@univ-ubs.fr

Abstract – The �-Architecture Description Language

(�-ADL) is a high level software architecture specifica-
tion language, formally founded on the �-Calculus. �-
ADL.NET is a software implementation developed for
the purpose of integrating �-ADL in the Microsoft
.NET platform, with the view of expanding the usage
horizon and application possibilities of �-ADL as an
executable formal language for prototyping and rapid
architecture-centric development.

Since .NET is a multilingual development platform,
the ability of a .NET language to access software com-
ponents written in other .NET languages opens up new
possibilities for multilingual software development us-
ing �-ADL.

This paper proposes extensions to �-ADL to be im-
plemented in the �-ADL.NET compiler, in order to al-
low it to use existing .NET APIs written in other .NET
languages. The proposed extensions cover all the fea-
tures of the .NET language foundation: namespaces,
classes, constructors, methods, fields, properties, events,
enumerations, exceptions, null-ness, method delegation,
different aspects of casting, generics and inner classes.

Index Terms – �-Architecture Description Language;
.NET; Compiler; Platform Specific Extensions

I. INTRODUCTION
An Architecture Description Language (ADL) is a lan-

guage especially conceived to address the modelling needs
of software architectures. Various ADLs have been de-
signed with different approaches to software architecture
modelling [1]. �-ADL, a relatively recent ADL [2] adopts a
formal approach towards software architecture specifica-
tion, based on the �-calculus. The main advantage of this
approach is the reliability of the resulting system, a very
important area of focus for large and complex software.
However, the software architecture description should also
be easy to understand and manipulate. For this �-ADL op-
erates on the principle of first class citizenship for all lan-
guage elements. In light of this approach, there are specific

syntactic features of the language that enable the manipula-
tion and use of program elements with a minimal amount
of code, with a syntax that is easy to understand.

The �-ADL.NET project is a compiler and runtime sys-
tem development effort with the goal of compiling �-ADL
to the .NET platform and running architecture specifica-
tions on that platform. The motivation for this project is to
provide a large experimental space for testing and evaluat-
ing the process oriented, formally founded �-ADL in the
context of a widely used software development and execu-
tion platform. At the same time there is a need to specialize
the �-ADL language in order to leverage the functionality
available in the reusable .NET software libraries.

This paper proposes language extensions to �-ADL in
order for it to interface with .NET software libraries. The
.NET platform is fundamentally object-oriented, and the
need to represent .NET semantics while remaining within
the confines of the process-oriented paradigm of �-ADL
poses a modelling problem. Section II presents some gen-
eral details of �-ADL in order to put the language exten-
sions in context. Section III provides syntactic details of
the proposed language extensions. Section IV presents re-
lated work with a comparison to the .NET API access fea-
tures in other .NET languages based on formal methods.
Section V concludes the paper.

II. �-ADL
�-ADL is an Architecture Description Language pre-

sented in [2] [4]. The purpose of Architecture Description
Languages is to model software architectures, and accord-
ing to [5] they focus on the high-level structure of the over-
all application rather than the implementation details of any
specific source module. However �-ADL also provides
programmatic constructs that allow it to model implemen-
tation details, so it can be seen as both a modelling and an
implementation language.

�-ADL can be considered as a benchmark for second
generation ADLs in the sense that it is formally founded
and allows the customization of run-time architectural con-
cepts. These two features were not present in earlier formal
ADLs.

244

behaviour {
 x : Connection [Boolean];
 compose {
 via a1 send Void where {x renames b};
 and
 via a2 send Void where {x renames b};
 and
 via a3 send Void where {x renames b};
 }
}

value a1 is abstraction() {
 b : Connection [Boolean];
 via out send "Hello";
 via b send true;
}

value a2 is abstraction() {
 bb : Boolean;
 b : Connection [Boolean];
 via b receive bb;
 via out send " World";
 via b send false;
}

value a3 is abstraction() {
 bb : Boolean;
 b : Connection [Boolean];
 via b receive bb;
 if (bb == true) do {
 via b send bb;
 via b receive bb;
 }
 via out send "!\n";
}

The second feature implies that the semantic definition

of high level architectural elements can be customized,
allowing a large amount of flexibility when defining archi-
tectural styles [6].

�-ADL is formally founded on the higher-order typed �-
calculus (hence the name), which encompasses a formal
transition and type system. It conforms to the language
design principles of correspondence, abstraction and data
type completeness [2]. Type completeness assures first
class citizenship to all types i.e. they can be declared, as-
signed, can have equality defined over them, and can be
persisted. The structural operational semantics of �-ADL
represent behaviour (and thereby computation) by means of
a deductive system, expressed by a formal transition system
in line with the language type system. Type soundness as-
serts that well-typed terms do not give rise to runtime er-
rors under the transition system.

�-ADL has a layered syntactic structure, with a core lan-
guage layer forming the foundation of higher layers that
build upon one another. For example high level architec-
tural concepts such as components and connectors are ex-
pressed in terms of behaviours and abstractions, which are
fundamental units of execution. A behaviour is an inde-
pendent unit of execution launched when a process starts
executing. Abstractions are abstractions over behaviours as
functions are abstractions over data. Abstractions need to
be called from behaviours or other abstractions in order to
issuing behaviours. In order to enable communication be-
tween different parts of a unit of execution, or amongst
different units of executions, connections are employed.
Send and receive statements allow synchronous communi-
cation through connections. �-ADL provides concurrency
constructs in line with those of �-calculus, in the form of
compose, choose and replicate. Sub-blocks inside a com-
pose block will execute in parallel with each other, while

from those inside a choose block, only one will execute.
The replicate construct connotes the infinite replication of
an execution block.

Arithmetic and assignment syntax in �-ADL is based on
the familiar style of Java and C#. �-ADL supports a set of
basic data types in the form of Integer, Boolean, String and
Float; and a diverse set of constructed data types: any,
view, tuple, union, quote, variant, set, bag, and sequence
types. Listing 1 presents a sample �-ADL code highlighting
the main syntactic features of the language. It demonstrates
the modelling of a simple synchronized multi-agent system
in �-ADL. Three parallel pseudo-applications of the ab-
stractions a1, a2 and a3 are performed in the behaviour.
The three abstractions then synchronize with one another to
print the string "Hello World!" in the right order.

III. .NET EXTENSIONS TO �-ADL
We now present the proposed syntax extensions to �-

ADL to provide support for accessing the .NET API. All
details are presented from the �-ADL perspective, using
elements defined in �-ADL to model the extensions. An
understanding of the .NET language framework is as-
sumed.

The focus of this current set of extensions is to allow the
use of existing .NET libraries in �-ADL.NET, and not de-
velop reusable components in �-ADL.NET for access
through other .NET languages. The latter could form the
focus of later work on �-ADL syntax extensions.

A. Declaring and Instantiating Classes
Let NET be the .NET governor behaviour, in terms of

the �-ADL formalism. We declare that NET has connec-
tions type_in and type_out, and they both process values of
type Any (i.e. values of any type). NET supports a typing
system expressed by the .NET namespace value attached to
each type it receives or sends e.g. "System.String". The �-

Listing 1. A Simple Multi-Agent System in �-ADL

245

ADL type system is therefore extended to be able to evalu-
ate the .NET namespace notation and hence recognize the
.NET types. All .NET objects are treated as abstractions in
�-ADL.

The instantiation of a .NET class would be as follows:

x:System::Text::StringBuilder; //declaration
via NET::type_in send
"System::Text::StringBuilder";
via NET::type_out receive x;

Here the type_in connection receives a string value indi-

cating the type of object it will process. The NET behav-
iour then internally creates the object and sends it out via
the type_out connection. A shorthand notation forming the
language syntax for this would be an overload of the '='
sign connoting instantiation, with the restriction of using
parenthesis after the class name:

x:System::Text::StringBuilder; //declaration
//instantiation:
x == System::Text::StringBuilder(();

x would now contain a reference to an abstraction of

type System::Text::StringBuilder.

B. Namespaces
In order to recognize the .NET namespaces and incorpo-

rate them for usage in �-ADL programs, we specify the
namespaces being used in a �-ADL program using the use
directive. It is used at the program level, outside behaviour
or abstraction definitions. Therefore:

//... declaration(s)
x = System::Text::StringBuilder();

can be rewritten as:

use System::Text;
//...behaviour header
//... declaration(s)
x = StringBuilder();

Note that the namespace System is implicitly used and

need not be declared using the use keyword.

C. Constructors
The statement

x = System::Text::StringBuilder();

would result in NET internally calling the default construc-
tor of StringBuilder. In case a constructor with arguments
needs to be called, we can employee NET::type_in as fol-
lows:

//invoking the StringBuilder constructor
// with an Integer argument defining

//initial length
//... declaration(s)
via NET::type_in send

"System::Text::StringBuilder";
via NET:: type_in send 42;
via NET:: type_out receive x;

Generally, the arguments to the constructor will be sent

via type_in to the NET behaviour, right after sending the
string that contains the type of object that needs to be cre-
ated. The shorthand notation to this syntax would be:

x = System::Text::StringBuilder(42);

Multiple arguments will be sent as a comma separated
list e.g.

y = MyObject("arg1", true, 0.5);

D. Methods, Fields and Properties
 In order to incorporate the use of methods in �-ADL, we

develop an internal model of a .NET class that is recogniz-
able in the �-ADL syntactic domain, and covers interaction
with both static and non-static fields and methods. Each
.NET class is represented by a corresponding behaviour,
and serves to provide access to static fields and methods.
Conforming with �-ADL syntax this behaviour contains
publicly accessible variables (for representing static fields).

Static methods are treated as connections. Each connec-
tion receives an argument of type any. It also makes a re-
turn value available via an input prefix (for methods that
have non-void return values). In order to model non-static
fields and methods, a similar approach is used with the
difference that abstractions and not behaviours represent
objects.

Listing 2 shows a .NET class and Listing 3 shows how it
would look like in �-ADL. Notice that a .NET class is fully
expressed by a behaviour and an abstraction, to model the
static and non-static aspects of the class respectively. The
following example shows how fields and methods for .NET
objects are accessed in �-ADL:

x : PiADL::Vector; y : Float;
x = PiADL::Vector(3,4);
compose {
 via x::Resultant send Void;
and
 via x::Resultant receive y;
}

The shorthand equivalent of the above code would be

x : PiADL::Vector; y : Float;

x = PiADL::Vector(3,4);
//shorthand for the method call compose
y = x::Resultant();

246

public class PiADL.Vector {
 private double _x, _y;
 public double X {
 get { return _x; }
 set { _x = value; }
 }
 public double Y {
 get { return _y; }
 set { _y = value; }
 }
 public Vector(int x, int y) {
 _x = x; _y = y;
 }

 public static string Name()
 {
 return "Vector";
 }

public static string Space()
 {
 return "PiADL";
 }

 public double Resultant()
 {
 return Math.Sqrt(_x*_y);
 }

 public double Angle()
 {
 return Math.ATan(_y/_x);
 }
} //end class

Vector names behaviour
{
 Name : Connection[any];
 Space : Connection[any];

 compose
 {
 replicate {
 via Name receive;
 via Name send "Vector";
 }
 and
 replicate {
 via Space receive;
 via Space send "PiADL";
 }
 }
} //end behaviour

value VectorInstance is abstraction {
 X : Float; Y : Float;

Resultant : Connection[any];
Angle : Connection[any];
dVal : Float;

compose
{
 replicate {
 via Resultant receive;
 dVal = X * Y;
 dVal = Math.Sqrt(dVal);
 via Resultant send dVal;
 }
 and
 replicate {
 via Angle receive;
 dVal = Y / X;
 dVal = Math.ATan(dVal);
 via Angle send dVal;
 }
} //end abstraction

Fields and properties are treated as shorthand projections

e.g.

x::Length = 42;

There is also a case of indexed properties, which are

treated from the programmer's perspective as an array.
Both arrays and indexed properties are accessed using
square brackets enclosing the index value, such as:

a : System::Collections::ArrayList;
o : System::Object;
//initialize and populate a
o = a::Item[4];

E. Events
Abstractions handle events generated by .NET objects.

The handles keyword will allow the assignment of an ab-
straction to handle a certain event type. The proposed syn-
tax is:

use System::Windows::Forms;
behaviour {

t : TextBox;
t = TextBox();
t::Click = a;

}
value a is abstraction (x : Integer)

handles TextBox::Click {
//....
}

F. Enumerations
A .NET enumeration is modelled as a �-ADL view type,

with all elements of type Integer.

G. Exceptions
Since exceptions are full-fledged classes in .NET, they

can be treated using the same behaviour-abstraction model
described in III.A. above. Examining the exception proper-
ties and variables, and calling its methods is the same as
described in III.A. The exception handling syntax is the
try-catch-finally approach seen in C#, as shown below:

Listing 2. .NET class (using C# code)

Listing 3. �-ADL model for the .NET class

247

s : String;
i : Integer;
e1 : FormatException;
e2 : OverflowException;
try {
 via out send "Enter an integer: ";
 via in receive s;
 i = Convert::ToInt64(s);
 i = i * i;
 via out send i;
}
catch (e1, e2)
{ via out send "Invalid input value."; }
finally {
 via out send
 "\n\n End of try-catch-finally demo.\n";
}

H. Null Values
.NET objects initialized as Null values can be recognized

and compared using the null keyword. All .NET objects are
assumed null at the time of declaration.

I. Delegates
.NET delegates are represented using the connection re-

naming syntax in �-ADL. For example we apply this pro-
posed syntax for delegates to the class definition in Listing
3:

m : Connection[Any];
m rrenames Vector::Name;

J. Casting to and from System::Object
System::Object is the canonical root class from which all

.NET classes are derived. Consequently, .NET collection
types often cast into System::Object the elements they are
collecting. In the �-ADL.NET compiler, each of the basic
types corresponds to one of the primitive types of the .NET
platform. The .NET platform provides the ability to box
primitive types into representative objects e.g. the Sys-
tem::Int64 structure exists for 64-bit integers and so on. In
�-ADL.NET the constructed types are implemented as
.NET classes and hence are directly cast-able to and from
System::Object. Therefore the following proposed syntax
for casting �-ADL types to and from objects is easy to im-
plement:

c : System::Collections::ArrayList;
v : view[a : String, b : Boolean];
o : System::Object;
i : Integer;

c = System::Collections::ArrayList();
i = 5;
v = view(a : "Cast test", b : true);

c::Add(i); //implicit cast to System::Object

o = (System::Object)v; //explicit cast
c::Add(o);
v = (view)c[1]; //explicit cast

K. Upcasts and Downcasts
Following the syntactic convention in III.J, .NET objects

can be cast to any one of their inherited types and back. As
such casts are dynamically checked in .NET, any runtime
errors resulting from incorrect casts will have to be handled
using the exception handling mechanism discussed in III.G.
The following example illustrates the syntax:

use System::Windows::Forms;
behaviour {
 b : Button; c : Control; o : Object;
 b = Button();
 c = (Control)b; //upcast
 o = (Object)c; //upcast
 c = (Control)o; //downcast
 b = (Button)c; //downcast
}

L. Generics
Since our current focus in .NET extensions for �-

ADL.NET is to provide the ability to use existing class
libraries only, and not to be able to create new ones, we
need not go into a detailed syntax mapping for .NET gener-
ics. It is sufficient to be able to declare and instantiate a
.NET generic class as follows:

c : GenericClass<Integer>; //declaration
c = GenericClass<Integer>(); //instantiation

For generic class with multiple generic parameters, the

parameters can be comma-separated. From the �-ADL per-
spective, the class GenericClass<T> represents a family of
behaviour-abstraction pairs, each one of which processes a
certain data type. Note that this model is compatible with
constrained generic classes as well [12]. �-ADL.NET will
also be able to use its own basic and constructed types as
type parameters when instantiating a generic.

M. Inner classes
Just as a regular .NET class is fully defined by its name

and namespace, an inner class can be defined by its name,
container class and namespace. From the �-ADL.NET per-
spective a public inner class is treated in the same manner
as an ordinary class. For example if a class Container con-
tains the class Inner, and is declared in the namespace My-
NameSpace then the following �-ADL.NET code will be
valid:

i : MyNameSpace::Container::Inner;
i = MyNameSpace::Container::Inner();

The �-ADL.NET code then can access the members of

Inner like for any other class or object.

248

IV. RELATED WORK
The work presented here merits a comparison with a

similar work performed for other formally founded lan-
guages. One such language is F# [7], a .NET language
based on ML [8]. Both languages are based on formal
methods, although F# is a functional language while �-
ADL is a process oriented language. But in each case, the
foundations of these languages differ greatly from that of
.NET, which is principally object oriented. Furthermore F#
provides syntax level interoperability for all the .NET fea-
tures discussed in section 3 except for generics, thus pro-
viding an almost equivalent level of access to the .NET
API, when compared to the �-ADL .NET extensions.
However F# has been designed as a .NET language right
from the start, whereas �-ADL as a language is neutral to
any platform technologies.

Another ML based language for the .NET platform is
SML.NET [11] based on Standard ML '97. It supports most
of the features discussed in section III, but does not provide
support for events or generics.

L Sharp.NET [9] is an implementation of the Lisp func-
tional programming language for the .NET platform. It
provides support for namespaces, object instantiation, and
access to static and non-static methods, fields and proper-
ties. Advanced features such as casting, event handling,
exceptions and generics are however not supported.
DotLisp [10] is a lisp like interpreted .NET language with
limited support for .NET types and delegates, as well as
exception handling. It does not allow the instantiation of
objects or the use of namespaces.

In short when it comes to compilers and extensions to
formally founded languages for .NET, the current body of
related work restricts itself to functional languages. Plus as
seen in this section, none of these languages provide sup-
port for generics, an important feature of .NET version 2.0
[3]. Seeing this reported work from another angle, there is
no Architecture Description Language compiler for .NET
besides �-ADL.NET. This work is thus a significant over-
ture in that it provides the possibility of examining a proc-
ess-oriented, formally founded Architecture Description
Language in the context of the .NET universe.

V. CONCLUSION
The purpose of the .NET extensions to �-ADL is to pro-

vide syntactic basis for the �-ADL.NET compiler to inter-
act with .NET libraries. At the same time, these extensions
form a reference for interfacing �-ADL with other software
technologies. The development of these extensions is par-

ticularly important in that the architecture oriented focus of
�-ADL lends naturally to the notion of employing ready-
made software components to put together a software sys-
tem, or perhaps roll out a software development project in
which both architecture and components evolve through
interaction with each other.

One goal of the �-ADL.NET project is to allow software
architectural modelling on a mainstream software devel-
opment platform. The implementation of these proposed
extensions will enable the development of software using
multiple paradigms and languages simultaneously. This
helps meet the universal goals of reliable and low-cost
software development through the following advantages:
effort put in defining the software architecture is employed
directly in the resulting software system; the privilege of an
architectural view of the system that can be analyzed
through compilation and execution; and bringing the bene-
fits of the architectural paradigm to the rich technological
foundations of .NET.

REFERENCES
[1] Medvidovic N., Taylor R., "A Classification and Compari-

son Framework for Software Architecture Description Lan-
guages", IEEE Transactions on Software Engineering, v.26
n.1, p.70-93, January 2000.

[2] Oquendo F., “�-ADL: An Architecture Description Lan-
guage based on the Higher Order Typed �-Calculus for
Specifying Dynamic and Mobile Software Architectures,”
ACM Software Engineering Notes, No. 3, May 2004.

[3] Lowy J., “Programming .NET Components 2nd Edition Ap-
pendix D: Generics,” ISBN: 978-0596102074, O'Reilly Me-
dia Inc., 2005.

[4] Oquendo F., “Tutorial on ArchWare ADL – Version 2 (�-
ADL Tutorial),” ArchWare European RTD Project IST-
2001-32360, Jun 2005.

[5] Vestal S., “A Cursory Overview and Comparison of Four
Architecture Description Languages,” technical report, Hon-
eywell Technology Center, 1993.

[6] Oquendo F. et al, “ArchWare: Architecting Evolvable Soft-
ware,” Proceedings of the 1st European Workshop on Soft-
ware Architecture, LNCS 3047, Springer Verlag, May 2004.

[7] Syme D. and Margetson J., The F# website, 2007. See
http://research.microsoft.com/fsharp/.

[8] Gordon M., et al. “Edinburgh LCF: A mechanised logic of
computation,” Lecture Notes in Computer Science, volume
78. Springer Verlag, 1979.

[9] Blackwell R., The L Sharp.NET website, 2007. See
http://www.lsharp.org/.

[10] Hickey R., The DotLisp website, 2007. See
http://dotlisp.sourceforge.net/dotlisp.htm.

[11] Benton N. et al. “Adventures in interoperability: the
SML.NET experience,” Proceedings of the 6th ACM SIG-
PLAN International conference on Principles and Practice of
Declarative Programming, ACM Press, 2004.

249

 Towards Collaborative Development Based on Software Architecture

Yanchun Sun, Hui Song, Xinghua Wang, Wenpin Jiao
Institute of Software, School of Electronics Engineering & Computer Science, Peking University,

Key laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, P.R.China

E-mail: {sunyc, songhui06, wangxh05, jwp}@sei.pku.edu.cn

Abstract

Software projects often require many software engineers
to coordinate their efforts to build large software systems.
How to support collaborative development among the
stakeholders in a project, even if separated by time or
space, to produce software artifacts efficiently becomes a
very important problem. Software architectures are
considered important because they are the blueprints for
target software products and determine system-wide
qualities, and they can be used to organize various
software artifacts in software development process from a
high level perspective. Based on such an important role of
software architectures, this paper puts forward an
approach to collaborative software development based on
software architecture, to support the collaboration
spanning the whole software lifecycle. Moreover, the paper
provides the detail on how this method works efficiently by
a case study.

1. Introduction

Software engineering projects are inherently cooperative,
requiring many software engineers to coordinate their
efforts to produce a large software system [1]. How to
support collaborative development among the stakeholders
in a project to produce software artifacts efficiently
becomes a very important problem.

Typical software development methods provide
collaboration support from two sides: one is to provide
various communication mechanisms between software
developers; the other is to provide collaborative support
based software artifacts for software developers. For the
first category, there are many kinds of communication
mechanisms such as email, instant message, video meeting,
etc. However, these communication mechanisms are based
on natural language and quite short of standardization,
which is easy to lead to ambiguous understanding for
developers. On the other side, collaborative development
method based on software artifacts can solve this problem
if software artifacts have good structure, clear syntax and
explicit semantics.

For the collaboration based on software artifacts, the
version control systems are often used to manage the
software artifacts, for instance, CVS, SVN, etc. These tools
are very important for collaborative development among
software engineers, but the artifacts stored in these tools are
almost code-level programs, and lack a reasonable
organization from the viewpoint of software development
process. As a result, these tools are short of support for
collaborative design and maintenance of software, which
usually require the designers or maintainers to have a big
picture about the system.

To support the collaborative development in the whole
software lifecycle, it is necessary to provide software
developers with an appropriate model to organize various
software artifacts in software development process from a
high level perspective. Then, software engineers can
collaboratively develop software based on this model.

With software becoming large and complex, software
architecture (SA) becomes a blueprint to guide the
development and maintenance of software systems, and it
plays an extremely important role in the whole software
lifecycle. Now, some SA-centered development methods
have been put forward. Richard Taylor and David Garland
present their own Architecture Description language (ADL)
and propose the SA-centered development method based
on the ADL [2,3]. Siemens’s Hofmeister etc. describe a set
of architecture views and put forward a corresponding
software development method from requirement to
implementation [4]. IBM’s tool “RSA” (Rational Software
Architecture) also focuses on SA-centered development
[20]. In a conclusion, SA has become the core of software
artifacts in software development process and an ideal base
for collaborative development. Now many SA-centered
software development methods and tools (e.g.,
ArchStudio[5] and MolhadoArch[6]) have partly supported
the collaboration among developers. But these tools do not
use the semantics of SA adequately, and they just support
simple collaboration for several authors based on the
management of authority.

In this paper, we put forward a collaborative
development approach based on SA. First, based on version
control tool and semantic information of SA, we abstract

250

the information of fine-grained modification into SA in
order to support designers to collaboratively design SA
model. Then we can enlarge this collaboration mechanism
from collaborative design to the whole lifecycle because
SA is a core artifact in the whole software lifecycle. Via
introducing bi-transformation technologies [7], we can use
architectural knowledge based on version control tool to
capture the transformation relationship between SA and
other artifact to transform the modification manipulation of
other artifacts to the modification manipulation of SA
model, so as to support the collaborative development
among different developers.

The rest of this paper is organized as follows. Section 2
presents some related work. In Section 3, we put forward
an approach to collaborative development based on
software architecture. Section 4 illustrates the approach
with a case study. Section 5 concludes the contribution of
the paper and gives the future work.

2. Related work

To the best of our knowledge, the researches on
collaborative development based on SA cover several
aspects. We organize the review of the related work from
five main aspects as follows.

(1) The collaboration support for different
development phase. Many SA development tools support
collaborative authoring by versioning architecture
description files, e.g., ArchStudio and ACMEStudio [8],
but this kind of support for collaboration is fine-grained
without the semantic information of SA. Thus, the support
is just limited in the phase of SA design rather than the
entire software lifecycle.

(2) The support for communication mechanism of
collaboration. Our work is different from some researches
which just use the mechanism of communication to support
collaboration [9]. Our work supports the collaboration
based on models, and it can eliminate the ambiguity
induced by the communication in natural languages. On the
other hand, these mechanisms of communication are also a
supplement to our work and easy to be integrated to our
framework.

(3) The synchronization of artifacts in collaboration.
Our collaborative mechanism inherently supports the
synchronization of artifacts, in other words, the
synchronization among several replications of an artifact.
Compared with the research on optimistic replication [11],
our work can support large-granularity synchronization and
even the synchronization of heterogeneous replications.

(4) The visualization of collaboration. One key issue in
collaboration is how to assist the collaborative developers
to know other person’s work status (i.e., awareness) [10].
There are some related researches, in which the mechanism
of these researches is similar to that of our work. That is,
based on version control tool, to get the low-level
information of modification and display the information in

a direct way [12,13]. But their work is to show different
detailed information from several views, and we organize
the detailed information of modification in multi-view of
software architecture. Another difference is that this
visualized view is the threshold of collaborative
development, and not just a static visualized display.

(5) Integrated collaborative development tool. There
are some researches focusing on the integration of several
communication tools [14,15,16]. IBM and Microsoft both
have their commercial products to support collaboration.
The core of these products is to abstract the common
mechanisms from typical collaboration and communication,
and integrate them together. However, our work is from the
view of the development method based on SA, and
discusses potential issues for collaboration. Moreover, most
of these tools support collaborative communication based
on fine-grained code, but we try to organize the
collaborative development from a high level at SA.

(6) Web based collaborative development
environments. Eclipse is an open source community. Its
project focuses on providing a set of development platform
and framework to facilitate the construction of software.
Every eclipse project has an independent page as the entry
to all tools based on the Internet, which includes identity
authentication, CVS, mailing list, newsgroup, WiKi [17],
and Bugzilla [18]. Now, our work focuses the integration
surrounding IDE, and how to extend it to the Internet
environment will be our future research work.

3 Our Approach

The core of our approach is maintaining the different
versions of an architecture model, and revealing the change
in the proper views of an architecture model, on the basis
of the semantics of this architecture model. An overview of
our approach is illustrated as Figure 1.

In the rest of this section, we present several key aspects
of our approach supporting collaborative development.

3.1. Software Architecture Model

Figure 1. Approach Overview

CVS Infrastructure

ABCTool for an individual designer

Architecture

Type
view

Config
view …

251

By referencing the typical architecture description
language (ADL) [19], we define the meta-model(described
as Figure 2) of software architecture by using Eclipse Ecore.
The core concept of this meta-model is Component. We
partition and organize the software into components, each
with a relatively individual concern. Components are
associated with connections which link the provided and
required interfaces together.

Figure 2. Software Architecture Model in Our Approach
We also introduce the concept of InnerStructure, which

helps organizing the whole system as a hierarchical
structure to support the stepwise refinement during
architecture design. Based on the meta-model, we construct
a software architecture modeling environment by using
Eclipse GMF, named ABCTool, in order that we could
assist designers to record their design decisions by
recording their manipulations such as additions and
deletions of elements and modifications of properties and
relationships of elements.

The entire architecture model is recorded in the form of
XMI in several files. Among the files, one set of files
record the model information of the core elements, and
another set of files record every view’s diagram
information, including diagram color, font and the layout of
elements.

3.2 Version Control in Low level
Designers can modify the SA model via the graphic

interfaces, including core model, elements and layout.
When the designers finish and save the modification, some
related XMI files will be changed. As pure context files,
these XMI files can be managed by a version control tool.
We select CVS to achieve this because ABCTool is based
on Eclipse platform which provides fully support for CVS.

By using CVS, we can record who makes the
modifications and what modifications have been made to
SA model in the collaborative development process. We
use Eclipse Plug-in to encapsulate the record file of these
modifications and visualize them in ABCTool.

3.3 Visualization of the SA Model Modifications
By CVS interface, we can obtain the information about

the modifications from the XMI files. By analyzing the
modifications information, we can elicit which elements in
SA model have been modified and what kind of
modifications has been made. Moreover, we can display the

modifications explicitly in ABCTool, for example, using
different color to distinguish added components, deleted
components and unchanged components.

3.4 Model Maintenance by Collaborative Developers
For changed model, collaborative developers can select

accepting the modification, rejecting the modification or
adding new modification to the modification. The
maintenance activities for the modification can be mapped
to the operations in CVS. During the maintenance,
collaborative developers can use the modification
information offered by CVS to identify the intention of the
modification. Sometimes, they may need to contact the
modificator directly to discuss the goal of the modification.
We provide a support mechanism for peer-to-peer
communication in ABCTool.

3.5. The Collaborations among the Developers in
Different Phases

As a core artifact in the entire software development
process, SA model is a suitable medium for various
developers from different phases to communicate. In
different phases, developers will deliver different artifacts,
but most of these artifacts record some core information of
SA. In other words, some transformation relationships exist
between these artifacts and SA model. Thus, by
transforming the core information in SA and adding special
information in a given phase, the artifact in the given phase
can be constructed. Using those research fruits in the bi-
transformation field [7], we can use a set of transformation
rules to reflect the modification of SA model to other
model, and also reflect the modification of SA level
information in other model to SA model. Thus, we can
utilize the approach above to assist the collaborations
among the developers participating in different phases.

4 Case study

The following case illustrates how ABCTool assists
different developers to collaboratively design a large
software system. In the entire software development
process, there are various artifacts, and these artifacts have
different versions. Eclipse has integrated CVS to support
collaborative development, but CVS just manages artifacts
as context. For example, in Eclipse, we can see the history
page of every file, including the version number,
modification time, and author etc. According to different
version, we can use command “Compare” to view the
difference between two versions. In design phase, as core
artifact, SA model is often composed of Component Type
View and Component Configuration View etc. Thus, the
management mechanism based on context in CVS is not
enough. To solve this problem, our modeling tool
“ABCTool” provides the visualized version management
for the elements in Component Type View and Component
Configuration View etc.

252

Furthermore, the current version control tools do not
support synchronized update of artifacts, and developers
have to initiatively update the artifacts to get the new
version. So it is quite short of support for a group of people
to collaborate their development, which often leads to low
efficient collaboration. Aiming at this problem, ABCTool
notifies the update to other collaborative developers when a
developer updates an artifact. ABCTool will also display
different updates for collaborative developers, for example,
red color represents the update of “delete”, green color
represents the update of “add”, and yellow color represents
the update of “modify”.

We will illustrate our approach described in section 3 by
the following case. The scenario is as follows. Two
developers collaboratively design software system
“Example”. One’s user name is “cvsuer”, and the other’s
user name is “wangxh”. Configuration View
“My.adl_cofig” (Shown as Figure 3) is one of main design
artifacts of SA. It is stored in the server of CVS. We use
file “My.adl.cofig” to describe how ABCTool assists the
collaborative design among developers. Suppose that both
developers are collaboratively developing the software
based on version 1.2 in the design phase.

Figure 3. Component Configuration View “My.adl_cofig”
(1) User “wangxh” is editing file “My.adl.cofig” in the

client. From the Page “History”, we can see that there are
two versions of this file, Version 1.1 and Version 1.2. In
the server of CVS, newest version is 1.2. When user
“wangxh” adds connector “Z1” and saves the file, we can
see that the newest version in the client of User “wangxh”
is still version 1.2 from the Page of “History” (described as
Figure 4). Now the newest version is version 1.2 in the
server. In the left navigator column, label “>” represents
that the version of this file in the client is not consistent
with the version in the server of CVS.

(2) After user “”wangxh” delivers the new version to the
server of CVS, wangxh’s client interface will be changed to
Figure 5. We can see that the page of “History” shows the
newest version in the client is version 1.3. We also see that
file “My.adl_cofig” in the client is consistent with the file
in the server from the left navigator column.

(3) When user “wangxh” submits new version, the page
of “History” of another user “cvsuser” will display the
version update of this file. At the same time, the tool will

pop up a dialog box to remind user “cvsuser” that there is a
new version has been submitted (described as Figure 6).

Figure 4. Wangxh’ Client Interface before Version Update

Figure 5. Wangxh’ Client Interface after Version Update

Figure 6. The Dialog Box to Remind the New Version
(4) When user “cvsuser” knows that the newest version

of editing file “My.adl_cofig” is version 1.3, and its current
version is 1.2, he can compare the difference between these
two versions by the operation of “compare in ABCTool”
(described as Figure 7). ABCTool can distinguish the
classification of updates from their color. So, the new
added connector will be highlighted green to represent its
update is “add”. Similarly, the element is yellow or red to
represent the update is “modify” or “delete” respectively.
The comparison based on the elements in diagram includes
some kind of semantic comparison between these elements.
So, it totally differs from the comparison based on text file.

253

We can see that the collaborative development supported
by ABCTool is based on SA, and intuitionistic.

Figure 7. Compare the Difference between Two Versions

5. Conclusions

This paper puts forward an approach to support
collaborative development in different phases based on
software architecture. By using CVS, we can use software
architecture model to distill the semantics of context
changes recorded in CVS, and then use visualized SA
modeling tool to display the change of SA model to assist
different designers to collaborate their design. By using bi-
transformation technologies, we can use the transformation
relationships between SA and other artifacts to transform
the modification manipulation of other artifacts from/to the
modification manipulation of SA model and then use SA
modeling tool “ABCTool” to support the collaborative
development for different developers.

In the future, we will make further research on two key
issues. One is how to provide more detailed controls on
changes, including providing more semantics of change,
introducing various developer roles, and managing
authority. Another is how to introduce more architectural
knowledge (e.g., design rationale) to facilitate the
collaborative development.

Acknowledgement

This effort is sponsored by the National Basic Research
Program of China (973) under Grant No. 2005CB321805
and the National Natural Science Foundation of China
under Grant No.90612011, 60503028, 60773151 and the
National High-Tech Research and Development Program
(863) of China under Grant No. 2007AA01Z127,
2007AA010301.

References
[1] Jim Whitehead, "Collaboration in Software Engineering: A

Roadmap", in Future of Software Engineering(FOSE'07),
Minneapolis, MN from May 19 to May 27, 2007.

[2] Nenad Medvidovic, David S. Rosenblum, Richard N. Taylor,
"A language and environment for architecture-based software
development and evolution", in Proceedings of the 21st

international conference on Software engineering, Los
Angeles, California, United States, 1999.

[3] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley
Schmerl, Peter Steenkiste, "Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure" Computer,
vol. 37, no. 10, pp. 46-54, Oct., 2004.

[4] C Hofmeister, R Nord, D Soni, Applied Software Architecture,
Addison Wesley, 2000.

[5] UCI Software Architecture Development Environment, 2007,
http://www.isr.uci.edu/projects/archstudio.

[6] T.N.Nguyen and E.V.Munson, Object-oriented Configuration
Management Technology can Improve Software Architectural
Traceability”, in 3rd ACIS International Conference on
Software Engineering Research, Management and
Applications(SERA’05), Mount Pleasant, Michigan, USA,
2005, pp.86-93.

[7] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao,
Masato Takeichi, Hong Mei, "Towards Automatic Model
Synchronization from Model Transformations", in
Proceedings of 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), Atlanta,
Georgia, November 5-9, 2007.

[8] A. Kompanek, "Modeling a System with Acme", 1998,
http://www.cs.cmu.edu/~acme/html/WORKING-
%20Modeling%20a%20System%20with%20Acme.html.

[9] Erran Carmel, Ritu Agarwal, "Tactical Approaches for
Alleviating Distance in Global Software Development", IEEE
Software, March/April, 2001, pp22-29.

[10] C. Gutwin, R. Penner, and K. Schneider, "Group Awareness
in Distributed Software Development," in Computer
Supported Cooperative Work, Chicago, Illinois, USA.: ACM
Press, 2004, pp. 72-81.

[11] Y. Saito and M. Shapiro, "Optimistic replication," ACM
Computing Surveys (CSUR), vol. 37, pp. 42-81, 2005.

[12] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr, "Seesoft-A
Tool for Visualizing Line Oriented Software Statistics,"
IEEE Transactions on Software Engineering, vol. 18, pp.
957-968, 1992.

[13] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P.
Schuster, "Visualizing software changes," IEEE
Transactions on Software Engineering, vol. 28, pp. 396-412,
2002.

[14] C. Cook and N. Churcher, "Modelling and measuring
Collaborative Software Engineering," in Proceedings of the
Twenty-eighth Australasian conference on Computer
Science-Volume 38, 2005, pp. 267-276.

[15] S. Dustdar and H. Gall, "Architectural concerns in distributed
and mobile collaborative systems," in Journal of Systems
Architecture. vol. 49, 2003, pp. 457-473.

[16] Y. Yang, "Separating data and control: support for adaptable
consistency protocols in collaborative systems," in
Computer Supported Cooperate Work: ACM Press New
York, NY, USA, 2004, pp. 11-20.

[17] P. Louridas, "Using wikis in software development", IEEE
Software, vol. 23, 2006, pp. 88-91.

[18] Mozilla, "Bugzilla," http://www.bugzilla.org/.
[19] N. Medvidovic and R. N. Taylor, "A Classification and

Comparison Framework for Software Architecture
Description Languages", IEEE Transactions on Software
Engineering, pp. 70-93, 2000.

[20] IBM, "Rational Software Architect Overview," 2007,
http://www-306.ibm.com/software/awdtools/architect/
swarchitect/.

254

Choosing a Software Architecture: An Approach and a Case Study

C. Ghezzi, G. Tamburrelli
Politecnico di Milano – Dipartimento di Elettronica e Informazione, Deep-SE Group

Piazza L. da Vinci, 32 – 20133 Milano, Italy
(ghezzi — tamburrelli)@elet.polimi.it

Abstract

The design of complex software systems requires careful
analysis of alternative architectures, which may affect dif-
ferent qualities of an application. This paper reports on a
case study in network management. Network management
systems are traditionally designed according to a client-
server paradigm. This work extends previous research that
explored alternative solutions based on mobile code. Com-
peting solutions are evaluated through analytical modeling.
We also built a prototype design workbench, which supports
more detailed comparisons of competing architectures by
rapidly developing mockup implementations.

1. Introduction

Software architects are often confronted with the choice

among different architectural paradigms in the design and

implementation of complex software applications. Select-

ing the most appropriate style for the specific problem to be

solved is not an easy task, and many factors influence the

choice. Each choice, in fact, can have different effects on

different properties that the resulting system should ensure.

For example, one solution might be more robust, but might

have a higher response time for certain functions. In gen-

eral, no solutions can be found that work best in all possible

practical situations, even for specific application domains

and execution environments. It is therefore important to de-

velop an approach that may support software architect in

decision making.

In this paper we contextualize this general problem for

an important class of critical software applications, namely

network management (NM). NM is crucial for modern

telecommunication networks, composed of thousands of in-

terconnected nodes, which must be configured and moni-

tored to guarantee a globally correct and efficient behavior.

The network comprises many different kinds of devices:

routers, switches, signal regenerators, repeaters. Because

of distribution and accessibility problems, on site configu-

ration and maintenance of individual nodes is often impos-

sible. Rather, it must be performed by a remote NM system,

which is responsible for collecting data from network appa-

ratuses, monitoring them, and possibly reacting to the criti-

cal situations to guarantee the required quality of service.

NM is the discipline that studies the procedures and

techniques used to monitor and configure the nodes of a

telecommunication network. Besides conventional book-

keeping of on-line data and normal maintenance operations,

NM is responsible for managing exceptional situations that

can suddenly happen (e.g. broken links, traffic peaks). For

example, to face a sudden overload of a particular network

link, a performance management functionality might recon-

figure a node by redirecting user traffic.

This paper is not strictly on NM. Rather, NM provides an

interesting and realistic case study, which highlights how an

architecture-driven software design process may provide a

rational support to the reasoning and decision making of the

software developer. We developed the case study in collab-

oration with industry1, in the context of a feasibility study

for the implementation of a new generation of NM services.

The currently adopted solutions to NM, such as SNMP

[6] or RMON [14], adhere to a strict client-server paradigm,

where the management station is in charge of querying

nodes, collecting from them run-time monitoring data, and

issuing appropriate response commands. The network man-

agement protocol specifies the format of messages and the

semantics of operations. Because operations are described

at a very fine-graine level, any NM functionality requires a

large number of messages to be exchanged, and this micro-
management causes serious efficiency drawbacks in terms

of bandwidth consumption and computational burden at the

management station. The links connecting the management

station to the rest of the network easily become bottlenecks.

Another source of congestion can arise when new software

has to be delivered through the network. For example, to

install, upgrade or modify the firmware code on a network

1We wish to thank Marco Mussini of Alcatel-Lucent, who challenged

us to work on software architectures for NM, and Michele Panzeri who

participated in the project.

255

element, a point-to-point connection must be activated with

every node. The installation may become necessary as a re-

sponse to detected congestion symptoms. Paradoxically, to

react to congestion, the management station has to collect

data from network nodes, thus further contributing to con-

gestion. Access to the nodes involved in NM can thus be-

come difficult or sometimes impossible. Network conges-

tion generates response time degradation and hinders net-

work scalability.

A software architecture based on mobile agents (MAs)

[1, 4, 8, 9] appears to provide an appealing alternative

paradigm for the design of NM systems. MAs can be

defined as computational entities that act autonomously—

proactively and reactively—and can relocate themselves on

different nodes of a network. More precisely, we refer to

MAs that fall under the so-called weak mobility paradigm.

Weak mobility implies that an agent moves from one node

and restarts its execution as a new process at the destina-

tion node. It can, however, carry state information as global

data, as we will see later on in more detail2.

Intuitively, an MA can be injected in the network and in-

structed to reach a set of controlled nodes to perform some

NM functionality. At each node the agent may collect the

necessary data locally, process them, and then eventually

move back to a control station to report its findings. The

ratio between the size of the data that must be collected lo-

cally and the data transported to the control station is called

semantic compression performed by the agent. Intuitively

agents look like an appealing solution whenever the net-

work functionality that has to be performed fosters a high

semantic compression. In fact, this would reduce network

traffic over an equivalent solution based on the traditional

CS paradigm. More generally, a NM architecture based on

MAs looks appealing for the following reasons [4]:

• Load balancing: computation is distributed on many

nodes.

• Availability: the control station may be temporarily

down while the agents injected in the network locally

monitor the nodes.

• Asynchronous, autonomous, parallel interaction. Mo-

bile agents may work in parallel.

• On-line extensibility. On-the-fly installation (for ver-

sioning and patching) is easy to achieve.

• Analysis precision. The agent installed in a node can

collect precise real-time measurements, independent

of the network latencies that would be involved in a

CS solution.

2A taxonomy of mobile agents and the notion of weak mobility versus

strong mobility have been introduced in [7].

• Network traffic reduction. By migrating code near the

data it processes, network traffic may be reduced ([11,

13]).

Main goal of our study was to precisely evaluate CS vs.

MA architectures to try to minimize network traffic. The

first approach we investigated was based on a simple math-

ematical model, which allows the designer to reason in a

quantitative fashion about network traffic. This part of our

contribution extends previous work [2]. Because of the lim-

itations implicit in analytical reasoning, our next contribu-

tion has been directed to developing an environment that

would support rapid prototyping. In this environment, it is

possible to perform an empirical analysis of network traffic

in the different cases.

Our experience confirms the need for the software engi-

neer to be supported by a suitable methodology and tools

while reasoning about different architectural alternatives.

In fact, there is no winning solution in general, even in

domain-specific cases, like NM. The architecture that per-

forms better should be chosen depending on the specific

functionality to provide. Also, the two approaches to

reasoning—analytical modeling and prototyping—are com-

plementary. In fact, the former may ignore some relevant

phenomena that occur in reality and sometimes it requires

input data that are difficult to anticipate. On the other hand,

the latter may provide an estimate for such data to drive a

more refined analytical modeling. Although our approaches

to architectural reasoning are presented here to evaluate CS

vs. MA, we argue that similar approaches can be followed

in other cases of competing architectures, and can be ex-

tended to quality attributes other then network traffic.

This paper is organized as follows: Section 2 details the

comparison of CS and MAs via analytical modeling. Sec-

tion 3 describes the experimental workbench we developed

for rapid prototyping. It also illustrates a simple case study

adopted as proof of concept, which focuses on analysis of

network traffic generated by a classification task performed

by a neural network, implemented using both paradigms.

Finally, Section 4 draws some conclusions, and discusses

the general lessons learned from the case study.

2. Architectural Reasoning via Analytical
Modeling

Previous work by Picco and Baldi [2] addressed this is-

sue by comparing CS and MA on networks with uniform

communication cost (e.g. a fully connected network). Their

work describes a simple analytical model through which

the alternative architectures are easily compared. Unfortu-

nately, however, their work does not apply to several com-

mon practical cases. In particular, large telecommunica-

tion networks, for which NM is crucial, usually have a ring

256

topology. In this section we extend the approach of Picco

and Baldi to networks with a ring topology, using the same

formal notation. Let us introduce the following entities:

• ηCS = Protocol Overhead for Client Server

• ηMA = Protocol Overhead for Mobile Agents

• I = Request Size

• R = Reply Size

We assume the network to be composed of N nodes and,

in a CS architecture, the management station performs Q

requests of size I to each node, which replies with messages

of size R. Instead in a MA architecture, an agent is injected

in a node by the control station, with the purpose of letting it

visit possibly all nodes of the network and performing some

actions in each of them, consisting of issuing Q requests of

size I and receiving replies of size R. After all nodes are vis-

ited, eventually the agent migrates from the last node back

to the control station.

2.1. Total Network Traffic

The total traffic generated by a MA on a ring topology

network can be modeled by the following formula:

TMA =

N∑
n=1

(CMA + SMA,n) + ηMA

N∑
n=1

Q∑
q=1

Rq,n (1)

The first term describes the traffic generated by an agent

during its relocations: every agent has a size that is deter-

mined by a code fragment CMA and a state SMA,n. The sec-

ond term describes the replies from the nodes, i.e., the data

collected at each node, which must be communicated to the

control as illustrated in Figure 1.

Replies

Code
and

Status

Management
Station

Figure 1. Mobile Agents communication flow

The state of the agent in each node is composed of the

replies collected by the agent during its relocations. It is

thus possible to write:

SMA,n =

{
0, if n=1∑n−1

m=1

∑Q
q=1

Rq,m, if n>1
(2)

Indeed for every node the status is the sum of the previ-

ous statuses (i.e. the information collected in the previous

nodes). Assuming that the size of replies is a constant R we

can write:

SMA,n =

{
0, if n=1∑n−1

m=1
QR = (n − 1)QR, if n>1

(3)

Consequently:

TMA =

N∑
n=1

ηMA(CMA + (n − 1)QR) + ηMANQR = (4)

= ηMA(NCMA +
N(N + 1)

2
QR)

Obviously, under the same assumptions made for MAs, for

the CS paradigm the cost in a ring topology network is not

uniform because the cost of communication depends on the

distance in the ring between the management station and the

node of interest.

Management
Station

Requests

Management
Station

Replies

Figure 2. Client Server communication flow

Thus the total traffic can be modeled by the following

weighted sum (see Figure 2):

TCS = 2

N
2∑

m=1

mQ(ηCSI + ηCSR) (5)

where m represents a multiplicative factor (m = N/2 if we

consider the traffic at the management station; m = (N/2)-

1 at the adjacent nodes, and so on). The formula can be

rewritten as:

TCS =
N

2

(
N

2
+ 1

)
Q(ηCSI + ηCSR) (6)

At this stage, it is necessary to take into consideration the

semantic compression. As we observed earlier, in fact,

agents can compress the data collected. Thus the size of

the reply computed by a MA at a given node can be a frac-

tion of the size of the data that are transmitted back to the

257

management station in a CS setting. Assuming the size of

the reply in the CS case to be a constant R and assuming the

average reduction factor to be a constant θ, the size of the

replies for a MA at each node is θR. TMA then becomes:

TMA = ηMA(NCMA + θ
N(N + 1)

2
QR) (7)

Moreover, assuming N to be large, and ηMA ≈ ηCS, we

obtain that TMA<TCS if and only if:

CMA<
N

4
Q(I + R) − θQR

N

2
(8)

This inequality describes under which circumstances MAs

are preferable to CS in terms of total traffic generated in a

ring topology network. The MA code size is compared with

a term that depends on number of nodes, number of queries,

request and reply size and average semantic compression.

MAs can perform even better if global semantic com-
pression can be achieved on replies. As an example, let us

consider a scenario in which an agent travels through the en-

tire network, computing at each node a compressed value,

and delivering to the control station the maximum of such

values. In this case the agent has to carry through the net-

work only a single reply R containing the current maximum.

Thus TMA becomes:

TMA = ηMAN(CMA + R) (9)

TMA<TCS if and only if:

CMA<
N

4
Q(I + R) − R (10)

2.2. Network Traffic at the Control Station

Network management can generate intense traffic around

the control station. Intuitively, this is especially true in CS

cases. Thus, instead of analyzing the total network traffic,

it may be interesting to evaluate the possible bottlenecks

around the control station. The traffic generated by the CS

paradigm is:

TCS = ηCSNQ(I + R) (11)

The formula represents the transmitted requests I and the

received replies R between the control station and two adja-

cent nodes inside the ring (see Figure 2). On the other hand,

for MAs we have:

TMA = ηMACMA + ηMANQR (12)

Consequently TMA<TCS if and only if:

CMA<NQI (13)

where NQI represents the total size of the requests. More-

over, considering semantic compression, we obtain:

CMA<NQ(I + R) − θNQR (14)

This inequality clearly states that MAs perform better if the

agent’s code is smaller with respect to the difference be-

tween the (semantically compressed) data collected by an

agent and the size of the total requests and replies transmit-

ted/received by the control station. Furthermore, if we ana-

lyze the traffic at the management station in case of global

semantic compression we obtain:

CMA<NQ(I + R) − R (15)

We may conclude that the comparison of CS and MA

architectures in terms of the generated traffic depends on

several parameters of the application. Some of the data in-

volved in the formulae may be difficult to anticipate, and

might require some experiments to be performed in order to

obtain them. We believe that in general this kind of analy-

sis may benefit from a complementary kind of experimental

analysis. The prototype workbench described in the next

section has been developed to support this task.

3. Prototype Workbench

The workbench offers features that allow the designer

to rapidly develop mockups of NM functionalities and run

them to get comparative quantitative data (e.g., network

traffic). Mockups comprise a set of sites, connected through

a network. A middleware, called playground, supports

communication and coordination of NM mockup compo-

nents that run on top of it. Each site provides its own play-

ground. To support rapid prototyping, we decided to use

scripting languages to implement NM functionalities. Each

functionality is implemented by what is called an agent.
Agents should not be confused nor identified with MAs.

They can be programmed to behave as MAs, but they can

also support other paradigms, such as CS. Agents may be

written in any scripting language. We developed support

for Perl, Python, and Ruby, but others may be easily de-

veloped. A decoupling layer (i.e., the tool layer), provides

an API that allows agents to transfer their execution from a

playground to another and allows communication mapping

the data provided by agents onto linear messages transferred

by the middleware. Figure 3 shows a fragment of the archi-

tecture.

An agent defines an elementary functional unit. It is rep-

resented by a tuple <C, B, D>, where C is a code block

that defines a computation, B is a dataset (called backpack)

that stores useful information for the agent, and D is the

agent’s descriptor. D stores the static and dynamic descrip-

tion of an agent (interface, intention, version, author). If an

agent implements an MA that collects data in each visited

node, collected data are stored in the backpack. In such a

case, the tuple that represents an agent is transferred from a

playground to another as an XML file.

258

Playground

Network

Tools

Sandbox SandboxSandbox

Tools Tools

Script
Phyton

Script
Perl

Script
Ruby

Figure 3. System Architecture

Agents may communicate via asynchronous messages.

A message is defined by the pair <E, Y>, where E is the

message envelope and Y is the body, which represents the

information to transfer, and has variable length. E is also a

pair <S, R>, where S identifies the sender and R identifies

the receiver(s). S is defined by a pair <IDsite, IDagent>,

which uniquely identifies an agent. Because the middleware

supports both unicast and broadcast (at site level or at agent

level), R can have one of the following structures:

• <IDsite, IDagent>: unicast.

• <IDsite, *>: site unicast, agent broadcast.

• <*, IDagent>: site broadcast, agent unicast.

• <*, *>: site broadcast, agent broadcast.

An agent that wishes to send the message must provide in-

formation about the receiver(s) and the body. The commu-

nication tool automatically generates the rest of the mes-

sage. Once sent, the message is passed to the middleware

and then routed to destination. Once it arrives at destina-

tion, the message is queued, waiting that the receiver agent

to read it.

The middleware provides two primitives that support

agent mobility 3: Relocate and Visit. First of all, when

an agent wants to migrate across the network it creates the

backpack containing the data to be carried to the destina-

tion. Afterwards, when a Relocate is invoked, an agent in-

dicates to the middleware the destination site through its

identifier IDsite. If the Visit primitive is invoked, the agent

visits the whole network, site after site. It is not necessary

to specify any destination but it still necessary to prepare

the backpack containing the data. In this case, inside the

backpack there is also additional information written by ev-

ery playground visited by the agent during the Visit. At the

implementation level, when a Relocate is invoked, an XML

string representing the agent is sent to the destination play-

ground, where a new process running the agent is started,

with the backpack as a parameter.

3As we already mentioned, we support weak mobility, as defined in [5].

The playground offers to the agents a number of sup-

port tools, which allow new NM functionalities to be pro-

totyped. The tools API provides the mechanisms (commu-

nication, migration and synchronization primitives) needed

to implement different architectural styles; in particular, CS

and MAs. Thus through the workbench it is possible to de-

velop, test and monitor applications for NM designed in dif-

ferent paradigms. Different solutions may be tested in the

form of mockups at design time by using this workbench, to

support architectural reasoning, before implementing them

as a new NM applications.

3.1. Experimenting with the Workbench

Hereafter we illustrate how the workbench can be used

to support architectural reasoning. In our case study, we

analyze the network traffic around the NM control station

and we compare CS and MA solutions for a specific net-

work management function that performs alarm correla-
tion. Alarm correlation is a useful NM feature, which is

often used for alarm filtering or diagnosis. An experiment

we made is based on the approach described by [12], which

uses neural networks for this task. Because a considerable

amount of data must be collected from the network nodes to

train the neural network algorithm, we decided to compare

alternative solutions based on CS and MA paradigms, by

evaluating the traffic generated around the NM control sta-

tion. The neural network used in our case study needs about

10000 iterations to converge during the training phase. Us-

ing our prototype workbench, the solution of our case study

can be designed with a CS architecture in which the neural

network is implemented by an agent installed on the NM

control station. The agent builds the dataset through re-

quests to agents installed on the individual network nodes.

Alternatively, it is possible to exploit MAs. Indeed, the neu-

ral network can be embodied inside an agent and the learn-

ing algorithm is executed on every node. For space reasons,

we cannot report the details of the experimental results.

However, they show that the CS solution generates much

more traffic than the MA solution. Indeed, the latter does

not need to transmit the entire dataset, because it exploits

its capability to migrate the code near the data. Using MAs,

the control station is only in charge of injecting the agent

inside the network and receiving it at the end. Figure 4(a)

summarizes the training time of the neural network depend-

ing on the number of iterations. Figure 4(b) summarizes the

network traffic generated around the control station during

the training phase. The MA paradigm becomes convenient

with a relatively low number of iterations. In particular, it

generates a constant traffic (corresponding to the agent im-

plementing the neural network). Vice-versa, the network

traffic generated by the CS paradigm grows linearly with

the number of iterations.

259

(a) Time analysis

(b) Traffic analysis

Figure 4. Experimental Analyses

4. Conclusions and Future Work

In this paper we addressed the issue of systematically

supporting the choice of an architecture among a set of al-

ternatives through rigorous, quantitative reasoning. We ad-

dressed the specific domain of NM, focusing on network

traffic minimization. We developed two complementary ap-

proaches to architectural reasoning: one based on analyti-

cal modeling, and another based on execution of mockups.

To support the latter, we developed a workbench environ-

ment. The workbench supports fast development of com-

plex NM functionalities by exploiting the abstractions of

agents, playgrounds, and tools. Mockup applications can

be written in any scripting language and the system is de-

signed with a plug-in support to add new languages and new

tools. Finally, we have shown how the workbench can be

used to perform experimental analyses. This work is part

of our long-term research that aims at supporting software

engineers in the design and early validation of software ar-

chitectures. We are working on a variety of architectural

paradigms and a variety of validation approaches covering

both functional and non-functional requirements. In partic-

ular, we focus on validation techniques that include formal

analysis via model checking [3, 10].

References

[1] I. Adhicandra, C. Pattinson, and E. Shaghouei. Using Mo-

bile Agents to Improve Performance of Network Manage-

ment Operations. Proceedings of the Post Graduate Network
Conference (PGNet 2003), 2003.

[2] M. Baldi and G. Picco. Evaluating the tradeoffs of mo-

bile code design paradigms in network management applica-

tions. Software Engineering, 1998. Proceedings of the 1998
International Conference on, pages 146–155, 1998.

[3] L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic

verification of publish-subscribe architectures. In ICSE ’07:
Proceedings of the 29th International Conference on Soft-
ware Engineering, pages 199–208, Washington, DC, USA,

2007. IEEE Computer Society.
[4] A. Bieszczad, B. Pagurek, and T. White. Mobile Agents

for Network Management. IEEE Communications Surveys,

1(1):2–9, 1998.
[5] A. Carzaniga, G. Picco, and G. Vigna. Designing distributed

applications with mobile code paradigms. Software Engi-
neering, 1997., Proceedings of the 1997 (19th) International
Conference on, pages 22–32, 17-23 May 1997.

[6] J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC1157:

Simple Network Management Protocol (SNMP). Internet
RFCs, 1990.

[7] G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. Analyzing

mobile code languages. In MOS ’96: Selected Presentations
and Invited Papers Second International Workshop on Mo-
bile Object Systems - Towards the Programmable Internet,
pages 93–110, London, UK, 1997. Springer-Verlag.

[8] T. C. Du, E. Y. Li, and A.-P. Chang. Mobile agents in dis-

tributed network management. Commun. ACM, 46(7):127–

132, 2003.
[9] G. Goldszmidt, Y. Yemini, and S. Yemini. Network man-

agement by delegation: the mad approach. In CASCON ’91:
Proceedings of the 1991 conference of the Centre for Ad-
vanced Studies on Collaborative research, pages 347–361.

IBM Press, 1991.
[10] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. Formal Anal-

ysis of Publish-Subscribe Systems by Probabilistic Timed

Automata. LECTURE NOTES IN COMPUTER SCIENCE,

page 247, 2007.
[11] A. Koliousis and J. Sventek. A trustworthy mobile agent in-

frastructure for network management. Integrated Network
Management, 2007. IM ’07. 10th IFIP/IEEE International
Symposium on, pages 383–390, May 21 2007-Yearly 25

2007.
[12] E. Marilly, A. Aghasaryan, S. Betge-Brezetz, O. Martinot,

and G. Delegue. Alarm correlation for complex telecommu-

nication networks using neural networks and signal process-

ing. IP Operations and Management, 2002 IEEE Workshop
on, pages 3–7, 2002.

[13] J. Schönwälder. Network management by delegation from

research prototypes towards standards. Comput. Netw. ISDN
Syst., 29(15):1843–1852, 1997.

[14] S. Waldbusser. RFC1757: Remote Network Monitoring

Management Information Base. Internet RFCs, 1995.

260

PROTEF: Automatic Verification of pattern-based LTL Templates

Luis Garcia*, Steve Roach**, Salamah Salamah***
*IBM Systems and Technology Group.

**Computer Science Department, University of Texas at El Paso.
***Department of Computer and Software Engineering, Embry-Riddle Aeronautical University.

Abstract

Most formal software verification techniques are based
on formal specifications of software behavior. Approaches
to facilitate the creation of formal specifications include the
Specification Pattern System (SPS) and Composite Proposi-
tions (CPs). Recent research into generating Linear Tempo-
ral Logic (LTL) formulas from SPS patterns resulted in a set
of templates that support CPs, but are complex and difficult
to verify. This paper describes PROTEF, a software frame-
work to automatically generate and test formulas represent-
ing software specifications using model-checker-based test-
ing. This method can be used to test templates in LTL and
other formalisms. The framework was used to test LTL tem-
plates developed to support CPs.

1. Introduction

Software verification is a fundamental part of the soft-

ware production process. Formal verification techniques,

such as theorem proving [14], runtime-monitoring [4, 5],

and model checking [1, 2, 8] are based on formal specifica-

tions of software behavior. Creating and validating formal

specifications is a significant impediment to the adoption of

formal verification techniques [6, 7].

There have been successful research efforts to mini-

mize the challenges of creating formal specifications in-

cluding the Specification Pattern System (SPS) [3], Com-

posite Propositions (CPs) [10, 11], and the Property Spec-

ification Framework (Prospec) [10, 12]. These approaches

assist a user in the creation of specifications based on com-

monly used patterns.

This work introduces the Property Testing Framework

(PROTEF), a software framework to automatically gener-

ate and test formulas representing software specifications,

in particular, specifications based on SPS and CPs. The

framework consists of three main components: (1) Prop-

erty Generator (PROGENE), (2) Property Test Generator

(PROTÉGÉ), and (3) Property Tester (PROTEST). The pur-

pose of each component in the framework is to complete

each of the processes in the testing method’s workflow.

Model checker-based testing [15] is used here as a gen-

eral method for testing software specifications based on SPS

patterns and CPs. It can be used to test specifications gener-

ated in Linear Temporal Logic (LTL) and other formalisms

such as Computational Tree Logic (CTL) [9]. PROTEF is

described in details in Section 2.4, while PROGENE and

(PROTÉGÉ) are described in sections 3 and 4 respectively.

2. Background

2.1. Linear Temporal Logic (LTL)

LTL is a highly-expressive formal language that is

widely used in model checkers such as NuSMV [1] and

SPIN [8], as well as for the runtime verification of Java pro-

grams [18]. The standard LTL operators are shown in Table

1. One problem with LTL is that it is hard to read. For exam-

ple, it is not immediately obvious that the LTL specification

�(a → �(p ∧ �(¬p ∧ ¬a))) represents the English require-

ment “If a train is approaching(a), then it will be passing(p),

and later it will be done passing with no train approaching”.

In this paper, an execution trace is represented by posi-

tions, read left to right, where each position indicates a state.

The spaces are filled with the atomic propositions that are

true in that state. A dash indicates no proposition is true. If

more than one proposition is true, they are written between

parentheses. Table 1 lists the usual LTL operators with ex-

ample and counter example traces.

2.2. Specification Pattern System (SPS)

Dwyer [3] conducted a survey of software projects and

identified a set of commonly occurring software properties.

These properties were generalized, formally described, and

categorized into specification patterns. SPS facilitates the

specification of software properties by providing a set of

general templates with natural language descriptions. Af-

ter reading the English descriptions, practitioners identify

261

Table 1. Description of LTL Operators
Operator Name Example Trace Counter Trace

¬ Not a −−−−− a −−−−
∧ a And b (ab) −−−− −− (ab) −−
∨ a Or b a −−−− −− b −−
U a Until b a a a b− a a a − b−
X Next a −a −−− a −−−−
� Eventually a −− a −−− −−−−−
� Always a a a a a a a a a a a a a − a a a

Table 2. Description of CP Classes in LTL
CP Class LTL Description (P LTL)
AtLeastOneC p1 ∨ . . . ∨ pn

AtLeastOneE (¬p1 ∧ . . .∧¬pn)∧ ((¬p1 ∧ . . .∧¬pn) U (p1 ∨
. . . ∨ pn))

ParallelC p1 ∧ . . . ∧ pn

ParallelE (¬p1 ∧ . . .∧¬pn)∧ ((¬p1 ∧ . . .∧¬pn) U (p1 ∧
. . . ∧ pn))

ConsecutiveC (p1 ∧ X(p2 ∧ (. . . (∧Xpn)) . . .))
ConsecutiveE (¬p1 ∧ . . .∧¬pn)∧ ((¬p1 ∧ . . .∧¬pn) U (p1 ∧

¬p2 ∧ . . . ∧ ¬pn ∧ X(p2 ∧ ¬p3 ∧ . . . ∧ ¬pn ∧
X(. . . ∧ X(pn−1 ∧ ¬pn ∧ Xpn)) . . .))

EventualC (p1 ∧ X(¬p2 U (p2 ∧ X(. . . ∧
X(¬pn−1 U (pn−1 ∧ X(¬pn U pn)))) . . .))))

EventualE (¬p1 ∧ . . .∧¬pn)∧ ((¬p1 ∧ . . .∧¬pn) U (p1 ∧
¬p2 ∧ . . . ∧ ¬pn ∧ ((¬p2 ∧ . . . ∧ ¬pn) U (p2 ∧
¬p3 ∧ . . . ∧ ¬pn ∧ (. . . ∧ (pn−1 ∧ ¬pn ∧
(¬pn U pn)) . . .)))))

the template they need and substitute their propositions into

the template. SPS introduces the concepts of pattern and

scope. A pattern is the specification template describing the

software behavior, and scope is the extent of program ex-

ecution over which the behavior described by the pattern

must hold.

2.3. Composite Propositions (CP)

Some applications require the specification of sequential

and concurrent behavior, and it may be necessary to define

groups of propositions and the relations between the propo-

sitions. Mondragon et al. [10, 11] created a set of abstrac-

tions that describe the relation between groups of proposi-

tions, referred to as CPs.

Mondragon defined eight CP classes that can be used

to describe sequential and concurrent software behavior by

identifying the relationships among the propositions in the

properties. With CPs, propositions represent either condi-

tions or events. Events are either the beginning or the end of

a condition and are instantaneous, while conditions have du-

ration. Conditions describe concurrent behavior, and events

describe synchronization. Table 2 provides a description in

LTL of the CP classes described by Mondragon. The sub-

script at the end of the CP class specifies whether the class

refers to a set conditions (C) or events (E).

To motivate the use of CPs, consider the example re-

quirement “Request (R) always triggers Acknowledgment

(A) between Beginning of execution (B) and System shut-

down (S)”. Suppose R not only triggers A, but it also trig-

gers Logging (L), and Validation (N). Questions that arise

include Do they happen at the same time? Are they all re-

quired? Must they occur in a certain order? These con-

cerns are addressed by CPs. In this case, assume that A,

L, and N must all occur at the same time. Then we can

use the ParallelE CP class. Using the LTL templates of

the CP classes in Table 2 and applying direct substitution

of the propositions in the property to the template yields:

ParallelE(A, L, N) ≡ (¬A ∧ ¬L ∧ ¬N) ∧ ((¬A ∧ ¬L ∧
¬N) U (A ∧ L ∧ N)).

SPS uses direct substitution of single propositions into

predefined templates to generate pattern-based specifica-

tions. Salamah [16] demonstrated that it is not possible

to use direct substitution of composite propositions in SPS

templates without losing the original intent of the pattern

and scope.

To address the problem created by direct substitution,

Salamah [16, 17] generated a new set of general pattern

and scope templates like the templates generated by Dwyer.

The correctness of a template is defined as the quality of

maintaining its original pattern and scope semantics when

substituting CPs while at the same time preserving the orig-

inal intent of the CP classes. For the purposes of this

work, we will call the pattern and scope templates created

by Salamah abstract templates. Abstract templates (as op-

posed to SPS templates) have placeholders for CPs rather

than single propositions. A template is instantiated by re-

placing the placeholder in the abstract template with a CP.

An abstract template is correct if for all possible instanti-

ations of the abstract template, the meaning of its pattern,

scope and CP classes is preserved.

3. Property Testing Framework (PROTEF)

The goal of the work described in this paper is to gain

confidence in Salamah’s abstract pattern-based templates

for LTL by testing them. Testing all the abstract templates

is not an easy task given the total number of combinations

of patterns, scopes and composite propositions classes. For

example, restricting ourselves to CPs with three proposi-

tions, the abstract template from the Absence pattern and

the After L scope, ¬((¬L)U (L ∧ �P), would produces

a total of 64 formulas, by substituting the 8 existing CP

classes for L and the eight existing CP classes for P . Con-

tinuing in this fashion for all the abstract LTL templates and

all the CP classes would produce over 30,000 formulas. In

order to test all of the concrete formulas it is necessary to

262

Figure 1. PROTEF Framework

develop a testing method that automates the generation and

testing of the templates.

A framework for manipulating properties called Prop-

erty Manipulation Framework (PROPMAN) was developed

that includes the basic object-oriented modules required to

manipulate pattern-based properties using Java. The Prop-

erty Testing Framework (PROTEF) was implemented us-

ing PROPMAN. PROTEF is designed to use pattern-based

properties for two particular purposes: (a) generating con-

crete specifications using abstract templates and (b) test-

ing the generated concrete specifications. The effective-

ness of PROTEF and the usefulness of our testing approach

was demonstrated by testing the pattern-based specifica-

tions in LTL for all formulas in the Absence pattern and the

Before R scope, limiting the choice of composite proposi-

tions to EventuallyE and AtLeastOneC .

PROTEF includes three subsystems: the Property Gener-

ator (PROGENE), the Property Test Generator (PROTÉGÉ)

and the Property Tester (PROTEST). PROGENE is respon-

sible for generating all the possible permutations of spec-

ifications that will be tested. PROTÉGÉ is the subsystem

responsible for generating test cases for each pattern-based

specification. Once we have the specifications and test

cases, the job of PROTEST is to perform the actual testing

of the formulas. This workflow, devised for testing a large

set of pattern-based specifications, is depicted in Figure 1.

3.1. The Property Generator: PROGENE

PROGENE is the framework module that generates the

pattern-based specifications that must be tested. Abstract

templates are instantiated with CPs producing pattern-based

specifications. By using all of the abstract templates for all

patterns and scopes, and concrete CPs for all CP classes,

we can generate combinations of pattern-based specifica-

tions. In the work described here, we have limited the ab-

stract templates to a single pattern, a single scope, and two

composite propositions classes.

The Property Generator module has several features re-

quired to make the framework general for further use. First,

PROGENE works independently of the formal language.

Second, it is extensible: In the event that new patterns and

scopes are identified, they can be easily included in the list

of supported patterns and scopes. Third, it extends to new

CPs: Currently the work in composite propositions includes

a total of eight composite propositions classes. If new com-

posite propositions classes or new propositions types are

identified, they too can be easily incorporated.

We use the abstract LTL templates presented in Salamah

[16, 17]. We have chosen to work with only the abstract

templates pertaining to the Absence pattern and four CP

classes. In the templates, each letter R, Q, L, and R with su-

perscript LTL refers to a placeholder for a composite propo-

sition in LTL, which is to be replaced by the practitioner’s

own CPs. Salamah’s templates use the letters P and R with

subscript H to indicate a special class of CPs that refer to

the part of the CP where the proposition holds. Salamah

also introduces special AND symbols: &r, &l and &−l.

These operations do not extend regular LTL, and they have

special semantics that make specification easier. The se-

mantics of these operators are out of the scope of this paper;

however, PROGENE supports these operators.

PROGENE takes as input the templates similar to the

ones shown in Table 3. Each CP placeholder in the tem-

plates needs to be identified. A notation for identifying

placeholders in the templates was developed:

• Proposition: A proposition is a character identifier.

The character is one of L, P, Q, or R.

• NEGATED proposition type: This placeholder

will be substituted by the negated LTL formula for the

CP in proposition type, where proposition type is

defined as in CP (proposition type).

• HOLD proposition type: This is placeholder repre-

sents a special CP class, defined by Salamah. This spe-

cial CP class is also depicted by an LTL formula and

is dependent upon proposition type, where proposi-

tions are defined as in CP (proposition type).

PROGENE provides the flexibility for the user to define

new placeholders in addition or replacing the ones used to

generate the formulas described here and included in the

framework by default.

In the rest of this section, the listings, PC, RC, PE, and

RE, refer to CPs named P or R, for conditions (C) or events

(E) using the definition for proposition type given above.

263

Table 3. LTL Templates for Absence of P Be-
fore R

Pattern/Scope LTL Template
Absence of PC ¬((¬R) U ((P &r¬R)&l � R))
Before RC

Absence of PC (�R → ¬((¬(NEGATED R
Before RE ∧X HOLD R)) U P &r ¬HOLD R)))
Absence of PE ¬((¬R) U ((P)&r ¬R) &l � R)
Before RC

Absence of PE (�R → ¬((¬(NEGATED R∧
Before RE X HOLD R)) U P &r ¬HOLD R)))

The first template can be applied to cases where P is of type

C. Similarly the second template can be applied to the cases

where P is of type E.

The CP templates shown in Table 2 are instantiated us-

ing three simple propositions, and the resulting CPs will

be directly substituted in the corresponding placeholders in

the abstract templates in Table 3. Given the templates and

CPs, PROGENE generates all the possible concrete pattern-

based properties that can be generated by substituting the

composite propositions into the corresponding placeholders

in the abstract templates. In addition to the actual specifica-

tion, PROGENE generates metadata regarding the origin of

each concrete pattern-based property. The following listing

is an example of the generation of one pattern-based prop-

erty in our case study:

• Original Abstract Template: “Absence of PC Before

RC”

¬((¬CP (RC))U ((CP (PC)&r¬CP (RC))&l �
CP (RC)))

• Comprising propositions for the P and R CPs:

– AtLeastOneC (P1 ∨ P2 ∨ P3)

– AtLeastOneC (R1 ∨ R2 ∨ R3)

• Generated LTL Specification:

¬((¬(R1 ∨ R2 ∨ R3)) U (((P1 ∨ P2 ∨ P3) ∧ ¬(R1 ∨
R2 ∨ R3)) ∧ �(R1 ∨ R2 ∨ R3)))

• Generated Metadata:

– Base Property:

∗ Label: Absence of PC Before RC

∗ Pattern: Absence of P

∗ Scope: Before R

∗ Template: ¬(((¬R)U P &r ¬R) &l � R)

– Generated Property: ¬((¬(R1 ∨ R2 ∨
R3)) U (((P1 ∨ P2 ∨ P3) &r ¬(R1 ∨ R2 ∨
R3)) &l � (R1 ∨ R2 ∨ R3)))

– CP components:

1. Label: AtLeastOneC

CP Class: At Least One Condition

Formula: (P1 ∨ P2 ∨ P3)

2. Label: AtLeastOneC

CP Class: At Least One Condition

Formula: (R1 ∨ R2 ∨ R3)

The metadata will be used in the testing phase. It in-

cludes information such as the CP classes of each of the

CPs that comprise the formula, as well as pattern and scope

information of the pattern-based specification.

3.2. PropertyTestGenerator (PROTÉGÉ)

A test case for a specification consists of an execution

trace and an expected result. PROTÉGÉ is the subsystem

that provides the functionality required to manage property

tests. This subsystem prepares all the necessary elements

for the Property Tester. Our testing method is based on the

work of Salamah et al. [15].

Patterns, scopes, and CP classes have specific logical

definitions and semantics that can be inferred from their

English descriptions. For example, given a pattern-based

property of type AbsenceofPbeforeR, where P and R are

CPs of class AtLeastOneC , we can infer that no CP P is

TRUE before the CP R is TRUE. Since both P and R are

of type AtLeastOneC , we can further reason that we do

not expect even a single proposition that belongs to P to be-

come TRUE, before any of the propositions that belong to

R becomes TRUE. This can be visualized using execution

traces, for example, “−−−−R−−− P −−−−−−”.

Since P and R are CPs of type AtLeastOneC , if the propo-

sition sets P and R are defined as P = {p1, p2, p3} and

R = {r1, r2, r3}, then, instantiating the CPs based on the

LTL definitions gives AtLeastOneC(P) = p1 ∨ p2 ∨ p3 and

AtLeastOneC(R) = r1 ∨ r2 ∨ r3. The original trace of ex-

ecution may be replaced by “− − − − r1 − r2 − r3 −
− − p1 − p2 − p3 − − − −−”.

The trace of execution shown above satisfies the prop-

erty, since there is an absence of all the propositions in P

before the first proposition in R appears. Given a trace of

execution and a pattern-based property as inputs, the ex-

pected output is whether the trace of execution satisfies the

property. This constitutes a property test case: a trace of

execution, a pattern-based property and TRUE or FALSE,

depending on whether the trace of execution should satisfy

the property.

Generating Test Cases PROTÉGÉ’s main function is to

generate property test cases. PROTÉGÉ is designed to auto-

matically generate large sets of test cases. In order to gener-

264

Table 4. Traces of Computation of Absence
P(EventuallyE) Before R(EventuallyE)

Trace of Computation Expected Re-
sult(T/F)

(R1R2R3) − −P1 − −P2 − P3 − TRUE

(R1R2R3P1P2P3) − − − −− TRUE

− − − − − − − − (R1R2R3) TRUE

− − − − (R1R2R3P1P2P3) TRUE

− − R1 − R2 − R3 − −P1P2P3 − TRUE

− − R1R2 − P1P2 − R3 − P3 − − TRUE

−− R1R2R3 −−P1P2P3R1R2R3 −− TRUE

− − P1 − P2 − P3 − −P1P2 − P3 − − TRUE

− − P1P2P3 − − − R1R2R3 − − FALSE

− − − − − − P1P2P3R1R2R3 FALSE

− − −P1P2P3R1R2R3 − −− FALSE

ate tests for all properties resulting from the possible com-

binations of patterns, scopes, and CPs, it is necessary to use

basic execution traces describing pattern-based properties

of single propositions. These traces are defined in Salamah

et al. [15, 16]. They define the basis for testing all the

possible combinations of properties with CPs. In defining

these basic traces, Salamah used boundary value analysis

and equivalence class testing.

For the purposes of this case study, we generated a set of

68 cases to test the properties of type Absence of P before
R, for the EventuallyE and AtLeastOneC CP classes.
1 PROTÉGÉ reads traces and expected results from a file

and stores these in the property test oracle, which provides

tests for a specific pattern-based property. When a request

is made to the oracle, it encapsulates the property, the ex-

ecution trace, and the expected result into a structure that

can be used by PROTEST. Table 4 shows example traces of

computations used to test the template for Absence of PE .

Before RE , where both P and R are of type EventuallyE .

3.3. Property Tester (PROTEST)

PROTEST executes property tests created by PROGENE

and PROTÉGÉ by using a model checker. In order to ap-

ply model checking to software three things are needed: a

finite state machine model of software, a specification, and

a model checker. The model checker exhaustively searches

all possible states in the model verifying that it satisfies the

specifications. In typical use, a model of a system is built,

the system’s specifications are created, and a model checker

is run to verify that the model satisfies the specifications.

Practitioners assume the correctness of the specifications

and verify the software model.

1The automatic generation of test cases for the remaining pattern/scope

combinations is left as a future work, and it is based on the same approach

used for generating this set of 68 cases.

Figure 2.
SMV Code Used in Testing

In our case, rather than verifying the model, we assume

the correctness of the model and verify the specifications.

This is the basis for what we call model-checker-based test-
ing of properties. PROTEST includes an interface to the

NuSMV model checker [1]. NuSMV was chosen for the

simplicity of its modeling language, its graphical user in-

terface, and its availability. By providing an interface to

NSMV, PROTEST users are able to run the NSMV model

checker using Java.

An execution trace can be transformed into a model in

the following manner. Given an example execution trace:

− − −P1P2P3 − − − R1R2R − −−, number the states

starting at 0. The example trace shows that P1 is true only

in state 3, p2 is true only in state 4, and so on. We generate

a model that has only one possible execution path. Figure 2

shows the SMV code created for this example.

The SMV code creates a Boolean variable for each of

the propositions in the trace of execution and determines the

value of the counter variable when the propositions will be

true. The ’LTLSPEC’ defines a property specification. The

‘ASSIGN’ section creates a counter from 0 to 14 matching

exactly the trace of execution. A model is generated for

each test case, the model checker is invoked, and the result

is compared to the expected result.

4. Example Template Verification

To demonstrate the PROTEF framework, we generated

and tested a subset of all the possible pattern-based prop-

erties based on SPS and CPs. The subset of properties in-

cluded the Absence of P pattern and the Before R scope,

limiting ourselves to two choices of composite propositions

classes AtLeastOneC and EventuallyE .

The subset of the properties that we used included four

pattern-based CPs. Table 5 shows the results of executing

the model checker-based testing for the four generated prop-

265

Table 5. Test Results For Absence Before R
P R Test Cases Tests Passed
AtLeastOneC AtLeastOneC 16 16

AtLeastOneC EventuallyE 20 20

EventuallyE AtLeastOneE 18 18

EventuallyE EventuallyE 14 14

erties: Absence of PC Before RC , Absence of PE Before

RC , Absence of PC Before RE , and Absence of PE Be-

fore RE .

The initial execution of the test suite generated for the

Absence of P before R pattern produced several failures.

Expert reviews with the author of the templates, tempo-

ral logic experts, and practitioners revealed three primary

causes: (1) There were errors in the expected values sup-

plied to PROTÉGÉ. (2) The original templates were incor-

rect. (3) There were misinterpretations of the semantics of

the &r operation introduced in Salamah [16]. After the

problems were corrected (i.e., the templates were updated

and the &r operator reimplemented), the test cases were re-

executed successfully.

These three classes of errors demonstrate the importance

of the testing effort. We independently discovered errors

in the original templates, the same errors discovered during

Salamah’s attempts at formal correctness proofs. The mis-

calculation of the expected value of the test cases indicates

how difficult it can be to create and read complex specifica-

tions. Tool support is essential. It is important to consider

these original test failure causes in order to avoid repeating

these potential failures in the future.

5. Conclusions and Future Work

One of the goals of this project is to be able to verify

the correctness of all the pattern-based properties for any

pattern, scope and CP class. In this work we built the soft-

ware framework needed to achieve that goal and we demon-

strated how to use the framework to verify a subset of the

properties. The SPS authors state that they verify the cor-

rectness of their properties through formal peer reviews.

PROTEF could help in the verification of their formulas in a

more systematic and autonomous way and provide a higher

degree of reliability.

The generation of execution traces is a fundamental part

of testing the properties that is not automatic. It may be pos-

sible to create general tests from which concrete tests based

on specific composite propositions classes can be generated,

and further work is required in this area.

References

[1] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M.,

“NuSMV: a new Symbolic Model Verifer” International

Conference on Computer Aided Verifcation CAV, July 1999.
[2] Clarke, E., Grumberg, O., and D. Peled. Model Checking.

MIT Publishers, 1999.
[3] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C., “Patterns

in Property Specification for Finite-State Verification,” Pro-

ceedings of the 21st Intl. Conference on Software Engineer-

ing, Los Angeles, CA, USA, 1999, 411-420.
[4] Gates, A., and Roach, S., “DynaMICs: Comprehensive Sup-

port for Run-Time Monitoring,” in Proceedings of the Run-

time Verification Workshop 2001, Paris, France, Vol. 55, No.

2, July 2001, pp. 61-77.
[5] Gates, A., and Mondragon, O., “A Constraint-Based Tracing

Approach,” Journal of Systems and Software, 2002.
[6] Hall, A., ”Seven Myths of Formal Methods,” IEEE Soft-

ware, September 1990, pp. 11-19.
[7] Holloway, M., and Butler, R., “Impediments to Industrial

Use of Formal Methods,” IEEE Computer, April 1996, pp.

25-26.
[8] Holzmann, G. J., “The model checker SPIN” IEEE Transac-

tions on Software Engineering., 23(5):279-295, May 1997.
[9] Laroussinie, F. and Ph. Schnoebelen, “Specification in

CTL+Past for verification in CTL,” Information and Com-

putation, 2000, 236-263.
[10] Mondragon, O., “Elucidation and Specification of Soft-

ware Properties through Patterns and Composite Proposi-

tions to Support Formal Verification Techniques” Disser-

tation, Computer Engineering Department, University of

Texas at El Paso, 2004.
[11] Mondragon, O. and Gates, A., “Supporting Elicitation and

Specification of Software Properties through Patterns and

Composite Propositions,” Intl. Journal Software Engineer-

ing and Knowledge Engineering, XS 14(1), Feb. 2004.
[12] Mondragon, O., Gates, A., and Roach, S., “Prospec: Support

for Elicitation and Formal Specification of Software Prop-

erties,” in Proceedings of Runtime Verification Workshop,

ENTCS, 89(2), 2004.
[13] Prior, A. N., Past, Present and Future. Oxford: Clarendon

Press, 1967.
[14] Rushby, J., “Theorem Proving for Verification,” in F. Cassez,

(Eds.): M odeling and Verification of Parallel Processes,

Springer-Verlag, Nantes, France, 2000.
[15] Salamah, S., Gates, A., Roach , S., and Mondragon, O.,

“Verifying Pattern-Generated LTL Formulas: A Case Study.

Proceedings of the 12th SPIN Workshop on Model Checking

Software. San Francisco, California, August, 2005, 200-220
[16] Salamah, S., “Generating Linear Temporal Logic Formulas

For pattern-based Specifications” Dissertation, Computer

Science Department, University of Texas at El Paso, 2007.
[17] Salamah, S., Gates, A., Kreinovich, V., and Roach, S., “Us-

ing Patterns and Composite Propositions to Automate the

Generation of Complex LTL”, Proceedings of the 5th Inter-

national Symposium on Automated Technology for Verifi-

cation and Analysis ATVA, Tokyo, Japan, October 22-25,

2007 pp. 533(9).
[18] Stolz, V., and Bodden, E., “Temporal Assertions using As-

pectJ”, Fifth Workshop on Runtime Verification Jul. 2005.”,

266

Formal Specification of Object-Oriented Systems
with Collaborative Objects and Petri Nets – A Case Study

Boleslaw Mikolajczak1,2

1Computer and Information Science Department
University of Massachusetts Dartmouth, MA 02747, USA

2Polish-Japanese School of Information Technology, Warsaw, Poland
bmikolajczak@umassd.edu

Abstract
This paper presents a case study of integration of
object-oriented design with Petri nets. Cooperating
Objects are used for Petri net modeling of the object-
oriented design. Firstly, all objects are represented by
separate Petri nets. Secondly, a coordinating Petri net is
designed to represent collaboration of objects involved.
Benefits of both methodologies and of Object-Oriented
Design and formalisms of Petri nets are used for
verification and validation purposes. ATM case study
has been used to illustrate the method presented. We
used SYROCO tool in process of rapid prototyping of
Object-Oriented systems by means of Petri nets.

1. Introduction

 The purpose of this paper is to explore the integration of
Object Oriented Design (OOD) using Petri nets (PN).
OOD techniques are well established, but they lack a
formalism and rigor. This becomes apparent when
attempts are made to verify and validate a design prior to
implementation. Extending the OO methodology to
include parallelism makes the problem worse.
 PNs provide a well understood formal method for
modeling concurrent systems. PNs do not support the
concepts of modularization, encapsulation, and
information hiding. It is highly desirable to find a way to
combine the best characteristics of these two differing
design methods. In [4], a strategic amalgamation of the
OOD with PNs has been presented. The approach
preserves results of OOD and allows verification, and
validation of the designed system using PN-based tools.
 There are several approaches to integration of OOD and
PNs. Among them are: Sibertin-Blanc [5], and Ceska et
al. [3]. The goal of this paper is to explore the integration
of OOD technique, PN’s formalisms, and methodology of
Cooperative Objects [5]. The case study chosen was that
of a bank ATM machine. This OOD is adopted from [8]
and it is not presented in the paper. We selected
SYROCO that provides technology platform to define
Cooperative Objects (COO). The COO language uses PNs

to model internal operation of objects, and provides a
mechanism to connect together the PNs of distinct
objects.
 The rest of the paper is organized as follows. In section
2 we present details of transformation from OOD to
Collaborative Objects and to respective Petri nets. This
section presents also execution of several scenarios for the
ATM machine. The paper presents only small portion of a
much larger project in technology transfer.

2. Petri Net Representation of the ATM
Object-Oriented Design

 We define first general algorithmic strategy of OOD
specification with transformations into Petri nets that is
expressed through the following macro-steps:

Step 1. For each class/object of the OOD define a
corresponding Petri nets with its Object-Control Structure
(OBCS). Classes/objects with inherent concurrency
should have this feature explicitly expressed in the PN
model.

Step 2. Using Collaboration Diagram of the OOD, create
one PN that represents formalization of coordination of all
classes/objects of the OOD by means of Petri net.

Step 3. Verify/Validate the OOD through simulation of
the PN model; this will involve execution of the PN
model with various positive and negative scenarios of
interest.

 We implemented UserInterface subsystem of the ATM,
and a skeleton of the Atm class. The following objects
were implemented as Cooperative objects: Atm,
BankCardReader, Form, Menu, SecureForm, and
UserMessage. Taking into account space limitation of the
paper we present two PN models only. Fig. 1 represents a
PN model of initialization of the Atm with a selection of
ATM operations. Fig. 2.presents a PN model of the card
validation process.

267

2.1. The Petri net model of the Atm class
 The Atm class is the root class of the system. The Atm
COO object is initialized when Atm Init operation
executed. The Atm Init() operation creates the
BankCardReader device object and initializes it. It also
initializes the Greeting object. ATM system main menu is
then initialized. The main menu is an instance of the
Menu class. Finally, a single token is deposited into place
Initial in the Atm OBCS.
 A token in place Initial (Fig. 1) enables the firing of
transition InitializeAtm. This transition invokes service
AtmInit. Completion of service AtmInit deposits a token in
place Start. A token in place Start enables transition
WaitForCustomer. This transition invokes the
InsertValidCard() service of the Greeting object, which is
of class UserMessage. Upon completion of the service
call, a Customer Identifier (cid) is returned, which
becomes the token deposited in the HaveCustomer place.
This token enables the DisplayMenu transition, which
invokes the GetChoice() service of the mainMenu object,
an instance of the Menu class. Upon completion of the
GetChoice() service, a menu selection is returned which is
deposited into place HaveSelection as a token. The menu
selection token in place HaveSelection enables one of the
five transitions connected to the place. Each transition
handles one of the functions available on the main menu
of the ATM system.
 A valid menu selection of type QUERY enables the
BalanceInquiry transition. This invokes a stub operation
in the Atm class that reports activation of the Balance
Inquiry transaction. Completion of this operation moves
the menu selection token back into the HaveCustomer
place, enabling the DisplayMenu transition as before. A
valid menu selection token of type DEPOSIT in place
HaveSelection enables the Deposit transition. This in turn
invokes a stub operation in the Atm class that reports
activation of the Deposit transaction. Completion of this
operation moves the menu selection token back into the
HaveCustomer place, enabling the DisplayMenu
transition as before. A valid menu selection token of type
TRANSFER in place HaveSelection enables the Transfer
transition. This invokes a stub operation in the Atm class
that reports activation of the Funds Transfer transaction.
Completion of this operation moves the menu selection
token back into the HaveCustomer place, enabling the
DisplayMenu transition.
 A valid menu selection token of type DONE, or an
invalid menu selection representing activation of the
CancelKey, in place HaveSelection enables the Completed
transition. This in turn invokes a stub operation in the Atm
class that reports completion of the customer session.
Completion of this operation moves the menu selection
token into the Finish place. The token in the Finish place
enables the RdyNextCustomer transition. This transition
invokes the RemoveCard() service of the Greeting object

(from the UserMessage class). Upon completion of the
RemoveCard() service, the return value is passed as a
token to the ResetATM place. The token in the ResetATM
place enables the Restart transition. This transition
invokes the LogUser() operation, which is a stub
simulating the activities performed to close out a
customer session. Upon completion of the LogUser()
operation, a token is deposited in the Start place, readying
the Atm object for another customer session. The
AtmInit() service makes a series of calls to the AddItem()
service of the MainMenu object. These calls initialize the
ATM main menu. Each call provides a text string used as
the menu label, and a menuChoice item returned when
that menu entry is selected.

2.2. The UserMessage Design
 An arbitrary number of UserMessage objects can be
instantiated at any time, each one represented by
independent PN Object Control Structure (OBCS). The
Greeting object is defined by the Atm. The object is
initialized by Init() operation that appears in the
UserMessage. Each UserMessage object requires access
to single BankCardReader object and single
DisplayScreen object of the ATM system Fig. 2).
 The Greeting object InsertValidCard() service is
invoked by transition WaitForCustomer of the Atm object.
This invocation enables transition t1 of the UserMessage
OBCS. Transition t1 deposits the service request token in
place SrvReq, and it deposits a control flow token in place
GreetingMsg. A token in place GreetingMsg enables
transition t2. When t2 fires, it calls the DisplayScreen
device, and then it invokes the Input() service of the
BankCardReader device. Transition t2 does not complete
until the BankCardReader Input() service completes,
returning a UsrResp token (Rtn) which is deposited in
place CardStatus. This token indicates whether or not a
valid bankcard has been inserted into the ATM machine
and validated by customer. A valid response token in the
CardStatus place, along with a service request token in
the SrvReq place, enables transition t3. This transition
returns the response (Rtn) to the caller that invoked the
InsertValidCard service. In the case of a valid response,
the return value contains customer identification (cid). An
invalid response token in the CardStatus place indicates
an invalid card, or a cancel request by the customer. In
this case transition t4 is enabled, which deposits a token
into the InsertWaiting place. The InsertWaiting place will
not enable transition t5 until the token has been in place
for a time delay. After that, transition t5 can fire and will
deposit the token into place GreetingMsg. This restarts
the greeting cycle again, the original request remains
pending and control does not pass back to the caller of the
InsertValidCard() service.
 The Greeting object service RemoveCard() is invoked
by the ATM object OBCS transition RdyNextCustomer.
This invocation enables transition t6 of the UserMessage

268

OBCS. Transition t6 deposits the service request token
(req) into place Srv2Req and also deposits a control token
into place RemoveRdy. The token in the RemoveRdy place
enables transition t7. Transition t7 invokes the Eject()
service of the BankCardReader device. Upon returning
from the Eject() service, a token is deposited into place
Ejected of the Greeting object. The presence of a token in
place Ejected, as well as the presence of a service request
token (req) in place Srv2Req enables the firing of
transition t8. Transition t8 creates a return parameter
(Rtn) and sets it to a valid response before returning it as a
token to the caller of the RemoveCard service.

2.2. The BankCardReader Design

 Startup of the BankCardReader Object OBCS (Fig. 2).
Only one BankCardReader object is created in the ATM
system. This occurs during initialization of the Atm
object. A pointer to this object is saved and distributed to
other classes that require access to the BankCardReader.
The BankCardReader device is initialized by the Atm
object invoking its Init() routine. The BankCardReader
Init() operation first initializes the Form object called
pinForm. This is a secure form used for entry of the
customer PIN number. Then the prompt used to obtain the
PIN is initialized. The BankCardReader object OBCS
begins running as a result of the call to the Init()
operation.
 The Input() service of the BankCardReader is invoked
by transition t2 of the Greeting object service
InsertValidCard. This call enables transition t1 of the
BankCardReader OBCS. The action of transition t1 calls
operation IsCardPresent(). This operation is a stub.
Transition t1 uses the boolean flag to fire one of two
emission rules depending on the returned value. If there is
no card present in the device, transition t1 deposits a
token in place NoCard. If there is a card present in the
device, then a token is deposited in place CardPresent. In
either case, a token req, representing the service request,
is also deposited in place SrvcReqHolding.
 The token in place CardPresent enables transition t2.
Transition t2 calls operation IsCardValid(). This
operation is a stub that simulates a hardware/software
function that determines whether or not the inserted card
is a valid ATM bankcard. If the inserted card is not valid,
transition t2 deposits a token in place InvalidCard. This
token enables transition t3, which displays an appropriate
message to the DisplayScreen device, and puts a token
into place RemoveCard. Operations following place
RemoveCard will be described later. If the inserted card is
valid, transition t2 transfers a token to place ValidCard,
which subsequently enables transition t6. Transition t6
calls operation ReadCardPin(), followed by a call to
operation ReadCardCid(). Operation ReadCardPin() is a
stub. The stub operates by asking the user to enter the PIN

number associated with the card. The response is saved in
attribute cpin of the BankCardReader object.

2.3 The Menu Design

 An arbitrary number of Menu objects may be created at
any time. Each object includes two basic functions, an
AddItem service that builds the menu by adding selectable
menu items to it, and a GetChoice service that displays
the menu in its current state, allowing selection of an
entry and returning a UsrResp item indicating the
selection. The design of the Menu COO class contains by
far the most complicated OBCS of any of the other COO
classes. The implementation included one instance of a
Menu object, the mainMenu object used by the Atm
subsystem as its main menu for a customer to choose a
transaction to be performed. The complexity of this class
demands that an overview of the design be presented prior
to describing the detailed functioning of the Petri Net
composing the OBCS. The AddItem service is used to
build the menu, adding entries to the MenuData place.
This place is the central data store that holds the essence
of the menu.
 The design approach implemented was to map the
current set of menu choices (it starts from the beginning
of the menu) from place MenuData onto the available set
of keypad keys stored in place KeyData, creating a set of
menu display items for the current page of the menu,
which are then stored in place DisplayData. This set of
display items contains additional menu choices not
present in place MenuData to specify selection of the next
menu page, or a return to the top of the menu if we are at
the last menu page. The current page of the menu is then
displayed one item at a time, constructing a set of menu
choice items, which are stored in place ChoiceData. A
keypad entry is solicited from the customer and used to
select a choice token from place ChoiceData. This item is
either returned as a menu selection, or used to generate
the next display page of the menu if it is a "next page" or
a "top of menu" selection. The handling of boundary
conditions adds to the complexity of the Menu object.
Cases in which the menu has no entries (the AddItem
service has not yet been called), there are more keys
available than menu items to be displayed, or a key is
pressed that does not correspond to a valid menu choice
must be properly handled. The Menu class design selected
allows for a menu to change (via the AddItem service)
between invocations of the GetChoice service.
 The mainMenu object is declared by the Atm object.
The mainMenu object is initialized with a call to its Init()
service. The Menu class Init() service begins by saving
the pointers to the DisplayScreen and the Keypad objects
passed to it. Then a number of attributes are initialized to
denote an empty menu. The text labels used to display the
"next page" and the "top of menu" entries are defined.
The keys available for menu selection use are defined in

269

array key_data. The KeyItem class is defined as X.
Tokens representing these key definitions are created and
put into place KeyData. The initialized contents of place
KeyData must be preserved throughout all of the menu
processing. At this point the mainMenu object OBCS
begins running, and control returns to the Atm object. The
AddItem() service is used to add menu entry items to the
menu object. Examples of AddItem() service calls for the
mainMenu object can be found in transitions InitT1
through InitT5 of the AtmInit service. Parameters of the
service call are the label, the text string used to label the
menu entry, and the choice, a menuChoice type, used to
denote the menu item selected. An invocation of the
AddItem() service enables transition t1 of the Menu
OBCS. The transition calls operation SaveItem(). This
operation creates a MenuItem from the label and choice
input parameters. A MenuItem consolidates the menu
entry text label, the return choice, the index, or position of
this menu entry within the menu, and the key that will be
assigned to this entry. Transition t1 deposits this
MenuItem as a token into place MenuData and returns
control to the caller of service AddItem(). Place
MenuData holds the essential data comprising the menu.
The contents of this place must persist uncorrupted
throughout the lifetime of the menu object.

2.4. Startup of the ATM

 The Atm object is designated as the root object of the
system. This part shows the ATM waiting for insertion of
a card into the bank card reader device. The “no” answer
given to the BankCardReader stub operation
IsCardPresent simulates the hardware device sensing the
absence of a card. After a short delay imposed by the
Greeting object the main menu greeting prompt reappears
on the display screen.
 This part demonstrates the customer canceling during
PIN entry. The ATM machine detects the presence of a
valid, readable bankcard. The bankcard reader device then
extracts the PIN number and the Customer Identification
number from the bankcard. Next the customer is
prompted to enter the PIN. The customer enters the
correct PIN, but before pressing the ENTER key, decides
to cancel by striking the CANCEL key. Note that the “x”
key as described in the design of the Keypad class
simulates the CANCEL key. As a result, the card is
ejected and the ATM machine resets for the next
customer. A valid card is inserted and the PIN and
Customer ID are read from it. The customer is prompted
to enter the PIN the first time, and it is entered
incorrectly. Notice the secure version of the Form class
echoes the PIN entry back so it is unreadable on the
display screen. An appropriate response is displayed to
the customer and he is given another opportunity to enter
the PIN. This is repeated two more times until the ATM
machine announces it is retaining the bankcard. At this

point the bank card reader device would “swallow” the
ATM card, the machine resets, and the initial greeting
message is again presented. Successful validation of the
customer makes available the customer ID for use by the
rest of the system. The customer elects to terminate the
session by selecting the completion item on the menu.
The system announces completion of the transaction,
termination of the customer session, ejection of the card
and resets with display of the main greeting message.
Notice that removal of the card in this scenario is different
than in previous scenarios. In previous scenarios the card
is never validated and so the InsertValidCard service of
the Greeting object never returns control to the Atm
object. In this scenario the Greeting object does complete
and the Atm object executes the mainMenu object. The
card removal is done by invocation of the Greeting object
RemoveCard service [transaction RdyNextCustomer in the
Atm OBCS.

3. Conclusion

 The basic concept to combine OOD with Petri Nets to
model causality and concurrency is sound. The concept is
to embed the Petri net inside the object class, using it to
model the current state of the object. It also ties together
all of the objects Petri nets into a structure that can be run
for simulation purposes. The paper demonstrates that
effective and scalable application of this concept to a
middle size OOD is practically possible.

4. References

[1]. Agha G., de Cindio F., Rozenberg G. (Eds.),
Concurrent Object-Oriented Programming and Petri
Nets, LNCS 2001, Springer, 2001.
[2]. Buchs D., and Guelfi N., A Formal Specification
Framework for Object-Oriented Distributed Systems,
IEEE Trans. on SE, Vol 26, No. 7, July 2000.
[3]. Ceska M., Janousek V., Vojnar T., PNtalk - A
Computerized Tool for Object Oriented Petri Nets
Modelling,, LNCS 1333, Springer, 1997, 591-610,
http://www.fee.vutbr.cz/~janousek/pntalk/node23.html
[4]. Mikolajczak, B., Mukhin, D., A Method of
Concurrent Object-Oriented Design Using High-Level
Petri Nets, Proc. of the Int. SMC’98 Conference, San
Diego, Oct. 1998.
[5]. Sibertin-Blanc C., Hameurlain N., Touzeau P.,
SYROCO: A C++ Implementation of Cooperative
Objects, Proc. of the Workshop Petri Nets and Object-
Oriented Models of Concurrency, Turin, June 1995.
[6]. http://www.univ-tlse1.fr/ceriss/COOgene.html
[7]. http://www.daimi.au.dk/~petrinet/tools/
[8]. Wirfs-Brock R., Wilkerson B., and Wiener L.,
Designing Object-Oriented Software, Prentice-Hall, 1990.

270

 Fig. 1. Petri net model of the root Atm OBCS.

271

 Fig. 2. Petri net model of the Input service.

272

A Property Specification Tool for Generating Formal Specifications: Prospec 2.0
Irbis Gallegos1, Omar Ochoa1, Ann Gates2, Steve Roach2, Salamah Salamah3, Corina Vela1

1,2 Department of Computer Science, The University of Texas at El Paso, El Paso, TX 79968, USA
3 Department of Computer and Software Engineering, Embry Riddle Aeronautical University, Daytona

Beach, FL 32114, USA
1{irbisg, omar, cyvela}@miners.utep.edu, 2{agates, sroach}@utep.edu, 3salamahs@erau.edu

Abstract

Numerous formal approaches to software assurance
are available, including: runtime monitoring, model
checking, and theorem proving. All of these approaches
require formal specifications of behavioral properties to
verify a software system. Creation of formal specifications
is difficult, and previously, there has been inadequate tool
support for this task. The Property Specification tool,
Prospec, was developed to assist users in the creation of
formal specifications. This paper describes Prospec 2.0,
an improvement to the previous version, by addressing
the results of a study conducted to assess the usability of
the tool and by adding functionality that supports the
validation process.

1. Introduction
Formal methods to support software assurance require

the identification of behavioral properties of the software
system, generation of formal specifications for the
properties, validation of the specifications, and
verification of the correctness of the system. The
effectiveness of the assurance approach depends on the
quality of the formal specifications, and a significant
hurdle to the use of formal approaches is the development
of correct formal specifications.

Typically, the person creating the formal specification
must have a strong mathematical background and be
aware of the subtleties of the specification language. For
example, model checkers, such as SPIN [1] and NuSMV
[2] use formal specifications written in Linear Temporal
Logic (LTL) [3], which can be difficult to read, write, and
validate. This problem is compounded if requirements
must be specified in more than one formal language,
which frequently is the case if more than one verification
tool is used. The specifier must be aware of the
differences in expressiveness of each of the target
languages.

The Property Specification (Prospec) 1.0 tool was
developed to address some of these challenges. Prospec
uses the Specification Pattern System (SPS) [4] and
Composite Propositions (CP) [5] to assist developers in
the elicitation and specification of system properties.

Usability studies of Prospec have shown that it
facilitates the elicitation, understanding, and specification
of formal properties [6].

This paper describes Prospec 2.0. In particular, it
describes the new features in Prospec that are aimed at
improving the tool’s support for generating and validating
formal property specifications.

2. Background

The Specification Pattern System (SPS) [4] is a set of
patterns used to assist in the formal specification of
properties for finite-state verification tools. SPS patterns
are high-level abstractions providing descriptions of
common properties that hold on a sequence of conditions
or events in a finite state model. SPS patterns characterize
two behavioral aspects: the occurrence and the order of
events or conditions.

Occurrence patterns are universality, absence,
existence, and bounded existence. Order patterns are
precedence, response, chain of precedence and chain of
response. In SPS, a chain pattern defines a sequence of
events or conditions. Chain-precedence and chain-
response patterns permit specifying a sequence of events
or conditions as a parameter of precedence or response
patterns, respectively. SPS restricts the specification of
sequences to precedence and response patterns.

In SPS, a pattern is bounded by the scope of
computation over which the pattern applies. The
beginning and end of the scope are specified by the
conditions or events that define the left (L) and right (R)
boundaries, respectively.

A study by Dwyer et. al. [4] identified the response
pattern as the most commonly used pattern, followed by
the universality and absence patterns. These three patterns
accounted for 80% of the 580 properties sampled in the
study. Because of the frequency with which response
properties occur, it is important to provide abstractions
that support multiple propositions when specifying
sequence of events or concurrent behavior. Because
multiple propositions may occur in the cause and effect
part of response properties, CPs can be used to assist in
their specification and validation. By using CPs in either
part of the response pattern (the cause or effect), it is
possible to represent common behavior associated with

273

concurrent systems, such as synchronized join and fork,
concurrency, non-determinism, and sequences.

Mondragon et al. [5] introduced Composite
Propositions (CPs) to handle pattern and scope parameters
that represent multiple conditions or events. The
introduction of CPs supports the specification of
concurrency, sequences, and non-consecutive sequential
behavior on patterns and scope. Mondragon proposes a
taxonomy with twelve classes of CPs. In this taxonomy,
each class defines a detailed structure for either
concurrent or sequential behavior based on the types of
relations that exist among a set of propositions.

The original version of Prospec is an automated tool
that guides a user in the development of formal
specifications. It includes patterns and scopes, and it uses
decision trees to assist users in the selection of
appropriate patterns and scopes for a given property.
Prospec 1.0 extends the capability of SPS by supporting
the specification of CP classes for each parameter of a
pattern or scope that is comprised of multiple conditions
or events. The use of CP classes allows practitioners using
Prospec to specify ordered sequences, non-deterministic
sequences, and concurrency. By using CPs, a practitioner
is directed to clarify requirements, which leads to reduced
ambiguity and incompleteness of property specifications.

Prospec uses guided questions to distinguish the types
of scope or relations among multiple conditions or events.
By answering a series of questions, the practitioner is lead
to consider different aspects of the property. A type of
scope or CP class is identified at the end of guidance.
Prospec generates formal specifications in Future Interval
Logic (FIL) [7] and the Meta-Event Definition Language
(MEDL) [8].

3. PROSPEC 2.0

3.1 Prospec Revisions

 A formal experiment evaluated the effects that the
original Prospec and SPS have over the quality of the
generated software property specifications with respect to
completeness and correctness [17]. SPS supports the
creation of specifications through a web site and manual
substitution of propositions into templates. The following
research hypothesis was supported: users who specify
software properties using Prospec, identify, on the
average, more correct patterns and scopes than users
who specify software properties using the SPS web site.
The subjects also provided comments for Prospec in the
post-evaluation form. They suggested that Prospec:
� provide the capability to access all the properties

defined in a given project;
� allow the capability to apply the negation

operator to propositions;
� indicate the properties that contain a recorded

assumption; and

� modify the physical position and labels for
parameters S and P in the response and
precedence patterns in the pattern screen.

 These and other observations made when using Prospec
motivated the creation of Prospec 2.0. The revised tool
includes changes to the user interface and, more
significantly, the tool is being revised to generate LTL
specifications with support for validation of the
specifications. To provide the ability to export properties
into other software tools, Prospec 2.0 uses XML.

3.2 Linear Temporal Logic Generation

 Salamah et. al. [9, 16] showed that direct substitution of
one or more parameters for a pattern or scope that
includes CPs may result in a specification that does not
meet the intent of the user. Consider the following
example: “The delete button is enabled in the main
window only if the user is logged in as administrator and
the main window is invoked by selecting it from the
Admin menu.” The property could be classified
Existence(P) with Before R scope, and P is a classified as
Eventualc(p1,p2)*1 where p1 denotes “User logged in as an
administrator,” p2 denotes “Main window is invoked,”
and R denotes “Delete Button is enabled. The SPS
template for Existence(P) Before R is (R) �(!R U (P �
!R)) and the formula for EventualC is (p1 � X (!p2 U p2)).
Direct substitution would yield:

 R � (!R U (!R � (p1 � X (!p2 U p2)))).

 This, however, would permit the delete button to be
enabled between the time that the administrator logs in
and the administrator invokes the main window.
 To address this, Salamah [16] introduced general
templates to support the generation of LTL formulas that
use CPs. For example, consider the Response (P, Q)
pattern with Global scope in which P and Q are
ConsecutiveC(p1, p2)*, i.e., (p1 � X (p2)) and ParallelC (q1,
q2)*, i.e., (q1 � q2). The general template for the
“Response- Global scope” is:

� (PLTL � (PLTL &l QLTL)),

where PLTL and QLTL represent LTL formulas for the CP
class and &l is a special operator that ensures that � QLTL
is “anded” only with the last element of the sequence
represented by PLTL [9, 16]. As a result the formula
becomes:

� ((p1 � X (p2)) � (p1 � X (p2 � (� (q1 � q2))))).

* The complete list of CP classes and their LTL descriptions is

available in Mondragon et. al., [5].

274

 In the previous example for enabling the delete button,
the general template for the Existence(P) with Before R
scope example described earlier is: !((!(PLTL &r !RLTL)) U
RLTL), where &r is a special operator that denotes that
!RLTL holds at all the states within the sequence
represented by PLTL [9, 16]. As a result, the correct
formula is:

!((!(((p1 & !R) & X((!p2 & !R)U (p2 & !R))))) U R)

 To support validation of generated formulas, each
general formula has associated traces of computations that
represent behaviors that are accepted or not accepted by
the LTL formula being tested. The traces of computation
can be used to test the formulas using a model checker
[16, 20]. In addition to supporting the process of testing
the LTL formulas, these templates provide visual
representations to aid the user in understanding the
meaning of the complex LTL formulas that are generated,
helping those users who are not immersed in formal
representations.
 Salamah [15] used multiple techniques to verify the
correctness of the general formulas: formal proofs,
testing, and reviews. In order to support the formal proofs,
the work included formal definitions of patterns and
scopes that use CPs. This supports the ability to define
similar properties in other specification languages.
 A secondary effort in Salamah’s work involved
modifying the original LTL formulas provided by Prospec
for patterns and scopes whose parameters contained only
single propositions and CP. The approach to simplify the
formulas was to reduce the number of states in the Büchi
automaton (BA) generated from an LTL formula. The
size (number of states) of the automaton that results from
the intersection of the BA generated by the LTL formula
and that of the system model has as its upper bound the
product of the number of states in each of the two. Work
has been done by other researchers on the translation of
LTL to BA to reduce the number of states in the resulting
BA and to speed up the process of the BA generation [12,
13, 14]. It was possible to reduce the number of temporal
operators, and as a result improve the efficiency of 17 out
of 30 the formulas defined by Prospec [21].

3.3 Interface

 Prospec 2.0 includes new features to support the
specification of properties. The interface maintains the
support and functionality of the original Prospec, i.e., the
guiding screens for selecting scope and patterns remain
the same. The main changes to the interface are related
primarily to CP specifications and information
presentation.
 Figure 1. presents the main screen for Prospec 2.0. To
the left in the main screen the Property Browsing Tree is
shown. The larger frame on the right encloses screens (as

opposed to the original implementation in which
individual screens were distributed over the available
screen space). The larger frame provides practitioners
with a separate context for each property. The enclosing
frame enables concurrent property specification as well as
easy transition between these property specifications.
 Since Prospec 2.0 supports concurrent property
specifications, a Property Browsing Tree is available for
accessing properties. The Property Browsing Tree allows
practitioners to browse, traverse and quickly preview
properties being specified. Also, the Property Browsing
Tree allows editing of properties attributes such as scope,
pattern, CPs, and propositions, as shown in Figure 1.
Once a user selects a property attribute in the tree, the
appropriate window will be opened allowing modification
of the property attribute.
 Another interface improvement is the Visual
Representation window. This window will provide a
visual representation of the specified property as a trace
of computation that shows the scope and the specified
property pattern. The visual representation in conjunction
with the written description will be the base for the
validation capabilities of Prospec 2.0.

Figure 1. Prospec 2.0 Main Window

 The Property window describes the basic property
information such as the property name, the informal
property description as provided by the client and any
assumptions made about the property, as shown in Figure.
2 and Figure 3. Properties can be created by clicking on
the New button, removed by clicking on the Delete button
and stored into the viewing table by clicking on the Save
button. Different Properties can be browsed and viewed
by selecting them from the table of propositions. The
scope section includes the scope type, assumptions made
about the scope, and the left and right propositions. CP
attributes include a Type to differentiate between events
and conditions, a CompositeProp to identify the desired
CP, and a PropositionList including the simple
propositions to be used in the CPs. A proposition is
described by a symbol and a description.

275

Figure 2. Prospec 2.0 Property Specification Window

Upper Section

 A new feature in Prospec 2.0 is a window that allows
the user to view a summary of the property being
specified. The window shows the current state of the
specification and the formal specification if defined. This
window is embedded into the Property window, as shown
in Figure 3.

Figure 3. Prospec 2.0 Property Specification Window

Lower Section

 Prospec 2.0 allows users to create, save, and print
reports of the specifications. The reports are created either
directly from the Prospec 2.0 application or from the
XML files containing the metadata of the property
specifications. The reports include the informal
specification as provided in the description section of
Prospec 2.0, the formal specification as generated by
Prospec 2.0, information to construct the visual
representation matching the generated formal
specification, and the corresponding metadata such as
logic used or version number.

4. Scenario

 The following scenario illustrates the use of Prospec.
Jill is a software engineer working on security issues in
web services. She recognizes that the system must support
the following requirement: “A message recipient shall
reject messages containing invalid signatures, messages
missing necessary claims, or messages whose claims have
unacceptable values [18].” Since the project team will use
a model checker to verify the algorithms, she needs an
LTL specification.
 Jill starts Prospec and creates the new property project
SOAP Message Security and selects LTL as the logic to be
used for the formal specification. She accesses the
property browsing tree and double-clicks the property

description attribute to open the property description
screen. Using this screen, she names the property
Message Recipient Protocol and provides the informal
description.
 Now Jill must identify the scope, the region of the
program over which the property must hold. She accesses
the property browsing tree and double-clicks the scope
attribute to open the scope specification screen, which
displays English descriptions of the five available scopes.
After using the decision tree in the Guided Selection
screen, Jill selects Global as the property scope as shown
in Figure 4. Properties with Global scope must hold over
all states of execution.

Figure 4. Section of Prospec 2.0 Scope Window

 After identifying the scope, Jill selects a pattern.
Selecting the pattern attribute of the property browsing
tree opens the pattern specification screen. The five
available patterns are described there, and Jill decides to
use the Response (T,P) pattern as shown in Figure 5. In
this pattern, the conditions or events described by T are a
response to the conditions or events described by P. The
letters T and P represent a proposition and a composite
proposition (CPs), respectively. This choice is appropriate
since Jill wants to ensure that there is a rejection
whenever an unacceptable message is received. Prospec
offers guided selection to assist a user in the selection of
an appropriate pattern.

Figure 5. Section of Prospec 2.0 Pattern Window

276

 Once the pattern has been selected, Jill defines T and P.
To define P, Jill creates the simple propositions
invalid_sign (Message contains invalid signatures),
miss_claims (Messages are missing necessary claims),
and unacceptable_value (Messages have claims with
unacceptable values). Because P is defined by three
propositions, Prospec displays a message indicating that a
CP must be defined. Once the CP screen is accessed as
shown in Figure 6, Jill determines that the three simple
propositions are conditions (propositions that hold in one
or more consecutive states) and should be combined using
AtLeastOneC (G) to indicate that at least one of the
propositions in the set G can trigger the condition. A
decision tree in the Guided Selection screen for CPs can
be used to determine which CP to use. To define the T
parameter, Jill creates a new proposition reject (Message
is rejected), indicating that the message recipient rejects
the incoming message. This completes the pattern
definition.

Figure 6. Prospec 2.0 Scope Window

 To create the LTL formula from the scope and pattern,
Jill selects the view formula button on Prospec’s main
screen. Prospec takes the scope, pattern, and CP and
generates the LTL formula:

�((invalid_sign | miss_claim | unacceptable_ value) �

reject)

 This formula specifies that during the execution of the
program, whenever an unacceptable message is received
by a message recipient, a rejection follows. In addition to
the LTL formula, a set of sample execution traces is
presented showing possible sequences of execution and
the value of the formula for each sequence. Jill reviews
these execution traces to ensure that the formula captures
her intent.
 An execution trace is a sequence of states read from left
to right. Each space represents the propositions that are

true in that state. If no proposition is true, a “-“ is used. If
more than one proposition is true, the propositions are
enclosed in parentheses. Some of the execution traces for
the SOAP Message Security property are shown in Table
1. For this example, symbol I stands for proposition
invalid_sign, symbol M for proposition miss_claim,
symbol U for proposition unacceptable_value, and
symbol R for proposition reject.

Trace of Computation Result
--I---R--- Satisfied

--RU------ Unsatisfied

U---M----- Unsatisfied

(IM)--------R Satisfied

Table 1. SOAP Message Security Property Execution Traces
Examples

5. RELATED WORK

 This section describes other tools used also for the
elicitation and formal specification processes and how
these efforts differ from Prospec 2.0.

5.1 Propel

 The goal of Propel [10] is to help practitioners write
and understand properties by providing templates that
explicitly capture details as options for commonly-
occurring property patterns based on SPS. The provided
templates are represented using both disciplined natural
language (DNL) and finite-state automata (FSA). The
practitioner can view both representations simultaneously
and select from which representation to elucidate the
desired property.
 The main difference between Prospec 2.0 and Propel is
that Prospec 2.0 uses guided questions to distinguish the
types of scope or relations among multiple conditions or
events while Propel uses DNL. Also the pattern visual
representations differ between the efforts, in Prospec 2.0
timelines are used while in Propel FSA are used.

5.2 Timeline Editor

 Timeline Editor [11] allows the formalization of certain
type of requirements. To formalize these requirements a
series of events and required system responses are placed
on a timeline. The tool converts the timeline specification
automatically into a test automaton. The timeline
specification can then be used directly by a logic model
checker or a test-sequence generator.
 As opposed to Prospec 2.0, Timeline Editor cannot
capture group of events occurring in arbitrary order nor
provide visual feedback for validation purposes. Prospec
2.0 allows practitioners to specify group of events

277

occurring in arbitrary order by using CPs and SPS. Also,
the traces of computation generated by Prospec 2.0 allow
practitioners to validate that the specified properties
match the practitioner’s intent.

5.3 SPIDER

 SPIDER [19] generates specification properties using
natural language representations. This process is based on
a natural language grammar and specification pattern
system to derive a natural language sentence. This
sentence is then mapped to the temporal logic that can be
analyzed formally by a tool such as SPIN. The structured
language grammar supports translations of untimed and
timed properties to multiple temporal logics.
 There are three main differences between Prospec 2.0
and SPIDER. Prospec 2.0 offers support for composite
propositions, guided selection in the specification process,
and property validation using traces of computations.

6. CONCLUSIONS

 In this paper, we describe Prospec 2.0, an improvement
to the property specification tool Prospec 1.0. We discuss
the new features of Prospec 2.0 and describe how these
changes enable practitioners to use Prospec 2.0 as both as
an automated formal property specification tool and as an
automated formal property specification validation tool.
The use of XML in Prospec 2.0 and its ability to be
interoperable, it will be possible now to integrate the
Prospec into the chain of tools that could provide the
desired end-to-end automation for all aspects of software
development.

7. ACKNOWLEDGMENTS

The authors would like to thank Milos Janek and Roberto
Nevarez for their work towards this project. This work is
partially supported through the CREST Cyber-ShARE
Center funded by NSF grant number HRD-0734825.

8. REFERENCES

[1] G. J. Holzmann, “The model checker SPIN.” IEEE Trans. on
Softw. Eng., 23(5):279--295, May 1997.

[2] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a
new symbolic model verifier”. In Proceeding of International
Conference on Computer-Aided Verification (CAV'99). Trento,
Italy, July 1999.

[3] Emerson, E., “A temporal and modal logic.” In Handbook of
theoretical Computer Science (Vol. B): Formal Models and
Semantics, J. van Leeuwen, Ed. MIT Press, Cambridge, MA. 1990.
995-1072.

[4] Dwyer, M. B., Avrunin, G. S., and J. C. Corbett, “Property
specification patterns for finite-state verification.” In Proceedings
of the Second Workshop on Formal Methods in Software Practice
(Clearwater Beach, Florida, United States, March 04 - 05, 1998).
FMSP '98. ACM Press, New York, NY, 7-15.

[5] Mondragon, O., Gates, A., and S. Roach, “Composite propositions:
toward support for formal specification of system properties,”
Proceedings of the 27th Annual IEEE/NASA Goddard Software
Engineering Workshop. Greenbelt, MD, USA, December 2002.

[6] Gates, A. Q., Mondragon O., and F. Kassem, “Automated Support
for Property Specification Based on Patterns.” In Proceedings of
the 15th International Conference on Software Engineering and
Knowledge Engineering, July 2003, pp. 174-181.

[7] Kutty, G., Moser, L. E., Melliar-Smith, P. M., Dillon, L. K., and Y.
S. Ramakrishna, “First-Order Future Interval Logic.” In
Proceedings of the First international Conference on Temporal
Logic (July 11 - 14, 1994).

[8] Kim M., Kannan S., Lee I., and O. Sokolsky, “Java-MaC: A run-
time assurance tool for Java.” In Proceedings 1st International
Workshop on Run-time Verification. 2001.

[9] Salamah S., Gates A. Q., Kreinovich V., and S. Roach,
“Verification of automatically generated pattern-based LTL
specifications.” In the Proceedings of the 10th IEEE International
Symposium on High Assurance Systems Engineering,Dallas, TX,
November, 2007.

[10] Smith, R.L., Avrunin, G.S., Clarke, L.A., and L.J. Osterweil,
“PROPEL: an approach supporting property elucidation.” In
Proceedings of the 24rd International Conference on Software
Engineering. 2002, pp. 11-21.

[11] Smith, M. H., Holzmann, G. J., and K. Etessami, “Events and
constraints: a graphical editor for capturing logic requirements of
programs.” In Proceedings of the 5th IEEE international
Symposium on Requirements Engineering (August 27 - 31, 2001).
IEEE Computer Society, Washington, DC, 14-23.

[12] Oddoux, D., and P. Gastin, “Fast LTL to Büchi Automata
translation,” 13th International Conference on Computer Aided
Verification, CAV, Jul. 2001.

[13] Etessami, K., and G. Holzmann, “Optimizing Büchi Automata,''
Proceedings of 11th International Conference on Concurrency
Theory, 2000.

[14] Fritz, C., “Constructing Büchi Automata from Linear Temporal
Logic using simulation relations for alternating Buchi Automata,''
Eighth Conference on Implementation and Application of
Automata, 2003.

[15] Salamah, I. S., “Defining LTL formulas for complex pattern-based
software properties,” University of Texas at El Paso, Department
of Computer Science, PhD Dissertation, May 2007.

[16] Salamah, S., Gates, A., Roach, S., and O. Mondragon, “Verifying
pattern-generated LTL formulas: a case study.” 12th International
SPIN Workshop, Aug. 2005.

[17] Modragon, O., “Elucidation and Specification of Software
Properties through Patterns and Composite Propositions to Support
Formal Verification Techniques,” Ph. D. Dissertation, Computer
Science Department, University of Texas at El Paso, May 2004.

[18] Organization for the Advancement of Structured Information
Standards. Web Services Security: SOAP Message Security 1.1
(WS-Security 2004). OASIS Standard Specification. February
2006.

[19] Konrad, S., and B. H.C. Cheng, “Facilitating the Construction of
Specification Pattern-based Properties,” In Proceedings of the
IEEE International Requirements Engineering Conference (RE05),
August 2005.

[20] Salamah, S. and Gates, A., "A Technique for Using Model
Checkers to Teach Formal Specifications" to appear Proceedings
of the Conference of Software Engineering Education and
Training, Charleston, South Carolina, April 2008.

[21] Salamah S., Gates, A., and S. Roach “Improving Pattern Based
LTL Formulas for Model Checking” to appear in the Proceedings
of the 5th IEEE International Conference on Information
Technology (ITNG), Las Vegas, NV, April 2008.

278

On the Rarity of Fault-prone Modules in

Knowledge-based Software Quality Modeling

Taghi M. Khoshgoftaar
Computer Science and Engineering

Florida Atlantic University

777 Glades Rd., Boca Raton, FL 33431

Email: taghi@cse.fau.edu

Naeem Seliya
Computer and Information Science

University of Michigan – Dearborn

4901 Evergreen Rd., Dearborn, MI 48128

Email: nseliya@umich.edu

Dennis J. Drown
Computer Science and Engineering

Florida Atlantic University

777 Glades Rd., Boca Raton, FL 33431

Email: ddrown@fau.edu

Abstract—A large imbalance between proportions of the not-fault-
prone and fault-prone program modules in a software measurement
dataset has an adverse impact on the trained software quality model. This
rarity of known fault-prone modules during software quality modeling
is a common occurrence, especially in high assurance systems. Such
disparity in proportions of the two classes is observed in other domains
as well. We present an evolutionary computing-based data sampling
approach to address class imbalance in binary classification problems.
The approach, named Evolutionary Sampling, works by “naturally”
selecting the good instances in the training data and removing those
that are redundant, irrelevant, or impart no additional knowledge. We
compare our majority undersampling technique with the other existing
majority undersampling techniques, i.e. random undersampling, Wilson’s
editing, and one-sided selection. Our approach can also be combined
with a genetic algorithm-based optimization of a classifier’s modeling
parameters. The multilayer perceptron neural network is used in this
study as the underlying software quality model. Case studies of two
real-world software measurement datasets are used for evaluating our
genetic algorithm-based data sampling approach with the other majority
undersampling techniques. It is shown that Evolutionary Sampling is
significant in outperforming the other data sampling techniques, and
shows a clear improvement over the software quality model built without
any data sampling.

I. INTRODUCTION

Knowledge-based software quality modeling often involves learn-

ing from a training dataset that consists of a very large number

of high-quality (or not-fault-prone) program modules and a very

small number of low-quality (or fault-prone) program modules. Often

seen in high-assurance systems [1], [2], [3], this rarity of known

fault-prone modules poses a unique class imbalance that impedes

the training of a useful software quality estimation model. The

class imbalance problem is also observed in other domains, such

as diagnosis of rare medical conditions [4], detecting oil spills from

satellite images [5] and detection of computer security breaches [6].

A software quality classification model is typically built using

known software measurement and defect data from a prior system

release or a similar software project developed previously. The given

classification algorithm aims to extract and learn associations between

the different software metrics and the defect data for the training

dataset. The validated model is then ready to predict the unknown

quality-based class for a program module with known software

metrics.

Given a binary classification problem such as predicting program

modules as either fault-prone (fp) or not-fault-prone (nfp), a training

dataset that suffers from class imbalance can be divided into a

majority class (not-fault-prone) and a minority class (fault-prone). A

classifier trained on such a skewed dataset is more likely to predict

a new instance as belonging to the majority class since it was over-

represented during the training process. Such a model is clearly not

useful, since the more important minority class (fault-prone modules)

will go undetected more often. The definition of what is considered

as a fp or nfp program module is dependent on the software project

and its quality improvement objectives.

We present a novel and effective genetic algorithm-based approach

for sampling a training dataset suffering from class imbalance such

that instances from the majority class are intelligently removed. The

resulting training dataset is relatively more balanced than the original

since the minority class size remains unchanged. A data sampling

technique that reduces the majority class size, while maintaining

the minority class is termed majority undersampling. In contrast,

a data sampling technique that increases the minority class size,

while maintaining the majority class is termed minority oversampling.

Developed as a research prototype, evANN implements the proposed

Evolutionary Sampling (EVS) approach and also facilitates a GA-

based optimization of the underlying learner’s modeling parameters.

evANN is extensible to almost any existing binary classifier.

This paper compares EVS with every other existing majority

undersampling techniques that address class imbalance in machine

learning problems. Those techniques include random undersam-

pling [7], Wilson’s editing [8], and one-sided selection [9]. The other

category of data sampling techniques (i.e., minority oversampling)

that address class imbalance are not considered for comparison in

this paper due to space limitations; however, they are compared with

EVS elsewhere [10].

The EVS data sampling approach is presented and evaluated with

case studies of two real-world software measurement datasets. In the

case of both case study datasets, the minority class instances (i.e.,

nfp modules) are less than 10% of the total number of instances in

the given training dataset. The same software project data are also

used in the comparison of EVS with the three other majority under-

sampling techniques. The Multilayer Perceptron, as implemented in

WEKA [11], is the learner used to build software quality models in

this study.

We empirically demonstrate that EVS improves classifier perfor-

mance compared to software quality modeling without applying any

data sampling technique. In addition, it is shown that EVS performs

significantly better than all other majority undersampling techniques,

i.e., EVS is better than random undersampling, Wilson’s editing, and

one-sided selection for the case studies presented.

The contributions of this paper include: (1) presenting Evolutionary

Sampling, a novel GA-based data sampling technique for addressing

class imbalance, (2) a computationally intensive empirical study

that compares the proposed data sampling approach with other

existing majority undersampling techniques, and (3) application of

data sampling techniques for addressing rarity of fault-prone modules

in knowledge-based software quality estimation modeling.

The remainder of the paper is structured as follows: Section II

279

summarizes the other three majority undersampling techniques that

are compared with EVS; Section III discusses the default parameter

settings for the Multilayer Perceptron learner and performance met-

rics used for evaluating the software quality classification models;

Section IV details the proposed data sampling approach along with

relevant GA background; Section V describes the case studies, and

discusses the empirical results; Section VI concludes our paper with

key research findings and suggestions for future work.

II. OTHER MAJORITY UNDERSAMPLING TECHNIQUES

The three other majority undersampling techniques we examine

include random undersampling, Wilson’s editing, and one-sided se-

lection. Random undersampling (RUS) is an effective, yet simple,

technique in which a portion of the majority class instances are

removed at random from the training data. Weiss et al. [7] report

an equal balance between the majority and minority classes is often

desirable, but that the optimal ratio between the two groups will vary

with different datasets and domains.

Wilson’s editing (WLE) strives to remove noisy instances of the

majority class based on a k-nearest-neighbor (k-NN, with k = 3)

algorithm that classifies each instance in the training dataset using

the remaining instances [8], [12]. The training dataset is reduced

by removing instances that were incorrectly classified by the 3-

NN algorithm. An alternate version of WLE incorporates a weight

factor, based on the class distribution, that is taken into account when

computing the distance between instances. This weighting results in

some bias toward identification of the minority class instances.

One-sided selection (OSS) aims to remove both noisy and redun-

dant instances of the majority class from the training dataset [9].

Initially the redundant instances are removed by creating a consistent

subset of the original training dataset that will correctly classify

all of the training data using a one-nearest-neighbor (1-NN) rule.

Incorrectly classified instances and borderline instances which lie

close to the boundary between the two classes in the feature space

are removed using Tomek links [13]. A Tomek link exists between

a positive (minority class) and a negative (majority class) instance if

the two instances are nearest neighbors of each another.

III. SELECTED LEARNER AND PERFORMANCE METRICS

The learner we use in conjunction with the different data sampling

techniques in this study is the Multilayer Perceptron (MLP). We

use WEKA’s [11] implementation of the MLP learner with (unless

stated otherwise) the following default parameter settings: a learning

rate of 0.3 with no decay; a momentum rate of 0.2; 500 training

epochs/iterations, validation set at 10% of original dataset; an error

threshold of 20 for the validation set; a random number generator

seed of 0; and 3 nodes in one hidden layer.

In a two-group (positive and negative) classification problem, if the

positive group represents the minority class and the negative group

represents the majority class, then a false positive indicates an error in

which a majority class instance is incorrectly classified as belonging

to the minority class [7], [14]. A false negative indicates an error in

which a minority class instance is incorrectly classified as belonging

to the majority class. A true positive and true negative would

respectively represent correct classification of a minority instance

and a majority instance. Evaluating competing models with multiple

metrics simultaneously may be difficult when there is no clear winner.

We use singular metrics that are well-known performance metrics in

data mining and machine learning – Area-Under the ROC Curve,

Geometric Mean, and F-measure [11].

An ROC (Receiver Operating Characteristic) curve is a visual

representation of a classifier’s performance in which the model’s

true positive rate (y-axis) is plotted against its false positive rate

(x-axis) [15]. A desirable ROC curve is one that maximizes the

Area-Under the ROC Curve (AUC). Since an ROC curve does not

show bias toward the majority class, the AUC value serves as a good

singular performance metric when dealing with class imbalance. The

AUC provides a rating for the classifier’s general predictive ability

regardless of class prior probabilities and misclassification costs [16].

The Geometric Mean (GMean) provides a singular measure for

evaluating classifier performance compared to using multiple classifi-

cation error rates or classification accuracies. The GMean is computed

as
√

(true positive rate) · (true negative rate). Kubat et al. [9]

suggest the geometric mean as a good performance metric for

classification problems involving class imbalance. A higher GMean

indicates that a classifier is balanced and shows good performance

for both classes. We use the AUC and GMean performance measures

in the fitness function for our Evolutionary Sampling process, as

explained in Section IV-B. The AUC and GMean are also computed

as model evaluation metrics.

The F-Measure (F-Meas) is based on two information retrieval

metrics, Recall (or effectiveness) and Precision (or efficiency), where

Recall is the true positive rate and Precision is the ratio of the true

positive rate and the sum of the true positive rate and the false positive

rate. When Recall and Precision are given equal importance, the F-

measure is computed as 2×Recall×Precision
Recall+Precision

. The fitness function

of our Evolutionary Sampling approach does not include the F-

measure, which is instead used as an independent performance metric

to evaluate the classifiers.

IV. GA-BASED DATA SAMPLING

A. Genetic Algorithms

GAs perform optimization, simulating natural evolution by creating

offspring as a result of mating of the fitter individuals [17]. Each indi-

vidual is a solution to the problem being addressed. This evolutionary

process continues until some stopping criterion (e.g., achieved fitness

level or number of generations processed) is reached and the fittest

individual is chosen and will hopefully have a near-optimal solution

encoded in its genes [18]. The genes are the parameters of a solution,

i.e. an individual. During the simulated evolution, various genetic

operators (e.g., crossover, mutation, etc.) may be used to mimic the

mating process among fitter individuals.

The crossover (or recombination) genetic operator simulates the

process of natural mating by creating offspring that contain genetic

material from both parents. To create the chromosomes in the

children, we set a randomly determined locus, or crossover point

in the parents’ chromosomes. The first child receives a copy of the

first parent’s genes up to the crossover point and the second parent’s

genes after that point. The other child receives the second parent’s

genes to the left of the locus, and the first parent’s genes to the right.

The above crossover is a single-point crossover, and is used in our

study. The other crossover types used in the literature, multi-point

crossover and uniform crossover [19], are not used in our study.

The mutation genetic operator plays a key role in the exploration

of the search space as it actually alters the gene alleles to new values

instead of simply recombining the gene alleles which already exist

in the population. When an individual’s chromosome consists of a

binary string, the mutation operator may invert the bit value for a

randomly selected gene. In a more complex chromosome that encodes

integer or real values, creep mutation can be used to add or subtract

a random amount from the gene, but within specified bounds. We

280

use a method proposed by Tate [20] which creates mutated clones of

individuals independently of the crossover genetic operator.

A natural selection process is needed to determine which indi-

viduals in the population have better fitness. The best chromosome

selector orders the individuals in the population by fitness and selects

the fittest to remain for the next generation. The best chromosome

selector can lead to an early convergence which may represent a

local-minimum and not the optimal solution [21]. We use the best

chromosome selector as a preprocessing stage for the crossover and

mutation operators with the aim of preventing a poor individual from

being selected for crossover and mutation.

Ranking selection orders the individuals by fitness at the beginning

of the selection process, and only considers an individual’s goodness

ranking relative to other individuals, regardless of their actual fitness

magnitudes. Generally, tournament selection is preferred over roulette

wheel selection [18]. In tournament selection, a set number of

individuals (tournament size) are randomly selected to participate in

the tournament. We select four individuals for tournament selection,

as explained in the next section. Once the individuals are picked, the

system ranks them according to their fitness and then plays out as a

tiny roulette wheel. The fitter the individual in the tournament, the

greater its chance of being selected. The winner of the tournament

survives to become part of the next generation. The system conducts

as many tournaments as needed to obtain the desired population

size. We use tournament selection at the end of each generation to

provide a way to return the population to its desired size for the next

generation.

B. Evolutionary Sampling

evANN is a GA-based data mining application developed for our

research on addressing class imbalance. Written in Java, this tool

currently includes three machine learners, Multilayer Perceptrons,

C4.5 and RIPPER, and is based on the WEKA framework [11]. While

evANN can be extended to include Evolutionary Sampling (EVS)

with other machine learners, in this study we focus on Multilayer

Perceptrons (MLP). evANN also implements a GA-based solution for

optimizing modeling parameters of the machine learner, i.e., the MLP

architecture in our case. EVS is a majority undersampling technique

that works to reduce the number of majority class instances used to

train a classifier. This philosophy reflects the relatively very large

proportion of the majority class (nfp) instances as compared to the

minority class (fp) instances.

We utilize the basic gene types provided in the Java Genetic Algo-

rithms Package (JGAP) library [22] which evANN uses as its GA en-

gine. In JGAP, each of the genes (BooleanGene, IntegerGene,

and DoubleGene) is an individual object and the set of genes for

an individual is contained in a Chromosome object. The genes are

considered basic units in the chromosome for purposes of crossover

and mutation, and we can set maximum and minimum values for each

gene. The chromosome of an individual in evANN contains information

on how to sample the dataset and how to optimize the learner when

building the classifier. We use GA to find an optimal sample of the

majority classes used in the fold’s training portion of the dataset –

five-fold cross-validation is used in our study.

We define two basic chromosome parts (see Table I) for an

individual in a GA-based experiment using evANN. Part A contains the

genes needed to tune a machine learner’s modeling parameters, and

Part B contains the genes used to perform evolutionary data sampling.

Both parts of the chromosome can be ignored during evolutionary

computing based on whether each is required for a given experiment

in our study.

TABLE I
CHROMOSOME DEFINITION FOR THE MLP LEARNER

Part Gene Type Values Description

DoubleGene 0.0 to 1.0 Learning rate
DoubleGene 0.0 to 1.0 Momentum rate
IntegerGene 1 to m̂ Number of nodes

in first hidden layer
A IntegerGene 0 to 2 Number of additional

hidden layers
IntegerGene 1 to m̂ Number of nodes

in second hidden layer
IntegerGene 1 to m̂ Number of nodes

in third hidden layer
BooleanGene true or false Decay learning rate

for back-propagation

BooleanGene true or false Sampling flag for N0

B BooleanGene true or false
...

BooleanGene true or false Sampling flag for Nn−1

The genes in Part A differ according to the configuration param-

eters for a given learner. All the genes in Part B of a chromosome

contain a Boolean allele. A chromosome’s Part B has one gene for

every majority instance in the dataset being tested. A gene value of

true indicates that the corresponding data instance should remain in

the training dataset, while a false value informs the system to remove

that instance from the training data. Data sampling is only done from

the training dataset, i.e., we never alter a fold’s test dataset.

The chromosome definition for the GA-based experiments with

MLP is shown in Table I. The numerical ranges shown in the table for

the non-Boolean parameters are based on a combination of our prior

machine learning experience and good coverage around the default

parameter values as per WEKA [11]. If m represents the number of

attributes in the given dataset, including the class attribute, then m̂ is

the lesser of m and 20. This is done from a computational efficiency

consideration point of view.

The MLP chromosome allows for up to three hidden layers

(IntegerGene). While two hidden layers are sufficient to approx-

imate any continuous function [23], we allow evANN to consider

up to three hidden layers with the aim of producing better results.

However, given two MLP configurations with similar performances,

evANN considers the less complex MLP as the better one. Part B of

the chromosome has N0, N1, . . . , Nn−1 genes, each representing a

BooleanGene (true or false) for data sampling inclusion.

The fitness function of our GA system combines two effective

performance factors, AUC and GMean. We opted to use both a

threshold-independent factor (AUC) and a threshold-dependent factor

(GMean) in an effort to evolve more generalized software quality

classification models with less overfitting tendency [11]. The raw

fitness, in its simplest form, of an individual X is given by the

expression f(X) = α(AUC) + β(GMean), where α and β are

constants which weigh the relative importance of the AUC and

GMean factors, and add up to 1. We assigned a value of 0.5 to both

α and β, making them equally important in the evolutionary process.

Given two individuals, we want to state that the better performer

is fitter in every case. When two individuals perform similar we look

at the sample size to decide which of the two is fitter – the one with

a smaller sample size is better. The final fitness function for our data

281

sampling approach with MLP is given by,

f(X) = round

(
10s
[
α(AUC) + β(GMean)

])
+(

1 − γ
kH + kO

max(kH + kO)
− δ

IN

max(IN)

)
(1)

In the above equation, s is the number of digits after the decimal

place which we want to consider from the combined AUC-GMean

raw fitness value – we opt for s = 4. The numbers of hidden

and output nodes in the MLP network are given by kH and kO ,

respectively. We define complexity for the MLP model as the ratio

of the actual number of hidden and output nodes to the maximum

possible number of those nodes. We use ratios for both the network

complexity and the sample size (IN) so that they both respectively

range between 0 and 1. γ and δ are weights used to adjust the

importance of the MLP complexity and the sample size factors, where

γ + δ = 1.0. We consider both factors equally and assign a value of

0.5 to each.

The weighted sum of the network complexity and sample size

factors will always range from (0,1]; hence, we subtract that sum

from 1 because we want the function to minimize it as GA works

to maximize the overall fitness. As we focus on binary classifiers,

the MLP model will always have two output nodes (kO = 2) as per

WEKA [11]. kH will vary according to the parameters encoded in

Part A of an individual’s chromosome when optimization of the MLP

configuration is considered during evolution. When optimization of

MLP configuration is not considered, we use a default value of three

nodes in one hidden layer; hence, the complexity term equals one.

The following steps summarize the GA implemented in evANN and

used for our empirical investigations. The goal of our GA system is

to maximize the fitness function defined in Equation (1).

1) Create a population with the specified number of individuals

(100 for the experiments in this research). Randomize the allele

values for each individual’s genes.

2) Create a sampling reference dataset with copies of the majority

class instances. The order of the instances in this reference

dataset matches the order of the genes used for evolutionary

sampling in the individual.

3) Add a sampling index value to all the instance objects in

the training data. The sampling index is simply the index

of the instance in the reference dataset created in Step 2. It

corresponds to the position of the evolutionary sampling gene

in each individual’s chromosome. evANN performs this step as

a preprocessing measure to create a look-up system between

the evolutionary sampling genes in the chromosome and the

actual training data instances so that there will be no need to

conduct searches for instances in the training data as the genetic

algorithm progresses.

4) Create training and test pairs of datasets for each of the folds for

five-fold cross-validation. Use the experiment number (1–20) to

seed the random number generator for splitting the data. A five-

fold cross-validation involves randomly dividing the software

measurement dataset into five subsets, and training the classifier

with four subsets while the remaining subset is used for testing

(evaluating) the classifier. This process of training and testing

is repeated five times, each time with a different evaluation

dataset.

5) Loop for the desired number of generations:

a) Run the “best chromosome” natural selector. Keep the

fittest 75% of the population to take part in this generation

and discard the remaining individuals.

b) Apply the crossover operator. The number of crossovers to

perform is equal to 50% of the current population size. For

each mating in single-point crossover we randomly select

two individuals from the population with replacement.

The two new individuals are then added to the population

to be processed by natural selection at the end of the

generation.

c) Apply the mutation operator. Each gene in all of the

chromosomes in the population has a 25% chance of

mutation. Mutation does not change the individual being

mutated, but rather if an individual has one or more genes

selected for mutation, the algorithm creates a copy of the

individual and mutates the copy’s genes. A mutation rate

of 0.25 reflects the results of Tate [20] and Haupt [24],

which suggest that for complex gene encodings (such as

our GA system) a higher mutation value (instead of the

traditional 0.1) would be more beneficial. Tate [20] also

recommends increasing the mutation rate when one is

unable to increase the population size, generally because

of the computational overhead involved.

d) Run the tournament natural selector to select individuals

who will survive to the next generation. In each tourna-

ment of four randomly selected individuals, one is chosen

for survival. The fittest individuals are more likely to be

chosen, but it is not guaranteed that they will be.

In the algorithm above, an individual’s fitness value is calculated

on demand. When evANN calls for an individual’s fitness for the first

time, it performs the following steps:

1) Create five threads, one to handle each of the five folds for our

cross-validation procedure. Each thread receives a copy of the

fold training dataset and the fold test dataset created in Step 4

of the GA algorithm.

2) For each thread:

a) For each instance in the fold training dataset, use the

sampling index value stored with the instance in Step 3

of the GA algorithm to find the corresponding gene in the

individual’s chromosome. If the Boolean allele value for

that gene is false, remove the instance from the thread’s

training dataset.

b) Instantiate the selected WEKA classifier. This involves

using the default parameters for the classifier if evANN

is set for data sampling without classifier parameters’

optimization.

c) Build the classifier using the fold training dataset.

d) Evaluate the classifier using the fold test dataset. Store

the resulting performance metrics (AUC and GMean) for

the individual.

3) Take an average of the performance metrics for the five folds

to be used for calculating the individual’s fitness. We use this

average only to score the individual for the genetic algorithm.

The GA considers the individual to be a composite of the

five folds; however, we report all five scores for the cross-

validation folds separately for the fittest individual at the end

of the experiment. Thus, one experiment represents one model

run on five (cross-validation) datasets and, therefore, gives us

results for five runs.

We run each GA experiment 20 times, each time with a differ-

ent seed for the pseudo-random number generator used for cross-

validation as explained in Step 4 of the GA algorithm. At the end

282

of a set of experiments, we have results for 100 GA runs for one

experiment. The average values of the respective performance metrics

are reported.

V. EMPIRICAL INVESTIGATION

A. Case Study Datasets

The CM1 project is a NASA mission software responsible for the

monitoring and analysis of science instruments. Written in C, this

project’s data is made available through the Metrics Data Program

at NASA. Each program module in the dataset provides the software

metrics for a module or a function in the CM1 project. The dataset

includes 13 numeric and two nominal independent attributes and a

nominal class attribute. The minority class consists of the software

modules considered to be fp, while the majority class represents the

modules which were nfp. There are a total of 505 modules, of which

48 (9.50%) are fp while 457 (90.50%) are nfp.

The SP2 project contains software metrics and defect data for a

release of a large-scale telecommunications system written in Protel,

a language similar to Pascal [25]. Program modules in the dataset

represent the source code modules in the software project. The 42

numeric independent attributes describe the program module’s values

for various software metrics. The dependent attribute is nominal and

identifies the module as fp or nfp. The fp modules form the minority

class, while the nfp modules form the majority class. There are a

total of 3981 modules in SP2, of which 189 (4.75%) are fp while

3792 (95.25%) are nfp.

B. Experimental Settings, Results and Analysis

The evolutionary experiments were conducted with a population

size of 100 individuals and for 100 generations. These specific

values were based on considering a combination of computational

practicality and obtaining relatively good results. However, it is likely

that a larger population size and a longer evolution would yield better

performances. An evolutionary experiment in our study involved 20

runs of stratified, five-fold cross-validations to train and test an MLP

classifier with a given dataset.

We use the experiment run number (1-20) to seed the random

number generator when creating the five cross-validation folds. A

given run involves five instantiations of the classifier, where each

involves one-fifth of the modules in the dataset being reserved for

evaluating (testing) the classification model, while the remaining

four-fifths are used to train the model. At the end, we have 100

values for our performance metrics, i.e., product of 20 runs and 5

folds. For a given GA experiment, this translates to 200 evolutionary

computing models for the two datasets in our study. The two

GA-based experiments (evolutionary sampling with, and without,

MLP configuration optimization) develop a total of 400 evolutionary

models. Considerable time and computing resources were involved

to complete all the experiments in our study. This is a common

observation in a typical evolutionary computing-based analysis.

The performance metrics for the MLP models trained both without

any data sampling technique and with Evolutionary Sampling are

shown in Table II. The BAS column represents MLP models trained

without any data sampling technique and with default options for

the MLP learner of WEKA. The EVS-DF column represents MLP

models trained with default parameter configurations (of WEKA)

and with Evolutionary Sampling. The EVS-OT column represents

MLP models trained with both Evolutionary Sampling and with

optimization/tuning of the MLP parameter configurations. The MLP

models are evaluated on the F-Meas, AUC, and GMean performance

TABLE II
RESULTS OF GA EXPERIMENTS WITH MLP

F-Meas performance

Dataset BAS EVS-DF EVS-OT
CM1 0.053 0.431 0.415
SP2 0.129 0.327 0.342

AUC performance

Dataset BAS EVS-DF EVS-OT
CM1 0.812 0.840 0.838
SP2 0.829 0.841 0.845

GMean performance

Dataset BAS EVS-DF EVS-OT
CM1 0.094 0.759 0.754
SP2 0.260 0.608 0.639

TABLE III
MAJORITY UNDERSAMPLING TECHNIQUES’ RESULTS

F-Meas performance

Dataset EVS-DF RUS WLE OSS
CM1 0.431 0.312 0.198 0.094
SP2 0.327 0.272 0.166 0.147

AUC performance

Dataset EVS-DF RUS WLE OSS
CM1 0.840 0.807 0.805 0.809
SP2 0.841 0.834 0.832 0.830

GMean performance

Dataset EVS-DF RUS WLE OSS
CM1 0.759 0.676 0.332 0.162
SP2 0.608 0.714 0.313 0.286

metrics. Recall, F-Meas was not used in our fitness function as

compared to the AUC and GMean.

The EVS-DF and EVS-OT models clearly outperform the BAS
models, making a clear case for addressing the rarity of fault-

prone modules in software quality modeling. This is true for both

software measurement datasets and for all three performance metrics.

An ANOVA and Tukey’s Honestly Significant Difference (HSD)

statistical analysis indicated that the EVS-DF and EVS-OT models

are significantly better than the BAS models at α = 0.05 [10]. A

comparison between the EVS-DF and EVS-OT models indicates that

the two modeling approaches are relatively competitive with respect

to all three performance metrics.

We compare our EVS approach with other existing majority under-

sampling techniques, and those results are summarized in Table III.

The table reflects classifier performances of MLP learners trained

using the default parameter configuration in WEKA. The table does

not include the EVS-OT results because those software quality models

were trained with optimization of modeling parameters for the MLP

learner, as discussed earlier. The RUS results are the best perfor-

mances among random undersampling rates of 5%, 10%, 25%, 50%,

75%, and 90% for a given dataset. The results for WLE represent the

better value of the standard and the weighted versions [8].

In the case of the smaller software measurement dataset, CM1,

the EVS-DF models are always better than all of the other majority

undersampling techniques. This is true for all three performance

metrics considered in our study. In the case of the larger software

measurement dataset, SP2, the EVS-DF models have the best perfor-

mances with respect to F-Meas and AUC. However, with GMean as

the performance metric, the RUS technique gave the best results. An

283

ANOVA and Tukey’s HSD statistical evaluation revealed that when

combining all results from both datasets, the EVS-DF models were

better than the other majority undersampling techniques [10].

VI. CONCLUSION

Evolutionary Sampling is presented as a viable data sampling

technique for addressing rarity of the minority class instances in

a machine learning dataset. This paper addresses the problem in

the context of software quality classification modeling where the

proportion of fault-prone modules is often a very small fraction of

the software measurement training dataset.

Implemented as a research prototype, evANN, the proposed major-

ity undersampling technique can also be combined with a genetic

algorithm-based optimization of the different modeling parameters

of a machine learner. This paper focuses on using the multilayer

perceptron neural network as the binary classifier of choice; however,

the proposed approach and comparative study can be extended to

most other binary classifiers. Currently evANN implements the C4.5

decision tree, RIPPER, and Multilayer Perceptron learners, and is

based on the WEKA data mining tool framework.

Software measurement datasets from two real-world software

projects are used as case studies for evaluating the proposed Evolu-

tionary Sampling approach. In addition to comparing the before and

after Evolutionary Sampling software quality models, this study also

compares EVS with three other majority undersampling techniques.

They are random undersampling, Wilson’s editing, and one-sided

selection. A comparison with other data sampling techniques, i.e.

minority oversampling, is not presented due to space limitations.

Empirical results of the case studies presented clearly indicate that

EVS improves the software quality model’s performance as compared

to modeling without any data sampling technique. A classifier is

evaluated based on three independent performance metrics, namely

Area-Under the ROC Curve, Geometric Mean, and F-Measure. Com-

pared to the other majority undersampling techniques, the proposed

approach shows a significant improvement, especially when F-Meas

and AUC are considered as performance metrics. Among the two

software measurement datasets, random undersampling fares compet-

itively for the larger dataset. This is likely due to the availability of

good majority class instances even after randomly eliminating some

majority class instances.

Some directions for future work include further validation with

additional datasets and optimizing the different GA parameters

such as population size, number of generations, mutation rate, and

crossover rate. While GA parameters’ optimization would likely

improve the end results, such analysis comes at the expense of

increased computational and time complexities. However, some of

that concern can be alleviated since GA generally lends itself well to

parallelism, and parallel systems can provide added benefits to using

evolutionary techniques.

ACKNOWLEDGMENT

We thank the various members of the Empirical Software En-

gineering Laboratory and the Data Mining and Machine Learning

Laboratory of Florida Atlantic University for assistance with reviews.

REFERENCES

[1] L. Guo, B. Cukic, and H. Singh, “Predicting fault prone modules by
the dempster-shafer belief networks,” in Proceedings of the 18th Inter-
national Conference on Automated Software Engineering. Montreal,
Quebec, Canada: IEEE Computer Society, October 2003, pp. 249–252.

[2] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empirical
Software Engineering Journal, vol. 9, no. 3, pp. 229–257, 2004.

[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, Jan. 2007.

[4] K. S. Woods, C. C. Doss, K. W. Bowyer, J. L.Solka, C. E. Priebe,
and W. P. Kegelmeyer, “Comparative evaluation of pattern recognition
techniques for detection of microcalcifications in mammography,” In-
ternational Journal of Pattern Recognition and Artificial Intelligence,
vol. 7, no. 6, pp. 1417–1436, 1993.

[5] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for
the detection of oil spills in satellite radar images,” Machine
Learning, vol. 30, no. 2-3, pp. 195–215, 1998. [Online]. Available:
citeseer.ist.psu.edu/article/kubat98machine.html

[6] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, “The 1999 darpa
off-line intrusion detection evaluation,” Computer Networks, vol. 34,
no. 4, pp. 579–595, 2000.

[7] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[8] R. Barandela, R. M. Valdovinos, J. S. Sánchez, and F. J. Ferri, “The
imbalanced training sample problem: Under or over sampling?” in
Syntatical and Structural Pattern Recognition/Statistical Pattern Recog-
nition, 2004, pp. 806–814.

[9] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: One sided selection,” in Proceedings of the Fourteenth International
Conference on Machine Learning. Morgan Kaufmann, 1997, pp. 179–
186.

[10] D. J. Drown, “Evolutionary methods for mining data with class imbal-
ance,” Master’s thesis, Florida Atlantic University, Dept. of Computer
Science and Engineering, Boca Raton, Florida, USA, August 2007,
advised by Taghi M. Khoshgoftaar.

[11] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd ed. San Francisco, California: Morgan
Kaufmann, 2005.

[12] D. Wilson, “Asymptotic properties of nearest neighbor rules using edited
data sets,” IEEE Trans. on Systems, Man and Cybernetics, vol. 2, pp.
408–421, 1972.

[13] I. Tomek, “Two modifications of CNN,” IEEE Transactions on Systems
Man and Communications SMC-6, pp. 769–772, 1976.

[14] A. Orriols and E. Bernadó-Mansilla, “Class imbalance problem in UCS
classifier system: fitness adaptation,” in IEEE Congress on Evolutionary
Computation, September 2005, pp. 604–611.

[15] F. Provost and T. Fawcett, “Robust classification for imprecise environ-
ments,” Machine Learning, vol. 42, pp. 203–231, 2001.

[16] A. E. Napolitano, “Alleviating class imbalance using data sampling:
Examining the effects on classification algorithms,” Master’s Thesis,
Department of Computer Science and Engineering, Florida Atlantic
University, Boca Raton, Florida, USA, December 2006, advised by Taghi
M. Khoshgoftaar.

[17] R. Hochman, “Software reliability engineering: An evolutionary neural
network approach,” Master’s Thesis, College of Engineering, Florida
Atlantic University, Boca Raton, Florida, USA, 1997, advised by Taghi
M. Khoshgoftaar.

[18] A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Heidelberg, Germany: Springer-Verlag, 2002.

[19] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms. Nor-
well, Massachusetts: Kluwer Academic Publishers, 2001.

[20] D. M. Tate and A. E. Smith, “Expected allele coverage and the role
of mutation in genetic algorithms,” in Proc. of the Fifth Int. Conf. on
Genetic Algorithms, S. Forrest, Ed. San Mateo, CA: Morgan Kaufmann,
1993, pp. 31–37.

[21] T. Jones, AI Application Programming, 2nd ed. Hingham, MA: Charles
River Media, 2005.

[22] K. Meffert and N. Rotstan, “JGAP: Java genetic algorithms package,”
jgap.sourceforge.net, 2007.

[23] J. Principe, N. Euliano, and W. C. Lefebvre, Neural and Adaptive
Systems: Fundamentals through Simulation. New York: John Wiley
& Sons, 2000.

[24] R. L. Haupt, “Adaptive crossed dipole antennas using a genetic algo-
rithm,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 8,
pp. 1976–1982, 2004.

[25] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl,
“Classification-tree models of software-quality over multiple releases,”
IEEE Trans. Reliability, vol. 49, no. 1, pp. 4–11, March 2000.

284

Machine Learning and Value-Based Software Engineering: A Research Agenda

Du Zhang
Department of Computer Science

California State University
Sacramento, CA 95819-6021

zhangd@ecs.csus.edu

Abstract
Software engineering research and practice thus far

are primarily conducted in a value-neutral setting where
each artifact in software development such as
requirement, use case, test case, and defect, is treated as
equally important during a software system development
process. There are a number of shortcomings of such
value-neutral software engineering. Value-based software
engineering is to integrate value considerations into the
full range of existing and emerging software engineering
principles and practices.

Machine learning has been playing an increasingly
important role in helping develop and maintain large and
complex software systems. However, machine learning
applications to software engineering have been largely
confined to the value-neutral software engineering
setting. In this paper, the general message to be conveyed
is to apply machine learning methods and algorithms to
value-based software engineering. The training data or
the background knowledge or domain theory or heuristics
or bias used by machine learning methods in generating
target models or functions should be aligned with
stakeholders’ value propositions. An initial research
agenda is proposed for machine learning in value-based
software engineering.

Keywords: value-based software engineering, machine
learning, stakeholder value propositions, Pareto modules.

1. Introduction

Software engineering research and practice thus far are
mainly conducted in a value-neutral setting where each
artifact in software development such as a requirement, a
use case, a test case, a defect, and so forth, is treated as
equally important during a software system development
process [2]. There are a number of shortcomings of such
value-neutral software engineering [1]: (1) its exclusion
of economics, management sciences, cognitive sciences,
and humanities from the body of knowledge needed to
develop successful software systems; (2) its delimitation
of software development by mere technical activities; and
(3) its failure to explicitly recognize the fact that software
systems continue to satisfy and conform to evolving
human and organizational needs is to create value. Value-

based software engineering (VBSE) is to integrate value
considerations into the full range of existing and emerging
software engineering principles and practices so as to
increase the return on investment (ROI = (benefits–
costs)/costs) for the stakeholders and optimize other
relevant value objectives of software projects [1, 2].

Machine learning (ML) has been playing an
increasingly important role in helping develop and
maintain large and complex software systems. However,
machine learning applications to software engineering
have been largely confined to the value-neutral software
engineering setting [29-31,33]. In this paper, the general
message we attempt to convey is to apply ML methods
beyond the value-neutral software engineering setting and
to VBSE. The training data or the background knowledge
or domain theory or heuristics or bias used by ML
methods in generating target models or functions for
software development and maintenance should be aligned
with stakeholders’ value propositions (SVPs) and
business objectives. Even though the transition to VBSE
from the traditional value-neutral setting is necessarily
evolutionary because not all the theories, infrastructures,
methodologies and tools for VBSE have been fully
developed yet, there are a number of agenda items for
VBSE [2].

The goal of the road map in VBSE is to make software
development and maintenance decisions that are better for
value creation [2]. On the other hand, the hallmark of ML
is that it results in an improved ability to make better
decisions. VBSE offers a fertile ground where many
software development and maintenance tasks can be
formulated as ML problems and approached in terms of
ML methods. The purpose of this paper is to describe an
initial research agenda for ML applications to VBSE with
regard to the identified areas in VBSE (value-based
requirement engineering, architecting, design and
development, verification and validation, planning and
control, risk/quality/people managements, and a theory of
VBSE [2]).

The rest of the paper is organized as follows. Section 2
offers an overview of the related work. Section 3
highlights some important concepts in VBSE. In Section
4, we describe an initial research agenda for ML
applications in VBSE. Finally Section 5 concludes the
paper with remark on future work.

285

2. Related Work
In addition to machine learning in (value-neutral)

software engineering (MLSE), there are a number of
related and emerging software development paradigms:
search-based software engineering (SBSE), evidence-
based software engineering (EBSE), model-based
software engineering (MBSE), artificial intelligence in
software engineering (AISE), and computational
intelligence in software engineering (CISE). We provide a
brief account for each of the paradigm. Figure 1
highlights their similarities and differences.

Figure 1. Emerging software development paradigms.

2.1. MLSE

ML falls into the following broad categories:
supervised learning, unsupervised learning, semi-
supervised learning, analytical learning, reinforcement
learning, and multi-agent learning. Each of the categories
in turn includes various learning methods. Supervised
learning deals with learning a target function from labeled
examples. Unsupervised learning attempts to learn
patterns and associations from a set of objects that do not
have attached class labels. Semi-supervised learning is
learning from a combination of labeled and unlabeled
examples. Analytical learning relies on domain theory or
background knowledge to learn a target function.
Reinforcement learning is concerned with learning a
control policy through reinforcement from an
environment. Multi-agent learning is an extension to
single-agent leaning. There are many emerging learning
methods such as argument based machine learning,
interactive learning, transfer learning, and so forth.

In software development, there are processes, products
and resources [9], which in turn have internal and external
attributes. Internal attributes describe an entity itself,
whereas external attributes characterize the behavior of an
entity (how the entity relates to its environment).

A partial list of ML applications in value-neutral
software engineering includes [29-31, 33]: (1) Predicting
or estimating measurements for either internal or external
attributes of software development processes, products, or

resources. (2) Discovering either internal or external
properties of the processes, products, or resources. (3)
Transforming products to accomplish some desirable or
improved external attributes. (4) Synthesizing or
generating various products. (5) Reusing products or
processes. (6) Enhancing processes. (7) Managing
products.

There were many different ML methods utilized in the
aforementioned applications [29-31, 33]. A common
property in the existing ML applications is that the
software engineering issues were tackled solely from
technical or logical perspectives (involving mappings and
transformations, for instance) without the value
dimension being taken into consideration (e.g., how to
increase ROI for the stakeholders and optimize other
relevant value objectives of software projects). The
training data or the background knowledge or domain
theory or heuristics or bias used by the ML methods in
generating target functions did not contain any value
propositions.

2.2. SBSE

SBSE treats software development tasks as a search
problem with regard to a set of constraints and a search
space of possible solutions [6, 12]. It relies on
evolutionary algorithms, gradient ascent/descent, particle
swarm intelligence, simulated annealing, tabu search or
colony optimization techniques to tackle the software
development or maintenance tasks. So far its applications
have included the following areas in software
engineering: requirement engineering, project planning,
cost estimation, maintenance, reverse engineering,
refactoring, program comprehension, service oriented
tasks, quality assessment, and testing (structural,
functional, non-functional, state-based properties,
robustness, stress, security, mutation, regression,
interaction, integration, and exception). Value
considerations are not explicitly incorporated into the
search process.

2.3. EBSE

EBSE is geared toward improving the decision making
process related to software development and maintenance
by integrating current best evidence from research with
practical experience and human values [7, 15]. There are
five main steps in EBSE as delineated in [7, 15]: (1)
Translate a relevant problem or need of information into
an answerable question. (2) Glean the literature for the
best available evidence that can be used to answer the
question. (3) Assess the evidence for its validity, impact,
and applicability. (4) Combine the appraised evidence
with practical experience, and stakeholders’ values and
circumstances to make decisions. (5) Evaluate
performance and find ways to improve it. An important
strength of EBSE is that it does take into consideration
SVPs.

286

2.4. MBSE

MBSE is centered on software models, modeling, and
model transformation technologies. It is a disciplined
approach to developing and extending a product family.
The software models provide the necessary information to
support, economically and effectively, future changes to a
software product family. By focusing on models that
capture and consolidate developers’ understanding of a
family of software products, reusable assets can be
developed that satisfy a wide variety of uses and can be
utilized to analyze existing software to quickly compose
or synthesize new solutions for subsequent products in a
product family [4, 21, 26]. The goal is to achieve the
benefits of reuse, shorter time to market, product
maintainability and higher quality. However, value
considerations are not prominently factored into the
paradigm.

MBSE consists of two parallel engineering processes:
domain engineering and application engineering, and
sanctions the concepts of product families, a production
system, and software assets (the reusable resources
needed in application engineering such as domain models,
software architectures, design standards, communication
protocols, code components and application generators).

Many organizations have model-based development
paradigm in place: Microsoft’s Software Factory [10],
Lockheed Martin’s Model Centric Software Development
[28], and NASA JPL’s Defect Detection and Prevention
[8].

2.5. CISE

In CISE (or software engineering with computational
intelligence), soft computing techniques such as fuzzy
sets, neural networks, genetic algorithms, genetic
programming and rough sets (or combinations of those
individual technologies) are utilized to tackle software
development issues recently [13, 14, 16, 17, 23]. The
results have been largely confined to the value-neutral
setting.

2.6. AISE

The application of some general artificial intelligence
techniques to software engineering (AISE) has produced
some encouraging results [19, 20, 22, 25, 27]. Some of
the successful AI techniques include: knowledge-based
approach, automated reasoning, expert systems, heuristic
search strategies, temporal logic, planning, and pattern
recognition. Again the results thus far have been obtained
in the value-neutral setting.

3. VBSE
The essence in VBSE is that the approach aims at

aligning software development and maintenance with
customer requirements and strategic business objectives.

It offers a framework where SVPs are incorporated into
the technical and managerial decisions made during
software development and maintenance [1, 11].

Value includes product, process and resource
attributes. Value attributes include: profits (generated
from products), strategic positioning in market share,
utility, relative worth, reputation, customer loyalty,
innovation technology, cost reduction, quality of life,
improved productivity.

An emerging agenda of issues in VBSE has been
proposed in [2], that includes the following areas:
• Value-based requirements engineering. The key

objectives include recognition of success-critical
stakeholders, elicitation of SVPs, and reconciliation
of SVPs.

• Value-based architecturing. The goals are to iron out
the discrepancy between a system’s objectives and
achievable architectural solutions.

• Value-based design and development. The goals are
to ensure that a software system’s objectives and its
value considerations are embodied in the software’s
design and development practices.

• Value-based verification and validation. The
objectives are to ascertain that a software solution
meets its value objectives and that V&V tasks are
sequenced and prioritized as investing activities.

• Value-based planning and control. The objectives in
this area are to incorporate the value delivered to
stakeholders into the product planning and control
techniques.

• Value-based risk management. How to factor the
value considerations into principles and practices for
risk identification, analysis, prioritization, and
mitigation is the main focus in this area.

• Value-based quality management. The goals are to
prioritize desired software quality considerations with
respect to SVPs.

• Value-based people management. The tasks involve
building stakeholder team, manage expectations, and
reconcile SVPs.

To facilitate ML applications in VBSE, a number of
concepts need to be in place, one of which is about Pareto
modules.

Figure 2 depicts a reported study in [5] where the
dotted line reflects the value-neutral practice in which an
automated test data generation tool assumes that all tests
have the same value. The Pareto curve for the empirical
data, on the other hand, displays the actual business value
where one of the fifteen customer services accounted for
50% of all billing revenues.

We refer to module(s) that realizes a service of such a
high positive impact on the system’s ROI as Pareto
modules. They are the most important modules of a
software system with regard to its product value. How

287

modules contribute to a product’s overall value hinges on
reconciled SVPs.

Figure 2. Pareto distribution for varying test case value.

For a given software system �, we can define a set M�
of modules, a valuation function υ, and a value set � as
follows:

M� = {mi | mi � � };
υ: M� → [0, 1];
� = {υ(mi) | mi � M� }

The valuation function υ can be defined by SVPs and
has the following properties:

• 0 < υ(mi) ≤1, for all i;
• � ������

	
� � �

We define a partially ordered set (�, ≤) where ≤ is a
binary order relation on � and satisfies reflexivity, anti-
symmetry and transitivity for all elements in �. We say
that υ(mp) is a principal element for (�, ≤) if we have the
following:

∀υ(mj)�� [υ(mj) ≤ υ(mp)]1
We use ρ to denote the principal module as specified

by υ(mp). We define a principal-element-ordered subset
�[mi, ρ] of � and its cumulative value μ[mi, ρ] as follows:

�[mi, ρ] = � − {υ(mk) | υ(mk) ≤ υ(mi)}
μ[mi, ρ] = ������ � ��������

Now we are in a position to formally define the
concept of Pareto modules.

Definition 1. Given a threshold value τ � (0, 1], we
identify a principal-element-ordered subset �[mi, ρ] such
that τ = μ[mi,ρ]. Modules in �[mi,ρ] are referred to as Pareto
modules with regard to τ.

If τ < μ[mi, ρ] but removing any mj from μ[mi, ρ] would
result in τ > μ[mi, ρ], then the condition of τ = μ[mi, ρ] is
relaxed to that of τ ≤ μ[mi, ρ].

1 If there are several principal elements in �, we can use other
criteria to designate one for the discussion.

4. Research Agenda for ML in VBSE
In this section, we first discuss some general issues

on how to calibrate ML methods for VBSE tasks. Using
Boehm’ VBSE agenda in [2] as a roadmap, we then
describe some preliminary agenda items of how ML can
help with the goals, objectives and tasks in VBSE.

4.1. How to calibrate ML methods

ML methods formulate various general hypotheses,
models and target functions through either observed
training data, or some background knowledge or domain
theory, or a combination of both. The generalization
process during leaning also hinges on certain adopted bias
or heuristics.

Figure 3. Calibrating ML methods for VBSE.

To calibrate ML methods for VBSE tasks, the
fundamental issue is how to incorporate SVPs from the
business value level into the technical level details of ML
model generation process. Specifically, this translates into
the following issues: how to use SVPs to select data
features and to group training data, how to incorporate
SVPs into domain knowledge representation, how to
prioritize rules, based on SVPs, in domain knowledge
during model generation, how to include SVPs in defining
search bias, how to use different value attributes in
defining domain-specific biases for the search process,
how to utilize SVPs in defining hypotheses and
constraining hypothesis space, how to factor SVPs into
ensemble construction and classification combination
process when ensemble learning is used to generate
models, and how the value concept plays a role in
defining ML method-specific heuristics (e.g., fitness
function, information gain measure).

4.2. Value-based requirements engineering

For the objectives in value-based requirements
engineering, techniques such as business case analysis,
requirements prioritization and release prioritization have
proven to be effective [2].

ML methods can be utilized to assist business case
analysis, and requirements and release prioritization.
Specifically, ML methods can be used to predict or
estimate software cost, software size, software
development efforts, and release prioritization and timing.

288

These prediction, estimation or cost models would help
stakeholders gain insight on what capabilities are not
feasible with regard to budget, schedule and technology
constraints, which features of a system are most important
and attainable, and which aggregate of capabilities will
meet stakeholders’ critical needs given the resource
constraints. This in turn will assist stakeholders in
prioritizing and reconciling potential conflicting value
propositions. Possible ML methods for generating the
models include: decision trees, Bayesian learning, neural
networks, genetic algorithms, genetic programming, case-
based reasoning, and inductive logic programming.

4.3. Value-based verification and validation

The key techniques in value-based V&V are value-
based and risk-based testing techniques [2]. Central to
those techniques is how to align SVPs with the technical
level details in test construction and execution and how to
sequence and prioritize testing activities as investing
activities [24, 32].

Since we only have the Pareto module concept in
place, we need to introduce defect-intensive and defect-
prone modules, impact and non-impact defects before we
can use an SVPs-based approach to identify modules of
the aforementioned types and decompose the overall test
data generation process for a given software system into a
sequence of test data generation cycles with each focusing
on some specific testing objective(s). From a value-based
standpoint, to improve the return on investment, we want
to make sure to first maximize the success rate of Pareto
modules and to minimize the chance of having impact
defects that devastate the value contribution. Afterwards,
attention can be focused on non-impact defects and non-
Pareto modules. Thus, a prioritization of cycles can be
generated that is driven by the value consideration and
allows the most critical modules with regard to SVPs to
be thoroughly tested first.

For each cycle, a number of ML methods can be
utilized to generate test cases for different classes of
modules. Some possible ML methods include: genetic
algorithms [18], genetic programming, inductive logic
programming and rule-based active learning.

4.4. Value-based risk management

There are a number of techniques for value-based
risk management: the risk-based “how-much-is-enough”
techniques, the risk-based analysis for project
predictability, the risk-based simulation, and the risk-
based testing techniques [2].

A pivotal concept in risk management is the risk
exposure (RE) involved in a prescribed course of actions.
RE is defined as follows:

RE = P(�) × S(�)
where P(�) is the probability of loss �, and S(�) is the
size of loss. � can be defined based on any value attribute
as discussed in Section 3. In the risk exposure profile

analysis [3], there is a dichotomy between planning and
market share as the value attribute: inadequate planning
results in little delay to capture market share but high RE
due to oversights and rework; excessive planning reduces
the chance of major problems but at the expense of high
RE because of time-to-market delays.

ML methods can be used to help find the “sweet
spot” for different risk profiles and different risk exposure
profiles. Depending on the circumstances, either inductive
learning, or analytical learning, or a combination of
inductive and analytical learning can be deployed.

4.5. Value-based design and development

To ensure that a system’s objectives and its value
considerations are embodied in the software’s design and
development practices, the software traceability
techniques play an important role [2]. During the software
development process, many artifacts are produced and
maintained: documents, requirements, design models, test
scenarios, and so forth. Trace dependencies are to identify
relationships among those artifacts and the quality of the
trace dependencies should reflect the value of the artifacts
they attempt to bridge. This is vital for a number of
reasons, from documentation, program understanding,
impact analysis, consistency checking, reuse, quality
assurance, user acceptance, error reduction, cost
estimation, to customer satisfaction.

ML methods can be used to establish value-based
trace dependencies among different artifacts. Methods
such as instance-based learning (case-based reasoning),
inductive logic programming, rule-based learning would
lend themselves to the task.

4.6. Value-based quality management

ML methods can be used to generate predictive
models for identifying high risk or fault prone
components as an integral part of the quality
management. Because of the need to align desired quality
properties with SVPs, value considerations should be,
directly or indirectly, involved in defining or contributing
to those quality properties. SVPs should also help
prioritize the desired quality factors.

ML methods that are appropriate for the task include:
decision trees, genetic programming, neural networks,
case-based reasoning, inductive logic programming, and
concept learning.

5. Conclusion

VBSE offers a new software development paradigm
that recognizes the importance of business and customer
value considerations. It tackles the decision making
process in software development and maintenance from a
value-based perspective. In this paper, we discuss the
issue of ML applications to VBSE. Because ML
applications to software engineering thus far have been

289

largely confined to the value-neutral setting, we reviewed
the landscape in the field and took a closer look at the
emerging agenda for VBSE to find out how ML can be
positioned to play a larger role in VBSE. We propose
some guideline on how to calibrate ML methods to
accommodate the value considerations that are so critical
in accomplishing VBSE agenda items. Using Boehm’
VBSE roadmap as a guide, we describe some preliminary
agenda items on how ML can help with the goals,
objectives and tasks in VBSE.

The take-home message of this work is two-fold:
VBSE offers a ROI-conscious approach to software
development and maintenance, and ML has an active and
important role to play in various agenda items in VBSE.

The viability of ML applications in VBSE hinges on
the outcomes of empirical studies, which will be pursued
as our future work. How to solidify SVPs into various ML
methods is an open issue worth studying.

References
1. S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.

Grunbacher (ed.), Value-Based Software Engineering,
Springer, Berlin, 2006.

2. B. Boehm, “Value-Based Software Engineering: Overview
and Agenda,” in Value-Based Software Engineering, S.
Biffl et al (ed.), Springer, Berlin, 2006.

3. B. Boehm, “Value-Based Software Engineering: Seven
Key Elements and Ethical Considerations,” in Value-Based
Software Engineering, S. Biffl et al (ed.), Springer, Berlin,
2006.

4. A. Brown, S. Iyengar and S. Johnston, “A Rational
Approach to Model-Based Development,” IBM Systems
Journal, Vol. 45, No. 3, 2006, pp.463-480.

5. J. Bullock, “Calculating the Value of Testing,” Software
Testing and Quality Engineering, May/June issue, 2000,
pp.56-62.

6. J. Clark et al, “Reformulating Software Engineering as A
Search Problem,” IEE Proceedings – Software, Vol. 150,
No. 3, 2003, pp.161-175.

7. T. Dyba, B. A. Kitchenham and M. Jorgensen, “Evidence-
Based Software Engineering for Practitioners,” IEEE
Software, Vol. 22, No. 1, 2005, pp.58-65.

8. M. Feather et al, “A Broad, Quantitative Model for Making
Early Requirements Decisions,” IEEE Software, Vol. 25,
No. 2, 2008, pp.49-56.

9. N. E. Fenton and S. L. Pfleeger, Software Metrics, PWS
Publishing Company, 2nd ed., 1997.

10. J. Greenfield and K. Short, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools, Wiley Publishing, Indianapolis, IN, 2004.

11. P. Grunbacher, S. Koszegi and S. Biffl, “Stakeholder Value
Proposition Elicitation and Reconciliation,” in Value-Based
Software Engineering, S. Biffl et al (ed.), Springer, Berlin,
2006.

12. M. Harman and B. Jones, “Search-Based Software
Engineering,” Information and Software Technology, Vol.
43, No. 14, 2001, pp.833-839.

13. T. Khoshgoftaar, Software Engineering with
Computational Intelligence, Kluwer, 2003.

14. T. Khoshgoftaar (ed.), Special Issue on Quality
Engineering with Computational Intelligence, Software
Quality Journal, Vol.11, No.2, June 2003.

15. B. A. Kitchenham, T. Dyba and M. Jorgensen, “Evidence-
Based Software Engineering,” in Proceedings of
International Conference on Software Engineering, 2004,
Edinburgh, pp.273-281.

16. J. Lee, Software Engineering with Computational
Intelligence, Springer-Verlag, 2003.

17. J. Lee (ed.), Special Issue on Software Eng with
Computational Intelligence, Information and Software
Technology, Vol.45, No.7, May 2003.

18. P. McMinn, “Search-based Software Test Data Generation:
A Survey,” Software: Testing, Verification and Reliability,
Vol. 14, No. 2, 2004, pp. 105-156.

19. M. Mendonca and N.L. Sunderhaft, “Mining software
engineering data: a survey”, DACS State-of-the-Art Report,
September 1999,
http://www.dacs.dtic.mil/techs/datamining/.

20. J. Mostow (ed), Special issue on artificial intelligence and
software engineering, IEEE Trans. SE, Vol.11, No.11,
November 1985, pp.1253-1408.

21. MBSE: http://www.sei.cmu.edu/mbse/index.html.
22. D. Partridge, Artificial Intelligence and Software

Engineering, AMACOM, 1998.
23. W. Pedrycz and J.F. Peters, Computational Intelligence in

Software Engineering, World Scientific Publisher, 1998.
24. R. Ramler, S. Biffl and P. Grunbacher, “Value-Based

Management of Software Testing,” in Value-Based
Software Engineering, S. Biffl et al (ed.), Springer, Berlin,
2006.

25. C. Rich and R. Waters (eds.), Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann,
1986.

26. S. Sendall and W. Kozacaynski, “Model Transformation:
the Heart and Soul of Model-Driven Software
Development,” IEEE Software, Vol. 20, No. 5, 2003,
pp.42-45.

27. J.J.P. Tsai and T. Weigert, Knowledge-Based Software
Development for Real-Time Distributed Systems, World
Scientific Inc., Singapore, 1993.

28. D. Waddinggton and P. Lardieri, “Model-Centric Software
Development,” IEEE Computer, Vol. 39, No. 2, 2006,
pp.28-29.

29. D. Zhang, “Applying Machine Learning Algorithms in
Software Development,” Proceedings of Monterey
Workshop on Modeling Software System Structures, Santa
Margherita Ligure, Italy, June 2000, pp.275-285.

30. D. Zhang and J. J. P. Tsai, “Machine Learning and
Software Engineering,” Software Quality Journal, Vol.11,
No.2, June 2003, pp.87-119.

31. D. Zhang and J. J. P. Tsai (ed.), Machine Learning
Applications in Software Engineering, World Scientific
Publishing Co., Singapore, 2005.

32. D. Zhang, “Machine Learning in Value-Based Software
Test Data Generation,” the Proceedings of the Eighteenth
IEEE International Conference on Tools with AI,
Washington DC, November 2006, pp.732-736.

33. D. Zhang and J. J. P. Tsai (ed.), Advances in Machine
Learning Applications in Software Engineering, Idea
Group Publishing, Hershey, PA, 2007.

290

Automatic Clustering of Defect Reports

Vasile Rus
Department of Computer Science

The University of Memphis
373 Dunn Hall
Memphis, TN

vrus@memphis.edu

Sameer Mohammed
Department of Computer Science

The University of Memphis
373 Dunn Hall
Memphis, TN

smohmmd1@memphis.edu

Sajjan Shiva
Department of Computer Science

The University of Memphis
373 Dunn Hall
Memphis, TN

sshiva@memphis.edu

Abstract

This paper addresses the problem of clustering defect
reports. Clustering defect reports can provide valuable
information to software testers, e.g. it could help better
plan and prioritize the testing effort as testers could fo-
cus on testing the features with most defects as indicated
by the largest clusters identified. In this paper, we present
results obtained with one clustering algorithm, K-means,
and two models of defect reports. In one model we use
the summary field of the reports and in another the de-
scription field. Our experiments on defect reports from
Mozilla’s Bugzilla, a database of defect reports related to
the open source Mozilla project, showed that clustering de-
fect reports based on their summary field (average accu-
racy=44.2240%) outperformed clustering based on the de-
scription field (average accuracy=29.3581%). Both meth-
ods outperform the baseline of randomly picking a cluster
(accuracy=20.0000%). We evaluated the clustering algo-
rithm with respect to clusters containing bug reports that
refer to the same underlying problem.

1. Introduction

We address in this paper the challenging task of cluster-

ing defect reports. Defect reports are detailed descriptions

in natural language of defects, i.e. problems in a software

product. The quality and proper handling of defect reports

throughout the testing process will have a great impact on

the quality of the released software product. The defect

reports are currently analyzed manually by testers, devel-

opers, and other stakeholders. Manual analysis is tedious,

error-prone, and time consuming, leading to a less efficient

testing process.

We propose here automatic methods to analyze defect re-

ports. In particular, we propose automatic methods to clus-

tering defect reports in order to discover patterns among re-

ported defects. Clustering could reveal sets of related prob-

lems and this information could be further used to better

plan the testing effort. For instance, a large cluster of re-

lated reports could indicate which feature(s) of the software

product needs to be further tested. While a cluster of defect

reports that look similar content-wise may not always de-

scribe the same underlying bug, i.e. root cause, they could

highlight visible features of a product that need more atten-

tion from the testing team. However, in this paper we ad-

dress the more challenging task of clustering defect reports

based on their describing the same underlying bug. This is

possible by evaluating the clustering using reports that were

judged by developers as being duplicates, i.e. describing the

same bug.

Defect reports are filed by testers (or users) who discover

the defects through testing (or use). The reports are stored

in a database called defect database. It is the developers’ job

to take open, i.e. not yet fixed, defects from the database,

analyze the corresponding reports, and fix the defects. De-

fect reports include many details about the corresponding

defects including an id that uniquely identifies the defect,

the status of the defect (e.g. new, verified, resolved), a sum-

291

mary field, and a description field. The description field is

the richest source of information about the defect. The field

describes in plain natural language details about the defect,

including symptoms and steps to reproduce the defect. The

summary field is an one-sentence description of the prob-

lem.

We propose here advanced methods for analyzing de-

fect reports that take advantage of the description and sum-

mary fields of the reports. Our approach is to use advanced

natural language processing (NLP) and informational re-

trieval (IR) techniques for automatic analysis of the re-

ports. We regard each defect report as a textual document

and use a well-known technique in IR, called the vectorial
representation[1], to represent documents.

In our experiments, the K-means clustering algorithm

proved to be by far the most successful (we tried several

other clustering algorithms, e.g. EM, FarthestFirst available

in Weka, a machine learning toolkit[15]) to find clusters of

similar defects and thus the paper focuses on reporting the

results obtained with this algorithm. We used two mod-

els to represent defect reports, one based on the summary

field and another based on the description field of reports.

Our experimental data consisted of defect reports collected

from the open source Mozilla project (www.mozilla.org)

but the proposed methods are transferable to defect reports

from other projects, e.g. Eclipse (www.eclipse.org). The

clustering was evaluated based on reports describing the

same underlying problem. That is, defect reports are in

the same cluster if they describe the same underlying prob-

lem. As a preview of our results, we found that using the

summary field of defect reports for clustering (average ac-

curacy=44.2240% when compared to human judgment) is

better than using the much longer description field (aver-

age accuracy=29.3581%). We could say that given a set of

defect reports we could identify the subsets, i.e. clusters,

referring to the same underlying bugs with an accuracy of

44.2240%.

The rest of the paper is organized as follows. In the next

section, Related Work, we outline previous efforts that are

relevant to our work. The Defect Management section of-

fers details about how defect reports are handled in the open

source Mozilla project and its associated defect tracking

tool Bugzilla. In the following section, Experiments and
Results, we present details about our experiments and the

results obtained. A Discussion and Future Work section fol-

lows. The Conclusions section ends the paper.

2. Related Work

There are two major lines of previous research relevant

to our work. First, there is work on defect clustering. Sec-

ond, there is research on using NLP and IR to mine artifacts

from software repositories and in particular to analyze de-

fect reports for various purposes.

Clustering is the unsupervised classification of data

points (usually represented as vectors in a multidimensional

space) into groups (clusters) based on similarity. A cluster

is therefore a collection of objects which are similar to each

other in the same cluster and are dissimilar to objects be-

longing to other clusters. The clustering problem has been

addressed in many contexts and by researchers in many dis-

ciplines. This reflects the broad appeal of clustering and its

usefulness as one of the steps in exploratory data analysis.

While we are not aware of any particular work on clustering

defect reports, there is published research related to cluster-

ing defects in the manufacturing of semiconductors[4] and

integrated-circuits (IC; [14]). Karnowski and colleagues [4]

showed that fuzzy logic can help better cluster defects on

semiconductor wafer maps. Singh and Krishna[14] have

shown that using clustering information in optimization

testing can significantly improve the shipped product con-

trary to the previous assumption that the probability of a

test to detect a faulty circuit is independent of the number

of faults in that circuit.

The usage of natural language processing applications to

improve software development and testing has been around

at least since 1990s [13, 6, 7, 2].

More recently, there has been renewed interest in ap-

plying natural language techniques to mine useful arti-

facts from the various repositories associated with soft-

ware projects (see the yearly Workshop on Mining Software

Repositories at http://msr.uwaterloo.ca). We discuss next a

series of research efforts that are directly related to our work

on clustering defect reports.

Linstead and his colleagues [5] described a framework to

automatically mine developer contributions and competen-

cies from a given code base. They also used the framework

for extracting software function in the form of topics. Their

findings indicate that it is feasible to extract the function

(in the form of topics) of source code and developer exper-

tise on these topics. This information could be used, for

instance, to better plan defect fixes: the most qualified de-

veloper will be assigned to handle defects related to topics

s/he is expert in. Linstead and colleagues [5] treated source

code as text.

The use of the vectorial representation[1] to address de-

fect report related issues has been explored by Runeson,

Alexandersson, and Nyholm [11] for the task of identifying

duplicate defects (see also the work of Rus and Shiva [12]).

It is noted that identifying duplicate defect reports is not ex-

actly the same with clustering defect reports. Runeson and

colleagues adapted ReqSimile (a tool that links customer

wishes to product requirements using statistical natural lan-

guage processing [10]) to identify duplicate defects. Re-

qSimile uses the vector space model and cosine similarity

[1] to decide how related two requirements documents are.

292

The vector space model represents documents in a collec-

tion as vectors of V dimensions, where V is the vocabulary,

i.e. the set of distinct words, of the collection. There is one

dimension for each word in the vocabulary. Entries in doc-

uments’ vectors are weights which indicate how important

the corresponding word/dimension is for distinguishing the

content of the document from other documents. If a word

does not occur in a document, the corresponding weight is

zero. The similarity of two documents is given by the co-

sine of the corresponding vectors, which can be seen as the

normalized dot product of the vectors. Runeson, Alexan-

dersson, and Nyholm [11] used the term frequency (TF) of

words in a document as the weighting scheme. In this paper,

we use a more powerful weighting scheme, namely Term

Frequency-Inverted Document Frequency (TF-IDF; see the

Experiments and Results section). Their experiments were

conducted on Incident Reports, i.e. defect descriptions,

from software projects at Sony Ericsson Mobile Communi-

cations. For each set of duplicate descriptions they identify

a master defect. Their evaluation focuses on how well their

method can retrieve the master defect in the list of top N

most similar defects to a given defect description. Here, we

use the vectorial representation with TF-IDF weighting for

the task of clustering defect reports.

3. Defect Management

During testing, defects within software are discovered

through testing (and fixed) and new functionality is added,

which must be tested. The testers report defects using a

defect management tool, also called defect tracking tool,

whose back-end is typically a relational database. The gen-

eral process of handling defect reports includes the follow-

ing steps: the defect is found and filed in the defect tracking

tool, the report is evaluated by an analyst, the defect is as-

signed to a developer, the developer finds the defect and

fixes it, and the defect report is closed. The tester, analyst,

and developer could be same or different persons depend-

ing on the size of the project. In open source projects, users

voluntarily report defects.

3.1 Defect Handling in Mozilla
It is important to understand the details of defect handling

in the Mozilla open source project because our experi-

mental data is collected primarily from Mozilla’s Bugzilla.

Bugzilla, a bug tracking tool, allows testers to report bugs

and assign these bugs to developers. Developers can use

Bugzilla to keep a to-do list as well as to prioritize, sched-

ule, and track dependencies. Not all entries in Bugzilla are

bugs. Some entries are Requests For Enhancement (RFE).

An RFE is a report whose severity field is set to enhance-

ment.

Ideally, before reporting a defect, the tester must repro-

duce the bug using a recent build of the software, to see

whether it has already been fixed, and search Bugzilla to

check whether the bug has already been reported. If the bug

can be reproduced and no one has previously reported it,

the tester can file a new defect report including: the com-

ponent in which the defect exists, the operating system on

which the defect was found, a quick summary of about 60

or less characters, a detailed description of the defect, and

attachments, for instance screenshots. We focus next on the

summary and description fields (as presented in Mozilla’s

Bug writing guidelines), the two information-rich fields of

any defect report.

A good summary should quickly and uniquely identify

the defect. It should explain the problem, not the suggested

solution. Example of a good summary is Canceling a File
Copy dialog crashes File Manager, while bad examples are

Software crashes and Browser should work with my web
site.

The description field is a detailed account of the prob-

lem. The description field of a defect report should con-

tain the following major sections, although the breakdown

of the field into these sections is not enforced in Bugzilla:

overview (more detailed restatement of summary), steps to
reproduce (minimized, easy-to-follow steps that will trig-

ger the bug; including any special setup steps), actual re-
sults (what the application did after performing the above

steps), expected results (what the application should have

done, were the bug not present), build date & platform (date

and platform of the build in which you first encountered the

bug), additional builds and platforms (whether or not the

bug takes place on other platforms or browsers, if applica-

ble), and additional information (any other useful informa-

tion).

Any deviation from the above guidelines leads to vague

reports which in turn lead to a less efficient process of han-

dling the defects. On the other hand, recording every detail

about a defect can lead to overkill. The reality is that sel-

dom defect reports include all the above suggested details.

In this paper, we present experiments on defect reports as

collected from Mozilla’s Bugzilla. In general, the collected

reports are of good quality but reports of lower quality can

be found among the collected reports.

4. Experiments and Results

We present in this section details on applying the K-

means clustering algorithm to cluster defect reports. The

results of the experiments on data from Mozilla’s Bugzilla

are discussed.

Clustering is the unsupervised classification of patterns

(usually represented as a vector of measurements, or a point

in a multidimensional space) into groups (clusters) based on

293

similarity. In other words, it is the process of organizing ob-
jects into groups whose members are similar in some way.

A cluster is therefore a collection of objects which are sim-
ilar to each other in the same cluster and are dissimilar to

the objects belonging to other clusters.

Typical clustering involves the following steps [3]:

data representation (optionally including feature extraction

and/or selection), definition of a similarity measure appro-

priate to the data domain, clustering or grouping, and as-

sessment of output.

We will address in more detail these steps next, starting

with the Data representation, as a great deal of effort has

been spent on this step.

4.1 How to Represent Defect Reports?

A first basic issue we must address is the logical view of

the reports (see [1] more information on logical view). We

may want to model the reports in the simplest way possible,

for complexity reasons, while capturing the gist of the de-

fect. The description field of a report is the most informative

piece of information about the defect. On the other hand, it

may contain too much information. Using the shorter sum-

mary of a report may lead to a more efficient algorithm for

clustering as fewer words need to be considered to capture

the meaning of the report. We experimented with both mod-

els, description vs. summary, in this paper and report the

winner.

Another important issue is the formalism used for the

representation. We used the vector space model [1]. The

vectorial representation of documents was briefly described

earlier in the Related Work section. A key feature in the vec-

tor space model is the weighting scheme of the words. We

used the TF-IDF scheme, a composed measure that is the

product of the frequency of a term in a document (TF), and

its inverted document frequency (IDF)1. The basic idea of

the TF-IDF measure is that a word is important, has a large

weight, if it occurs frequently in the document (high TF)

and if it does not occur in too many other documents (low

document frequency which means high inverted document

frequency[IDF]).

4.2 Preprocessing

Each defect report must be preprocessed before it is mapped

onto the vectorial representation. Preprocessing maps a re-

port onto a list of tokens that have linguistic meaning, i.e.

words. It is comprised of the following steps: tokeniza-

tion, stop word removal, and lemmatization. Tokenization,

1The IDF of a word is the percentage of distinct documents the word

appears in from a very large collection of documents. It is used to measure

the specificity of the word. The fewer documents a word occurs in, i.e. the

rarer, the more specific the word is.

a well defined step in natural language processing, separates

punctuation from words. Another important preprocessing

step is to remove stop words. We used a standard list of

stop words, e.g. the SMART list (ftp://ftp.cs.cornell.edu/

pub/smart/english.stop). Lemmatization is another prepro-

cessing step coming after stop word removal. It maps each

morphological variation of a word in a text fragment to its

base form, e.g. go, going, went, gone are all lemmatized to

go, their root or base form. We used the WordNet lemma-

tizer available in the WordNet library[9].

4.3 Clustering Experiments

Clustering software defect reports can take different forms.

For instance, the clustering can be based on either the sever-

ity of the bug, or based on the fact that the defect reports de-

scribe the same defect, i.e. they are duplicates, or based on

other criteria such as component/feature-specific clustering,

e.g. clustering printer-related defect reports.

In this paper, we chose to defect reports based on their

describing the same underlying bug. We regard a defect

report and its duplicates as a cluster. This modeling is

adequate as the original defect report should be similar,

content-wise, to its duplicates. The data used in our ex-

periments comes from Mozilla’s Bugzilla where duplicate

information is available. The duplicates are marked as such

by members of the Mozilla development team and thus we

deem them highly reliable. We automatically collected our

experimental data from Mozilla’s Bugzilla database as de-

scribed next.

To create our data set, we started collecting 20 Bugs from

the Hot Bugs List of Mozilla’s Bugzilla. The Hot Bugs List
contains the most filed recently bugs. The list can be sorted

based on the number of duplicates (see the Dupes field for

each entry in the Hot Bugs List). A secondary criterion for

selecting the reports was the severity of the reports because

we wanted to have diversity among the clusters in terms

of severity. Thus, we finally chose the top 20 defect re-

ports from the Hot Bugs List in terms of largest number of

duplicates and diversity of severity. We retrieved 50 du-

plicates for each of the 20 defect reports. Hence, the to-

tal number of bugs considered were 1020. Only the top

20 bugs from the Hot Bugs List were chosen because only

these bugs had more than 50 duplicate each. Having fewer

than 50 duplicates for each original bug would have led to

too small clusters. The list of 1020 bugs served as input to

the Data Collection module of our system that automatically

collects over the Internet (from Mozilla’s Bugzilla database)

the Description and Summary of these 1020 bugs and stores

them locally in text files. The final data set contained 1003

data points because we eliminated 17 reports which had no

proper description fields. For these eliminated reports the

description field was empty or was simply redirecting the

294

user to another bug, e.g. the field contained textual pointers

such as ”see bug #123”.

The data set was further processed and analyzed with

two data mining tools: RapidMiner[8] and Weka[15]. We

used RapidMiner to generate the vectorial representations

for defect reports. Weka was used to apply the K-means

clustering algorithm to the data set. The two processing

steps are explained in more details below.

The TF-IDF Generation Module computes the TF-IDF

weights for each term in the vocabulary. For Description
documents, i.e. reports represented using their Description
field, the vocabulary size was 4569. The vocabulary size

indicates the number of dimensions of the document vectors

in the vectorial representation. For Summary documents,

the vocabulary size was 991. From the vocabulary size of

the two representations, description vs. summary, we notice

the efficiency of the summary-based representation which

has lower dimensionality.

In the next step, the defect reports in vectorial represen-

tation must be mapped to a format that WEKA requires in

order to do clustering. The required format is the ARFF

(Attribute Relation File Format) file format. This file can

be generated using the RapidMiner’s ArffExampleSetWriter
operator.

Clustering. There are two major categories of clustering

algorithms as listed below.

• Hierarchical clustering algorithms produce a nested

series of partitions based on a criterion for merging or

splitting clusters based on similarity.

• Partition based clustering algorithms identify the par-

tition that optimizes (usually locally) a clustering cri-

terion.

Example algorithms from each category are hierarchi-

cal agglomerative (HAC) and K-means, respectively [15].

HAC produces a hierarchical structure of clusters while K-

means leads to a flat, direct clustering. In HAC, each data

point is initially regarded as an individual cluster and then

the task is to iteratively combine two smaller clusters into a

larger one based on the distance between their data points.

In the K-means algorithm, we specify a priori the number

of clusters (K) we would like to have in the end. In test-

ing, this could be useful when testers want to find out what

are K, say K=20, clusters in the set of open defects. The

algorithm usually starts with K seed data points which are

considered as individual clusters. In subsequent iterations,

the remaining data points are added to some cluster based

on the distance to the centroid of each cluster. The centroid

is an abstract data point of an existing cluster that is found

by averaging over all the other points in the cluster. A dis-

tance metric must be defined for clustering algorithms. The

advantage of using K-means is that it is very easy to imple-

ment and relatively efficient i.e. O(t × k × n), where n is

the number of objects, k is the number of clusters and t is

the number of iterations. In many cases, the k, t � n and

hence can be ignored.

K-Means Clustering with Weka. We used the Sim-

ple K-Means algorithm in WEKA to obtain the clusters

and automatically evaluate the performance of the cluster-

ing. Some implementations of K-means only allow numer-

ical values for attributes. In case of categorical attributes

they must be converted to numerical values. It may also

be necessary to normalize the values of attributes that are

measured on substantially different scales (e.g., age and in-
come). WEKA’s SimpleKMeans algorithm automatically

handles a mixture of categorical and numerical attributes.

Furthermore, the algorithm automatically normalizes nu-

merical attributes when doing distance computations. The

WEKA’s SimpleKMeans algorithm uses Euclidean distance

measure to compute distances between instances and clus-

ters. To perform clustering, we needed to set a couple pa-

rameters: number of clusters, which informs the clustering

algorithm how many clusters to generate, and seed. The

seed value is used in generating a random number which is,

in turn, used for making the initial assignment of instances

to clusters. In general, K-means is quite sensitive to how

clusters are initially assigned and thus it is often necessary

to try different values and evaluate the results.

4.4 Results

The clustering accuracy is the number of documents cor-

rectly clustered divided by the total number of documents.

WEKA includes an evaluation module that automatically

compares the output of the clustering algorithm to the cor-

rect clustering, which in our case are the expert human judg-

ments regarding whether one description is a duplicate of

another as indicated in Mozilla’s Bugzilla.

The performance of the K-means clustering algorithm

depends on the number of seeds initially used to start the

clustering. We experimented with various values for the

seed parameter to find what is the best number of seeds to

use. We varied the seed value from 0 to 1003 in increments

of 1. For Description-based representation of reports, the

maximum performance was found to be for the seed value

33, which is 47.7567%, and the minimum performance was

found for the seed value 175, which is 7.2782%. The aver-

age performance obtained was about 29.3581%.

For Summary-based representations, the maximum per-

formance was found for seed value 825, which is 59.8205%,

and the minimum performance was for seed value 275,

which is 34.2971% . The average performance obtained

was about 44.2240%. Thus, our proposed method is able

to identify clusters of reports describing the same underly-

ing problem with an accuracy of 44.2240%. A baseline ap-

proach would be to always guess one of the twenty clusters

295

for an average accuracy of 20%. A statistical t-test (α=0.05)

was used to compare the baseline to our approach and found

our approach to be significantly (p¡0.0001) better than this

baseline. The null hypothesis was that the average accuracy

computed over 1004 seed points is equal to the average ac-

curacy of the baseline approach.

5. Discussion and Future Work

Having a clustering feature integrated in a defect track-

ing tool such as Bugzilla could be extremely beneficial. For

instance, in a large software development project this fea-

ture can be used periodically, e.g. once a week or once

a month, to analyze the set of open defects by clustering

them. The clusters can be used by the testing team in vari-

ous ways, for instance to prioritize their work. We plan to

continue our investigation of clustering defect reports by us-

ing other representations for defect reports, e.g. using only

the overview section of the description field of a software

report. One interesting research question to be explored in

the future is the suitability of our proposed methods to clus-

ter similar but not necessarily identical defect reports.

6. Conclusions

We addressed in this paper the challenging task of clus-

tering defect reports. The evaluation was based on clus-

ters containing defect reports describing the same underly-

ing bug. Our experiments on defect reports from Mozilla’s

Bugzilla with the K-means clustering algorithms showed

that using reports’ summaries together with a TF-IDF vec-

torial representation leads to better clustering than using full

descriptions of reports, which is also computationally more

expensive.

7 Acknowledgments

This research has been supported by a grant from the

Systems Testing Excellence Program (STEP) of The Uni-

versity of Memphis. Any opinions, findings, and conclu-

sions or recommendations expressed in this article are those

of the authors and do not necessarily reflect the views of The

University of Memphis.

We are also extremely grateful to Sameer Mohammed

for his help with implementing this project as part of his

Masters Project.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[2] L. Etzkorn, L. Bowen, and C. Davis. An approach to

program understanding by natural language understanding.

Natural Language Engineering, 5(1):1–18, 1999.
[3] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a

review. ACM Computing Surveys, 31(3):264–323, 1999.
[4] T. P. Karnowski, S. S. Gleason, and J. Kenneth W. Tobin.

Fuzzy logic connectivity in semiconductor defect clustering.

Technical report, Oak Ridge National Laboratory.
[5] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.

Mining eclipse developer contributions via author-topic

models. In International Workshop on Mining Software
Repositories, Minneapolis, USA, May 19-20 2007.

[6] P. Lutsky. Documentation parser to extract software test con-

ditions. In Proceedings of the 30th Annual Meeting of the
Association for Computational Linguistics, 1992.

[7] P. Lutsky. Using a document parser to automate software

testing. In Proceedings of the 1994 ACM Symposium on
Applied Computing, pages 59–63, Phoenix, Arizona, 1994.

[8] I. Mierswa, M. Wurst, R. Klinkenbergand, M. Scholz, and

T. Euler. Yale: Rapid prototyping for complex data mining

tasks. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD-06), 2006.

[9] G. Miller. WordNet: a lexical database for english. Commu-
nications of the ACM, pages 39–41, 1995.

[10] J. N. och Dag, V. Gervasi, S. Brinkkemper, and B. Reg-

nell. Speeding up requirements management in a product

software company: Linking customer wishes to product re-

quirements through linguistic engineering. In International
Conference of Requirements Engineering, 2004.

[11] P. Runeson, M. Alexandersson, and O. Nyholm. Detection

of duplicate defect reports using natural language process-

ing. In Proceedings of the 29th International Conference on
Software Engineering, 2007.

[12] V. Rus and S. Shiva. A general framework for quantitative

software testing. In Proceedings for the First International
Workshop on Advances and Innovations in Software Testing,

Memphis, USA, May 6-8 2007.
[13] J. Schlimmer. Learning meta knowledge for database check-

ing. In Proceedings of the National Conference of the Amer-
ican Association of Artificial Intelligence (AAAI’91), pages

335–340, 1991.
[14] A. Singh and C. Krishna. On the effect of defect clustering

on test transparency and ic test optimization. IEEE Transac-
tions on Computers, 45(6):753–757, June 1996.

[15] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

296

Subjective Assessment of the Mutual Influence of
ISO 9126 Software Qualities: An Empirical Study

Sandro Morasca
Dipartimento di Scienze della Cultura, Politiche e dell’Informazione

Università degli Studi dell'Insubria
Como, Italy

sandro.morasca@uninsubria.it

Abstract— It is usually believed that software qualities may
influence each other and that improving one software quality
may cause some other qualities to worsen. Since no commonly
used set of metrics exist for quantifying the software qualities of
interest, the perception of the influence of one software quality on
another is often used in practice when making decisions about
software development. We describe the results of an empirical
study on the beliefs of software practitioners in the mutual
influence of the ISO 9126 software qualities. The study shows
that the subjects believed, on average, that a number of
influences exist between the ISO 9126 software qualities.
However, the practitioners did not believe that trade-offs exist
among several of these software qualities. In other words, they
believed that improving one quality is often likely to improve
other qualities as well.

Keywords-ISO 9126;software quality

I. INTRODUCTION

During software development, decisions are made to obtain
better software products in terms of several software qualities.
Software qualities (or attributes) are usually divided into
internal and external software ones:

� Internal software qualities (e.g., size, structural
complexity, coupling) can be measured based on the
knowledge of the software product alone;

� External software qualities (e.g., reliability, usability,
maintainability, and readability) are related to both the
software product and its environment. External
software qualities are related to the many “users” of a
software product, e.g., reliability and usability are
related to the software's final user; maintainability and
readability are related to the software developers.

External software qualities are usually the qualities of
industrial interest, since they are related to the behavior of a
software product towards its “users.” On the other hand, the
study, measurement, and “improvement” of an internal
software quality is fully justified only if that internal software
quality is believed to be linked to least one external software
quality of industrial interest or to a process quality (e.g., cost,
time-to-market). For instance, one of the goals of the
introduction of object-oriented software development
techniques was to obtain software systems divided into

modules that were “better” in terms of their degree of internal
cohesion and external coupling, i.e., with a higher degree of
internal cohesion and a lower coupling with each other.
However, higher cohesion and lower coupling were not the
final objective of the introduction of object-oriented
techniques: higher cohesion and lower coupling were supposed
to improve the external qualities of software systems, e.g., in
terms of maintainability, reusability, error-proneness, etc. Thus,
even when they are based on some internal software quality,
decisions on software development techniques and processes
are actually often made to improve of some external software
quality. Furthermore, even when the goal is to improve some
process quality, decisions do affect external software qualities.

In this paper, we focus only on external software qualities,
so the term “software quality” is used in this paper with the
meaning ”external software quality,” unless otherwise
explicitly stated.

It is commonly believed that there may be interactions
among software qualities, and that improving one of the
qualities of a software product may have a (possibly adverse)
effect on other software qualities. It is argued that, if this was
not the case, then it would be possible to improve all software
qualities at the same time. This entails that practitioners must
constantly make decisions as to how to proceed during all
software development phases based on a balancing among the
different software qualities that are affected by the decisions.
For instance, a design decision may increase the level of one
quality while decreasing the level of another. Therefore, the
interactions among software qualities should always be taken
into account during the software development process.

In principle, decision making should be based on
quantitative information, if possible. This requires:

� the definition of adequate measures for the qualities of
interest, and

� empirical studies that ascertain or at least provide
convincing support on the existence and nature of the
interactions among software qualities.

However, the state of the art of software measurement has
not reached a point in which (1) adequate measures are often
available for the qualities of interest, and (2) a sufficient
number of studies are available on the interactions of software

297

qualities. As a consequence, software designers and developers
often make decisions based on their own beliefs in the
existence and nature of interactions among software qualities.

The goal of the study documented in this paper is to assess
the degree of belief of software practitioners on the interactions
among the ISO 9126 software qualities, and determine if there
is some degree of consensus among the practitioners. This
paper takes an empirical approach, in that its results are based
on data collected from practitioners in a series of empirical
studies carried out with practitioners from Italian and Swiss
software companies. We wanted to obtain a characterization of
software practitioners’ beliefs about the mutual influences of
software qualities, i.e., have a quantitative idea of the
distributions of these beliefs and descriptive statistics such as
mean, standard deviation, and median. In addition, we also
explored the significance of these beliefs are from a statistical
point of view. At any rate, this study provides initial evidence,
but more studies are certainly needed to gather more evidence.

The remainder of the paper is organized as follows. Section
2 concisely describes the ISO 9126 standard. Section 3
describes the setting of the empirical study. The statistical
hypotheses we tested are in Section 4. The empirical results are
reported and discussed in Section 5. Section 6 concisely reports
on the internal, external, and construct validity of the empirical
study. Conclusions and outline of future work are in Section 7.

II. ISO 9126
A few quality models have been defined in the last few

years, starting from [9]. Quality models are often defined in a
hierarchical fashion (e.g., see Fig. 1). The overall quality of a
software product is viewed as composed of a set of qualities.
These qualities may be hierarchically refined by several layers
of qualities (some of which may be internal software qualities).
At each layer, the relative importance of each quality may be
weighted depending on the measurement problem at hand. This
hierarchical refinement process ends with the definition of a set
of measures to quantify each quality. The weights provided to
each quality may be used to combine the values of the
measures into a single value for the overall software quality.

In some quality models, the qualities and measures
associated with all the nodes of this hierarchical structure are
fixed [9]. In other quality models, some parts are left
tailorable/unspecified, for instance the set of measures [5].
There are also general, flexible framework that can be tailored
to several different environments and measurement objectives,
like the Goal/Question/Metric paradigm [1,2], which allows for
the building of different quality models and measures.
Depending on the measurement application at hand, different
qualities may be chosen to be studied. Also, the same quality
may be refined via different sets of qualities in different
measurement applications. At the end of the hierarchical
generation process, different measures may thus be generated
for different measurement applications.

At any rate, like in many other engineering disciplines,
efforts have been made in recent years to reach a standard view
of software quality and of a quality model. This has led to the
definition of the ISO 9126 quality model [5, 6, 7], in which
software quality is viewed as composed of 6 qualities.

The ISO 9126 [5] standard was originally defined in 1991.
Refinements and guidelines have been provided over the years.
For instance, standard sets of external and internal measures
have been provided in the new version [6, 7] of the ISO 9126
standard and a measurement process-oriented view has been
introduced in the ISO 14528 standard. However, the basic
structure of the ISO 9126 standard has not been substantially
affected by the its evolution. Thus, we have used the original
standard in this study.

Quality

Functionality

Suitability

Accuracy

Interoperability

Compliance

Security

Reliability

Maturity

Robustness

Recoverability

Efficiency
Time Behavior

Resource Behavior

Usability

Understandability

Learnability

Operability

Maintainability

Analyzability

Changeability

Stability

Testability

Portability

Adaptability

Installability

Conformance

Replaceability

M
E

TR
IC

S

Figure 1. The layers of ISO9126.

The ISO 9126 standard is organized on four layers (see Fig.
1). The first layer is that of the overall software quality. On the
second layer, the overall software quality is refined as being
composed of six qualities. Each quality is refined in terms of a
set of qualities on the third layer. The qualities defined on the
third layer afford direct quantification via a set of measures,
which are left unspecified in the original standard. For
completeness, we now list the six qualities on the second layer
along with their refining qualities on the third layer.

� Functionality is about meeting stated and implied
needs when the software is used under specified
conditions.

� Reliability is about maintaining the level of
performance under specified conditions.

� Efficiency is about providing the required performance
relative to the amount of resources used, under stated
conditions.

298

� Usability is related to being able to understand, learn,
and use the software under specified conditions.

� Maintainability is related to analyzing software
products to find a fault, change the software products,
making sure the change does not have side-effects, and
testing the new version.

� Portability is related to being able to make a software
product run in different environments.

The ISO 9126 standard also says that these qualities
describe, with minimal overlap, software quality. Thus, they
are somewhat orthogonal, even though this does not mean that
there are no dependencies among them. However, some degree
of independence should be there. If there was a very strong
influence between two such qualities, one may wonder why
they are both in the standard. This is what happens in other
fields as well. When a strong statistical correlation is found
between two variables, then the two variables basically contain
the same information, since, once one of them is known, the
other one is basically known too, i.e., it can be discarded from
the core modeling of some phenomenon as being redundant.

ISO 9126 is therefore a general reference model that lists a
number of qualities that software practitioners should have in
mind when they build software. Practitioners should be aware
that interactions among these qualities may exist, so they can
make informed decisions during software development. Here,
we focus on how aware practitioners are of these interactions.

III. SETTING OF THE EMPIRICAL STUDY

The main goal of the empirical study was to evaluate the
degree of consensus about the influence of each second-layer
ISO 9126 quality on the others. The empirical study involved
145 software practitioners from Italian and Swiss software
development companies, who were attending advanced classes
on software quality. The subjects were involved in a variety of
different application domains, from business software
applications, to web applications, to automotive, etc. The data
were collected during ten editions of the same course on
software quality, over a period of 4 years, from 2000 to 2004.

The ISO 9126 standard was first explained to the subjects.
Then, the subjects were asked to quantify their personal degree
of belief about how strongly each ISO 9126 quality influences
the other ISO 9126 qualities and data were collected. Data
were collected by means of a very simple data collection form,
organized in the shape of a matrix. Each cell of the matrix was
related to a pair of qualities, one of which was the
“influencing” quality, say X, while the other was the
“influenced” quality, say Y. The idea was to check whether it
was believed that pushing for quality X (the “influencing”
quality) would also affect quality Y (the “influenced” quality),
as both qualities depend on the same root cause, i.e., the way
the software is written. We distinguished an influencing from
an influenced quality because the influence of X on Y may not
necessarily be of the same type (i.e., positive or negative) and
strength as the influence of Y on X.

For each pair of qualities <X, Y>, the subjects were asked to
provide a value on a –5 .. +5 scale, where the value –5 has the

meaning “X strongly negatively influences Y” and the value +5
has the meaning “X strongly positively influences Y.” Thus,
value 0 has the meaning “X does not influence Y.” The -5 .. +5
scale was chosen because (1) it would clearly represent both
negative and positive influences and (2) a sufficient number of
values were available to respondents to quantify their beliefs
about the degrees of influence and provide different rankings
for different degrees. It was made clear to the subjects that the
single values of the scale were not important per se, but they
were used to obtain a ranking of the beliefs of the various
influences. For instance, the value ‘4’ per se did not provide
much information, but it indicated that the subject believed a
higher degree of influence than a ‘2’ value. The subjects were
also allowed to leave blank the values associated with a pair
<X, Y>, if they did not feel sufficiently confident about
providing any value. This was done to reduce the number of
unsubstantiated guesses. For completeness, it was explained to
the subjects that “blank” and 0 had two different meaning, i.e.,
“blank” meant “don’t know,” while 0 actually meant “I believe
there is no influence.” It was made clear to the subjects that
there was no “correct answer” for any of the pairs <X, Y>. The
aim of the survey was only to capture the participants' beliefs
in a quantitative form and no consequences of any kind would
derive to them from their answers. In addition, the survey also
had the pedagogical goal [3] of making the practitioners reflect
about the ISO 9126 standard, the meaning of its qualities, their
interactions, and the fact that software quality needs to be
planned in advance and that development decisions may have
an impact on several different qualities.

IV. STATISTICAL HYPOTHESES EXPLORED

The hypotheses we tested are of two kinds, as follows.

� Hypotheses related to single distributions. Since the
data we collected were ordinal [10], we investigated
hypotheses related to the median of each distribution,
instead of the mean, which, strictly speaking, is not a
meaningful indicator of central tendency for ordinal
data [10]. The motivations for these hypotheses related
to single distributions come from conventional wisdom
that has it that qualities do influence one another. We
wanted to test whether our respondents actually
believed in this idea. Given two qualities X and Y, our
null hypothesis was H0: MX = MY, and the alternative
hypothesis was H1: MX � MY, where MX and MY
represent the medians of X and Y, respectively. As
explained in Section III, these hypotheses have the
meaning “if software is written in such a way as to
push for quality X, I believe that quality Y is also
affected.” Since no assumptions on the direction
(positive or negative) of influence could be safely
made, our above statistical hypotheses were
nondirectional, and we used two-tailed statistical tests
to test them [8]. Note that two-tailed statistical tests are
more conservative than one-tailed tests for a given
level of statistical significance, so it is less likely to
reject the null hypothesis with two-tailed tests. Thus,
we wanted to be even more careful about investigating
the existence of such beliefs.

299

� Hypotheses related to the associations of pairs of
distributions. Given two qualities X and Y, we checked
whether there was an association between the ranking
provided by the subjects about the influence of X on Y
and the influence of Y on X, i.e., the influence between
X and Y works in both directions. For each association
checked, the null hypothesis states that there is no
association, while the alternative hypothesis states that
there is a positive association, since one may expect
that if it is believed that there is a positive (resp.
negative) influence of X on Y, then there is a positive
(resp. negative) influence of Y on X. Studying these
associations is an additional way of checking whether
the subjects believed that (1) there is a real trade-off
between qualities (this is the case when a double
negative association exists between the distributions,
i.e., improving X makes Y worse, and improving Y
makes X worse), or (2) the two qualities X and Y
support each other (this is the case of a double positive
association between the distributions, i.e., improving X
also improves Y, and vice versa).

V. RESULTS

Here, we first provide the results on the hypotheses related
to single distributions are in Section V.A. The results related to
associations between distributions are in Section V.B.

A. Results Related to Single Distributions
Table I contains the summary statistics for the data

collected for each of the possible pairwise interactions between
ISO 9126 qualities. Each ISO 9126 quality is identified by its
initial letter. The rows represent the influencing qualities, while
the columns represent the influenced qualities. Each cell of the
matrix in Table I contains the values of:

� N: the number of values collected

� 1Q: the location of the first quartile

� M: the median of the data distribution (the value 0.5 in
cell <F,U> is due to the midpoint approximation used
when a distribution has two medians)

� 3Q: the location of the third quartile

� m: the average value of the data distribution

� /: the standard deviation of the data distribution

� p: the statistical significance of the Wilcoxon signed
rank test [11], used to test the hypothesis about the
believed influence between the two qualities. The
Wilcoxon signed rank test is appropriate for assessing
hypotheses about the medians of single data
distributions of discrete, ordinal data.

We have also reported the values of m and / to provide a
more complete idea of the central tendency and spread of the
data distributions, though the data were collected on an ordinal
scale, for which m and / are not appropriate, in principle.

As a first observation, Table I shows that the 145 subjects
provided values for most of the cells. The cell with the highest

number of values (135) corresponds to pair <F,M> and the cell
with the lowest number of values (117) to pair <U,R>. This
seems to indicate that most subjects had a sufficiently solid
idea about most interactions among software qualities.

Second, the data distributions show a fairly large spread of
values. As could be expected with 145 total respondents, all of
the 30 data distributions actually have the maximum spread
possible, i.e., -5 .. +5 (this piece of information is not reported
in Table I, because it would be the same for all cells). As for
the interquartile range, the average of the distance between 1Q
and 3Q is 4.43 and the standard deviation is 1.07. In addition,
all of the standard deviations of the distributions are between
2.31 and 3.06. These measures of spread show that the
participants’ consensus about the influences between ISO 9126
software qualities was limited and some of the participants
believed that there was a really strong interaction between
software qualities, but their beliefs were conflicting.

TABLE I. STATISTICS FOR THE DISTRIBUTIONS

F R E U M P

F

 N: 133
1Q: -2
M: 0
3Q: 3
m: 0.82
/: 2.73
p:<0.001

N: 131
1Q: -2
M: 0
3Q: 3
m: 0.53
/: 2.82
p:<0.001

N: 130
1Q: -1
M: 0.5
3Q: 3
m: 0.65
/: 2.88
p:<0.001

N: 135
1Q: -1
M: 2
3Q: 3
m: 0.99
/: 3.02
p:<0.001

N: 125
1Q: -2
M: 0
3Q: 1
m:-0.38
/: 2.45
p:<0.001

R

N: 126
1Q: 0
M: 0
3Q: 3
m: 0.81
/: 2.49
p:<0.001

 N: 136
1Q: -1
M: 2
3Q: 4
m: 1.32
/: 2.89
p:<0.001

N: 129
1Q: -1
M: 0
3Q: 3
m: 0.46
/: 2.71
p:<0.001

N: 127
1Q: 0
M: 2
3Q: 3
m: 1.50
/: 2.51
p:<0.001

N: 118
1Q: -1
M: 0
3Q: 0
m:-0.22
/: 2.31
p:0.052

E

N: 123
1Q: -1
M: 0
3Q: 2
m: 0.29
/: 2.35
p: 0.45

N: 128
1Q: 0
M: 1
3Q: 3
m: 1.04
/: 2.55
p:<0.001

 N: 127
1Q: -2
M: 0
3Q: 2
m: 0.05
/: 2.83
p:<0.069

N: 126
1Q: -2
M: 0
3Q: 2
m: 0.01
/: 2.81
p:<.145

N: 125
1Q: -3
M: -1
3Q: 0
m:-1.16
/: 2.52
p:<0.001

U

N: 122
1Q: 0
M: 0
3Q: 3
m: 0.79
/: 2.68
p:0.011

N: 117
1Q: 0
M: 0
3Q: 2
m: 0.39
/: 2.36
p:0.076

N: 120
1Q: -2
M: 0
3Q: 2
m: 0.11
/: 2.76
p:0.359

 N: 129
1Q: -2
M: 0
3Q: 2
m: 0.09
/: 2.73
p:0.409

N: 127
1Q: -3
M: 0
3Q: 1
m:-0.41
/: 2.76
p:0.107

M

N: 122
1Q: -1
M: 0
3Q: 3
m: 0.43
/: 2.68
p:0.148

N: 124
1Q: -1
M: 1
3Q: 3
m: 0.90
/: 2.96
p: 0.003

N: 127
1Q: -2
M: 0
3Q: 2
m: -0.24
/: 2.91
p:0.261

N: 125
1Q: -1
M: 0
3Q: 1
m: -0.03
/: 2.40
p:0.213

 N: 125
1Q: 0
M: 1
3Q: 3
m: 1.03
/: 2.86
p:0.002

P

N: 118
1Q: -2
M: 0
3Q: 0
m:-0.67
/: 2.40
p:0.056

N: 119
1Q: -2
M: 0
3Q: 1
m: -0.45
/: 2.56
p:0.365

N: 125
1Q: -3
M: -2
3Q: 0
m: -1.22
/: 2.55
p:<0.001

N: 127
1Q: -2
M: 0
3Q: 1
m: -0.23
/: 2.83
p:<0.34

N: 126
1Q: -2
M: 0
3Q: 3
m: 0.32
/: 3.06
p:0.425

Third, notwithstanding the spreads of values, a number of
distributions show that it makes sense to hypothesize the
existence of some degree of consensus about the influence of
some software qualities on other software qualities. To this
end, the statistical significance of the results is quite clear. We
set a statistical threshold of 0.05, as is customary in empirical
software engineering. Based on the number of responses we

300

had for each distribution we could safely use the normal
approximation to the exact distribution of W, the statistic used
in the Wilcoxon signed rank test. Since the test is two-tailed, p-
values less than 0.025 provided us with evidence to reject the
null hypothesis. We have obtained statistically significant
results in 15 distributions out of 30, i.e., in half of the cases,
our respondents believed that two qualities interact.

Fourth, it is somewhat surprising that the majority of
influence relationships are believed to be nonnegative. This can
be assessed in several different ways. Out of 30 medians, 2
turned out to be negative, 21 null, and 7 positive. The
interquartile range turns out to be more biased towards negative
values (e.g., -2..1, like in the case of <F,P>) in 8 cases,
centered on 0 (e.g., -2..-2 like in the case of <U,E>) in 6 cases,
and more biased towards positive values (e.g., -1..3, like in the
case of <F,M>) in 16 cases. Out of 30 relationships, 20 have a
value m > 0 and 10 have a value m < 0. So, all of these
statistics provide the same kind of evidence. These results are
somewhat unexpected, since it is commonly believed that there
is a trade-off among software qualities, i.e., trying to improve
one of them may result in worsening another.

In addition, 8 out of the 10 distributions with a negative
value for m are actually related to Portability, so only 2 out of
the 20 distributions that do not involve Portability actually have
a negative m. Based on these results, one may conclude that the
respondents in the sample viewed Portability as a sensitive
quality that needs to be taken into account during development,
since decisions about software products to improve other
qualities may negatively affect Portability.

B. Results Related to Associations between Distributions
Table II contains the values of Spearman's rho and

Kendall's taub [4] about the agreement of the rankings of the
influences <X,Y> and <Y,X>. We used Spearman's rho and
Kendall's taub because the variables we used are ordinal ones.
Both statistics range between –1 (perfect negative association)
and +1 (perfect positive association), so they quantify the
degree of association. In addition, both statistics can be used to
check whether the association is statistically significant. We
found that there is a statistically significant association (at the
0.05 level) between the rankings of the influence of quality X
on quality Y and the rankings of the influence of quality Y on
quality X for all pairs of qualities <X,Y>.

For a pair of qualities <X,Y> where both the influence of X
on Y and of Y on X are statistically significant (see Table I) and
the influence is of the same direction, these results show that
the respondents seem to believe, even though with various
degrees of strength, that there is a bidirectional influence
between qualities. Specifically, the association with the highest
values for rho and taub involves Usability and Portability. The
subjects seem to indicate that there is a real trade-off between
these two qualities, since the values of m for both <U,P> and
<P,U> in Table I are negative and also the interquartile ranges
are biased towards negative values. The second highest values
for rho and taub involve Functionality and Reliability. This
result could actually be somewhat expected, as this indicates
that the subjects believed that the two qualities support each
other, i.e., improving one will also improve the other.

Let us now look at pairs of qualities for which there is no
conclusive evidence on the fact that one influences the other,
but the influences in Table I are of the same sign, e.g.,
Efficiency and Functionality, though there is evidence that
Functionality influences Efficiency, as shown by the p-values
in Table I. Table II shows that there is an association between
the scores of <F,E> and <E,F> which seems to confirm that,
even though the influence <E,F> is not statistically significant,
the two qualities in general are believed to somewhat support
each other, or at least they are not conflicting anyway, even
though one influence is stronger than the other. Further
investigations may be needed in this case, though.

TABLE II. SUMMARY STATISTICS BY INFLUENCING AND INFLUENCED
QUALITY

<X,Y> <Y,X> rho taub
<F,R> <R,F> 0.68 0.60
<F,E> <E,F> 0.59 0.46
<F,U> <U,F> 0.60 0.50
<F,M> <M,F> 0.35 0.31
<F,P> <P,F> 0.58 0.52
<R,E> <E,R> 0.61 0.49
<R,U> <U,R> 0.54 0.42
<R,M> <M,R> 0.31 0.26
<R,P> <P,R> 0.35 0.29
<E,U> <U,E> 0.55 0.45
<E,M> <M,E> 0.51 0.44
<E,P> <P,E> 0.65 0.56
<U,M> <M,U> 0.50 0.43
<U,P> <P,U> 0.71 0.61
<M,P> <P,M> 0.61 0.54

As for those pairs of qualities for which there is no
evidence that either quality influences the other (e.g., see the
cells for <E,U> and <U,E> in Table I), the results on rho and
taub provide further support for the lack of actual influence.

VI. VALIDITY OF THE EMPIRICAL STUDY

Like in any empirical study, we need to examine the factors
that may have biased our results. We believe that the following
factors may have influenced an empirical study like ours.

A. Internal Validity
These two factors could pose a threat to the internal validity

of the empirical study.

� Subjects. The subjects were not selected beforehand,
so, no self-selection occurred, and various different
professional figures were involved. This may be
acceptable for the internal validity of our study.

� Knowledge on ISO 9126. All the subjects were given
the same information about ISO 9126. It would not
make sense to “randomize” this factor, i.e., provide the
subjects with different degrees of knowledge about
ISO 9126.

301

B. External Validity
The question may arise as to how representative our

empirical study is in the population of empirical studies on ISO
9126 qualities.

� Subjects. It would not be possible to claim that the
subjects were representative of the population of
software project leaders and developers. However, no
pre-selection was carried out and the class was given
10 times to different people with different
backgrounds, skills, and expertise in different
application domains.

� Knowledge on ISO 9126. Not all project leaders and
developers are in general knowledgeable on ISO 9126,
and even those who are may have various degrees of
knowledge. However, some knowledge on ISO 9126
was an obvious precondition of the study, if only to
have a common terminology across all subjects.

C. Construct Validity
We did not use any particular measure defined for the basic

constructs, i.e., the ISO 9126 qualities, of the study. There is no
general agreement on how these constructs should be
measured, and any measures could be questioned as to whether
they actually quantify the quality they purport to measure. An
operational measure was defined for the assessment of the
mutual influences among qualities. One may wonder whether
this was an appropriate way to capture these influences. We
chose an ordinal measure because it would have made little
sense to choose an interval or ratio measure, since we are
interested here in rankings. Also, we provided a measure with
11 integer values (from -5 to +5), so it was sufficiently fine-
grained to capture the rankings among influences.

VII. CONCLUSIONS AND FUTURE WORK

The research documented in this paper has investigated
empirically whether several software project leaders and
developers believed that external software qualities influence
each other. The results seem to indicate that, on average, the
subjects believed in the existence of a number of such
influences, and, more surprisingly, on the fact that these
influences are positive. Thus, the need for trade-offs between
possibly conflicting qualities does not seem to be perceived by
our respondents. Also, the influences seem to be bidirectional,
which provides further evidence to this perceived lack of trade-
offs. The one real exception is Portability, which is believed to
be conflicting with almost all other qualities.

On the other hand, several reasons may provide an
explanation for why no mutual influence was detected for a
number of pairs of qualities, including:

� there is actually no influence in general for those pairs,
i.e., the qualities are mostly independent of each other;

� the course on software quality did not explain
adequately the concepts behind the ISO 9126 qualities;

� the ISO 9126 qualities should be provided with more
precise explanations; as for this, the introduction of
standard sets of measures will provide further aid in the
understanding of the definition of the ISO 9126
qualities.

At any rate, a good deal of further work is will need to be
carried out, including:

� gathering more data;

� understanding the reasons behind software
practitioners’ beliefs, so these reasons can be studied
and tested;

� studying the effect of providing the new subjects with
the new standard sets of measures for the qualities;

� investigating the relationships between internal
software qualities and external ones.

ACKNOWLEDGMENT

The research presented in this article was partially funded
by the IST project QualiPSo, sponsored by the EU in the 6th
FP (IST-034763); the FIRB project ARTDECO, sponsored by
the Italian Ministry of Education and University; and the
project La qualità nello sviluppo software, sponsored by the
Unversità degli Studi dell’Insubria.

REFERENCES

[1] V. R. Basili and D. H. Rombach, "The Tame Project: Towards
Improvement-Oriented Software Environments," IEEE Trans. Software
Eng., vol. 14, no. 6, pp. 758-773, June 1988.

[2] V. R. Basili and D. Weiss, "A Methodology for Collecting Valid
Software Engineering Data," IEEE Trans. Software Eng., vol. 10, no. 11,
pp. 758-773, November 1984.

[3] J. Carver, M.L. Jaccheri, S. Morasca, F. Shull, „Issues in using students
in empirical studies in software engineering education,“ in IEEE
METRICS, pp. 239–249, Sydney, Australia, 2003.

[4] J. D. Gibbons, Nonparametric Measures of Association, Sage
Publications, 1993.

[5] ISO 9126, "Information technology - Software product evaluation -
Quality characteristics and guidelines for their use," 1991.

[6] ISO/IEC 9126-1:2001- Software Engineering - Product Quality Part 1:
Quality Model, ISO/IEC, 2001.

[7] ISO/IEC 9126-2:2002- Software Engineering - Product Quality Part 1:
External Metrics, ISO/IEC, 2002.

[8] G. K. Kanji, 100 Statistical Tests, SAGE Publications, London, UK,
1999.

[9] J. A. McCall, P. K. Richards, G. F. Walters, Concepts and Definitions of
Software Quality Factors in Software Quality, Vol. 1, Springfield, VA,
USA: NTIS, November 1977.

[10] F. S. Roberts, Measurement Theory, Addison-Wesley, Reading, 1979.
[11] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures, 3rd ed. Chapman & Hall CRC, 2003.

302

Reverse Engineering Interface Protocols
for Comprehension of Large C++ Libraries

during Code Evolution Tasks

Edward B. Duffy, Jason O. Hallstrom and Brian A. Malloy
Computer Science Department

Clemson University
Clemson, SC 29634, USA

E-mail: {eduffy,jasonoh,malloy}@cs.clemson.edu

Abstract

In this paper, we describe our trace monitoring system
and a methodology for reverse engineering interface proto-
cols to capture the sequence of method invocations for large
C++ applications. To evaluate our system, we present a case
study using the networking library in the Mozilla Internet
Application Suite, and three Mozilla applications: Firefox,
Thunderbird and Sunbird. We use trace monitoring of the li-
brary to capture the interface protocols for the classes in the
library and our preliminary results support our assumption
that interface protocols follow a specific pattern and that
these patterns can facilitate comprehension of the underly-
ing interactions among the classes in the system.

1. Introduction

The process of software maintenance, including modi-
fication, refactoring, and usage of complex object oriented
systems, requires knowledge about the system under study
and, in particular, about the interactions among the classes
and components of the system. However, software artifacts
that describe these interactions are frequently unavailable
and for large, open-source C++ applications, they are virtu-
ally nonexistent. Thus, much of the research in software en-
gineering has focused on the development of tools to auto-
matically generate information to improve comprehension
of the application under study, and thereby facilitate the
maintenance effort.

In this paper, we present Hylian, our system for code
regeneration and trace monitoring in large C++ applications.
Hylian uses an augmented form of the GNU gcc parser to
output parse trees in XML format, permit modification of
the parse trees, and to regenerate a modified version of the

source code. We used an earlier version of Hylian to reverse
engineer a grammar for the gcc C++ parser, version 4.0.0
[5]; the current version permits modification of the parse
tree to extract trace information of a C++ application under
study.

To demonstrate the utility of Hylian, we generate trace
information, extract the sequence of method invocations,
and generate regular expression representations of the inter-
face protocols for Necko, a large networking library written
in C++ [9]. To exercise the Necko library, we use three large
applications in the Mozilla Internet Application Suite: Fire-
fox, Thunderbird and Sunbird, a browser, mailer and calen-
dar application respectively [8]. We then choose classes in
the Necko library that are used by the three applications and
examine the regular expression representation of the inter-
face protocols for the Necko library.

Our preliminary results support our assumption that the
interface protocols for these classes follow a specific pattern
and that these patterns can be used to facilitate comprehen-
sion of the class and to guide usage of the class by develop-
ers unfamiliar with the Necko library. Moreover, the regu-
lar expression representations of the interface protocol for a
class can serve as examples, or templates, of correct usage
of a class for a large library. We conjecture that these exam-
ples of library usage exemplify the comprehension model
needed in the maintenance of large libraries and, together
with other comprehension tools, can facilitate the mainte-
nance effort.

In the next section, we review the terminology and con-
cepts that we use in our work. In Section 3 we describe
our trace monitoring methodology and its use in reverse en-
gineering interface protocols. In Section 4 we present the
case study described above and in Section 5 we review re-
lated research. In Section 6 we draw conclusions.

303

Figure 1. The Hylian System. This figure illustrates Hylian, our code analysis and trace monitoring system.

2. Terminology and Concepts

In this section, we review the terminology and concepts
that we use in our work. In Section 2.1 we review grammars
and parse trees, and in Section 2.2 we review the concept of
trace monitoring.

2.1 Grammars, Parse Trees and ASGs

A grammar defines a language by specifying valid se-
quences of derivation steps that produce sequences of ter-
minals, known as the sentences of the language. One proce-
dure for using a grammar to derive a sentence in its lan-
guage is to begin with the start symbol S and apply the
production rules in some sequence until only non-terminals
remain. This process defines a tree whose root is the start
symbol, whose nodes are non-terminals and whose leaves
are terminals. This tree is known as a parse tree; the process
by which it is produced is known as parsing. Our system,
Hylian, generates parse trees that we augment to monitor
the execution of the libarary unders study.

2.2 Trace Monitoring

A trace monitor is a software artifact that observes the
actions in a software system and, when certain activities
are detected, the monitor executes some code of its own
[2]. Trace monitors are especially useful for the detection
or verification of runtime behavior. In our work, we use
trace monitoring to detect class method invocations and to
record a history of these invocations.

3. Protocol Extraction Methodology

In this section, we describe our system for monitoring
the execution of an application and its corresponding li-
brary, and for reverse engineering interface protocols for
C++ classes in the library. In the next section we present
the Hylian system that we utilize and in Section 3.2 we de-
scribe our approach to regular expression generation.

3.1 Overview of the Hylian System

Figure 1 summarizes the flow of information through the
system that we use. The source code for a C++ library is
shown as input to Hylian, shown as a tabbed box to the
left side of the figure. Hylian uses an augmented version
of the GNU gcc parser, version 4.0.0, to generate a parse
tree representation of the library code in XML format [5].
We produce transformed code to monitor the library by aug-
menting the parse trees with parse subtrees that contain code
to trace the method invocations in the library; this phase is
illustrated in Figure 1 as a tabbed box labeled Transformed
Library. The Transformed Library is compiled into object
code by the GNU C++ compiler, which is linked with the
object code for the application that will utilize the library.
The resulting executable, together with the input to the ap-
plication, produces the Protocol Strings, which are then
transformed into the Interface Protocol for the library, ex-
pressed as regular expressions.

3.2 Construction of Regular Expressions

We use an iterative algorithm to convert each protocol
string into a regular expression and, for a protocol string
of length n, our algorithm runs in O(n3) time. We first
search the protocol string for recurring patterns of size 1,
then recurring patterns of size 2, and continue the search,
looking for recurring patterns of size n/2. For example, in
searching for patterns of size 2, the string “abab” will be
converted to (ab)+. When the protocol string for each ob-
ject is converted to a regular expression, we then use a perl
package, Regexp::Assemble, to construct a single regu-
lar expression from the set of protocol strings generated by
each instantiation of the class under consideration.

There is an abundance of research describing techniques
to recover interface protocols using a finite state machine
or regular expression representation [4, 7, 10, 11]. Our fu-
ture work includes an investigation into these techniques to
improve our protocol recovery process.

304

Figure 2. Study Summary. This figure illustrates our study to evaluate our methodology for generating interface
protocols for the Necko Networking Library utilized by the Mozilla Internet Application Suite.

Application Version Units Parse Tree
Necko 2.0a1pre 101 1,542,653
Firefox 3.0a8 1,262 27,857,127
Sunbird 0.6a1 1,586 33,023,605

Thunderbird 3.0a1pre 1,826 35,190,012

Table 1. Testsuite Statistics.

4. Case Study: The Mozilla Internet Suite

In previous sections of this paper, we described our ap-
proach for exploiting dynamic trace monitoring to capture
the interface protocols of classes in an object-oriented sys-
tem. In this section we describe a study that we conducted
to evaluate our methodology and to show the utility of our
approach. Our study involves an investigation into three
applications included in the Mozilla Internet Application
Suite: Firefox, a commonly used browser; Thunderbird, a
mailer; and Sunbird, a calendar management application
[8]. We use these applications to investigate usage of the
Necko networking library included in the Mozilla Internet
Application Suite.

Figure 2 illustrates our use of the Hylian analysis sys-
tem, presented in Section 3, for transforming library code
to provide dynamic trace monitoring and generate interface
protocols for the classes in a library. In our study, we use
the Necko library, listed on the left side of the figure, as in-
put to our system, transform and regenerate the code, and
use the GNU C++ compiler to generate object code for the
transformed library, Necko Transformed Library, shown
in the middle part of the figure. We then link the object
code representation of the Necko Transformed Library,
first with an object code representation of the Firefox appli-
cation, and then with an object code representation of the
Thunderbird application, and finally with an object code
representation of the Sunbird application to produce pro-

tocol strings for each application. We then find the union
of the protocol strings generated for Necko usage by each
application to produce protocol strings for Necko classes,
Protocol Strings, shown as a folded edge box (folded box)
at the middle right of the figure. We then generate an Inter-
face Protocol for Library, as regular expressions.

4.1 The Mozilla Application Suite

The statistics in Table 1 provide information about the
version and size of the four applications that we study in this
section. The first column lists the application, Application,
the second column lists the version number, Version, the
third column lists the number of compilation units, Units,
and the fourth column lists the number of lines in the parse
tree files, Parse Trees, for each application. The applica-
tions are ordered in the table by their parse tree size. For
example Necko, the Mozilla networking library, is listed in
the first row of the table and consists of version 2.0a1pre,
101 compilation units and 1,542,653 lines in the parse tree
file. The largest application, Thunderbird, is listed on the
last line of Table 1 and consists of version 3.0a1pre, 1,826
compilation units and 35,190,012 lines in the parse tree file.

4.2 Usage of the Necko Networking Library

Table 2 provides detailed information about the usage
of Necko by the Firefox, Thunderbird, and Sunbird appli-
cations, including some information about the generated
protocol strings for Necko classes. To exercise the Fire-
fox browser, we visited medium-sized websites containing
a number of images: nytimes.com, washingtonpost.com,
slashdot.org, and digg.com. To exercise the Thunderbird
application, we sent two emails consisting of plaintext and
HTML markup, and we received an email message with
a 1MB file attachment. To exercise the Sunbird calendar
application, we synchronized the calendar component with
three ICL formatted online calendars.

305

Application Classes Instantiations Protocol Strings
Number Longest String Average Length

Firefox 76 14,055 14,055 59,070 31
Sunbird 55 1,297 1,297 17,578 68

Thunderbird 54 1,591 1,591 47,649 88

Table 2. Usage of Necko by the three Mozilla applications.

The first three columns of Table 2 list the application,
Application, the classes used, Classes, and the number of
classes instatiated, Instantiations, by the respective appli-
cation. For example, the Firefox application used 76 of the
142 classes in Necko, which is 21 more classes than the Sun-
bird application used, and 22 more classes than the Thun-
derbird application used, even though Firefox is the smallest
of the three applications, as measured by number of compi-
lation units and number of lines of parse tree code (cf. Ta-
ble 1). The sum of the instantiations in the third column
(14,055+1,297+1,591) is 16,943, the total number of class
instantiations for all three applications.

The final three columns in Table 2 list information about
the protocol strings, Protocol Strings, generated by each of
the three applications. The fourth column lists the number,
Number, of strings generated and, since each object gen-
erates a protocol string, the number of strings is the same
as the number of objects listed in the third column of the
table. The fifth column lists the length of the longest string,
Longest String, generated by each of the respective appli-
cations. The Firefox application generated the longest pro-
tocol string containing 59, 070 method invocations, which
means that one of the instantiated classes made 59, 070 in-
vocations of methods in the Necko library. The final column
of Table 2 lists the average length, Average Length, of the
protocol strings generated by the objects of the respective
application.

4.3 Class Comprehension in Large Systems: Reg-
ular Expressions for Necko

Figure 3 contains two tables that describe information
about the use of class nsDiskCacheInputStream in the
Necko networking library. The table at the top of the fig-
ure contains four columns listing the name of the appli-
cation, Application, the number of instantiations of ns-
DiskCacheInputStream, Instantiations, the number of
unique sequences of method invocation strings for ns-
DiskCacheInputStream, Unique Sequences, and the
interface protocol expressed as a regular expression, Inter-
face Protocol. The first row of the table at the top of the fig-
ure lists information for Firefox, which created 166 instanti-
ations of nsDiskCacheInputStream, generated 12 unique
method call sequences that are summarized by the regular

expression abc+ded. The last two rows of the table list in-
formation for Sunbird and Thuderbird, which did not create
any instantiations of class nsDiskCacheInputStream and
did not use any of the methods.

The table at the bottom of Figure 3 has two columns
where the first column, Mapping, specifies the mapping
between letters and method names and the second col-
umn, Unique Sequences of Method Calls, lists the set
of unique sequences of method invocations made by class
instantiations of the Firefox application on the Necko net-
working library. For example, the first row of the second
column of the table lists a sequence of 30 method invoca-
tions consisting of calls to ab, followed by a sequence of 25
calls to c, followed by calls to ded. Similarly, the ninth row
of the second column of the table summarizes a sequence of
158 method invocations consisting of calls to ab, followed
by a sequence of 153 calls to c, followed by calls to ded.
Note that we use dots to indicate that some of the 153 calls
to c have been elided from the ninth row of the table; how-
ever, all of the other sequences are illustrated precisely as
they were generated by our test cases.

The regular expression representation of the 12 se-
quences is listed in the fourth column of the first row of
the table at the top of Figure 3, abc+ded. In lieu of docu-
mentation, UML case tool artifacts or other specification of
the usage of a class, the reverse-engineered interface proto-
col can provide invaluable information about how a class in
a large system is used, or may be used. For example, using
the mapping, the typical usage of an instantiation of class
nsDiskCacheInputStream consists of a call to the con-
structor, a call to AddRef, followed by one or more calls to
Read, then calls to Close, Release and Close.

4.4 Comparison of Class Usage

Figure 4 illustrates a class instantiation history for those
classes in the Necko library that were used by the Firefox,
Thunderbird and Sunbird applications. Since we are inter-
ested in comparing usage by all three applications, the fig-
ure only lists those classes that were used more than ten
times by each of the applications.

The three bars on the left side of the figure represent
usage for the nsFileOutputStream class in the Necko li-
brary where the first bar indicates that Firefox created 44 in-

306

Use of nsDiskCacheInputStream by Three Applications
Application Instantiations Unique Sequences Interface Protocol

Firefox 166 12 abc+ded
Sunbird 0 0 NA

Thunderbird 0 0 NA
Protocol Strings for Firefox Application

Mapping Unique Sequences of Method Calls
a → nsDiskCacheInputStream 01: abccccccccccccccccccccccccded
b → AddRef 02: abccccccccccded
c → Read 03: abccccccccded
d → Close 04: abcccccccccccccded
e → Release 05: abcccded

06: abccccccccccccccccded
07: abcccccded
08: abcccccccded
09: abccccccccccccccccccccccccc . . . ccccccded
10: abccccded
11: abccded
12: abccccccded

Figure 3. Method Invocation Sequences for Class nsDiskCacheInputStream.

stances, Thunderbird created 37 instances and Sunbird cre-
ate 28 instances of this class. The three bars in the middle of
the figure represent usage for the nsBufferedStream class
in the necko library where the first bar indicates that Fire-
fox created 66 instances, Thunderbird created 68 instances
and Sunbird create 56 instances of this class. The usage of
this class is more evenly distributed than the usage of ns-
DiskCacheInputStream illustrated in Figure 3.

We found that the generated regular expressions for more
heavily used classes in Necko can be less readable than the
regular expression, abc+ded that we obtained for class ns-
DiskCacheInputStream. For example, Firefox usage of
class nsDiskCacheInputStream generated the expression
abbcdbcb∗fbg∗ch∗(ggh)∗c∗e∗, which may not be as use-
ful as the one we obtained for class nsDiskCacheInput-
Stream, or may indicate that nsDiskCacheInputStream
has more complex usage patterns. Our ongoing work in-
cludes an investigation of some of the excellent regular ex-
pression generation algorithms in literature [4, 7, 10, 11].

5. Related Work

The generation of interface protocols can be accom-
plished using either static or dynamic analysis. The static
approach has the advantage of finding all possible se-
quences of method invocations but must address the prob-
lems of pointer alias [6] and infeasible paths. Moreover, the
static approach may provide interface protocols that are ir-
relevant to the application under consideration, as we have
seen in Section 4.4. the regular expressions can be overly
complicated. The dynamic approach has the advantage of
providing only those sequences of method invocations that
are relevant to the application under consideration and does

not suffer the problems of alias or infeasible path resolution.
The related work that we review in this section employs the
dynamic approach to protocol recovery.

Cornelissen and Moonen describe a technique for ad-
dressing the scalability problem in extracting information
from execution traces of function calls in Java programs [4].
They observe that certain event sequences are repetitive,
where the repitition typically results from the occurrence
of method invocations within loops. Their summarization
technique entails the use of similarity matrices to visualize
the repetitive method invocation sequences in the trace. Re-
curring sequences of method invocations appear as patterns
in the matrix. However, the sequences appear in the matrix
as diagonal lines and this abstraction results in the loss of
information about the identity of the methods in the recur-
ring sequences. The approach that we describe in this paper
entails summarizing the recurring sequences of method in-
vocations as regular expressions, which has the advantage
of maintaining the identity of the methods involved in the
recurring sequences.

Walkinshaw et al. describe the construction of state ma-
chines from user supplied scenarios and execution traces of
Java programs [10]. They use the scenarios from the user,
the execution traces and the QSM state-merging approach
to interactively generate a state machine of the system. Our
approach differs from that of Walkinshaw et al. in that our
technique is fully automated and does not require user sup-
plied scenarios.

Butkevich et al. describe an extension to the Java pro-
gramming language to facilitate static conformance check-
ing and dynamic debugging of object protocols [3]. Object
protocols are sequencing constraints on the order in which
methods in a Java application may be invoked. In their

307

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

n
s
F
i
l
e
O
u
t
p
u
t
S
t
r
e
a
m

n
s
B
u
f
f
e
r
e
d
I
n
p
u
t
S
t
r
e
a
m

n
s
S
o
c
k
e
t
E
v
e
n
t

n
s
C
a
c
h
e
M
e
t
a
D
a
t
a

n
s
T
r
a
n
s
p
o
r
t
S
t
a
t
u
s
E
v
e
n
t

n
s
S
i
m
p
l
e
N
e
s
t
e
d
U
R
I

n
s
I
n
p
u
t
S
t
r
e
a
m
T
r
a
n
s
p
o
r
t

n
s
I
n
p
u
t
S
t
r
e
a
m
P
u
m
p

n
s
B
u
f
f
e
r
e
d
S
t
r
e
a
m

n
s
C
a
c
h
e
E
n
t
r
y

R
e
q
u
e
s
t
M
a
p
E
n
t
r
y

n
s
R
e
s
U
R
L

n
s
F
i
l
e
I
n
p
u
t
S
t
r
e
a
m

n
s
F
i
l
e
S
t
r
e
a
m

n
s
F
i
l
e
C
h
a
n
n
e
l

n
s
B
u
f
f
e
r
e
d
O
u
t
p
u
t
S
t
r
e
a
m

n
s
S
t
r
e
a
m
L
o
a
d
e
r

n
s
C
a
c
h
e
R
e
q
u
e
s
t

N
u
m
b
e
r

o
f

I
n
s
t
a
n
t
i
a
t
i
o
n
s

Firefox
Thunderbird
Sunbird

Figure 4. Necko Usage by Firefox, Thunder-
bird and Sunbird.

work, regular expressions are used to specify the confor-
mance relation between two object protocols. However, the
work of Butkevich et al. does not entail the reverse engi-
neering of existing interface protocols, nor do they apply
usage of interface protocols to program comprehension.

Archer et al. develop a checkable, executable specifica-
tion that captures the rules for correctly using an interface
in a TinyOS application [1]. They refer to this specifica-
tion as an interface contract and they develop an approach
for checking the interface contract using a source-to-source
program transformation that adds checks to existing TinyOS
applications. However, they do not reverse engineer the
contracts and they do not demonstrate the pattern that these
contracts typically exemplify.

Quante and Koschke describe a dynamic protocol recov-
ery technique based on object process graphs (OPGs) [7].
The advantage of their approach is that OPGs contain infor-
mation about loops and the context within which a method
was called. They introduce a new metric for comparing au-
tomata and a case study involving Java and C programs.
The focus of Quante and Koschke is on their recovery pro-
tocol technique that exploits context to improve the regular
expression generation process; their technique improves on
our brute force regular expression generation approach.

6. Concluding Remarks

We presented Hylian, our system for code regeneration
and trace extraction in large C++ applications. We have
demonstrated the utility of Hylian by generating trace infor-
mation, extracting the sequence of method invocations, and
generating regular expression representations of the inter-
face protocols for Necko, a large networking library written
in C++, utilized by the Mozilla Internet Application Suite
[9]. We generated interface protocols for Necko using three
large applications in the Mozilla Suite that use the Necko
library: Firefox, Thunderbird and Sunbird [8].

The preliminary results of our case study of Necko sup-
port our assumption that the interface protocols for these
classes follow a specific pattern and that these patterns can
be used to facilitate comprehension of a class, to guide us-
age of the class, or to measure the complexity of usage of
the class by developers unfamiliar with the Necko library.

References

[1] W. Archer, P. Levis, and J. Regehr. Interface contracts for
tinyos. In IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks,
pages 158–165, New York, NY, USA, 2007. ACM Press.

[2] P. Avgustinov, J. Tibble, E. Bodden, O. Lhotak, L. Hendren,
O. de Moor, N. Ongkingco, and G. Sittampalam. Efficient
trace monitoring, March 2006.

[3] S. Butkevich, M. Renedo, G. Baumgartner, and M. Young.
Compiler and tool support for debugging object protocols.
In Proceedings of the 8th FSE, pages 50–59, 2000.

[4] B. Cornelissen and L. Moonen. Visualizing similarities
in execution traces. In Proceedings of the 3rd Workshop
PCODA, pages 6–10. IEEE, 2007.

[5] E. B. Duffy and B. A. Malloy. An automated approach to
grammar recovery for a dialect of the C++ language. In 14th
Conference on Reverse Engineering, WCRE’07, Oct 2007.

[6] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In Proceedings of the Fourth Symposium
on Operating Systems Design and Implementation, 2000.

[7] J. Quante and R. Koschke. Dynamic protocol recovery. In
Proceedings of the 14th WCRE, pages 219–228, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[8] The Mozilla Organization. The Mozilla Application Suite.
http://www.mozilla.org, 2007.

[9] The Mozilla Organization, 2007. Necko.
http://www.mozilla.org/start/1.0/guide/toolkit.html#necko.

[10] N. Walkinshaw, K. Bogdanov, M. Holcombe, and
S. Salahuddin. Reverse engineering state machines by in-
teractive grammar inference. In Proceedings of WCRE ’07,
pages 209–218, Washington, DC, 2007.

[11] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extrac-
tion of object-oriented component interfaces. In Proceed-
ings of ISSTA, July 2002.

308

Abstract—Knowledge Management area has gathered great

interest in software development industry and the applicability of
its process into an organization, In order to support the
requirements of a maturity level, is the main focus of this report.
Thus, CMMI requirements were assessed and introduced into a
KM project that was run into a CMMI level 3 organization and
the results were analyzed to evaluate whether or not it was useful
to apply KM into such scope.

Index Terms — CMMI, Knowledge Management, Software
Development Process.

I. INTRODUCTION

NOWLEDGE management discipline is gathering a
growing attention on organizations that seek the

establishment and tracking of the knowledge disseminated
throughout the company. Procedures, processes, tools, among
other initiatives are supporting the use and dissemination of
such discipline within software development context.

Therefore the objective of this work is to present the
knowledge management approach used to support the
deployment of a CMMI level 3 process into a software
development organization. In addition, to assess the results
achieved by the use of such process in order to provide
improvement opportunities to the organization.

This report is organized as it follows: Section II presents a
general overview on Knowledge Management and the basic
concepts used to develop the process, followed by the research
of where KM requirements are found on CMMI �[1] on Section
III. Section IV describes the process approach defined by the
organization to adopt KM, Section V details the tool adopted
and the reasons that show why such tool is being used, and,
Section VI presents the case study results. Finally, Section VII
shows the concluding remarks and future work.

II. KNOWLEDGE MANAGEMENT OVERVIEW

For the last years, the Knowledge Management area is
receiving a special attention from organizations, as they search

for competitive advantage. The following statics are a simple
proof of this attention �[2]:
1) A total of 80 percent of Fortune 500 companies have KM

staff.
2) Texas Instruments has saved $1 billion since it launched

KM programs in the mid-1990s.
3) 95 percent of CEOs polled at the 2001 World Economic

Forum in Davos, Switzerland, said that KM was critical to
organizational success.

4) 91 percent of Canadian business leaders polled by
IpsosReid in 2001, believed that KM practices have a
direct impact on organizational effectiveness.

In �[3], Polanyi categorized knowledge in two types, the tacit
and explicit. The latter is basically what can be documented
and distributed, while the tacit knowledge resides in the human
mind, behavior and perception, and thus, it is difficult to be
formalized and distributed �[4].

Each KM program needs to balance which kind of
knowledge it is focusing, and based on this focus it can be
categorized in one of the four KM styles defined by Choi and
Lee �[4].
1) Passive: little interest in KM. It is not managed in a

systematic manner.
2) System-oriented: put more emphasis on codifying and

reusing knowledge. It increases codifiability through IT,
and thus, decreases the complexity of accessing and using
knowledge.

3) Human-oriented: the emphasis is on acquiring and sharing
tacit knowledge and interpersonal experience. Knowledge
usually originates from informal social networks.
Meaningful knowledge can not be simply retrieved form
the database or repository.

4) Dynamic: emphasizes both tacit and explicit knowledge,
and does it in a dynamic fashion, similar to a
communication-intensive organization. They depend on
cultural knowledge.

Independent of style, knowledge management can be seen as
a process to create, gather, store, transfer and apply knowledge
�[5]. There are many different definitions for the stages
composing a KM process. In 2004, Bose presented the stages
which compose a cyclic process in knowledge management

Knowledge Management to Support the
Deployment of a CMMI Level 3 Process

Cavalcanti A. P.1,2, Furtado F.1,2, Moura V. 1, Costa, R. 1,2, Meira, S. R. L. 1,2

1. C.E.S.A.R – Recife Center for Advanced Studies and Systems
2 UPFE – Federal University of Pernambuco, Cin – Informatics Center

{ana.paula, felipe.furtado, valeria.moura, ricardo.costa, silvio}@cesar.org.br

K

309

�[2]:
1) Create knowledge: the knowledge comes primarily from

the experiences and skills of the employees. Knowledge is
created as people find new ways to do things. Sometimes
it is necessary to brought in external knowledge when it
does no reside in the organization.

2) Capture knowledge: the created knowledge is stored in a
database or repository in raw form.

3) Refine knowledge: context is added to knowledge, so it
can be easily reused. In this stage the tacit knowledge,
usually captured from human experience, is captured and
transformed and refined along with explicit knowledge.

4) Store knowledge: This stage includes the codification of
tacit and explicit knowledge, after refined, so it can be
used later.

5) Manage knowledge: knowledge must be kept current, so it
must be reviewed systematically to verify if it is still valid
and accurate;

6) Disseminate knowledge: The knowledge is made available
so everyone in the organization can easily access it
anywhere and anytime. New technologies are usually used
to help in the dissemination of knowledge.

Some of the several benefits of the use of a knowledge
management strategy are: the reduction in loss of intellectual
capital from employees who leave the company; the cost
reduction for the development of new products; and the
increased productivity by making knowledge easily accessible
to all employees �[2].

III. KNOWLEDGE MANAGEMENT AND CMMI

Knowledge management process definition was being
established together with the adaptation of the organizational
process from CMM level 2 into CMMI level 3. Therefore, it
was necessary to understand which requirements, from the
CMMI model �[1], treat knowledge management general
aspects.

Accordingly, CMMI level 3 has three process areas (PAs)
that address KM’s necessities. Table I presents the mapping
among these PAs together with a short description.

Based on the sub-practices from CMMI, OPF and OPD
process area define the organizational approach to posterior
use on projects, as for instance:

• “Conduct periodic reviews of the effectiveness and
suitability of the organization’s set of standard
processes and related organizational process assets
relative to the organization’s business objectives.

• Obtain feedback about the use of the organizational
process assets.

• Derive lessons learned from defining, piloting,
implementing, and deploying the organizational
process assets.

• Make lessons learned available to the people in the
organization as appropriate.

• Design and implement the organization’s process
asset library, including the library structure and

support environment; to specify the criteria for
including items in the library.

• Specify the procedures for storing and retrieving
items; to enter the selected items into the library and
catalog them for easy reference and retrieval.

• Make the items available for use by the projects.
• Periodically review the use of each item and use the

results to maintain the library contents.
• Review the organization’s process asset library as

necessary.”

TABLE I
MAPPING BETWEEN CMMI AND KM

Process Area
(PA)

Specific Goal
(SG)

Specific
Practice

(SP)
Description

SG 1
Determine
Process-
Improvement
Opportunities

SP 1.3-1
Identify the
Organization’s
Process
Improvements

Identify
improvements to the
organization's
processes and
process assets.

OPF
Organization
Process
Focus

SG 2
Plan and
Implement
Process
Improvement
Activities

SP 2.4-1
Incorporate
Process-Related
Experience into
the
Organizational
Process Assets

Incorporate process-
related work
products, measures,
and improvement
information derived
from planning and
performing the
process into the
organizational
process assets.

OPD
Organization
Process
Definition

SG 1
Established
Organizational
Process Assets

SP 1.5-1
Establish the
Organization’s
Process Asset
Library

Establish and
maintain the
organization’s
process asset library,
like procedures and
lessons-learned
reports.

SP 1.2-1
Use
Organizational
Process Assets
for Planning
Project
Activities

Use the
organizational
process assets and
measurement
repository for
estimating and
planning the
project’s activities.

IPM
Integrated
Project
Management

SG 1
Use the
Project’s
Defined Process

SP 1.5-1
Contribute to
the
Organizational
Process Assets

Contribute work
products, measures,
and documented
experiences to the
organizational
process assets.
Document lessons
learned from the
project for inclusion
in the organization’s
process assets
library.

The other process area, IPM, is concerned about how the

projects will use the organizational process assets for planning
new project activities and then how the projects will contribute
to the organizational process assets, for example:

• “Use the organization’s measurement repository in
estimating the project’s planning parameters.

310

• Propose improvements to the organizational process
assets.

• Store process and product measures in the
organization’s measurement repository.

• Submit documentation for possible inclusion in the
organization's process asset library.

• Document lessons learned from the project for
inclusion in the organization's process asset library.”

Based on this research, these requirements were used as a
basis to build the KM process, which will be described on the
next section.

IV. PROSCES AND KM

According to the characteristics presented on the
introduction, the process that will be described intends to
Dynamically Manage the knowledge acquired, emphasizing
both tacit and explicit. Furthermore, the organizational
approach to implement a formal knowledge management
process is formed by a process definition, a support tool,
process templates and guidelines. Such KM process, called
ProSCes1, within the context of software development, is
considered a support sub-process, due to the fact that it
permeates the whole software development cycle, and the main
purposes are:

• Stimulate the change of knowledge between
professionals through the record and use of
information in the knowledge organization base.

• Identify and organize lessons learned, that represent
the knowledge applied to the projects reality.

• Provide the spread of global knowledge, available to
the entire organization areas.

This process can be used by people from all levels of the
software engineering activities, such as Project Managers,
System Engineers, Quality Engineers, Configuration
Management Engineers, Human Resource, Operations
Manager, Quality Manager, Project Manager Officer and
Engineering Manager.

An important relevant factor is that ProSCes differentiates
knowledge and Lessons Learned (LL), where the first one is
any knowledge acquired by the organization collaborators
derived from professional experience, studies and research.
While, on the other hand, Lessons Learned are the relevant
practical results acquired from real situations in projects
specifically at C.E.S.A.R.2.

The process is organized into 6 main activities:

A. Disseminate the identification and use of knowledge into
projects

This activity focuses on the identification and registry of
existent knowledge, promote continuous and effective use of
the knowledge available and stimulate the collection of lessons
learned in the projects. It maintains discussion forums about

1 ProSCes: Software Process of C.E.S.A.R, available at the intranet of the

organization, not accessible for outsiders. http://cesar.org.br/prosces
2 C.E.S.A.R. – Recife Center for Advanced Studies and Systems.
http://www.cesar.org.br

organizational interests and stimulates changes in
organizational knowledge.

The main outputs of this activity are lessons learned
registered on Mantis (the tool that supports the process and
which will be explained in detail on the next section) and
knowledge registered either on C.E.S.A.R Wiki3 or
A.M.I.G.O.S4.

B. Plan lessons learned collection

The main objective of this activity is to plan the collection of
lessons learned by the identification of specific milestones in
the scope of project or in the scope of the organization. As
outputs, the Software Quality Engineer (SQE) updates the
project plan with the milestones of project and Software
Engineer Process Group (SEPG) updates the organizational
plan to contemplate the collection lessons learned in the
organization.

C. Execute lessons learned

This activity focuses on the identification of lessons learned
in the project/organization. In the scope of the project, SQE
configures a questionnaire based on the project milestone and,
in the scope of the organization SEPG configures it based on
which sub-processes will be assessed. The teams answer the
questions based on the knowledge acquire and theses answers
are collected and consolidated to be presented by each specific
audience (project or organizational).

As a result, a report is generated with all the knowledge
consolidated so that the SQE or SEPG selects which of the
knowledge can be considered lessons learned. Another
possible output are change requests opened for the software
development processes, that will be requested by SQE or
SEPG to the organization process group.

D. Maintain best documents and lessons learned data

The purpose of the activity is to register the selected lessons
learned on Mantis and maintain the information available, so
that teams have direct access to the information. The activity
steps start with the registration of the lessons learned on
Mantis, followed by the facilitation of the lessons learned
access for the whole organization, and the maintenance of the
Mantis repository with actual and relevant information for all
organizational projects.

SQE and SEPG are responsible for the lessons learned
registry in the repository, which are registered according to a
set of pre-defined parameters that will be described in details
on the Section V, which talks about Mantis tool.

This activity generates the register of lessons learned, best
documents, recommended and non-recommended practices in
the repository.

E. Disseminate lessons learned usage

The proposal of this activity is to encourage the use of
projects lessons learned into the organizational context and

3 C.E.S.A.R Wiki, Available at the intranet of the organization, not

accessible for outsiders. http://cesar.org.br/wiki
4 A.M.I.G.O.S – Multimedia Environment to the Integration of Groups

and Social Organizations. http://amigos.cesar.org.br

311

provide the exchange of experiences among projects.
The responsible for this activity is SEPG, that should

promote seminars presenting the content generated the
knowledge repository. On the other hand, SQEs should
encourage team for the continuous use of the lessons learned
repository.

F. Identify process improvement opportunities

This activity focuses on the identification of process
improvement opportunities based on the learned generated by
the project in the organization.

The SEPG periodically analyzes the lessons learned
repository to identify opportunities to improve the
organizational process. Typically, lessons learned that are
repeated in various projects and lessons learned about a
specific sub-process activity are examples such opportunities.
Modifications to the process can happen in terms of an
inclusion of activity, update an existing on, inclusion of new
process techniques, guides elaboration, among other aspects.

V. KM APPLIED TOOL

In order to support the use of knowledge management into
an organization, it is necessary to set up an environment that
can contribute to the use and improvement of knowledge
management processes. In order to choose which environment
could be best applied to our context, a formal decision taken
process, described as one of the sub-processes available at
ProSCes, was run in order to evaluate the existing solutions
available.

The first part of this process contemplates the identification
of criteria and weighs to evaluate the possible tools, according
to what is described on Table II.

TABLE II

TOOLS’ CRITERIA

Criteria Weigh

Integration with the organizational projects base 20
Agility to implement the solution 15
Agility to find the lessons learned 25
Performance to include information (Lessons Learned) 10
Technical risk of the alternative that may exist to
implement the solution

30

These criteria were used to analyze three solutions to

support KM deployment into the organization:
1) Mantis: the implementation of lessons learned repository

through the use of mantis tool, which “is a popular free
web-based bug tracking system” �[6].

2) Rational Portfolio Manager – RPM: the implementation
of lessons learned repository through the use of RPM,
which is a tool to support project integrated management
�[7]

3) Mantis with integration: the implementation of lessons
learned repository through the use of mantis tool with an
integration with RPM data.

The conclusion of the process led to the results presented in
the graphic on Figure 1.

Tool Decision Process Results

65,0%

37,0%

55,0%

0,0%

20,0%

40,0%

60,0%

80,0%

Tools

MANTIS 65,0%

RPM 37,0%

MANTIS WITH
INTEGRATION

55,0%

1

Fig. 1. The results achieved through the application of a formal decision
process to decide which tool would best fit the knowledge management
process applied by ProSCes.

The results of the decision taken process calculate the
percentage of criteria (described on Table II) satisfaction for
each tool identified, and, consequently, their ranking in the
process. Therefore, 65% of the criteria are satisfied by Mantis
tool, against 37% for RPM and 55% for Mantis with
integration with RPM.

Based on these considerations, ProSCes adopted Mantis,
and although mostly used for a bug tracking system, it can be
easy configured in order to achieve desirable levels of usage to
a knowledge management support tool. Mantis internal
structure was adapted to contemplate the following
arrangement, where a lesson learned can be described
according to the following parameters:

Categories
• Best Document: documents that are considered a

model of reference to the organization in a
determined sub-process, for example, a
requirements specification document or an
architectural design document.

• Recommended Practice: experiences acquired
from the process execution that are considered
successful and which could be reproduced in other
projects.

• Non-recommended Practice: experiences lived by
projects team that are not considered successful
and should not be reproduced in other project with
the same scope.

• Feedback: from the team related to the processes
releases, regarding whether the change was useful
or not for the project and the proposal of changes
to the organizational process.

Moment of Collection
• Process Audit: during a formal process audit

conducted based on a specific sub-process area,
where the SQE tries to identify lessons learned
gained by the projects.

• Metrics Analysis: where the team consolidates
process indicators and points out any process
improvement or lessons learned from the metrics

312

analysis.
• Execution of Lessons Learned: a formal

collection of lessons learned conducted by the SQE
through the use of questionnaires applied on
specific project teams, where there is a report as
the activity output.

• Other: any other moment during process
development.

Source of Collection
• Own Initiative: the source that comprehends to

knowledge that comes from individual initiative,
that is not formally registered anywhere.

• Knowledge Repository: database where all
collaborators have free access to input any
knowledge, like C.E.S.A.R. Wiki or A.M.I.G.O.S.

• Lessons Learned Repository: is related to Mantis
tool itself, where lessons learned can be raised
from other lessons learned previously registered.

Transitional States
• Submitted: the SQE submits the lesson learned to

Mantis but it has to be reviewed by SEPG in order
to publish it.

• Published: a lesson learned that has been
published and reviewed by SEPG in order to
guarantee that the content can be published to the
organization.

• Rejected: a lesson learned that has been reviewed
by SEPG and is not considered a lesson learned to
be published to the organization.

Besides theses characteristics, mantis permits the creation of
correlations among all lessons learned submitted, by the
settlement of relationship, which can be: (1) one is parent of
the other; (2) one is son of the other; (3) one is duplicated with
another, and (4) one is related of another. These relationships
are represented through the use of relationship trees, a
graphical and visual representation of the lessons learned
available on the knowledge database.

VI. CASE STUDY

A. Scenario and Objectives

The case study was conducted with the main objective to
assess the adoption of knowledge management through the use
of ProSCes, together with Mantis. The institution applied is
C.E.S.A.R., a seven hundred employee company located on
the northeast of Brazil which, by the time of the process
definition, was on the course of the CMMI level 3 assessment.

C.E.S.A.R.’s software development process considers many
technologies (J2ME, J2EE, .NET, etc), distinct lifecycles and
project categories, such as embedded software development,
mobile applications, client-server applications, mobile games,
test automation, among others. For the CMMI level 3
assessment, 4 projects were chosen as the most representative
ones in the organization, and approximately 68 people were
directly involved in the process to define and institutionalize

the CMMI level 3 process.
Accordingly, this case study attempts to present the results

of the KM Process execution since the definition of the
process, following by the checkpoint of the CMMI appraisal,
until the present moment.

The main motivation to asses how KM was introduced into
ProSCes are:

• Analyze the results of the process to propose
improvements.

• Analyze the use of Mantis as a knowledge
management support tool.

• Analyze the involvement of the organization into the
knowledge management process.

• Identify the main source of lessons learned within the
development process.

B. Collected Data

Based on that scenario, some metrics were collected to
support the case study, and the first on is presented on Table
III. The numbers show that until the CMMI appraisal, most of
the lessons learned were published, and after that period, most
of them were just submitted.

TABLE III
LESSONS LEARNED DISTRIBUTION ALONG THE TIME

Lessons
Learned

Before CMMI Appraisal
From January 2007 until
November 1st 2007 (%)

After CMMI appraisal
From November 2nd 2007

until March 2008 (%)
Submitted 23 % 62 %
Published 47 % 30%
Rejected 30 % 7%

To better understand the involvement of the organization

into the process, we analyzed the moment in which lessons
learned were identified. The results show that, from the entire
database:

• 30% of the lessons learned reported come from the
activity Execute Lessons Learned.

• 44% of the lessons learned reported come from the
activity to Realize Process Audit.

• 4% of the lessons learned reported come from the
activity Analyze Metrics.

• 22% come from any other activity in the project.
It was also important to evaluate the percentage of

distribution of the lessons learned categories, where they are
divided into:

• 33% are Best Document
• 59% are Recommended Practice.
• 4% are Non-recommended Practice.
• 4% are Feedback.

Besides that, another relevant aspect is that 82% of the
lessons learned available appear with Own Initiative as the
source of information, against 12% of the others (6%
Knowledge Repository and 6% Lessons Learned Repository).

Another important number to evaluate is related to the
submission of changes request opened in the bug tracking
system for the organizational process, and only 2% are related

313

to the Knowledge management sub-process.

C. Results Analysis

According to the numbers collected, the characteristics
which presented the greater percentage are summed up on
Table IV.

TABLE IV
CHARACTERISTIC AND PERCENTAGE ACHIEVED

Characteristic Percentage

Process Audit 44%
Recommended Practices 59%
Own Initiative 82%

By analyzing this Table we can conclude that Process Audit

is the moments in which lessons learned were mostly collected,
a moment when the SQE directly asks the team about any
lessons learned. This indicates the other moments to collect
LA are not being well explored either because of the process
or the teams are not having enough maturity to identify
Lessons Learned on those moments.

Recommended practices are the ones that have the greater
appearance on Mantis database, and we can infer that the
maturity of the organization tends to the discovery of practices
that can be replicated on other projects. Non-recommended
practices and feedbacks are not being frequently reported.

Another consideration is that 82% of the lessons learned
reported are from the source Own Initiative which shows that
the other source of information are not being effectively used.
It is necessary to analyze whether the other repositories are
necessary to the KM process, or are not suitable to its goals.

The number of change requests opened for the knowledge
management sub-process, either for a process improvement or
for adaptation represents only 2%, which does not mean that it
is not relevant. This is due to the fact that we have 23 other
sub-process that change requests can be opened.

Another representative analysis is based on the numbers of
Table III, where we see that less lessons learned are being
published after CMMI appraisal. This situation reflects the
idea that SEPG has changed its priorities after the formal
appraisal.

D. Improvement Opportunities

Based on the results analyzed, some improvement
opportunities were raised to request changes on knowledge
management sub-process, according to what is presented:

• Improve the process of lessons learned publication,
by assessing if there can be added more agility to this
process, in order not to be so dependant on the SEPG.

• Review Mantis tool in order to detail what is being
effective, in terms of the existing categories, access to
the submission of lessons learned, and collect an
opinion of the organization about it through a formal
research.

• Evaluate all source of information available on
ProSCes and question whether or not all these

disseminated knowledge and lessons learned could be
integrated into one tool.

VII. CONCLUSION AND FUTURE WORK

The deployment of knowledge management process into a
software development organization, during the process of
improving a maturity level, has presented considerable results
indicating positive remarks to the organization. By trying to
achieve tacit and explicit knowledge, the process is improving
its definition and applicability into projects.

On the other hand, the results presented on the case study
induces us to the idea that there is a long path to run, in terms
of process definition and tools to support and get the
organization’s involvement.

According to the stages presented by Bose �[2], with the
process definition and execution, we intend to follow all
phases from the cycle process:

• Create: with the definition of the process.
• Capture: by the execution of the process.
• Refine: through process improvement change

requests, and through new projects, with new
contexts, using and registering its experiences with
already existing knowledge.

• Store: with the use of mantis tool.
• Manage: together with SEPG that helps the

maintenance of the process and database.
• Disseminate knowledge: which is a consequence of

the process and their execution.

REFERENCES

[1] CMMI-DEV, CMMI for Development, V1.2 model, CMU/SEI-2006-
TR-008. Software Engineering Institute, 2006.

[2] R. Bose, “Knowledge management metrics”. Industrial Management &
Data Systems, vol. 104, no. 6, pp. 457-468, 2004.

[3] M. Polanyi, “The tacit dimension,” in: Knowledge in Organizations,
Ed. London: Butterworths, 1997, pp. 135–146.

[4] B. Choi, H. Lee, “An Empirical Investigation of KM Styles and their
Effect on Corporate Performance”. Information & Management, vol. 40,
pp. 403-417, 2003.

[5] K. C. Laudon, J. P. Laudon, “Managing Knowledge for the Digital
Firm,” in Management Information Systems: Managing the Digital
Firm, 8th ed., Ed. Pearson Education, 2004, ch. 10.

[6] Mantis available at http://www.mantisbt.org
[7] RPM– Rational Portfolio Management Tool, client version 7.1.1.1 Build

6.7.1.226 ©

314

Code Transformation Techniques and Management Architecture for
 Self-manageable Distributed Applications

M. Muztaba Fuad
Department of Computer Science
Winston-Salem State University
Winston-Salem, NC 27110, USA

E-mail: fuadmo@wssu.edu

Abstract
 Injecting autonomous behaviors into existing non-
autonomous programs is desirable but requires a high
degree of code transformation. Such code transformation
is complicated and requires different level of code
insertion and transformation to provide the required
functionality. Proper underlying software architecture is
required for managing the code once it is transformed into
autonomous entities. All this is even become complicated
when existing programs (whose source code is no longer
available) want to utilize such code transformation and
service architecture. This paper discusses techniques to
transformation existing code into autonomous entities and
presents underlying management architecture to run such
transformed application.

1. Introduction
 Programming a distributed application is a tedious
task and programmers need expert knowledge of handling
the distribution related management issues along with
programming the problem at hand. This becomes even
daunting when programmers have to incorporate
autonomic behaviors into the system also. The scenario
gets even complicated when developers want to transform
existing non-autonomic distributed system (whose source
code is no longer available) into an autonomic system. In
real life, programmers’ want to concentrate on the
problem in hand, rather than spend time on incorporating
autonomic behaviors in their system or deal with the
distribution management issues. It will be tremendously
beneficial to programmers if such autonomic behaviors
can be added automatically and transparently to existing
systems and distribution related issues can be addressed
without spending much time for it. Although object
oriented technology provides programmers with
advantage of rapid program development in a networked
environment, it becomes overwhelming when it is
necessary to handle the autonomic computing aspects of
the program as well. Towards this goal, the initial phase
would be to how to convert an existing object oriented
program into self-manageable chunks and access them
autonomously across the system so that autonomic
behaviors can be added into those autonomous entities as
needed. This paper presents such code transformation
techniques to produce autonomously accessible program
component from existing object oriented programs and
identifies issues related to such code transformations.
Although the technique presented in this paper works with
Java byte code, any interpreted code such as C#, that

utilizes standard object oriented primitives can utilize it
with minor modifications.

2. Related Works
 There are several code transformation techniques in
Java actively researched by a number of researchers [1-
10] in different aspects of software development.
However, these approaches either work towards
traditional hard coded method or have different goals than
this work:
� Although Addistant [1] works with Java bytecode, it

uses a separate user specified placement policy to
translate user code to a distributed version and
requires placement policies be specified at the class
level, limiting the opportunity to exploit object-level
control. J-Orchestra [2] is similar research work that
rewrites user code and replaces local data exchange
with remote communication.

� Operate at the source code level [3].
� Program through pre-defined interfaces to utilize such

approaches [4].
� Use monitoring and profiling during run time [5, 6].
� Use a modified Java Virtual Machine [7, 8], and

sacrifices portability and interoperability for doing so.
� Use different programming languages [9, 10].
Please see [11] for detailed description and contrast of
these works (most of the related work is not mentioned
here for space constraints) with the work presented in this
paper.

3. Code Transformations
After the user presented the code (computationally

intensive, large parallel applications) to the system, a
static code analyzer builds an object graph from the user
supplied byte code. See reference [12] for more details on
the static code analyzer. Once it generates the object
graph, the graph is partitioned [13] according to the
underlying system configuration, communication
requirements or any user supplied policy. The underlying
system comprises a collection of platform-agnostic
autonomic elements [14] as an interface to the service
providers and the associated pre-processor for
comprehensive byte code to byte code translation, so that
the resultant transformation produces a self-adaptive
version of the user code. The transformed program is
based on self-contained concurrent objects commun-
icating through standard object based communication
protocols and incorporates salient features (such as

315

Broker architecture and asynchronous call) from existing
middleware technologies.

3.1 Autonomic transformations
 Since the transformed program runs as a distributed
program, any single node in the system could have one or
more objects executing on it. As all of the related objects
within any single node have to be manipulated
transparently, several different scenarios present
themselves for consideration:
a. One AE(Autonomic Element) per node with each

object as a ME (Managed Element [14]): The
traditional proxy approach [1] could be employed;
however, the full computation power of a particular
node is not utilized in this scenario. The traditional
proxy approach only supports a single object per
proxy, but multiple objects per proxy are required for
the approach presented in this paper.

b. One AE per node with multiple objects as ME: This is
the most common scenario where multiple objects
run concurrently in one node. The traditional proxy
notation must be extended to address this scenario.

c. Multiple AEs per node with multiple objects as a ME:
Although this scenario is possible, it is not supported
by the autonomic computing paradigm and is not
considered further.

 A proxy structure is implemented that encapsulates
one or more runtime objects into a single manageable
entity that communicates with other such entities in the
system with a single communication channel provided by
the proxy object. Having an encapsulating proxy object
allows us to incorporate the autonomic functionalities
seamlessly into the user objects with the help of sensors,
actuators and control interfaces. Any inter-object
communication inside a single ME proceeds as usual;
however, any inter-object communication between two
different MEs is delegated to the encapsulating proxy
object. There are two possible choices to create such an
encapsulating proxy:
a. The proxy class inherits the original class: This

works for only one class as Java does not support
multiple inheritance. This can be overcome by
creating a new interface with all the methods of each
of the target classes and then having the proxy
implement that interface by copying the method’s
body into the proxy class.

b. Renaming the original class with the proxy class:
This is the traditional approach and does not work
without modification for the proposed approach as it
is difficult to delegate all proxy invocations
separately. This approach needs to be extended by
creating a clone of the original class structure as the
new proxy structure and, at the byte code level,
redirect all calls to the proxy class. This allows the
existing methods to be overridden with additional
functionalities and the class to be extended with new
methods. Since all associated transformations are
performed at the byte code level, users do not need to

be concerned about following any specific
programming rules.

For such transformations of user code, the following
issues need to be addressed:
i. Methods (M) and constructors (C): There are more

methods in the proxy class to interact with the AE
and also to manipulate the object itself. So, if Mn , Cn

� Original Class � Mn1 , Cn1 � Proxy Class, where
n1>n. The original methods are overridden with the
following structure:
 Pre-processing
 Original method call
 Post-processing
Instead of instrumenting each method, a wrapper
method is created to ensure consistency with the
existing line number table for debugging purpose.

ii. Polymorphic method calls: To determine the original
calls of a method in a polymorphic call requires a
stack oriented emulator such as that in the JVM.
Creating such an emulator is a separate research
problem and in the initial version of the
transformations, polymorphic method calls are not
considered.

iii. Direct field access: All direct field access is
converted to getter and setter methods to facilitate
remote method invocation.

iv. System classes: Since the system classes cannot be
modified, the same techniques as used in J-Orchestra
[2] are adopted. System objects are either moved with
the user objects or, if they use any platform
dependent code, remain on the same node and other
proxies access these system objects using a callback
facility.

v. Handling distributed I/O: It is undesirable to have
user code produce output in a remote machine or ask
for input somewhere other than it is intended to.
Therefore all input/output operations need to be
redirected. This leads to the following possible
transformations: Standard output and error, Standard
input, File input and File output.

vi. Exception handling: Reference [14] illustrates the
approach adapted for handling exceptions.

vii. ‘final’ class: To extend the functionality of a un-
modifiable class in the proxy, the final keyword is
removed from the classpool [15] inside the class file.
In this way, the semantic and functional consistency
of the class remains the same but now extra methods
can now be added and existing methods can be
overridden in the proxy to add the extra functionality.

viii. Existing interfaces: Since Java allows a single class
to implement as many interfaces as required, no
changes are required in this case.

ix. Static methods and fields: Any class that has static
methods and fields is divided into two subclasses
where one has all the static methods and fields and
another has the non-static entities. Separate proxies
are created for each subclass and the static subclass is

316

anchored in one node and interacts with other proxies
using RMI callbacks.

x. Use of ‘this’ and ‘super’: Use of super does not cause
any problem in the transformed code. However, the
use of this needs to be delegated to the appropriate
proxy class.

xi. Use of reflection: Reflection in the user code is not
considered due to the added complexity in the byte
code rewriting phase. A separate package on
reflection that delegates user enforced reflection must
be developed to address this issue.

 To handle other Java language features, the
techniques used have similarities with the techniques used
in J-Orchestra [2]. The major distinction with the
approach in this paper is that object level distribution is
attempted, whereas J-Orchestra uses class-level
distribution. One significant drawback with both of these
approaches is that it incurs extra space and time cost to
run the resulting distributed application. Since new proxy
classes are created and segments of byte code are inserted
into the exiting byte code, some inflation in the resulting
code size is expected.

3.2 Distribution Transformation
 Once a group of objects has been identified as a
managed element of an autonomic element, the
corresponding class files must be transformed accordingly
to facilitate insertion of autonomic primitives into the
code. The static portion of the class is first moved to a
separate class by the static analyser [12] and
corresponding redirection is established to preserve the
semantic and functional flow of the original execution.
Communication between distributed objects is permitted,
but such interaction should be kept to a minimum in order
to reduce the communication overheads. The assumption
is that the distributed classes are multi-threaded to allow
asynchronous execution. This assumption is true for the
problem domain of the research where the whole program
is modelled as a collection of concurrent objects.
 For each of the distributed objects, the code
transformer transforms the byte code by instrumenting
code to provide autonomic properties. Specifically the
points where distributed objects are declared and called
are now transformed to call and invoke corresponding
proxy object classes. The proxy can itself redirect that call
to a distributed autonomic element depending on the
system level distribution policy. Every distributable class
is transformed and the distribution transformer makes the
following changes:
� The distributed class is modified to implement a new

interface which holds distribution primitives.
� Any input/output statements in the user code are

marked for redirection as specified by system level
policy. The reason for redirecting all input/output is
explained in the next section.

� The constructor is replaced with an initialize method.
� Based on the parameter-passing mode (pass-by-value

or pass-by-reference), all parameters and

corresponding local variables are changed. Please see
[11] for more details on the techniques used for
parameter passing.

� All public methods in the distributed class are
modified to throw a RemoteException (to satisfy RMI
requirements) and MigratedException (to satisfy
runtime migration) along with any other existing
exception thrown by the method.

� To make remote objects migratable, they are
transformed to implement the Serializable interface.
The code transformer checks whether the class itself
or any of the class in its inheritance tree implements
Serializable, and adds it if necessary. However, not
every class in Java can be made Serializable in that
way because of the language level constraints. Such
objects have to be anchored in one single node during
the execution of the program.

Other than making these changes, the remainder of the
code remains intact. As a requirement of RMI, all
methods must be public so that they can be called
remotely. So the code transformer checks that all access
rights are maintained. Only after the semantic check and
transformation, the methods in the generated class are
made public.

4. Performance Analysis
 Experiments were conducted to find the time
requirement of delegated method calls using proxy-based
managed elements. After code transformation, every
remote method call now takes place through the
autonomic element. Therefore the call can be broken
down into several parts:

i. Call to local proxy.
ii. Call from local proxy to remote proxy (AE).

iii. AE locates the remote class, loads it and uses
runtime reflection to delegate the execution to the
corresponding method.

 To explain the process, consider the UML diagram of
an example program presented in Figure 1 (a). The
application class (which is the starting point of this
application) creates an instance of classA which is run as
a threaded object. For instance, we like to transform the
instance of classA into a managed element of an
autonomic element. The class diagram is now transformed
into three separate portions with separate transformations
as follows:
1. Application Class: Instead of referring to classA, it

will now refer to the proxy instance of classA
(Figure 1 (b)). A new wrapper class is created for
classA that acts as the proxy of the original class.
Along with the traditional proxy transformation, a
new private variable that holds the reference (local or
remote) of the actual object, and a new method that
helps initialize the actual object reference, is inserted
into the proxy class.

2. Used classes inside the managed instance: Objects of
any class that classA is using must now implement
the java.lang.Serializable interface to help the system

317

to transfer the instance over the network if needed
(Figure 1 (c). All such classes are checked to see

whether they implement either the Serializable
interface or a subclass of that interface. If not, then it
is added automatically. If such classes use any object
instance which is not serializable (for instance having
another thread inside that object), then that particular
managed element must be anchored on a single
machine during the life time of the application.

3. Original class: The original class relationship is kept
unchanged (Figure 1 (d)). Only the constructor is
now replaced by a new method initialize to create an
instance of the class during runtime by the autonomic
element using a consistent interface.

 A new class is designed to house the managed object

instance which implements a pre-defined interface. The
AutonomicElement class creates an instance of the
managedElement class. Figure 2 shows the runtime
structure of each proxy class in the system. The init
method in the proxy class is responsible for gathering
necessary information (such as location of an available
AE and naming of the AE) and establishing the
deployment of the object to an autonomic element. Once
all necessary information is gathered and processed, the
proxy initially invokes the setup method of the
corresponding managedElement with necessary
information (such as class name for object instance,
location of class and generated name for identifying that
instance) as arguments. Next, the init method is invoked
to create the actual object instance in the autonomic
element with any initializing arguments. Any further
method call from the proxy is then delegated by using the
invoke method inside the proxy class. Figure 3 shows the
timing for such remote calls, where other denotes the time
it takes for local proxy class loading and locating the

remote AE using the standard naming protocol. For a
single remote call using the delegated proxy pattern, the
increase in execution time is approximately 45%. With
several calls to the same AE, this reduces to less then 10%
as the JVM normally caches classes and for subsequent
calls class loading and reflection occur faster than the
initial time. Table 1 shows this behavior of the proxy
based remote invocation. Code inflation for the
transformations is linier (around 10% for distribution
transformation and 30% for autonomic transformation)
and depends on the number of objects and classes in the
user code.
 The benefit of having a double delegated structure is
that the distribution concerns and the self-management
concerns are separated at the code level. This allows
future code extension, since adding the two level
delegations work in two separate processes and in
sequence. Programmers can add their own
transformations in the future if they wish following a
similar approach; however the penalties for doing so are
further increased code inflation and reduced response
time due to extra code execution and class loading.

Table 1. Effects of Multiple Calls on Respnose Time.

Number of
calls

Standard
Remote

Call (ms)

Delegated
Remote

Call (ms)
% Change

1000 391 476 21.74
10000 2289 2593 13.28
100000 19372 20261 4.59

5. Management Architecture
 The design of the management architecture is driven
by the desire to produce a transparent and easy to use

+main()

applicationClass«uses»

+<init>()
+m1()
+m2()
+init()

+A1
-objRef

classA_proxy

(b)

+initialize()
+m1()
+m2()

+A1
classA

java.lang.Thread

(d)

classB «interface»
java.io.Serializable

(c)

Figure 1. Example Class Diagram.

+main()

applicationClass

+<init>()
+m1()
+m2()

+A1
classA

java.lang.Thread«uses»

classB

«uses»

(a)

+setup()
+init()
+call()

«interface»
aeInterface

+<init>()
+m1()
+m2()
+init()

+A1
-objRef

classA_proxy

AutonomicElement«uses»

-objRefs[]
-classes[]

managedElement

«uses»

java.lang.Thread

Figure 2. Transformed Runtime Program Structure.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(ms)

Normal Remote Call Delegated Remote Call

Remote Call

Other

Reflection

Figure 3. Timing Information for Delegated Invocation.

318

system that can be self-managed. The architecture
provides services (physical resources) to the submitted
workload (user application), where services are defined as
an engagement of resources (service providers) for a
period of time according to a contractual relationship
(Service Level Agreement or SLA) with a service
requester (application user). Figure 4 shows the overall
system architecture. The architecture is broken into two
views: structural and managerial. In the structural view,
the lowest layer consists of the actual physical resources
that are providing the services. This layer is abstracted by
a virtual resource layer to hide the interface complexity of
the actual physical devices. Having this virtual layer with
a pre-defined interface allows the architecture to
incorporate new physical devices in the future without re-
programming the whole architecture for each new device.
The upper layers provide a set of predefined services
dependant on the state the current autonomic element is
currently in. Some of the autonomic elements are directed
to act as managerial elements to provide certain services
across the entire system, so that other autonomic elements
can work smoothly and can provide the service as
requested. The application layer, normally kept dormant,
can be brought alive if needed by either the user or by
another autonomic element. The autonomic element layer
is responsible for the management of autonomic elements
and general system wide management. The middleware
service layer performs actual communication services
which are used for inter autonomic element
communication, repository update, notification of
migration of managed elements etc. The managerial view
consists of the management functions necessary to

manage the services delivered. Management functions
primarily involve policy management, resource
management, service management and life-cycle
management. All management functions are performed by
autonomic elements which are self-managing and whose
role is to ensure automated delivery of services.

 Figure 5 shows the hierarchical management view of
the architecture. The global autonomic manager acts as
the interface between the user and the underlying system.
Each of the program partitions is treated as a service
instance and encapsulated by an autonomic element for
self-management. Each of the service instances are
assigned to resource domains that best suit the instance’s
needs. See reference [13] for more information on
devising such service instance to domain composition
details. Each of the actual physical resources has a
corresponding virtual resource adapter that provides a
uniform and consistent interface to the physical resources.
This simplifies resource management, service
composition and dynamic resource addition/deletion. In
order to perform autonomic service management, the
system must maintain appropriate information about the
different components of the runtime environment in
repositories (databases). Repositories are classified into
three distinct types:
� Policy repository (PR): This repository contains the

policies created at runtime or pre-defined by
operators or users following a template policy
implementation. The user can browse through
existing policies and can use them to create new
policies using a policy editor interface.

� Service repository (SR): The service repository
contains information (such as parties involved in a
service level agreement) about the different service
instances activated by the global autonomic manager,
types of resource used, amount of resource being
used and past operation history.

� Resource repository (RR): This repository holds
information about the resources available to the

Figure 5. Hierarchical Management of System.

Figure 4. Autonomic Service Architecture.

319

service providers at any given time. Information that
may be stored for each resource includes type of
resource, resource performance matrices,
communication matrices, etc.

The implementation of these repositories is performed
hierarchically to avoid a single point of failure.

6. Management Operations
 In this three tier peer to peer architecture (Figure 4),
each autonomic element can also act as a managerial
element. All autonomic elements operate over a unified
management model that provides a set of operations and
interface common to all autonomic elements. Normal
autonomic elements access this model to retrieve their
current configuration and save their current state, whereas
managerial elements use it to discover other elements in
the system. Representation of management information is
a crucial part of any self-management architecture. The
representation should be easy to manipulate and should
follow an open standard for faster incorporation and
future extensibility. XML-based WSDL is used to
represent such management operations for these reasons.
Currently, there are four types of management
information kept by the system:
i. Resource information: Resource and service provider

properties are expressed by this type of information.
Care should be taken so that there are no duplicate
entries and periodically (heuristically decided) this
information needs to be updated to keep it consistent
and non-redundant.

ii. Performance information: This type of information
represents the performance status of a running
autonomic element. Before two autonomic elements
come to a service agreement, they transfer
performance information to learn more about each
other, which includes different performance
measurements and current operational state.

iii. Configuration information: This type of information
is used to configure the behavior of an autonomic
element. Concurrency control has to be in place so
that multiple configuration information is in play at
the same time.

iv. Relationship information: This type of information
expresses dependency relationships between
autonomic elements.

A model similar to DNS revolver is employed to discover
autonomic elements in the system.

7. Conclusions
 The approach to transform code to add distribution
concerns and self-management concerns is presented and
evaluated in this paper. The software architecture to
support such transformed code is also presented and
different aspects of it is discussed. Architectural choices
have a profound effect on the capabilities of any
autonomic system and affect many of the design decisions
during its implementation. The presented architecture
supports computational and data intensive centralized

applications where the computation-to-communication
ratio is significant.

8. Reference
[1] Tatsubori, M., Sasaki T., Chiba S. and Itano L., “A Bytecode

Translator for Distributed Execution of Legacy Java
Software”, ECOOP 2001, Hungary, pp. 236-255, 2001.

[2] Tilevich E. and Smaragdakis Y., “J-Orchestra: Automatic
Java Application Partitioning”, ECOOP 2002, Malaga,
LNCS, Vol. 2374, pp.178-204, 2002.

[3]H. T. Feng and E. A. Lee, “Incremental Checkpointing with
Application to Distributed Discrete Event Simulation”,
Technical Report, EECS Department, University of
California, Berkeley, April, 2006.

[4] Julia L. L. and Gilles M., “Efficient Incremental
Checkpointing of Java Programs”, Int. Conf. on Dependable
Systems and Networks (DSN 2000), pp. 61-70, 2000.

[5] Peyman O., Nenad M. and Richard N. T., “Architecture-
Based Runtime Software Evolution”, 20th Int. Conf. on
Software Engineering (ICSE'98), pp. 177 -186, 1998.

[6] M. E. Segal and O. Frieder, “Dynamic Program Updating: A
Software Maintenance Technique for Minimizing Software
Downtime”, Journal of Software Maintenance, Vol. 1, No. 1,
pp. 59-79, 1989.

[7] Tobias R. and Jesper A., “Dynamic Deployment of Java
Applications”, Proocedings of Java for Embedded Systems,
London, May 2000.

[8] Kaffe VM for Java, http://www.kaffe.org/, 2006.
[9] Abbas N., Palankar M., Tambe S. and Cook J. E.,

“Infrastructure for Making Legacy Systems Self-managed”,
Technical Report, 2004.

[10] Griffith R. and Kaiser G., “Adding Self-healing
Capabilities to the Common Language Runtime”, Computer
Science Technical Report, Columbia University, 2005.

[11] Fuad M. M.., “An Autonomic Software Architecture for
Distributed Applications”, Ph. D. Dissertation, Department of
Computer Science, Montana State University, USA, 2007.

[12] Deb D., Fuad M. M. and Oudshoorn M. J., “Towards
Autonomic Distribution of Existing Object Oriented
Programs”, International Conference on Autonomic and
Autonomous Systems, IEEE Press, USA, pp. 17-23, 2006.

[13] Deb D., Fuad M. M. and Oudshoorn M. J., "ADE: Utility
Driven Self-management in a Networked Environment",
Journal of Computers, Academy Publishers, USA, Vol. 2, No.
8, 2007.

[14] Kephart J. O. and Chess D. M., “The vision of autonomic
computing”, Computer, Vol. 36, No. 1, pp.41–52, 2003.

[15] Fuad, M. M. and Oudshoorn, M. J., “Transformation of
Existing Programs into Autonomic and Self-healing Entities”,
The 14th IEEE International Conference on the Engineering
of Computer Based Systems (IEEE/ECBS), Arizona, USA,
March 26 - 29, 2007, Pages 133-144.

[16] Sun Micro Systems, Java Virtual Machine Specification,
1999.

320

A Decision-Centric Architecture Design Method Facilitating
the Contextually Capture and Reuse of Design Knowledge

Xiaofeng Cui, Yanchun Sun*, Sai Xiao, Hong Mei
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education
Beijing 100871, China

{cuixf04, sunyc, xiaosai05}@sei.pku.edu.cn, meih@pku.edu.cn

Abstract

Software architecture design is a knowledge-
intensive activity. Existing design methods mostly
provide high-level processes and guidelines. The
generic design knowledge, e.g., patterns, falls short of
incorporating into specific design methods. Emerging
research on Architectural Knowledge (AK) mostly
focuses on its recording and comprehension, whereas
how to leverage the knowledge to support architecting
is still a very open issue. In this paper, we present a
decision-centric architecture design method, explicate
four kinds of design knowledge pertaining to this
method, and propose a schema to record the
knowledge. Because of their natural correspondence
to the design notions and activities, these kinds of
knowledge can be captured and retrieved for reuse at
the right point of need, according to the design context.
We illustrate how our architecture design tool
automatically helps architects reserve the design
knowledge and promotes potential reusable knowledge
for them to accomplish the design more efficiently.

1. Introduction

Architecture design plays a crucial role in the whole
lifecycle of software. Software development is a
human and knowledge-intensive creative activity [1].
This claim is especially true for architecture design.
Various kinds of knowledge, e.g., design knowledge,
analysis knowledge, and realization knowledge, are all
critical inputs to the design process [2]. The success
and efficiency of the design depend on not only the
tacit experience and skills of architects, but also the
explicit form of the knowledge and the way to utilize it.

* Corresponding author

Existing architecture design methods [2] mostly
provide high-level processes and guidelines for design,
whereas still lacks pragmatic support for architects to
discover solutions and make decisions. On the other
hand, the wide-accepted design knowledge, e.g.,
patterns, though useful to codify successful expertise
and improve architects’ competence, is often too
generic and lacks incorporation into specific design
methods, so still falls short of supporting the
architecting process directly and effectively.

The software architecture community has an
emerging focus on Architectural Knowledge (AK),
which is defined as the integrated representation of the
software architecture of a software-intensive system or
family along with architectural decisions and their
rationale, external influence and the development
environment [3]. Existing research on AK mostly
focuses on the recording and comprehension of
architecture decisions and rationale. How to leverage
the accumulated knowledge to support architecting
activities is still a very open issue.

We have proposed a decision-centric architecture
design method [4], which models the core notions and
provides a semi-automated process for architecture
design. In this paper, we explicate four kinds of design
knowledge specially pertaining to this design method,
i.e., issue knowledge, solution knowledge, decision
knowledge, and rationale knowledge. Because of their
natural correspondence to the design notions and
activities, these kinds of knowledge can be captured
and retrieved for reuse at the right point of need,
according to the design context. We have developed a
tool to support the design method and leverage the
design knowledge. We illustrate how this tool
automatically helps architects reserve the design
knowledge and promotes the potential reusable
knowledge for them to accomplish the design more
efficiently.

321

The rest of this paper is organized as follows.
Section 2 presents related work. Section 3 gives an
overview of our decision-centric meta-model and
architecture design process. Section 4 describes the
design knowledge pertaining to our design method.
Section 5 and 6 describes the capture and reuse of
design knowledge within the design process. Finally,
Section 7 presents concluding remarks and future work.

2. Related work

A number of methods have been proposed for

software architecture design, e.g., QASAR [5],
ADD[6], Siemens Four-Views (S4V) [7], RUP’s 4+1
View [8], etc. Many methods derive the resulting
architecture via a series of transformations and provide
design knowledge in the forms of guidelines, patterns,
tactics, etc. For example, QASAR [5] formulates
design guidelines to indicate suitable transformations.
ADD [6] applies architectural tactics and patterns that
satisfy the driving quality attribute requirements. Our
approach implements automated synthesis of candidate
architecture solutions, and the capture and reuse of
design knowledge during the design process.

The effort on Architectural Knowledge (AK) in the
architecture community [3] is to make AK explicit to
facilitate its sharing and reusing. Bosch [9] promotes
that design decisions should be represented as first-
class entities in software architectures. Kruchten et al.
[10] describe a use-case model for an architectural
knowledge base, together with its underlying ontology.
Habli and Kelly [11] address the reuse of architectural
knowledge through the use of derivational analogy. Ali
Babar and Gorton [12] develop a framework and tool
for capturing and using architectural knowledge to
improve the architecture process. We tailor the
architecture design knowledge to our specific design
method, so that the knowledge can be leveraged
efficiently for architecting.

Knowledge Management (KM) is an emerging
discipline that promises to capitalize on organizations’
intellectual capital, and the KM in software
engineering is also drawn considerable attention [1].
Basili [13] proposes a framework where Experience
Factory develops and packages experience for reuse.
Henninger et al. [14] propose the organizational
learning approach to software development. Rich and
Waters [15] point out that the software engineering
tools will need more knowledge intensive approaches.
We follow the theme of knowledge-based approach for
software development, and aim to take advantage of
the knowledge in software architecture design with a
lightweight knowledge management effort.

3. Overview of the decision-centric
architecture design method

Figure 1 shows the meta-model to describe the

notions in our decision-centric architecture design.

Solution

Issue
Solution

Archi-
tecture

Solution

Issue
Decision

Archi-
tecture

Decision

Issue
Rationale

Archi-
tecture

Rationale

Decision Rationale

1..*

1..* 1 1 1 1

1

1 1 1 1

Issue

1..*

1..*

SA
Component

Connector

Meta-model of Issue, Solution,
Decision, and Rationale

1..*

1

RE
FR

NFR

adopt/
discardsolve

address

synthesize determine deduceadopt/
discard

candidate

1..* 1..*
1..* 1..*1..*

Figure 1. The decision-centric meta-model

An issue is an architecturally significant problem
that must be solved by the architecture design. Issues
address specific aspects of requirements or any other
considerations at the architecture level.

Solutions are specialized into issue solutions and
architecture solutions. An issue solution provides a
possible way of solving an issue. An architecture
solution is a candidate architecture design that has
addressed all of the issues. Architecture solutions can
be synthesized from issue solutions.

Decisions are specialized into issue decisions and
architecture decisions. An issue decision means
adopting or discarding one candidate issue solution.
An architecture decision means adopting or discarding
one candidate architecture solution. Issue decisions can
be determined by architecture decisions.

Rationale is specialized into issue rationale and
architecture rationale. Issue rationale is the reason
behind issue decisions. Architecture rationale is the
reason behind architecture decisions. Issue rationale
can be deduced from architecture rationale.

Figure 2 shows the iterative process to implement
our decision-centric architecture design. The main
inputs to this process are software requirements and
(optional) original architecture. The main outputs of
this process are decided architecture, recorded
decisions, and captured rationale.

Captured
Rationale

Recorded
Decisions

Rationale Capturing

Issue
Eliciting

Solution
Exploiting

Solution
Synthesizing

Architecture
Deciding

Original
Architecture

Captured
Rationale

Decided
Architecture

Recorded
Decisions

Solution
Discovering

Solution
Instantiating

Solution
Combining

Solution
Merging

Relation
Identifying

Automated

Manual

Activity flow

Artifact flow

IssuesIssues Issue
Solutions

Issue
Solutions

Architecture
Solutions

Architecture
Solutions

Requirements
(FR, NFR)

Requirements
(FR, NFR)

Figure 2. The decision-centric design process

322

In the issue eliciting activity, stakeholders
deliberate and determine architecturally significant
issues, based on the requirements, the original
architecture, and the design considerations.

In the solution exploiting activity, architects derive
candidate solutions to each issue. First, they discover
solutions, according to reusable design knowledge or
newly developed technologies. Second, they instantiate
these solutions from informal descriptions to concrete
design models.

The solution synthesizing activity automatically
synthesizes the candidate architecture solutions from
various issue solutions. First, the relations between
issue solutions (e.g., inclusive, conflictive, etc.) are
identified to indicate whether they can be combined
together. Second, a combination tree is built to explore
all feasible combinations of issue solutions. Finally,
the issue solutions within every feasible combination
are merged to generate candidate architecture solutions.

In the architecture deciding activity, stakeholders
select the target architecture solution from the
synthesized candidate architectures. They need to
evaluate the candidate architecture solutions according
to the requirements, compare them by multiple criteria,
make trade-offs between the competing objectives, etc.

The rationale capturing activity automatically
deduces issue decisions and rationale from the settled
architecture decisions and rationale, based on the
synthesis relationship between architecture solutions
and issue solutions. If one issue solution participates in
synthesizing the architecture solution that is adopted,
then the decision on this issue solution is adopting too.
Otherwise the decision on this issue solution is
discarding. Moreover, the rationale of the architecture
decisions can be used to explain the reasons for
adopting or discarding the issue solutions that
participate in synthesizing the architecture solutions.

4. The design knowledge pertaining to the
design method

The design knowledge here refers to the problem-
solving expertise within our architecture design
process. We explicate four kinds of design knowledge:
issue knowledge (illuminates how to elicit issues from
requirements), solution knowledge (illuminates how to
exploit issue solutions and architecture solutions),
decision knowledge (illuminates how to make
architecture decisions and issue decisions), and
rationale knowledge (illuminates the rationale of
architecture decisions and issue decisions).

To preserve all these kinds of design knowledge,
we codify comprehensive information about each

architecture design, including not only the resulting
architecture, but also the decisions and rationale, the
candidate solutions, the issues, and the requirements,
etc. Furthermore, we record all the relations between
these entities, as specified in the meta-model,
including the tracing relations from issue solutions to
issues and to requirements, the synthesizing relations
from issue solutions to architecture solutions, the
deducing relations from architecture decisions and
rationale to issue decisions and rationale, etc.

We define the structure of above information with
an XML schema, where the architecture design
repository (ADRepository) includes information about
every architecture design project (ADProject). Figure 3
shows the schema of ADProject.

Figure 3. The XML schema of design information

The ADProject schema specifies four kinds of
information items:

- Requirement, represents one requirement. The
Type specifies whether it is a functional (FR) or non-
functional requirement (NFR).

- Issue, represents one issue. The
AddressRequirements specifies the requirements it
addresses.

- IssueSolution, represents one candidate issue
solution. The SolveIssues specifies the issues it solves.
The Instantiation is an URI pointing to the concrete
ADL model of this solution. The Evaluation includes
Pros and Cons of this solution. As aforementioned, the
issue decision is determined by the decisions on the
architectures that this issue solution participates in
synthesizing. If this issue solution participates in
synthesizing the architecture solution that is adopted,
the Result of this issue solution’s Decision is ADOPT,
otherwise is DISCARD. The Rationale is the link to the
Decisions of the architecture solutions that this issue
solution participates in synthesizing.

323

- ArchiSolution, represents one candidate
architecture solution. The SynIssueSolutions specifies
the issue solutions that participate in synthesizing this
architecture solution. The Instantiation is an URI
pointing to the concrete ADL model of this solution.
The Evaluation includes the Pros and Cons of this
solution. The Result of this architecture solution’s
Decision may be ADOPT or DISCARD. This Result is
specified by the architects. The Rationale is a
statement of the reason behind this decision, and it is
also specified by the architects.

The above comprehensive information manifests
the four kinds of design knowledge. In concrete terms,
the knowledge is embodied in these information items
and their correlations: the issue knowledge is
embodied in the Issue items, and their relations to the
requirements they address (AddressRequirements); the
solution knowledge is embodied in the IssueSolution
items and their relations to the issues they solve
(SolveIssues), as well as the ArchiSolution items; the
decision knowledge and rationale knowledge is
embodied in the Decision and Rationale elements of
the IssueSolution and ArchiSolution items.

Section 5 and 6 illustrate these kinds of knowledge,
as well as their capture and reuse, based on a case of
Commanding Display System (CDS) [4]. The target of
CDS architecture design is to achieve a real-time, high
dependency system for live and history data display.

5. Capture of the design knowledge within
the design process

Capture issue knowledge. The issue knowledge
can be captured within the context of issue eliciting
activity. Our tool provides interfaces for users to
specify the elicited issues, as shown in Figure 4. The
tool then automatically records the issues and their
relations to the requirements. Figure 5 shows a sample
of the recorded requirements and issues that embody
issue knowledge.

Capture solution knowledge. The solution
knowledge can be captured within the context of
solution exploiting and solution synthesizing activities.
In the solution exploiting activity, our tool provides
interfaces for users to specify the exploited issue
solutions. The tool then automatically records the
solutions and their relations to the issues. In the
solution synthesizing activity, the tool automatically
synthesizes candidate architecture solutions from
various issue solutions, and records the synthesized
architecture solutions. Figure 6 shows a sample of the
recorded issue solutions and architecture solutions that
embody solution knowledge.

Figure 4. Interfaces for specifying issues

<Requirement ID="RE0001">
 <Description>Live data display</Description>
 <Type>FR</Type>
</Requirement>
<Requirement ID="RE0004">
 <Description>Real-time</Description>
 <Type>NFR</Type>
</Requirement>
<Issue ID="IU0001">
 <AddressRequirements IDREFS="RE0001 RE0004"/>
 <Description>Real-time live data acquiring</Description>
</Issue>

Figure 5. The captured issue knowledge

<IssueSolution ID="IS0001">
 <SolveIssues IDREFS="IU0001"/>
 <Description>DS pushes data to Ms directly</Description>
 <Instantiation>IS0001.ADL</Instantiation>
 <Evaluation>
 <Pros>Simple to implement; normal DB technology</Pros>
 <Cons>Lack of management for live data</Cons>
 </Evaluation>
 <Decision>
 <Result>DISCARD</Result>
 <Rationale xlink:type="simple" xlink:href="xpointer(//
 ArchiSolution[contains(SynIssueSolutions/@IDREFS,
 here()/../@ID)]/Decision)"/>
 </Decision>
</IssueSolution>
<ArchiSolution ID="AS0008">
 <SynIssueSolutions IDREFS="IS0002 IS0005 IS0007
 IS0009 IS0011"/>
 <Description>A real-time DB is used to store all data from
 DS, Ms get live data from DB directly, …</Description>
 <Instantiation>AS0008.ADL</Instantiation>
 <Evaluation>
 <Pros>Advantage of real-time DB, maintainable, …</Pros>
 <Cons>Cost of development, …</Cons>
 </Evaluation>
 <Decision>
 <Result>ADOPT</Result>
 <Rationale>New technology, high maintainability.
 </Rationale>
 </Decision>
</ArchiSolution>
Figure 6. The captured solution knowledge, and

the decision and rationale knowledge

324

Capture decision and rationale knowledge. The
decision and rationale knowledge can be captured
within the context of architecture deciding and
rationale capturing activities. In the architecture
deciding activity, our tool provides interfaces for users
to specify their decisions on the candidate architecture
solutions and the rationale of their decisions. The tool
then automatically records these decisions and
rationale. Moreover, the tool automatically deduces
issue decisions and rationale from the architecture
decisions and rationale, and records them. Figure 6
also shows a sample of the recorded decisions and
rationale.

6. Reuse of the design knowledge within
the design process

Reuse issue knowledge. The issue knowledge can
be reused in the issue eliciting activity, to help users
elicit issues according to the specified requirements.
Within this context, our tool automatically retrieves
potential reusable issues from the design repository via
a background query. The query finds the issues whose
AddressRequirementss include the Requirements
whose Descriptions include the keywords of the
current project’s requirements.

Besides the automatically suggested issues, users
can also conduct several kinds of queries manually to
find other potential reusable issues. For example:

- Query the Issues whose Descriptions include the
specified keywords.

- Query the Issues whose AddressRequirementss
include the Requirements whose Descriptions include
the specified keywords.

Figure 7 shows the interface automatically
suggesting issues for reuse when users specify a new
issue (the left dialog), and the interface for users to
query the issue knowledge manually (the right dialog).

Figure 7. Interfaces for reusing issue knowledge

All above queries can be implemented on the
recorded issue knowledge. For example, a query of the
Issues by the requirement keyword “Live” is
implemented with XPath:

//Issue[contains(AddressRequirements/@IDREFS,//Requi
rement[contains(Description,"Live")]/@ID)][//Requirement[
contains(Description,"Live")]]

Reuse solution knowledge. The solution
knowledge can be reused in the solution exploiting
activity, to help users exploit solutions to the specified
issues. Within this context, our tool automatically
retrieves potential reusable solutions from the design
repository. For the reused issues, the tool retrieves
their solutions in the design repository directly and
promotes for reuse. For the newly elicited issues, the
tool query the issues whose Descriptions include the
keywords of the new issues, then retrieves the
solutions to these similar issues and promotes for reuse.

Besides the automatically suggested solutions, users
can also conduct several kinds of queries manually to
find other potential reusable issue solutions. For
example:

- Query the IssueSolutions whose Descriptions
include the specified keywords.

- Query the IssueSolutions whose SolveIssuess
include the Issues whose Descriptions include the
specified keywords.

- Query the IssueSolutions that are included in the
SynIssueSolutionss of the ArchiSolutions whose
Descriptions include the specified keywords.

Architecture solutions are not prone to be directly
reusable, because of their relative coarse granularity
and the diversity of different projects. However, they
can also be queried to provide references. For example:

- Query the ArchiSolutions whose Decsriptions
include the specified keywords.

- Query the ArchiSolutions whose
SynIssueSolutionss include the IssueSolutions whose
Descriptions include the specified keywords.

All above queries can be implemented on the
recorded solution knowledge. For example, a query of
the ArchiSolutions by the issue solution keyword
“push” is implemented with XPath:

//ArchiSolution[contains(SynIssueSolutions/@IDREFS,//
IssueSolution[contains(Description,"push")]/@ID)][//IssueSo
lution[contains(Description,"push")]]

Reuse decision and rationale knowledge. The
decision and rationale knowledge can be reused in the
architecture deciding activity, to help users make
decisions on the specified solutions. Within this
context, our tool automatically retrieves potential
reusable decisions and rationale from the design
repository. For the reused issue solutions, the tool

325

retrieves their decisions and rationale directly and
provides references for users.

Besides the automatically suggested decisions and
rationale, the user can also conduct several kinds of
queries manually to find the relative decisions and
rationale for reference. For example:

- Query the Decisions and Rationale on the
IssueSolutions by the decision Result.

- Query the Decisions and Rationale on the
IssueSolutions whose Descriptions include the
specified keywords.

As aforementioned, architecture solutions are not
prone to be directly reusable, neither are their
decisions and rationale. However they can also be
queried to provide references for users. For example:

- Query the Decisions and Rationale on the
ArchiSolutions by the decision Result.

- Query the Decisions and Rationale on the
ArchiSolutions whose Descriptions include the
specified keywords.

All above queries can be implemented on the
recorded decision and rationale knowledge. For
example, a query of the Decisions on the architecture
solutions by the keyword “real-time DB” is
implemented with XPath:

//ArchiSolution[contains(Description,"real-time
DB")]/Decision

7. Conclusions and future work

We have proposed a decision-centric architecture

design method and explicated four kinds of design
knowledge pertaining to this design method. The
architecture design method can facilitate the capture
and reuse of the design knowledge within the context
of various design activities. The tool we developed can
provide semi-automated support for the architecting
and the capture and reuse of the design knowledge.

This paper presents our ongoing work towards
practical architecture design method and tool support.
Future work includes the further elaboration of the
architecture design knowledge and the validation of
this method and tool in real-life applications.

8. Acknowledgements

This effort is sponsored by the National Basic
Research Program (973) of China under Grant No.
2005CB321805, the National Natural Science
Foundation of China under Grant No. 90612011,
60503028, and the National High-Tech Research and
Development Program (863) of China under Grant No.
2007AA01Z127, 2007AA010301.

9. References

[1] I. Rus and M. Lindvall, "Knowledge Management in

Software Engineering," IEEE Software, vol. 19, no. 3,
May/June 2002, pp. 26-38.

[2] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A.
Ran, and P. America, "A General Model of Software
Architecture Design Derived from Five Industrial
Approaches," The Journal of Systems and Software,
vol. 80, no. 1, Jan. 2007, pp. 106-126.

[3] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D.
Perry, "Architectural Knowledge and Rationale –
Issues, Trends, Challenges," ACM SIGSOFT Software
Engineering Notes, vol. 32, no. 4, July 2007, pp. 41-45.

[4] X. Cui, Y. Sun, and H. Mei, "Towards Automated
Solution Synthesis and Rationale Capture in Decision-
Centric Architecture Design," Proc. Working
IEEE/IFIP Conf. on Software Architecture (WICSA'08),
IEEE CS, Feb. 2008, pp. 221-230.

[5] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, 2000.

[6] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 2nd ed. Addison-Wesley,
2003.

[7] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture. Addison-Wesley, 2000.

[8] P. Kruchten, The Rational Unified Process: An
Introduction, 3rd ed. Addison-Wesley, 2003.

[9] J. Bosch, "Software Architecture: the Next Step," Proc.
1st European Workshop on Software Architecture
(EWSA'04), Springer-Verlag, 2004, pp. 194-199.

[10] P. Kruchten, P. Lago, and H. v. Vliet, "Building Up
and Reasoning About Architectural Knowledge," Proc.
2nd Int'l Conf. on the Quality of Software Architectures
(QoSA'06), LNCS 4214, Springer-Verlag, 2006, pp. 43-
58.

[11] I. Habli and T. Kelly, "Capturing and Replaying
Architectureal Knowledge through Derivational
Analogy," 2nd Workshop on SHAring and Reusing
architectural Knowledge - Architecture rationale and
Design Intent (SHARK-ADI'07), IEEE CS, May 2007.

[12] M. A. Babar and I. Gorton, "A Tool for Managing
Software Architecture Knowledge," 2nd Workshop on
SHAring and Reusing architectural Knowledge -
Architecture rationale and Design Intent (SHARK-
ADI'07), IEEE CS, May 2007.

[13] V. R. Basili, "Software Development: A Paradigm for
the Future," Proc. 13th Int'l Computer Software and
Applications Conf. (COMPSAC'89), IEEE CS, 1989,
pp. 471-485.

[14] S. Henninger, K. Luppala, and A. Raghavendran, "An
Organizational Learning Approach to Domain
Analysis," Proc. 17th Int'l Conf. on Software
Engineering (ICSE'95), ACM, 1995, pp. 95-104.

[15] C. Rich and R. C. Waters, "Knowledge Intensive
Software Engineering Tools," IEEE Trans. on
Knowledge and Data Engineering, vol. 4, no. 5, Oct.
1992, pp. 424-430.

326

System architecture induces document architecture
Peter Henderson, Nishadi De Silva

School of Electronics and Computer Science, University of Southampton
Southampton, UK

p.henderson@ecs.soton.ac.uk, n.desilva@ecs.soton.ac.uk

Abstract

The documentation of an architecture is as important as
the architecture itself. Tasked with communicating the
structure and behaviour of a system and its constituent
components to various stakeholders, the documentation is
not trivial to produce. It becomes even harder in open,
modular systems where components can be replaced and
reused in each progressive build. How should documenta-
tion for such systems be produced and how can it be made
to easily evolve along with the system it describes? We
propose that there is a close mapping between the system
architecture and its documentation. We describe a rela-
tional model for the architecture of open systems, paying
close attention to the property that certain components can
be reused or replaced. We then use ideas from storytelling
and a discourse theory called Rhetorical Structure Theory
(RST) to propose a narrative-based approach to architec-
ture documentation; giving both a generic narrative tem-
plate for component descriptions and a RST-based rela-
tional model for the document architecture. We show how
the two models (system and documentation) map onto each
other and use this mapping to demonstrate how document
fragments can be stored, automatically extracted and col-
lated to closely reflect the system’s architecture.

Keywords
System architecture, documentation, narratives, RST

1. INTRODUCTION
An architecture is the partitioning of a whole into parts
(components), with specific relationships between these
parts [1-3]. There is an increasing need for faster software
development, and much of this is now dependent on modu-
lar architectures with reusable components that allow for
quicker evolution and localised updates [4]. Documenting
the architectures of such evolving systems is not trivial. Of
all the potential stakeholders, we are concerned primarily
with the documentation required by developers who are
charged with evolving the product. So, the question we ask
is - how does one produce documentation for a developer
who has to revise the software and thus use most of its
documentation?
There are various techniques and guidelines on how to
document architectures [1, 5-7]. Our approach, however,
looks at this problem from a narratives perspective based
on the hypothesis that ‘saying it like a story’ improves
document coherence and readability. There are two issues
that need to be considered: each component needs to be

documented well and coherently; and, secondly, these
component descriptions need to be collated in some way to
produce the documentation for a system. For the first, we
argue that a document conveys an implicit narrative (or
story) to the reader, and that fine-tuning this improves the
overall document. We use ideas from Rhetorical Structure
Theory (RST) [8] to study and enhance the coherence of
this implicit narrative (which we call a document narra-
tive or DN) [9]. In this paper, we present a generic DN to
document a component’s structure and behaviour.
To address the second issue, we develop a relational model
for the system architecture (comparable to other relational
models in this field [10]) and a RST-based relational model
for the document architecture, and show how the two map
onto each other. We use this mapping to describe how as-
pects of the system architecture can be used to guide the
structure and sequence of the documentation.
A mapping between the two models as shown here has two
major benefits. Firstly, it allows a database to be created
that can store the architecture details and the set of associ-
ated document fragments. When queried, it is able to return
a narrative-based document that reflects the system archi-
tecture. Better still, it allows documentation to be reused or
replaced where appropriate. Secondly, since there is a
strong correlation between the models, system architects
will be forced to think of the accompanying documentation
from an early stage which will benefit both the system and
the documentation. We conjecture that architectures that
are easier to document using our technique are better archi-
tectures.
The rest of this paper is set out as follows: Section 2 gives
some background information; section 3 introduces the
relational model for the system architecture and a generic
DN for documenting a component; section 4 presents the
RST-based relational model for the documentation and
illustrates the mapping between the two models; in section
5, we demonstrate our ideas using a simple example and
section 6 concludes the paper and discusses future work.

2. BACKGROUND
A significant proportion of a software architect’s time is
spent interacting with stakeholders and communicating the
architecture [11]. A majority of this communication is done
via documentation. Architecture documentation is expected
to cater to three categories of readers: those selecting this
system, those learning to develop typical applications using
this system and those intending to modify its architecture

327

contains

[6]. The work presented in this paper addresses documenta-
tion targeted at the third category (even though it could be
of use to the first group too).
Because architectures can be so complex, several practitio-
ners and researchers have developed techniques that divide
the documentation into views which help separate the dif-
ferent aspects of the architecture [1, 5, 12]. The documen-
tation is then composed of the relevant views along with
any documentation that applies to more than one view (the
‘glue’ that binds the views together). Similarly, Kruchten
introduced a 4+1 model for an architecture [5] which is a
generic way to describe architecture using five concurrent
views, each addressing a specific set of concerns important
to different stakeholders: the logical view, process view,
physical view, development view and a fifth view that con-
tains use cases or scenarios.
We recognise from these previous approaches that it is im-
possible to capture everything about an architecture in one
document. We, therefore, abstract away from development
and physical details to a much higher level. At this level,
we only focus on descriptions about the software compo-
nents, what they are made up of and how they interact with
other components. We recognise that other audiences may
require other types of documentation but they are beyond
the scope of this paper.
We are also not the first to employ documenting strategies
from another domain in architecture documentation. The
pyramid principle [13], for instance, has been used to
structure architecture documentation [6]. The pyramid
principle is based on structuring the document around de-
veloping a question-answer dialogue with the reader. So,
information is exposed incrementally as answers to ques-
tions that arise in the reader’s mind. Also, storyboarding
has been used to identify requirements and select COTS
components [14]. In this paper, we make use of our previ-
ous work on narrative-based writing [9] and apply it to
architecture documentation. This combination of narratives
and RST in this domain is a novel approach. (A brief in-
troduction to RST is given in section 4 and the features of
narrative-based writing required for this paper are included
where necessary. More can be found in [9].)

3. A RELATIONAL MODEL FOR SOFTWARE
As with most architectural descriptions, the central concept
in our model is a component. A component can either be
atomic or have subcomponents plugged into appropriate
slots1. These subcomponents, in turn, can be made of sub-
subcomponents and so on. This continues until a level is
reached where the components can be considered as ‘black
boxes’ (i.e., it is unnecessary and beyond the scope of the
documentation to dwell deeper into the hierarchy of de-

1 The idea of a ‘slot’ gives us a the flexibility to have multiple subcompo-

nents of the same type plugged into different slots within the same com-
ponent.

composition). This leads us to the first relation in our
model:

contains (container:component, slot, component:component)

Components also have dependencies on other components.
This is, in fact, essential for modular systems where the
behaviour of the whole is only realised when the constitu-
ent components work together. We call this the uses rela-
tion. Component A uses B if A (user) uses an interface
provided by B (service).

uses (user:component, service:component)

A particular benefit with open, modular architectures like
the ones we focus on is that a component can be replaced
by another component if it provides the similar functional-
ity and interfaces. This can happen, for example, when two
suppliers manufacture comparable components leaving the
implementer to pick one depending on other criteria such
as price and reliability. Of course, this option to replace
usually works only in one direction. A superior component
B’ that can perform all the functions of an inferior compo-
nent B (and more) can be used to replace B. However, B
cannot be used in situations where a B’ is required. This
brings about the third relation replaces:

replaces (superior:component, inferior:component)

A diagrammatic representation of the three relations is
shown below.

Fig. 1. Diagrammatic representation of our relational model for
the system architecture

We realise that, when compared to languages such as UML
with numerous relations, our model may appear limited.
However, for the purposes of this paper, the model given
above is sufficient.

4. A RELATIONAL MODEL FOR
DOCUMENTATION
In our previous work, we have researched and developed a
technique called narrative-based writing [9] to improve the
coherence of technical documents such as research propos-
als. The technique required authors to first formulate a
“document narrative” (DN): an explicit précis of what the
authors wanted to convey to the readers in a story-like

replaces

uses

Component

328

form. The DN is then analysed using a discourse theory
called Rhetorical Structure Theory (RST) [8]. RST helps
add more meaning and supportive reasoning to the DN and
also gives an indication of how well it is structured. The
DN and the corresponding RST analysis are then used to
produce the document. The technique was particularly use-
ful in collaborative writing where multiple authors had
differing opinions about the document’s objectives and
structure.
We use this technique here to compose fragments of docu-
mentation corresponding to the components in the architec-
ture. However, before proceedings, it is necessary to give a
brief overview of RST and how it can be applied to text.

Rhetorical Structure Theory (RST)
RST was developed in 1988 by Mann and Thompson [8].
The theory attributes the coherence of a text to implicit
logical relationships that exist between parts (usually called
segments) of that text. So, for instance, segment A and B
can be involved in a MOTIVATION relationship which
means that segment B provides some information to moti-
vate the action(s) in segment A. In Mann and Thompson’s
original paper, they define 23 such relationships with pre-
cise definitions of the sorts of text that can be involved in
each.
In RST, the segments of text are classified as nuclei or sat-
ellites. Nuclei are considered essential to the understanding
of the text. Satellites provide supporting material to the
nuclei but are not absolutely necessary. Most relationships
exist between a nucleus and a satellite. Returning to the
example of the MOTIVATION relationship before, it can
be illustrated using the diagram below. Note that the arrow
always goes from the satellite to the nucleus.

Fig. 2. A MOTIVATION relationship in RST

Some relationships like SEQUENCE can exist between
more than two segments of equal importance (so, two or
more nuclei). We have briefly described the RST relation-
ships that appear in this paper in Table 1.
In order to do a RST analysis, the first step is to divide the
text into segments. Each segment should have functional
integrity and is often a clause or a sentence. The next step
in a bottom-up analysis is to identify relationships that exist
between pairs of segments. Segments involved in a rela-
tionship can, in turn, become involved in another relation-
ship. Hence, the process is recursive and continues until all
the segments can be assembled into a tree of relationships
called a RS-tree. Mann and Thompson conjecture that if a

RS-tree can be formed involving all the segments, then the
text is coherent. However, if there are non-sequitors or
difficulties producing this tree, then the text may need re-
structuring. This is a valuable guide when evaluating the
structure and coherence of a text [8].

Relationship Description
Background Satellite provides background information to the

nucleus

Elaboration Satellite elaborates the information in the nu-
cleus

Justify Satellite justifies the information presented in
the nucleus

Motivation Satellite motivates the reader to perform the
action in the nucleus

Sequence Multiple nuclei that follow each other in se-
quence

Restatement Satellite is a restatement of the information in
the nucleus

Table 1. The RST relationships used in this paper

A Narrative-based Component Description
We look first at applying the narrative-based writing tech-
nique to describing each component. What we want to end
up with is a generic structure that can be used for all com-
ponents. Bearing in mind that a ‘component’ in our case
can mean anything from a composite system to an atomic
sub-component, some of the key concepts that need to be
conveyed in the documentation are its behaviour, subcom-
ponents (if any), whether it is able to interact with other
components and, if appropriate, brief comparisons to simi-
lar products that are available. However, what is the best
order to place this information in? This is where a DN can
help. Trying to construct a narrative helps identify the natu-
ral sequence to the information and even recognise seg-
ments that are missing. A generic DN for the component
descriptions (divided into 7 segments) is presented below
along with a possible RST analysis of it. We say “a possi-
ble analysis” because it is viable that different analysts will
produce different RS-Trees. The important point is to agree
with the co-authors on the analysis and be able to form a
tree (see Figure 3) which helps gauge the level of coher-
ence of the text.

“[Select component X]1 [because it meets the set requirements and
has some advantages over comparable technologies in the market.]2
[It is also a vast improvement from previous versions.]3 [It can re-
ceive the following instructions and perform the necessary tasks in
response.]4 [The behaviour was grouped as it is done in this compo-
nent for several good reasons.]5 [Furthermore, X can also interact
with other components that it needs to in the following ways to pro-
duce the desired effect.]6 [On closer inspection, X is composed of
multiple subcomponents that, when combined, enable its functional-
ity. These components are x1-xn and they will be described later.]7”

Nucleus: Action to be per-
formed

Satellite: Information to
motivate the performance of
the action in the nucleus.

MOTIVATION

329

Some parts of the narrative may not apply to all compo-
nents of course. For instance, when describing components
that are not going to be further decomposed, segment 7
about subcomponents is not relevant. Segment 2 is seen to
provide motivation to convince the reader to choose (or
buy) component X in the case where a decision has not yet
been made.
It is worth mentioning that this narrative structure applies
to the body of the document. Additionally, there would be
other sections such as the introduction and conclusions
which are compulsory in most documents. We call the de-
scription of a component adopting this narrative a
FRAGMENT. A fragment is a self-contained description
of an architectural component. Note that a fragment will be
divided into several segments prior to doing a RST analy-
sis. For a structured component, the fragments describing
its contained components will be organised into a narrative
structure where the fragments at the lower level are taken
to be RST segments at the higher level.

A Relational Model for Document Architectures
From the above, we see that, for an architecture involving
many different components at different levels in the hierar-
chy, there will be as many document fragments. For a
document about the architecture, several of these fragments
will need to be placed in a suitable order. Our eventual
target is to develop a system where document fragments
can be automatically extracted according to the architec-
ture. To this end, we have developed a relational model for
the documentation that corresponds to the system architec-
ture. The novelty about this model is that these relations are
also from RST. A fragment is central to our documentation
model. Conceptually, this is similar to the component in the
system architecture model.
Firstly, it needs to be noted that a fragment can be made up
of other fragments. This is similar to the contains relation
in the system architecture except that in the document
model, a fragment’s narrative is composed of other frag-
ments’ narratives. So, the topmost fragment will contain an
description of the system and this is elaborated by frag-
ments about

overview of the system which is expanded by subsequent
fragments (like sub-sections). We equate this to the RST
ELABORATION relationship.
elaboration (fragment, fragment)

For components at the same level, the corresponding frag-
ments need to be presented in an appropriate sequence. We
propose using the uses relationship from the system archi-
tecture to determine the sequence. So, if component A uses
component B, then we propose that the most suitable way
to document it is to make fragment(A) appear before frag-
ment(B). We call this second relationship SEQUENCE
(also a RST relationship). We need to break loops in the
uses relation by a suitable forward-reference mechanism.
We recognise that even then the uses relation is only a par-
tial order, but it seems not to matter which order unrelated
fragments appear, as long as all the descriptions of the
components that use them appear first.
sequence (fragment, fragment)

If components can be replaced by other components, it
must be the case that the corresponding fragments can be
replaced too. However, it is important to note that the re-
placement of document fragments works in the opposite
direction to the replaces in the system architecture. Say, for
instance, a newer component A’ with more functionality is
used to replace component A in a build. However, if frag-
ment(A’) is not yet ready, it is still possible to use frag-
ment(A) in this case because only the capabilities of A are
expected and realised. However, fragment(A) cannot be
used in an instance where A’ is required because it will not
describe the extended functionality. The closest relation-
ship in RST for this is RESTATEMENT. In RST, this
means that one segment says the same thing as another in a
different way.

restatement (fragment, fragment)

3: It is also a vast
improvement from
previous versions.

Background

4-7

Elaboration

4: It can receive the
following instructions
and perform the
necessary tasks in
response.

Sequence
5: The behaviour
was grouped as it is
done in this
component for
several good
reasons.

Justify

6: Furthermore, X can
also interact with
other components
that it needs to in the
following ways to
produce the desired
effect.

Sequence
7: On closer
inspection, X is
composed of multiple
subcomponents that,
when combined,
enable its
functionality. These
components are
x1-xn and they will be
described later.

Sequence

1: Select component
X

2: because it meets
the set requirements
and has some
advantages over
comparable
technologies in the
market.

Motivation

Fig. 3. A possible RST analysis of the generic DN above

330

The figure above shows the mapping between the system
architecture model and the document architecture model.

5. A SIMPLE EXAMPLE
We demonstrate the storage and extraction of document
fragments using a simple example of a toaster T. T is made
up of two subcomponents: the heating element (H) and the
control module (C) which instructs H to start heating when
the lever is pushed (thus, C uses H). Furthermore, H has a
sub-subcomponent M, the timer.

Toaster (T)
Heating element (H)

Timer (M)

Control (C)

Toaster (T)
Heating element (H)

Timer (M)

Control (C)

Fig. 5. A simple toaster T

Additionally, we know that a newer version of C, C’, that
can respond to changes in the ‘browning level’ made by the
user can replace C. Similarly H’ is more advanced and can
vary the time of heat depending on the browning level.
This information can be recorded using relational tables:

contains

container slot component
T h H
T c C
H m M

uses

user service
C H

replaces

superior inferior
C’ C
H’ H

A sample document fragment structured according to the
DN in Fig 3 for the toaster T is shown below:

T is a basic toaster that can detect when the user has pressed down
the lever and start heating the toast for a set time. Once this time
has passed, the heating is switched off and the lever returned to its
original position. T is composed of two subcomponents: the heat-
ing element (H) and the control module (C). These will be de-
scribed later in the document.

Similar fragments exist for all the components except C’
and H’. However, this does not affect the documentation
for T which will have the fragments in the order shown
below:

Another build of T (T’) is made but since component C is
not available it is replaced by C’. Fragment(C’) does not
exist but since only the functionality of C will be realised
in this build, the documentation can remain unchanged.

A third build is now made based on T’ (T’’) which has H’
instead of H. However, this time the fragment C cannot be
used to describe C’ since the additional functionality can
now be used because the heating element is able to deal
with temperature (browning) changes. Hence, the docu-
mentation cannot be completed until fragment(C’) and
fragment(H’) are ready.
With a data model as the one shown, it is possible to de-
termine whether all the fragments are available to produce
documentation for a given build. For a simple example like
this toaster, this may seem trivial. However, for large sys-
tems with hundreds of components where the documenta-
tion is received from many sources, the searching of frag-
ments and generation of documentation becomes corre-
spondingly hard.

6. CONCLUSIONS AND FUTURE WORK
Previously, we have worked on architectures and software
reuse [15, 16], and more recently on the structure of tech-
nical documentation [9, 17]. In this paper we have brought
these two strands of research together.

fragment (T)
 fragment (C)
 fragment (H)
 fragment(M)

restatement replaces

uses contains

Component

sequence elaboration

Fragment

The hierarchical structure is
obtained by the contains
relation and the sequence
from uses relation.

Fig. 4. The mapping between the system architecture model (left) and the document architecture model (right)

331

As future work, we will investigate the relevance of this
documentation model in different varieties of system evolu-
tion. So far we have only studied the case where the com-
ponents in a system become progressively more advanced.
Other changes include re-factoring the system functionality
(logically related components can be grouped to form one,
say) and the production of a family of products that are
based on a common core [4]. Is it then the case that the
author starts with a core document that is relevant to all the
products and extends it to fit each product?
The data model in this paper has also been implemented so
that we are able to carry out further experiments with real
systems.
Just as software components are reused to increase produc-
tivity, document fragments should also be reused. How-
ever, traditional documentation does not lend itself very
well to reuse [18]. In order to reuse a component, one has
to understand its functionality and how it can be used in a
specific context. We cater for this requirement by arguing
that successful reuse can be achieved by defining a com-
mon structure, extracting common information and extend-
ing current documentation.
Producing high-quality documentation is a complex task. It
should ideally parallel the development of the artefact [19]
and can benefit from reflecting the structure of the system
being described [20]. We have shown that there is a strong
mapping between the system architecture and the way in
which its documentation is composed and thought about.
We believe this will improve the quality of both the archi-
tecture and the documentation, and increase the extent to
which both can be reused.

REFERENCES
1. Clements, P., et al., Documenting Software Architec-

tures: Views and Beyond. 2003: Pearson Education.
2. IEEE, ANSI/IEEE Standard 1471-2000: Recommended

practice for architectural description of software-
intensive systems". (Available online at
http://ieeexplore.ieee.org/servlet/opac?punumber=4278
470; last accessed 5.3.2008).

3. Garlan, D. and M. Shaw, An Introduction to Software
Architecture. Advances in Software Engineering and
Knowledge Engineering, 1993. 1.

4. Müller, J.K., The Building Block Method: Component-
based Architectural Design for Large Software-
intensive Product Families. 2003, Universiteit van Am-
sterdam.

5. Kruchten, P.B., The 4+1 View Model of architecture.
Software, IEEE, 1995. 12(6): p. 42-50.

6. Meusel, M., K. Czarnecki, and W. Köpf, A model for
structuring user documentation of object-oriented
frameworks using patterns and hypertext in ECOOP'97

— Object-Oriented Programming. 1997, Springer Ber-
lin / Heidelberg.

7. Gatzemeier, F., Patterns, Schemata, and Types—Author
Support Through Formalized Experience. 2000. p. 27–
40.

8. Mann, W. and S. Thompson, Rhetorical Structure The-
ory: Toward a functional theory of text organisation.
Text, 1988. 8(3): p. 243-281.

9. De-Silva, N. and P. Henderson. Narrative-based writ-
ing for coherent technical documents. in ACM Special
Interest Group on the Design of Communication. 2007.
El Paso, Texas, USA.

10. Holt, R., Binary Relational Algebra Applied to Software
Architecture, in CSRI Tech Report 345. 1996, Univer-
sity of Toronto, Canada.

11. Kruchten, P., What do software architects do?, in
Available online at
http://www.sei.cmu.edu/architecture/what_architects_d
o.pdf. 2006.

12. Soni, D., R.L. Nord, and C. Hofmeister. Software archi-
tecture in industrial applications. in 17th International
Conference on Software Engineering (ICSE). 1995. Se-
attle, USA: ACM Press New York, NY, USA.

13. Minto, B., The pyramid principle. 3rd ed. 2002, UK:
Pearson Education Limited.

14. Gregor, S., J. Hutson, and C. Oresky. Storyboard Proc-
ess to Assist in Requirements Verification and Adapta-
tion to Capabilities Inherent in COTS. in First interna-
tional conference on COTS-Based Software Systems
(ICCBSS 2002). 2002. Orlando, USA: Springer.

15. Henderson, P. Laws for Dynamic Systems. in Interna-
tional Conference on Software Re-Use (ICSR 98). 1998.
Canada: IEEE Computer Society.

16. Henderson, P. and J. Yang. Reusable Web Services. in
8th International Conference on Software Reuse (ICSR
2004). 2004. Spain: IEEE Computer Society.

17. De-Silva, N., A narrative-based collaborative writing
tool for constructing coherent technical documents, in
School of Electronics and Computer Science. 2007,
University of Southampton: Southampton, UK.

18. Sametinger, J. Reuse documentation and documentation
reuse. in TOOLS 19: Technology of Object-Oriented
Languages and Systems. 1996. Paris, France: Prentice
Hall.

19. Priestley, M. and M.H. Utt, A unified process for soft-
ware and documentation development, in Proceedings
of the 18th annual ACM international conference on
Computer documentation: technology & teamwork
2000, IEEE Educational Activities Department: Cam-
bridge, Massachusetts. p. 221-238.

20. Sametinger, J., Object-oriented documentation. ACM
Journal of Computer Documentation, 1994. 18(1): p. 3-
14.

332

A Software Framework for Integrative Physiological Model Simulation

E. Zeynep Erson and M. Cenk Çavuşoğlu

Department of Electrical Engineering and Computer Science, Case Western Reserve University

10900 Euclid Av., 44106-7221, Cleveland, OH,USA ∗

Abstract

Emergence of systems biology motivated more compre-
hensive and integrative approaches for modeling physiolog-
ical processes. Presented study proposes a software frame-
work to integrate multilevel and multiscale models for phys-
iological processes. The aim of the study is to provide the
interfacing mechanisms to facilitate the integration of mod-
els from multiple research groups increasing the ability to
construct complex simulations of physiological models. In
this paper, high level design of the proposed system, integra-
tion of physiological models and the architecture to modu-
larize the integration are presented. As the proposed sys-
tem targets a multiscale and multilevel integration of math-
ematical models, complex diseases or physiological pro-
cesses effecting many organs or organ systems, like dia-
betes, are within in the application areas. Besides enhanc-
ing the model development processes; the presented study
will accelerate the development, analysis and testing of in-
tegration approaches for multiscale and multilevel physio-
logical models.

1. Introduction

Emergence of systems biology provided a comprehen-

sive and integrative perspective to examine the structure and

function at the cellular and organism levels instead of focus-

ing on the isolated parts [6, 14]. However the challenge of

building medical simulations where multiscale and multi-

level physiological processes are developed together is of-

ten too great for any individual group since expertise from

different fields is required. Therefore it is necessary to have

frameworks where various models can be integrated lead-

ing to new simulation models from independently devel-

oped models. The present study addresses this challenge

∗This work was supported in part by National Science Foundation un-

der grants CISE IIS-0222743, EIA-0329811, and CNS-0423253, and US

DoC under grant TOP-39-60-04003.

and proposes a software framework to integrate mathemat-

ical models of physiological processes ranging from intra

cellular level up to organ, organ system and organism lev-

els. Specifically; the aim is to facilitate the integration of

multiscale and multilevel models of physiological processes

in a modular framework. To achieve this task, instead of

building the architecture based on the domain specific com-

ponents such as anatomical and physiological information;

we are focusing on the application enforced functionality,

integration of information.

Mathematical models for the physiological processes

represent the regulation, control and modification of a phys-

iological variable which has an effect on defining the current

state of the whole system [7]. A change in a physiological

variable has a direct or indirect effect on processes deter-

mining other physiological variables. In other words, every

physiological variable carries an information which needs

to be accessed, used, modified or integrated by other vari-

ables. Therefore integration of physiological processes is

conceptualized by the transfer, access or sharing of infor-

mation among the models representing the processes, and

will be referred as information flow throughout the paper.

In the proposed framework, models to be integrated are

decoupled by separating the mechanisms of information

flow from the information itself. Information flow archi-

tecture, which is a crucial part for the model integration is

the focus for this paper.

In addition to the integration of various physiological

processes, the software will also enable using different in-

tegration algorithms and approaches with the interfacing

mechanism. Therefore developers will have control on

what to integrate as well as on how to do the integration.

With these attributes, the framework will provide a user

friendly, plug-and-play type environment where both indi-

vidual models of physiological processes and different inte-

gration approaches can be used.

In the next Section (Section 2), studies that are using in-

tegrative approaches and their attributes which motivated

the proposed architecture are summarized. The rest of the

presentation for the framework will be based on a case sce-

333

nario using a circulatory system model [3] coupled with

an IV drug model and its effects on a target organ [20].

In Section 3 details of the problem and the conceptualiza-

tion of the system for integrating physiological processes

is discussed. High level design of the proposed solution

and overview about the system components are presented

in Section 4. Design of the information flow idea, being the

focus of this paper is discussed in Section 5 accompanied

with the implications on the case scenario. Implementation

details for the current status of the project are given in Sec-

tion 6 to show how the components, which are not discussed

in detail in this paper are integrated with the information

flow mechanism.

2. Background

Integrating multilevel physiological processes requires

both structural and functional hierarchical information for

the contributing models. The hierarchical structure of the

anatomy represents the organization starting from DNA se-

quences, RNA and protein, protein-protein interactions and

protein-DNA interactions, to cells, tissues, organs, organ

systems to the whole organism [6]. Modularity concept

is also expanded for functionality in biological systems

[10]. Importance of modularization is realized more as the

multiscale modeling came into consideration for integrative

physiology studies as modularization simplifies multiscale

modeling [15]. Therefore in the proposed software frame-

work, anatomical and physiological knowledge is defined

using a modular, systematic representation.

One of the successful studies in cell level modeling, with

an integrative approach, is the BioSPICE Project, which

provides a framework for modeling, simulating intra and

inter-cell processes. BioSPICE project also provides an in-

tegrative software environment that enables access to differ-

ent computational biological tools [11].

Physiome Project [3], has a database of physiological

models with different scale and levels. With the hierarchy

of models from cell level to organ level, the project aims

to analyse integrative biological function models and test

the hypothesis using mathematical models [12]. JSIM [1],

which is a Java-based system, is used to simulate the mod-

els in Physiome model repository. Although the models to

be simulated vary from cellular level to organ and system

level, they can only be simulated independently.

With the emergence of systems biology, development of

modeling and simulation tools for this domain increased,

such as, SCIRun [5] and Systems Biology Toolbox for Mat-

lab [19]. Although SCIRun is a general purpose problem

solving environment for physical and biological systems, it

does not provide a simulation and modeling framework. It

uses a data-flow architecture to integrate the steps of prepar-

ing, executing, and visualizing simulations of physical and

Nerves (Axons)Blood Circulation

Renal System
Liver Gastrointestinal

System

Respiratory
System

Musculo-
Skeletal System

Heart

Endocrine
System

Nervous
System

hormones Neurotransmitters

Chemical
Metabolism

O2/CO2

Regulatory Mechanism

pumping

Chemical stimuli

Physical stimuli from
sensory receptors

Higher Level
Cognitive Functions

Figure 1. Information flow among physiolog-
ical processes through circulatory and ner-
vous systems.

biological systems. The Systems Biology Toolbox for Mat-

lab provides an extensible environment for modeling, sim-

ulation, importing SBML (Systems Biology Markup Lan-

guage) models and analysis tools.

Modeling and simulation of complex physical systems

have been extensively studied outside the biology domain.

There are tools and languages, such as, Modelica [4], Mat-

lab Simulink [2] and Ptolemy [9] that provide creation and

simulation of mathematical models for physical systems as

well as integration of submodels. However none of these

tools or languages are designed for the specific domain of

biological systems.

3. Problem Specification

Every physiological property (blood pressure, blood glu-

cose level, body temperature etc.) is associated with an

anatomical structure; and the mechanism that controls,

modifies and regulates is represented with a physiological

process [8]. Circulatory and nervous systems are the mech-

anisms that manage the flow of information among the pro-

cesses and physiological properties. The flow of informa-

tion in the circulatory system can be thought of as a broad-

casting mechanism, where information in the form of phys-

iological variables are transported in the blood stream. On

the other hand, the nervous system can thought as a point-

to-point communication mechanism where the information

in the form of electrical signals are transmitted (See Fig-

ure 1). Once the information is disseminated among the

processes, individual models representing the processes in-

tegrate the available information.

A case scenario is used to present the proposed solu-

334

tion for the problem of handling information flow among

physiological processes and integration of the information.

In the presented case, concentration of an intravenous(IV)

drug is the information to be carried through the circula-

tory system. Cardiopulmonary mechanics model from the

Physiome Project Model repository [3] is used to model

the circulatory system. The cardiopulmonary mechanics

model is composed of a four-chamber varying-elastance

heart, pericardium, systemic circulation, pulmonary circu-

lation, coronary circulation, baroreceptors, and airway me-

chanics. Model for the IV drug represents the changes in

the concentration of the injected drug in the injection site,

vascular mixing, concentration in the arterial tree and con-

centration at the target organ [20].

4. High Level Design of the System

As seen in Figure 2, a layered design separating the

structural and functional information from the information

flow mechanism is proposed. The dependency among the

layers are in one direction keeping the coupling among sep-

arate layers low. The design decision for separating the

anatomical and physiological ontology and functionality,

has an advantage for the reusability and extendability of the

framework. The developers will be getting advantage of a

higher level of reuse, which is an important advantage of

using ontology based architecture [21].

Mathematical models are used to represent the dynam-

ics of the physiological attributes. Mathematical represen-

tation of any processes is independent of the physiological

variable that it controls, regulates or modifies. However ev-

ery biological process depends on the mathematical model

as it has different concurrency and time constraints. While

some processes occur at discrete time steps and can be de-

scribed by algebraic equations, some processes span a con-

tinuous time frame and can be described with differential

equations. On the other hand some processes may not show

a regular behavior, and can occur at specific times. Models

of computation can be thought of as design patterns in ob-

ject oriented paradigm, which will behave as the core of the

solution [13]. Based on this analogy, the models of com-

putation are modularized in Computational Layer and are

classified according to the ways they deal with concurrency

and time concepts, as: Continuous Time Models, Discrete
Time Models, Discrete Event Models.

In order to have a modular representation of physiologi-

cal processes and variables, a high level ontology is devel-

oped. Physiological processes are defined based on their

qualitative, quantitative and temporal attributes. The sys-

tematic representation of the physiological information is

modularized in Physiological Layer.

Anatomical associations of the processes are defined

with the hierarchy represented through the anatomical on-

Figure 2. High Level Design

tology. Foundational Model of Anatomy, FMA [16, 17, 18],

is used to represent the taxonomy and part-whole relations

for the anatomical information. Ontological representa-

tion of the anatomical information is defined in Anatomical
Layer and is independent from all other layers.

In the architecture shown in Figure 2,link layer handles

the flow of information and integration of the information

uses the anatomical and physiological information from the

lower levels (See Section 5). Simulation of the integrated

models is managed by the Simulation Layer, behaving as

an application layer. In the following section details for the

Link Layer is given within the realm of information flow

and information integration.

5. Information Flow

Link Layer which sits on top of the physiological and

anatomical layers, is designed as in Figure 3. Structural

and functional information is encapsulated in Components,

which correspond to a single physiological variable and a

corresponding model. A number of components come to-

gether to represent a physiological process. In the presented

sample models, cardiopulmonary mechanics is composed

of 182 components each of which correspond to a physi-

ological property with a mathematical model. The depen-

335

Figure 3. Design for the layer responsible
of the information flow among the individual
physiological models.

dency among physiological variables are defined through

Semantic Converters. These units decouple physiological

variables by encapsulating the semantics of the dependency.

In the case of the cardiopulmonary mechanics model, math-

ematical model regulating the cardiac output depends on the

values of the flow through the aortic valve which depends

on other variables. Such dependencies among variables are

also used to determine the simulation order. Therefore the

semantics of the dependency among the Components is de-

fined in the Semantic converters and is used by the Mediator
to pass to the upper layer, Simulation Layer.

Mediator is responsible for compiling the integrated

models to handle mediation of information, results of which

will be passed to the simulation layer to run the models.

In order to have a serializable simulation order of compo-

nents, the dependencies among components should be re-

solved. The Mediator, resolves the cyclic dependencies in

the compilation process. Except for the algebraic loops,

Mediator will resolve the cycles and create a sequential or-

der of components using the dependencies defined by the

Semantic Converters.

For the case of the circulatory system, information flow

idea presented above is extended. Components that are part

of the circulatory system are grouped as Extrinsic and In-
trinsic. Intrinsic components correspond to the physiolog-

ical variables and models that determine the mechanics of

the flow of information, such as the cardiac output, flow

of blood at the arterial tree, blood pressure, etc. Extrinsic

components correspond to variables representing the infor-

mation carried through the blood stream, using the intrinsic

information. In the presented case, cardiopulmonary me-

chanics model constitutes as the intrinsic model. Model

determining the concentration of the IV drug corresponds

to the extrinsic model. Therefore, components in the IV

drug model integrates the information from the cardiopul-

monary mechanics model and transports the information

about the concentration of the injected drug in to the cir-

culatory system. These two models are integrated over the

cardiac output variable which is defined as an intrinsic com-

ponent. If the IV drug model were to be simulated as is,

the cardiac output variable will be a constant and its regu-

lations, changes will not be considered. By integrating the

cardiopulmonary mechanics model with the IV drug model

as an integration of intrinsic and extrinsic models, we were

able to see the effect of change in cardiac output on the drug

concentration in the blood stream.

Two types of integration schemes are used in the pro-

posed system. The presented case of integration of infor-

mation through the circulatory system, is an example of

horizontal integration. Horizontal integration refers to the

flow of information and integration among the physiologi-

cal variables which have the same level anatomical structure

associations. In the presented case scenario,the variables for

the cardiac output in the IV drug model and the cardiopul-

monary mechanics model were horizontally integrated. The

integration mechanism replaces the constant representation

of one variable in IV drug model with the regulated vari-

able in cardiopulmonary mechanics model. Anatomical in-

formation associated with the physiological processes guide

the integration process and determine the choice for the se-

mantics of the integration. In the IV drug model, the car-

diac output, defined as the blood flow through heart is an

attribute associated with the heart. The variable to be inte-

grated on the cardiopulmonary mechanics model is associ-

ated with an anatomical structure, the same structure in this

case, which is in the same level in the anatomical ontology

representation.

The other type of integration is the vertical integration.

Multiscale and multilevel integration of physiological pro-

cesses will be handled with this type of integration mecha-

nisms. In the case of multilevel integration, the variables to

be integrated are associated with anatomical structures hav-

ing part-whole or parent-child relationships. Semantic con-

verters will implement the vertical integration approaches.

Aggregation and dispersion of the variables are the basic ap-

proaches proposed for implementing semantics of the ver-

tical integration of multilevel models. For the case of the

multiscale integration, the real challenge is at the compu-

tational side. There are two approaches to simulate mul-

tiscale models. The first approach is a brute force tech-

nique, and relies on simulation of all the individual (low

level) subcomponents to aggregate and compute the high

level behavior. This type of aggregation is naturally sup-

ported by the object-oriented design, which allows hierar-

chical construction. However there is a practical limitation

of this approach, the computational cost. The second ap-

336

proach tries to reduce the computational complexity by re-

lying on model reduction techniques. Since mathematical

models for complex biological systems both contain linear

and nonlinear models, an approach handling both of these

systems should be adopted. Model reduction for large scale

nonlinear dynamical systems is an open problem and is out-

side the scope of this paper.

6. Implementation Details

Current implementation of the proposed system uses

models from the Physiome Project repository. Physiolog-

ical processes in this repository systematically describes

models from the literature using the Mathematical Mod-

eling Language (MML). Presented system preprocesses

MML models to create the library of mathematical models

to be used by the physiological processes. MML files are

parsed on line to create Components with the physiologi-

cal variables. On line parsing also creates Semantic Con-
verters extracting the dependencies among the physiologi-

cal variables from the model equations. Model developers

can choose to associate these components with anatomical

structures using the ontology representation in the frame-

work.

In Figure 4, a prototype is presented to build the inte-

grated system for the aforementioned system with the car-

diopulmonary mechanics and the IV drug model. The first

step is to build the medium for the flow of information, cir-

culatory system. As stated in Section 5, models contributing

to the mechanics of the circulatory system are modeled as

intrinsic models. Having defined the intrinsic variables for

the circulatory system, the second step is to add the extrin-

sic information to the model. Users can load the selected

.mml file and add the information to the circulatory system

by declaring the model as an extrinsic model. Third step

is presented to show how the information flow mechanism

can be used to access the variables in the circulatory sys-

tem. In Figure 4, the third model loaded is the part of the

IV drug model which calculates the effect of the drug at a

target organ. This model accesses both the intrinsic vari-

ables, such as the blood flow and extrinsic variables like

the drug concentration in the blood stream. Although the

dependencies within a single model are extracted automat-

ically by the parser, the points of integration for the loaded

models should be user controlled. The last step handles

the horizontal integration among the user defined integra-

tion points, which are the cardiac output and concentration

of the drug in arterial system for the presented case. Having

the required information to compile the model to prepare for

the simulation, Mediator compiles the models, performs the

integration, and passes the required information to the sim-

ulation step.

7. Conclusion

In addition to providing an integrative simulation envi-

ronment for complex biological systems, the presented ar-

chitecture will facilitate shared model development as well

as data and model sharing among multiple research groups.

Therefore the proposed framework will bring a new per-

spective with the multiscale, multilevel model integration

approach.

Although major components of the system are complete,

the development step is being pursued in the context of pos-

sible applications. As we are targeting a multiscale and

multilevel integration of mathematical models, diseases or

physiological processes effecting many organs or organ sys-

tems are within in the application areas. Diabetes, which

has complications such as heart diseases, blindness, nerve

damage and kidney damage, is one of the most interesting

application areas, having effects on many organs and or-

gan systems. Another complex process which presents an

application area for the proposed framework is Orthostatic

Tolerance. It is a very critical measure for astronauts or

anyone who faces sudden gravitations changes and gravita-

tional stress. Orthostatic tolerance is dependent on the de-

gree of vasoconstriction and the magnitude of plasma vol-

ume, which in turn determines the tendency to faint when

standing upright. This mechanism, having effects on cir-

culatory system and nervous system is another very inter-

esting application area to integrate different models in our

software framework.

References

[1] Jsim, http://www.physiome.org/jsim/.

[2] Mathworks Inc., Simulink,

http://www.mathworks.com/products/simulink.

[3] Physiome project, http://www.physiome.org/.

[4] Modelica, a unified object-oriented language for physical

systems modeling; language specification 2.0. the modelica

association, http://www.modelica.org, 2002.

[5] SCIRun: A scientific computing problem solving envi-

ronment. scientific computing and imaging institute (sci),

http://software.sci.utah.edu/scirun.html, 2002.

[6] A. Aderem. Systems biology: Its practice and challenges.

Cell, 121:511–513, 2005.

[7] R. M. Berne and M. N. Levy. Physiology. Mosby, 1998.

[8] R. M. Berne and M. N. Levy. Principles of Physiology.

Mosby, 2000.

[9] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.

Ptolemy: A framework for simulating and prototyping het-

erogeneous systems. International Journal of Computer
Simulation special issue on Simulation Software Develop-
ment, 4, 1994.

[10] M. E. Csete and J. C. Doyle. Reverse engineering of biolog-

ical complexity. Science, 295:1664–1669, 2002.

337

Figure 4. Prototype showing the integration of models to create the circulatory system’s extrinsic
and intrinsic components.

[11] T. Garvey, L. P., C. Pedersen, D. Martin, and M. Johnson.

Biospice: access to the most current computational tools for

biologists. Omics: A Journal of Integrative Biology, 7:411–

420, 2003.

[12] P. J. Hunter and T. K. Borg. Integration from proteins to

organs: the physiome project. Nature Reviews, Molecular
Cell Biology, 2003.

[13] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer,

Y. Xiong, Y. Zhao, and H. Zheng. Overview of the ptolemy

project. Technical report, Department of Electrical Engi-

neering and Computer Science, University of California,

Berkley, 2003.

[14] H. Kitano. Systems biology: A berief overview. Science,

295:1662–1664, 2002.

[15] D. Mackenzie. Ramping up to multiscale-taking biomedical

modeling to a new level. Biomedical Computation Review,

2006.

[16] P. J. Neal, L. G. Shapiro, and C. Rosse. The digital anatomist

spatial abstraction: A scheme for the spatial description of

anatomical features. In Proceedings, American Medical
Informatics Association Fall Symposium, pages 423–427,

1998.

[17] C. Rosse, J. L. V. Mejino, B. R. Modayur, R. M. Jakobovits,

K. P. Hinshaw, and J. F. Brinkley. Motivation and organiza-

tional principles for anatomical knowledge representation:

The digital anatomist symbolic knowledge base. Journal of
the American Medical Informatics Association, 1998.

[18] C. Rosse, L. G. Shapiro, and J. F. Brinkley. The digi-

tal anatomist foundational model: Principles for defining

and structuring its concept domain. In Proceedings, Ameri-
can Medical Informatics Association Fall Symposium, pages

820–824, 1998.
[19] H. Schmidt and M. Jirstrand. Systems biology toolbox for

matlab: A computational platform for research in systems

biology. Bioinformatics Advance Access, 22, 2005.
[20] R. Upton. A model of the first pass passage of drugs from i.v.

injection site to the heart-parameter estimates for lignocaine

in the sheep. British Journal of Anasthesia, 1996.
[21] X. Wang, C. W. Chan, and H. Hamilton. Design of

knowledge-based systems with the ontology-domain-system

approach. In Proceedings of SEKE, pages 15–19, 2002.

338

Combining SOA and BPM Technologies for Cross-System Process Automation

S. Herr1, K. Läufer2, J. Shafaee2, G. K. Thiruvathukal2, G. Wirtz1

1
Distributed and Mobile Systems Group, University of Bamberg

Feldkirchenstraße 21, 96052 Bamberg, Germany, sebastian.herr@gmail.com, guido.wirtz@uni-bamberg.de

2
Emerging Technologies Laboratory, Dept. of Computer Science, Loyola University Chicago

820 N. Michigan Avenue, Chicago, Illinois 60611, U.S., {laufer|shafaee|gkt}@cs.luc.edu

Abstract

This paper summarizes the results of an industry case study
that introduced a cross-system business process automation
solution based on a combination of SOA and BPM standard
technologies (i.e., BPMN, BPEL, WSDL). Besides discussing
major weaknesses of the existing, custom-built, solution and
comparing them against experiences with the developed pro-
totype, the paper presents a course of action for transforming
the current solution into the proposed solution. This includes
a general approach, consisting of four distinct steps, as well
as specific action items that are to be performed for every
step. The discussion also covers language and tool support
and challenges arising from the transformation.

Keywords: SOA, BPM, BPMN, BPEL, WSDL, standards,
application integration, BPIOAI, web services

1. Introduction
As part of their efforts to automate enterprise-wide business

processes, organizations are often faced with the challenge

of integrating the data and business logic of several inde-

pendent application silos [6]. This issue is traditionally ad-

dressed through custom-made solutions that are expensive to

build and maintain, inflexible to changing requirements, error-

prone and often poorly aligned with the enterprise’s business

goals. One promising and increasingly recognized approach

to this problem is to combine Business Process Management

(BPM) and Service Oriented Architecture (SOA) concepts

and technologies with the goal of forging a flexible and cost-

efficient process automation and system integration solution.

In combination, both paradigms appear to be of significant

benefit to each other. BPM’s lack of focus on architectural

principles (e.g., loose coupling, service reusability) and its

poor flexibility in regard to technology choice (i.e., vendor

lock) are addressed by SOA. SOA on the other hand can

benefit from BPM’s top-down, requirements-oriented, and

visualization-focused approach that considers the entire life

cycle of business processes.

Despite the general recognition of a SOA and BPM con-

vergence and the resulting synergy [3, 7, 9], there is still an

extensive lack of best-practice examples and real-life industry

adoption, in particular in medium-sized and small enterprises.

One reason for this is a shortage of resources paired with the

common believe that SOA and BPM initiatives only bring re-

turn on investment (ROI) if applied on a large scale. While

this assumption may hold some cases, we argue that using the

suggested paradigms results, even in small-scale scenarios, in

considerable benefits that have the potential of significantly

outweighing the anticipated costs.

To back this proposition, we conducted an industry case

study with the goal of applying a combination of SOA

and BPM concepts and technologies as a replacement for a

custom-made, proprietary process automation solution. Our

focus was the universal use of standards, specifically the Busi-

ness Process Modeling Notation (BPMN) and the Business

Process Execution Language (BPEL). In particular, we iden-

tified weaknesses of the currently deployed solution and spec-

ified a transformation of this solution to the envisioned re-

placement, including a roadmap with specific required action

items along with the selection of pertinent tools. Finally, to

address financial considerations as well as several other con-

cerns, we thoroughly evaluated and compared both solutions,

with special emphasis on addressing the previously identified

weaknesses. The study was conducted in the setting of a top-

five global hosting company with the intent of delivering a

proof of concept for the feasibility and impact of the proposed

approach. The transformation itself was realized in the form

of a prototype (PT) that included process-models (BPMN)

and -code (BPEL), service interfaces (WSDL) and “dummy”

implementations of services, but no end-to-end implementa-

tion with the actual enterprise applications.

Our work was influenced by recent publications address-

ing the SOA/BPM convergence (e.g., [3, 7, 9]) as well as gen-

eral literature on approaches to application integration [5] and

SOA [1, 4, 6]. During the PT development, we have relied

extensively on the BPMN-to-BPEL mapping rules [8].

The remainder of this paper is organized as follows.

In section 2, after briefly describing the existing solution

and its weaknesses, we introduce the chosen pilot process.

In section 3, we present the approach and results of the

transformation, while section 4 compares both solutions

and discusses how the issues from section 2 are addressed.

We conclude with a summary and a discussion of future work.

339

Figure 1. Enterprise Architecture

2. Initial Situation
The environment’s system landscape comprises ten physically

separated back-office applications that each take over a dis-

tinct business or auxiliary function (e.g., Accounting System,

cf. Fig. 1). Together, these systems fully automate most of

the company’s business processes including sales, billing, and

provisioning, to name a few.

2.1. Existing Process Automation Solution

The company’s process automation approach integrates a

custom-made state transition system (STS) for process state

management and business rule enforcement with a custom-

made communication framework (CF) for system integration

(cf. Fig. 1 top). Information exchange between back-office

systems is realized via asynchronous XML-based messaging.

Typically, a new process is brought to life inside the STS,

which is triggered by an external event such as the submission

of a new sales order. The STS manages the process execution

by sequentially starting various integration flows via the CF.

Integration flows commonly visit several back-office systems

(sequentially and without the involvement of centralized co-

ordinator), cause business logic updates and/or collect data,

which is attached to the message and used later inside a dif-

ferent system as part of the overall process. Each integration

flow eventually returns to the STS causing a process status

update, which results in further actions.

2.2. Solution Benchmark

We have identified four high-level issues: initial development

and setup costs, maintenance costs (i.e., integration of new

systems, implementation of new business requirements, etc.),

technology and solution learning curve and the likelihood of

introducing errors during the mapping of business require-

ments to process implementations. Upon examining these

issues, we have detected four problems as their respective

root causes. In turn, these problems give rise to the criteria for

the evaluation and comparison with the suggested solution.

1. Lack of Sufficient and Practical Documentation

Acquiring sufficient knowledge to understand and work with

the existing solution requires collecting and aggregating

information from various sources (e.g., people, documents,

code) and was experienced as a highly time-consuming part

of the case study. Also, the poor documentation increases

the likelihood of introducing errors. Besides a lack of

language and technology tutorials, which can be ascribed

to the proprietary nature of the solution, the environment

also misses a common communication basis in the form of a

process model that can be shared among business analysts,

architects and programmers. Without such a model, new

requirements are likely to be misinterpreted when handed to

a programmer. Finally, even if sufficient documentation in

the form of state-transition (ST) tables, ST diagrams and flow

diagrams were available, it would not provide a complete and

practical picture.

2. Complexity of Solution and Process Setup

First, the initial setup required building most components

from scratch. This includes the STS with database setup,

database triggers, stored procedures, the event module as

well as the CF with its routing and archive modules, message

parser but also the development of the message structure (i.e.,

routing information) and other rules for new process setup.

Merely the message queues (MQ) (one per system) could be

acquired from a third-party vendor. Second, new processes

or even slight adjustments in existing processes require

careful and complicated planning and design. States, state

transitions and events need to be designed and set up. Routing

information has to be added or changed, integration flows

and additional message parsers have to be implemented. This

high effort of process maintenance is even further intensified

by the solution’s poor separation of concern (SoC). Although

process implementations are distributed across two compo-

nents (i.e., STS and CF), the solution places some of the

process-specific behavior inside the back-office systems (i.e.,

in some instances, the route of an integration flow is changed

during system invocation). This again requires most systems

to be aware that they are part of a higher-level process and

hence prevents them from being reused by other processes.

3. Poor Deployment and Testing Conditions

Process deployment requires manual addition or replacement

of routing information, states, events, etc. “One-click” de-

ployment is not supported. The effort for process testing has

been indicated by responsible personnel as being extremely

high. First, the various steps of a process (i.e., the systems

invocations) cannot be tested individually but only as part

of an integration flow. Second, process debugging is only

possible in retrospect by evaluating the log files of completed

flows. Third, the solution does not allow for design-time code

validation through respective tools.

4. Degree of Business-IT Alignment

The solution is clearly deficient with respect to the alignment

of the enterprise’s processes with its IT infrastructure. The

nature of the solution generally makes it difficult to translate

business requirements into implementations. Every process,

coming as a whole from the business side, needs to be split

up into several flows that are tied together via the STS. It

340

is often difficult to decide which parts of the process should

be realized through flows and which parts require state and

corresponding state transitions. Also, the question arises

whether process-specific rules should be enforced inside the

STS or inside the pertinent back-office system. In addition,

the implementer must sometimes deviate from the order of

steps provided by the business analyst.

2.3. Selected Business Scenario
As the basis for our PT, we chose the company’s sales pro-

cess as the pilot to be implemented with the suggested ap-

proach. We picked the sales process because of its univer-

sality (i.e., industry neutrality), its size and complexity (in-

volving all of the organization’s back-office systems), and its

volatile nature that would emphasize the benefits of the pro-

posed solution. At a glance, after an order has been placed via

an online shopping cart environment, the back-end process is

started performing various steps including the creation of a

customer account, a fraud check, the processing of financial

transactions and the initiation of product provisioning. Each

step is implemented by a different back-office system.

3. Solution Transformation
After analyzing the existing process automation solution and

taking a closer look at the selected pilot process, it became

clear that a simple transformation to the suggested technolo-

gies and paradigms would be insufficient to best demonstrate

their benefits. First, a mere transformation without addressing

the poor SoC of the current setup including its weak service

reusability potential did not appear to be meaningful or at least

would not allow us to demonstrate the potential for reusability

in the long run. Second, during the reverse-engineering effort

of the sales process from source code and residual process

documentation, we were able to discover several crucial er-

rors in process logic that could easily be repaired with the new

approach. Finally, the current solution does not implement

process-wide transactional behavior; this issue could also be

addressed effortlessly and hence was added to the list of ob-

jectives.

To reduce the complexity of the transformation process,

we decided to address the various goals and objectives in

four sequential steps. This so-called “transformation life-

cycle” (Fig. 2) can be reused for porting additional business

processes in the future. Phase one sought to integrate the

existing systems using BPEL. This implies exposing the

respective functionality via web services (WS). Additionally,

the issues of SoC and reusability have been addressed by

shifting some functionality between systems and by applying

well-deliberate service design. Phase two aimed to bridge

the gap to the business side by providing a visual, more

business-oriented representation of the sales process using

BPMN. Based on the newly created models from phase two,

phase three directly repaired process errors and added busi-

ness transactions from a requirements-oriented standpoint.

Finally, phase four synchronized the adapted process models

with the previously created implementation. Each of the four

Figure 2. Transformation Life Cycle

steps will be discussed in detail below.

Phase 1: Bottom-Up Process Automation

In phase one BPEL v1.1 and WSDL v1.1 where used with

Oracle’s JDeveloper tool that supports various SOA-related

development tasks including service-stub generation from

WSDL-files and visual BPEL modeling.

First, we exposed the existing systems as WS. As a re-

sult, 100% of the systems’ functionality (i.e., business logic)

was reused and system access has merely been transformed

from the CF to WSDL-based access. One important task was

the definition of service inputs and outputs: business docu-

ments, such as an invoice, that are specified through XML

schemas. The challenge was to transform the structure of

the existing XML message into various modular schemas that

can each be passed into the respective service, individually

or in aggregated form. The transformation was required for

adopting BPEL’s orchestration approach. A BPEL process

locally stores process data, such as a sales order (consisting

of a quote, customer data, product selection, etc.), and ex-

tracts data (e.g., one specific product item) in the course of

a service invocation as needed. A second challenge was to

improve SoC and potential for reusability. To this end, we

moved some functionality between systems as well as from

the systems into the process. The newly created services have

been designed accordingly (i.e., assuming the functionality in

the new place).

Second, we implemented the sales process in BPEL by or-

chestrating the previously designed services. This required

a transformation of the state- and flow-based solution into

an activity-based solution. Process state management and

routing of messages is now realized transparently by the re-

spective infrastructure, and the various integration flows were

combined into one process. Our experience was that all as-

pects of the sales process could be expressed in BPEL with

no restrictions.

As our deployment and testing environment, we installed

the Oracle SOA Suite. It ships with an Enterprise Service

341

Bus (ESB) and a BPEL engine and integrates nicely with

the chosen IDE (JDeveloper), allowing BPEL processes and

services to be deployed from within the IDE. The installation

of the BPEL engine and ESB, or optionally a lightweight WS

framework, makes the STS and CF obsolete (cf. Fig. 1). With

some careful planning, it should also be possible to run both

solutions concurrently until all processes have been ported.

Phase 2: Bottom-Up Process Visualization

The potential of the proposed solution can be fully utilized

only with the addition of a process model that may be used as

a communication basis among participating stakeholders. In

phase two, we performed a mapping from the created BPEL

code to a visual BPMN-based process model using BPMN

v1.0. The model was created with the Microsoft Visio stencil

extension from ITP Commerce. The resulting business

process diagram (BPD) is illustrated in Fig. 3 (exclusive the

highlighted parts). The mapping was done based on the rules

by [8] and turned out to be very straightforward. All aspects

of the BPEL code could be transformed to the BPD.

Phase 3: Top-Down Process Adaptation

The objective of phase three was to repair flaws, to add addi-

tional functionality and to make the process transaction-safe.

Tool and language support is identical to phase two. As a

first task, we swapped some steps in the process, which were

out of order in the existing implementation. Secondly, we

added one extra step at the end (i.e., “Send Order Completed

Notification”), which was missing in the original solution.

Thirdly, we extended the BPD with a manual order verifica-

tion option and finally added rollback processes that would

reverse prior system updates in case of process failure. The

resulting artifact is an extended version of the BPD from

phase two (i.e., Fig. 3, inclusive the high-lighted parts) as

well as additional BPDs for rollback- and related processes

(not shown here). It is important to recognize that phase three

is entirely requirements-driven and independent of the un-

derlying process and system implementations. Nevertheless,

the new functionality was modeled based on design decisions

that determined which system had to implement the new

requirements in the future.

Phase 4: Top-Down Process Implementation

The final step in our life cycle was the synchronization of the

BPDs from phase three with the existing implementation from

phase one. Tool and language support are the same as in phase

one. Most parts of the BPDs were implemented with no effort

by using the visual process modeler of the IDE.

The implementation of the manual verification step and the

transactional behavior is of interest. The latter was necessary

to map the rollback processes from the BPD to the BPEL im-

plementation. BPEL realizes loosely-coupled business trans-

actions with its built-in compensation and fault handlers. A

very convenient BPEL feature is the automatic execution of

compensation handlers of those scopes that are already com-

pleted when the error occurs. An example for our case is the

deletion of the sales order in the Sales System and the re-

versal of the “Create Customer Account”-sub process (e.g.,

after an order expired while waiting for manual payment, cf.

Fig. 3). Both steps required an extension of the previously

created WSDL interfaces with additional operations that sim-

ply reverse the existing operations.

The manual verification of orders naturally requires

human involvement. Unfortunately, BPEL does not support

human interaction in a standardized way. On the other side,

we purposely refrained from using Oracle’s proprietary

BPEL extension for human workflows to avoid vendor lock.

We rather addressed this issue by simply hiding the human

involvement behind a custom-made service. In this case,

the process asynchronously submits the sales order to an

“Order Escalation Service,” which prompts the need for

order-verification to a user interface. The process waits in the

current status until it is called back by the service after the

issues has been resolved.

4. Evaluation and Solution Benchmark
This section benchmarks the existing solution against the pro-

posed solution. We will discuss the issues identified in sec-

tion 2.2 and outline how they are addressed in the new solu-

tion. We also provide some specific figures (i.e., cost savings)

based on our experiences with the PT development. Never-

theless, the results presented here are conjectures that have

not been measured owing to time restrictions. Determining

the actual ROI would require operation and observation of the

new solution in production environment over a period of sev-

eral months.

In summary, the proposed approach combines state-

transitions and integration flows into one artifact (i.e., BPEL

process) whereas the BPEL engine orchestrates the various

services into one enterprise-wide process. Changes in routes

are now handled inside the process. Messages are transmitted

per service invocation and not per flow. Service reusability

is improved and process-wide transactional behavior is

provided. The solution comprises an end-to-end process

model clearly displaying all business requirements. Finally,

the STS and CF are replaced by SOA and BPM infrastructure

components (cf. Fig. 1).

1. Documentation

With the BPD (cf. Fig. 3) most information about the sales

process and participating services is available at a glance.

Aggregation of information from several sources (including

source code review) is not necessary. The process clearly

visualizes all steps, service invocations, possible faults,

events, branches and business rules (e.g., expected values

for decision points). The translation from the model to the

implementation is unambiguous and the error likelihood is

reduced. Since BPMN is specifically designed to be stake-

holder neutral [8], it allows all participants to understand

the model quickly. By contrast, ST- and flow diagrams

may be harder to understand by purely business-focused

staff. Furthermore, new stakeholders can quickly acquire

342

information about languages (i.e., BPEL, BPMN, WSDL)

and infrastructure (i.e., BPEL engine, ESB) used in the

project by studying some of the myriads of available tutorials

and code examples. It will also be easier to recruit new

stakeholders (e.g., engineers) that already carry the respective

knowledge; this is not possible with a proprietary solution.

2. Complexity of Solution and Process Setup

The proposed solution has the potential of significantly

reducing time-to market of the initial setup and of new re-

quirements. Infrastructure is entirely replaced by third-party

offers, which greatly reduces the setup time of the initial so-

lution. Design and implementation of the generic parts of the

STS and CF was indicated by the responsible manager with

approximately US$70,000 (including purchase of several

MQ licenses), which is already above the purchase price of

a commercial SOA Suite license (US$50-65,000 assuming

that one license will be sufficient). Nevertheless, despite the

possibility of relying on open source infrastructure, we argue

that even higher investments will pay off as the maintenance

costs of enterprise applications commonly are much more

significant [2] and this is where the suggested solution scores

big points. Setup of new processes and adjustments in

existing processes is far less time consuming. This is besides

the improved testing conditions especially also ascribed to

BPEL’s predefined language constructs for process behavior

as well as the tool support with its visual BPEL modeler,

code generation etc. Furthermore, services can be designed

for reuse, which again may reduce development time in the

future. In particular, we anticipated savings of approximately

US$10,000 in personnel cost only for the initial setup of the

sales process. Simple adjustments in process logic can save

up to 80% of implementation and testing time. With more

complicated adjustments (e.g., the addition of a new payment

option), this is even more significant.

3. Deployment and Testing Conditions

The solution’s testing and deployment conditions have

improved significantly. The infrastructure ships with built-in

features that facilitate testing and debugging. Processes can

be deployed effortlessly via the respective user interface

or directly from within the IDE. Versioning is supported

transparently (i.e., changed processes are deployed under a

new version, running processes are completed in their old

version). Furthermore, pre-deployment code verification is

provided by the IDE and greatly reduces runtime errors. Fi-

nally, all services can be tested individually before attaching

them to a process. The improved testing and deployment

situation has a significant impact on the cost savings already

discussed.

4. Degree of Business-IT Alignment

BPEL’s orchestration approach in conjunction with the

BPDs improves the solution’s general degree of business-IT

alignment. The process is visualized and implemented in

a more natural way. Process behavior (e.g., branching,

business rules, etc.) is integrated into one artifact and not

distributed across several components. The number of steps

in the process that cannot directly be mapped to a business

requirement is reduced, thus, the gap between requirements

and implementation is smaller.

5. Conclusion and Future Work
In this paper, we argued that a cross-system process automa-

tion solution leveraging SOA and BPM technologies can be

significantly superior to a custom-built solution. We also pre-

sented an approach for porting the existing processes to the

suggested solution. The study showed how the chosen con-

cepts and technologies can be applied to a real-life scenario.

All aspects of the pilot project (i.e. process model and im-

plementation, services, etc.) were realized with the selected

languages, and the PT was successfully tested. In conclusion,

the study was a considerable success and demonstrated the

merits of using a combination of SOA and BPM for process

automation and system integration purposes. The resulting

value gain was greatly recognized by the responsible person-

nel in the chosen environment.

Finally, to guarantee feasibility and long-term success, we

recommend performing a more thorough analysis and evalua-

tion of infrastructure and tool support for the specifics of the

environment, including, for instance, issues such as tool se-

lection. Second, an in-depth evaluation of quality of service

aspects (e.g., scalability, security, reliability) should be per-

formed. Furthermore, it may be advisable to extend the PT

with an end-to-end implementation that involves the pertinent

systems. As a last step, we believe that drafting an adoption

strategy (i.e., guidelines, education of staff, adoption sched-

ule) will help to discover other possible issues.

In general, the transformation life-cycle introduced in

section 3 requires more case studies in order to adjust and

generalize the porting process outlined in Fig. 2 in a way that

it becomes useful also under different settings.

References

[1] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and R. Shah.

Service-Oriented Architecture (SOA) Compass: Business Value,
Planning, and Enterprise Roadmap. IBM Press, 2005.

[2] L. Erlikh. Leveraging legacy system dollars for e-business. IT
Pro, 2(3):17–23, May/June 2000.

[3] F. Kamoun. A roadmap towards the convergence of business

process management and service oriented architecture. Ubiquity
Volume 8 , Issue 14 April 2007.

[4] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA Service-
Oriented Architecture Best Practice. Prentice Hall Ptr, 2004.

[5] D. S. Linthicum. Next Generation Application Integration:
From Simple Information to Web Services. Addison-Wesley Pro-

fessional, 2003.
[6] B. Lublinsky. Defining SOA as an architectural style. IBM

Website, January 2007.
[7] J. Noel. BPM and SOA: Better together. IBM Website, White

Paper, 2005.
[8] OMG. Business Process Modeling Notation specification.

OMG Website, July 2007.
[9] M. Rosen. BPM and SOA: Where does one end and the other

begin? BPTrends, January 2006.

343

Figure 3. Sales Process BPD

344

Ontology-Enabled Generation of Embedded Web Services

Klaus Marius Hansen and Weishan Zhang and Goncalo Soares
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{klaus.m.hansen,zhangws,afonso}@daimi.au.dk

Abstract

Web services are increasingly adopted as a service provi-
sion mechanism in pervasive computing environments. Im-
plementing web services on networked, embedded devices
raises a number of challenges, for example efficiency of web
services, handling of variability and dependencies of hard-
ware and software platforms, and of device state and con-
text changes. To address these challenges, we developed
a web service compiler, Limbo, in which Web Ontology
Language (OWL) ontologies are used to make the Limbo
compiler aware of its compilation context, such as targeted
hardware and software. At the same time, knowledge on
device details, platform dependencies, and resource/power
consumption is built into the supporting ontologies, which
are used to configure Limbo for generating resource effi-
cient web service code. A state machine ontology is used to
generate stub code to facilitate handling of state changes of
a device. A number of evaluations show that the design of
the Limbo compiler is successful in terms of performance
of the generated web service, completeness in being appli-
cable to a variety of embedded devices, and usability for
developers in creating new services.

1 Motivation and introduction

Pervasive computing is becoming a reality. Because of

their increasing ubiquity in business environments, web ser-

vices are increasingly needed to be adopted as service pro-

vision mechanisms in pervasive computing environment.

Consequently, in a number of applications, web services

are deployed on resource-constrained embedded and net-

worked devices. Implementing web services on embedded

devices raises a number of challenges. First, embedded de-

vices are constrained in memory, processor and energy re-

sources. The web services should be sufficiently resource

efficient in order to provide usable services. Second, de-

velopment environments for embedded web services must

be able to handle the variability of hardware and software,

power supply, and possible dependencies between platform

properties. At the same time, pervasive computing environ-

ments are highly dynamic, with, e.g., device statuses chang-

ing very often; something that affects end user applications.

A number of tools and approaches focusing on making

web services available on small embedded platforms exist.

One example is Microsoft’s Web Services on Devices1, and

Fast Infoset2. Fast Infoset is not a web service technology

per se, but provides a binary encoding of XML that may be

used to make web services more efficient in the sense that

they use less bandwidth in communication. These tools,

however, fall short in the flexibility of code generation and

complexity hiding of device details and web service details

for the developer. At the same time, they lack the extensi-

bility for using new protocols and technologies, when con-

sidering the huge variance of embedded and networked de-

vices.

To address these issues, in this paper, we present Limbo,

an ontology-enabled compiler for the generation of embed-

ded web services. A number of Web Ontology Language

(OWL3) ontologies are used to encode device details, plat-

form dependencies, resource/power consumption, and valid

Limbo components combinations, which are used to make

the Limbo compiler aware its compilation context, such as

the appropriate hardware and software for a given service.

Runtime states of a device are handled with a state machine

ontology and stub code is generated to support reporting de-

vice state changes.

The development of Limbo is part of a large, Euro-

pean research project, Hydra4 that develops secure, service-

oriented, and self-managed middleware for pervasive com-

puting application scenarios.

The rest of the paper is structured as follows: in Sec-

tion 2, we present the design and implementation of Limbo;

followed by is the section on how to use the generated code

1http://www.microsoft.com/whdc/rally/Rallywsd.
mspx

2https://fi.dev.java.net/
3http://www.w3.org/2004/OWL/
4http://www.hydra.eu.com/

345

for the development of web services. Section 3 discusses

ontologies used in Limbo. In Section 4, we present the con-

figuration algorithm used in Limbo. Then we evaluate the

Limbo compiler in Section 5, from the perspective of com-

plexity, usability and performance. We compare our work

with related work in section 6. Conclusions and future work

ends the paper.

2 Limbo design, implementation, and usage

2.1 Limbo design and implementation

Figure 1 shows the module structure of the Limbo com-

piler. The software architecture of Limbo follows the

“Repository” architectural pattern [5] in which a central

Repository stores data related to the transformation process

and on which Frontends and Backends operate to read and

write information. Frontends process source artifacts (in

particular web service interface descriptions in the form of

WSDL 5 files and ontology descriptions in the form of OWL

files). Conversely, Backends produce target artefact’s in the

form of code (primarily state machine stubs, web service

stubs and skeletons) and configuration files.

��������	
�������

�������
 ���������	 ������

��

���� ����

���������

������

������������ ���������

�������
� ��������
�

������	

Figure 1. Module structure of Limbo

Backends implement different features. An essential fea-

ture is the parser backends with different implementation

languages such as Java SE and Java ME (Java Standard Edi-

tion/Java Micro Edition). An example of generation can be

the generation of client-side stubs and/or server-side skele-

tons or transport code for network communication between

client and a server. To provide the possibility of handling

dynamicity of device state changes, a state machine back-

end generates state machine stubs. Figure 2 shows the com-

pilation process of the Limbo compiler. A “thermometer

service” is used to illustrate the compilation and the usage

of the generated artifacts. In the example, the service runs

on a thermometer device, Pico TH03, and provides a tem-

perature measurement upon request. The following steps

are involved:

5Web Services Description Language 1.1. http://www.w3.org/
TR/wsdl

�������	
��	
�������	�����������

�������	����	
�������������

��������	�����	
��	�������������

��������	�����	
��	��������

���������	����������

���������	���	����������

������	��������	
�����	���	� �������

������	���!�	�����
���	� �������

�"��������	���������
��	��������"��������	���	���������

��	�������

����	�����������	�������

Figure 2. Limbo compiling process

• Provide WSDL service description: The main input
for Limbo is WSDL file, and Limbo also supports
that WSDL files references the Hydra device ontology.
An example of a Hydra ontology binding for the ther-
mometer in WSDL would be the following:

<hydra:binding device="http://hydra.eu.com/ontology/
Device.owl#thermometer"/>

The Limbo ontology front end will resolve this URI

and retrieve thermometer hardware and software infor-

mation.

• Generation based on configuration or ontology. If an

ontology instance for the device is available, device

specific platform information will be used to generate

client and/or server code. If the device associated state

machine instance available, state machine stub code

will be generated. Otherwise, generation configuration

is based solely on the developer-supplied parameters.

• Create embedded/proxy stubs and skeletons. Stubs and

skeletons for the device service are created accord-

ing to the device’s capabilities. If code cannot be di-

rectly embedded on the device, proxy code is gener-

ated based that will run on OSGi6. For the thermome-

ter, as it does not have any computing capability it-

self, according to the the retrieved platform informa-

tion from the ontology, proxy code will be generated

using OSGi.

2.2 Implementing services based on generated
code

For the thermometer with a configuration of a standalone

server using Java SE, the following classes are generated:

6http://www.osgi.org

346

• EndPoint.java - Abstract class that defines the end-

points (i.e. services) that are provided by the server

• th03OpsImpl.java - Implementation of the service

methods

• th03Service.java - A service class that handles requests

and returns the respective results

• LimboServer.java - Limbo server main class

• StateMachineStub_Thermometer.java - State machine

stub for thermometer

An OSGi configuration (Java SE) or a Java ME server
can be chosen, and Limbo can also generate clients either
for Java ME or Java SE. The generation of OSGi code is fol-
lowing the OSGi specification (e.g., an Activator instead of
an EndPoint, a servlet instead of a “th03Service”). Classes
are also generated to support this in the form of a state ma-
chine stub that will allow the service developer to model
and notify upon state changes. The following code is gener-
ated for the thermometer state machine shown in Figure 3,
and the measuring state of the thermometer is linked to the
getTemperature service.

public class StateMachineStub_Thermometer {
public void ThermometerStopping() { ... }
public void ThermometerStarting(){ ... }
public void ThermometerMeauring(){
event ev = new event();
...
ev.parts_add(new part("Result",

"" + service.getTemperature(this.deviceID)));
eventManager.publish("/statemachine/statechange", ev);
}
...
}

Based on the generated artifacts, the device developer

needs to implement the device service. This entails:

• Binding the device services to the actual device. For

the thermometer service this would include, e.g., cre-

ating a thread that continuously calculates the temper-

ature and stores the temperature in a local variable.

The actual service implementation would then read the

value of this variable and return the temperature.

• Sending state notifications. The state machine stub

needs to be invoked at proper places. In the case of

the thermometer, each successive call will at runtime

trigger an event being sent through the event manager

(Figure 3), when the thermometer is started, when it

is measuring, and when it stops as shown in the ther-

mometer state machine in the lower part of Figure 3.

• Create deployment artifacts. Next, device and

container-specific deployment artifacts (JAR files,

OSGi bundles etc.) need to be created in order to be

able to deploy the service.

The upper part of Figure 3 shows a typical runtime of

a deployed Limbo service. The thermometer service is de-

ployed on a Thermometer Device. A service that needs tem-

perature data (“Thermometer Client”) then uses the ther-

mometer service through its web service interface. Ther-

mometer state changes trigger events sent through a pub-

lish/subscribe mechanism.

������������
�������

#$%��������	������ #&����	'������

������
��������
�������

������������
�����

&����'�������������$%����������������

�������� ��������� ��������

Figure 3. Thermometer runtime and ther-
mometer state machine

3 Ontologies in Limbo

There are a number of reasons for us to use ontologies

in Limbo: first, details of device hardware and software,

and possible dependencies between them, are hidden in the

related ontologies. Web service developers only need to

know about the device URI and the service they are imple-

menting, as shown in the Thermometer example. Second,

in order to generate resource-efficient code, knowledge on

device software platform and resource/power consumption

comparisons are built into the related ontologies, and used

during the configuration of Limbo for code generation.

We have developed the supporting ontologies for Limbo

as shown in Figure 4. The usage of these ontologies can be

summarized as follows:

• LimboConfiguation ontology. Not all the combinations

of the frontends and backends in Limbo are valid. For

example, for OSGi, there is no need for the Server

generator as a web server is built into OSGi frame-

works. Therefore it is very important to regulate the

valid combinations of different Limbo components and

resolve dependencies among them, whether combina-

tions are explicit in the feature model or implicit. As

proposed in [6], we develop a LimboConfiguration on-

tology to formally specify what the legal feature com-

binations are.

• Device ontology and associated hardware platform
and software platform ontologies. These ontologies

are used to retrieve device specific information in order

to generate resource/power-awareness code for a cer-

tain device. The Device ontology is used to define high

347

level only information of a device, for example device

type classification (e.g., an alarm device is a sensor).

The HardwarePlatform ontology includes concepts

such as CPU, Memory and so on, and also relation-

ships between them, for example ”hasCPU”. Power

consumption concepts and properties for different

wireless network are added to the HardwarePlatform

ontology to facilitate power-awareness.

The SoftwarePlatform ontology defines VirtualMa-

chine, Middleware and object properties such as re-
quiresMoreMemory, reuqiresFasterCPU, and their re-

verse properties. In the Java ontology we define con-

cepts such as JavaVM, JavaByteCode and specify that

a specific Java platform (e.g., CLDC) provides a cer-

tain Library or Rendering Engine etc.

The OperatingSystem ontology provides a classifica-

tion of an operating system based on its characteristics

and version for example Win32/Win16, which can fa-

cilitate the restrictions on which operating system con-

sumes more memory than others.

• StateMachine ontology.

For every type of device in the Device ontology,

there is a corresponding state machine instance in the

StateMachine ontology. This state machine instance is

used to generate state machine stubs.

������

��	
������
	�� �
�
��������

�����
���	����
���

����
������
�� ������
��

�� ������
	��

������ !�	� ��������
�������	���
���

""����
""����
""����
##

��
�����

������

����

������

���
����

""����
##

Figure 4. Structure of ontologies used in
Limbo

4 Limbo configurations with ontologies

In order to generate resource efficient code, Limbo will

utilize the resource/power consumption knowledge built in

the ontologies. Therefore the LimboConfiguration ontology

imports the Device ontology, and hence all other ontologies

through the ontology import mechanism. Object proper-

ties in the LimboConfiguration ontology (requireCPU, re-
quireOS, requireVM and requireLibrary) are used to specify

a backend’s detailed requirements for the CPU, operating

system, virtual machine, and libraries. The Limbo config-

uration algorithm is shown as a UML activity diagram in

Figure 5 and described next.

����$%��& ��
%'��$�� �%	�%�(��� %��&

����$%���
��%
��%��&)��)
*�
���%�������%+*�,%��%�%

����&���-.%�(������
%
	�%�%���$�� %�� %��
%
��%
�����%�	%
����%���$�� �%

/���
0����
�123%

����$%�� ��
%'��$�� �%	�%�(��� %��

����$%*� ��
%'��$�� �%	�%�(��� %*�

� %
�%'��$�� %���

���
%����
�

������%��
����%���� %��%�� %���%��	�����

������%��
����%���� %��%��&)�����%�����

������%��
����%���� %��%����)��

��%������

/����&3%
��4�5����
���

��
����%����� ���%��4�)
���� � 6������%�� %

���%��������
�
���%

���
	��

Figure 5. Limbo configuration algorithm

Step 1. Checking CPU/OS/VM details When a compil-

ing task is needed for a certain device, first the detailed

software and hardware information, especially CPU,

operating system, virtual machine will be retrieved us-

ing the ontology frontend.

Step 2. Iteratively checking the backends’ required CPU/OS/VM
After the detailed information on CPU, operating sys-

tem and virtual machine has been obtained from

related ontologies, this information will be checked

iteratively for whether this version of CPU, oper-

ating system and virtual machine are required for

the backends. This kind of information is stored

within instances of the backends associated with the

requireCPU, requireOS, requireVM object properties.

Step 3. Resolving choices using user preferences There

are situations where we can get multiple options for

backends. For example, Motorola MPx220 has Win-

dows Mobile as its operating system, but at the same

time it has J2ME MIDP2, which will be compared

with end user preferences. Then the generation can go

ahead with the chosen platform.

Step 4. Resolving choices based on CPU/Memory usage
For situations where memory and CPU usage should

be decided, for example J2SE, CDC and CLDC as

options, we will choose the one that consumes less

memory and requires a slower CPU for small devices

as default.

Step 5. Resolve options based on power/energy policy
The power consumption of various bearers supported

by a device is checked, and choose a correspond-

ing bearer according to the power consumption

expectation.

348

In our implementation of the above algorithm, we are

using SWRL7 to resolve options for multiple platforms as

detailed in [2].

5 Evaluation of Limbo

We have evaluated Limbo according to the evaluation

framework of one.world [1]. This includes evaluating:

Completeness: can useful services be generated; Perfor-
mance: is the generated services sufficiently resource ef-

ficient; Complexity and utility: how hard is it to create ser-

vices and can others build upon it.

5.1 Completeness

We evaluate this through the generation of services for a

set of prototypes for a home automation scenario to testify

whether useful services can be generated by Limbo. Here

services were primarily created by a member of the Hydra

team who has not participated in the development of Limbo

(four services) and by a member of the Limbo compiler

team (one service). For all services, Hydra helped in hid-

ing web service complexity and in generating efficient web

services. The generated services were:

• Nokia N80 SMS service. The service uses Limbo’s

Midlet generation option and runs a Limbo-generated

web server.

• Pico TH03 thermometer service, Grundfos Magna 32
pump service and Abloy EL582 door lock service.

These services run as proxies on an OSGi gateway and

interface with devices via device-specific protocols.

5.2 Performance

Here we report on time and memory usage measure-

ments compared to Apache Axis8. The purpose is not

to compare to Apache Axis per se since it was designed

for a multi-threaded server environment, but rather to see

that Limbo-generated services used significantly fewer re-

sources than a popular web service framework.

For measuring resource utilization, we used a setup

with a SOAP-based web service implementing an SMS

service. This web service was requested by a Limbo-

generated client and implemented using Apache Axis and

using Limbo on both Java SE and Java ME (on a Nokia N80

mobile phone). For the Apache Axis and Limbo SE imple-

mentations a PC (an Apple Mac Book Pro with a 2.33 GHz

Intel Core 2 Duo processor, 2 GB DDR2 SDRAM, MAC

OS X 10.4.10). The left part of Figure 6 shows the result

7SWRL homepage. http://www.w3.org/Submission/SWRL/
8Apache Axis. http://ws.apache.org/axis

Figure 6. Limbo time and memory usage mea-
surements

of our time measurements with the total execution time for

five consecutive calls made to the SMS web service. For

all implementations there is a high start-up cost due to the

establishment of sockets – in particular so in the Java ME

case. The Limbo ME implementation is also orders of mag-

nitudes slower than the SE implementations, a fact that is

due to the network setup of the Nokia N80 – and to the fact

that the ME implementation actually sends an SMS – since

the Limbo SE and Apache Axis implementations are com-

parable with respect to time usage.

The right part of Figure 6 shows the memory measure-

ments of Limbo and Apache Axis. Both the Limbo SE

and the Limbo ME versions use significantly less memory

than Apache Axis. In the SE cases, the measurements were

made using a JMX agent to measure the maximum amount

of memory used during processing of requests. In the ME

case, we measured maximum memory with SUN’s Wire-

less Tool Kit (Version 2.5). On average, the Limbo ME

service used 362.4 Kb memory. In conclusion, the resource

usage of Limbo generated services is significantly smaller

than that for Apache Axis-generated services.

5.3 Complexity and utility

Complexity and utility were evaluated by members of

the Hydra project that had not participated in the develop-

ment of Limbo. Two partial evaluations were made on eval-

uation of ontology construction and code generation. For

both, a case of implementing a blood pressure service on an

HTCP3300 smartphone9 was used.

It was possible to create a model of the HTCP3300 de-

vice including a state machine within a day of work for an

ontology engineer unfamiliar with the device and the asso-

ciated service. The Limbo compiler has been successfully

used to generate small applications to test their compati-

bility with Windows Mobile Smartphone and Eclipse ME-

generated classes.

9http://www.europe.htc.com/en/products/
htcp3300.html

349

5.4 Evaluation conclusions

The Limbo compiler has been shown to be useful with

good resource consumption of the generated code. Clearly

there is a need for better documentation for both Limbo and

the used ontologies, and Windows Mobile concepts of the

OperatingSystem ontology need to be improved.

6 Related work

As said in the introduction, existing tools such as Mi-

crosoft’s Web Services on Devices and Fast Infoset, fall

short of the necessary flexibility of generating different code

artifacts for the large variant of devices based on different

protocols. These tools lack the versatility of being used for

different embedded devices.

In Limbo, we translate WSDL files into a local Regular

Tree Grammar (RTG) [4] that describes allowed SOAP en-

velopes as defined by the WSDL files. Though some frame-

works can produce grammar-specific parser of XML data

such as done by, e.g., XML Screamer [3], our work lever-

ages this work but casts it in the context of web services,

where ontologies are used to support the needed configu-

ration during the generation process. The ontologies are

helping to achieve generation-context-awareness and help

to make decisions on the targeted platform, with the objec-

tive of generating resource efficient code.

Apache Muse10 can simplify the building of web ser-

vice interfaces for manageable resources. While Muse has

a very specialized objective for the targeted specifications,

Limbo has a highly flexible architecture which can be eas-

ily extended with the generation of code for .NET code, and

other specialized platform such as LeJOS11. And more im-

portantly is that we are using ontologies and rule languages

to rigorously regulate and instruct the compilation, which

can bring us some wiser decisions that is not easily achieved

by Apache Muse and other existing approaches.

7 Conclusions and future work

There is an increasing requirement to run web services

on resource constrained devices in pervasive computing. In

this paper, we present an ontology-enabled compiler called

Limbo for the generation of embedded web services. Limbo

has followed the Repository architecture style where differ-

ent frontends and backends can be easily added.

Limbo gets device information from the targeted device

in compilation from a Device ontology that imports Hard-

warePlatform ontology and software platform related on-

tologies, where resource/power consumption comparisons

10Apache Muse project. http://ws.apache.org/muse/
11LeJOS homepage. http://lejos.sourceforge.net/

are specified, and used by Limbo to achieve the generation

of resource-efficient web services. A StateMachine ontol-

ogy is used to generate state machine stub code and using an

event mechanism to publish the state change events. We are

using a LimboConfiguration ontology to rigorously specify

the legal feature combination of Limbo compiler.

Our evaluations through the first Hydra prototype show

that the design of the Limbo compiler is successful in terms

of resource consumption of the generated web services,

complexity hiding of the web service itself and that devel-

opers can use Limbo to develop resource efficient web ser-

vices for a variant of different embedded devices.

A more flexible implementation using OSGi is under de-

velopment. Web service code generation for .Net platform

is planed. And more other hardware platform for example

LeJOS is also under exploration.

Acknowledgements

The research reported in this paper has been supported

by the Hydra EU project (IST-2005-034891).

References

[1] R. Grimm, D. Wetherall, J. Davis, E. Lemar, A. Mac-

beth, S. Swanson, T. Anderson, B. Bershad, G. Bor-

riello, and S. Gribble. System support for pervasive

applications. ACM Transactions on Computer Systems
(TOCS), 22(4):421–486, 2004.

[2] K. M. Hansen, G. Soares, and W. Zhang. Embed-

ded service sdk prototype and report. Technical Re-

port D4.2, Hydra Consortium, Dec. 2007. IST 2005-

034891.

[3] M. Kostoulas, M. Matsa, and N. e. a. Mendelsohn.

XML screamer: an integrated approach to high per-

formance XML parsing, validation and deserializa-

tion. 15th international conference on World Wide Web,

pages 93–102, 2006.

[4] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Tax-

onomy of XML schema languages using formal lan-

guage theory. ACM Transactions on Internet Technol-
ogy (TOIT), 5(4):660–704, 2005.

[5] M. Shaw. Some Patterns for Software Architectures.

Pattern Languages of Program Design, 2:255–269,

1996.

[6] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan. A Se-

mantic Web Approach to Feature Modeling and Verifi-

cation. In 1st Workshop on Semantic Web Enabled Soft-
ware Engineering, Galway, Ireland, Nov 2005. LNCS.

350

Modeling Services to Construct Service-Oriented Healthcare

Architecture for Digital Home-Care Business

Chi-Lu Yang1,2, Yeim-Kuan Chang1, Chih-Ping Chu1

1 Department of Computer Science and Information Engineering, National Cheng Kung University
2 Networks and Multimedia Institute, Institute for Information Industry

1,2Tainan, Taiwan R.O.C.
stwin@iii.org.tw, ykchang@mail.ncku.edu.tw, chucp@csie.ncku.edu.tw

Abstract

Using Information and Communication Technologies
(ICT) to enable the daily activities and interests such as
dining, medicine, lifestyle, traffic, education and
entertainment has recently become a world wide trend.
Moreover, Service-Oriented Architecture (SOA) is
nowadays one of the most important techniques to
realize services in industry.

Therefore, we would attempt to give attention to
what type of services ICT could realize for chronic
patients and how this concept should contribute to their
recovery. In this paper, we would like to share our
experiences in creating innovative home-care business
models. We first discuss the business modeling process,
which contains generating care services concepts,
investigating market, defining Key Services scenarios
and cooperative policies. Second, we present the
constructed SOA healthcare platform. Specifically, we
explain the technical issues during the development of
our business models. Finally, the business models and
platform are evaluated using the Key Performance
Indicators (KPI) developed in the study.

Keywords: business modeling, SOA design, KPI
evaluation, digital home-care

1. Introduction

As information and communication technologies (ICT)
has continued to advance, the application of ICT has
evolved in the different aspects of our lives such as work
and entertainment. In fact, ICT has been gradually
infused into our daily lives. Through network techniques,
computers could provide many remote services.
Interestingly, a large number of innovative service
models, such as YouTube, WRETCH, Google, Amazon,
etc. are continuously emerging. Using ICT to create
innovative services models, many have become famous
enterprises worldwide. One of their identical
characteristics is that they have applied specific
information techniques to integrate network techniques.
Also, these models have successfully provided content
services to promote business values.

The application of ICT has become a worldwide trend.
Infusing Service-Oriented Architecture (SOA) to provide
common activities and interests such as dining, medicine,
lifestyle, traffic, education and entertainment has also

become an objective of industry. Through the SOA
platform, we could integrate individual providers into
similar service processes. Modeling distinct business
providers may also be interesting work. Through this
process, researchers would be able to communicate with
various stakeholders as well as design systematic
platforms.

In this paper, we focus on the domain of patient-
centered healthcare in digital home. We then construct
the SOA healthcare platform and its application system
which provide innovative business models. In the
following sections, we will describe the progress of its
construction and at the same time share our experiences
from this study.

2. Related Works

2.1 SOA principles

Service-Oriented Architecture (SOA) is a software
architectural style for realizing and constructing business
processes, which are packaged as software services
during their life cycle ([1], [2]). SOA defines and
reserves IT infrastructure to allow various applications
that exchange data in business processes. SOA also
separates services into distinct units (components or
modules), which can be deployed over the Internet, and
can be combined and re-used for business applications.
In clearly defined layers of SOA, requirements for
business processes could be distinguished and identified.
Business requirements are also implemented and
combined by distinct software services. Typical layers
for SOA are business process layer, business service
layer, application integration layer, and technology layer.

Consequently, the general architectural principles [3]
point out the ground rules of SOA for its development,
maintenance, and use. These are the following:

• Usability - Components or modules would be
re-used in various business processes, and even
mobile services.

• Compliance to standards - Data exchanges between
platforms are important to SOA. These exchanges
will extend significant issues for standardization,
identification, authorization, etc.

• Service identification and categorization,
deployment and delivery, monitoring and tracking,
and KPI definition, etc.

One standardizing service could provide diverse and

351

innovative business processes. A typical example is the
service of agential cash-receivers of 7-11 stores in
Taiwan which has allowed payments by credit card,
telephone, and on-line shopping, to name a few. In
addition, the specific architectural principles for design
and service definition are categorized into two types. The
first type is the interaction between the service consumer
and provider. The second type includes the design
guidelines of service providers. They are described as:

• Service encapsulation - Various services in the
Internet are consolidated with web services under
the SOA platform.

• Service loose coupling - Services maintain a
relationship that minimizes dependencies on one
another.

• Service abstraction - Services are logically hidden
from the outside world, beyond what is described
in the service contract.

• Service contract - Services attached to the
communicable agreements, and defined in service
description documents.

• Service reusability – A service is divided into units
with extended re-uses.

• Service composition - Collections of units of
services can be coordinated and combined to create
services.

• Service autonomy – Services have control over the
business processes they encapsulated.

• Service optimization – High-quality services are
generally considered more than low-quality ones.

• Service discoverability – Services are designed to
be accessible to the public, therefore they can be
found and assessed via available discovery
mechanisms.

Constructing SOA is not only a technical but also a
business challenge. In the visions of SOA, relationships
between the service consumer and provider are not
tightly stipulated. Their relations are loose coupling [4].
Thus, consumer services are not forcefully influenced by
the changes made by the providers. Secondly, consumer
service interacts with the service provider based on the
service contract. Moreover, designing the Service Level
Agreement (SLA) is an important task. SLA should also
satisfy some general and specific principles.

2.2 CVA Market Demands

Apoplexy, also known as Cerebrovascular Accident
(CVA), breaks out when the cerebrovascular suddenly
oppilates or fractures. Some patients only experience
slightly pathological changes. Others experience
paraplegia, and others simply expire. Diseases are
distinct based on the position and size of infarcts or
hemorrhages. In developed countries [5], CVA is one of
the main diseases which result in death or disability. Its
occurrence rate is 1.2 - 2.5/1000 [6]. The survival rate is
2/3, but, most patients would suffer disability. Some
apoplectics would be discharged from the hospital and
taken cared of at home. According to the official
statistical data in Taiwan [7], CVA is also included
among the top ten causes of diseases. Apoplectics would

not only be a difficult illness to manage for the patient,
but also to the family and society. Patients with
apoplectic diseases need long-term care to reduce
pathologies. If they are hospitalized over a long period of
time, it will pose financial and emotional burden on their
families and will also be a waste of resources in hospitals.
Therefore, one effective solution for this situation is to
take care of chronic patients at home; this could be a
challenge for the family. Because of these perceived
needs, the research team poses the following questions:

• What could Information and Communication
Technologies (ICT) do for apoplexy patients?

• How should ICT contribute to the apoplectics’
recovery?

3. Business Modeling

Business modeling is a critical starting point when we
would like to provide care-services on SOA. Before
constructing the services platform in SOA, we should
ensure our care business models, which include market
demands, key services items, services scenarios, market
prices, even more cooperative policies, etc. The research
process of business modeling for cerebrovascular
patients’ home-care is described in following figure.

Figure 1. Business Modeling Process

Figure 2. Services Concept

3.1 Services concept

First, researchers iteratively interviewed the domain

352

experts to draw out the services concept. This was a
critical initial step in business modeling. The research
efforts were really demanding as about 30% cost of
whole project. The services concept is presented in figure
2. Particularly, there are services, roles, proprietors and
devices that were included in the services concept.

3.2 Market Investigation

To obtain a good perspective of the market demands, a
large-scale market investigation was carried out. The
investigation focused on people who lived in Kaohsiung
at southern Taiwan. Moreover, the patients’ home-care is
assumed as the research domain. In addition, the
questionnaire was designed based on the services
concept. Consequently, the investigation was divided
into two parts namely the quantitative investigation and
qualitative investigation, and were performed
concurrently. Details of the investigation were recorded
in the technical report [8]. Quantitative Investigation
Results were significantly listed in table 1.

Table 1. Quantitative Investigation Results
Items Demands of home-care Percentage

1 health status inspection (Notify
/ Arrange / Trace)

61.2%

2 Health status monitoring,
tracing and unusual alerting by
medical equipments

56.2%

3 Assisting or accompanying to
take medical treatment (register
at a hospital / ambulance)

23.1%

4 Emergency medical treatment
and notifying family members

48.5%

5 Consulting Medical treatment 47.7%
6 Providing supplementary

instruments for home-care
49.2%

7 Serving routines at home 21.5%
8 Nutrition consulting 26.9%
9 Psychological consulting 26.2%

10 Assisting to call an ambulance 20.8%
11 Assisting to apply for social

services
53.1%

12 Entertainment activities 21.5%

The results of the qualitative investigation are as

follows:
1. For the cerebrovascular patients, restoring limbs at

home has positive effects as they enhance the
patients’ movability.

2. The majority of the caregivers are female. When
family members work during day time, caregivers
who majorly come from overseas take care of the
patients.

3. The major economic resources of the elders are
their children as they depend on their previous
savings.

4. Members of the family trend to drive their patients
from their homes to the hospitals by themselves.
However, when special equipment is needed, they
choose to access the transportation services

provided by the care centers.
5. Persons who have work hope that elders’ day to day

needs could be taken cared of by the hospitals or
governments which are supported by community
volunteers. Workers hope that care center could
directly provide them more of the information
about their volunteers.

6. There should be a higher provision of equipment to
the patients who need them more, especially the
equipment that regularly monitors the patients’
status and alerts emergency situations. This is
considered an innovative concept. Through the
equipment, someone could efficiently take care of
patients whose statuses were unusual.

7. Hospitals should charge a minimal fee for these
types of services. The families would like to pay
the services within the limit of their income. The
maximum amount they would like to pay is 5,000
NT dollars per month.

3.3 Define Key Services to Develop

We would like to identify important services that
should be developed from this investigation report.
Based from our market analysis, we could first fund six
items whose percentages are more than 40%. Their item
numbers are 1, 2, 4, 5, 6 and 11. The other items, whose
percentages are less than 40%, are filtered out. Second,
we would only select item 1, 2, 4, 5 and 6 into key
services group. The reasons are listed in last two
columns of table 2. We filtered out item 11 since it could
be supported without information techniques. Key
service items in the group would be analyzed to form
services scenarios for future development. Services
scenarios were recorded into document [9].

3.4 Cooperative Policies and Market Prices

Home-care services are considered comprehensive
solutions for patients at home because single service
provider could not successfully provide these services. In
addition, service providers should be organized into a
virtual organization as they serve as care centers in the
community, hospitals, IT companies, transporters, and
insurance companies. Partnerships and agreements
among these stakeholders have to be documented
through contracts. Through this strategy, they could
merge the services supply chains. Specifically, the
insurance companies play a special role in the business
models. During the services life cycle, service providers
should review insurance policies, since there might be
some risks in caring patients at home.

After planning the cooperative policies, we should
also define the market prices for each service item.
Care centers could sell services to end-users and enter
into contracts with them based on the market prices of
the combined services. In addition, market prices would
be defined based on the previous investigation and the
cost of different service scenarios. Thus, the cost of each
service should be calculated. We listed the factors of
each service’s cost in the table 3.

353

Table 2. Select Services Items into Key Services Group

Discussion
Key
Services
Group

Investigation
Results

Baseline to develop
Techniques /

Business issues

health status inspection
(Notify / Arrange / Trace)
61.2%

Freelance care
supervisors and
re-diagnosis
arrangement Consulting Medical treatment

47.7%

In order to save medical resources for severe
patients, doctor would suggest patients, who do
not need much medical attention, to go to local
clinics. This means that patients who only
experience slight discomfort should just go to the
clinics for medical. This system will make the
distribution of patients in the hospitals even

To exchange
diagnoses records

Delivery of
medicines to the
patient’s home

Providing supplementary
instruments for home-care
49.2%

By providing this innovative service, hospitals
would have an increase in extra income. Patients
could also get their medication more conveniently.

To integrate
distinct
industries

Health status monitoring,
tracing and unusual alerting
through modern medical
facilities
56.2%

Health status
monitor and
trace

Emergency medical treatment
and notification of the patients’
condition to family members
48.5%

Collecting bio-signals from patients at home and
monitoring their variations are critical techniques.
Hospitals could precisely get the patients’
conditions.

To collect and to
store bio-signals

Table 3. Factors of Service Cost for Business Models

Factors Price Unit
Expected number of
centre-carer visiting

person-time/month

Human resources and
qualifications

Person Quantity

Budget for human
resources

dollars/year

Budget for IT systems and
devices

dollars/month

Transporter’s fee dollars/month
Total budget Dollars/year

 Fees to be charged
against user for their
remaining balance

dollars/one person
a month

4. Architecture Constructing

Developing SOA services platform and its application
is another important task in providing SOA business
models. To support this initiative, we employed and
adopted software lifecycles [10] to develop them.
Development process and its work items are described in
figure 3. In the high-level design phase, we designed the
SOA healthcare platform based on the services demands.
An application system was analyzed through knowledge
engineering in the requirement phase, and was designed
using the MVC methodology in detail design phase. The
required functions of these application systems were
divided into three parts - user interfaces, business logics,
and data models. User interfaces would be implemented
in the application level while business logics and data
models would be supported by SOA services platform.
More detailed functions for each module are categorized
into functional, non-functional, interface, and security.

The high-level modules of the application system are
showed in figure 4.

Figure 3. Developing Process of SOA Healthcare

Platform

Figure 4. Functional Architecture of Application

4.1 SOA healthcare Platform

SOA healthcare platform was designed to provide
executable environments which support standardized
messages, various interfaces and flexible connections.

354

Different services techniques could cooperate with each
others on this platform. In this platform, each module
and component should be developed under MVC
methodology. Business logics and data presentations
should be separated into different independent
components. Developing business services should focus
on the design of business logics. The other technical
components could be simply dealt through the SOA
platform. SOA Healthcare Platform is showed in figure 5.
Services-flow control tool contains three main modules,
specifically the service executing engine, service process
defining and services monitoring. The module of service
process defining is used to identify service processes of
application system. Moreover, the module of services
monitoring is used to check the current statuses of
service objects in the application system. Finally, the
module of service executing engine is used to bind
service objects and the other modules in platform. There
are three healthcare tools that are used by patients in the
platform. These include bio-signals management,
messages management and end-users management. The
module of bio-signals management is used to supervise
patient’s bio-signals from the homebox, an end-device
installed in the patient’s house. Meanwhile, the module
of end-users management is used to handle users’
profiles and personal descriptions. The module of
messages management is used to handle messages
passing between internal and external objects. In addition,
the logger module is used to record the histories of the
events while the module of exception handler is used for
tracing run-time defects in platform. We would like to
call these modules’ components based on the coding
style below:

try {

// call regular components…
} catch {

// call exception handler’s components …
} finally {

// call logger’s components…
}

Figure 5. SOA Healthcare Platform

Figure 6. Deployment Overview of Systems

4.2 Surmounting Techniques Issues

We plan to deploy our systems in a real environment
based on the services concept. The SOA healthcare
platform was deployed to administer the services in the
care center side and manage the homebox, bio-signal
devices installed in the clients’ house. The care center
supervisor would regularly bring his/her PDA and visit
the patients at their homes. Some cooperative services
providers, such as hospitals HIS, local clinic system and
emergency system, are also showed in figure 6. Since
this is considered as a home-care solution really
deployed in three sides, some technical issues about
home-care will occur. By then, we will have to address
these issues using the SOA platform. Furthermore,
technical issues in home-care are addressed and shortly
described as follows:

� Transferring bio-signals from clients to the
application server in real-time

� Transfer channels are always maintained by the
platform which supports the message exchange.

� Unusual bio-signals are monitored and handled
by the platform through the application server.

� End-users’ profiles are managed by the platform.
Private profiles should be shared in a secure way.

� Messages and bio-signals should be standardized
between systems through the platform.

� Integrating multiple bio-signals devices
� Homebox would integrate multiple bio-signal

devices. The condition of the homebox should be
regularly checked by the platform, since it was
registered there.

� Within the homebox, user interfaces will simply
be implemented to interact remotely. The
interactions are executed through the platform.

� If abnormal network occurs, homebox could
detect and reconstruct by itself. After its
reconnection, the homebox should pass
exceptional logs to the platform.

� Integrating homogeneous providers
� Business services processes should be composed

and executed in an efficient way through the
platform. The status of the executing services
should also be monitored through the platform.

� Caregivers should maintain terminal systems,
which directly connect them to the platform.

355

Diagnostic records should be carefully shared
using a standardized format between providers.

� Homogeneous systems should be integrated
through the platform using for healthcare area.

Detailed specifications of this design are documented
in technical report [11].

5. Key Performance Indicators Evaluation

The business models are evaluated using the Key
Performance Indicators (KPI). We define our KPI by
referring to the Balanced Scorecard (BSC) models [12].
For the SOA healthcare platform and business models,
we planned to have four presentations of KPI. They are
categorized as system quality, customers’ satisfaction,
business achievements and financial achievements. The
measurements are described in the following.

1. System quality would be measured and analyzed
according to its user-friendliness, level of security and
privacy during the data transfer, the defects rates, the
services response time and the used times.

2. Customers’ satisfaction would be measured and
analyzed according to the following criteria: marketing
share, customers’ continuity, increase in the number of
customers, increase in customers’ satisfaction, and
stakeholders’ satisfaction.

3. Business achievements would be measured and
evaluated according to business quantity, number of
customers, number of, transactions and profit growth.

4. Financial achievements would be measured and
evaluated based on the profit growth and service
packages, management performance and financial
forecast that are based on the three phases, which are
establishing phase, increasing phase and mature phase.

6. Conclusions

As information and communication technology (ICT)
advances, the applications of ICT should provide
convenience and business solutions to people. As
revealed in our study, Service-Oriented Architecture
(SOA) platforms could smoothly integrate business
models and combine distinct services providers for
innovative services. In this paper, we shared our
experiences on creating innovative home-care business
models. We presented how we created the SOA
healthcare platform and addressed technical issues that
emerged during its development. Finally, we
demonstrated how we plan to evaluate the business
models and platform using the four presentations of KPI.
We believe that this is an interesting concept and a good
case study on modeling services for the Service-Oriented
Architecture in business processes.

7. Acknowledgements

This research was supported by the Applied
Information Services Development and Integration
project of the Institute for Information Industry (III) and
sponsored by MOEA, Taiwan R.O.C.

Interviewed care-experts and investigated patients
were supported by the Department of Medical
Information, Chung-Ho Memorial Hospital in Kaohsing,
Taiwan R.O.C.

8. References

[1] Thomas Erl, “Service-oriented Architecture:
Concepts, Technology, and Design,” Prentice Hall
PTR., July, 2005.

[2] Dave Hornford, “Definition of SOA,” The Open
Group, October, 2006.

[3] Yvonne Balzer, “Improve your SOA project plans,”
IBM Global Services, July 2004.

[4] Eric Newcomer and Greg Lomow, “Understanding
SOA with Web Services,” Addison Wesley, January,
2005.

[5] Liesbeth Bergman, MD, Jan H.P. van der Meulen,
MD, Martien Limburg, MD, J. Dik F. Habbema,
“Costs of Medical Care After First-Ever Stroke in the
Netherlands, Stroke, 26, pp1830-1836., 1995.

[6] Pullen R, Harlacher R, Pientka L, Fusgen I, “The
elderly stroke patient - observations 18 months after
the event,” Z Gerontol Geriatr, 32(5), pp358-363,
1999.

[7] Department of health, executive Yuan, Taiwan
R.O.C., ”Death causes statistical information in 2006
year,” http://www.doh.gov.tw/statistic/index.htm,
2006.

[8] ISAT Team, “Investigation Report about Analyzing
Home-care Services Demands of Apoplectics,”
Institute for Information Industry, Taiwan (R.O.C.),
November, 2005.

[9] ISAT Team, “Evaluation Report about Planning and
Establishing Home-care Business models,” Institute
for Information Industry, Taiwan (R.O.C.), December,
2005.

[10] Roger S. Pressman, “Software Engineering: A
Practitioner’s Approach,” Mc Graw Hill, sixth edition,
2005.

[11] ISAT Team, “Design Report about Home-care
System Architecture and Functional Specifications,”
Institute for Information Industry, Taiwan (R.O.C.),
January, 2006.

[12] Kaplan R S and Norton D P, “Balanced Scorecard:
Translating Strategy into Action,” Harvard Business
School Press, 1996.

[13] Mohammad Abu-Matar and A. Jefferson Offutt,
“Service Oriented Architecture Empirical Study,” the
19th International Conference on Software
Engineering and Knowledge Engineering (SEKE),
2007.

[14] Kuo-Wei Hwang, “Information Services in Service
Oriented Architecture-Challenges and Opportunities,”
the 18th International Conference on Software
Engineering and Knowledge Engineering (SEKE),
2006.

356

Testing Relational Database Schemas with Alternative Instance Analysis

Maria Claudia F. P. Emer

State University of Campinas
mcemer@dca.fee.unicamp.br

Silvia Regina Vergilio
Federal University of Paraná

silvia@inf.ufpr.br

Mario Jino
State University of Campinas

jino@dca.fee.unicamp.br

Abstract

Databases are employed to store a great amount of data

extremely important for business operations. Database test
evaluates if a database meets its requirements. In this
context, to test the database schemas is a fundamental
activity to increase the confidence on the integrity of the
data being manipulated by the database applications. There
are few works that address this subject. Approaches to test
database schemas can help to find faults related to the
incorrect or absent definitions of constraints in the data
and can contribute to avoid failures in the applications.
With this in mind, we present a fault-based testing
approach for database schemas and introduce testing
criteria based on the classification of the most common
types of fault in database schemas. In our approach
database instances and queries are used to test the
schemas. The instances are generated according to patterns
defined for fault classes and represent possible faults.
Preliminary results are discussed.

1. Introduction

Testing activity in software development contributes to

generate reliable products and to evaluate software quality.
Test techniques and criteria have been proposed to guide
the test process, which may involve many correctness
issues in software applications. For instance, database
testing aims to evaluate how well a database meets its
requirements and can determine query response time, data
integrity, data validity and data recovery [10]. Database
system testing involves many correctness aspects, such as
[4]: application behaviour with respect to the specification;
how well the database schema models the real world;
accuracy of data in the database; safety and privacy; and
correct execution of insertions, updates and deletions of
data and information from data schemas.

Schemas are frequently used in data base applications to
define the logical structure and the relationships among
data. Schemas are designed according to the data
specification. Testing of database schemas can contribute to
increase the confidence in the integrity and accuracy of the
data being manipulated. If incorrect data is validated by a
schema and passed to the application, this may cause a
failure. In spite of its importance, the testing of schemas has

not been a popular subject in the area. Most of the works
address data generation, application and database design
testing [2, 3, 4, 5, 7, 11, 14, 16, 17].

In a previous work [9] we introduced an approach to test
schemas which considers generic fault classes and which
can be applied to any schema that can be represented by a
model based on a MOF specification [13]. We have
explored its use mainly in the context of XML [8]. The
promising results motivated us to investigate the use of
such approach in the context of relational database schemas
[15], a largely used kind of schema.

To do this, we instantiated the generic fault classes,
proposed in [9], for the context of relational database and of
the entity-relationship (ER) model [6], a very popular
model employed in database applications. By considering
the approach and the presented fault classes, we introduced
a set of testing criteria to be used for evaluating the testing
activity. We implemented a support tool and conducted
experiments to evaluate the criteria in this new context.

The remainder of this paper is organized as follows.
Section 2 presents the fault-based testing approach adapted
to the relational database context. This section introduces
the fault classes and the testing criteria. Section 3 presents
the experimental results. Section 4 describes related work.
Section 5 contains the conclusions and directions for future
work.

2. Alternative Data Instance Analysis

In this paper, the proposed fault-based testing approach

is named Alternative Data Instance Analysis (ADIA) and is
adapted to the context of relational database schemas. It has
the goal of revealing constraint faults related to the
definition of entities, attributes, relationships and semantics
in a database schema. These faults can be related to issues
such as incorrect or absent restriction definitions for those
schema elements. The idea is to evaluate these issues to
avoid faults in the database schema that can affect data
integrity in the database and cause failures in the database
application.

ADIA is fault-based and includes database instance
alternatives and queries to reveal the faults. The data
models that represent schemas, the fault classes identified
in the database schema, the schema representation and the
test process are presented next.

357

2.1. Data Model

The data model is represented by a metamodel M

defined according to the MOF (Meta-Object Facility)
Specification [13]. Figure 1 illustrates the metamodel M,
described in UML notation [1], consisting of the following
classes: Element (elements or entities); Attribute (properties
of the elements) and Constraint (restrictions associated to
elements and attributes).

Figure 1. Metamodel M

To illustrate the data model in this context, consider a

fragment of an ER diagram (Figure 2). The diagram
describes data on students from a university: course and
type of course. Figure 3 shows the correspondent class
diagram based on M.

Figure 2. Fragment of an ER diagram

Figure 3. Data Schema for Course Data concerning the

Metamodel M

2.2. Fault Classes

ADIA is fault-based; hence, common faults introduced

during the conceptual design of a schema are organized into
four groups of constraints: domain, definition, relationship
and semantic. These faults are identified through analyses
of data schemas. In this paper, the fault classes presented
previously were instanced for relational database schemas.
Table 1 presents the fault classes concerning relational
database schemas.

Table 1. Fault classes for relational database schemas
Fault Class Description

��������	��
���������	��
���������	��
���������	��
���������������������������������
��

faults related to domain
definition of attribute values

IDT - Incorrect Data Type� incorrect definition of data type
IV - Incorrect Value incorrect definition of default

value
IEV - Incorrect Enumerated
Value

incorrect definition of the list of
acceptable values

IMMV - Incorrect
Maximum and Minimum
Values

incorrect definition of upper and
lower bound values

IL - Incorrect Length incorrect definition of number of
characters allowed for values

ID - Incorrect Digits incorrect definition of total
amount of digits for numeric
values

IWSC – Incorrect White
Space Characters

incorrect definition of how white
space characters must be treated

��������	��
���������	��
���������	��
���������	��
���
��

faults related to data integrity

IU - Incorrect Use� the attribute is defined incorrectly
as optional or obligatory

IN – Incorrect Uniqueness the attribute is defined incorrectly
as unique

IK - Incorrect Key the attribute is defined incorrectly
as primary key or foreign key

��������	��
���������	��
���������	��
���������	��
���������
��

faults related to relationship
definition among entities

IO - Incorrect Occurrence� incorrect definition of number of
times a same entity may occur

IC - Incorrect Association� incorrect definition of an
association: cardinality,
generalization/specialization,
aggregation, associative element

��������	��
���������	��
���������	��
���������	��
���
��

faults related to constraints
definition in relation to data
content expressed by business
rules

IO - Incorrect Condition� incorrect definition of predicate
expressed for a condition that
must be satisfied by attributes

2.3. Formal Representation

A formal representation is used to process data schemas,

by providing the identification of the entities, attributes,
constraints and of the associations among them. A data
schema S is denoted by),,,,(PRAES = where:

• E is a finite set of entities;
• A is a finite set of attributes;
• R is a finite set of constraints concerning domain,

definition, relationship and semantics associated to the
elements and attributes;

• P is a finite set of association rules among elements,
attributes and constraints. Consider AEU ∪= . The

association rules are represented by:
o ;,|),(yxEyxyxp ≠∧∈

o ;|),(RrExrxp ∈∧∈

358

o ,}...,,,{|),,(21 UuuuSURrUxSUrxp m ⊂=∧∈∧∈

,1,1, ≥≤≤≠∀ mmixui where m is the number of

elements and attributes in .SU
Example 1 shows the notation used to describe a data

schema.

Example 1: Formal representation for ER diagram of Fig. 2
),,,(PRAES =

}_,{ typecoursecourseE =

},__,,,_{ ndescriptiotypecourseIDdurationnamecourseIDA =

},,,,,{ nassociatiouniquenesslengthusekeytypeR =

)},(),,(

),,(),,(

),,__(),,__(

),,,_(

),,_(

),__,_(),,(

),,(),,(),,(

),,(),,_(),,_(

),_,,(

),_,,(

),,(),,(),_,({

2120

1918

1716

15

14

1312

11109

876

5

4

321

uniquenessndescriptioplengthndescriptiop

usendescriptioptypendescriptiop

keytypecourseIDptypetypecourseIDp

courseeassociativtypecoursep

ndescriptiotypecoursep

typecourseIDtypecoursepusedurationp

typedurationplengthnamepusenamep

typenamepkeycourseIDptypecourseIDp

typecoursekeycoursep

typecoursenassociatiocoursep

durationcoursepnamecoursepcourseIDcoursepP =

2.4. Testing Process

The schema under test and the corresponding database

instance (original database instance) are provided by the
tester. These entries to the testing process are presented in
Examples 2 and 3. Example 2 shows a fragment of the
schema written in the DDL (Data Definition Language)
script related to the ER diagram of Figure 2. Example 3
presents a sample of the original database instance
associated to the schema of Example 1.

Example 2. DDL related to the ER diagram of Fig 2.

CREATE TABLE course (
id_course int IDENTITY,
name varchar(40) NOT NULL,
id_course_type int NOT NULL,
duration int NOT NULL

)
go
ALTER TABLE course

ADD PRIMARY KEY NONCLUSTERED (id_course)
go

Example 3. A sample of the original database instance

Course
Id_course Name id_course_type duration

1 Computer science 1 4
2 Computation

Engineering
1 5

3 Database 3 2
4 Images Processing 4 2

Initially, the representation S of the schema under test
is built (Example 1). Based on ,S schema elements
(entities, attributes, relationships among entities and
semantic constraints related to attributes) are associated to
the fault classes. These associations are named fault
associations. Table 2 presents some associations identified
in S for its entities and attributes.

Table 2. Fault associations identified in S

Entity/Attribute Fault Class
Incorrect Association
(cardinality)

Course

Incorrect Key
ID_course Incorrect Data Type

Incorrect Use
Incorrect Data Type

name

Incorrect Length

Additionally, the tester can identify other fault

associations among schema elements and fault classes. This
provides the detection of faults that could not be detected
with the fault associations identified through representation

.S Thus, the tester can determine fault associations to
reveal faults related to absent constraint definitions. These
are faults covered by the fault classes.

Next, these fault associations are selected. The selected
fault associations are used to guide the generation of the
alternative database instances, indicating the schema
elements that should be modified in the original database
instance and the fault classes which define the modification
patterns that should be applied.

The alternative database instances are generated through
modifications in the original database instance. These
single modifications are made by insertions and changes
into records of the original database instance according to
patterns defined for each fault class. These modifications
are representative and sufficient to detect the fault of each
fault class. For example, to reveal a fault related to G1-IL
(Group 1 - Incorrect Length) in the attribute Aa∈ of the

database schema ,S a record should be altered, for
example, with a number x of characters out of the bound
allowed for attribute a in an alternative database instance

generated. Example 4 illustrates an alternative database
instance for table Course of the original database instance
presented in Example 3. In Example 4, the attribute name is
associated to fault class G1-IL (Group 1 - Incorrect
Length).

The records of the generated alternative database
instances are separated into valid or invalid with respect to
the schema under test; that is, a record generated by
modification patterns may not be in conformity with the
schema under test. An invalid record is not accepted in the
alternative instance; thus, this alternative instance is not
queried, but it is part of the test result.

359

Example 4. Alternative database instance
Course

Id_course Name id_course_type Duration
1 Computer science

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxx

1 4

2 Computation
Engineering

1 5

3 Database 3 2
4 Images Processing 4 2

The selected fault associations also guide the generation

of the queries. The queries are automatically generated as
SQL statements according to the query patterns associated
to each fault class which can be detected in the schema.
Queries for each selected fault association are generated
and executed for each correspondent valid alternative
database instance.

A test data is formed by a valid alternative database
instance and a query to this alternative instance. Expected
results for the test data are obtained from the database
specification. The tester compares test results with the
specification to discover faults in the database schema.

2.5. Testing Criteria

The testing criteria based on the fault classes aim to

guide the testing process by selecting fault associations to
be exercised and, consequently, by reducing the application
costs of the ADIA through the selection of a subset of fault
associations. The costs are related to the number of
alternative database instances and queries generated.
However, the effectiveness of the ADIA to reveal data
schema faults should not be reduced.

In that way, the testing criteria are used to select fault
associations to be exercised in the testing process. These
criteria are based on the fault classes for relational database
schemas. They request that the fault associations are
exercised through query execution on the alternative data
instances related to these associations. Consider z an
element or attribute. These criteria are:

All constraints – all fault associations with regard to z
related to fault classes of the groups of domain, definition,
relationship, and semantic constraints must be exercised;

All domain constraints - all fault associations with
regard to z related to fault classes of the group of domain
constraints must be exercised;

All definition constraints - all fault associations with
regard to z related to fault classes of the group of definition
constraints must be exercised;

All relationship constraints - all fault associations with
regard to z related to fault classes of the group of
relationship constraints must be exercised;

All semantic constraints - all fault associations with
regard to z related to fault classes of the group of semantic
constraints must be exercised;

All constraints groups – at least one fault association
with regard to z related to each group of domain, definition,

relationship and semantics constraints must be exercised, if
such association exists.

3. Case Study

Our case study uses a database application developed by

graduate students, containing data on university students:
personal, academic and professional data. Testing process
was performed during the development of the database. The
ER schema for the application has 19 entities and 20
relationships. Relational database application was
implemented using PostGreSQL.

The testing process was performed using XTool [12], a
tool that supports the testing approach for database schemas
described in the Section 2.4. XTool was developed in Java
and tests relational database schemas by using JDBC (Java
Database Connectivity) to manipulate and query the
information in PostGreSQL database.

XTool found 19 entities and 73 attributes in .S These
entities and attributes were automatically associated to fault
classes in the schema under test. Moreover, the tester found
other fault associations among schema elements and fault
classes. By using the selected fault associations, XTool
generates alternative database instances and SQL queries
automatically. The total number of fault associations
(identified by XTool and the tester) was 297 and 1,240
queries were executed.

We used all the testing criteria to select the fault
associations, except the “all constraints groups” criterion.
The idea is to compare the use of the testing criteria by
analyzing costs and revealed faults in this database schema.

Table 3 presents an example of fault associations, the
number of records modified in the original database
instance to generate the alternative instances and the
number of generated queries for the entity
“Academic_records” and some of its attributes according to
the testing criteria.

The tester had the task of comparing the queries results
with the expected ones. Records of invalid alternative
database instances generated were also considered test
results and used during the testing analysis. Table 4 shows
the number of generated queries and valid alternative
instances by faults revealed for the testing criteria applied
by using XTool.

The faults revealed in the test process are related to: the
incorrect definition of data type and length constraints; the
absence of constraints and enumerated values for attributes;
and, incorrect cardinality for a relationship. Faults of
absence of constraints were revealed with the fault
associations found by the tester.

The testing criteria that revealed faults are: “all domains
constraints”, “all definition constraints” and “all
relationship constraints”. Hence, when we applied the
testing criterion “all constraints”, all faults detected with the
other criteria were also revealed. In this case, we can see
that the number of queries that revealed faults was 14% of
the total number of queries generated and the number of

360

valid alternative instances that represented revealed faults
was 15% of the total number of valid alternative instances
generated. Those results are an indication that the testing
criteria can help to reduce the application costs of ADIA.

Table 3. Fault associations found in ,S number of modified

records and generated queries for entity Academic_records
Fault Associations Testing

Criterion Entity/
Attribute

Fault Class
Number
of
records

Number
of
queries

Incorrect
Association
(cardinality)

41 12 All
Relationship
Constraints

Academic_
records

Incorrect
Association
(Associative
Element)

6 1

Incorrect
Key

1 1 All
Definition
Constraints

Academic_
records

Incorrect
Uniqueness

1 1

All Domain
Constraints

Begin_date Incorrect
Data Type

7 1

All
Definition
Constraints

Begin_date Incorrect
Use

4 1

All
Semantic
Constraints

Begin_date Incorrect
Condition

48 25

Table 4. Faults revealed

Testing
criterion

Fault
classes

Number
of
queries

Number of
valid
alternatives

Number
of faults
revealed

Incorrect
Data Type

18 13 5

Incorrect
Length

15 12 3

Incorrect
Digits

44 40 4

All Domain
Constraints

Incorrect
Enumerated
Value

5 3 1

Total by criterion 82 68 13
All
Definition
Constraints

Incorrect
Use

85 72 13

Total by criterion 85 72 13
All
Relationship
Constraints

Incorrect
Association
(cardinality)

7 6 1

Total by criterion 7 6 1
All
Constraints

Incorrect
Data Type,
Length,
Digits,
Enumerated
Value, Use,
Association
(cardinality)

174 146 27

Total by criterion 174 146 27

Revealed faults were removed and the use of ADIA
contributed to improve the quality of the tested application.

It is important to remark that the original database
instances are not replicated by XTool to generate the
alternative instances. The original instance is updated with
a single modification pattern, queried by the generated
query and the modification is undone.

4. Related Work

As mentioned previously, many works in the literature

address the testing of database applications [2, 4, 5, 7, 11,
16, 17]. Some of them [3, 14] propose the use of schema
information to test the application. Robbert and Maryanski
[14] use information obtained from the database schema to
generate a test plan for the database application, indicating
points that should be verified in the test. Chan et al. [3]
propose a fault-based approach to test SQL statements of
database applications using information captured from the
conceptual data model to generate SQL statement mutants.
They use schema information to test the application or SQL
statements, but they do not address schema testing.

The abovementioned works do not have the goal of
validating schemas, the focus of the present paper. Our
approach has a different objective and contributes to
increase the reliability of the data stored in the database.

5. Conclusions

The fault-based approach ADIA for database schemas

and the testing criteria were derived from our previous
work [8, 9]. The main goal of this testing approach is to
reveal faults in the database schema to ensure the quality of
the data stored in the database and, consequently, to
contribute to increase the reliability of the database
application. Data integrity in databases is fundamental to
avoid incorrect data processing resulting in failures in the
database application.

ADIA contributes by: presenting a metamodel and a
formal representation for database schemas; defining fault
classes for database schemas based on the entity-
relationship model; introducing testing criteria based on
fault associations, generating alternative database instances
based on fault classes; and using queries to reveal faults.

XTool was implemented to support ADIA and it does
not need the database application to test the database
schema. XTool needs only the schema to be tested and the
original database instance. In addition to that, the
alternative database instances generated automatically by
XTool could be used to test the applications that access the
database.

The case study performed by using XTool shows that
ADIA is effective in revealing faults covered by the fault
classes in database schema and that the largest cost is
related to the analysis of the results by the tester; the tester
compares the test results with the expected ones from data
specification. In addition to that, the results indicate that the

361

testing criteria can help to reduce the application costs of
the ADIA.

ADIA was used to reveal faults in schemas of relational
database model. It can also be used to detect faults in
schemas of other database models, for instance, XML
databases.

Other experiments are necessary to better evaluate the
effectiveness of the testing approach and criteria for
detection of faults in the context of database models. We
intend to use the testing approach to reveal faults in more
complex integrity constraints or faults involving several
relations.

In addition to that, in future work we intend to analyze
the relationship between the number of faults/fault classes
and instances/queries that can be redundant; furthermore, a
way to reduce the number of instances/queries by using test
criteria should be proposed and evaluated empirically.

6. Acknowledgments

We acknowledge the partial financial support from the

Brazilian Research Agency (CNPq).

References

[1] BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. The
Unified Modeling Language User Guide. Addison-
Wesley, 1999.

[2] CHAN, M.; CHEUNG, S.. Testing Database
Applications with SQL Semantics. In Proc. of the 2nd
Intl. Symp. on Cooperative Database Systems for
Advanced Applications, pp 364-375, March 1999.

[3] CHAN, W. K.; CHEUNG, S.C.; TSE, T. H.. Fault-
Based Testing of Database Application Programs with
Conceptual Data Model. In Proc. of the 5th Intl.
Conference on Quality Software, pp 187-196, 2005.

[4] CHAYS, David; DAN, Saikat; FRANKL, Phyllis G.;
VOKOLOS, Filippos I.; WEYUKER, Elaine J.. A
Framework for Testing Database Applications. In
Proc. of the 2000 ACM SIGSOFT Intl. Symp. on
Software Testing and Analysis, Vol. 25 Issue 5, August
2000.

[5] CHAYS, D.; DENG, Y. Demonstration of AGENDA
Tool Set for Testing Relational Database Applications.
In Proc. of the 25th Intl. Software Engineering
Conference, 2003. IEEE Computer Society, pp 802 –
803, May 2003.

[6] CHEN, P. P.. The Entity-Relationship Model – Toward
a Unified View of Data. ACM Transactions on
Database Systems, Vol. 1, No 1, pp 9-36, 1976.

[7] DENG, Yuetang; FRANKL, Phyllis; CHAYS, David.
Testing Database Transactions with AGENDA. In
Proc. of the 27th Intl. Conference on Software
engineering. ACM Press, May 2005.

[8] EMER, M.C.F.P.; VERGILIO, S.R.; JINO, M.. A
Testing Approach for XML Schemas. In Proc. of the

29th Annual Intl. Computer Software and Applications
Conference, Vol. 2, pp 57 – 62, July 2005.

[9] EMER, M.C.F.P.; VERGILIO, S.R.; JINO, M.. Fault-
Based Testing of Data Schemas. In Proc. of the 19th
Intl. Conference on Software Engineering and
Knowledge Engineering, July 2007.

[10] FREEMAN, H.. Software Testing. IEEE
Instrumentation & Measurement Magazine. Volume 5
Issue 3, pp. 48 – 50. September 2002.

[11] KAPFHAMMER, Gregory M.; SOFFA, Mary Lou. A
Family of Test Adequacy Criteria for Database-driven
Applications. In Proc. of the 9th European Software
Engineering Conference, held jointly with 11th ACM
SIGSOFT Intl. Symp. on Foundations of Software
Engineering, Vol. 28 Issue 5, September 2003.

[12] NAZAR, I. F. A Tool for Data Schemas Testing.
Master thesis, Computer Science Department, Federal
University of Paraná. March 2007 (In Portuguese).

[13] OMG. Meta-Object Facility Core Specification
Version 2.0. http://www.omg.org/ cgi-bin/doc?formal/
2006- 01-01, January 2006. (accessed in September
2006).

[14] ROBBERT, M. A.; MARYANSKI, F. J.. Automated
Test Plan Generator for Database Application
Systems. In Proc. of the ACM SIGSAMLL/PC Symp.
on Small Systems, pp 100-106, 1991.

[15] SILBERSCHATZ, A.; KORTH, H. F.;
SUDARSHAN, S. Database System Concepts. 3rd ed.,
McGraw-Hill, 1998.

[16] SUÁREZ-CABAL, M. J.; TUYA, J.. Using an SQL
Coverage Measurement for Testing Database
Applications. In Proc. of the 12th Intl. Symp. on the
Foundations of Engineering, November 2004.

[17] ZHANG, Jian; XU, Chen; CHEUNG, S.-C.. Automatic
Generation of Database Instances for White-box
Testing. In Proc. of the 25th Annual Intl. Computer
Software and Applications Conference, pp 161 – 165,
October 2001.

362

Analyzing Termination and Con�uence in Active Rule Base via a
Petri Net Approach

Lorena Chavarría-Báez, Xiaoou Li
Department of Computer Science

The Research and Advanced Studies Centre of the National Polytechnic Institute (CINVESTAV-IPN)

Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City, C.P. 07360, Mexico

email: lchavarria@computacion.cs.cinvestav.mx, lixo@cs.cinvestav.mx

Abstract

Active rules allow software systems to execute ac-
tions automatically in response to events. Two desir-
able properties of active rule behavior are termination
and con�uence. In this paper we present a Petri net
based approach to analyze termination and con�uence
in a rule base. Our approach is performed in two steps:
�rst, we identify those rules which may not terminate
and may not be con�uent using their Conditional Col-
ored Petri net representation. Second, we use semantic
analysis to decide about termination and con�uence of
the detected rules. The great advantage of our approach
is that it allows us to derive results about termination
and con�uence without analyzing all the rules.

1 Introduction

Active rules allow software systems behave automat-
ically in response to inner or outer events. Using active
rules, modern applications can be e�ectively developed.
However, due to unstructured nature of rule process-
ing it is quite di�cult to predict the rule set behavior.
Two desirable properties of active rule behavior are ter-
mination and con�uence. A rule set is guaranteed to
terminate if rule execution processing cannot continue
inde�nitely. A rule set is con�uent if the �nal state is
independent of the rule execution order.

Several works have been proposed in the literature to
analyze termination and con�uence. Some approaches
tackled the problem based on triggering and execution
graphs analysis [1], [2]. The triggering graph is directed
graph whose nodes represent the rules and whose edges
indicate that a rule produces an event that may trigger
another rule. If the graph is acyclic, rule execution ter-
minates. In execution graphs, nodes represent the state

and directed edges are labeled with the name of the
rule whose execution makes the system switch from one
state to another. If the graph is acyclic and every pair
of rules commute, the rule execution process is con�u-
ent. In [3] authors propagate the e�ect of the action
part of a condition - action rule to the condition part of
another rule to determine if the arcs of the triggering
graph have to be included in the graph and to verify
if two rules commute. In this work, all the rules have
to be compared in pairs to accurately conclude about
termination and con�uence. In [4] authors translate a
set of active rules into logical clauses and then apply
results about termination and con�uence available in
the literature for deductive rules. In [5], con�uence is
investigated by using a rewriting technique. A user-
de�ned transaction is translated by means of active
rules into an induced one(s) and then they check their
equivalence. This approach doesn’t provide a general
conclusion about con�uence since its analysis is done
on each initial user-de�ned transaction.

In this paper we present a Petri net based analysis
approach for analyzing termination and con�uence in
an active rule base. One important aspect of our ap-
proach is that it avoids unnecessary rule analysis by
identifying the Petri net structures of non-termination
and non-con�uence.

2 Active Rules

Generally, an active rule consists of three parts: an
Event, a Condition, and an Action. So, they are also
called ECA rules. The most common form of active
rules is the following: ON event IF condition THEN
action. An event is something that occurs at a point in
time. The condition examines the context in which the
event has taken place. The action describes the task
to be carried out by the rule if the condition is ful�lled

363

once an event has taken place. From now onwards,
we refer to an active rule as ��(��� ��� ��) where ��,
�� and �� are the event, condition and action of ��,
respectively.
Example 1. Bank’s policies for managing cus-

tomers’ accounts.
An active database system (ADBS), which inte-

grates active rule processing with traditional database
functionality, is able to react automatically to mean-
ingful events that are taking place inside or outside
de database system. The following ADBS example is
about a bank’s policies for managing customer’s ac-
counts which is taken from [3]. It is based on the rela-
tion schemes account(num, name, balance, rate) and
low-acc(num, start, end), which contain information
about bank’s accounts, and a history of all time periods
in which an account had a low balance, respectively.
Policies are described below.
Policy 1: When an account’s interest rate is mod-

i�ed, if that account has a balance less than 500 and
an interest rate greater than 0%, then that account’s
interest rate is lowered to 0%.
Policy 2: When a new account is registered, if the

account has an interest rate greater than 1% but less
than 2%, then that account’s interest rate is raised to
2%.
Policy 3: When a new account is registered, if that

account has a balance less than 500 and is not yet
recorded with a null end date in the low-acc relation,
then the account is inserted into the low-acc relation
with the current date as start and a null end date.
Policy 4: When a new account is registered, if the

total number of low days for an account (as recorded in
the low-acc relation) is greater than 50 and its current
balance is between 500 and 1000, then its interest rate
is set to 1% in the account relation.

Above policies are depicted as active rules as follows:
R1
ON update account.rate
IF update.balance � 500 and update.rate 	0
THEN update account set rate = 0

where balance � 500 and rate 	 0
R2
ON insert account
IF update.rate 	1 and update.rate � 2
THEN update account set rate = 2

where rate 	 1 and rate � 2
R3
ON insert account
IF insert.balance � 500 and (not exists (select *

from low-acc where low-acc.num = insert.num
and end is null))

THEN insert into low-acc(num, start, end) (select
num, today(), null from account where balance � 500

and not exists (select * from low-acc where
low-acc.num = account.num and end is null))

R4
ON insert account
IF exists(select * from account where rate 	 1 and

balance 	 500 and balance � 1000 and num in
(select num from low-acc group by num having
sum(end-start)	50))

THEN update account set rate = 1 where rate 	 1
and balance 	 500 and balance � 1000 and num in

(select num from low-acc group by num hav-
ing sum(end-start)	50)

Suppose the event “insert account” has been de-
tected, then R2, R3 and R4 are triggered and their
conditions must be evaluated. Let’s suppose all condi-
tions true, then, for simplicity, rule execution will be
done by following the order of rules in the list. There-
fore, R2’s action will be executed �rst, then R3’s ac-
tion and R4’s action is executed �nally. After R2’s
action execution, the event “update account.rate” is
signaled, so R1 is triggered and execution process con-
tinues until there is no rule eligible to trigger. On the
other hand, whenR3’s action is executed, rule process-
ing �nishes since there is no rule triggered by the event
“insert low-acc”. Finally, when R4’s action is exe-
cuted, the event “update account.rate” is raised and
rule processing continues.

3 Active Rule Base Modeling

An active rule base as well as its interaction can
be represented by the Conditional Colored Petri Net
(CCPN) [6]. Unlike other graphical models, CCPN de-
picts each element of an active rule including composite
events and condition evaluation.

As Figure 1(a) shows, an active rule is mapped to
a CCPN structure as follows: a rule is mapped to a
transition where its condition is attached, event and
action parts are mapped to input and output places of
the transition, respectively. Matching between events
and input places has the following characteristics:

(1) Primitive places, represent primitive events;
(2) Composite places, represent composite events;
(3) Copy places, are used when one event triggers

two or more rules. An event can be shared by two or
more rules, but in Petri net theory, one token needs to
be duplicated for sharing. A copy place takes the same
information as its original one;

(4) Virtual places are used for accumulating di�er-
ent events that trigger the same rule. For example, to
represent the composite event OR.

364

Event

Condition

Action

Primitve input place

Rule transition

Primitive output place

ECA rule CCPN elements

(a)

Original place

Copy structure

Copy places

Copy transition

(b)

T1 T2

Composite structure

Composite
transition
Composite place

Places that form the
composite event

. . .

(c)

T1

Virtual structure

Copy
transitions

Virtual
place

. . .

(d)

T1

Event

Condition

Action

Primitve input place

Rule transition

Primitive output place

ECA rule CCPN elements

(a)

Event

Condition

Action

Primitve input place

Rule transition

Primitive output place

ECA rule CCPN elements

(a)

Original place

Copy structure

Copy places

Copy transition

(b)

T1 T2

Original place

Copy structure

Copy places

Copy transition

(b)

T1 T2

Composite structure

Composite
transition
Composite place

Places that form the
composite event

. . .

(c)

T1

Composite structure

Composite
transition
Composite place

Places that form the
composite event

. . .

(c)

T1

Virtual structure

Copy
transitions

Virtual
place

. . .

(d)

T1

Virtual structure

Copy
transitions

Virtual
place

. . .

(d)

T1

Figure 1. Basic CCPN structures of an active rule

Rules and transitions are related in the following
form:

(1) Rule transitions, represent rules;
(2) Composite transitions, represent composite

event generation;
(3) Copy transitions, duplicate one event for each

triggered rule.
Whenever an event triggers two or more rules it has

to be duplicated by means the copy structure depicted
in Figure 1(b). Composite events formation is consid-
ered in CCPN using the composite structure drawn in
Figure 1(c). Composite transition’s input places rep-
resent all the events needed to form a composite event
while its output place correspond to the whole com-
posite event. Finally, we use the virtual structure to
model the composite event OR as standing for in Figure
1(d). The CCPN model of a set of ECA rules is formed
by connecting those places that represent both the ac-
tion of one rule and the event of another rule. Figure
2 shows the CCPN model of the rules of Example 1.
Correspondence between events/actions and places as
well as matching between rules and transitions, are de-
scribed in the �gure too.

4 Termination and Con�uence Analy-
sis

Based on the CCPN model of a given active rule base
we can analyze its termination and con�uence proper-
ties. First, we represent the active rule base as a CCPN
model and we identify the structures that may have
non-termination and non-con�uence problems. Since
transitions in CCPN stand for rules, we actually obtain
the rules that may exhibit abnormal behavior. Second,

E0

E1

T0

T2

E2 E3

T4 T3

E4

T1

E5

E0

E1

T0

T2

E2 E3

T4 T3

E4

T1

E5

Insert accountE1, E2, E3
[copy]

insert low-accE5 [primitive]
update account.rateE4 [primitive]
insert accountE0 [primitive]

Event/ActionPlace [Type]

Insert accountE1, E2, E3
[copy]

insert low-accE5 [primitive]
update account.rateE4 [primitive]
insert accountE0 [primitive]

Event/ActionPlace [Type]

-T0 [copy]
R4T4 [rule]
R3T3 [rule]

R2T2 [rule]

R1T1[rule]

RuleTransition
[Type]

-T0 [copy]
R4T4 [rule]
R3T3 [rule]

R2T2 [rule]

R1T1[rule]

RuleTransition
[Type]

Figure 2. CCPN of the rule base of Example 1

termination and con�uence are investigated by analyz-
ing rule semantic and rule interaction of rules computed
during the �rst step.
Non-termination and non-con�uence CCPN

structures. In CCPN termination is depicted by cy-
cles. If in the obtained CCPN model there is no cycles
then rule processing is guaranteed to terminate. Oth-
erwise, we will analyze the rules involved in the loop to
ascertain if their processing �nishes. Through CCPN
model of Figure 2 we found the cycle formed by the
sequence of places/transitions E4, T1, E4. So, R1 in
Example 1 triggers itself.

On the other hand, con�uence problems appear
when several rules are triggered at the same time since
there are di�erent ways to perform rule execution.
In CCPN con�uence is represented by the following
CCPN structures: (1) copy typed transitions. In the
CCPN of Figure 2 transition T0 is a copy typed tran-
sition, so, we need to analyze the execution order of
transitions (rules) T2 (R2), T3 (R3), and T4 (R4).
(2) rule typed transitions which evaluate the same con-
dition. This kind of rules are identi�ed in the CCPN
by labeling them with the same index. Each rule in
Example 1 evaluates di�erent conditions, so, we don’t
need to analyze any transition of this type. (3) prim-
itive places which have more than one input arc. The
place E4 in the CCPN of Figure 2 has more than one
input arc, so, we will examine the rule execution order
of transitions (rules): T1 (R1), T2 (R2), and T4 (R4).
Rule semantic and rule interaction analysis.

Once we have computed rules that may not terminate
and may not be con�uent, we analyze them taking
into account their semantics and interaction. To an-
alyze rule semantics, �rst we divide each rule action
as following: (1) a modi�cation operation, (2) a rela-
tion schema name, (3) attribute names of the relation
schema, (4) new values for each attribute, and (5) a
condition over attributes. We identify as Comm(�),

365

Table(�), Att(�), Val(�) and Cond(�) each one of
the above elements, respectively. Let’s see action �1
= "update account set rate = 0 where balance � 500
and rate 	 0". Its elements are: Comm(�) = update,
Table(�) = account, Att(�) = rate, Val(�) = rate =
0, and Cond(�) = balance � 500 and rate 	 0. Sec-
ond, we compute the target of a condition C, denoted
by Targ(�), which is the set of tuples which satis�es a
condition �. In example 1, Tar(Cond(�1)) ={t|t is a
tuple and t.balance � 500 and t.rate 	 0}.

Rules can interact in the following ways: activation,
deactivation and commutativity. �� can activate (de-
activate) �� if the execution of �� makes condition ��

true (false) when it is evaluated. In our case �� acti-
vates �� if the following conditions are met:

(1) Comm(��) =“update” or “insert”
(2) Table(��)�Table(��)6= �
(3)
 6= �
(4) Val(
) � Targ(Cond�(��))

(5)Targ(Cond(��))�Targ(��) 6= �
where
 = Att(��)�Att(��).
Let’s consider rule R1 of Example 1. Since �1 and

�1 don’t satisfy above condition (4), R1 cannot acti-
vate itself.

Actions �� and �� commute, if for all
database states, the execution of �� followed
by �� (and vice versa) produce the same �-
nal database state. In our approach �� and ��

commute if Targ(Cond(��))����(Cond(��))=�.
In Example 1 �2 and �4 don’t commute
since Targ(Cond(�2))(={t|1�t.rate �2})
�Targ(Cond(�4))(={t|t.rate	0}).

Termination analysis is performed on the rule acti-
vation analysis. If in a cycle formed by rules �1� �2�
� � � � �� (�� = �1) the rule �� doesn’t activate (or
deactivate) the rule ��, then the cycle �nishes. Be-
fore, we found that R1 in Example 1 triggers itself.
However, it cannot activate itself. Then, its execution
process �nishes and rule base processing of Example 1
is guaranteed to terminate.

Conclusion about con�uence is achieved by analyz-
ing rule (de)activation and action commutativity. If
simultaneously triggered rules don’t (de)activate each
other, and their actions commute, then the result of
their processing is con�uent and the rule base is also
con�uent. Through CCPN analysis we identify the rule
sets which may trigger at the same time, namely {R2,
R3, R4} and {R1, R2, R4}. Therefore, we need to
analyze the following rule pairs: (R2, R3), (R2, R4),
(R3, R4), (R1, R2), (R1, R4). If each one of those
rule pairs is con�uent, the rule base in Example 1 is
con�uent. Previously we have demonstrated that R2
and R4 actions don’t commute, so, R2 and R4 are not

con�uent. In consequence, the rule base of Example 1
is not con�uent.

5 Conclusion and future work

A Petri net based approach is proposed to analyze
termination and con�uence properties of an active rule
base. Our approach has the great advantage of elimi-
nating unnecessary rule analysis, since we don’t need to
analyze all the pairs of rules to draw conclusion about
termination and con�uence. In the future we will im-
plement our approach so that the analysis could be
done automatically.

References

[1] A. Aiken, J. Widom, and J-M. Hellerstein, Behav-
ior of database production rules: termination, con-
�uence, and observable determinism, Proceedings
of International Conference of ACM-SIGMOD, pp.
59-68, 1992.

[2] E. Baralis, S. Ceri, and S. Paraboschi, Improved
rule analysis by means of triggering and activa-
tion graphs, Proceedings of the First International.
Workshop on Rules in Database Systems, Aug.
1993.

[3] E.Baralis, J. Widom, An algebraic approach to
static analysis of active database rules, ACM Trans-
actions on Database Systems, Vol. 25 , Issue 3, pp.
269-332, 2000

[4] S. Comani, L. Tanca. Termination and con�u-
ence by rule prioritization, IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, No. 2,
pp. 257-270, 2003

[5] D. Montesi, and R. Torlone, Analysis and optimiza-
tion of active databases, Data and Knowledge En-
ginnering, Vol. 40, pp. 241-271, 2002.

[6] X. Li, J. Medina-Marín, S. Chapa, Applying Petri
nets on active database systems, IEEE Transac-
tions on System, Man, and Cybernetics, Part C:
Applications and Reviews, Vol. 37, No. 4, pp. 482-
493, 2007.

[7] N. Paton, O. Díaz, Active database systems, ACM
Computing Surveys, Vol. 31, No.1, pp.62-103, 1999.

366

A Fuzzy Trigger Language for Relational Database Systems

Ying Jin Tejaswitha Bhavsar

Computer Science Department
California State University, Sacramento, CA - 95819, USA

jiny@ecs.csus.edu

Abstract - With the ever-increasing demands for data
management, crisp data presentation, storage, and
retrieval are not enough for complicated situations in
real-life. Some kind of non-crisp or fuzzy semantics are
desirable to better handle the situations where human
judgment, evaluation and decisions are important. This
project proposes a fuzzy language, named FZ-Trigger, for
relational database systems. A trigger specifies the event
raised by activities such as inserting a row, the condition
to check upon event occurrence, and the corresponding
action to perform when the condition is true.
Incorporating fuzzy expression into the condition part of a
trigger allows database users to specify the reaction to
database events in a flexible manner. Uncertainty and
imprecision factors are handled by linguistic variables.
This paper describes the language specification of FZ-
Trigger, the system architecture, and the implementation.
A motivating example is also provided to illustrate the
syntax and the use of FZ-Trigger.

1. INTRODUCTION

A relational database management system (DBMS) is
based on the relational model that represents relations in a
tabular form. Active database systems [1] are built on top
of traditional passive databases by providing reactive
services that automatically support monitoring and
reacting to events. Active rules are the languages for
active databases. The concept of active rules has been
incorporated by modern commercial database systems,
such as Oracle [2], in a simplified format of triggers.
Triggers are database facilities that allow users to define
the semantics of reactions with respect to different types
of events. Triggers have a significant role in database
systems for consistency control and business logic
specification. A trigger consists of three parts, an event, a
condition, and an action. The event is used to specify the
origination of what happened, such as insert a row. The
condition is evaluated upon the event occurrence to query
over data sources. If the condition evaluation returns true,
the action is performed to update the database or execute
application procedures.

Triggers in traditional database systems are crisp,
meaning that there is no vagueness and uncertainty.
However, it is not sufficient to ever-increasing needs of
data management. When users specify integrity
constraints or business logics, they are limited to use
precise expressions. A new language to use fuzzy
semantics, named FZ-Trigger, is proposed in this paper to
incorporate fuzzy concepts into database triggers. FZ-
Trigger can be used over traditional crisp databases. FZ-
trigger allows relational database users to define triggers
using fuzzy conditions over crisp data.

For example, in traditional non-fuzzy trigger, we can
specify “When an item is sold, check the quantity of item
in stock. If the quantity is less than 20 and the popularity
rating of the item is 90, place a purchase order”. In the
FZ-Trigger system, we can define “if the item quantity is
less and popularity is high, place a purchase order”.
People are more familiar with this type of expression in
natural language. Moreover, it is reasonable that cases
such as “item quantity is 19 and popularity is 88” (in
addition to “item quantity is 20 and popularity is 90”) are
also considered to cause the action to be performed. Our
trigger specification is consistent with SQL3 [2]. It is
well-known that different relational database vendors
provide different relational database implementations
with small variation from SQL standard. This paper uses
the popularly used DBMS Oracle as the implementation
system to illustrate the use of FZ-triggers.

The paper is further organized as follows. Section 2
covers the related work in the areas of fuzzy triggers and
fuzzy relational database systems. Section 3 illustrates the
motivating example used in this work and describes fuzzy
concepts. Section 4 describes the FZ-trigger language.
Section 5 presents the system architecture and
implementation. We conclude the paper with summary
and future directions in Section 6. The non-fuzzy trigger
is referred to as crisp trigger in this paper.

2. RELATED WORK

Applying fuzzy concepts to database systems has
been a research topic over years, such as in [4] [5],

367

including how to add fuzziness in the stored data as well
as how to process fuzzy queries. Galindo [6] proposed a
fuzzy query language called FSQL for fuzzy relational
databases. FSQL is an extension to the SQL query
language standard to allow flexible queries. Limited
research has been done on triggers so far. C-fuzzy and
CA-fuzzy triggers are proposed by [7] and [8] to
incorporate fuzziness into active database system named
as TEMPO. C-fuzzy triggers are limited to its active
database system for a specific control system. Neither the
language nor the architecture design can be applied to
other systems easily without major modifications. In this
proposed project, we will specify fuzzy triggers based on
the trigger specification of SQL3 standard. We also
incorporate the concepts of fulfillment of thresholds to the
conditions using linguistic variables. The existing
relational database retains the crisp values, which allows
all existing database applications unaltered.

3. MOTIVATING EXAMPLES AND FUZZY
CONCEPTS

To illustrate our approach of incorporating fuzziness
into triggers, we use a motivating example of Fashion
Store Inventory, in which the store maintains information
such as product, price, item-code, quantity available, and
category. It keeps track of the transaction history after
each item is sold. Discount offer information,
yearly/monthly sales of each product and order placement
priority is also maintained. Purchase orders are placed for
the items which are popular and less in quantity. Items
which have high quantity left in the inventory can be
declared with a clearance discount or seasonal discount.
This is a typical database application that stores crisp
information in all the tables. In this paper, we present our
approach of specifying fuzzy triggers over crisp
underlying data.

An important concept in fuzzy theory is linguistic
variables, whose values are words rather than numbers.
The linguistic variable is represented by a quintuple that
characterizes the fuzzy number along with the linguistic
concepts interpreted in a particular context.

The quintuple is <v, T(v), X, g, m>, where v is name
of the linguistic variable, T(v) is a set of linguistic terms
applicable to variable v, X is a universal set of values, g is
grammar for generating the linguistic term, and m is the
semantic rule that assigns to each term. For example, for
a linguistic variable Quantity, the set of linguistic terms
could be T (Quantity) = {Very_Low, Low, Sufficient,
High, Very_High}. Among many other presentations,
trapezoidal distribution is chosen to use in this research.
For example, as shown in Figure 1, the linguistic term,
Low, for linguistic variable Quantity, is represented using
trapezoidal function as Low (8,10,16,18), where � = 8, �
= 10, � = 16, and � = 18.

To specify fuzzy triggers over crisp data in our
implementation, we create an additional table to store
information related to linguistic variables, without
altering any existing tables to avoid the effect on existing
applications. We also store �, �, �, and � values of each
trapezoidal distribution in this table. The table contains
the information about linguistic variable (e.g. Low), the
name of table (e.g. Item table) related to this linguistic
variable, the attribute name (e.g. Quantity) related to this
linguistic variable, as well as the values for �, �, �, and �.
The table serves as the metadata for fuzzy knowledge to
allow other architectural components to retrieve fuzzy
knowledge at run time.

Fulfillment threshold specifies the degree d ∈� [0, 1]
for the specification of a condition. For example, we can
specify a grade of 0.75 (the variable named as THOLD)
when we state a condition like “Quantity is Low”, as
shown in Figure 1, which eventually forms a range of
(9.5, 16.5). Using Low instead of the range of (9.5, 16.5)
to describe the Quantity is more near to nature languages
used by human beings.

Figure 1: Example to show trapezoidal function

4. LANGUAGE

This section describes the language and example of
FZ-Trigger. FZ-Triggers are defined as:

when E, if {C × Si × Sj}, then A

When event occurs, if the condition is true, then the
action is performed. In this definition, C is a set of fuzzy
conditions connected by AND and OR. Each condition in
C consists of two elements (v � g, d), where v is a
linguistic variable defined in the quintuple in Section 3.
� is a comparison operator which includes =, <, <=, >,
>=, !=. g is linguistic term where g ∈∈∈∈ T(v), T(v) is
defined in the quintuple in Section 3. d is fulfillment
threshold which applies to “v � g”, d ∈ [0, 1]. Si and Sj
are the current and previous database states, which are
referred as new and old in triggers.

368

The syntax of the proposed FZ-Trigger language is
shown in Figure 2. A trigger consists of three parts:
event, condition, and action. The event is the data
manipulation command, such as Insert. The condition part
of the trigger can be specified in two places (bold in
Figure 2): 1) In the “WHEN <condition>”, 2) In the “IF
<condition>” within a PL/SQL statement. Both crisp and
fuzzy expressions can be specified in these two places
(Crisp expressions are also allowed in FZ-trigger). The
action part of the trigger is specified in the PL/SQL
statement. In traditional crisp triggers, users can specify
an expression such as “new.Quantity = 8”. In FZ-Trigger,
users can alternatively specify a fuzzy expression such as
“new.Quantity = $Low” along with the specification of
fulfillment threshold such as “WITH THOLD = 0.8”. As
a result, users specify the semantic of “Quantity is high
with the degree of 0.8” using the fuzzy expression. We

use ‘$’ to identify fuzzy values, and ‘THOLD’ to indicate
a fulfillment threshold. ‘THOLD’ is optional and the
default value taken is 1 if nothing is specified. Multiple
fuzzy expressions can be connected by AND or OR.

An example of FZ-trigger is illustrated in Figure 3,
which is based on the motivating example. In this
example, we specify the fuzzy condition in the “IF”
statement within a PL/SQL block (in bold). The trigger
specifies the constraints that when the Quantity of an item
is Low with the fulfillment threshold of 0.8, and when the
Popularity is High with the degree of 0.7, we should
create a pending order if we have not already placed a
purchase order for this item. The trigger also updates the
Item table to maintain the consistency between Item table
and Transaction_History table.

Figure 2: Syntax of FZ-Trigger

CREATE OR REPLACE TRIGGER ON_SOLD_PENDING_ORDER
AFTER INSERT ON TRANSACTION_HISTORY
REFERENCING NEW AS NEW
FOR EACH ROW
DECLARE
 ItemObj Item%rowtype;
 Count1 Number;
BEGIN
 select * into ItemObj from Item I where I.Item_ID = :new.Item_ID;
 select count(*) into Count1 from Pending_Orders where Item_ID =
:new.Item_ID;
 IF(ItemObj.Quantity = $Low WITH THOLD = 0.8) AND
 (ItemObj.Popularity = $High WITH THOLD = 0.7) THEN
 if Count1 = 0 then
 insert into Pending_Orders values(:new.Item_ID, 21, 'High');
 end if;
 end if;
 update Item set Quantity = Quantity - :new.Quantity,
 Popularity = Popularity + :new.Quantity
 where Item_ID = :new.Item_ID;
END;
/

Figure 3: Example of FZ-Trigger

CREATE TRIGGER trigger name
(AFTER | BEFORE) triggering events ON table name
[FOR EACH ROW]
[WHEN [crispExpression] [[and|or] [fuzzyExpression [with THOLD =
TholdValue]]]*]
BEGIN
 PL/SQL Block
 [IF [crispExpression] [[and|or] [fuzzyExpression [with THOLD =
TholdValue]]]*]
 PL/SQL Block
END;
/

369

5. ARCHITECTURE AND SYSTEM
IMPLEMENTATION

The system architecture is shown in Figure 4. A FZ-
Trigger system has been implemented to allow users to
specify fuzzy triggers. The User Interface provides an
interface for users to enter a fuzzy trigger and view the
output. This interface passes the fuzzy trigger creation
request to the Coordinator. Then the Parser parses the
given fuzzy trigger, consults the metadata for fuzzy
knowledge, and then translates the fuzzy trigger into a
crisp trigger. The parser is implemented using JavaCC
[9]. Using JDBC (Java Database Connectivity), the newly
generated trigger is passed to the underlying database.
The result (e.g. the fuzzy trigger is successfully
generated) is passed to the Coordinator and then to the
users through the User Interface. For an existing DBMS,
the execution model of crisp triggers has already been
established. We utilize the existing DBMS environment
for the execution of the newly generated trigger at run
time.

User Interface

Coordinator

Fuzzy Trigger
Input

Calls Parser

Java Database
ConnectivityAccess

Database
Generated

Crisp Trigger

Crisp Database

Trigger Generated
Successfully

Fuzzy Trigger
Output

Parser
.jj file

Client/User

Crisp Database

Figure 4: Architecture of FZ-Trigger System

6. SUMMARY AND FUTURE DIRECTIONS

To support vague expressions over crisp data in

databases, we developed the FZ-Trigger language that
supports fuzziness in relational database triggers. Fuzzy
triggers can be applied in various real-world applications
to allow flexible expressions of business logic. This paper
describes the syntax and use of the language, the system
architecture, and the implementation details. One of our
future directions is to provide better interface to allow
users to express FZ-Trigger easily with minimum
requirements of syntax. Another direction is towards the
evaluation of the performance of the FZ-Trigger system.

REFERENCES

[1] N. W. Paton and O. Diaz, “Active database Systems,”
ACM Computing Surveys, 31,1, March, 1999, pp. 3-27.

[2] Oracle Database,
http://www.oracle.com/database/index.html.

[3] P. Gulutzan and T. Pelzer, “SQL-99 Complete
Really”, Miller Freeman Publishing, 1999.

[4] K. L. Joy, S. Dattatri, “Implementing a fuzzy
relational database using community defined membership
values,” Proceedings of 43rd ACM Southeast Conference,
Kennesaw, GA, March18-20, 2005.

[5] D. Li and D. Liu, “A Fuzzy Prolog Database System”,
Taunton, England: Research Studies Press, 1990.

[6] J. Galindo, J. Medina, O. Pons and J. Cubero, “A
Server to Fuzzy SQL Queries”, In "Flexible Query
Answering Systems", T. Andreasen, H. Christiansen and
H.L. Larsen (Eds.). Lecture Notes in Artificial
Intelligence (LNAI) 1495, Ed. Springer, 1998, pp. 164-
174.

[7] T. Bouaziz, J. Karvonen, A. Pesonen, and A. Wolski,
“Design and Implementation of TEMPO Fuzzy Triggers,”
Proceedings of Eighth International Conference on
Database and Expert Systems Applications, Toulouse,
France, September, 1997, pp.91-100.

 [8] A. Wolski, T. Bouaziz, "Fuzzy Triggers:
Incorporating Imprecise Reasoning into Active
Databases," ICDE, 14th International Conference on
Data Engineering, 1998, p. 108.

[9] Introduction to JavaCC,
www.engr.mun.ca/~theo/JavaCC-Tutorial/javacc-
tutorial.pdf.

370

A Comparative Study on Data Representation to
Categorize Text Documents

D.A. MEEDENIYA 1, A.S.PERERA2

1Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa, Sri Lanka,
1dulani1@yahoo.com

2Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa, Sri Lanka,
2shehan@cse.mrt.ac.lk

Abstract - In the modern world text documents play an important
role in most of the organizations. Their constant growth widens
the scope of document storage. As a result, there is a potential
need for effective text retrieval and search capabilities. This
paper suggests two document preprocessing methods. The
objective of this study is to find an appropriate data
representation for text categorization by comparing two data
representation approaches. The first approach groups the
documents based on their title and the second approach considers
the document body to group documents. Both methods apply the
same clustering and classification techniques on the test data sets.
It applies clustering to divide the documents into categories and
uses classification techniques to validate the clustering results.
This study shows that the text documents grouping based on
document titles has high performances than the other approach.

Keywords — Title data representation, Document body data
representation, K-mean clustering, Naïve Bayes classification,
WEKA data mining tool.

I. INTRODUCTION

Information has a strategic importance for most of the
organizations as well as for every citizen. The constant growth
of text documents widen the document storage scope and make
it difficult to retrieve information. The growing importance of
electronic media for storing and exchanging text documents has
led to an increasing interest in tools and approaches for dealing
with information included in the text documents. Therefore
there is a requirement for advance analysis of those documents
to group them according to the content as well as semantic
search and document comparisons.
Text categorization is the process of grouping documents into
classes based on their content. It assigns unseen documents
into categories and handles the exponential growth in
available text documents [1]. Text mining extracts high
quality information from text documents by considering the
patterns in the data set. Patterns are found when there are
relationships among data sets. A careful study of the business
case and the correlation of the data sets have to be considered
to discover a pattern.
When text clustering is carried out manually, the analysts need
a special knowledge in vocabulary and knowledge processing.

In the categorizing process the analysts have to read the full
text document, memorize all class definitions and also it
consumes more time. Today most of the applications such as
news dispatching and e-mail filtering deal with a large
collection of documents and it is difficult to cluster them
manually based on their content. By using an automatic text
categorizing system it is possible to cluster documents more
accurately within a short period of time.
Data sets are rich with hidden information that can be used for
making intelligent decisions. Most of the text mining and
information retrieval techniques rely on word matching.
Clustering can be used as an alternative technique for
information retrieval. Clustering is the process of partitioning
of the data sets into subsets, so that the data in each cluster
share common characteristics. Clustering gives an overview of
a document collection, manages a large number of text
documents and provides efficient information retrieval [1].
Classification and prediction can be used to extract models
describing important data classes or predict future data trends,
where as visualization has the ability to describe the structure
of a classifier in an understandable way by converting the data
into usable knowledge [2].
Most of the full text documents are rather long and potentially
with a loose structure. Previous studies show that word
clusters can reduce the feature space dimensionality, with only
a slight change in classification precision [3]. Most common
approaches start by evaluating the co-occurrence of words
versus documents [1]. However the count matrices tend to be
sparse and noisy when the data set is relatively small.
Although the documents are represented in a high dimensional
sparse feature space, it is not optimal for classification
algorithms [4]. Considering all practical settings it is difficult
to apply clustering in a high dimensional space. Furthermore it
is hard to explain well, why the text clusters have been
constructed the way they are [5]. It is difficult to obtain a
categorization that is both meaningful and complete [5].
This paper considers the problem of categorizing abstracts,
which describes the NSF (National Science Foundation)
awards for basic research. This study is based on the
comparison of two document categorization approaches. One

371

approach categorizes documents based on the title of the
article, where as the other is based on the article body. These
approaches use both clustering and classification techniques to
extract knowledge, based on the content of the documents.
The objective is to show that the approach based on article
titles, gives better performance than the approach based on
article body. The study finds an acceptable data preprocessing
method which can be used to categorize similar documents
into one category.
This paper, describes the data set, tools and techniques used in
this study. Next it explains the methodology and finally it
includes the results obtained and concludes the results.

II. DATA SETS

Data sets are rich with hidden information that can be used for
making intelligent decision. The selected data set for this study
is publicly available at UCI Knowledge Discovery in Databases
archive. The ‘nsfabs’, (NSF abstracts), data set consists of
129,000 abstracts, one per file. It describes the NSF awards for
basic research during the period 1990-2003 [6]. For simplicity
we used only 500 abstracts for testing.

III. RESEARCH METHODOLOGY

A. Outline
This approach used word frequency counts to determine the
significant words in each document. Every word is
represented only once in the text representation.
Data consists of textual data with noise; hence some attributes
may be irrelevant to the clustering and classification tasks.
Since the data is extracted from raw data files, relevance
analysis on data was performed to remove redundant attributes
from learning process. A data cleaning and preprocessing
algorithm was used to avoid the interference of irrelevant
words during the clustering by extracting, removing noise and
cleaning the textual data. After applying cleaning on the
original data set, it is easy to extract words with a high
occurrence, which leads to the main idea represented in the
document. We have recognized and classified significant
vocabulary items from the text.

B. K-Means clustering algorithm
The K-means algorithm is simple to use and can run on large
data sets. It is a widely used central clustering technique that
minimizes the average distance between an observation and its
cluster center. The algorithm first selects the number of
clusters and determines the cluster centers. It assigns each
collection of words to the nearest cluster center by minimizing
the average squared Euclidean distance between the words
and its cluster center and re-computes the new cluster centers.
This procedure is repeated until some convergence criterion is
met [2], [1].

C. Waikato Environment for Knowledge Analysis (WEKA)
data mining tool

This is an easy to use, extensible package which contains a
collection of machine learning algorithms for solving real
world data mining problems. It is written in JAVA and runs
on most platforms. Implemented schemes for classification,
numeric prediction and meta-schemes are three main schemes
in WEKA [9].

D. Classifiers
Naïve Bayes is a simple, popular text classification algorithm
which classifies using estimator classes. This allows for a
detailed analysis of the effects of using word clusters instead
of words as features [4]. It uses joint probabilities of words
and categories to estimate the probabilities of categories in a
given document [10].
J48 classification algorithm generates a C4.5 decision tree. A
decision tree builds classification models to predict classes for
unseen entities. It is a simple structure where non-terminal
nodes represent tests on one or more attributes and terminal
nodes reflect decision outcomes [9].

E. Test Options
Following test modes have applied with classifiers.
i. Use training set: evaluates on how well it predicts the class of
the instances it was trained on.
ii. Cross-validation. The classifier is evaluated by cross-
validation, using the number of folds that are entered in the
Folds text field.
iii. Percentage split: evaluates on how well it predicts a certain
percentage of the data which is held out for testing [9].
F. Methodology:
i. Acquire text documents: Gathered text document in a
common format and name the text files in a standard format in
a suitable way which can be used for the data preprocessing
task.
ii. Data cleaning: Applied a data cleaning and noise removal
algorithm which extracts only the necessary words from each
text file. The algorithm eliminates prepositions, symbols;
numeric form of numbers, proper names, punctuation marks,
commonly used words, abbreviations and other non-alphabet
characters.
iii. Data pre-processing: This study experimented with two
approaches. The first approach extracts the first five words
from the title without considering any other content in the
document. The extracted words are stored in one file, so that
each row represents the keywords relevant to one document
title. The second approach counts the number of occurrences
of each word in the document body and extracts five words
with the highest frequency, from each document. All extracted
words were stored in a matrix, so that each row represents the
words with the highest frequency for a given document.
iv. Document categorization: Applied K-means clustering
algorithm on the pre-processed data and identified different
clusters, which each document belongs to. The experiment

372

was done with both 35 and 50 clusters. The number of clusters
is decided based on the number of available documents.
v. Document classification: Applied three classifiers Naïve
Bayes and J48 on the categorized data to verify the precision
of the categorization in order to compare the two data
representations suggested in this work.
vi. Analyze results: Computed the mean, median, maximum,
minimum, and standard deviation of the obtained results to
analyze clustering process. Next we compared the cluster
distribution and the accuracy of the two approaches and
identified the better approach.

IV. EXPERIMENTAL RESULTS

This study considered several criteria to evaluate the quality of
clustering. The results obtained using WEKA tool, after
classification according to the number of clusters in both data
representations are shown in the Table 1 and Table 2.
According to the results it is not necessary to increase the
number of clusters to improve the accuracy, because in some
cases the accuracy with 35 clusters is better than the accuracy
with 50 clusters.

A. Test 1: Data representation using document titles
TABLE 1

 Results obtained by applying classifiers on the data set which is clustered using K-means technique.

B. Test 2 : Data representation using document body
TABLE 2

Results obtained by applying classifiers on the data set which is clustered using K-means technique

According to the results Naïve Bayes classifier gives high
accuracy with the ‘Training set data’ option compared to other
tests. Moreover, the ‘Title’ data representation gives better
quality, more than 58%, in almost all the cases when
compared to the data representation based on the ‘Document
body’.

C. Analysis of cluster Performance
Considering all the 12 accuracy results for each representation
separately, Table 3 depicts the analysis results for the
classification process.

TABLE 3
 Analysis of Results

Technique Option With 35 clusters With 50 clusters
 Accuracy Mean absolute error Accuracy Mean absolute error
Naïve Bayes Using training set 92.4% 0.0109 91.2% 0.0086
 Cross validation (with 10

folds)
60% 0.0299 63.4% 0.0223

 Percentage Split 66% 62.3% 0.0319 58.2% 0.0237

J48 Using training set 87.6% 0.0105 85.2% 0.0087
 Cross validation (with 10

folds)
71.2% 0.0274 66.4% 0.0213

 Percentage Split 66% 67% 0.0285 59.4% 0.0224

Technique option With 35 clusters With 50 clusters
 Accuracy Mean absolute error Accuracy Mean absolute error
Naïve Bayes Using training set 99.6% 0.0016 99.8% 0.001
 Cross validation (with 10

folds)
43.4% 0.0438 43.2% 0.032

 Percentage Split 66% 40.5% 0.0458 32.3% 0.0341

J48 Using training set 43.6% 0.0454 34.4% 0.0347
 Cross validation (with 10

folds)
43.6% 0.0454 35.2% 0.0342

 Percentage Split 66% 40% 0.0459 32.3% 0.0349

Statistics on
Accuracy

Title Data
Representation

Document body
Representation

Max 92.40% 99.80%
Min 58.20% 32.30%

Mean 72.03% 48.99%
Median 66.70% 41.85%
Standard
Deviation

13.214 24.081

373

As the results depict, ‘Title’ data representation has a higher
value for the mean, and a lower value for the standard
deviation than the ‘Abstract’ data representation. It can be
seen that the ‘Title’ data representation leads to cluster the
data better than the ‘abstract content’ representation.

V. DISCUSSION

We compared two data representation approaches that can be
used to divide text documents into groups. By extracting
words that maximize the information about the documents, we
could obtain low dimensional representation of the
documents. On the basis of the experimental results it can be
seen that the K-Means clustering algorithm and Naïve Bayes
classification algorithm can be used to group the text
documents with significant accuracy. Moreover the data
representation plays an important role in the clustering.
According to the results ‘Title’ data representation is
important because it captures the main idea of the document.
The document body may not include words with high
frequency, which give the main idea of the text. We
considered proper names, multiword terms, abbreviations, and
other useful things such as numerical forms of numbers,
percentages and money. Moreover the document body can
contain synonyms, phonemes and words with different tenses
which may not account for the word frequency in this study.
This can be enhanced by defining some test cases manually
and by training the data set based on the test cases.

VI. CONCLUSION

Large collection of documents may afford a lot of useful
information to people. However, it is a challenge to find out the
useful information from a large collection of documents.
Successfully implemented text mining techniques help to
identify the category of a text document, which it belongs to.
The results of this study are generally applicable to any domain
with textual data and helps when dealing with large amount of
data. It verifies the clustering results by applying classification
on clustered data. Moreover it is not necessary to increase the
number of clusters to gain better results. The data representation
in this study enables to improve the clustering quality. However
the clustering approaches which are based on frequency of
terms may not exhibit significant structural information as their
data points are not similar to each other. The data preprocessing
step guarantees completeness by solving this problem.
This approach can be practically applied to group news articles
according to their subject and for other applications such as
analyzing insurance claims, fax processing, e-mail filtering.

ACKNOWLEDGEMENTS

This research was carried out as a partial requirement for the
M.Sc. in computer science, University of Moratuwa.

REFERENCES

[1] Sameh H. Ghwanmeh, “Applying Clustering of Hierarchical K-means-
like Algorithm on Arabic Language”, International Journal Of
Information Technology, Volume 3 Number 1 2006 Isbn 1305-2403.

[2] Jiawei Han and Micheline Kamber, Data Mining: Concepts and
Techniques, Second Edition, Morgan Kaufmann publications, United
States of America, 2006.

[3] L. Douglas Baker, Andrew Kachites McCallum, “Distributional
Clustering of Words for Text Classification”, ACM SIGIR 98, 1998.

[4] Noam Slonim, Naftali Tishby, “The Power of Word Clusters for Text
Classification”, 23rd European Colloquium on Information Retrieval
Research, 2001.

[5] Andreas Hotho, Alexander Maedche, teffen Staab, “Ontology-based Text
Document Clustering”, Text Learning: Beyond Supervision Workshop,
CAI 2001.

[6] The UCI KDD Archive, Available at
http://kdd.ics.uci.edu/databases/nsfabs/nsfabs.html .

[7] Bei Yu, John Unsworth , “An Evaluation of Text Classification Methods
for Literary Study”.

[8] Hannes Wettig, Jussi Lahtinen, Tuomas Lepola, Petri Myllym¨aki and
Henry Tirri, “Bayesian Analysis of Online Newspaper Log Data”,
Proceedings of the 2003 Symposium on Applications and the Internet
Workshops, California, 2003, Pp. 282–287.

[9] Waikato Environment for Knowledge Analysis (WEKA), version 3.4.11,
University of Waikato, New Zealand.

[10] Y.C. Fang, S. Parthasarathy, F. Schwartz, “Using Clustering to Boost
Text Classification“, Ohio State University.

[11] M. Bernotas, Kazys karklius, remigijus laurutis, asta slotkien� , “The
Peculiarities of The Text Document Representation, Using Ontology And
Tagging-Based Clustering Technique ”, Information Technology And
Control, 2007, Vol.36, No.2 .

[12] David Kirk Evans Judith L. Klavans, Kathleen R. McKeown, “Columbia
Newsblaster: Multilingual News Summarization on the Web”,
Department of Computer Science, Columbia University, NY.

374

An Example on Economics-Driven Software Mining

Rami Bahsoon
School of Computer Science,

 The University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK

r.bahsoon@cs.bham.ac.uk

Wolfgang Emmerich
London Software Systems, Dept. of Computer Science,

University College London, Gower Street, WC1E 6BT, UK
w.emmerich @cs.ucl.ac.uk

Abstract
Economics-driven software mining (EDSM) sifts through the re-
pository data to extract information that could be useful for rea-
soning about not only the technical aspects but also the econom-
ics properties related to the development and/or evolution of
software systems, and in relation to the environments in which
they are procured, developed, evolved and used. The objective is
to provide the analyst with insights into investment decisions re-
lated to the development, maintenance, and evolution of software
systems. We describe a scenario for realizing EDSM through an
example. The example represents a small-size component-based
distributed architecture, where we mined existing performance
repositories to value the ranges in which a given software archi-
tecture can scale to support likely changes in load. The mining is
based on a financial analogy. The mining step is then comple-
mented with real options analysis to predict the values resulted
from the ranges in which an architecture can scale under uncer-
tainty, where uncertainty is attributed to the unpredicted change
in load. The example shows the usefulness of EDSM in informing
tradeoffs analysis in software design decision making.

1. Introduction
Effort on Mining Software Repositories (MSR) [MSR 1-4] has
revolved around approaches which analyze the data stored in
software repositories to assist in program understanding and
visualization; predict and gauge the reliability and quality of
software systems; study the evolution of software systems
through discovering patterns of change and refactorings; mod-
eling defects and their repair; and understand the origins of
code cloning and design changes. Contributions have also in-
cluded case studies showing how data can be extracted from
software repositories to improve software design and reuse.
The overall goal is utilize the mined data for predicting and
planning various aspects of software projects. Meanwhile,
software engineers are faced with general lack of adequate
models and methods, which connect technical engineering
concepts to economics and value creation under given circum-
stances [EDSR 1-8]. Reflecting on the Software Engineering
discipline, [Sul99] note that the problem in the field is that “no
serious attempt is made to characterize the link between struc-
tural decisions and value added”. That is, the traditional focus
of software engineering is more on structural and technical
perfection than on value added [EDSR 1-8; Boe00; Erd00].
This argument is applicable to the emerging MSR discipline,
where the current focus appears to be purely a technical en-
deavor with little attention paid to economics context. For
example, software repositories are often mined and analyzed
ignoring the link between technical properties, economics, and

value creation under a given circumstances. Such a link may
provide the software analyst with a powerful tool for predict-
ing cost/value information for developing and evolving de-
pendable software; understanding the economics of refactoring
and reengineering; assisting in resource planning and utiliza-
tion; and understanding the economics ramification of the
change; defects and their repair; on the system and its design
artifacts (e.g., architectures); and informing design trade-offs.
The objective is to utilize data buried in software repositories
to provide insights into investment decisions related to the
development and evolution of software systems to assist in
resource planning and utilization. Conversely, mining software
repositories could be seen as an effort for empirically develop-
ing economics-driven software engineering models and meth-
ods, which could have the promise in addressing the need indi-
cated by [Sul99; Boe00; EDSR 1-8].

In this paper, we describe a scenario for realizing EDSM.
Drawing on a case study that adequately represents a medium-
size component-based distributed architecture, we mined ex-
isting performance repositories to value the ranges in which a
given software architecture can scale to support likely changes
in load. The mining is based on a financial analogy, where we
utilize the concept of twin asset in financial engineering to
justify mining relevant repositories. The mining process in
then complemented with real options analysis for predicting
the values resulted from the ranges in which an architecture
can scale under uncertainty, where uncertainty is attributed to
the unpredicted change in load. As the exact method for ana-
lyzing scalability is subject to debate, we focus the analysis on
throughput as a way for measuring scalability. The provided
pointers describe how EDSM can inform tradeoffs in software
design decision making.

The paper is further structured as follows. Section 2 de-
fines EDSM. Section 3 presents an example on realizing
EDSM. Section 4 briefly outlines related work. Section 5 con-
cludes.

2. Economics-Driven Software Mining
Economics-driven software mining (EDSM) is based on the
premise that non-trivial, unknown, and valuable information
lies in an existing data repository, where the goal of the mining
is to sift through the repository data to extract information that
could be useful for reasoning about not only the technical as-
pects but also the economics properties of the development
and/or evolution of software systems, with the environments in
which they are procured, developed, evolved and used
[Bah07].

According to [Min99], the process of mining software re-
positories encompasses: (i) Data extraction from repositories;

375

(ii) preprocessing the data for analysis, where the extracted
data has to be formatted (e.g., treating noisy or missing data),
sampled, and often need to be adapted to the mining algo-
rithm(s). The data is then ready to be mined by a data mining
algorithm(s); (iii) data mining which aims at extracting pat-
terns of interesting and potentially useful, unknown, non-
trivial information from the data; and (iv) data interpretation
where the patterns identified are interpreted into knowledge,
which can then be used to support decision-making. Different
mining techniques may be used to achieve this step. EDSM
poses several challenges. For example, how can we decide on
which data to be extracted and be mined? Which of the mined
data could be revealing to both the technical and economical
properties of a software system and relative to the mining ob-
jectives? What are the mining tools that could be used for ex-
tracting meaningful inputs for the economics-driven software
engineering analysis? How can we ensure that the mining ob-
jectives have been satisfied and the obtained knowledge is
meaningful inputs to the economics-driven software engineer-
ing analysis? What are the appropriate analyses tools that
could be used for supporting EDSM? The challenge, therefore,
is to realize EDSM in light of these questions.

The process of mining software repositories includes (i)
setting a goal for the analysis (i.e. the mining objective); (ii)
selecting the economics models which can perform the analy-
sis; (iii) developing the mining tools for extracting and mining
information, which could serve as inputs for the models in (ii);
(iv) capturing and interpreting the derived patterns; (v) model-
ing and computation; and (vi) result interpretations, analysis
and reflection, where the mining step can be complemented by
economics analysis to provide an answer for queries related to
the economics of software artifacts, project utilization, and
management. The queries could range from simple to com-
pound ones. For example, let us assume that the query is to
understand the evolution pattern of component X in a given
architecture and the cost trends of evolving X over a time pe-
riod. The change history of X could be mined using existing
approaches and can be then complemented by cost estimation
to cast effort of evolving X over a given period to cost (in £).
Note, these models could be adapted from finance, economics,
etc. on condition that the model assumptions are plausible or
simplified to serve the software engineering mining objectives.
The drawn analogy, the model inputs, and the made assump-
tions can then justify mining relevant repositories. In some
cases, the analysis tool tends to shape the mining tool. An ex-
ample is provided in Section 3, where adopting options analy-
sis from financial engineering has constrained the way we
extract and mined data.

3. An Example
We provide an example on realizing EDSM from our applica-
tion of real options theory in software engineering [Bah08].

Setting. Let us consider a three-tier architecture of an
online banking system application, referred to as Duke’s. This
architecture will be built on middleware, such as Java 2 Enter-
prise Edition (J2EE) and the Common Object Request Broker
Architecture (CORBA). Depending on which middleware is
chosen, different architectures may be induced [DiN99]. Given
the choice of either CORBA or J2EE to induce an architecture,

let us assume that the Duke’s Bank system needs to scale to
accommodate the growing number of clients in one-year time.
An architecture which can scale to address such changes in
load with limited resources and shorter time-to-market is a
significant asset for surviving the business, cutting down main-
tenance costs, utilizing resources, and creating value. In par-
ticular, the cost and value derived from the flexibility in scaling
up due to inducing the architecture with either CORBA or
J2EE can inform the decision tradeoffs in considering either.
Hence, the value added can inform the selection of application
server products to induce Duke’s. We show how existing per-
formance benchmark repositories are utilized and mined to
predict the values in which Duke’s architecture, when induced
by each middleware, can scale to support changes in load. We
mined relevant performance benchmarks to understand how
the architecture of the system may behave once induced with
either and with respect to throughput, which is a scalability
and load measure. The mining is based on a financial analogy,
where we “mimic” the concept of twin asset in financial engi-
neering to justify mining relevant repositories and for valuing
throughput using historical data. The approach utilizes online
data and benchmarks, submitted from different practitioners
and vendors. The mining process is then complemented with
real options analysis for predicting the values resulted from the
ranges in which an architecture can scale under uncertainty,
where uncertainty is attributed to the unpredicted change in
load. The rationale is that the combination could provide the
architect/analyst with a useful tool for understanding the extent
to which the software system is can accommodate the change
in load and starting from early stages of the software lifecycle,
where the system need not be implemented.

Setting the mining objectives. Let us assume that we are
given the choice of two middleware M0 and M1 to induce the
architecture of a particular system as it is the case of Duke’s.
Let us assume that S0, S1 are the architectures obtained from
inducing M0 and M1 respectively. Say, M1 is an economical
choice, if it adds value to S1 relative to S0. We attribute the
added value to the enhanced flexibility of S1 over S0 in scaling
up the architecture. But the added value is uncertain, as the
demand and the nature of the future change and load are uncer-
tain. We set some queries: (i) How valuable is the flexibility of
either alternative, relative to likely change in scalability, will
be in the long-run? (ii) Which solution is more valuable under
uncertainty, where uncertainty is attributed to the unantici-
pated changes in load? (iii) What is the impact of volatility on
value creation under given consideration? (iv) What is the
impact of uncertainty on our choice? (v) Can high uncertainty,
due to the likely future load, make the less favorable technol-
ogy more appealing for the decision maker (and vice versa)?
The challenge now is to select the economics model(s), which
could be suited for addressing the said objectives. The value of
flexibility under uncertainty is critical to choice of the eco-
nomics models.

Selecting economics models, which can serve the analy-
sis of the said objective(s). We argued that options theory is
well suited to address the above mining objectives. Real op-
tions analysis recognizes that the value of the capital invest-
ment lies not only in the amount of direct revenues that the
investment is expected to generate, but also in the future op-

376

portunities that flexibility creates. An option is an asset that
provides its owner the right without a symmetric obligation to
make an investment decision under given terms for a period of
time into the future ending with an expiration date [Tri95]. If
conditions favorable to investing arise, the owner can exercise
the option by investing the exercise price defined by the op-
tion. A call option gives the right to acquire an asset of uncer-
tain future value for the strike price [Tri95].

ArchOptions[Bah05; Bah04], a real options based model
which values the growth options of an architecture relative to
some future changes, as a way for understanding the architec-
tural flexibility with respect to changes in requirements. A
growth option is a real option to expand with strategic impor-
tance [Tri95] and is common in infrastructure-based invest-
ments, as it is the case with software architectures. Since the
future changes are generally unanticipated, the value of the
growth options lies in the enhanced flexibility of the architec-
ture to cope with uncertainty. ArchOptions builds on a simple
and intuitive analogy with Black and Scholes [1973]. In Ar-
chOptions, the flexibility of the middleware induced-
architecture in coping with changes in load has a value in the
form of growth options. This value is strategic in essence, un-
certain as the demand on the future changes are uncertain, and
may not be immediate. The added value may take the form of
(i) accumulated savings through coping with the change with-
out “breaking” the architecture, mostly these are changes in
non-functional requirements; (ii) extending the range of ser-
vices while leaving the architecture intact; and (iii) the ability
to respond to competitive forces and changing market condi-
tions that may pose higher Quality of Service (QoS) require-
ments, such as the demands for higher availability, scalability,
etc.

Choosing a particular middleware to induce the architec-
ture of the software system can be seen as an investment to
purchase flexibility in the induced software architecture. The
ranges, in which the load changes, influence the choice. A
“wise” selection is seen as an investment to buy flexibility,
which could be valued as future growth options [Tri96] on the
architecture of the software system. These options enhance the
upside potentials of the structure when the load change; they
differ from one middleware to another. That is, S1 is said to be
more accommodating to the change than S0 when S1 holds
more growth options than S0. For a valuation point of view p,
we focus the analysis on the calls of the ArchOptions model
for valuing the growth options, as given in (1) accounting for
both the expected value and exercise cost to accommodate
future requirements ii, for i . n. Valuing the expectation E of
expression (1) uses the assumptions of Black and Scho-
les[Bla73] and detailed in previous work[Bah05; Bah04].

 � i=1…n E [max (xiVp - Ceip, 0)] (1)

The payoff of the constructed call option gives an indica-
tion of how valuable the flexibility of an architecture is, when
enduring some likely changes in requirements. The selection
has to be guided by the expected payoff in (� i=1…n E [max
(xiVp - Ceip, 0])S1 relative to that of (� i=1…n E [max (xiVp - Ceip,
0])S0. That is, if (- Ie + � i=1…n E [max (xiVp - Ceip, 0)] S1 > �

i=1…n E [max (xiVp - Ceip, 0)] S0) for some likely changes, then it
is worth investing in M1, as the investment in M1 is likely to
generate more growth options for S1 than for S0 and relative to
the p valuation point of view. If (E [max (xkVp - Cepk,
0)])S1=0), then M1 is not likely to payoff, relative to M0, as the
flexibility of the architecture to the change is not likely to add
a value for S1 on p, if the change need to be exercised. Two
interpretations might be possible: (i) the architecture is overly
flexible in the sense that its response to the change(s) has not
“pulled” the options relative to p. This implies that the embed-
ded flexibility (or the resources invested in implementing
flexibility- if any) are wasted and unutilized to reveal the op-
tions relative to the changes and relative to p (ii) the other case
is when the architecture is inflexible relative to the change.
This is when the cost of accommodating the change on S1 is
much more than the cumulative expected value of the architec-
ture responsiveness to the change.

Developing the mining tools for extracting patterns
serving the chosen economics model(s). Options valuation
using Black and Scholes[1973] techniques determine the value
of an asset in question in span of the market value using a cor-
related twin asset [Tri95]. The twin asset is an asset that has
the same risks as the asset in question will have when the in-
vestment has been completed [Sch00]. To understand the be-
havior of the asset in question, we can use a twin asset, also
referred to as a replicated portfolio. The assumption is that
under similar conditions the twin asset and the asset in ques-
tion are interchangeable for all practical purposes and should
be worth the same.

Throughput, a scalability measure, expresses the amount of
work performed by the system under test during a unit of time.
This criterion is based on the observation that for a fixed sys-
tem with a given throughput (e.g., a single host), there is an
inverse relationship between the response time and the number
of clients. In other words, the more clients submitting requests,
the longer are the delays. A well-known throughput metric is
the Total Operations Per Second (TOPS) completed during the
measurement interval, referred to as TOPS
[http://www.spec.org/]. TOPS is composed of the total number
of business transactions completed in the customer domain,
added to the total number of work orders completed in the
manufacturing domain, normalized per second.

We have mined relevant performance benchmarks, pub-
lished in (http://www.spec.org/) to understand how the archi-
tecture of the system may behave once induced with either
J2EE or CORBA with respect to throughput. We appealed to
the use of published benchmarks, for the following reasons:
First, the system of the given architecture need not be imple-
mented during the evaluation. Thus, performance measures
may not be available. Second, we argue that using published
benchmarks mimics the concept of the twin asset for we are
relying on historical information (though not traded in span of
the market, but still hold market information) which shows
possible variations in performance in connection to change in
load and relative to the candidate implementations. Third,
these benchmarks often hint that the throughput is dependent
on and can be estimated from the middle-tier “processing
power” of the architecture. The advantage of this approach is
that the published benchmarks could reveal risks of the operat-
ing environment on the choice. Benchmarks are revealing on

377

the performance dimension because, for example, if multiple
benchmarks are conducted with a suitable mix of relevant fac-
tors, it may be possible to obtain a set of basic scalability re-
sults that can be used for estimating the throughput of possible
configurations of the architecture. Depending on the bench-
marking algorithm, the relevant scalability factors can be, for
example, the number of objects, the number of clients, or the
number of nodes in the system etc. supported in response to
growing load. A major problem in comparing benchmark re-
sults, however, is that different hardware platforms and con-
figurations (e.g., memory, disk drives etc) often produce dif-
ferent results making the comparisons difficult. Fourth, ven-
dors often try many different ways to optimize performance,
including adding cache memory and putting cache buffers on
disk arrays. This can give a spectrum of worst and best scenar-
ios that could mimics fluctuation, which is a volatility meas-
ure, of the option approach.

Analyzing and interpreting the derived patterns. Figure
1 shows the likely throughput trend that the J2EE-induced
architecture may exhibit relative to the CORBA-induced one,
upon varying the TOPS and the number of hosts. For the
J2EE-induced architecture, we provide throughput estimations
for two possible implementations: one with JBoss and the
other with WLS. For the CORBA-induced architecture, we
provide estimates upon the use of JacORB to induce the archi-
tecture. Table 1 depicts the upper limit of TOPS supported per
host for each of WLS, JBOSS, JacORB induced architectures
for 1 to 4 hosts. Figure 2 shows the likely cost-trend upon
inducing the Duke’s bank architecture with J2EE (using either
WLS or JBOSS) and with CORBA (using JacORB). The
likely cost is plotted against the number of hosts (1 to 4). The
cost refers to the lifecycle cost of the System Under Test
(SUT). The cost includes Application Servers/Containers, Da-
tabase Servers, network connections, etc. Assuming, for ex-
ample, a five-year lifecycle, cost would include all hardware
(purchase price), software including license charges, and
hardware maintenance. For the CORBA version, it assumed
that the investment incurs an upfront cost to the development
of the replication mechanism to support fault-tolerance and
load-balancing services for high load scenarios [Bah05]. For
the J2EE version of WLS, a license cost is incurred per host.

Throughput of WLS, JBOSS, and JacORB upon
varying the load and hosts

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4

No of hosts

TO
PS

WLS
JBOSS
JacORB

Figure 1. TOPS/host for each of WLS, JBOSS, JacORB (1- 4
hosts)

In [bah05], we have seen that the structural analysis is in
favor of the J2EE-induced architecture, the throughput analy-
sis may reveal a different trend upon scaling up each version.
From the throughput valuation point of view, Figure 2 shows
that when the Duke’s architecture will be induced with

JBOSS, a J2EE implementation, the system is likely to be
slower than that of the JacORB one. This is because JBOSS
uses reflection [http://www.jboss.org]. This also implies that
there are some chances for the JBOSS-induced architecture to
require more hardware for addressing this deficiency. When
inducing the Duke’s architecture with WLS, another J2EE
implementation, the system is very likely to be faster than that
of the JacORB implementation. WLS, however, comes with
significant licenses costs; this cost grows with the number of
hosts, as the load increases. Coining the TOPS with their asso-
ciated costs, Figure 1, Figure 2 and Table 1, hint that there
might be a case for JacORB in certain throughput range.
Moreover, once the services for realizing scalability (e.g., the
fault-tolerance and load balancing service) are implemented,
the cost is incurred once and amortized across the hosts.

Table 1. Upper limit of TOPS/host for WLS, JBOSS, JacORB
 Hosts WLS JBOSS JacORB

1 732.00 400.26 546.80

2 918.36 502.16 686.01

3 1395.44 763.03 1042.39

4 2640.96 1444.08 1972.79

WLS, JBOSS, and JacORB Costs for 1-4 hosts

0.00
50000.00

100000.00
150000.00

200000.00
250000.00
300000.00
350000.00

1 2 3 4

No of hosts

$

WLS

JBOSS

JacORB

Figure 2. Likely cost-trend upon inducing the Duke’s bank architec-
ture with J2EE-(WLS/JBOSS) and with CORBA (JacORB)

Modeling and computation. The case of valuing through-
put is appealing to ArchOptions for the following major rea-
sons: First, there is cone of uncertainty associated with the
growing load and consequently in the value added as result of
our choice. Moreover, the TOPS are of straightforward contri-
bution to value. That is, the more operations are completed per
second, the more value is added to the enterprise. However,
TOPS incur a price upon executing the operations. The price
again is dependent on several factors such as the number of
hosts, the hardware, the license cost, and any additional costs
that are necessary for making the middleware adaptable to the
growing load. In the context of the Duke’s Bank, the TOPS
range is often uncertain as it is dependent on the customers’
behavior at a time. The uncertainty in the likely range (i.e.,
TOPS), the associated costs for executing the TOPS, and the
“fluctuation” in the value added as a result make the case very
appealing to the use of ArchOptions. Below, we estimate the
parameters for computing throughput, Pthro using ArchOp-
tions to address the set mining objectives.

Estimating (CeiPthro). TOPS denotes the Total Operations
completed per Second. For simplicity of explanation, let us
assume that the system of the induced architecture needs to

378

scale up to support an additional operation per unit-time. An
additional operation buys an architectural potential paying an
exercise price. In terms of throughput, architectural potential is
a performance measure. Hence, what an extra operation pays,
if materializes, is a bandwidth for performing that operation.
Inducing the Duke’s bank with either J2EE or CORBA pro-
vide different bandwidth capabilities for performing the opera-
tion at different prices. If the implementation of either happens
to hold embedded growth options in supporting the extra op-
eration, then the operation is said to pay an exercise price to
buy options on the architecture. For the exercise price, we use
a well-known normalization factor, which is the
price/performance [http://www.spec.org/jAppServer2005/]
(i.e., the lifecycle cost of the System Under Test (SUT) as
configured for the benchmark divided by the throughput). This
is provided in the data mined. As an example, assuming five-
year lifecycle, the cost would include all hardware (purchase
price), software including license charges, and hard-
ware/software maintenance. If the total price is $5,734,417 and
the reported throughput is 105.12 TOPS, then the
price/performance is $54,551.16/TOPS.

Estimating volatility (/Pthro). Volatility represents uncer-
tainty attributed to the likely growing of load. For some com-
putation, we abide to the real options principles in computing
volatility: we use the standard deviation of xiVPthros due sup-
porting extra operations for a range of load at a host (as the
range is said to be revealing to the fluctuation in the value).
For other computations, we use modeling estimates for volatil-
ity, representing uncertainty to demonstrate how volatility
influences the choice and as a way to answer the mining objec-
tives.

Estimating (xiVPthro). For simplicity, we estimate xiVPthro
relevant to the business domain. For every completed on-
line operation, Duke’s would not have to serve a customer in
person at a branch; the Duke’s savings are in the manual-effort
for not serving clients at a branch.

Exercise time (t Pthro) and free risk interest rate(r Pthro). As
a simulation assumption, we set the exercise time to one year,
assuming that the Duke’s Bank needs to accommodate the
change in one-year time. We set the free risk interest rate to
zero (i.e., assuming that the value of money today is the same
as that in one year’s time).

Results interpretations and analysis. Now, we answer
and reflect on the mining objectives to demonstrate usefulness
of EDSM. We complement the observed patterns with options
computation to inform the problem of tradeoff analyses and
decision making in selecting a candidate middleware to induce
an architecture, relative to Pthro. The likely change in load is
the major source of uncertainty that faces Duke’s Bank. To
address uncertainty and provide better insights on value crea-
tion, we have appealed to the use of real options theory. Let us
have a close look at the impact of the volatility parameter,
which is an expression of uncertainty to address the mining
objectives: volatility estimates the “cone of uncertainty” in the
future value of the asset, rooted as its current value and ex-
tending over time as a function of volatility. As volatility in-
creases, total uncertainty around the benefits also increases.
The more TOPS a host is likely to support, the more likely that
the actual benefits to “wander” up and down and deviate from

the expected present value if the load grows. Let us assume
that the present load is in the range of 30- 50 TOPS. Based on
the mined data, 30-50 TOPS could be easily addressed by one
host using either M0 (JacORB) or M1 (Jboss or WLS). For
such a low throughput requirements, inducing the architecture
with M0 may appear to be more attractive as when compared
to inducing the architecture with M1 (using either JBOSS or
WLS). This is because M1 incurs license costs for WLS.
Moreover, looking at S1 when induced with JBOSS, S1 is
likely to be in magnitude slower than S0 as when induced with
JacORB due to its use of reflection. This means that S1
(JBOSS) will support fewer TOPS and consequently will cre-
ate less value added per second as when compared to S0. For
such low load, the fault-tolerance and load-balancing services
need not be implemented on S0 [Bah 05]. If options analysis is
not used, M0 will be a no-brain choice for inducing the Duke’s
Bank architecture. Though inducing the architecture S1 with
M1 (using WLS) appears less attractive than M0 (JacORB), S1
may still carry embedded growth options which will only ma-
terialize if the load grows. If we use a Present Value (PV), the
computation will based on the benefits of supporting the TOPS
less their costs (i.e., the computation does not account for un-
certainty). The resulted valuation will compute the present
value as realized and ignore the growth options. In other
words, inducing the architecture with WLS if undertaken, PV
would hint that S1 would destroy value rather than create it.
That is, Value S1 = PV. However, ValueS1 is actually Value S1
= PV + Opt. That is, M1 carry embedded growth options, Opt.
The Opt, if left unexercised, are ignored by the non-options
analysis. Hence, Value for S1 is then said to be underestimated.
As a result, S0 may look more attractive (Table 2). The Present
Value calculation of Table 2 shows that S1 is the least attrac-
tive for this range of load. The computation is based on the
benefits of supporting 100 TOPS less their costs. However, the
computation ignores the growth options on S1 in supporting
additional 632 TOPS using the first host. Similarly, PV sys-
tematically undervalues the growth potential of S1 (JBOSS)
and S0 (JacORB) in respectively supporting 300.26 TOPS and
446.26 TOPS. That is, PV ignores the flexibility value of S1
and S0 in responding to the growing load at host 1.

Table 2. Illustration PV per second ($) for low throughput (100
TOPS)

10
0

T
O

PS

M
ax

 T
O

PS

C
ei

PT
hr

o

X
iV

PT
hr

o

PV

Value

Ignored

(TOPS)

S1(WLS) 732.00 853.11 12.63 -840.48 -632

S1(JBOSS)
400.26 603.11 12.63 -590.48

 -300.26

S0(JacORB)
546.80

603.11 12.63 -590.48

-446.80

It is a fact that PV does not work well for projects with fu-
ture decisions that depend on how uncertainty resolves.
Though they can be used to evaluate the operational benefits in
a stable environment with well-understood and measurable
costs and benefits, they have little to offer when capturing
additional value due to flexibility under uncertainty, such as
strategic opportunities and the ability to respond to changing

379

conditions. Using PV, S1, when induced with WLS, reports
negative values upon inducing the architecture with WLS for
this range of load. However, the situation indicates that these
results underestimate the value of S1, as S1 can better respond
to uncertainty, where the load is likely to grow over 100
TOPS. In Table 3, we turn to ArchOptions to capture the
growth options on S1 and S0. The volatility parameter is an
expression of the range of “benefits” at a host. For S1 (WLS):
the benefits could “wander” from zero (i.e., idle state with no
operations executing at a second) to the benefits derived from
full utilization of capacity (i.e., in the support of 732 TOPS).
That is, the volatility of 66% for S1 (WLS) indicates that the
benefits of executing the TOPS is in the range of $0(idle) to
$92.42(full utilization) per second on host 1. Similarly, for S0
(JacORB): the 45% volatility for S0 (JacORB) indicates that
the benefits of executing the TOPS are in the range of $0(idle)
to $69.04 (full utilization) per second on host 1. As for the
options on S1(WLS), S1 has “pulled” the options on one host
for this range of load. This is because we have accounted for
the possible fluctuation in the derived values from supporting
the TOPS. Considering such “fluctuation” provides us with
better insights on the architectural potential of S1 in support of
this likely change in load. Table 3 suggests S1 has reported a
value added of $0.017 on 1 host.

Table 3. Illustration options per second ($) very low throughput
scenario (100 TOPS)

100 TOPS CeiPThro XiVP-

Thro

/Pthro Options Actual Value

 (TOPS)

S1(WLS) 853.11 92.42 66% 0.01700 100 + 632

S1(JBOSS) 603.11 50.53 35% 0+ 100 + 300.26

S0(JacORB) 603.11 69.04 49% 0.00001 100 + 446.80

4. Related Work
Mining Software Repositories (MSR) [MSR 1-5] is a growing
community in Software Engineering. [http://msr.uwaterloo.ca/]
provides excellent up-to-date reference to MSRs. These con-
tributions, however, are essentially technical endeavor with no
attention paid to the economics context: software repositories
are often mined and analyzed ignoring the link between tech-
nical properties, economics, and value creation under a given
circumstances. Our contribution is novel in addressing this
gap. [EDSR 1-8] community is interested in linking technical
engineering concepts to economics and value creation. No
contribution has been reported on EDSM, except for [Bah07]
bridging the gap between these two communities.

5. Conclusion
We have highlighted a scenario for realizing EDSM through
an example. The example describes how software repositories
could be mined to value the ranges in which a given software
architecture can scale to support likely changes in load. The
exposed arguments provide an example of the invaluable in-
sights that the analyst might benefit from upon complementing
the mined data with economics computation. Such analysis has
the promise to provide the software analyst with a powerful
tool for predicting cost/value information for developing and

evolving dependable software and understanding the econom-
ics ramification of the change on the system and its design
artifacts (e.g., architectures); and informing design trade-offs.
The objective is to provide insights into investment decisions
related to the development and evolution of software systems
and assisting in resource planning and utilization. Ongoing
work includes designing an automated infrastructure and tools
support. Effort includes designing a semi-automated support
for executing the EDSM process, deriving interesting patterns,
facilitating the computation, visualizing the results, assisting in
interpretations, and supporting sensitivity analyses. Interest-
ingly, MSR [1-5] drew the attention to a new challenge faced
by empirical studies: whereas previous studies suffered from
lack of data, current studies face challenges dealing with
enormous amounts of freely available data from easily acces-
sible repositories online such as forums, code, and bug reports
repositories. Though this fact may have implications on the
quality of the mined data and the resulted analysis, this could
also hint to opportunities for EDSM, where existing knowl-
edge could provide insights into investment decisions related
to development and evolution of systems. This could, for ex-
ample, be based on analogies and similar to the way we have
“mimicked” the concept of twin asset.

6. References
 [Bah04] Bahsoon, R. and Emmerich, W.: Evaluating Architectural Stability with

Real Options Theory. In: Proc. of the 20th IEEE Int. Conf. on Software Maintenance
(2004)

[Bah05] Bahsoon, R., Emmerich, W., and Macke, J.: Using ArchOptions to Select
Stable Middleware-Induced Architectures. In: IEE Proceedings Software, Special
issue on Relating Requirements to Architectures, IEE Press 152(4) (2005) 176-186

[Bah07] Bahsoon, R. and Emmerich, W.: Economics-Driven Software Mining. In:
Proc. of the ICSE 2007 workshop on Economics of Software and Computation.

[Bah08] Bahsoon, R. and Emmerich, W.: (2008) An Economics-Driven Approach
for Valuing Scalability in Distributed Architectures. In Proc. of the 7th Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008).

[Bla73] Black, F., and Scholes, M.: The Pricing of Options and Corporate Liabili-
ties. Journal of Political Economy. U. of Chicago Press (1973) 637-654

[Boe00] Boehm, B., and Sullivan, K. J.: Software Economics: A Roadmap. In: A.
Finkelstein (ed.): The Future of Software Engineering. ACM Press (2000) 320-343

[DiN99] Di Nitto, E., and Rosenblum, D.: Exploiting ADLs to Specify Architec-
tural Styles Induced by Middleware Infrastructures. In: Proceedings of the 21st Int.
Conference on Software Engineering, ACM Press (1999) 13-22

 [EDSR 1-8] EDSER 1-8: Proceedings of the Workshops on Economics-Driven
Software Engineering Research: In conj. with the 21st through 28th International
Conference on Software Engineering (1999 - 2006)

[Emm00] Emmerich, W.: Software Engineering and Middleware: A Road Map.
In: A. Finkelstein (ed.), Future of Software Engineering, ACM Press (2000) 117-129

 [Min99] Mining Software Engineering Data: A Survey

[MSR1-5] MSR 1-5: Proceedings of the ICSE Workshops on Mining Software
Repositories, In conjunction with ICSE 2004- 2008.

 [OMG00] Object Management Group: The Common Object Request Broker: Ar-
chitecture and Specification, 2.4 ed., OMG (2000)

[Sul99] Sullivan, K. J.: Chalasani, P., Jha, S., and Sazawal, V.: Software Design
as an Investment Activity: A Real Options Perspective. Real Options and Business
Strategy: Applications to Decision-Making. In: Trigeorgis L. (ed.) Risk Books
(1999) 215-260

[Sun] Sun Microsystems Inc.: Duke’s bank application,
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html

[Tri95] Trigeorgis, L.: Real options in Capital Investment: Models, Strategies,
and Appications. Praeger Westport, London (1995)

380

VP: AN EFFICIENT ALGORITHM FOR FREQUENT ITEMSET MINING

Qin Ding1, Wen Shen Huang2

1 Department of Computer Science, East Carolina University,
Greenville, NC 27858, USA

dingq@ecu.edu

2 Department of Computer Science, Pennsylvania State University - Harrisburg,
Middletown, PA 17057, USA

Abstract – Frequent itemset mining is one of the important
problems in data mining. The task is to discover frequent
occurring patterns in large databases. Many algorithms have been
proposed for frequent itemset mining, such as the Aprioir and FP-
growth algorithms. In this paper, we propose the Virtual Partition
Algorithm (VP) for frequent itemset mining. The VP algorithm
treats a database as small partitions (projected databases) and
mines frequent itemsets from each partition. The search space is a
lexicographical tree. A node of the tree, denoted PF, represents a
distinct partition of the database, where all transactions in the
partition contain the frequent itemset F. The VP algorithm uses
strategies such as virtual partition, transaction assignment,
transaction reassignment, and pruning techniques to improve the
efficiency and memory utilization. We compared our algorithm
with other frequent itemset mining algorithms and the
experimental results show that VP is efficient for frequent itemset
mining on both sparse and dense databases.

I. INTRODUCTION

Frequent itemset mining is an important problem in data
mining. The task is to identify items that are frequently
occurring together in databases. Frequent itemset mining is
a sub-task and also the major task in association rule
mining [3, 4]. Association rule mining aims to discover
relationships (such as associations and correlations) among
different items in database. An association rule is in the
format of “X => Y” where X and Y are set of items, called
itemsets. This rule indicates that the presence of X implies a
strong possibility of the presence of Y. Two measurements,
support and confidence, are used to indicate the strength of
an association rule. The support of the rule X => Y is the
fraction of the transactions containing both X and Y. The
confidence of X => Y is the fraction of transactions
containing X which also contain Y. To discover all the
association rules in a database, most algorithms first
identify frequent itemsets, which are itemsets with support
above a minimum support threshold.

A number of algorithms have been proposed for
frequent itemset mining, one of which is Apriori algorithm
[4]. Apriori is a step-wise algorithm using candidate
generation. Candidate itemsets are potentially frequent
itemsets. Apriori iteratively generates candidate (k+1)-
itemsets from the complete frequent k-itemsets and then
tests the candidates against the database. It utilizes the

Apriori property that if an itemset is frequent then all of its
subsets must also be frequent to reduce the size of the
candidate set significantly. However, when the number of
frequent itemsets is large and/or long frequent itemsets
exist, it still suffers from generating a considerable number
of candidates and from performing tedious database scans
and pattern matching to determine the support of each
candidate.

Apriori-based algorithms are not efficient to mine
frequent itemsets from dense databases. A dense database
has any or all of the following properties: many frequently
occurring items, strong correlations between several items,
and many items in each transaction. On the other hand, in
sparse databases, items do not occur frequently and in
general frequent itemsets are relatively short. In order to
deal with dense databases or long frequent itemsets,
strategies trying to avoid the candidate generation have
been proposed, among which is the FP-growth algorithm
[9]. Instead of generating candidates, FP-growth utilizes a
special tree structure, FP-tree, to maintain the necessary
information, and then mines frequent itemsets in a bottom-
up manner along the tree. FP-growth is efficient as it avoids
the candidate generation and it needs only two database
scans. Nevertheless, FP-growth is known as a very
memory-consuming approach because it requires
significant memory space when recursively constructing
conditional FP-trees and it is especially true if the database
is huge and sparse.

Generally speaking, the difficulties of the frequent
itemset mining problem are candidate generation, pattern
matching, and the requirement of large memory space. In
this paper we propose the Virtual Partition (VP) algorithm
to solve this problem and to achieve the following goals:

� Deal with different types of databases efficiently
� Mine frequent itemsets without candidate

generation
� Avoid pattern matching, i.e., checking candidate

itemsets against each transaction
� Reduce database scans and the search space
� Minimize the usage of memory space
� Allow for scalability and reliability
It should be noted that in this paper we assume that the

employed representation of the database fits in main

381

memory. If it is not the case, an approach based on
opportunistic projection [10] can be applied, but this is
beyond the scope of our work.

The rest of this paper is organized as follows. Section II
discusses related work. Section III details the Virtual
Partition (VP) algorithm. The experimental results are
given in Section IV, and Section V concludes the paper.

II. RELATED WORK

Apriori and FP-growth algorithm represent two
categories of approaches used in frequent itemset mining,
one using candidate generation and one without. The
Apriori algorithm and some Apriori-like algorithms are
widely used in mining frequent itemsets. However, if the
database size is large and/or the minimum support threshold
is low, the large number of candidates plus the cost of
database scans will degrade the performance. FP-growth
algorithm does not need to generate candidate itemsets. It
has been proved to be one of the most efficient algorithms
for the frequent itemset mining problem; it is especially true
when mining frequent itemsets in dense databases.
However, FP-growth is a very memory-consuming
algorithm.

Besides Apriori and FP-growth, there are a number of
other algorithms for mining frequent itemsets, such as Eclat
[18] and Partition [15]. Eclat uses vertical layout of
transactions instead of traditional horizontal layout. The
partition algorithm divides a large database into a number
of smaller databases that can fit in memory and finds local
frequent itemsets in each partition and then combine them
into global frequent itemsets.

In general, no single approach outperforms others for all
cases in frequent itemset mining because of the variety of
databases. Different databases have different sizes,
densities, and layouts. Therefore, choosing a proper
approach is nontrivial. Recently, researchers have put
efforts in developing hybrid methods such as H-mine [13],
kDCI [11], and Nonordfp [14]. They employ two
alternative strategies to deal with sparse and dense
databases, and switch adaptively from one to the other
according to the information collected during execution
phases. However, questions including what should be the
appropriate situations that one strategy is more preferable
over the other and how to determine when such a strategy
switching should happen are still nontrivial.

III. VP: THE VIRTUAL PARTITION ALGORITHM

A. Algorithm Overview

In order to mine frequent itemsets without candidate
generation and pattern matching, we first propose the Tree
Generation algorithm (TG). The TG algorithm mines the
complete set of frequent itemsets from a database by
constructing a Prefix-Pattern Tree (PP-Tree). A node of the
tree is denoted PF , where F is a frequent itemset and we
call it a prefix-pattern since all frequent itemsets that can be
recursively mined from PF must have F as their prefix. For
example, the frequent itemsets that can be recursively

mined from P{1, 3} must have itemset {1, 3} as their prefix.
Each prefix of F is the prefix-pattern of a corresponding
ascendant node of PF. For example, P{2} and P{2, 3} are the
ascendant nodes of P{2, 3, 4}. Moreover, PF’ is one of the
ascendant nodes of PF if and only if PF’ is a prefix of F.

TreeProjection [1], another tree-based algorithm, mines
frequent itemsets by projecting transactions of a given
database in a divide-and-conquer manner. Instead of
projecting transactions, TG constructs a PP-Tree by
dividing a large database into smaller portions and then
recursively mines frequent itemsets from each portion in a
depth-first manner. Such a portion is called a partition of
the database, or a partition. Each node of the tree
corresponds to a distinct partition. When no further nodes
can be generated, the mining task completes, and each node
of the tree indicates a distinct frequent itemset. The
prerequisite of this algorithm is that an ascending or
lexicographical ordering exists among the items in the
database.

To overcome difficulties of TG, including transaction
replication and physical partition, we propose the Virtual
Partition algorithm (VP). VP is based on TG, and we use
the term “virtual” because VP mines frequent itemsets
without physically partitioning a database. VP constructs
and utilizes an Item Linked-list Structure (ILS) to simulate
behaviors including node generation, transaction
assignment, and transaction reassignment involved in TG.

B. Search Space

The search space of TG is considered a PP-Tree. We
define 2 to be the last item in prefix-pattern F. For example,
if F = {2, 3, 4}, 2 = 4. Each node PF of the tree is labeled by
2 and corresponds to a distinct partition of a database,
where F is the set of 2 on the path from the root to PF itself.
For example, in node P{3, I1, I2, …, Ii, …, 2}, F = {3, I1, I2, …,
Ii, …, 2}, and the path P{3} P{3, I1} P{3, I1, I2} …
P{3, I1, I2, …, Ii} … P{3, I1, I2, …, 2} must exist. The ith node is
at Leveli, the ith level of the PP-Tree. For simplicity, we
ignore 3 since the root represents the empty set; therefore,
the cardinality of F is the level of the tree.

Given a database D comprising I: {1, 2, 3, 4, 5}, the
maximum PP-Tree is shown in Fig. 1. This tree is a
lexicographical tree that consists of I except for the last
item 5. The last item of I can be ignored because no
superset of such item exists. A node PF of the tree is the
node from which the complete set of frequent itemsets
containing F can be recursively mined. For example, the
frequent itemsets containing itemset {2, 3, 4}, if existing,
can be recursively mined from P{2, 3, 4}.

If frequent k-itemsets exist, the complete set of frequent
k-itemsets can only be mined from nodes at Levelk-1. All
transactions in node PF at Levelk contain the same frequent
k-itemset F. The frequent supersets that contain F can only
be mined from PF and its descendant nodes. Since any
frequent itemset is a subset of I, the maximum level of the
prefix tree is smaller than the cardinality of I. For example,
the maximum frequent itemsets is {1, 2, 3, 4, 5}, and it can

382

be mined from P{1, 2, 3, 4} at Level4; thus, the maximum level
of the PP-Tree is 4.

Fig. 1. The Maximum PP-tree

C. Algorithm Details

The TG algorithm is primarily based on the breadth-first
strategy for node generation, combined with the depth-first
strategy for database partition and transaction reassignment.
A PP-Tree is constructed in a top-down fashion by starting
from the root node and successively generating nodes until
no further nodes can be generated.

The mining process consists of constructing a PP-tree,
where each node of the tree corresponds to a distinct
frequent itemset of a database. A node PF is generated if
and only if frequent itemset F is mined. TG eventually
constructs a PP-Tree once a mining task completes. The
finally constructed PP-Tree depends on the value of the
minimum support threshold �, and this tree is part of the
maximum PP-Tree, i.e, only some nodes of the maximum
PP-Tree are generated during mining.

Fig. 2 illustrates the Tree Generation algorithm. To
mine the transactional database D, TG scans D to determine
the frequent 1-itemsets R. Next, according to R, it generates
nodes. Nodes are initially active. A node is inactive if no
further frequent itemsets can be mined from it and its
descendants, otherwise it is active. Assuming R = {I1, I2,
…, In}, the newly generated nodes are PI1, PI2, …, PIn-1, and
PIn is not generated. After the node generation, TG
partitions D by assigning transactions onto the newly
generated nodes at Level1.

For each node PF, if some frequent itemsets exist, TG
calls the recursive procedure SEARCH to mine the
complete set of frequent itemsets containing F. Once no
further frequent itemsets can be mined in PF and its
descendant nodes, PF becomes inactive, and those
transactions in PF must be reassigned onto other active
sibling nodes because some frequent itemsets that do not
contain F are still un-mined and can be mined in such active
nodes. In other words, in order to reflect the actual support
of those un-mined frequent itemsets, a transaction T
containing any of such frequent itemsets in PF needs to be
eventually reassigned onto some corresponding active
nodes.

The number of transactions that need to be assigned and
reassigned significantly decreases as the mining process
proceeds. In addition, TG counts frequent items locally,
avoids pattern matching, and maintains only a portion of
the database during mining.

Fig. 2. The Tree Generation Algorithm

IV. EXPERIMENTAL RESULTS

We implemented VP in C++. Our experiments were
conducted on a 2.4GHz Intel Pentium IV processor with
512MB main memory running Linux Debian.

The algorithms were tested on the datasets shown in
Table 1, available on the FIMI'03 frequent itemset mining
benchmark website. The two synthetic datasets,
T10I4D100K and T40I10D100K, were generated using the
generator2 from the IBM Almaden Quest research group
that simulates the buying behavior of customers in retail
business. The parameters for generating a synthetic dataset
include the number of transactions D (in thousands), the
average transaction size T, and the average length I of so-
called maximal potentially large itemsets. For example,
dataset “T10I4D100K” has an average transaction size of
10, an average size of the maximal potentially frequent
itemsets of 4, and 100,000 generated transactions. Clearly
the T40I10D100K dataset is denser than the T10I4D100K
dataset. The Mushroom dataset contains characteristics
from different species of mushrooms. The Chess dataset
contains different game configurations. The Retail dataset
is the retail market basket data set supplied by an
anonymous Belgian retail supermarket store.

383

Table 1. Test Datasets

We examined the execution time and the memory
utilization in our tests. The execution time is in seconds and
excludes the preprocessing for each algorithm, which
includes reading databases from files and constructing data
structures, or tries, representing such databases before
mining. It also excludes the time needed to print the
resulting itemsets. These excluded processes together
usually take a few seconds. In the experiments, we did not
record the execution time of a mining task if its runtime
exceeded 10 minutes, and we recorded a task as a “timeout”
if it was unable to complete mining within 10 minutes. To
measure the memory utilization of a process, we monitored
the value of VIRT, associated with such process, in top
output, where “top” is a traditional Unix memory
management tool and VIRT stands for the virtual size of a
process. The domain of VIRT includes the sum of memory
a process is actually using, memory it has mapped into
itself, and memory shared with other processes. In short,
VIRT represents the amount of memory that a process can
access at the present moment. The unit of VIRT is in KB
when the memory utilization is less than 100MB, and it
converts to MB when the memory utilization exceeds
100MB. The approximate memory utilization is suitable to
our test because we can observe the trend and variation of
the memory utilization as the minimum support threshold
decreases. In the experiments, we terminated a task if its
memory utilization was large enough to potentially crash
the system, and we recorded a task as “aborted” if its
memory utilization was too large.

We compared VP with the following frequent itemset
mining algorithms: APRIORI [5], COFI [12], and CT-PRO
[16]. Categorically speaking, VP and APRIORI are
counting-based algorithms, and the other two algorithms
are based on FP-growth. APRIORI is one of the most
efficient implementations for Apriori-based algorithms.
COFI introduces a simple and non-recursive mining process
to replace the memory-based FP-tree. CT-PRO uses a more
compact data structure, the Compressed FP-Tree (CFP-
Tree), to non-recursively mine frequent itemsets in a
bottom-up fashion. CT-PRO performs better than
OpportuneProject [10], FP-Growth [9], Apriori [4], LCM
[17], and kDCI [11], where LCM and kCDI are known as
the two best algorithms in FIMI 2003 repository.

The minimum support greatly affects the runtime. In a
dense dataset, items are strongly correlated; therefore, given
the same support value, the number of frequent itemsets
that can be mined from dense datasets is much larger than
the number of frequent itemsets that can be mined from
sparse datasets. Mining more frequent itemsets requires

more execution time. Accordingly, in our experiments, we
used very small support values for T10I4D100K,
T40I10D100K, and Retail datasets. In contrast, the support
values used for Chess and Mushroom were very high.
Moreover, in order to examine the efficiency, reliability,
and scalability of the four algorithms, we used extremely
small support values for each experiment so that we can test
which algorithms can complete mining tasks under those
situations.

Tables 2, 3, 4, 5, and 6 summarize the runtimes (in
seconds) of the four algorithms on these datasets along with
the total number of frequent itemsets (# of FISets) and the
length of the maximum frequent itemsets (MaxLen of
FISets) for each given minimum support threshold value
(Minsup).

Table 2. Execution Time (in seconds) for Mining T10I4D100K

Table 3. Execution Time (in seconds) for Mining T40D10I100K

Table 4. Execution Time (in seconds) for Mining Chess

Table 5. Execution Time (in seconds) for Mining Mushroom

Table 6. Execution Time (in seconds) for Mining Retail

384

By observation, as the support value declined, the
length of maximum frequent itemsets grew evenly and the
number of frequent itemsets escalated significantly. When
the support value was relatively high, most frequent
itemsets were of short lengths and thus the four algorithms
had similar performances; on the other hand, most items
were frequent when support values became small.

For datasets T10I4D100K and T40I10D100K,
APRIORI and VP had good performance. In particular, VP
outperformed the other three algorithms when support
values were very small. As indicated in Table 2, COFI and
CT-PRO had similar performance, and both aborted when
the support was 0.01%. When the support declined from
0.01% to 0.005%, the number of frequent itemsets
increased approximately 4.68 times, and VP completed the
task in only 7.59 seconds while others failed. Compared to
T10D4I100K, T40D10I100K is larger and denser. In Table
3, VP was still the best algorithm. In general, VP was
competitive for most given support values, and it was even
more obvious when the support value was very small. For
instance, VP was 2.34 times faster than APRIORI and 3.27
times faster than CT-PRO when the support value was
0.5%, while COFI aborted when the support value was
1.5%.

When mining in very dense datasets such as Chess and
Mushroom, the FP-growth-based algorithms outperformed
the counting-based algorithms. However, it was true only
when available memory was sufficient. CT-PRO utilizes
the CFP-tree data structure, known to be very memory
efficient for very dense datasets. Accordingly, although
both COFI and CT-PRO are FP-growth based algorithms,
CT-PRO was very efficient (as shown in Tables 4 and 5) as
COFI suffered from inefficient memory utilization.

VP was unable to outperform CT-PRO in dense
datasets, but it was reliable in that it never aborted for any
given support value. Although VP was recorded timeout in
Table 4.4 when the support value was 30%, we found that it
can finish the task eventually if we let it continue.
Moreover, in Table 5, when the support value was 1.5%,
VP completed the task while CT-PRO was not able to do
so.

Retail is a very sparse dataset. It consists of 16,469
items and the average length of transactions is short. When
mining Retail, most algorithms were efficient, and the
runtimes had the same orders of magnitude. The
performance of VP was better than that of APRIORI when
the support value was larger than or equal to 0.02%.
Furthermore, VP was more reliable than COFI and CT-
PRO because VP survived when the support value was as
small as 0.1%, while COFI and CT-PRO both aborted. We
found that VP was not as fast as we expected since the
number of items was very large.

VP created header tables in each iteration and the sizes
of tables were decided by the size of items. The time for
memory allocation became relatively expensive as the
computational cost was relatively slight for all algorithms
in very sparse datasets. Moreover, each header table needs

to be scanned for the node generation. To improve the
performance of VP for mining datasets with large set of
items, reusing the header table may be a promising strategy.

Tables 7 and 8 illustrated the memory utilization, in
megabytes (MB), of the four algorithms for mining
T40D10I100K and Retail, respectively. We found that
COFI is a very memory demanding algorithm even though
[12] declared that it can significantly reduce the candidate
generation and avoid recursion. COFI was the most
unscalable algorithm among the four since it was very
sensitive to the length of maximum frequent itemsets. CT-
PRO usually took more memory utilization than others and
it was infeasible for mining very large datasets. The
memory utilization of APRIORI is based on the size of
number of frequent itemsets. For instance, as illustrated in
Table 7, when the support value decreased from 0.75% to
0.5%, the memory utilization of APRIORI increased
105.6% while the number of frequent itemsets increased
158.8%. On the other hand, given the same condition, the
memory utilization of VP increased only 0.4%.

Table 7. Memory Utilization (in MB) for Mining T10I4D100K

Table 8. Memory Utilization (in MB) for Mining T40D10I100K

During mining, the memory utilization of COFI varied
because of the requirement of memory allocation,
deallocation, and reallocation. The memory utilization of
CT-PRO does not change once the CFP-tree was
established, and the memory utilization of APRIORI
steadily climbed up because it recorded frequent (k + 1)-
itemsets generated from candidate k-itemsets.

VP was insensitive to the length of maximum frequent
itemsets and/or the number of frequent itemsets. Similar to
CT-PRO, the memory utilization of VP increased slightly
once ºA was established where ºA is a vector used to
represent a loaded database. During the rest of mining, VP
did not generate extra complicated data structures or tries
such as hash-tables or FP-trees, except for some smaller
header tables. Moreover, the memory utilization of VP was
always relatively small for any given dataset and any given
Minsup. In fact, the memory utilization of VP was the sum
of the size of ºA and the size of header tables, and we can
always expect the approximate memory utilization in
advance. In short, VP is very scalable and efficient for the

385

memory utilization and hence it is the most reliable
algorithm in our experiment.

V. CONCLUSIONS AND FUTURE WORK

Frequent itemset mining is an important task in data
mining. Various algorithms have been proposed for
frequent itemset mining. In this paper we proposed an
algorithm called “Virtual Partition” (VP) to deal with
different kinds of databases in an efficient way to mine
frequent itemsets. VP utilizes the ILS structure to simulate
the database partition and transaction reassignment
involved in the tree projection algorithm. It mines frequent
itemsets without candidate generation, avoids actual data
moving, and maintains minimum memory utilization. We
compared VP with several other algorithms on different
datasets, including dense and sparse datasets. Our
experimental results are generally quite competitive,
although we do not excel in every case. Nonetheless, VP
never aborted while other algorithms sometimes failed. We
conclude that VP is scalable and reliable for frequent
itemset mining problem.

To improve our algorithm in mining very dense
databases, we may combine VP with CT-PRO or other
algorithms that can mine dense databases more efficiently.
Furthermore, instead of using the lexicographical ordering,
we may consider sorting items in frequency order for each
transaction. This could increase the preprocessing time for
sorting the items of each transaction, but the performance
gain may be promising.

REFERENCES

[1] R. Agarwal, C. Aggarwal, and V. V. V. Prasad: “A Tree
Projection Algorithm for Generation of Frequent
Itemsets”. In Journal of Parallel and Distributed
Computing, Vol. 61, No. 3, 2001, pp. 350-371.

[2] R. Agarwal, C. Aggarwal, and V. V. V. Prasad: “Depth
First Generation of Long Patterns”. In Proc. of the ACM
SIGKDD Int'l Conference on Knowledge Discovery and
Data Mining, 2000, pp. 108-118.

[3] R. Agarwal, T. Imielinski, and A. Swami: “Mining
Association Rules between Sets of Items in Very Large
Databases”. In Proc. of the ACM SIGMOD Int'l
Conference on Management of Data, 1993, pp. 207-216.

[4] R. Agarwal and R. Srikant: “Fast Algorithms for Mining
Association Rules”. In Proc. of the Int'l Conference on
Very Large Databases (VLDB), 1994, pp. 487-499.

[5] F. Bodon: “A Fast Apriori Implementation”. In Proc. of
the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, 2003.

[6] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur:
“Dynamic Itemset Counting and Implication Rules for
Market Basket Data”. In Proc. of the ACM SIGMOD

Int'l Conference on Management of Data, 1997, pp.
255-264.

[7] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth: “From
Data Mining to Knowledge Discovery: An Overview”.
In Advances in Knowledge Discovery and Data Mining,
Fayyad U, et. al. eds, AAAI Press, 1996, pp. 1-35.

[8] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus
C. J: “Knowledge Discovery in Database: An
Overview”, In GTE Laboratories paper, 1996, pp. 1-27.

[9] J. Han, J. Pei, and Y. Yin: “Mining Frequent Patterns
without Candidate Generation”. In Proc. of the ACM
SIGMOD Int'l Conference on Management of Data,
2000, pp. 1-12.

[10] J. Liu, Y. Pan, K. Wang, and J. Han: “Mining Frequent
Itemsets by Opportunistic Projection”. In Proc. of the
ACM SIGKDD Int'l Conference on Knowledge
Discovery and Data Mining, 2002, pp. 229-238.

[11] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and
F. Silvestri: “kDCI: a Multi-Strategy Algorithm for
Mining Frequent Sets”. In Proc. of the IEEE ICDM
Workshop on Frequent Itemset Mining
Implementations, 2003.

[12] R. Osmar. Zaïane and Mohammed El-Hajj: “COFI-tree
Mining: A New Approach to Pattern Growth with
Reduced Candidacy Generation". In Proc. of the IEEE
ICDM Workshop on Frequent Itemset Mining
Implementations, 2003.

[13] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang:
“H-Mine: Hyper-Structure Mining of Frequent Patterns
in Large Databases”. In Proc. of the IEEE ICDM Int'l
Conference on Data Mining, 2001, pp. 441-448.

[14] B, Raacz: “Nonordfp: An FP-growth Variation without
Rebuilding the FP-tree”. In Proc. of the IEEE ICDM
Workshop on Frequent Itemset Mining
Implementations, 2004.

[15] A. Savasere, E. Omiecinski, and S. Navathe: “An
Efficient Algorithm for Mining Association Rules in
Large Databases”. In Proc. of the Int'l Conference on
Very Large Databases (VLDB), 1995, pp. 432-444.

[16] Y. G. Sucahyo and R. P. Gopalan: “CT-PRO: A
Bottom-Up Non Recursive Frequent Itemset Mining
Algorithm Using Compressed FP-Tree Data Structure”.
In Proc. of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, 2004.

[17] T. Uno, T. Asai, Y. Uchida, H. Arimura. LCM: “An
Efficient Algorithm for Enumerating Frequent Closed
Item Sets”. In Proc. of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, 2003.

[18] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li:
“New Algorithms for Fast Discovery of Association
Rules”. In Proc. of the IEEE KDD Int'l Conference on
Knowledge Discovery and Data Mining, 1997, pp. 283-
286.

386

Evolution Shelf: Exploiting Evolution Styles within Software Architectures

Olivier Le Goaer, Mourad-Chabane Oussalah, Dalila Tamzalit
University of Nantes

LINA Laboratory
2 rue de la Houssiniere, F-44000 Nantes, France

olivier.le-goaer@univ-nantes.fr

Abdelhak-Djamel Seriai
Ecole des Mines de Douai

Departement I.A
941 rue Charles Bourseul, F-59500 Douai, France

seriai@ensm-douai.fr

Abstract

Despite that reuse libraries are now well adopted during
software development step, software evolution step is not
yet covered by this kind of beneficial approach. In this pa-
per we present the “evolution shelf”, a generic infrastruc-
ture to achieve for-reuse and by-reuse techniques within the
field of software evolution. The basic idea behind that is
to propose and encourage the reuse of recurring and reli-
able expertises to achieve the structural evolution of a soft-
ware system at the architectural level. For that purpose, the
shelf assists architects in classifying, storing and selecting
reusable architectural evolutions. The underlying concept
that we propose to capitalize the expertises is called “evo-
lution style”, mixing a syntactic and a semantic description
format. These ideas form a core for a long-term vision in
which it is possible to build a business model of evolution-
off-the-shelf (EOTS) with the special objective to decrease
the efforts and the risks related to the evolution activities.

1. Introduction

Traditionally, the primary focus of reuse research has
been on the reuse of software entities, such as objects or
components [11], often at code-level but also at more ab-
stract levels. While there have been significant improve-
ments in reuse technology and methods, these artifacts are
not the only ones that can be profitably reused. In this paper
we describe an approach and supporting infrastructure for a
class of skill reuse – namely, architectural evolution reuse.

An increasingly important requirement for software-

based systems is the ability to embrace change. From a the-
oretical point of view, embracing change aims at integrat-
ing the change as a natural ingredient of modern software
systems and be prepared to challenge it. From a practical
point of view, embracing change aims at reacting to unantic-
ipated events by the way of predictable means. Especially,
in this research, we deal with the evolution of the structure
of component-based architectures. An architectural design
is concerned with the gross decomposition of a system into
a set of interacting components [15, 10]. At this level of
abstraction, key issues include the assignment of function-
ality to design elements, protocols of interaction, system ex-
tensibility, and broad system properties such as throughput,
schedulability, and overall performance. The reuse prob-
lem for architectural designs then becomes how to exploit
the basic elements of architectural design (large-scale com-
ponents and connectors), as well as common processes for
their evolution over time.

But what exactly is evolution reuse and how can it be ex-
ploited ? The basic idea is to capitalize know-how on a spe-
cific domain, providing specific facilities for a fairly narrow
class of system. For this purpose, we lean our work on the
concept of architectural style [18, 14], used for representing
and reusing architectural designs and design fragments for
a family of architectures. An architectural style is a power-
ful design artifact which captures the aspects of a particular
domain of application and can provide assurance that ele-
ments built following the stylistic guidelines are interoper-
able. A crucial observation here is that architectural styles
are analogous to domain-specific languages [1]. Through-
out refinements of a previous work [16], we propose the
concept of evolution style for the enrichment of the con-
cept of architectural style, and to turn it into a run-time ar-

387

tifact. The evolution styles are used for representing and
reusing the evolution of architectural designs. Further, the
use of evolution style supplements traditional mechanisms
for classifying evolution processes, storing those processes
in a repository, and narrowing the search space to more ac-
curately locate potential process matches in a given context.

We begin by contrasting our approach to existing work
in the area of reuse and knowledge engineering, in the field
of software architecture. In Section 3, we show how the
concept of evolution style can extend the concept of archi-
tectural style. As a demonstration of how these ideas can
be used, in Section 4 we describe a prototype infrastructure
called the “Evolution Shelf” which provides a repository for
reusable architectural evolutions. We give some concluding
remarks in Section 5.

2. Related Work

The research presented here lies at the intersection of two
related areas: the reuse engineering and the knowledge en-
gineering. In our context, we put a special focus on the
software architecture field.

Some of the more impressive examples of reuse today
involve a strong component of design reuse that can be sep-
arated into three classes of granularity of abstraction [4]: ar-
chitectural patterns and styles, design patterns and idioms.
Prominent examples include the book of object-oriented de-
sign patterns by Gamma et al. [8] or the book of architec-
tural patterns by Bushman et al. [5]. Broadly speaking, our
work is motivated by the same concerns – providing high-
level abstractions for evolving systems based on previous
efforts and proven know-how. While we also exploit archi-
tectural commonalities (in our use of “architectural style”),
we address an orthogonal issue. In our context, the term
of “style” refers to the more formal aspect of the descrip-
tions of solutions and thus the possible construction of an
automated support. This last point naturally introduces a
second crucial aspect: the desired organization of such an
amount of knowledge into libraries, able to support effi-
cient reuse techniques. As an example, a preliminary clas-
sification of architectural styles was presented in Shaw and
Clements [17], in which a two-dimensional, tabular classifi-
cation strategy was used with control and data issues as the
primary axes, organized by the following categories of fea-
tures: which kinds of components and connectors are used
in the style; how control is shared, allocated, and transferred
among the components; how data is communicated through
the system; how data and control interact; and, what type
of reasoning is compatible with the style. The primary pur-
pose of the taxonomy was to identify style characteristics,
rather than to assist in their comparison. Hence, organizing
the classification in that fashion does not help a designer
find a style that corresponds to their needs. As another

example, Zimmer [20] organized design patterns using a
graph based on their relationships, making it easier to un-
derstand the overall structure of the patterns in the Gamma
et al. catalog. The classification was based exclusively on
derivation or use relationship, but no infrastructure was pro-
vided to exploit it. In [13], Monroe and Garlan built a soft-
ware repository that assists designers in selecting design el-
ements and patterns based on stylistic information and de-
sign constraints. Their repository was evaluated on the Ae-
sop system with a great size of elements and can be queried
with a specific language based on stylistic attributes, as well
as traditional string and keyword matching. Like reported
in [7], despite that there has been disagreement in the reuse
research community about the importance of libraries for
reuse, the reuse activity shows that in order to be reused
an asset must be available, findable, and understandable. A
reuse library supports all of these and should be used in the
field of evolution engineering.

3. Style-based Evolution Model

Basically, architectural evolution includes modifications
for general purposes, in terms of additions, removals and
modifications on first-class entities, namely, the component,
the connector, the interface (derived into port and role) and
the configuration. Domain-specific architectural evolution
extends the aforesaid principle to take into account the spe-
cific aspects provided by an architectural style. For ex-
ample, the Pipe&Filter architectural style supports partic-
ular evolutions such as Become-a-sink, for setting a filter
solely as a data consumer by deleting all its output inter-
faces. Hence, the evolution styles we deal with in this paper
are specifically designed for a family of applications that
satisfy a given architectural style. In this section we explain
the description format of an evolution style and we provide
a small example.

3.1. Specification of Evolution Styles

The language we propose is captured by the metamodel
given in Figure 1, represented in an object-oriented context
with the UML notation. Within this metamodel, an archi-
tectural style encompasses:

• a set of types of architectural element, derived into
types of configuration, types of component, types of
connector and types of interface. An architectural style
is simply viewed as a type of configuration. These
types provide a domain-specific design vocabulary.

• constraints that define how components can be inte-
grated. Constraints may be topological, behavioral,
communication-oriented. In this research we are only

388

interested by rules that govern the structure of the ar-
chitecture, that is, the topological rules.

Figure 1. Metamodel of the concept of evolu-
tion style (UML class diagram).

Any of these types of architectural element is likely to
evolve along some predefined archetypes, the so-called evo-
lution styles. The two basic information of an evolution
style are an evocative name and the textual description of its
goal. Then, the proposed specification of an evolution style
is formed by two complementary parts: the header and the
competence. From a theoretic point of view, in the spirit of
the “Components of Expertise” approach [19], the header
denotes an evolution task while the competence denotes a
problem solving method (PSM) to achieve the task. From a
practical point of view, the purpose of the header is to pub-
lish the interface and the behavior of the evolution while the
purpose of the competence is to give an implementation to
realize the header following a particular strategy. This de-
coupling follows the information hiding principle and en-
ables more flexible specifications.

Syntactic description – The header publishes the inter-
face of the evolution by mentioning an ordered set of param-
eters typed with the types of design elements provided by a
particular architectural style. Each parameter has a multi-
plicity (i.e., multi-valued parameters are supported) and a
direction kind (In/Out/InOut/Return). The header also pub-
lishes the behavior of the evolution by mentioning three as-
sertions: a precondition, an invariant and a postcondition.
These assertions are constraints expressed with a first order
predicate logic similar to UML’s OCL, augmented with a
small set of architectural functions. The precondition and
the postcondition are user-defined while the invariant is vir-
tually imported from the one imposed on the considered de-
sign element. Constraints are essential both to preserve the
initial design choices and to leave the architecture in a con-
sistent state after its evolution.

The competence realizes the header by a particular im-
plementation. Unlike the header, sometimes the compe-

tence cannot be identified. When the competence part is
missing, the evolution style is abstract (and plays a major
role in knowledge structuring). Otherwise, the evolution
style is concrete and its competence part refers to an oper-
ation tied to a technological context: a C function or pro-
cedure, a JAVA object method or a model transformation,
etc. Hence, to have a technologically-neutral competence,
the concrete implementation is considered as an external re-
source located with an URI (Uniform Resource Identifier).
Of course, an implementation is required to turn the evolu-
tion style into an executable form.

Semantic description – The evolution styles can be inter-
related in three various ways: with the (i) specialization re-
lation, with the (ii) composition relation and with the (iii)
utilization relation. These relations bring a semantic di-
mension to the purely syntactic description of the concept
of evolution style. The specialization and the composition
define hierarchies amongst a set of evolution styles: the for-
mer defines a conceptual hierarchy (i.e., general vs. spe-
cialized evolutions) while the latter defines a descriptive hi-
erarchy (i.e., coarse-grained vs. fine-grained evolutions).
The utilization does not define any hierarchy amongst a
set of evolution styles but enables important collaborations.
From an operational viewpoint, these relations play differ-
ent roles, but all convey invocations – or calls. The spe-
cialization is useful at design-time to build new description
from older ones. A specific inheritance mechanism allows
the user to overload a header and/or to override a compe-
tence. The composition is useful at design-time to assem-
bly descriptions into a composite one and the utilization is
crucial at run-time to properly propagate the impacts of an
evolution throughout a chaining of styles. Finally, a set of
inter-related evolution styles designed for a particular archi-
tectural style forms an evolution library. From the end-user
point of view, such a library is a black-box that is intended
to be enriched and queried via an infrastructure specifically
designed to hold it, so-called a “shelf”.

3.2. Sample Illustration

We illustrate a client-server architectural style on which
a preliminary evolution library is designed, inspired from a
scenario found in [6]. The architectural style is described
using the ACMEADL [9] and the ARMANI constraint lan-
guage [12]. On the other hand, the evolution styles are de-
scribed using the UML 2.0 language extended with a spe-
cific profile (i.e., stereotypes, tagged values and constraints)
that we have developed for representing the content of the
evolution libraries in a diagrammatic fashion.

The first step specifies a generic client-server architec-
tural style (called a family in ACME). It defines a set of
component types: a client type (ClientT), a server group

389

type (ServerGroupT) and a server type (ServerT). It
also defines a connector type (LinkT). Constraints on the
style (appearing in the definition of LinkT) guarantee that
the link has only one role for the server and more than one
role for the client. Other constraints, not shown, define fur-
ther structural rules (for example, each client must be con-
nected to a server). The corresponding code snipet is given
in Figure 2.

__
1: Family ClientServer = {
2: Component Type ClientT = {...};
3: Component Type ServerT = {...};
4: Component Type ServerGroupT = {
5: Property AverageLoad : float
6: ...
7: };
8: Role Type ClientRoleT = {...};
9: Role Type ServerRoleT = {...};
10: Connector Type LinkT = {
11: invariant size(select r : role in Self.Roles |

declaresType(r, ServerRoleT)) == 1;
12: invariant size(select r : role in Self.Roles |

declaresType(r, ClientRoleT)) >= 1;
13: Role ClientRole1 : ClientRoleT;
14: Role ServerRole : ServerRoleT;
15: };
16: }
__

Figure 2. A Client-Server architectural style in
ACME.

The second step specifies a MoveClient evolution style
designed for the client-server architectural style above. The
purpose of this evolution is to reconnect a client to another
server group. Practically, the latter is applied to a client and
deletes the role currently connecting the client to the con-
nector that connects it to a server group. This style also
performs the necessary attachment to a connector that will
connect it to the server group passed in as a parameter. The
diagram on Figure 3 shows the MoveClient evolution style
but also some of its adjoining evolution styles, through dif-
ferent semantic links. Due to place restrictions, the con-
straints (usually expressed in OCL) and the goals (usually
expressed with a UML note) are not shown on the diagram.

At glance, moving a client to another group of servers
is viewed as an evolution decomposable into disconnect-
ing a client from an older group and then reconnecting it
to a new group. Accordingly, disconnection or connection
propagates the evolution to update the load of the group of
servers involved. All these evolution styles are specializa-
tions of an abstract evolution style that is the “top” of the
specialization hierarchy. From now, the MoveClient evolu-
tion style can be specialized, composed or utilized in order
to define more complex evolution strategies. However, it
remains to provide reuse facilities to experts for enabling
them to create further expertises more easily.

Figure 3. UML-based evolution style diagram
depicting an excerpt of the evolution library
associated to the client-server architectural
style.

4. The Evolution Shelf

The Evolution Shelf is an infrastructure to support the
classification, storage and retrieval of evolution styles. We
now describe the strategy taken to implement this function-
ality. Many of the underlying mechanisms that we use are
not new. Our intention is to leverage well-known repository
techniques while updating them to support and exploit the
concept of evolution style.

4.1. Classification

The evolution styles grouped into libraries and stored
on the shelf are organized along three semantic relations
introduced in Section 3.1. The primary benefits that the
use of evolution styles brings to this taxonomical scheme is
that users are able to determine a lot about a reusable style
based solely on its three-dimensional organization. From
a knowledge-oriented standpoint, a library is a knowledge
base which organizes knowledge fragments to deal with
some recurring problem/solution pairs in the software evo-
lution field. From an operational standpoint, a library is a
directed graph where the nodes are evolution styles and the
edges are instances of the three semantic relations. Views
can be created on the graph in order to put the focus on sub-
graphs from a given semantic perspective, namely the spe-
cialization graph, the composition graph and the utilization
graph.

The term “classification” is not used to refer to a hier-
archical structure; it refers to the mechanism that aims at

390

Figure 4. Result of the classification of an
evolution style ES9 into an evolution library.

determining the relevant position of an evolution style in a
hierarchical structure. Precisely, the classification process
computes the position of a new style into the specializa-
tion graph and the composition graph (See Fig.4). As stated
before, the utilization graph does not define hierarchy and
hence is not concerned by this process. The process relies
on a subsumption function – widely used in the area of con-
cept lattices – to discover a semantic relation between two
non-connected evolution styles. The storage and retrieval
mechanisms are both based on the same classification pro-
cess. Let us now detail the approach.

4.2. Storage

Due to the great size of a library, the addition of a new
evolution style is difficult: to find its correct position is com-
plicated because the user does not know exactly the whole
base entities, and might thus introduce some inconsisten-
cies. It is proper to have an automation of the structural
acquisition process: it will be used to find a correct position
both in the specialization hierarchy and in the composition
hierarchy. Notice that a library can be entirely built from
scratch following this process.

The general storage process to insert a new evolution
style X into a hierarchy operates according to a three-phase
loop:

1. retrieve the most specific subsuming evolution styles
that subsume X (the “immediate ascendants” of X ,
denoted MSS(X) further),

2. retrieve the most general evolution styles subsumed
by X (the “immediate descendants” of X , denoted
MGS(X) further),

3. (possibly) update the links in the hierarchy while in-
serting the new evolution style; the link updates may
generate loop in this process.

In the first step, the set of evolution styles that subsume
X is computed thanks to a top-down traversal of the hier-

archy. In the second step, the set of evolution styles that
are subsumed by X are determined by, roughly, exploring
the descendants of the MSS(X) computed in the first step.
The specialization graph defines a single hierarchy rooted at
a “Top” node (denoted �), from which the step 1 is started
once. The composition graph may define multiple hierar-
chies where each node is a potential root, from which the
step 1 is repeated. From an algorithmic standpoint, the
composition-centered classification procedure is nested in
the specialization-centered classification procedure.

Broadly speaking, having an infrastructure for the main-
tenance of various semantic links between knowledge base
entities is very important. Indeed, these links hold up the
consistency and the correctness of library, and are chal-
lenged whenever an insertion of a new evolution style oc-
curs. A management only performed by the user could be
very dangerous, even impossible, whenever the size of the
library reaches a certain threshold.

4.3. Retrieval

Besides to a traditional keyword-based search technique,
a query is represented as an abstract evolution style Q. We
remember that an abstract evolution style does not define
any competence. This is not surprising since the compe-
tence is the important information expected by the user.
One should notice that this uniformity has at least three
benefits: (i) the user does not need to learn a further lan-
guage for querying the libraries, (ii) the infrastructure is
“code-saving” and (iii) tools built on top of the concept of
evolution style (for exportation, visualization, etc.) can be
reapplied to the queries. From our concern, this approach
closely related to description logics used in the database do-
main [2, 3], is used for query purpose with the special objec-
tive to produce more than “Yes or No” results. For that rea-
son, the query evaluation consists of “situating” Q both into
the specialization graph and the composition graph. In both
cases, the result of the query is obtained thanks to the com-
puting of MSS(Q) and MGS(Q), excluding the abstract
styles (i.e., without competence and hence not executable).
Let us informally summarize the various situations:

• Case 1: The results exactly satisfy the request. This
case arises when MSS(Q) = MGS(Q), both in the
specialization and the composition hierarchy. In other
words, a single evolution style satisfies the query and
hence it can be reused with confidence.

• Case 2: The results satisfy the request in half. This
case arises when MSS(Q) = MGS(Q), in the spe-
cialization or the composition hierarchy. In other
words, a single evolution style satisfies the query from
one given semantic perspective and hence it can prob-
ably be reused.

391

• Case 3: The MSS(Q) computed in the specialization
hierarchy are more general evolution styles. Any one
of them can be reused without errors because they can
substitute to the query (due to “style substyping”).

• Case 4: The MSS(Q) computed in the composi-
tion hierarchy are more fine-grained evolution styles.
Hence, they are intended to be reused “together”.

• Case 5: No results satisfy the request. This case arises
when MSS(Q) and MGS(Q) are empty sets, both in
the specialization and the composition hierarchy. This
means that the user is facing a problem not covered by
the library.

At glance, cases 1 and 5 provide a binary result (i.e., Suc-
cess or Failure), like provided by any repository search tech-
niques. In contrast, cases 2,3 and 4 provide an intermediate
range of probable results that extends the reuse possibilities
one step further.

5. Concluding Remarks

Evolution reuse would appear to be one of the more
promising avenues for improving the prospects for software
reuse. We have shown in this paper that our motivation is
to provide abstractions for encapsulating evolution exper-
tise independently of any technological environment. To a
larger extent, the basic idea behind that is to use the con-
cept of evolution style as an neutral interchange format to
capitalize and transfer knowledge about evolution tasks.

Architectural styles leverage the construction phase of
software architectures. We have been exploring a differ-
ent but complementary approach: Evolution styles leverage
the evolution phase of software architectures. The primary
contribution of this work is the integration of the concept of
evolution style with traditional mechanisms for performing
standard software reuse tasks. Finally, to integrate our ap-
proach into realistic developments, the Evolution Shelf we
have presented in this paper should be embedded into con-
ventional CASE tools.

References

[1] Domain-specific software architecture (dssa) frequently
asked questions (faq). SIGSOFT Softw. Eng. Notes,
19(2):52–56, 1994.

[2] A. Borgida. Description logics in data management.
IEEE Transactions on Knowledge and Data Engineering,
7(5):671–682, 1995.

[3] N. Boudjlida. Knowledge in interoperable and evolutionary
systems. In KRDB, 1995.

[4] F. Buschmann and R. Meunier. A system of patterns. pages
325–343, 1995.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-oriented software architecture: a system of
patterns. John Wiley & Sons, Inc., New York, NY, USA,
1996.

[6] S.-W. Cheng, D. Garlan, B. R. Schmerl, a. P. S. Jo B. Spit-
nagel, and P. Steenkiste. Using architectural style as a ba-
sis for system self-repair. In WICSA 3: Proceedings of
the IFIP 17th World Computer Congress - TC2 Stream /
3rd IEEE/IFIP Conference on Software Architecture, pages
45–59, Deventer, The Netherlands, The Netherlands, 2002.
Kluwer, B.V.

[7] W. B. Frakes and K. Kang. Software reuse research: Status
and future. IEEE Trans. Softw. Eng., 31(7):529–536, 2005.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[9] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural
description of component-based systems. In G. T. Leav-
ens and M. Sitaraman, editors, Foundations of Component-
Based Systems, pages 47–68. Cambridge University Press,
2000.

[10] D. Garlan and M. Shaw. An introduction to software archi-
tecture. Technical report, Pittsburgh, PA, USA, 1994.

[11] B. Meyer. Reusable software: the Base object-oriented com-
ponent libraries. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1994.

[12] R. Monroe. Capturing software architecture design expertise
with armani. Technical report, School of Computer Science,
Carnegie Mellon University, 2001.

[13] R. T. Monroe and D. Garlan. Style-based reuse for software
architectures. In ICSR ’96: Proceedings of the 4th Interna-
tional Conference on Software Reuse, page 84, Washington,
DC, USA, 1996. IEEE Computer Society.

[14] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Ar-
chitectural styles, design patterns, and objects. IEEE Softw.,
14(1):43–52, 1997.

[15] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, 1992.

[16] A. Seriai, M. C. Oussalah, D. Tamzalit, and O. L. Goaer. A
reuse-driven approach to update component-based software
architectures. In IRI, pages 313–318, 2006.

[17] M. Shaw and P. C. Clements. A field guide to boxology:
Preliminary classification of architectural styles for software
systems. In COMPSAC ’97: Proceedings of the 21st Inter-
national Computer Software and Applications Conference,
pages 6–13, Washington, DC, USA, 1997. IEEE Computer
Society.

[18] M. Shaw and D. Garlan. Software architecture: perspectives
on an emerging discipline. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

[19] L. Steels. Components of expertise. AI Mag., 11(2):30–49,
1990.

[20] W. Zimmer. Relationships between design patterns. pages
345–364, New York, NY, USA, 1995. ACM Press/Addison-
Wesley Publishing Co.

392

Coverage-Based Testing Using Qualitative Reasoning Models

Harald Brandl Gordon Fraser Franz Wotawa∗

Institute for Software Technology
Graz University of Technology

8010 Graz, Austria
{brandl,fraser,wotawa}@ist.tugraz.at

Abstract

The use of explicit environment models for test case gen-
eration allows to exercise a system under test in ways that
are not possible when only considering the system by itself.
Modeling a system’s environment, however, is not an easy
task. Qualitative Reasoning (QR), which is a well known ar-
tificial intelligence technique to represent and reason about
physical behavior, is well suited to describe such environ-
ments. In this paper, we define a set of coverage criteria that
allow an evaluation of how well the behavior of a system’s
environment and interactions with the environment are exer-
cised with a given test suite. Using a popular QR modeling
tool, we show how to derive test cases satisfying these cov-
erage criteria automatically, and illustrate these results on
an example application.

1 Introduction

Software testing remains the most important technique

to ensure sufficient quality of software. The amount of soft-

ware included in everyday products constantly increases,

and so does its complexity. Especially when considering

safety relevant applications like many of the control units

in modern cars, the need for thorough testing methods be-

comes apparent. Unfortunately, testing is a very complex

task, particularly in the context of reactive and embedded

systems. Here, the complexity of testing is further increased

because there is a lot of interaction between a system and

its environment. A high level of interaction between system

and environment requires extensive testing of the system’s

reactions to environment stimuli. However, many available

testing techniques consider only the system under test, and

not its environment.

To overcome this drawback, we propose a methodology

for testing embedded systems in terms of their environmen-

∗Authors are listed in alphabetical order.

tal interactions. Qualitative Reasoning (QR), a well-known

artificial intelligence technique, is used to describe the en-

vironmental behavior in an abstract form. Qualitative ab-

straction maps large or infinite domains to discrete intervals,

which enables QR engines to infer all possible behaviors

from a model. The possible behaviors are represented as

a transition system – a classical modeling formalism often

used for automated testing. The benefit of QR is the ability

to reason about domain intervals and physical behavior.

Given a transition system derived from a QR model, we

are facing the classical testing problem of which test cases

to select out of a very large possible number. In this paper,

this problem is solved by defining a set of coverage criteria

with information provided by the QR model. This allows

to determine how well a system is tested with respect to its

environment. As existing testing techniques possibly do not

perform well on testing the environmental interactions, we

describe a method to automatically derive test suites for the

presented coverage criteria. The resulting technique can be

seen as a complementary technique for traditional testing

methods.

In detail, the contributions of this paper are as follows:

• Testing based on environmental models exercises a

system under test in ways that might not be possible

with traditional behavioral models.

• QR, a well-known AI technique to represent and rea-

son about physical systems, is adapted to software test-

ing.

• A set of coverage criteria for QR models allows evalu-

ation of test suites with regard to the environment.

• A method for automated coverage based test case gen-

eration for QR models is proposed.

This paper is organized as follows: First we give a brief

introduction to QR modeling in Section 2, then we define

several coverage criteria based on QR models in Section 3.

In Section 4 we describe how to automatically derive test

393

cases for the discussed coverage criteria and present the re-

sults of applying the test case generation to a case study

model. Finally, we consider related research in Section 5

and conclude the paper in Section 6.

2 Qualitative Reasoning

The initial idea that lead to the development of QR was

to formalize and finally implement commonsense reason-

ing about physical systems. The objective was to enable a

computer to use the same reasoning capabilities as humans

have. Typical application areas include trouble shooting of

physical systems and tutoring systems. Because QR offers

techniques for representing physical knowledge in an ab-

stract way it fits well for testing embedded systems in terms

of their environmental interactions. In the case of testing

embedded systems we consider the system software as a

black box with an interface to the environment comprising

sensors and actuators; this interface has to be tested with

respect to all possible interactions.

In most cases system environments have infinite rather

than finite domains like a switch with four positions. Al-

though infinite domain environments are made finite by

quantization during Analog to Digital conversion the state

space is still too large for enumeration. In addition, such

environmental quantities with infinite domains show con-

tinuous behavior that can be expressed by differential equa-

tions. We use Qualitative Reasoning (QR) to express envi-

ronmental behavior in an abstract form. Qualitative abstrac-

tion maps large or infinite domains to intervals separated by

points (landmarks), which enables QR engines to infer all

possible behaviors from a model. This is in contrast to tra-

ditional testing techniques, where the test engineer has to

develop test scenarios that reflect possible traces of the envi-

ronment and thus very likely forgets some important traces.

Modeling in QR might follow different branches like

qualitative simulation [8] or qualitative process theory [6].

In this paper we use qualitative process theory as the under-

lying QR modeling paradigm because of the general avail-

ability of tools like Garp3 [4]. For a detailed description

of the functionality and QR modeling capabilities of Garp3

we refer the reader to [2, 5]. In order to be self contained

we briefly introduce the basic concepts of modeling in QR

and Garp3. Garp3 models comprise a set of model frag-

ments. Two main types of fragments can be distinguished:

static and process model fragments. Static fragments repre-

sent behavior that is invariant with regard to time, such as

proportional relations between quantities, like, for example

“the amount of water in a vessel is proportional to the water
level”. A dynamic fragment introduces changes via influ-

ences between quantities, for example “a positive flow rate
into a vessel will increase the amount of liquid and hence
the liquid level over time”.

The behavior of a system comprises at least one but usu-

ally more model fragments that are activated when certain

boundary conditions are met. Garp3 adds the consequences

of a model fragment as new facts to the knowledge base, un-

less they contradict existing facts. Model fragments enable

the designer to partition the system domain into qualita-

tive equivalence classes that capture certain behavior. Dur-

ing simulation the set of fragments collected in a library

changes between being active and inactive as the system

evolves over time.

Within a model fragment the main modeling primitives

are entities, quantities, proportionalities, and a set of ordi-

nal relations. In dynamic model fragments there are addi-

tional influences. Entities are the components of the sys-

tem that have certain properties expressed through associ-

ated quantities. For example, an entity ”tank” has quantities

like ”level” and ”inflow rate”. Proportionalities establish a

mathematical relation between two quantities in the form

of a monotonic increasing or decreasing function. The no-

tation P+ (Q1,Q2) expresses that a change of Q2 causes a

change of Q1 in the same direction. A proportionality with a

minus sign states that a change of the cause quantity induces

a change in the opposite direction of the effected quantity.

Ordinal relations called inequalities provide means to

constrain possible behavior. Influences cause dynamic

changes of the system and provide means for integration.

For instance, I+ (Q1,Q2) means that the value of Q2 de-

termines the change of direction of Q1. If Q1 is positive

Q2 increases, if Q1 is zero Q2 does not change, and if Q2

is negative Q1 decreases. The graphical notation used in

Garp3 states relations with arrows between quantities.

The initial state of the system is captured with scenarios.

This initial state and the model fragments serve as inputs to

the simulation engine. Simulation is used to generate the

behavior of a QR system. The simulation engine derives

everything that does not contradict the boundary conditions,

i.e, inequalities between quantities. QR models can only

describe systems with continuously changing quantities, as

stated by the continuity law [6]. In general, model creation

is an iterative process: One has to find the right level of

abstraction and check if the simulation output satisfies the

requirements. If there are discrepancies, the model has to

be adapted and simulated again.

Example: Consider the two-tank system from Figure 1.

The two tanks are connected via a pipe at the bottom. Water

can flow in both directions through the pipe. The flow rate

depends on the difference of water levels. The control sys-

tem has to hold the water level of tank2 constant at a spec-

ified height while the water level and inflow rate of tank1
varies. The control system can set the inflow to tank1 and

the outflow of tank2 via controlling the valves. The water

levels of both tanks are inputs of the control system. We use

394

Figure 1. Two-Tank Example System.

Figure 2. Model Fragment of the Two-Tank
System.

this model as a case study in this paper. Figure 2 shows the

Garp3 model fragment representing the physical relations

and the control loop of the two-tank system.

The water level of tank1 is the integral of the inflow rate

over time, represented via a positive influence from flow to

level. Tank1 has an auxiliary quantity diff for calculating

the difference in water levels. This difference determines

the water flow through the pipe while influencing the water

levels of both tanks. The quantity space of level in tank2
contains a set point for controlling the water level. We use

the auxiliary quantity diff of tank2 to calculate the control

deviation. The control loop is closed via a P and an I arrow

to the actuator controlling the outflow valve resulting in a

PI-controller. According to control theory the proportional

part ensures quick response to changes and the integration

part eliminates permanent control deviations. The setting of

the outflow valve has a negative influence to the water level

of tank2. Finally, equalities between the maximum tank wa-

ter levels and valve flow rates makes them comparable while

reducing ambiguity.

3 Coverage Criteria for QR Models

In general, one of the main problems one has to face

when generating test cases is which test cases out of a

large or infinite set to choose. Coverage criteria have been

successfully used as stopping criteria when generating test

cases, to evaluate test suites, and to automatically derive test

cases.

A coverage criterion describes a set of items that the test-

ing process should exercise. Many different coverage crite-

ria have been defined based on both source code and speci-

fications. For example, given a transition system we might

aim to cover each transition of every state at least once.

When using explicit environment models the question of

which test cases to select remains. Therefore, we define a

set of coverage criteria for QR models: domain coverage,

delta coverage, full delta coverage, as well as the traditional

state and transition coverage.

The simulation of a QR models results in a state

space representation of all possible behaviors that may

evolve over time, starting with an initial scenario. This

output is a QR transition system (QR TS) M =
(S, T, s0, Q, qs, QS, v, δ), where S is the set of states, T
is the transition relation T ⊆ S × S, and s0 ∈ S is the

initial state.

Every quantity q ∈ Q has an associated quantity space

in the domain of quantity spaces QS, and the function

qs : Q → QS maps each quantity to its associated quan-

tity space. Each state s ∈ S binds each quantity to a distinct

value and delta. The value v for quantities in Q and states in

S is defined as v : S×Q → qs(Q), and the delta δ is defined

as δ : S × Q → {min, zero, plus}. The delta of a value

stands for its direction of change over time, δ ∼ ∂value
∂t .

Below we define a set of different coverage criteria. A

coverage value according to these coverage criteria can be

measured as the ratio of covered items to items in total as

defined in the coverage criterion. As will be described in

Section 4, a test case created from a QR TS is itself a QR

TS t = (St, Tt, s0,t, Qt, qst, QSt, vt, δt). A test suite T is

a set of test cases.

In a QR transition system, the state of the environment

is given by a value assignment to the model’s quantities.

Each quantity q ∈ Q has a finite domain, its quantity space:

qs(q) = {d0, d1, . . . , dn}, therefore it is feasible to require

each quantity to take on all of its values. This coverage

criterion is called Domain Coverage.

Definition 1 (Domain Coverage) A test suite T achieves
domain coverage, if for each quantity q ∈ Q, q there is
a test case t = (St, Tt, s0,t, Qt, qst, QSt, vt, δt) ∈ T for
each d ∈ qs(q), such that s ∈ St : v(s, q) = d.

Because testing all possible environment states might be

impractical, domain coverage offers a compromise by en-

395

suring that each possible domain value occurs at some point.

That is, given a test suite that satisfies domain coverage we

know that each possible environment value has been exer-

cised at least once.

As quantities change their values according to the de-

scription given in the QR Model, errors might only be de-

tected when considering value changes. In QR models, the

direction of change of a quantity is given by its delta, which

can be min, zero, or plus. Consequently, we define Delta
Coverage such that each quantity has changed its value in

every direction at least once.

Definition 2 (Delta Coverage) A test suite T achieves
delta coverage, if for each quantity q ∈ Q, q there are
test cases t1 ∈ T , t2 ∈ T , and t3 ∈ T such that
s1 ∈ St1 ∧ δ(s1, q) = min, s2 ∈ St2 ∧ δ(s2, q) = zero,
and s3 ∈ St3 ∧ δ(s3, q) = max.

Delta coverage ensures that every relevant quantity even-

tually changes its direction. Note that in Definition 2 t1, t2,

and t3 can be the same test case. Changes of direction ad-

here to the continuity law [6]. This means that a quantity

has to increase, stay steady, and then decrease or vice versa.

Sudden, non-continuous jumps on domain values or deltas

cannot happen.

Delta coverage can miss cases where some value change

causes an error but a different value change for the same

delta is chosen for testing. Consequently, we define Com-
plete Delta Coverage as a stricter variant of delta coverage.

Definition 3 (Complete Delta Coverage) A test suite T
achieves complete delta coverage, if for each quantity q ∈
Q with quantity space qs(Q), there are test cases t1, t2,
and t3 for each d ∈ qs(Q) such that s1 ∈ St1 ∧ δ(s1, q) =
min∧v(s1, q) = d, s2 ∈ St2∧δ(s2, q) = zero∧v(s2, q) =
d, and s3 ∈ St3 ∧ δ(s3, q) = max ∧ v(s3, q) = d.

Complete delta coverage is a combination of delta and

domain coverage demanding that every domain value of a

quantity changes its direction. Depending on the number of

quantities and the sizes of their quantity spaces, complete

delta coverage might be hard to achieve. Complete delta

coverage might also contain infeasible test goals; for exam-

ple it might not be possible to decrease a value (delta min)

at the lower bound of a quantity’s domain.

In addition to the above coverage criteria, we can apply

traditional coverage criteria for transition systems to the QR

TS. State coverage requires that each state of the QR TS is

visited at least once, and Transition coverage requires that

every transition of the QR TS is executed.

Definition 4 (State Coverage) A test suite T achieves
state coverage for QR TS M = (S, T, s0, Q, qs, QS, v, δ),
if for every s ∈ S there is a test case t =
(St, Tt, s0,t, Qt, qst, QSt, vt, δt) ∈ T such that s ∈ St.

Definition 5 (Transition Coverage) A test suite T
achieves transition coverage for QR TS M =
(S, T, s0, Q, qs, QS, v, δ), if for every (s, s′) ∈ T there is
a test case t = (St, Tt, s0,t, Qt, qst, QSt, vt, δt) ∈ T such
that (s, s′) ∈ Tt.

4 Automated Coverage Based Test Case Gen-
eration

So far we have defined coverage criteria to evaluate ex-

isting test suites. In this section we describe how to auto-

matically derive test suites that satisfy these coverage crite-

ria using QR models. For this we use a recently proposed

method [3] for deriving test cases from QR models with for-

mally defined test purposes.

4.1 Test Case Generation for QR Models

In general, test case generation with test purposes re-

quires a test engineer to write test purposes in a formal

notation. In the case of QR models, the approach de-

scribed in [3] uses properties defined with regard to quan-

tities to label the transitions of a QR TS. These properties

are used to turn the QR TS into a labeled transition sys-

tem, and to describe test purposes. For instance a property

a := tank1 : level gt zero, referenced by symbol a, de-

notes that the water level of tank1 is greater than zero. The

test purpose is specified via a regular expression over prop-

erty symbols. For example p{3}q denotes a sequence of

states, where property p holds in the first three states fol-

lowed by a state which satisfies property q. The regular

expression is converted to a finite automaton, and the syn-

chronous product of QR TS and test purpose results in a

Complete Test Graph (CTG), from which test cases are ex-

tracted.

As a QR TS can be nondeterministic, special care has to

be taken to ensure controllability, i.e., to make sure that a

test case can handle all decisions between different inputs

for the implementation. Consequently, test cases are not

linear sequences but transition systems that can handle al-

ternative outputs. Given a CTG, test cases are created by

searching backwards to the start state and forward to an ac-

cept state. Then the path is traversed and all parts of the

CTG that are reachable considering the implementation’s

nondeterministic outputs are added to the test case.

A resulting test case is a QR TS, which includes all infor-

mation needed for its execution in its states. Each QR state

comprises a set of quantities with their current values and

deltas. For test case execution, these abstract values have to

be mapped to concrete quantity values.

During test case execution, the concrete values are up-

dated regularly based on a time step Δt according to the

current state. The behavior of the output quantities decides

396

which transitions are taken, and a state is left as soon as

it becomes inconsistent with the input quantities it controls

and the observed output quantities. If there is no matching

successor state that is consistent with the observed outputs,

then the implementation fails the test case. When an ac-

cepting state is reached the implementation passes the test

case.

4.2 Coverage-based Test Purposes

Based on a given coverage criterion we automatically

generate test properties and regular expressions specifying

a test purpose satisfying the coverage criterion.

With the domain’s boundary values a and b we can for-

mulate a test purpose ([ˆa]∗a[ˆb]∗b)|([ˆb]∗b[ˆa]∗a) ensuring

domain coverage. It reads as follows: start from any value

in the domain but a boundary value, then reach one of the

boundary values, and finally the other one. Such a test pur-

pose covers all domain values of a certain quantity. We gen-

erate test purposes and furthermore test cases for all input

and output quantities of the test model (relevant quantities).

We can describe delta coverage with the same regular

expression as for domain coverage, but with fixed bound-

ary values min and plus since δ ∈ {min, zero, plus}. In

order to express complete delta coverage we generate test

purposes for each possible pair of domain value and delta,

e.g., (value1, min), (value1, zero), (value1, plus), ..., result-

ing in {3 · card(qs(q))|q ∈ Q} combinations. Such a test

purpose looks like [ˆp] ∗ p, where p is the property to be

searched for.

For state coverage we create test purposes like for com-

plete delta coverage but the properties we search for are

complete quantity assignments corresponding to a certain

state. We generate test purposes for every state in the speci-

fication. To ensure transition coverage we use a test purpose

for every transition in the specification, e.g., . ∗ pq. Here p
specifies the start state and q the end state of the transition

to be covered.

4.3 Demonstration and Results

The QR TS resulting from simulation of the two-tank ex-

ample system introduced in Section 2 comprises 113 states

with 305 transitions. In order to evaluate our proposed cov-

erage criteria we use transition coverage of obtained test

suites on the specification as reference measure. Tables 1

and 2 list from left to right the coverage criterion, the num-

ber of generated test purposes #TPs, the number of ob-

tained test purposes #TCs, and the transitions coverage on

the specification. For Table 1 we exhaustively extract test

cases from CTGs until all transitions of the according CTG

have been considered. Table 2 lists each criterion for only

one generated test case per test purpose.

Table 1. All Test Cases per Test Purpose
Coverage Criterion #TPs #TCs Transition Cov.

Domain 5 120 220/305

Delta 5 133 217/305

Complete Delta 60 850 297/305

State 113 1434 305/305

Transition 305 2256 305/305

Table 2. One Test Case per Test Purpose
Coverage Criterion #TPs #TCs Transition Cov.

Domain 5 5 35/305

Delta 5 5 60/305

Complete Delta 60 42 119/305

State 113 113 168/305

Transition 305 305 305/305

Figure 3 depicts an example test case created for domain

coverage on quantity Tank2:Diff. Figure 3(a) shows a state

sequence leading to an accept state and Figure 3(b) shows

the according value history. With regard to delta coverage

this test case covers δ = zero and δ = plus for quantity

Tank2 : Flow. The test case also covers 3 out of 8 possi-

ble value/δ combinations for complete delta coverage, and

5 states and 4 transitions.

(a) Test Case

(b) Value History

Figure 3. Test Case for Domain Coverage for
Quantity Tank2:Diff.

5 Related research

Tretmans [9] described test case generation for Labeled

Transition Systems (LTS). The paper focused on Input-

Output-LTS (IOLTS) and introduced conformance relations

for them. The proposed testing theory also deals with states

397

where quiescence is allowed. Jard and Jeron [7] presented

a tool for automatic conformance test generation from for-

mal specifications. They used IOLTS as formal models and

defined the ioco conformance relation for weak input en-

abled systems. Test cases are generated using defined test

purposes.

Auguston et al. [1] introduced the use of attributed event

grammars for generating test-cases from environment mod-

els for reactive systems. In the paper the authors use the

grammar for representing an event-based model. Possible

execution traces of the model form the test-cases. Insofar

the underlying idea for test-case generation as described in

this paper is very similar, but can be distinguished with re-

spect to the underlying modeling language. Whereas Au-

guston et al. are using attributed event grammars, in this

paper we are proposing the use of qualitative models for

test-case generation.

6 Conclusions

In this paper we presented a set of coverage criteria based

on QR models: Domain coverage, delta coverage, and com-

plete delta coverage, as well as state and transition coverage

for QR TS resulting from simulation of QR models. In con-

trast to previous work, these coverage criteria can be used

to measure how thoroughly testing is done with regard to

a model that includes an qualitative environmental descrip-

tion. Qualitative models represent all possible physical be-

haviors of systems and their environments, and can be used

to find test cases which might not be considered when only

using a system’s specification. The approach is especially

well suited when a physical model is available, e.g., in the

embedded systems area. We described a method to auto-

matically derive test cases for the proposed criteria, and il-

lustrated the feasibility on a case study.

Initial results on a case study application show that use-

ful test cases can automatically be generated from QR mod-

els using the described coverage criteria. As expected, the

experiments show that the different criteria can be used to

vary the amount of test cases generated from a QR model.

We are currently in the process of evaluating the approach

on models derived from Matlab Simulink models via qual-

itative abstraction. First experiments indicate a sound test

case execution, and resulting test cases exercise the inter-

actions of a system under test with its environment. Future

work will include application of the presented methods to

larger models.

Acknowledgements This work has been supported by the

FIT-IT research project Self Properties in Autonomous Sys-
tems(SEPIAS) which is funded by BMVIT and the FFG, and the

EU project ICT-216679, Model-based Generation of Tests for De-

pendable Embedded Systems (MOGENTES). The research herein

is partially conducted within the competence network Softnet Aus-

tria (www.soft-net.at) and funded by the Austrian Federal Min-

istry of Economics (bm:wa), the province of Styria, the Steirische

Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vi-

enna in terms of the center for innovation and technology (ZIT).

References

[1] M. Auguston, J. B. Michael, and M.-T. Shing. Envi-

ronment behavior models for scenario generation and

testing automation. In International Workshop on Ad-
vances in Model Based Testing (A-MOST 2005), St.

Louis, Missouri, USA, 2005. ACM.

[2] A. Bouwer, J. Liem, and B. Bredeweg. User Manual
for Single-User Version of QR Workbench. Naturnet-

Redime, STREP project co-funded by the European

Commission within the Sixth Framework Programme

(2002-2006), 2005. Project no. 004074. Project deliv-

erable D4.2.1.

[3] H. Brandl, G. Fraser, and F. Wotawa. Qr-model based

testing. In AST 2008, Third Workshop on Automation
of Software Test, 2008. To appear.

[4] B. Bredeweg, A. Bouwer, J. Jellema, D. Bertels, F. F.

Linnebank, and J. Liem. Garp3 - a new workbench

for qualitative reasoning and modelling. In Proceedings
of 20th International Workshop on Qualitative Reason-
ing (QR-06), pages 21–28, Hannover, New Hampshire,

USA, 2006.

[5] B. Bredeweg, J. Liem, A. Bouwer, and P. Salles. Cur-
riculum for learning about QR modelling. Naturnet-

Redime, STREP project co-funded by the European

Commission within the Sixth Framework Programme

(2002-2006), 2005. Project no. 004074. Project deliv-

erable D6.9.1.

[6] K. D. Forbus. Qualitative process theory. Artificial In-
telligence, 24:85–168, 1984.

[7] C. Jard and T. Jeron. TGV: theory, principles and

algorithms. International Journal on Software Tools
for Technology Transfer (STTT), 7(4):297–315, Octo-

ber 2004.

[8] B. Kuipers. Qualitative simulation. Artificial Intelli-
gence, 29:289–388, 1986.

[9] J. Tretmans. Test generation with inputs, outputs, and

quiescence. In TACAS ’96: Proceedings of the Sec-
ond International Workshop on Tools and Algorithms
for Construction and Analysis of Systems, pages 127–

146. Springer-Verlag, 1996.

398

Traceability Models to Control an Aspectual Model -Driven Development

Marta S. Tabares
PI/Escuela de Ingeniería de

Antioquia,
Colombia

pfmstabare@eia.edu.co

Raquel Anaya
Escuela de Ingeniería,
DS/Universidad EAFIT

Colombia
ranaya@eafit.edu.co

Ana Moreira
CITI/Departamento de

Informática, FCT/Universidade
Nova de Lisboa, Portugal

amm@di.unl.edu.pt

João Araújo
CITI/Departamento de

Informática, FCT/Universidade
Nova de Lisboa, Portugal

ja@di.unl.edu.pt

Fernando Arango
Escuela de Sistemas

Universidad Nacional de Colombia, Colombia
farango@unalmed.edu.co

Abstract

Model-Driven Development and Aspect-Oriented
Software Development are paradigms that provide
mechanisms to support the requirement evolution.
While model-driven development contributes with a
standard way to make model transformations
through different abstraction levels, aspect-oriented
software development provides mechanisms to
separate concerns and compose crosscutting
concerns. In this paper, we present Traceability
Models as patterns to control the model
transformations during the architectural separation
of concerns. Thus, we can achieve quality features in
the development process such as decreasing conflicts
between stakeholders, avoiding invasive changes,
and wrapping traceability in the modeling tasks.

1. Introduction

Controlling software requirement evolution is one
of the most important activities in the development
process to achieve reliable software products.
Although several traceability approaches have been
proposed, this topic is still under research [1-4]. In
our investigation, we have found some issues that
could frustrate a good traceability practice: (1) the
software development process complexity; (2)
requirements evolve, but the corresponding model
elements are not changed accordingly in remaining
abstraction levels; (3) the changes might be invasive
(tangled or scattered); (4) development models
change, but support artifacts such as traceability
matrices are not updated. Moreover, in the software
industry, traceability is carried out as an additional

task to the modeling tasks, and its use and
maintenance depends on quality standards and model
information adopted by the developers.

Nevertheless, new development paradigms could
provide model elements and development strategies
that might help to resolve traceability issues during
requirement evolution.

Model-Driven Software Development (MDSD)
provides transformation mechanisms based on
patterns that provide rules to transform models in
different abstraction levels, and thus to preserve the
architectural separation of concerns. But, the model
complexity and the transformation of relationships
are not dealt with. On the other hand, traceability is
commonly understood as the information retrieved
from transformation operations [5-7].

Aspect-Oriented Software Development (AOSD)
provides mechanisms to promote separation of
concerns throughout the software lifecycle, by
identifying, modularizing and later composing
crosscutting concerns. These features might help with
the control of the concern traceability [8-12].

In our approach, we use MDSD and AOSD to
control requirement evolution. Thus, we define
traceability as the skill to control transformation of
concerns and change propagation in different
abstraction levels, maintaining decomposition and
composition of crosscutting concerns by means of
traceability models. This approach considers the
following objectives:
1. To establish traceability models to control the

concern transformations and propagate changes in
different abstraction levels.

2. To deal with the decomposition of concerns and
composition of crosscutting concerns through the
architectural separation of concerns.

399

The structure of this paper is as follows. Section 2
defines traceability models. Section 3 establishes
traceable model elements. Section 4 defines the
concern roles. Section 5 presents related works and
compares them with our approach. Finally, Section 6
concludes and shows directions for future work.

2. Traceability Models

Traceability models are instances of the metamodel
shown in Figure 1. A Traceability Model is a pattern
to control the model transformations, support the
concerns evolution, and help in complementary
tracing tasks such as the change cost-benefit analysis,
and verification of consistency and completeness of

system models. Each traceability model is composed
by traceable model elements defined in a meta
concern space where they can be identified by means
of following roles: axis of tracing, predecessor, and
successor. In order to achieve concern
transformations, the concerns that act as axis of
tracing are the sourceElement of the transformation
and have associated a set of rules
(TransformationRule class) to determine
predecessors and successor elements
(targetElements). They control the transformation
and change propagation of concerns by means of the
TraceabilityModel – Engine, which is supported by
two classes: VersionController and
PropagationController.

Figure 1. Meta Model for Traceability

3. Traceable Model Elements

A traceable model element is a concern which we
see as a coherent collection of model elements, e.g.,
requirements, use cases, classes, collaborations, etc;
this describes or represent a specific objective or
function in the system. Each concern is represented
by a UML package that uses a specific stereotype to
identify the type of behavior or information grouped
in it.

In order to reduce the complexity and provide a
standard modeling for traceability practice, we make
the following separation of concerns:

<<Functional Concern>>: this concern gathers
model elements that represent a basic function of a
system.

<<QualityService Concern>>: this concern
gathers model elements that represent quality
services for the system. For example: usability,
security, persistency, etc.

<<BusinessRules Concerns>>: this concern
gathers model elements that represent either
functional constraints or business rules. For example:
taxes, discounts, statistics, etc.

<<Information Concern>>: this concern gathers
model elements that represent requirements or
entities of information.

<<Context Concern>>: this concern gathers
model elements that represent internal or external
subjects or entities that generate input or output
events.

Concerns such as Information, and Context are
called Support Concerns since they help to achieve
the objectives of Functional Concerns. Between these
concerns, we use relationships such as <<provide>>
or <<use>>. Concerns such as Quality Service, and
Business Rules are called Crosscutting Concerns
because they crosscut with additional functionality
several Functional Concerns (they are considered
Support Concerns when they only contribute with
one Functional concern). Specifically, the
<<crosscut>> relationship establishes the

400

composition between a crosscutting concern and
Functional concerns.

Furthermore, an architectural separation of
concerns is achieved by means of concern models.
They are a set of interrelated concerns that represent
the decomposition and composition of a problem in
an abstraction level (e.g., requirements or
architectural levels). Relationships between concerns
are stereotypes (e.g., <<provide>>, <<crosscut>>)
defined according to the types of concerns related.

In order to illustrate our ideas, we use the case
study that deals with the Health Watcher System
(HWS) case study. The HWS is a web-based
application to manage health complaints [13]. Several

concerns and their model elements have been
identified, but due to lack of space we will
concentrate on the concerns Complaint, and
Usability. Figure 2(a) shows a view of the
<<Functional Concern>> Complaint which is
supported with the <<Information Concern>>
Complaint-Info and crosscut by the <<Quality
Service Concern>> Usability. Figure 2(b) shows the
<<QualityService Concern>> Usability crosscutting
the <<Functional Concern>>: Login,
QueryInformation, Complaint, and
ManagementSystem. Both views are constructed in
the requirement level.

 (a) (b)

Figure 2. Two Requirements Concern Models views, for the Health Watcher System.

4. Concern Roles in the Traceability
Model

Traceable model elements play three basic roles in
traceability models:

axisTracing (C, {ri}). A kind of concern C is
declared as an axis of tracing jointly with its
transformation rules (ri). An axisTracing concern
controls transformations, change operations and their
propagation.

Predecessor. A predecessor concern CPr precedes
an axisTracing concern that has matched backward
transformation rules to generate it.

Successors. A successor concern CSc succeeds the
axisTracing concern that has matched forward
transformation rules to generate it.

The tracing links between them are realization
<<realize>> and refinement <<refine>> UML
relationships:

<<realize>>(source, target). Trace relationship
between axisTracing and successor tracing elements.

The source is the successor, and the target is the
axisTracing. Commonly, they are in different
abstraction level, and target elements realize source
elements.

<<refine>>(source, target). Trace relationship
between axisTracing and predecessor tracing
elements. The source is the axisTracing, and target is
the predecessor. They can be in the same abstraction
level, and source elements refine target elements.

In order to avoid invasive changes in the system
and verify easier consistency and completeness
quality attributes in the models, we define two kinds
of traceability models:

(i) Centered in Functional Concerns: the
axisTracing concern is a Functional Concern that
gather use cases (see Figure 3).

(ii) Centered in Composition Elements: the
axisTracing concern is a model element identified as
crosscutting concern and is part of a
<<CompositionElement>>.

401

Other ones might be defined by developers
according to necessity of tracing and evolution of
model elements.

Figure 3. Pattern Centered in Functional Concerns.

Figure 4 shows a first version of a traceability
model centered in Functional concerns for the
Complaint concern. <<Functional Concern>>
Complaint and <<Information Concern>>
Complaint_Info have been declared as
<<axisTracing>> concerns. The first gathers both
Specify Complaint and Update Complaint use cases
as model elements that represent the complaint
function. The second (support concern) helps to
make the complaint actions and gathers the

Complaint class. Each one has a set of transformation
rules to generate predecessors and successors
concerns. In this example we consider concern
models in two abstraction levels: Requirements
Concern Model (RCM) whose instances are created at
the requirement level, and their concerns gather
model elements such as requirements, use cases and
entities; Architectural Concern Model (ACM) whose
instances are created (by means of transformation
rules) at the architectural level, and their concerns
gather model elements such as use case realizations,
classes, operations, etc.

Each transformation rule is unique and consistent
to guarantee the homogeneity of the concerns in
different abstraction levels. Two types of rules are
defined: Root rules, which transform concerns and
their relationships, and Subordinate rules which
transform model elements of the concerns. Each rule
is composed by source and target elements. The
transformation is bidirectional (forward and
backward), horizontal (between concerns of the same
abstraction level), and vertical (between concerns of
different abstraction levels).

Table 1 show some rules performed from the
axisTracing elements where the source concern
model is in requirement level, and the target concern
model is in architectural level (i.e., analysis
architecture).

Requirements Concern Model - Complaint Architectural Concern Model - Complaint

Figure 4. Traceability Model for the Complaint Concern.

402

Table 1. An Example of Transformation Rules.

Rule (source2target) Description
Root rule #1: Req_FunctionalConcern2Arq_FuctionalConcern
(Forward, vertical)

A Function concern from RCM (e.g., Complaint) is transformed into
a Functional concern in the ACM.

Subordinate rule #1.1:
UseCase2RealizationUC+ControlClass+Operation

A base use case (e.g., Specify Complaint) of a Functional Concern
(e.g., Complaint) in the RCM is transformed into the following target
model elements in the ACM: use case realization, a control class, its
operation, and the association relationship with the entity class in the
Information Concern of the ACM (transformed by other rule). ACM
model is illustrated in the Figure 4.

Root rule #2:
Req_InformationConcern2Arq_InformationConcern (Forward,
vertical)

A Information concern from RCM is transformed into an Information
concern in the ACM; e.g.,

Subordinate rule #2.1: Entity2EntityClass+Ops An Entity (e.g., Complaint) of an Information Concern in the RCM is
transformed into an analysis Entity Class and their basic operations,
all as target model elements in the ACM.

Although these rules are written in a natural
language, also they might be written in some formal
transformation language.

Transformation rules have to be very well defined
to make accurate change propagation. Thus, since
<<axisTracing>> elements the developer can
measure the change impact and execute a sequence of
chained rules defined according to relationships
among concerns.

5. Related Work

Almeida et al. provide a methodological
framework that allows designers to relate
requirements to the different design process products
driven to models. This framework is a base used to
trace requirements and quality evaluation of the
model transformation specifications for metamodels,
models and realizations. The traceability is presented
in a cross reference table between requirements and
models on different abstraction levels [14].

Berg et al. define crosscutting concerns based on a
traceability pattern; besides, the impact analysis is
based on traceability of dependencies between
elements in software artifacts in both metamodel and
model [15].

Kurtev et al. tackle analysis of change in the
model transformation, generating traces between
source and target model elements. Each trace is
formed by sets of source and target elements and a
rule that uses theses elements. The trace model is
generated after the execution of a transformation
[16]. In our approach, traceability models are patterns
to control the concerns transformation and change
propagation. These models help to assess the change
impact analysis by means of a change management
method.

6. Conclusions and Future Work

Our approach incorporates traceability as part of
the development process, defining traceability
models as patterns to control concerns evolution
based on architectural separation of concerns, and
concern transformations.

Architectural separation of concerns by means of
concern models allows us to trace type of concerns,
preserving their decomposition and composition in
different abstraction levels. In other words, we
achieve horizontal and vertical separation of concerns
from requirement to architecture using stereotyped
packages and concern models. In addition,
crosscutting concerns can be traced independently,
without losing the consistency with the basic models,
since we define horizontal and vertical composition
of concerns and its transformations. These features
help to diminish the complexity in the development
process, avoid invasive changes, and resolve
conflicts between stakeholders from requirement
specification.

In traceability models, the transformation is
controlled by means of concerns that act as axis of
tracing. They have a set of root and subordinate rules
which guarantee concerns homogeneity from
requirements to architecture, and propagate the
change to predecessor and successor concerns. These
models are used in a method to support the changes
management. Hence, both models and matrices of
traceability are instances of them and their update is
automatic.

We are currently developing a traceability method
based on the traceability models in an academic
modeling CASE tool.

403

7. References

[1] O. Gotel, and A. Finkelstein, “Extended requirements
traceability: results of an industrial case study”. 3rd IEEE
Intl. Symposium on Requirements Engineering (RE’97).

[2] B. Ramesh, and M. Jarke, “Towards reference models
for requirements traceability”. IEEE TSE, 27(1), 2001.

[3] A. Egyed, “A scenario-driven approach to trace
dependency analysis”. IEEE TSE 29(2): 116-132, 2003.

[4] J. Cleland-Huang, C.K. Chang, and M. Christensen,
“Event-based traceability for managing evolutionary
change,” TSE 29(9), Sept. 2003 Page(s):796 – 810.

[5] MDA-Guide, OMG Document v1.0.1, omg/03-06-01.

[6] S.J. Mellor, A.N. Clark, T. Futagami, “Guest Editors'
Introduction: Model-Driven Development”. IEEE Software
20(5): 14-18 (2003).

[7] Stahl, T., and M. Volter, Model-Driven Software
Development-Technology, Engineering, Management, John
Wiley and Sons, Ltd., Chichester, England 2006. (2005).

[8] Filman, R.E., T. Elrad, S. Clarke, and M. Aksit, Aspect-
Oriented Software Development. Addison Wesley 2004.

[9] A. Moreira, A. Rashid, and J. Araujo,
“Multidimensional Separation of Concerns in
Requirementes Engineering”, Intl. Conf. on RE, 2005.

[10] Jacobson, I., P.W. Ng, Aspect-Oriented Software
Development with Use Cases, Addison Wesley
Professional (2005).

[11] Clarke, S., E. Baniassad: Aspect-Oriented Analysis
and Design. The Theme Approach. Ed: Addison-Wesley,
Object Technology Series (2005).

[12] R. Chitchyan, A. Rashid, P. Sawyer, et al., “Survey of
Aspect-Oriented Analysis and Design Approaches”,
AOSD-Europe-ULANC-9, May 2005.

[13] Health Watcher Case Study,
http://aosd.di.fct.unl.pt/ea-
icse2007/documents/Health_Watcher_Usecase_v2_1.pdf.

[14] J.P. Almeida, P.Eck, M.E. Iacob, “Requirements
Traceability and Transformation Conformance in Model-
Driven Development”, Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing
Conference (EDOC'06).

[15] K. van den. Berg, B. Tekinerdogan, and H. Nguyen,
“Analysis of Crosscutting in Model Transformations”,
ECMDA Traceability Workshop. 2006.

[16] I. Kurtev, M. Dee, A. Goknil, K. van den Berg,
“Traceability-based Change Management in Operational
Mappings”, ECMDA Traceability Workshop 2007.

404

Knowledge-based system development with scripting technology –
a recommender system example

Dietmar Jannach
Department of Computer Science

Dortmund University of Technology, Germany
e-mail: dietmar.jannach@udo.edu

Abstract

The core functionality of many knowledge-based sys-
tems is built with the help of special-purpose software com-
ponents and programming environments such as rule en-
gines or Prolog interpreters. Other parts of the application
– like the Web interface – are however built with “stan-
dard” software development technology like Java which
means that not only the corresponding interfaces and data
exchange mechanisms between the components have to
be developed, but also that the software developers have
to work with different technologies or even programming
paradigms.
In this paper we show how recent “scripting” extensions
in a programming language like Java can be exploited to
develop highly flexible and extensible knowledge-intensive
applications. The different advantages of such an approach
are discussed based on the experiences gained from de-
veloping a scripting-based software library for building
knowledge-based recommender applications.

1. Introduction

The possible advantages of a knowledge-based software

development approach are well known. The domain knowl-

edge can be separated from the reasoning knowledge while

at the same time optimized off-the-shelf reasoning engines

can be used to automate the inferencing or problem solving

process.

In many real-world or commercial applications, how-

ever, only a part of the “intelligent” system will be devel-

oped with the help of special programming environments

such as LISP or Prolog or by use of a rule-engine like Jess1.

The web interface or the database layer will most probably

be developed with the help of “standard” technology such

1http://www.jessrules.com/jess/index.shtml

as Java, Servlets, or Java Server Pages. This mix of tech-

nologies brings additional complexity to the software de-

velopment process since programmers not only have to im-

plement the different interfaces and data exchange channels

but – more importantly – are faced with different program-

ming paradigms.

In the field of programming languages, we can ob-

serve signs of a revival of “scripting” languages in recent

years. Despite their disadvantages with respect to type-

safety, compile-time problem detection and run-time per-

formance, languages like PHP, Python and recently Ruby

became popular in particular for web application develop-

ment as they – according for instance to [13] – promise to

be advantageous with respect to flexibility and developer

productivity. From our point of view, the aspects of flex-

ibility and in particular extensibility that these interpreted

languages provide also make them interesting for the devel-

opment of knowledge-intensive systems.

In this paper, we report and discuss our experiences

gained from developing the light-weight JPFINDER library

for building knowledge-based recommender systems . The

library is fully written in the Java programming language

and exploits the language’s recent “scripting” support to

achieve the required levels of extensibility and compactness

of the knowledge bases. Overall, the work shall thus ex-

emplify one of the options of embedding knowledge-based

system development into industrial software development

processes and environments.

2. Application domain & system architecture

In the field of recommender systems, the following main

approaches can be distinguished: Classical community-
based recommender systems base their proposals on item

ratings, user similarities, and collaborative filtering tech-

niques, see [1] for a recent overview. Content- or

knowledge-based systems on the other hand operate on the

basis of further pieces of information, which can for in-

405

Figure 1. Preference elicitation Figure 2. Recommendation & explanation

stance be knowledge about the items to be recommended

and/or knowledge about directly or indirectly acquired pref-

erences of the users. Typical techniques used in the lat-

ter type of systems are for instance filter-based matching,

similarity-based retrieval or utility-based ranking [4].

Screenshots of a typical interactive recommender appli-

cation in the sense of [5] are shown in Figure 1 and Figure

2. The user is first guided through a series of possibly per-

sonalized questions in order to determine her specific needs

(Figure 1). At the end of this dialog, the system comes up

with a recommendation and – due to its knowledge-based

nature — is also capable of explaining the reasons for this

particular proposal, retrieve other similar catalog items, or

let the user revise or specify additional requirements.

It can be easily observed that such applications

are knowledge-intensive, meaning that various pieces of

domain-specific information have to be encoded in the

background. Examples for such knowledge chunks are for

instance the matching rules that determine which items suit

some given requirements, utility functions for ranking the

items, or personalization rules to adapt the user interface

and navigation path according to the current user profile.

In [5], CWADVISOR, an integrated environment for

the development of such knowledge-based and highly

interactive recommender systems is presented. The

CWADVISOR system is designed as a classical and to some

extent heavy-weight expert system. It relies on the ex-

plicit representation of domain knowledge, provides a fully-

fledged graphical knowledge acquisition component, a rela-

tional database for persisting the knowledge as well as pro-

prietary languages for modeling filtering or personalization

rules.

The JPFINDER library discussed in this paper imple-

ments many of the features of CWADVISOR and was de-

signed to be a light-weight alternative to the comprehensive

CWADVISOR expert system. In particular it should also take

advantage of recent scripting features of the Java program-

ming language as to reduce the development efforts that are

required for rule processing while at the same time extensi-

bility and flexibility should be retained.

In the work presented herein, we will particularly focus

on how the rule knowledge is represented and processed,

as the development of software systems that are governed

by business rules are in wide-spread industrial use also in

other application domains. In the CWADVISOR system, a

proprietary rule language is used. The statements are ei-

ther parsed, translated and compiled to Java code [8] or di-

rectly executed with the help of a proprietary rule interpreter

[5]. In either case, a comparably complex parser and com-

piler component as well as a graphical tool for modeling

the rules (including for instance auto-completion and cor-

rection features) are required, whereas JPFINDER relies on

scripting technology for that purpose.

The overall architecture of the JPFINDER system is out-

lined in Figure 3. At the core, the Recommender Engine
interacts with the different users of the system and cor-

respondingly maintains Recommender Session objects that

contain the current user’s profile. The Engine has a defined

Application Programming Interface to manipulate the do-

main knowledge which can also be used for loading the

definitions from a persistent data store at system startup.

Several pluggable reasoning modules are also part of the

library and implement specific functionalities such as filter-

based matching, utility calculation or techniques for user

interface personalization.

3. Recommendation technique implementation

In the following, we will discuss the logic of

JPFINDER and some of its modules in more detail and in

particular focus on the scripting-based implementation of

the functionalities.

406

Figure 3. Architecture overview.

3.1. The user & product model

In JPFINDER, every piece of information about the user

and the preferences used for generating recommendations

are contained in the user model. In order not to limit the

generality of the approach, the user model is thus generally

defined to be a finite set of variables UV (user variables),

each of them with a defined data type. Variables can be

either string-valued or numeric; of both types, multi-value

instantiations are possible, see for instance the choice of

preferred features in Figure 1. Note again that the values

for variables in UV do not necessarily have to be directly

acquired through questioning but can also be derived “inter-

nally”, e.g., based on scoring schemes or other value deriva-

tion rules. The set of specific (input) values for one individ-

ual user shall be denoted as IV. In fact, also complex user

modelling techniques – that for instance maintain a history

of user interactions – can be employed. The implementation

of such profiling or learning techniques is however beyond

the scope of JPFINDER.

Similarly, the product model defines the characteristics

of the items to be recommended. The product character-

istics are described by a set of variables PV (product vari-

ables) with defined data types. Beside regular product fea-

tures, the product model can also be used to describe “ex-

ternal” product characteristics such as vendor reliability or

current stock availability in a given shop.

Each individual recommendable item is thus described

by a set of key-value pairs; the set of all items forms the

product is denoted as product catalog PC.

In the example, UV, PV, PC and some user inputs IV1

could be as follows, using Java notation for data types.

UV = {pref price : Double,
pref features : String[], ..}

PV = {price : Double, resolution : Double, ..}
PC = {{price : 400.00, resolution : 3, ...},

{price : 300.00, resolution : 2, ...}}
IV1 = {pref price = 100, pref features = ..}

3.2. Filter-based matching

Model. With filter-based matching we mean a technique

in which customer preferences are directly or indirectly

mapped to constraints on product properties. Such filter-

based approaches are also commonly used in similarity-

based systems to pre-filter the set of products to be com-

pared [11].

In JPFINDER, the mapping from user preferences to de-

sired product characteristics can be expressed in the form

of “if-then-style” rules, i.e., a filter rule FR < AC,FC >
consists of an activation condition AC and a filter constraint
FC. We use FR.AC(IV) to refer to the evaluation of the

activation condition given input values IV and FR.FC to

refer to the filter constraint definition.

A typical filter rule in the domain could be: ”If the user
prefers the lower price range then recommend items with a
price lower than 200 Euro.” Formally, filter rules are inter-

preted as follows. Let AC be an expression over variables

in UV , FC an expression over the variable set UV ∪ PV .

IV are the customer input values and PC is the product

catalog given in the form described above.

Given these inputs, the “catalog query” Q is thus the con-

junction of FC-expressions of those filter rules for which

AC evaluates to true, i.e.

Q ≡ ∧(f.FC)|f ∈ FR ∧ f.AC(IV) = true

If we interpret the product catalog PC as a relational

database table, filtering the set of recommended products

RP corresponds to performing the database query σQ on

PC.

Scripting-based implementation The implementation of

filter-based matching in JPFINDER relies on a recent algo-

rithm [9] which also supports fast query relaxation for fail-

ing queries and which is based on compact in-memory data

structures and partial in-advance query evaluation.

Note that although there have been several efforts to

defining a common knowledge interchange format (see,

e.g., KIF2), no common representation mechanism for rules

or constraints is yet broadly established. In more recent

efforts, the general constraint language ESSENCE [7] has

been proposed and SWRL3 has been submitted to the W3C

as a rule language in the Semantic Web. Still, besides prob-

lems of syntactic complexity (SWRL) or limited expressive-

ness (ESSENCE), special purpose parsers, compilers, or in-

terpreters have to be employed to support these languages.

2http://logic.stanford.edu/kif/kif.html
3http://www.w3.org/Submission/SWRL/

407

Figure 4. XML representation of filter rules.

As a knowledge representation mechanism for the filter

constraints, JPFINDER therefore relies on JavaScript, which

is the default scripting language supported by the recent

Java 6 SE release. As described above, the filter rules are

written in a simple “if-then”-style, which in our experience

(see, e.g., [5]) is easy to comprehend also for domain ex-

perts who are not experienced in programming or specific

knowledge representation techniques. The activation con-

dition and the filter constraint are formulated as JavaScript

expressions over the variables of the user model.

In Figure 4, an example of a filter rule including relax-

ation priorities and explanation texts in the sense of [9] is

shown. At run time, the variables of the user model – which

may have been acquired via an ordinary Java Server page

or from a more elaborate user modelling component – are

forwarded to the scripting engine which then evaluates the

activation conditions of the rules. Those expressions that

evaluate to true are then used to filter the suitable catalogue

items. Note that The XML representation in Figure 4 is

optional as the library provides an appropriate Java-based

application programming interface for registering the filter

rules.

Within the expressions statements, all JavaScript lan-

guage constructs can be used and arbitrarily complex calcu-

lations are thus possible. The actual values of the variables

of the user- and product model are automatically put into

the scope of the scripting engine. With respect to extensi-

bility aspects, the chosen scripting approach also allows us

to define custom JavaScript functions that can be seamlessly

used within expressions. Consider, for instance, that a filter

constraint should be written that is activated whenever the

user has chosen a particular value from a set of options like

”if the customer preferences (among others) contain ’usb’
then ...”.

To that purpose, the knowledge engineer can write a

standard JavaScript program that tests for set membership:

function isContainedIn(value,um var) {..}
Custom functions like this can then be registered to the rec-

ommender engine at runtime and used within the filter con-

straint. Internally, the script code are automatically com-

piled into Java code for performance reasons, which is a

standard feature of Java SE. The only task of the recom-

mender engine is to put the current values of the session

into the execution scope when the function is called.

3.3. Utility- and similarity-based retrieval

Retrieving items based on their expected utility to the

user or based on the similarity with (individual features of)

another item are two other techniques used in knowledge-

based recommendation, see [2] or [3].

At the core of utility-based approaches, a utility func-
tion is used whose value either depends on specific prod-

uct features alone or which also takes the user’s preferences

into account. A typical evaluation scheme for determining

such personalized utility values can for instance be based

on Multi Attribute Utility Theory (MAUT) [8, 14].

Within JPFINDER, such arbitrarily complex utility func-

tions can be defined in a similar way like the custom ex-

tensions mentioned above, i.e., with the help of JavaScript

functions.

Figure 5. Fragment of utility function.

A fragment of a possible utility function that both eval-

uates product features and user preferences is sketched in

Figure 5. At run time, JPFINDER applies the function on

408

each catalog item separately. The resulting utility values

can then be used to sort the items in the recommendation

list accordingly. JPFINDER supports two variants of utility

functions, static and dynamic ones. If a utility function is

marked to be static then no user model variables must be

used in the function. This differentiation is mainly intro-

duced for performance purposes. If no user model variables

are used, the values of the utility function will be the same

for all customers, which in turn means that the correspond-

ing values can be pre-computed when the library is initial-

ized. “Dynamic” evaluation functions have to be evaluated

in the context of the requirements of a specific user like in

the MAUT approach.

In the same way, custom functions can be developed to

implement similarity-based retrieval recommendation tech-

niques. In contrast to utility functions, the return value of

a similarity function is not an individual utility value but

rather a normalized numerical value that describes the rel-

ative similarity between two items. Based on this mecha-

nism, JPFINDER thus supports the implementation of rec-

ommender systems like the Wasabi personal shopper [3] or

of critiquing approaches [10], in which the user can ask the

system to retrieve items that are similar to a given one with

respect to some features.

3.4. Rule-based inferencing

In some application domains, additional forms of infer-

encing (on user model variables) are required. This could be

for instance the “internal” derivation of further variable val-

ues based on business rules or the determination and person-

alization of dialog pages in an interactive preference elici-

tation process [5].

JPFINDER supports the implementation of business rules

or additional personalization logic through generic exten-

sion patterns that allow the developer to write code frag-

ments, which are executed when certain conditions are ful-

filled.

Figure 6. Fragment of business rule.

Figure 6 shows a fragment of a possible business rule

in JPFINDER: Depending on some user input the value of

c derived score, which corresponds to an internal variable

of the user model, is determined. Note that the consequent

of the rule can contain arbitrary code, which means it can

also be used to perform mathematical calculations for, e.g.,

repayment rates commonly used in the financial services

domain [6].

Personalized Text Fragments represent another extension

pattern of JPFINDER. With the help of rules of this type,

the recommender system can select personalized variants

of predefined text fragments, which can for instance be used

to adapt the graphical user interface according to the knowl-

edge level of the current user. Finally, the pattern of User
Model Expressions allows the engineer to define arbitrary

expressions over user model variables. Based on the eval-

uation of these expressions for the current user, the dialog

flow of the Web interface or other personalization features

of the application can be designed in a flexible way.

The implementation of the rule execution engine in the

current version of JPFINDER is a rather simple one. For the

case of business rules, the engine for instance simply evalu-

ates the rules until no more changes in the user variables can

be observed. More elaborate techniques like rule-chaining

or more expressive types of rules are planned for future ver-

sions.

4. Implementation aspects

Run-time performance is in general one of the key is-

sues for interpreted scripting languages. Thus, particular

attention has been paid to these aspects both in the design

as well as in the implementation of JPFINDER’s algorithms.

What became obvious quite soon is that the “immediate”

execution of text-based scripts in Mozilla’s Rhino engine4,

which is the standard implementation in Java 6 SE, is not

applicable for realistic problem sizes.

With respect to algorithms, let us exemplarily discuss the

filter-based matching and relaxation problem from section

3.2. In particular the search for optimal “relaxations” of

a failing query can be a costly operation as theoretically

all combinations of subqueries have to be evaluated. In

contrast to previous algorithms used for this task [11, 12],

JPFINDER thus implements a novel technique [9] which is

based on the in-advance evaluation of the filters and the us-

age of compact in-memory data structures. It was shown in

[9] that this way the number of required “database queries”

for determining the optimal relaxation can be limited to the

number of given subqueries at the cost of slightly increased

memory requirements.

Beside the usage of such recent algorithms,

JPFINDER also relies on run-time “compilation” of all

scripting code. When the library is initialized with the

external knowledge base or additional knowledge pieces

4http://www.mozilla.org/rhino/

409

are added via the API, all JavaScript expressions and

functions are automatically translated into Java byte-code.

This functionality is implemented based on the built-in

Java’s ClassCompiler and dynamic class loading.

Consequently, when scripting code has to be evaluated in a

recommendation session, the script interpreter is actually

not needed anymore as everything is already available in

the form of Java byte code. Still, no manual recompilation

is required when the knowledge base changes, as the

needed byte code can be generated at run time.

As an example for performance numbers, consider the

following rough running time numbers measured on a stan-

dard desktop computer (Intel P4, 3.2 GHz, 1 GB RAM).

A recommender knowledge base for digital cameras may

comprise around 400 products and 30 filtering rules, which

in our experience is a realistic size. Let us assume that 15 of

the filter rules are “active” in a current session and the best

relaxation comprises 12 rules, i.e., three filters have to be

relaxed. The running time for such a problem setting (with-

out dynamic filter evaluation as described in [9]) is around

only 100ms. Even if we double the problem size (800 prod-

ucts and 60 rules), the response time is still less than half

a second, which is appropriate for interactive recommender

sessions. Another number can be given for the dynamic

construction of new filter conditions, see the “a bit cheaper

models” - functionality in Figure 2. Evaluating for instance

a single five-atom query with a smaller price for a catalog

of 800 cameras requires less than 20ms. The overall mem-

ory requirement for both examples is below 15 megabytes,

including all the product data which is kept in memory.

5. Conclusions

Based on an example from the domain of knowledge-

based recommender systems, the paper has demonstrated

how scripting technology can be used to simplify the devel-

opment of knowledge-intensive software applications.

Compared with complex and heavy-weight expert sys-

tems that incorporate specialized programming environ-

ments or rule-processing engines, the advantage of the pre-

sented approach in particular lies in the fact that the soft-

ware and knowledge engineer is not confronted with differ-

ent programming paradigms and languages. In addition, the

use of a consistent set of technologies simplifies the inte-

gration of such intelligent reasoning modules into standard

Web development toolkits and industrial software develop-

ment processes.

The preliminary evaluation of the presented library,

which is based on real-world scenarios and experiences

gained from previous projects [5], indicates that (1) many

of the functionalities of more complex frameworks can be

implemented with less code (as no special parsers, compil-

ers, or interpreters are required), and that (2) performance

issues that commonly arise in scripted languages can be suc-

cessfully addressed with the help of runtime compilation.

References

[1] G. Adomavicius and A. Tuzhilin. Toward the next genera-

tion of recommender systems: a survey of the state-of-the-

art and possible extensions. IEEE Transactions on Knowl-
edge and Data Engineering, 17(6):734–749, 2005.

[2] D. Bridge. Product recommendation systems: A new direc-

tion. In R. Weber and C. Wangenheim, editors, Workshop
Programme at 4th Intl. Conference on Case-Based Reason-
ing, pages 79–86, 2001.

[3] R. Burke. The wasabi personal shopper: a case-based rec-

ommender system. In Proceedings of the 11th National Con-
ference on Innovative Applications of Artificial Intelligence,
AAAI’99, pages 844–849, Menlo Park, CA, USA, 1999.

[4] R. Burke. Hybrid recommender systems: Survey and ex-

periments. User Modeling and User-Adapted Interaction,

12(4):331–370, 2005.
[5] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. An

integrated environment for the development of knowledge-

based recommender applications. International Journal of
Electronic Commerce, 11(2):11–34, Winter 2006-7 2007.

[6] A. Felfernig and A. Kiener. Knowledge-based interactive

selling of financial services using FSAdvisor. In 17th In-
novative Applications of Artificial Intelligence Conference
(IAAI), pages 1475–1482. AAAI Press, 2005.

[7] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hernández,

and I. Miguel. The design of ESSENCE: A constraint lan-

guage for specifying combinatorial problems. In Interna-
tional Joint Conference on Artificial Intelligence - IJCAI,
pages 80–87, Hyderabad, India, 2007.

[8] D. Jannach. Advisor suite - a knowledge-based sales advi-

sory system. In L. S. Lopez de Mantaras, editor, 16th Eu-
ropean Conference on Artificial Intelligence (PAIS), pages

720–724. IOS Press, 2004.
[9] D. Jannach. Finding preferred query relaxations in content-

based recommenders. In IEEE Intelligent Systems Confer-
ence, pages 355–360, Westminster, UK, 2006. IEEE Press.

[10] L. McGinty and B. Smyth. Adaptive selection: An analy-

sis of critiquing and preference-based feedback in conversa-

tional recommender systems. International Journal of Elec-
tronic Commerce, 11(2):35–57, 2006.

[11] D. McSherry. Retrieval failure and recovery in recommender

systems. Artificial Intelligence Review, 24(3/4):319–338,

2005.
[12] N. Mirzadeh, F. Ricci, and M. Bansal. Supporting user

query relaxation in a recommender system. In 5th Inter-
national Conference on E-Commerce and Web Technologies
(EC-Web), pages 31–40, Zaragoza, Spain, 2004. Springer.

[13] B. A. Tate. From Java to Ruby. Pragmatic Bookshelf, 1st

edition, 2006.
[14] D. von Winterfeldt and W. Edwards. Decision Analysis and

Behavioral Research. Cambridge University Press, Cam-

bridge, UK, 1986.

410

Integrating Trust Management into Usage Control in P2P Multimedia Delivery

Li Yang
Dept. of Computer Science

University of Tennessee at Chattanooga,
Chattanooga TN 37415

Li-Yang@utc.edu

Raimund Ege
Dept. of Computer Science
Northern Illinois University

DeKalb, IL 60115
ege@cs.niu.edu

Abstract

Sharing files via Internet gains more and more attention
now. Recent P2P protocols use a decentralized model of
distributing large multimedia files that greatly alleviate the
bandwidth demand on the multimedia source. Such open
delivery of multimedia files demands an adaptive and ro-
bust reputation management system to facilitate file shar-
ing, moreover, security issues such as digital rights and ac-
cess control need to be resolved. Our approach handles
reputation and security issues in P2P file sharing when the
attributes and behaviors of the principal are uncertain and
mutable. Reputation management is integrated into access
control model to support decision making in P2P file shar-
ing in which the environment is ever changing. We solve
uncertainty and mutability by an adaptive and decentral-
ized reputation system. The peer with low reputation will
be separated from file sharing, and its granted on-going
access will also be revoked if access control rules are no
longer met. We have applied our reputation-based usage
control framework to an application of P2P file sharing.
Keywords: trust, access control, P2P

1 Introduction

Making multimedia content available online becomes

the next Killer-Application for the Internet. Services such

as iTunes, YouTube, Joost. are popularizing delivery of au-

dios and video content to anybody with a broadband inter-

net connection. With new virtual communities emerging,

users communicate directly with one another to exchange

information or execute transaction in a peer-to-peer fash-

ion. Kazaa is an example of P2P networks and bittorrent is

an example of P2P protocols. These services are currently

struggling with the challenges of securing large-scale distri-

bution. The dynamism of the P2P communities means that

the principal that offer services will meet requests from un-

related or unknown principals. Peers need to collaborate
and obtain services within environment that are unfamil-

iar or even hostile. Therefore, peers have to manage the

risks involved in the collaboration when prior experience

and knowledge about each other are incomplete. One way

to address this uncertainty is to develop and establish trust

among peers. Trust can be built by either a trusted third

party [1] or by community-based feedback from past expe-

riences [15] in a self-regulating system. Trust leads natu-

rally to a decentralized approach to security management

that can tolerate partial information.

In such a complex and collaborative world, a peer can

protect and benefit itself only if it can respond to new peers

and enforce access control by assigning proper privileges to

new peers. Access control models [4, 11] determine autho-

rization based on principals’ permission on target objects.

Usage of a digital object is temporal and transient in vir-

tual community such as on-line reading, which is beyond

an instantaneous access. UCON [14] is proposed to handle

continuity of access decisions and mutability of subject and

object attributes. Authorization decisions are made before

an access, and repeatedly checked during the access. The

on-going access may be revoked if the security policies are

not satisfied due to changes of the subject, object or system

attributes.

The general goal of our work is therefore to investigate

the design of a novel approach to addressing both uncer-

tain information and mutable attributes. If successful, this

approach will offer significant benefits in emerging applica-

tions such as P2P. It will also benefit collaboration over the

existing Internet when the identities and intentions of par-

ties are uncertain. We integrate trust evaluation with usage

control to handle uncertainty of entities and mutability of

attributes. Underlying our framework is a formal computa-

tional model of trust and access control that will provide a

formal basis to interface authentication with authorization.

411

2 P2P Delivery of Multimedia

P2P delivery of multimedia aims to deliver multi-media

content from a source to a client. We assume that the con-

tent comes into existence at the source, i.e. we don’t want

to consider storing and securing the media at the origin. Ex-

ample of creating such multi media might be a video camera

with microphone. Likewise the client consumes the content,

e.g. by displaying it on a TV monitor. We further assume

that there is just one original source, but that there are many

clients that want to receive the data. Our approach is specif-

ically geared towards being able to scale effortlessly to sup-

port millions of clients without prior notice, i.e. be able

to handle a “mob-like” behavior of the clients. Some lag

time between creation of source data and its consumption

by clients is acceptable, but excessive wait will defeat the

attractiveness of our approach.

We use a P2P approach. The source data is made avail-

able at a preset quality using a variable-rate video encoder.

The source data stream is divided into fixed length sequen-

tial frames: each frame is identified by its frame number and

encrypted (see next section). Clients request frames in se-

quence, decrypt the frame and reassemble the video stream

which is then displayed using a suitable video decoder and

display utility. The video stream is encoded in such a fash-

ion that missing frames don’t prevent a resulting video to

be shown, but rather a video of lesser bit-rate encoding, i.e.

quality, will result [18].

Multi-media sources are advertised and made available

via a central tracking service: at first, this tracker only

knows the network location of the server. Clients that want

to access the source do so via the tracker: they contact the

tracker, which will respond with the location of the source.

The tracker will also remember (or track) the clients as

potential new sources of the data. Subsequent client re-

quests to the tracker are answered with all known locations

of sources: the original and the known client. Clients that

receive locations of sources from the tracker issue frame re-

quests immediately to all sources. Clients will also answer

requests for frames that they have received already, which

will enable a cascading effect, which establishes a p2p net-

work where each client is a peer.

Figure 1 shows an example with one source, one tracker

and three clients. The source is where the video data is pro-

duced, encoded, encrypted and made available. The tracker

knows the network location of the source. Tracker and

source maintain a secure connection. Clients connect to the

tracker first and then maintain sessions for the duration of

the download: all 3 clients maintain an active connection

to the tracker. The tracker informs the client which source

to download from: Client 1 is fed directly from the source;

client 2 joined somewhat later and is now being served from

the source and client 1; client 3 joined last and is being

served from client 1 and client 2. In this example, two of

the clients are also serving as intermediaries on the delivery

path from original source to ultimate client.

Figure 1. P2P Content Delivery Network

3 Integrating Trust into Usage Control

Integrating trust evaluation into usage control allows col-

laboration when attributes of a principal are mutual or infor-

mation of a principal’s behavior is incomplete. During col-

laboration, owner of resources evaluates the trust of request-

ing principal first and then make authorization decision of

resources sharing. The trust evaluation and authorization

decision are temporal since they are made before, during

and after the resource sharing.

3.1 Trust Evaluation

For every request, the owner of resources assigns a trust

value between 0 and 1 to the requesting principal. The trust

is evaluated based on both observation and recommenda-

tions from referees. Observations are the previous interac-

tions the owner had with the requesting principal. Recom-

mendations may include signed trust-assertions from other

principals, or a list of referees whom the owner can con-

tact for recommendations. The owner first computes trust

given a sequence of observations from interaction history,

then combines the trust with recommendations. The trust

value, calculated from observations and recommendations,

is a value within [0, 1] interval evaluated from a principal

for a request.

The trust is assumed to follow a beta distribution, and

represented by the two parameters of the beta distribution.

The beta distribution, a conjugate prior, is chosen because

of its reproducibility property under the Bayesian frame-

work. When a conjugate prior is multiplied with the like-

lihood function, it gives a posterior probability having the

same functional form as the prior, thus allowing the pos-

terior to be used as a prior in further computations. For

412

a given requester, we define a sequence of variables T1,

T2,. . ., Tk characterize the trust at the sampling time k.

For instance, at kth sampling time, Nk observations are

collected by the owner. Let Gk be the number of normal

requests or behaviors. If the owner did not detect attacks

(i.e., spyware, Trojan horse, SQL injection) associated with

a request, he/she deems the request as normal behaviors.

Suppose a prior probability density function (pdf) of trust

Tk−1, denoted by fk−1(t) is known. Then the posterior pdf
of (given Nk = n and Gk = g) can be obtained from Bayes

theorem [13] as follows:

fk(t) =
fk(Gk = g|t, Nk = n)fk−1(t)∫ 1

0
f(Gk = g|t, Nk = N)fk−1(t)dt

(1)

where fk(Gk = g|t, Nk = n) is called the likelihood func-

tion and has the form of a binomial distribution:

fk(Gk = g|t, Nk = n) =

(
n

g

)
tg(1 − t)n−g (2)

The prior pdf fk−1(t) summarizes what is known about the

distribution of Tk−1. Under the assumption that prior pdf
fk−1(t) follows a beta distribution, it can be shown that the

posterior pdf also follows a beta distribution.

In particular, if fk−1(t) ∼ beta(αk−1, βk−1), we have

fk(t) ∼ beta(αk−1 + gk, βk−1 +nk − gk) given that Nk =
nk and Gk = gk. Therefore, fk(t) is characterized by the

parameters αk and βk defined recursively as follows: αk =
αk−1 + gk and βk = βk−1 + nk + gk. Initially, the owner

has no knowledge about the requester. We assume that trust

value has uniform distribution over the interval [0, 1], i.e.,

f0(t) ∼ U [0, 1] = beta(1, 1) which indicates our ignorance

about the requester’s behavior at time 0. At time k, trust

value t̄ of the principal is:

t̄ =
αk

αk + βk
(3)

There are two alternative ways to update trust values.

One is to update trust values based on all the observations

and recommendations. The other ways is to update trust val-

ues based on recent information only. The advantage of the

latter one is two folds: reduce the computation complexity

and detect the changing of behaviors early. For instance, a

requestor is misbehaving in a short time range, then recent

observation together with reports is more reflective to the

behavior changing than the overall observation.

Meanwhile, recommendations from referees bring in

new information Trq on requester’s behaviors. The owner

combines the new data Trq with its own observation Toq on

the condition that the referee is one of owner’s friends or the

recommendation passes the deviation test. Deviation test is

to decide recommendation is trustworthy or not. Recom-

mendation R is learned from the past interaction the referee

had with the requestor. Trustworthiness of a recommenda-

tion also follows a beta distribution. fk(t) is adjusted by

recommendations: Toq := Toq + μTrq where Toq is trust

that owner has to requester, Trq is trust that referee has to

requester, and μ is the owner’s belief of referee’s recom-

mendations.

3.2 Overview of UCON

Usage control model UCON proposed by J. Park [14]

is a generalization of access control to cover authorization,

obligation, conditions, continuity (ongoing controls), and

mutability. Authorization handles decision on user accesses

to target resources. Obligations are the mandatory require-

ments for a subject before or during a usage exercise. Con-

ditions are subject, object, environmental or system require-

ments that have to be satisfied before granting of accesses.

Subject and object attributes can be mutable. Mutable at-

tributes can be changed because of accesses, whereas im-

mutable attributes can be changed only by administrative

action.

3.3 Trust-based UCON

A state is an assignment of values to variables which

consist of principal attributes, object attributes and system

attributes. The state transition system can be represented

by (Σ, S, s0, δ, F) where Σ is input alphabet, S is a set of

system states, s0 is the initial state, δ is the state transition

function δ : S × Σ → S, and F is the final state. We

define a special system state to specify the status of a

single request and access process. The system state S in-

cludes initialState, preTrust,deniedEnroll, trusting,

disEnrolled, preAccess, deniedAcces, accessing,

revoked, and end. The initialState means the principal

has not sent request; preTrust means principal is waiting

for the authentication decision; deniedEnroll means

the system denies the enrollment of the principal based

on history or recommendations; trusting means the

principal is allowed to collaborate and will send access

requests; disenrolled means the system revokes the

enrollment of a principal based on runtime information.

The preAccess means the principal is waiting for the

authorization decision; deniedAccess means they system

denies the authorization request based on access control

rules; accessing means the principal is executing granted

privilege; revokedAccess means the system denied the

privileges of a principal based on runtime mutable at-

tributes; and end means a principal terminates the access.

Actions change the state of the system, which is the input

alphabet. If the action is performed successfully the action

is true, attributes of the principal, object and system are

413

trusting

revoked

end
request
access

authentication authorization

preTrust

disEnrolleddeniedEnroll

preAccess Access
end

Access
grantrequest

Enroll enroll

deny Access revoke Access

deniedAccess

onUpdate

deny Enroll revoke Enroll

initialState

onUpdate

accessing

Figure 2. Trust-based UCON Model

assigned a new value. A series of actions are defined to

change the status of a request. The transition from one state

to another is triggered by an action, shown in Figure 2.

requestEnroll generates a new request when a principal

tries to join the community. denyEnroll rejects a request

to enroll the community because the requester can not meet

the minimum authentication or trust requirement. enroll
enrolls a principal to the community. revokeEnroll re-

vokes the allowed enrollment. requestAccess generates a

new access request. denyAccess rejects an access request.

grantAccess: grants an access request. revokeAccess re-

vokes an on-going and granted access request. endAccess:

terminates an access request. onUpdate: updates the ac-

cess request when mutable attributes or uncertain behaviors

of a principal change.

4 Architecture of Trust-based Usage Control
in P2P Delivery of Multimedia

When a principal p requests to execute a right r on

an object o, attribute of the principal, permission (right r
and object o, and an optional list credentials are submit-

ted to Secure Context Handler (SCH) Module. The cre-

dentials may include signed trust-assertions (recommenda-

tions) from other users or a certificate signed by certificate

authority. The SCH looks up the relevant contexts for the re-

quested action, and queries the Trust Calculator (TC) com-

ponent for a trust-value about principal p. Trust calculator

calculates the trust value for requester based on both ob-

served history and records in recommendation databases.

A trust value is passed to Access Control Manager (ACM)
Module for decision. The ACM looks up Access Con-

trol policies that entail several access control constraints.

The Constraint Service (CS) Module and Dynamic Man-
ager (DAM) Module evaluates access control constraints,

e.g. time, location, memberships. Two categories of trigger

events are possible to result in recalculation of trust value

and reevaluation of access control policies. Recalculation

and reevaluation may cause the revocation of current enroll-

ment or on-going access. The Evidence Handler (EH) Mod-

ule is listening to the peer reports about the misbehaviors of

a requester. The negative report can include ignorance of

obligation, dishonest behaviors, or the revocation of a re-

quester’s certificate. When the trust value of the request

drops below a minimum threshold the on-going granted re-

quest will be revoked. The result of trigger event is notified

to SCH and execution of request is cancelled. The DAM
Module is listening to the attribute mutability of the princi-

pal, objects or a context after the permission is granted. For

example, DAM Module can be triggered by certain events,

for example, the subject left the group that entails the right.

Once the DAM Module receives an event, the corresponding

access control polices are re-checked by ACM if necessary

(e.g., to allow an ongoing usage to continue or revoke it).

The update in Trust Calculator (TC) or Dynamic At-
tribute Manager (DAM) may revoke the granted permission.

The mobile peers may report the dishonest behavior of re-

quester or revocation of requester’s certificate, so the trust

value of request is dropped below a scalar. This update will

be notified to Mobile Secure Handler and cancel the execu-

tion of request. After the permission is granted, Dynamic

attribute manager will be trigger by certain events, the mo-

bile node is moving out of range and not allowed for cer-

tain permission (reportAccident). Once the DAM receives

an event, the attribute values of the object and subject are

retrieved and evaluated and corresponding policies are re-

checked by ACM if necessary (e.g., to allow an ongoing

usage to continue or revoke it.)

5 Prototype Simulation

The architecture outlined in Section 4 provides the

framework for the simulation program of usage-based ac-

cess control model. This simulation works under the

premise of several users who may request access to files

owned by other users. Each of these users maintain modules

included in trust-based usage control architecture, shown in

Fig. 3. For every request, a trust value is calculated given

past history and current recommendations for the requesting

principal. Another factor in consideration is a risk assess-

ment of the requested action assigned to each available file.

Each owner assesses the risks based on sensitivity of his/her

414

12

History
Observation

Access
Control
Policies

credentials)

Trigger Events

Trigger Events

Secure Context Handler (SCH)

Access Control Manager (ACM)

Constraint Service (CS)

Dynamic Attribute Manager(DAM)

Trust Calculator (TC)Evidence Handler(EH)

Recommendations

1.Request(p,permission,) 13. Decison(T/F)

2

3

4 3 4

 5

 8

 9

11

10

 7

 6

Figure 3. Trust-based Usage Control Architecture in P2P Delivery of Multimedia

file. Access to the file may be granted or denied based on

trust evaluation, risk assessment and access control rules.

If granted, the continuing usage of this access is contingent

on maintaining the trust and risk values within the speci-

fied range. The on-going access may be revoked if the trust

value is decreased below minimum threshold or access con-

trol rules are violated.

Besides successful request, several test scenarios are de-

signed to test ability of our simulation program including

how to evaluate trust, evaluate requests against access con-

trol rule, and react to evidence alerts and change of muta-

ble attributes. First, a request fails the authentication when

trust value of the request is lower than the minimum trust re-

quirements. Second, a request passes the authentication but

fails the authorization when a request does not meet the ac-

cess control rules although its trust value is higher than the

minimum trust requirements. Third, a request passes both

the authentication and authorization; however, the on-going

authorized request is revoked by negative evidence reports.

Forth, a request passes both authentication and authoriza-

tion; however, the on-going authorized request is revoked

by mutable attributes such as change of domain or member-

ship, which is triggered by events received from Dynamic

Attribute Manager (DAM).

6 Discussion

Most recent research on access control include task-

based authorization controls [17], team-based access con-

trol [9], role-based access control [8], temporal role-based

access control [3], X-GTRBAC [5]. Recently, UCON [14]

handles the mutability attributes of a principal or an object

when the system makes decision for a request. All of them

assume that a principal or an object is defined and repre-

sented by its attributes. This means that the identity, role

or group of the subject can be identified through certain

authentication mechanisms and that information about be-

haviors of a principal is certain. However, in a pervasive

and collaborative environment, identity may not be identi-

fied. Moreover, identity itself can not convey priori infor-

mation about the likely behavior of a principal. Behaviors

of a principal may change between friendly and malicious

when privileges are executed. A principal can not make

access control decision only based on identity information

because identity itself can not ensure friendly behaviors.

Reasoning and building trust for each peer allow peers

to make decision when they are interacting with others in a

peer-to-peer fashion. N. Li et al. [12] and W. Yao [21] use

explicit incremental negotiation to establish mutual trust.

An overview of trust management is discussed in [10]. Trust

management has many applications in e-commerce areas

such as works from Y. Atif [1] and P. Resnick et al. [15].

L. Xiong et al. [19] handles trust evaluation, especially the

community-related context factors and transaction context

factor of e-commerce. C. Zouridaki et al. [22] and L. Yang

et al. [20] apply trust evaluation into routing protocols of

mobile wireless ad hoc networks (MANETs).

R. Sandhu et al. [16] applies peer-to-peer access con-

trol to trusted computing, enforcing trust and hardware en-

cryption. SECURE [6] project proposed the seminal ideas

to handle trust and secure collaboration in uncertain envi-

ronment. Their work can tolerate partial information, over-

come initial suspicion to allow secure collaboration to take

place by reasoning about trust and risk. N. Dimmock et al.

[7] incorporate notions of trust into rule inference process

of OASIS [2] , a policy-driven access control system. Mu-

table attributes, obligations, context and revocation of the

authorization were not handled.

Both attribute mutability and uncertain behaviors of a

principal are needed to be considered in collaborative re-

sources sharing. In this work we integrate trust management

into usage-based access control, which allows collaboration

415

when attributes of a principal are mutable or information on

a principal’s behaviors is incomplete.

7 Conclusion

We have proposed a framework to integrate trust man-

agement into usage-based access control. Our framework

is designed to solve uncertainty and attributes mutability in

a pervasive and collaborative environment. Our framework

was simulated in the application of multimedia delivery in

order to demonstrate the feasibility. The authentication and

authorization to an on-doing request is checked constantly

during the request. The granted request will be terminated

if the trust value is lowered down due to negative peer re-

ports or access control rules are not met due to attributes

mutability.

References

[1] Y. Atif. Building trust in E-commerce. IEEE Internet Com-
puting, 6(1):18–24, 2002.

[2] J. Bacon, K. Moody, and W. Yao. A model of OASIS

role-based access control and its support for active security.

ACM Transaction Information System Security, 5(4):492–

540, 2002.
[3] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: a tempo-

ral role-based access control model. ACM Transactions on
Information and System Security, 4(3), August 2001.

[4] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical

framework for reasoning about access control models. In

SACMAT ’01: Proceedings of the sixth ACM symposium on
Access control models and technologies, pages 41–52, New

York, NY, USA, 2001. ACM Press.
[5] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi.

X-GTRBAC: an XML-based policy specification frame-

work and architecture for enterprise-wide access control.

ACM Transaction Information System Security, 8(2):187–

227, 2005.
[6] V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen,

B. Shand, N. Dimmock, A. Twigg, J. Bacon, C. English,

W. Wagealla, S. Terzis, P. Nixon, G. di Marzo Serugendo,

C. Bryce, M. Carbone, K. Krukow, and M. Nielsen. Us-

ing trust for secure collaboration in uncertain environments.

IEEE Pervasive Computing, 02(3):52–61, 2003.
[7] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and

K. Moody. Using trust and risk in role-based access control

policies. In Proceedings of the ninth ACM symposium on
Access control models and technologies (SACMAT), pages

156–162, New York, NY, USA, 2004. ACM Press.
[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Transaction Information System Secu-
rity, 4(3):224–274, 2001.

[9] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K.

Thomas. Flexible team-based access control using con-

texts. In Proceedings of the sixth ACM symposium on Access
control models and technologies, pages 21–27. ACM Press,

2001.
[10] T. Grandison and M. Sloman. Sloman: A survey of trust

in internet applications. IEEE Communications Surveys and
Tutorials, 3(4), 2000.

[11] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahma-

nian. Flexible support for multiple access control policies.

ACM Transaction Database System, 26(2):214–260, 2001.
[12] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of

a role-based trust-management framework. In Proceedings
of the 2002 IEEE Symposium on Security and Privacy, page

114, Washington, DC, USA, 2002. IEEE Computer Society.
[13] A. Papoulis. Probability, Random Variables, and Stochastic

Processes. McGraw-Hill, New York, 1991.
[14] J. Park and R. Sandhu. The UCON usage control model.

ACM Transaction Information System Security, 7(1):128–

174, 2004.
[15] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman.

Reputation systems. Commun. ACM, 43(12):45–48, 2000.
[16] R. Sandhu and X. Zhang. Peer-to-peer access control archi-

tecture using trusted computing technology. In Proceedings
of the tenth ACM symposium on Access control models and
technologies, pages 147–158, New York, NY, USA, 2005.

ACM Press.
[17] R. K. Thomas and R. S. Sandhu. Task-based authorization

controls (tbac): A family of models for active and enterprise-

oriented autorization management. In Proceedings of the
IFIP TC11 WG11.3 Eleventh International Conference on
Database Securty XI, pages 166–181. Chapman & Hall,

Ltd., 1998.
[18] C. e. a. Wu. rstream: resilient peer-to-peer streaming with

rateless codes. In Proceedings of ACM Multimedia Confer-
ence, 2005.

[19] L. Xiong and L. Liu. Peertrust: Supporting reputation-based

trust for peer-to-peer electronic communities. IEEE Trans-
action Knowledge Data Engineering, 16(7):843–857, 2004.

[20] L. Yang, J. M. Kizza, A. Cemerlic, and F. Liu. Fine-grained

reputation-based routing in wireless ad hoc networks. In

Proceedings of IEEE Intelligence and Security Informatics
Conference. IEEE Computer Society Press, May 2007.

[21] W. T.-M. Yao. Fidelis: A policy-driven trust management

framework. In Proceedings of the first International Confer-
ence on Trust Management. LNCS, 2003.

[22] C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas. A

quantitative trust establishment framework for reliable data

packet delivery in manets. In SASN ’05: Proceedings of
the 3rd ACM workshop on Security of ad hoc and sensor
networks, pages 1–10, New York, NY, USA, 2005. ACM

Press.

416

Flow Balancing Model for Air Traffic Flow Management

Bueno Borges de Souza1

Li Weigang2

Department of Computer Science - CIC, University of Brası́lia - Brazil.
buenobs@unb.br1, weigang@unb.br2

Antônio Márcio Ferreira Crespo
First Integrated Center of Air Defense and Airspace Control - CINDACTA I, Brası́lia, Brazil

amf.crespo@uol.com.br

Victor Rafael Rezende Celestino
Brazilian Civil Aviation National Agency - ANAC, Brası́lia, Brazil

victor.celestino@anac.gov.br

Abstract

This paper describes a methodology based on Graph
Theory and Artificial Intelligence (AI) for Air Traffic Flow
Management (AFTM) problem. Flow Balancing Mod-
ule (FBM) is proposed to manage air traffic flow through
heuristics and dynamic adaptation. This model is integrated
with a Distributed Decision Support System Applied to Tac-
tical Air Traffic Flow Management (SISCONFLUX). The
flow maximization technique is well known in Graph The-
ory and is adapted to an analysis model to determine which
restrictive actions of flow control should be applied, and to
what extent, in order to manage air traffic flow. The objec-
tive is to prevent or reduce congestions in diverse sectors
within the airspace. With the scenario forecast and deci-
sion support modules, FBM supports the regulation of traf-
fic flow to support controllers and other units within the SIS-
CONFLUX.

1. Introduction

The First Integrated Center of Aerial Defense and

Airspace Control - CINDACTA I in Brasilia controls about

50% of air traffic flow related to regular flights in Brazil

[2]. The Flight Information Region in Brasilia (FIR-BS) is

divided in twelve control sectors together with the Aerial

Control Center of Brasilia (ACC-BS) to monitor and con-

trol the airspace over three regions: Brasilia, Rio de Janeiro

and Sao Paulo. Every region with some sectors is managed

by a supervisor, with obligation to perform decisions at oc-

casions and each sector is monitored by a controller and an

assistant [10].

The traffic flow management decisions taken by con-

trollers and supervisors are based on their experience. The

restrictive actions applied are made after an empirical anal-

ysis, not supported, therefore, with the help from any type

of computational decision tool. Another important matter

related to this issue is the impossibility to perform a quan-

titative evaluation of the impact of actions adopted in one

specific sector on the traffic flow of adjacent sectors. As a

consequence, it does not have an adequate forecasting level

concerning the effect of the adopted restrictive actions on

air traffic flow demand within FIR-BS as a whole. Thus,

the inadequate sizing of actions applied by the ACC-BS will

certainly imply in problems of traffic flow all over Brazil.

CINDACTA I, through ACC-BS and of Approach Con-

trol Centers (APPs), makes use of a set of systems capable

of carrying out adequate air movements control in its area of

responsibility. However, it does not have a specific system

directed toward the tactical management and the synchro-

nization of air traffic flow. This becomes even more critical

when degradation of the usual control tools occurs, or some

other factor which may cause significant modifications in

the expected traffic flow, such as meteorological conditions,

aeronautical incidents and/or accidents, amongst others. All

these different factors can result in saturation of control sec-

tors, characterized by the simultaneous permanence of four-

teen or more aircraft in a sector [4]. The saturation of a sec-

tor can be conditioned by various factors, exampled by: the

dimensions of the sector, the geographic position and the

schedule of the day.

This research has the objective to describe a Flow Bal-

ancing Model (FBM) as a subsystem to integrate with Dis-

417

tributed Decision Support System Applied to Tactical Air

Traffic Flow Management (SISCONFLUX). This system is

being developed to assist the controllers and supervisors

to efficiently management air traffic flow and to make the

suitable decisions. FBM presents an analysis model using

Graph Theory and Artificial Intelligence (AI) methods, with

adaptations that make possible the discretization and the so-

lution to this problem in each control sector.

The paper is organized in the following manner: section

2 presents a state of art of the research about AFTM. In

section 3 the flow balance model using Graph Theory is de-

scribed. Section 4 shows the architecture of the Flow Bal-

ancing Model (FBM) that integrates with SISCONFLUX.

Finally, in the section 5 the final considerations of the re-

search and the relevant references are presented.

2. AI Research in Air Traffic Flow Manage-
ment - ATFM

ATFM is a task that involves the synchronization of air

traffic flow in real time. The majority of the systems al-

ready considered by literatures [11, 12] present a central-

ized architecture, while [1] and [7] present solutions with a

distributed character. All these solutions present excellent

characteristics towards the efficient solving of the problem.

However, they also study the problems related to the per-

formance, that is, the necessary time for attainment of the

solution and the formation of the “communication link”.

The distributed method, however, presents huge manage-

ment problems due to the exceeding number of message ex-

changes in situation of intense negotiation [1] and lack of

physical structure – the Brazilian reality – that gives sup-

port to the implementation of negotiation techniques in dis-

tributed environments as the ones defined in [7].

In this context, the Ground Holding Problem - GHP

emerges, which searches for the synchronization between

adjacent sectors, by analyzing the set of landings and ex-

pected takeoffs inside the same area of supervision. This

guarantees a better flow between these sectors. For this

search, literature concerning the GHP suggests the use of

integer linear programming [10] and [9]. This type of pro-

cessing is computational expensive and becomes inefficient

for application in real time.

Other works are suggesting methodologies based on dy-

namic programming for the attainment of better results [5],

[8] and [14], the last two works suggest a representation of

sectors and terminals, associated to the dynamic program-

ming, in the format of graphs.

The latest proposals, suggest multi-agent architecture,

implementation approach and software prototype of a multi-

agent system for air traffic control within airport airspace

capable of automatic detection of potential violations of

safety policies by individual aircraft and corresponding in-

cident management [6]; or Multiagent Simulation of Col-

laborative ATFM, where the authors evaluated several sim-

ple strategies for the Airline Operations Center (AOC)

agents to select routes, using two different approaches, the

Airline Planning approach and the Mixed approach [13].

3. Balancing Methodology

In this model a graph is defined as G = (V,E) starting

from a group of sectors that composes FIR-BS [14]. In this

graph a multi-flow corresponding to the combination of the

directional flows exists with origin and destinies associated

to the terminals. Differently from the model proposed by

Zhang [14], edges correspond to sectors and a path in the

graph corresponds to a possible route. Each edge has an

associated capacity and the vertexes represent the transition

point between sectors. To illustrate the representation con-

siders the Figure 1 that shows a partial cutting of FIR-BS

with only three terminals. The set of paths between sectors

Figure 1. Part of FIR-BS

of the Figure 1 composes a multi-flow showed in the Figure

2.

Figure 2. Multi-flow regard to a part of FIR-BS

The routes connecting among T1, T2 and T3 are:

Routes :

8>>>>>><
>>>>>>:

T1 S05 S06 T2
T1 S05 S04 S01 T3
T2 S06 S05 T1
T2 S06 S03 S02 S01 T3
T3 S01 S04 S05 T1
T3 S01 S02 S03 S06 T2

In a simplified way, one can identify three flows in the Fig-

ure 1: from T1 to T2 and T3, from T2 to T1 and T3 and

418

from T3 to T2 and T1. Suppose that f is the number of

flows combined in the multi-flow, in the example f = 3. It

is possible to build, from those graphs, an equivalent graph

[3] that combines all these flows into a multi-flow, associat-

ing a source node to a destiny node (see Figure 3).

Figure 3. Joining of the flows generating the
complete graph

Considering Ci,j the capacity of the Sector i in the Flow

j, limited by a constant value M in accordance with the

legislation, and supposing a forecast of sector occupation

of i of Ui, the balance of residual workload equals Li =
M − Ui. Under the following condition:

f∑
j=1

Ci,j ≤ Li for all sector i (1)

where f is the number of flows associated to the multi-flow.

It is wanted that the flow be the largest possible, so solu-

tions can be found making:

f∑
j=1

Ci,j = Li (2)

Considering ki,j the fraction of flow j associated to the

sector i the equation can be written as:

f∑
j=1

ki,jLi = Li for all sector i. (3)

that results in

f∑
j=1

ki,j = 1 for all sector i and flow f. (4)

and is always truth by the definition of ki,j . The problem

is, then, to determine ki,j appropriately so that the multi-

flow has a balanced distribution.

The distribution of ki,j is obtained by two manners: (1)

Supervisors define flow quotas manually with the help of

statistical data of stored distributions, previously adopted.

The system will capture the controllers’ experience and will

keep that information for subsequent use. (2) Automati-

cally by querrying previous accomplished actions, seeking

the most suitable action for the current situation. The re-

sult retrieved supplies guidelines for the adjustment of ki,j

and is submitted to the Evaluation and Decision Support

Module (EDSM). The maximization of the internal flow f
implies, in this case, the decrease of another flow due to the

fact that the sum 4 is equal to 1. In that way the maximiza-

tion of the multi-flow doesn’t imply the maximization of all

their components, and nor the opposite. Often there is inter-

est in prioritizing certain flow in order to relieve an airport,

for instance, the control can adjust ki,j to favor the flow of

aircraft leaving terminal T1 in detriment of terminals T2
and T3. Based on graphs modeling technique, one can de-

termine the maximum flow in the combined graph of flows

composing the multi-flow. The flow measure is based on the

minimum cute, that corresponds to maximum flow. The sum

of flows in the combined graph (see Figure 3) equals the

flow in the multi-flow [3]. The algorithm Edmonds-Karp
is used for flow adjustments due to its simplicity and rela-

tive efficiency. The model considers the maximum number

of 12 Sectors obtaining good performance for an algorithm

complexity of O(V ×E2) [3]. The process will spend more

time in adjustments of the time analysis showed in the next

section. The flow adjustment algorithm does not consider

the variation of the flow through time [3].

The model described in this article establishes a heuristic

that redistributes the capacities based in sectors mean occu-

pation time. The present problem with time analysis is that,

in the context of air traffic, is associated with a discretiza-

tion of the material that flows in the graph along time. In

this case, a bad use of the sectors can happen, once it exists

a time delay between the departure and the effective occu-

pation of the sector. When reducing the departure frequency

to solve the problem of saturation of a sector i which will be

saturated in 20 minutes, for instance, some of the interme-

diate sectors i − 1, i − 2,..., can work with a departure fre-

quency lower than it could be admitted. This becomes even

worse when these sectors are in the intersection of several

paths. Besides, there is also the need for adjustment of flow

after departures, in other words, the saturation will happen

with aircraft that already took off. In this case, flow restric-

tion actions become critic. It is necessary to control the in-

ternal flow in transitions among sectors. With that purpose

the Flow Balancing Module (FBM) makes a time analysis

using queuing techniques and heuristics for each sector.

If the mean time to transpose sectors is all equal, the

algorithm would not need to consider time. In this cir-

cumstance, flow would be approximately continuous and

the model space associated with scenario forecast would

be enough for the ground holding adjustments. There are

419

variations in sectors sizes, variations in aircraft speeds and

deviations that alter the time to transpose different sectors.

A solution considering all variants, unfortunately, will re-

lapse in an excessive processing time. Therefore, the bal-

ance is being estimated, as follows: (1) There is a mean

time m′
si

≤ msi
≤ m′′

si
to transpose sectors with a high

limit and a low limit for all routes. (2) The time that the

aircraft is in the sector bvj ,si is known and accessible (vj

is the flight j and si the sector i); (3) Each flight vj has its

associated route known. (4) The exit time or the time that

the aircraft will take to leave the sector avj ,si
can be cal-

culated with a good estimation by avj ,si = msi − bvj ,si ;

(5) The time to enter in a sector i is equals to the time to

exit the sector i − 1, being the sectors in the same route.

It is taken, for each section, the orderly list of flights (air-

craft) in the growing order of the time to exit the sector

Lsi = avj ,si
≥ avj−1,si

≥ avj−2,si
.... The comparison

of the time to exit the first element of the list Lsi with the

time to exit the first element in Lsi−1 is done. If the time to

exit i goes below or equal to the one to exit i − 1, the air-

craft had left the sector before the previous enter (or at the

same time), so the capacity of i can be increased by an unit.

Repeating the same analysis for other aircraft on the list, if

the time to exit i becomes longer than the time to exit i− 1,

in this case the capacity doesn’t change, as that aircraft will

stay in the sector in the considered period of time. Soon af-

terwards the sectors i − 1 and i − 2 are processed to obtain

the desired capacity of these sectors. Through the analysis

of these lists, FBM will be capable of obtaining the neces-

sary time to wait en route in case i is saturated and the time

to exit i−1 goes very short. In this case it will be suggested

to EDSM a wait en route (orbit) for one of the aircraft on

the list Lsi−1, accompanied of an estimate of wait time.

4. FBM: Flow Balancing Module

4.1. FBM in SISCONFLUX

FBM will look for the possibilities that implies the ideal

condition for air traffic flow. Such condition is characterized

by the maintenance of the largest possible fluidity, restric-

tions of capacity of control sectors being observed, and the

adjustment of those capacities so that the fluidity starting

from some point in the area can be prioritized. The choice

of traffic jam or saturation parameter will be determined by

supervisors, taking into account technical and operational

factors to apply, when necessary, restrictive actions to air

traffic flow. Once the deliberations are defined, FBM will

submit balance adjustments suggestions to the Evaluation

and Decision Support Module (EDSM). EDSM evaluates

those suggestions, informs the operational team about rec-

ommended actions and performs the learning procedure,

which will allow the system to store a group of previous

decisions and to adapt to the environment. After the deci-

sions are taken and submitted to EDSM, the module also

stores the actual scenario forecast associated with the group

of actions taken. The actions are applied to the real scenario

and the Monitoring and Scenario Forecast Module (MSFM)

rebuilds a new scenario, considering all new information.

This new scenario is, again, the input to FBM for repro-

cessing the need for restrictive actions in case they are nec-

essary. FBM is divided in sub-modules according to the

Figure 4 (related details are described in 4.2). The develop-

ment includes three main submodules and two auxiliaries.

The two auxiliaries submodules have the role to make com-

munication with other system modules transparent to the

main internal submodules. The three main modules accom-

plish indeed the processing of flow restrictions. Further on

a detailed description of each submodule will be presented.

The development of FBM model for flow adjustment

based on graph theory utilizes temporary adjustment tech-

niques (see section 3). It is also associated with heuristics

developed from actions commonly taken by the operators

when performing dynamic adjustments of distribution of

sectors capacities. In FBM, a knowledge base is built. It

relates to the distribution of capacities on saturation scenar-

ios, storing best flow distributions associated with restric-

tive measures used with more frequency for a given sce-

nario. The mapping of the multi-flow in separate flows

allows the adjustment so that certain flows are prioritized

against others. Such prioritization will be the supervisors’

responsibility, observing guidelines for better distributions

already known. The more recommended flow restriction

actions associated with each terminal are converted into fre-

quencies of departures from specific origin points. This is

justified by the fact that flight controllers work by limiting

the interval among departures in a certain airport and not,

specifically, with flight schedules. Specific adjustment ac-

tions of schedules are the aerodromes’ responsibility, once

the frequency of allowed departures is supplied. The rec-

ommended actions are not applied directly. Those actions

are sent to the EDSM for analysis and submission to the

supervisors who will appreciate suggestions, being able to

accept them, and indeed apply them, or to request a new

processing.

4.2. Submodules Description

The sub-modules in FBM are developed with the inten-

tion to distribute system inherent tasks, resulting in a bet-

ter structural organization, facilitating overall understand-

ing. In this section, a brief description of the functionality

of each sub-module of FBM is presented (see Figure 4).

The subdivision of FBM in submodules is developed with

the intention to distribute system inherent tasks, resulting

in a better structural organization, facilitating overall under-

420

Figure 4. Architecture of Flow Balancing Mod-
ule

standing.

SMRD: This submodule has the role of receiving and/or

looking for and formatting data for processing. It will work

as a place for temporary data storage in case destiny sub-

modules are busy. SMCG: This submodule has the role of

building the graph associated to the current situation of the

sector in CINDACTA I, using valid routes and to distribute

the capacities in agreement with the information supplied

by MSFM. SMAF: This submodule has the role of comput-

ing the ideal flow using the methodologies described in 3, to

obtain recommended restrictive actions. SMMC: This sub-

module has the role of analyzing time forecast of aircraft

permanence in sectors adjacent to the sectors congested and

to suggest adjustments to speeds. It has also the function

to record the critical state for analysis and to identify states

lacking preventive actions. SMER: This submodule has the

role of validating results obtained previously using defined

guidelines, formatting results for the modules of the system

and to send them. In the solution of the flow balance, the lit-

erature presents several algorithms of polinomial complex-

ity and alternatives representation forms for graphs [3].

5. Final considerations

The flow balance technique utilized in the model pre-

sented involves the application of well-known algorithms

[3] associated with heuristic adjustments. It is important

to mention that FBM is a part of an integrated solution

which foresees the projection of scenarios accomplished by

MSFM and the application of reinforcement learning tech-

niques accomplished by EDSM. The solution seeks the ob-

jective to be adherent to the centralized infra-structure ex-

isting for air traffic management in Brazil. As the future

studies, it is recommended the application of negotiation

techniques based on Game Theory to solve internal con-

flicts in the analysis of the critical restrictive actions, where

one can seek a better global balance in order to distribute

the damage of the restrictive actions among sectors and not

to punish one or another determined sector.

References

[1] D. P. Alves, L. Weigang, and B. B. Souza. Reinforcement
Learning to Support Meta-Level Control in Air Traffic Man-
agement, volume 1, chapter Reinforcement Learning - The-

ory and Applications, pages 409–424. Vienna: ARS pub-

lishing, 2008.
[2] CGNA. O controle do espaço aéreo - principais atividades.

Publicação, Departamento de Controle do Espaço Aéreo,

Rio de Janeiro, 2005. Vários autores.
[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-

tion to Algorithms. McGraw-Hill Book Company, 1998.
[4] A. M. F. Crespo, C. V. d. Aquino, B. B. d. Souza,

L. Weigang, A. C. M. A. d. Melo, and D. P. Alves. Sis-

tema Distribuı́do de Apoio A Decisão Aplicado ao Gerenci-

amento Tático do Fluxo de Tráfego: Caso CINDACTA I. In

VI Simpósio de Transporte Aéreo (VI SITRAER 2007), vol-

ume 1, pages 317–327, 2007.
[5] P. Dell’Olmo and G. Lulli. A dynamic programming ap-

proach for the airport capacity allocation problem. IMA
Journal of Management Mathematics, 14:235–249, 2003.

[6] V. Gorodetsky, O. Karsaev, V. Samoylov, and V. Skormin.

Multi-agent technology for air traffic control and incident

management in airport airspace. In Proceedings of 5th
Workshop on Agents In Traffic And Transportation, @ Au-
tonomous Agents and Multiagent Systems, Estoril, Portugal,

2008.
[7] M. Heymann, G. Meyer, and S. Resmerita. A framework for

conflict resolution in air traffic management. In Proceed-
ings, 42nd IEEE Conference on Decision and Control, vol-

ume 2, pages 2035–2040, Maui, Hawaii, December 2003.
[8] Z. Ma, D. Cui, and P. Cheng. Dynamic network flow model

for short-term air traffic flow management. IEEE Transac-
tions on Systems, Man and Cybernetics - Part A: Systems
and Humans, 34(3):351–358, May 2004.

[9] A. Mukherjee. Dynamic Stochastic Optimization Models for
Air Traffic Flow Management. PhD thesis, University of

California, Berkeley, 2004.
[10] J. A. Rizzi. Um modelo matemático de auxı́lio para o prob-

lema de controle do tráfego aéreo. Master’s thesis, Instituto

Tecnológico de Aeronáutica - ITA, São José dos Campos,

SP, Brasil, Maio 2003.
[11] U. R. Schlatter. Real-time knowledge-based support for air

traffic management. IEEE Intelligent Systems, 9(3):21–24,

Junho 1994.
[12] L. Weigang, C. J. P. Alves, and N. Omar. An expert system

for air traffic flow management. Jornal of Advanced Trans-
portation, 31(3):343–361, 1997.

[13] S. R. Wolfe, P. A. Jarvis, Y. Enomoto, F, and M. Sier-

huis. Comparing Route Selection Strategies in Collabora-
tive Traffic Flow Management., chapter in Intelligent Agent

Technology (IAT 2007). IEEE press, Fremont, USA, 2007.
[14] Z. Zhang, W. Gao, and L. Wang. Short-term flow manage-

ment based on dynamic flow programming network. Jour-
nal of the Eastern Asia Society for Transportation Studies,

6:640–647, 2005.

421

�

�

�
�
�

��	
������	�����������	������������������������������!��#��
�	����
���$�#������'�

�
����?���\��^�\���	���
`^���
	���������^�����������^����?��������
	������

�����������������������
���
���
�����������������������������������

����������^���^��������
�

�
��	���#��

����������	�
� �������� ���	�	�	��� 	�� ����	�� ������ 	��
	�������� 	������	�� ��� �
��	�	�
� ��������	��� ����
�����	�
�������	�
����	����������������������������������
���	������	����������
��� ����� ��	�	���� ����� ������
�� �� ������� ����	��� ����
�������� ����� �	����� �	��� ���� ������� �����	��� �	�����
�	���	�
����	����	�������	����	���	�������	�������������	���
�� ����
��������� ����� �� �������� �� ���
�� ������ ��
	������	�� 	���	�	����� ���� 	������	������ ����
����	����
	��������	�����������������������	������������������������
���������������������	����	�������������������	�	��������
����� ���� ��������� ����� ����� ����	��� 	�� �� ������ ����
������	�
� ������ �	��� 	����	������ ����	����� �� ���	
�	�
�
����� ������� ���� ���	�	�	�
� ����� ������������ ����
������� ������� ����� ��	�	���� �	����	���	�� �����	����� �	���
�����������
������������	�������	������������	�	�	���	��
�����	������	������	����������

�
�

����������#�����

����� ���������!��
�� ��������
�����"� ��
	�����������
������ #����� ��� #���������� �

���� ������������ ������� ��� ��
������������������
�����
���������
���������������	�������������
����������������
�����������������������$�������
��
	������
�����������^�#	�
	�
����������
	�������������������`�������
��?�
�^�
�������� �� ��!�� ������� ������ ���� �����������
������������ ����� �	�� ��?�
��� �������� ������� ���������� ��
���������!��
������������� ���������� ��� ������������� ������
�������������������� �������
����������������� �	��������^�
���� �	��� ��
`�
������ ������ #����� ��� �	�� �������� ���	��	�
�	��� ��
	������� 	��� ����� ������ ���
�� �	�� ��
���� ������
���� ���^� �	�� ����
���	������������������ �����%�������� ���
����������
������������
�������������������������
����������
�	����������
	�������	�����
��������������	������
��
�����^� ����� �������� ���� ���� ��� �� �������� ���

�����
������� ���
��
��������� ��
����������
���
�� ����%�������
�������� ������������������� ��
	�������������������������
���������������������������
	��������������
������^����
`����
������ ��� #���	����^� ������
	���� ����������^� ����

��������
������ ���
������ �$^� $���� ��� 	��� ����� ����� ���� ����
������������� ��
����� �������^� 	����	�
���� �������^� ����
�������� �������� �$���� �������������� �������� ���������
������������� ��������� #��	� �������� ����#� �� ��� ����
��
��?�
������� ���
��	������������ ������	���
���
�������
���&�������
��
������������������������ ����������������'�
��������� ��� �	�������� �������� ��� �	���� �����
����� ���
������������
	���������������������`������
����������
!������
������������������%	������ �	��������� ����� �������'� ���� ������
���� ����!��� ��� ����� �	���� ���������� ���� ��������
��� ���
���������������

���	��	������	���������
���������������������������
�����
������^������
	�������
	�	��������
���
�������������
����� ��
	������� #��	� ������������ ������!������� &	�����
��������	�� ����"�������������(�������������!������ �	���
����!�������� ��� ���
`�������
	����� ���� �	����������������
�������� ����� �	���� ��������� ������� ���
`��� �	�� ����� ���
���������������������
	���#��	������������������
����������
�������	��
����
���������#����������� ����� �	����������������
 ��"����
��#	�����	�� ¡�������#�������������������	�����	�
��� ������ �	�������� ���� �	�� ¢��%��� #��� ������� ��� ��
����������%���������
����
�������������#���������������������
������������ ���
�� ����
��� ��� ������ �	�#���� #	���� �	��
�	�������� #���� ���� #	���� �	��� 	��� ����� #	���� ��� ���������
�	�� ������� ��������� ��
���������� ��� ������!�� �	�� �����
������ ��� �� ����� �����^� ����#���� ����� ��� ������� �	��� �	��
�	�������� �����#��� �	�� ������������	� ���� #���� �����������
�
	������)�������� ��������� ���� ����������� ��������� �����
����� ��� ��������� ��� ����� ���� ��������
`�� ��� �	�� �	�������
�������	�� (������� ������!������ #���������� ��������� ���
�	�#�������������	������������
��#	�
	�#������?�
�����������
����
�������	�^����#������������	���������	����������#����
�����������	��#��	��� �	�� ������
������������������� �������
��� ��������^� #��	��� ���� ������
�����
�����������^� �	��
���?�
�������� ��� ���������� �� ���������
����� �����
���� ���
�������������������������������	���������������

&�����������������	����������
����
�������������
�������
������������
��������������
������������
�������^�������!����
������ ���������
�^� ���� ����������
�������
��������
��
�£���)������� ������
	���� 	���� ������� ������� ������ ���
��
������
	����
����^����
^������^��������^�������%��������
���������� �	�� ������
�� ��
	���� �	����	�������
�������'�
���
������ �¤^� ¥��� ¦�#����^� �������� �������
��������

422

�

�

����
���� ����� �	���	� !������������� ���� �	�^� �	��
������������ ��� �	�� ������� 	������� �������� ��� �	�� !������ ���
�����������§���

�����!����
������� ���������� ��� ������� ������^�
����
������ ��� ��������� ����� ���������
�� �����^� #���� ���
�������� ������������ ������������� �

������ ������ �������
#	����
����������� �	�� ������������ ���
������� �
���������� ���
������ ��� ������� ��������� ����^� ��#���� ��� ���� ����"� ����
������� ��
	������� ��
������
��
��� �����������))� "�
��
�����
������������������������	��������������
!���������
����
������ #��	�
������� ��	������� ��� ������� ���
��� �£���
�	��� �������� ������ ��������� ��
	��!��� ��� ��
������ ������
�������� ��� ��������� ����
����
����������������� #��	���
�	�� ������� �	�� ���������� �����
������ ���������
����� ���
���

������� ������
� �	��� #����
��������� �����%���!���� ������
���������
�� ���� ��������� ������ �������� ���	��	� �	���
���	�������������� ���
`����� ������
������������� ����^�
��� ������ ���� ����� �%������
��� ��� ��	�
��� �������^� ��� �����
��!����� 	���� ������������� ���� �������^� ���� �	�� 	���
����������������������
���������
����
������
����� ��
	�������
��� ��� ��� ����
����� �������� ���

�����������
������� ���������� ��� �� ������� ������ #��	���
#������������������
����������	����������������	������?�
��
��� �	�� ������������ ��� �� ���������� ������� ���
����
�� ����
������!��	�����
�����������������
����������
��������������
#��	��� ����
����� �	�� �����
�� ���
����������	�� ���������
������^�
������ ������^�
�������� ��� �	����
����������
����������������
����
�����
�������'���
���������������������
��� ����^� ������������ ��� ��������������������^��������
�������
�	�� ����� ���� ��� ������ ��� ������ ����� �����	��� ����� �����	��
������� ����!��� �������������� ��
	������� ���
����
�� �����
����
������#��	�����'������������������������
�������������
����� ������!������ ��
	��!��� ��� �������� �� ������ ������ ���

����
��������������������������������
��������������	���	���
������ ������
������ ����� �	�� �������� ������!��� ����^�

������� ������
	����
��� ������� ��
����!��
�������'�
������
��������������
������#��	����������������������	���#����
	�������������!��
�������������
^����������	�������
����������
��� �	�� �����^� ���� �������� ���
�� ����!������� *�� �%��������
�����
����
����^� �	��
�������� ������������
����������������
���`�������������\��#���� �	��
�������������� ������
����������
�����
	����� ������ ��� ���������� ��� ���������� �	�� ����������
������^�
�������^� ���� ������� �	������� ���������	�� �����!���
�����#�������������������������������`�����������������#	����
�����
������	����������
�������������
���������

+��,������

�	�� ������� ������� ����!��� �	���� ��?��� 	���#����

���������������������������������^������������������^�����
��
����������������	�� �������
������������	������?����������
��� ������!��
������� �
������� ��� �� ������� ���
��� �	�� �����

����
����� ������ ������ ����� ��� �	�� ������� ������� �	�� �����
��
	����������������������������������	���������#��������������
�������� ��� �� ���������� �������^� �	�� ������!������ ������
�����������
����
���� ��������������� ����� ��� �� ����	�
���
�������������

+�������������#���������-�#�������"!����	���©�+#�

��������������������������� ����� ��������� #��	���!��
������������
�������������!����������������
�������������������
�	������
������
��������������	�����
�^���
	������������������
���� ���`��� ��� �� ���
���
� ��
������ ��� �	�� ������� �����
�������
������������^���
	�����
����������`���#��	�����
���������
�	�� ������	�� ����������������� �	��������
�����#���� ���������
��
����� ��������
������������������ �	����������
�����������
�	�� �����
������� �� ������� ������ ��� ����� #��	� �� ��������
������������������#������������	��	���!����������^�������#����
����� ��
������ �	��
	��
����� ����
����������������������������
���������������
������ ������^� ����� ��������������� ��� ������� ������ #��	�

�	�������������������������������	�����������	��
�������'����	��
����� ������ �� ������	�� ���	� ��������� �!�������
��� ���
����
���������� ����� ��� ������ #	���� �	�� ����
�������� ���
������������
�������&	������������
������#��������� �������
���� ���� ��������� �	�� ��������
������ �

��
��� ��� ��
������
�	�� ���%������ ���#���� �	�� �������� ���� ����^� �������������
����� ���� ����
	��� ��� ���	� ������ ��� �	�� ������ ������ �	�������
�	�����������������������	���������������	�������
�����
�	��
����
�������������#����

������	����������������

�������
����
���� ��� �� ���� ��������� �������� ���������"��
�	������	�������������������	��������#��	����	�������
���^�
�	������
	����������
����
����	��
������������������

�����
��
#��	� �	��
������'�� ��
����������������������� ����� ��������^�
�	������
�����
�����#��	��	���������������������������	��
�������������������	��������'����
������������
	��������������^�
�	�������	����������	��������������	������������#����������
����������� ���������	�����
������������������
������� �����
�����������������������^��	��������������������	��������������
�������� ������� �	�� ������� �����
������
�������� �	��
������������ ��� ������ ¡�
����������������� ���`������� ���
�	��� ������ �	����������� #��	� �� ���������� ��� �� ��������� ����
�������	��������!�����������
�������

+�+����	�����������"!�����.#�

)����������� �	�� ������ �
���� ���
����
���� ����^� ���������
#�������������������
��� ���`�#��	����������������
��������
����������� ������� ������������ ������!������ ��� ��� ����
�����
�������� �����������������	���������������������� ��������
�
����� ���
��� *�� ����������� �	�� �����
����
���� ����
����������^� ��� #���� ���� �������`�� �	�� ���������� ����^� ���
�������������	�������!��'���������������������������%���������
�	�������������
��������$����

��� �������� ���� ���������� ��
	��!��� ��� ������!��
�
!����������������^� ������������ ���������������������� ������
#��� �����������	���	���
��� ���
�� ���������� ��� ��� ����� ª�
��%��� ������ ��� �	�� ¡� ������� �	�� ����������� ����� ��� ��

������� �������� �����
��� ��� �	�� ��� ������ ���� �#��
�

������������
��� /	^�0	"����� /	«$^�0	«$"����������	������	«$�
���#�� �� ����� �������� ��� �	�� ������� �	�� ���`��� �����
��������� ��� ����� ���������� �� ���'����������� ��� �� �������
�������������$��	�#������%���������#��������� ������ �	���
������
�������'�������������	�� ������ ������ ��� �	�� ������
�����������	����%������������������������

423

�

�

�
�

�����������������������'��
������������������������
�
�	�� ��
���� ������
	� ����!��� �	�� (������������

������!������ ��^� $$��� ��� ����� �� �	���� ���������� ��� �	�� ���
������ ��� �	�#� ��� ����������� ��������� ����"�� �	�� �������
���
�� ���������� ��� �	����� ��������� �	�� ¡����������� �	��
¢��%��� ����������� �	�� ������ ��� �	��������������� ��
	��!�^���
�	�����'�� ��
������ ��� ��
������� ����� �������� �� ������ ��� ��
��������������� ���
��� �#�� �

������� �����
��� ��� �����

�����
�������������������	��
��
��������������������������
��!��
��
���������� ��� ��
������'�� �������� ��� �� �������
���
����������������	��������
��������?�
���������	����������
������
���	�#�����	�����'����������������������?�
�����
����������������������������������	������������������������'�
�
��������� #��	��� �������������� ���
������� ��� ������� ���	�
�	�� ���������� ������
����� �����^� �	�� ����
��� ������� ����
����������������������	�������������������	�����������

���	��	� �	�� ������
����� ��� �	�� �	���� ����������
���������� �%������ ����� ������������ ��� ��� ��������^� �	��
(�������������!�������������������
�����
��������������!����
�������� ����'���������� ������� ����� �� ������� ������������
�$���� �����������^�
���������������� ������
�����#��	� �	�����
���
�������!�����������������	�����������	���������	�����#��^�
#	�
	� ��� ���
`��� ��� �	�� �����
������� ��� �	�� ���#���� ���
����
���� �	��^� #�� ������������������ ������!������ ��� �	��
(������� ������ ��� �������� �	���������������� �	�������������
������ ��� ������������ ����� ��� ��������!������ ��
	��!�� ���

������ �� ���#� ��� �� ������ ����� ���� �	��� ����� #��	��� �� ��������
���
�^� ����������� ��� ����
� �	�� ���� ����� ������!������
#��	��� ��� �%
������� ����� ��� ������������ �$���� ����������
������!�����������������������
�����������	�
����
	��!�^�
������������^�#	�
	�
��������	���	���������%�������������	��
#���	���� ����� ��������� #��	� ������������ #���	�����
��
������ �$¤��� �������� ��� ��������� ������������ #���	�����
��
������ �	���
���� ������ �������^� #�� ���� ��
��������������� #���	����� ������
	� #	�
	� #���� ����
�� ��
�	����������� ���� ����� ��
������ �	��
���������� ����� ����

�����
����� �	������� ������ ������!������� �� ����� ���
�� ���
�������������%�%�1������
����	�����������
������#��	�%�%�1�
�������	�� ���������������������� ��� �� ���
���
� �����
�� ����
������� ��� �	��
�����������������#	�
	� ��� �����������������
��%�������	��������!�����������	��������������������������

������ ��������� ��� �	������	������ �	��	��	������������������
����������������	���	��������	�����'��
�����������%��� ������
�"�� �	�� ������!��� ������ ��`��� ��� ����� ��� ���������� ����
������������	�#������`����������������������
�

�
�

�������+���������������'��
�����������������������������
���
�
�������������������	���
��
��������	���������������������^�

�	�� ����� ��������� ������������� ����'� ���������� ��� ���
���
���������?�
������� �	�� ¡������������������	�����	�
�
������������?�
�������	�� ¡������� ��������������� ������������
����������������%�%�1������
���#	�
	���������������%�%�1�
������ ¬�
	����?�
���� ��
������ ��� �� ���
���
� �����
����� �	��
 ¡������� ��
������� �	�� ���!��
����� �	��
�����������������
��������¬�
	������������������������%�������	����%���������
��� ��� ������!���� �� �
������ ���
����� �������!��� �	��
���!��
�� ��� ��
	� ���� ��������� ��� �	�� ���� #��	� �	�� 	��	����
���!��
�� ���������� ������ ���#���� �� ���� $�� �	��
�������!�������� ����������� �	�� ������������� ��� ����
������
��%�������	��������!���������#	������������������	�����`����
����������
���������$�������������	������	�������������������	��
�����
�����

�

�
�

�������.���������������'��
�����������������������
������!�������

424

�

�

���������������������'���	��������������������������������
����� ������� ����� �	�����	��� �%�������� ������� �	�� ������
��%��� ��� �	�� ������ ���������� �	�� ��%����� ��� �� ������� ���
�	�#�� ��� �	�� �����^� �	�� ������� ������ ��� �	�� ������ ����
������������ #��	� �� ����	���� ����������� �	�� ���� #���� ������
����� ����� ��� �� ��������� ��� ���`� ������ ��� ��
`� �� ������

�������� ���#	��� �	������� ?���������� �����	��� ��
��������
�	�� ������ ������ ��� �������� ����� ��� ��
������� �����
��� ���

���������� #��	� �	�� �	�����'�� ��������� ��� ������ ������ �	��
�������	�����
������������������
������������������#	���^��	��
 ����������������
��������	����������������	�����%������������
��� �	�� ������ ��� ����� ��������� �	��� #���� ��� ����������
������������ ���� ������������ ���� �����!���� 	��� ������ #��	���
�	������������
����������� �	��
������'�� ���	�
	��������
����� #���� ���

�������� ������������ ���� ������������ ��� ������ ��� �	������'�
	���������	�� ����������������������
�����
����������	�#�
�	�� ���'�����������
	��������
�������	�� ������ ������ ���
�	����������������������������
�����������������!�����#��
��������
�����
���������� ����(*�
����� �
	���^� ���� ����
�����^� ���� ���� ��� ���������� �	��
�����
���� ���� �� ���
���
�
�������	��������2�#	����	��������������	�������	�����
�����
 &���^� ��	�"� #	���� &���� ��� �	�� ����	����� 	���#���� ������
���������� ���� ��	�� ��� �	�� ���`���� 	���#���� ���� �����������
����#	���^��	�������������������������
����� &�	�^�����"��	���
������������	�������#	����	��������������	�����������������	��
�������
����� �������������� ���#���� �	�� �#�� ����� ���
�����^�
 &���^���	�"����� &�	�^�����"^�����������
����^������^����^��	
��
�����������	��������
������������
��������	�����
�����	������
���������� ���������^� �	�� �������� ������� �������� �	��
����������
��
� ���
����� �� ��� �	�� ��
 �^�!��������	�� �������

���� ��������
� ������ ���� �
�	� �	����
�� �� �������������

��� �����������
� "�������
��� "������^� #	���� "�������
���������� �	�� ����
����� ���
��� ����� ������������
�� ���
"�������
��� "�������
��� ���
����
��� �	�� �
���� ��� �	��
�
� �����������	����
�������������������������������	�����
��
������� ��������� ���������$�� �	�� �����������������������^� �	��
���
�� ������������������ ��� ���� ��� �	�� ��
����� �����������
����
���#���� �	�� �#������������ �	�� ���
�����������%
���^�#	���
!������ � �^� "������� � ®^� "������� � ¯^�
��� "������� °�
"������^��	����	������
���������	
��� �
�����
������������^���
±� �¯� ²�®�^���±� �¯� ²�®��� ��� �	����������� ���^� ����^�
����������
�	�� ������� ��� �	���
� ����	�� #���� ���
� ����
��$
����� #��	�
 ����� �	
��� �#	��������� �	������� ��� �	�������������

��������	
��� �#	��������������������	��

�� �������	�#�������&��	������ ���
�	����������� ���
�
���
��� �
��� #	���� �	�� �
?������ ��� ���������� ��
���
�� �	��
��#��� �� 	��������� � �����^������ � ��� �	�������������`#����
���������^�
����%�����#
����	����#�������������������	����
 ��
���������� �������� � ���������&� �	��� � ������� �
���� ���
����
��$���������
�^����
���#���
�`���
�
������ ������
���
�����&� �	������ ��
�� ���������
�������
��� ��������� �	��
������
������� ��� �	�� ����� � ��� �	���� ����������� ����
����
���^� �	�� ����� �
�� ����� ��� ������ �	�� ����$��� ��������
�
���� �	
�� �	�� ������ �������� ���
�����	
��� � �	���� ���� ���
��
������
�

�
�

�������'(�������� ������&��	������ ���
������������
����
��
�������	
��� ��

)(�!'	�������*�����������

�	�����������������#
�������������#��	��	�����
?���
	
��#
�������������
��������������#
��+������ �
 ��
���

� ��
���� ���� �
�
� ����������^�
� ���� ���� �
�
� ��
���������^�

���
��)�������������
�
������
�����
����
�
�����
��$
������
¬�)�)�
��� ,� (��� �� �
 �� ��³³�§�������� �������� ���
�³�¬�� ���	���� �� 	
��� ����� ����� ��� ��
�`� ���������
��������� ��� �	�� #��`�� � �
���� (��� �� �
 �� ������� ���
��
����
�	� 	� ���������� �� �
�� �	
�� 	
�� ��� ��� ��
���� ����
���^�
�����������������������������^��������� �
����
��
�	����#����
�	���
 �
����	����
������	������
�	� 	������������
 ���
�����

����
���������,�������������
#
��������	����
�����
��� ������� �������������
��� �
���
��� �����
��� ����
����

���#���� �
 ��
��� ��
���^������ �
 �� #����
��
�	��� ��� �	��
������
��� �	���������
����#
�������������
�������
���
���
���������� �������� �	������� �
�� ��#
��� �	�� ���������������
�	��&`������������¥���
�����	
�������
������
� �����¥£��
§£�� �¦$� ��� ��
��
������ �
 ��� ��� ���� �
�� ����^� �	�� ��
����
������
����
��� �
 ��#��	��� �	�� �
� �� ��� ����� ����^�#	��	� ���
��� ����� 	�������
�����������
����
�����	����
���������
���
���� 	����������
����#��	�
�§���#���������
�	����
����#
���������������
����^�
�������%����� �,�

������� #��	� #�������� ������������^� ��
�
���&����� ����
��
�
��������
����������������������
�^��	������#��������������

� �
 � ��� ����� �	�� ����� ��
����� �	�� ���� �	��� ����� �	��
���������� �
 � ���
��� �	�� ��
���� ��� #���������� ���
�� �� ��
�������� �	�� �� �� ������� ���������� �	�� �
 � ��� ��� �	��
����������� � �������
��� ��� �	�� ���
��� �
���
��� ������� ���
#��	�
�������
�����
��
�
�
����

)����������#
��������	������
��$
�����
���
�����
����	��
�
�
� ��
���������� ���#���� �	�� ����
��� �� �� ������� #
��
������������������
��)--�����^����� ���)�
���´��(³��
���� �	�� ����� �����^� #�� ������������
� ������ � ������������
�	
�������
�����	���
��������
����
�������������	���
������
��
��
�������� �
 ��#����
��
�	������ �	�� ��������� �	�� �
��
��� �	��
��
����
�������#���������������
�#	�������
��� ���
���#�
�����
������������
�������	���
 �
��
���

425

�

�

'(�
�	���	�

����� ���������� ������� #���� ����
���� ��� �	�#� �����&�

���������� ���
� �
��������
�� ���
��� �	��� 	� �
	��
��
�������
��������	�������������
� �
���� ������
��� �#��	�
���
�
� ����%���������	�
���	������
����
�	�����	��`�������������
#
��
���� ����
���� ���
��� ����� ��
 ���� �	�� ������ ��
 ��
�	�#�� ���������&� ���������� ���
� ��� �
��� #	���� �
�	�
�	���&�� ��������� ��� �	�� ���
��� ������ ��� ������� #��	�
���������� ����� �� ������ ��� ����� ��������� ��� ���� ,��� ���
�%�����^����
��������	�������%����
��������
�������^����
������������� ����������
������ ��������� �	�� ��
����� ���#� ��� �	��
��������	�� ������� ��
 ������� �	�� ���������&���	
������ ���
����
���#	�����	�� ¡��
��������������	���������������
���

��� �	�� ¢�
%��� ���������� ����� ��� ���� ���� �	��� (�������
����
��$
����� ����#	
�� ���
� ���� �����
�� � ���������^�
����
������������
��������	�����#�������������`��	������������
��	�����	����
������������	�����������������	������
��
�
�����
��� ������ � 	��� ����� #��	���� �
����
��� � �	�� ���#�� �
������
�������	�� �	���� ��
 �� ����
��� �	�� �
��� ������
�����
������� ��� �� ���� ,�
��� �� ���� �� �
���� ��� �	�����
�� ����
����
��$
����������������� ������
���
�	��#��	���� ����� �
�	�� ������
������
 ������^� �	�����
�� ������ �	
��� ���� �	��
����
�
���#������������ ��$��	��������#��	����	���
�
�����
����������������
���^�������� �
��� ����������&��������������

� ����� ��������� #��	� �	�� ���
������ ��
 �^� �	�� �������� �
������ ���� ����� �������� �����&�
���������� ���
� �������
��
�
��� ����
���� �	�#�� �	���� �	������ ��
�� ����������
�	��� 	��	����������������	
��� ���� ��������

.(��	#�		������/��������
�	���#��

�	�� ������� ������� �����������
��
��
�	� ��� �����$��
����� ���	���� �� ����
�
��$�� � ���������&� ���������� ���
 �������
�� �
���� ����`�� �%����� �
��
�	��^� �����
���	���� ���
`��� ����������� ��� ��
�`������&���	
������ ���
�
���
��� �
��� ������������#��	����#������ �
����� ���� ��� �	��
�
��� ������� ��� �	�� �%����� �
��
�	��� �� �	�� ����
����� ���
���������&����
��� �£������	�� 	� �	�����������
���
�����
#��`��#���� ���
� �
�������������^������
��
��
�����������	���
������ ������� ������� � �	�� ������� ���
� �
����
��
�������������

��� ��� ��� �	�� ������� �����
���� �	
�� #�� �
���
��� �	��
��������&�� ���
��� #	���� ��������� � �	���� ����������� ���
������ ��� �������� �	�� �	���&�� ��	
����� ���
� ���
��� �
���

����������^� �	���� ���������
����� ����� ��� ��
�
���� �����
�	���
�
�
�����
����#��	��	����
����������������%
���^�
������
#�����
��������������
��	��� ��
���
����	����������
 ���
�
�
�	����� ��� ��������� ������������� �����
��� ���������
���
�����
��������������
������������� ��	��`�����

&����� �	�� ����� ��
���� ��
����� #��	� �	�� ��������^�
�
	
��#
��� ��	
�������� ���
� �
������
�`� ���� ���
��� � �	��
����� ��
���� ���
�� �������
�� �
�`� ���� ��������� � �	����
����������� �	�� ����� ��
���� �#����� ���
� �
������
�`�
�	��������
�������
���
���
���������������������������� �
�
���	
� ��� �	�� ��� �� �
�� ��

����� �
� �� 	
��
� ������
���
�����	�� ��� �	��
������ ��� ��������� �#���� ���
� ���
���
�����^���������
����	����%���������#�����	����
����
����
 �^�

����� �
 �� �
�� ���
��
�	��� ���	���
�� �	�� ������� ��� �	��
�	���������
�����	���������� �	�� ������
��� � �	���	��������	��
��
����#�������������������	�������������	���	��� ��
������
`������������������ ������������������	���������������	����
�	��� �
����������� &�
����� ����
����� ���#���� �	�� �����
��
����
��� �
 ��#�������	� �����
��� �	���#��� �����������

�����������	����
��� �
����
����
����� �
 ��
��� ��
����� ������
�����
�������� �������� ���

�	�� ������� ����� ��
������ �
����^� ��
����� #����� ���
����������
�� �	�� �	������
��� ����� �
 ��
��
�	��� ��� �	��
�	��� � �
����� ���	� ����� ��
������ 	
��� �������� ��� ���

���������� �	�� ����� ��
����� ������� �
� ��
���� ���
� �
���
�
�� ���������� �#�� ���������� �����^� ��� ������� ��������� ���
�	����
���^� ����	�����������
��������
�������#����&�����^�
���
��
����
�������������^� �	�� ��
����
���������� �	���
���
�
�� ��� �����������
�
 ������ �	��#�
�	���#	��� �	���
��� ���
������������	�����������
��
�����
�����
�#	���^��	���������
���� ��#����������������	����� �����
�������������	�
�� ��
����
�����
��� � ����
��
����� ������
��� ���������� � �����%�����
��
�
����������
���� � �	��������������^� �	�� ���
������������
����� ��
����� ����
����� ���
� ���
��� �
����
�� ��� ����������
������
���� #��	� �	�� ��
����� ��� �
�
� �	�#�� � ��������&��
��	
����^�������
�����
`�� ����#���	��	�� ��
����������������
¦�#����^� ����`�� ����������� � �
 ��
��
�	��� ��� �	�� �����^�
����
��$�� � ��
����� ��%��� ��� �	������#�������
����	������
�	
���� �� � �
�`^�
��� ������������ ����
����� ���#���� �	��
��
����
�������� ��
 ������	���
���#���������
����	����
��� �

����
����

����	���	
��#
��� ������ ���
�������������� ������� � �	��
����� ������� ��� �
������#���� ��� 	
����� � �� �
�� ������������
�������
��� ����������
���%���������#��������������������
�� ��
���� �����������
��� �
 � ����������� �,£��� �	�� ��
�
����
����
���� ���
�� ����� ��
���� �
����� ������� � ��� �	��
���������� �
� �� ��� ������ �	��� �	����
��� �������� ��
�����
#��	���
�������
�����
�
����
��
^��� �
��� �������
����� ���
�	
���� ����#��������������#��	��
�	���	�����	��
��
��������
���������	���� �^����	�
��
���
������������� ��
 ��������� �
�
����� ��������� ��������
������ ���	�����^� #���� ������� ���
�� �
��������������
�	����������������
���	
�
������������� �
����#
���� �����

�	�� ����� ��
���� �
��
����
��� �������� �
 �� #��	��� ����
��
��� ��
� ����	���#�����
����������
 ���������������#	��	�

� ��
���� #���� �������� �����
�� ���������� �� �
��� �,£��� �	��
������
��������
�������
 �����������
��
������	
�������
����
�
 � ������������ ���������� �
� ����������� ������� ��� �
 �� ���
��
��� �����&�
���������� ���������� #	���� �
���
���� � �����
����
����
��� � �	��� #���� ������� �	�� �	
���� ��� �
 �
������������ �� ����#
��� ��	
�������� �	
�� ����������� �	�� �
 �
�������� ��� �	�� ��������&����������
�����
�
��$�� � ����������
�� �
�� ����� �	��
��������������������� ���������
���	���
���������������������	����������
�	�� ������
�� ������������� ����
���� � �	�� �������

���
������
��� ������ #�����
� �� �� ��� �
�� ������ �	��
������� ��� �������
��� ��������&�����������
��� �����������

�� ������ �
���� �������� � �	��� � �
���^�
�������^�
���
���������������
����
���
����#��	������
���������
��������
��	�������
������ ����������� � �
������
�����
����#��	�	��
��

426

�

�

��	
���������	�
���	����������������
������#��`���^��	���^�

����
����������
����������	�������������
�����
�
�#�������

�� �����
��� ��������� ��� �����$�� ����� � �������
�� #��`�
�
����
����������������
�� ����������
���
���

��� �%���� ����	��� ��	
��������� ��� �	�� ����
��$
�����
����#
�����	�����
�� ���� ����
��$
����� ������������ ��?�����
��� �
��������
�� �
�
� �����
� ��� ��
 �^� ���� ��� �����&��
�	�#� ���������
�� ������
����� ��� ������� �	��
�������� ���
���������
�� ������
����� ��� �	�� �
	��
�� �������
����� #����
����	��������
����������������������#��	����	�� �������
��
�
���� �������������������������
���������� ��� �	����������
 �
���
��� ������ ��	���� #���� ���
� ��������
��
�	� ���
������� ���������
�� ������
����� #��	� �����&� �������� �	��
����
��$�����
 ��#����
���#��	���������
�
 �������������
���
�	�� ���������
�� ��������� �	
�� ����� �
`�� #	��� �
��
��� �
�	�� ���������������
�� �
	��
��
���������� ���	�
�� �	��`����^�
������
����^�
�����^�
��������
�����
 ����
��������� �
�������
�	�� ����
��$
����� ��� ��������� ��	��� �
������ �� ���� �%
���^�
������� ��� ���������^� ������
������
��� � 	��� �����
���
�������� ���	
���� ������� �	��� ������ ������� ����	���
�������
���� �
����� ���������&� ��	
������
�����
���� #��	�
�������
������

0(����#��	����

�	���
��������������
��������������������������������
��������� ^�
��	���� ^�
��� ����
��$�� � �
�
� ���
���� #��	�
���������&�
���������� ���
� ���
��� ������� �	�� �����$
����� ���
����� ���	���� �� ���� ��������� � �
�
� �
`��� ��� �������� ���

������� �
�
�
�����
���� #��	� �����&� ���������� #	����

�������� ��	�����
����������%����� ���������������������
���	����� �	�� ��������� ����
��$
����� ����#
��� ���
����
�	�#�� ���������&�
���������� ���
� �
��������
�� ���
���
��?������ �����
� ��� ��
 �� #	����
�������� � �	�� ������ ���
�����
���
�	������	����������	������
��$�����
 ��#�����

���#� ��������� ����
��	���� ��� ���� ��$�� �
������ �������
#��	����	���
�
^�
������
����������������µ	������¶�
���µ�����
���¶� ���
������ ���
� ���
��� �
��� ������������� ��� #����
������
����� ����������� ���� ����� ��� �
���� � ������ �
������
����
������������� ����
�`���� ��
����´��������
���
�����
������������
��
�������������������������������	���� ��
#��	�����
��$
��������	�������������������	���� ���
������

����������^� ��� ������ �	
�� �	��������
��
���
������ ���� ���

���
�������������^�
���#���%�����	
���	������������������
	�����
����	
�������������
�������	������������������������
���	���� ������������������

1(�
�*����#�	�

�,�� �
��^� ��^� µ����+� �� \��� ��� �����
��� � ¬�����	�� ^¶�
"����������2�������^����£�£�^�3
���������

���� ³
���^� 3�^� µ&	������ ��� ����+� �	�� 	������� ��� ����^¶�
2��������� ��� 2�������� �������������� ���� !�������
�����������45�����6^�

� 	���+²²###�
�� ���
���� ²������²����������
����
�%·������
�����§^����,�����������������£^����¤���

���� &���	^�3�^����	`��^�\�^�3�
� ^���^��
���	��^���^��	������^���^�
��
^� ��^� ���^� &�^�
��� &���
�
��
?
�^� \�^� µ������
����

���	�����������	��
��
�����������������^¶����������������
����2�!^�������¥^����§���^�������

���� ¦��^� &�^�
��� �
��^� ¦�^� µ����� ��	
����� ��������&� �������
�%��������
�� �	�� ¬%���
������^¶� ������������� �� ����
2�!^�������¥^���£��£�^�������

���� &	��� ^� ���
��� ��� 	�^� ��^� µ(������� ����
��$
����� ���
����� &����)	
��� �
�
^¶� ����� ª������ 45�����6^�
	��+²²###�����?����
�����²#	���
���²,²�^� ����� ����������
������£^����¤���

�£�� ��#�
�^����
�����%
��^�(�^�µ��������������������	
������ ���
�	�� �
�	���� ������+� &���� ���� �� � ���	����� ��
��
���
�	�������
�� ����������^¶� ������������� ª������ �� ������� 7�
������������ !���
�����^� ����� �,^� ���� ,,^� �� �§,�£��^�
������

�¤�� ��#�
�^��^�¢�^���^�
���´�����^���^�µ��#����� 	�����������
���
�
���
��� ����
�� �
���� � ����� ��������� ��
�`�� � �
�
^¶�
ª����������������
�������������"�������^������§^�������
��¥^�������

�¥�� ¢
��	^����
��� &
� ����� ^� ¬�^� µ�	�� �������� ��� ������ ���
�
���
��������� ���� ��
��
�������������	��� � �����^¶�ª������
���������������	
��^������§^������^�������§���¤^�������

�§�� �
����^� ��^�
��� ������^� ³���^� µ�
����
��� ������������
�����
������
��������
�������
���
�������������������
�����¢�
���������^¶� ����
�	���	�� ª�
�	�� �� ���	����� ����
�������
 	�	!�����^�������^�������^������£���¤�^�������

������
��^�"�\�^��
�`���
�^� #���^�
���"	�������
�^���^���	$��!��
��� ���
�	���� ����	��%	���� ����!� ������ �� ����&^� ���
��
\
���
���������	���^��§§§��

�����\'
�^� ��^� µ��"� ���	���� ��� �������� �
�	��� ����
��	��
���������
�����
��� �������
��$
����� ��� ¦��
�� ���������
�
������^¶���!
	���&	�(��	��
��^����� ¥£^� ���� �^� ���� �£¤�
�¥�^�������

�����#����� ^� ���
��� "�
�`�^� #�^� µ�	�� ������
����� ���
��� ��
���	��)��� ���������
��� �
��� �
��
��� � ³
� �� ������
�����
"�
���^¶� �***��
	��	������ ������	��%	����	�$�������
�
�
	�����^������^������^�������¤��¤�^��§§¥��

�����"�� ���^���^�µ�
���
�����������+������
��^¶�������
�
�$�
,-�����.^�
'''���������'��������²������������²������²�����²�

� �^��¥��^��§��¥^���	���^����£^������������������^����¤���
��������	��^���^�
���³����
�^�"�^� µ������� ������
������������� �

������� �+��� ���	���� �^¶� (� � "���"*� ��������^� ���� �§^�
�������^�������¤���§^����¤��

�����\
����^���^� ¦
����^���^�
��� ��� 	�^� ��^� µ������
��� � ¬������
'��	� ��
�`��� ���������� ��� �����
��� "�
���� �� ��������
�
��� "����^¶� /
���$��!�� �� ����
�	���	�� ����
����� ��
�������!�����(�	������,-�����.^��

� 	�����²²
�
�������������� ²��������� �²+��
�¸�
����¸+����²�
� �§�¸�
���
¸��
��¸�
�������� ^� ����� ���������� ����� ��^�

���¤���
��£��#
��^�"��
����
�^�"�^� µ����������
����
���� ���
� �������+���

���'��`^¶�/
���$��!�� �� ���� $��� ����
�	���	�� �
&���� ��
0�
������ ����
&� ������$�1� ����
�����	�� ��	��	���� ��
��	
	���
�%	���^������§��£^����£��

��¤��+����^�#�^�
���
�^���^�+�����^�"�^�
���¦� 	��^�#�^�������
�
�
	�����3� /
��������� 	�$� /
	�����^� ���������������
������	�� �����
��^��§§£��

-#8��'��/������	�

�	�������
��	�'
���
���
���������������	��� 	���+����
���
��������������
��	�����	��´�������������
��	�
���¬�����
��
"�������
�� ����
�
� ������������������ ����������� +����
�
�����

427

Analyzing Manufacturing Process Knowledge Flows with KoFI

Oscar M. Rodríguez-Elias1, Alberto L. Morán2, Jaqueline I. Lavandera3, Aurora Vizcaino4
1UNISON-Mathematics Department, Hermosillo, Son., Mexico

2UABC-Facultad de Ciencias, Ensenada, B.C, Mexico
3FAMOSA-Ensenada, Ensenada, B.C., Mexico

4ALARCOS Research Group, Information Systems and Technologies Department, UCLM. Spain
omrodriguez@ciencias.uson.mx; alberto_moran@uabc.mx; jilavmac@efemsa.com;

aurora.vizcino@uclm.es

Abstract

This paper presents the use of the Knowledge Flow
Identification (KoFI) methodology as a means to
improve a manufacturing process knowledge flow.
KoFI was initially developed to analyze software
processes. In this paper we illustrate how it can also
be used in a manufacturing domain. The results of the
application of KoFI are also presented, which include
some lessons learned, and the design of a knowledge
portal together with the results of an initial evaluation
from the potential users of this portal.

1. Introduction

Knowledge is currently one of the most important
organizational resources [2]. It is therefore important
for organizations to search for ways to manage it. To
accomplish this, knowledge management systems
(KMSs) must facilitate knowledge workers with the
knowledge they require from where it is created or
stored, or capture and store knowledge to make it
available for future use. It is necessary to understand
how knowledge is flowing in the work processes, in
this way it should be easier to identify the problems
affecting that flow and, as a consequence, to propose
possible solutions to improve the flow [5].

In this paper, we illustrate the manner in which the
KnOwledge Flow Identification (KoFI) methodology
[8] was used to analyze a manufacturing process, in
order to improve its knowledge flow. The main reason
for engaging in this study was to assist a
manufacturing organization in two main aspects: 1) to
improve the training of highly competitive personnel,
and 2) to promote organizational learning. The main
concern was to develop a KM system to assists the
human resources training process, by making useful

information and resources available to the employees
to promote self-learning and knowledge diffusion.

In the accomplishment of the above goals, certain
questions arose, such as: what knowledge is it
important for the employees to have? Where does that
knowledge reside? How can it be accessed? Which
apects of such knowledge are being stored and where?
Which are not being stored and why not? etc. To
obtain initial answers to these questions and to propose
a possible solution for the organization a study was
carried out. In this study one of the organization’s
processes was analyzed using the KoFI methodology.
The main results of this study are described here. The
paper is organized as follows: Section Two
summarizes the KoFI methodology. Section Three
goes on to depict the analysis of the manufacturing
process, while Section Four introduces a knowledge
portal whose design was based on the results of such
an analysis. Finally, Section Five presents the results
of an initial evaluation of this portal, while Section Six
concludes the paper.

2. The KoFI methodology

KoFI is a methodology focused on identifying and
analyzing knowledge flows in work processes,
following process engineering techniques [8]. It was
defined to assist in three main areas: 1) to identify,
structure, and classify the knowledge base of a studied
process, 2) to identify the technological infrastructure
that supports the process and which affects the
knowledge flow, and 3) to identify requirements to
improve the knowledge flow in the process.

In order to apply KoFI, it is necessary to define the
specific process to be analyzed, and then model it. The
process models are later analyzed following a four step
process, as is shown in Figure 1. The process followed

428

is iterative, since each stage may provide information
useful for the preceeding and successive stages. Thus,
it is possible for the process model to evolve while it is
being analyzed through KoFI. We shall now attempt to
describe how each stage is carried out.

The KoFI methodology

To identify
knowledge flow

problems

To identify
knowledge flows

To identify
knowledge topics

To identify
knowledge sources

To specify the process
to be analyzed

Knowledge focused
process modeling

Figure 1: Stages of the KoFI methodology.

2.1. Knowledge focused process modeling

To model the knowledge involved in a process, it is

convenient to use a Process Modeling Language
(PML) which provides explicit representation of issues
such as the knowledge consumed or generated in
activities, the knowledge required by the roles
participating in those activities, the sources of that
knowledge, or knowledge dependencies [1]. In our
study we used an adaptation of a highly used and
flexible PML proposed in [7].

Since the focus of this paper is not on the modeling
languages, we will limit ourselves to simply presenting
the main activities carried out in KoFI.

2.2. Identification of knowledge sources and
topics

These two steps focus on identifying the main
documents and people involved in the process, that is,
the main knowledge sources, and the knowledge that
can be obtained form the, or the one required to
accomplish the process’ activities. We consider people
as a knowledge source since they are the main source
of tacit knowledge in a company. It is important that
the identified sources and topics be organized and
classified, for instance, by means of a taxonomy or an
ontology in which the relationships between the
elements of the process be represented. In fact,
defining taxonomies is one of the first steps in the
development of KMSs [6].

2.3. Identification of knowledge flows

In the third step we analyze how knowledge and

sources are involved in the activities performed in the

process. The main activities of the processes have, of
course, been previously identified. Therefore, the
process models help to analyze how knowledge flows
through the process while the people involved perform
their activities. Examples of this include knowing
which sources are consulted, or which documents are
generated while activities are performed. It is
important to identify knowledge flows in activities
and/or in sources. One example of this might be the
transfer of knowledge from a person to a document.

2.4. Identification of knowledge flow problems

The knowledge flows identified in the previous

stage are analyzed to discover problems which might
be affecting them, such as whether the information
generated from the activities is not captured, or
whether there are sources that might help in the
performance of certain activities, but which are not
consulted by the people in charge of them. To do this,
KoFI proposes the use of problem scenarios, which are
stories describing the way in which a problem occurs
[8]. These stories must particularly show how the
detected problems affect the knowledge flow. Once the
problem scenario is described, one or more alternative
scenarios must be defined to illustrate possible
solutions, and the manner in which those alternative
solutions may improve the flow of knowledge.

3. Analysis of the manufacturing process

The KOFI methodology was used in a
manufacturing process with the goal of detecting how
this process could be improved from a knowledge
management point of view. The study was conducted
in a Mexican industrial company dedicated to the
manufacturing of cans. We studied one of eight
processes performed in one of nine departments in one
unit of the company, specifically the process in charge
of transforming the aluminum rolls into the first
versions of the cans (known as the “Formation area”).
Forty one people were involved in this process.

It is important to highlight that the company has
documented all its processes, and follows standards for
documenting almost all its activities. Moreover it has
an ISO9001-2000 certification, so it was not necessary
to develop detailed models of the processes. We
simply focused on developing high level models to
identify the main knowledge required for the central
activities of the processes and to identify the main
knowledge and information sources involved.

The data used to analyze the process was captured
through interviews, and by analyzing documents and

429

information systems. Nineteen employees were
interviewed by using the long interview technique, but
adjusting the interviews to the following format: the
general data of those interviewed, the main activities
performed, and knowledge sources known by them,
and their level of knowledge of the process. The
duration of the interviews ranged, from 30 minutes to 2
hours, depending on the level of responsibility of those
interviewed. A total of 119 documents and systems
were also analyzed, of which 24 were discarded
because they were duplicated.

3.1. Results of the analysis

The main results of the analysis of the process were

classification schemas for knowledge sources and
topics, which were later used as a basis for structuring
a knowledge map from which a knowledge portal was
developed. Additionally, the knowledge flow analysis
phase helped us to identify the relationships between
the various knowledge sources and topics, and the
activities carried out in the process. These main results
are next described.

3.1.1. Knowledge sources. The identified sources
were very diverse, from process documentation to
organizational norms. These were classified into: 1)
documents, including three subcategories: process,
technical, and organizational documentation; 2)
information systems, including two subcategories:
query, and transactional systems; 3) people, including
four subcategories: staff, specialists, external clients,
and internal clients; and 4) others, including two
subcategories: problems analysis, and simulation tools.

3.1.2. Knowledge topics. The identified knowledge
topics were also very diverse, ranging from
organizational behavior to special machine
maintenance. These topics were classified in three
categories: 1) product line activities, including product
quality, machine maintenance, operation, and
information technology (IT) application; 2)
organizational culture, including knowledge of the
company; and 3) general knowledge, including
resource management, IT management, personnel
management, and other individual knowledge.

3.1.3. Knowledge flows. In this step we modeled the
knowledge required in each activity of the process, the
knowledge that each role required to perform these
activities, and the knowledge sources consulted or
generated in each activity, following an adaptation of
the Rich Picture [4] technique proposed in [7]. These
models helped us to identify the relationships between

the knowledge sources and topics, and the activities of
the process. This allowed us to create a knowledge
map by defining the knowledge that might be obtained
from each source, and by defining the activities in
which the sources or the knowledge were being used
or generated.

3.1.4. Knowledge flow problems. In the final step of
KoFI, we identified two main areas of opportunity.
First, it was observed that some areas of the process
were not well supported with documentation. For
instance, there was not enough documented
information on the use of certain mechanical and
electrical tools; therefore, that knowledge resided only
in people’s experience. An additional problem was the
identification of important knowledge sources that
were not being used; for instance, the company had
some simulation tools that were not being used.

Based on the information obtained by applying the
four steps of the analysis phase of KoFI, we decided to
develop a knowledge portal which could facilitate
access to the available knowledge sources , classifying
them according to the activities in which they would be
useful. It was also decided that the portal should
provide access not only to documents, but also to other
types of sources, such as information systems, or
support tools, in order to promote the use of all the
available types of knowledge sources of the company.

4. Designing the Knowledge Portal

From the analysis we created a knowledge meta-
model which could be replicated to any area of the
organization while achieving the same results.

4.1. Meta-model

The proposed meta-model, represented in Figure 2,

comprises the knowledge types and sources involved
in the knowledge generation and acquisition process.

In this meta-model the knowledge concepts are
integrated with the knowledge topics and sources. The
knowledge concepts are required, generated or
modified by the activities within the study area, which
are described as work definitions. In turn, these work
definitions can be represented as processes, activities
or decisions. Each knowledge concept/source
association contains information about the knowledge
level it requires. Finally, the available format and
location for consulting each source are specified.

430

Knowledge
source

Location Source
types

Location
types

Source
categories

Format

Knowledge
concept

Required level

Knowledge
topics

Categories Areas

Work
definitionsGoal

Processes Activities Decisions

Located in

Of type

Knows about

Requires

Generates/Modifies

Has

launches…

Implies

1..*

Has

1..*

Has1Has1

Knowledge
source

Location Source
types

Location
types

Source
categories

Format

Knowledge
concept

Required level

Knowledge
topics

Categories Areas

Work
definitionsGoal

Processes Activities Decisions

Located in

Of type

Knows about

Requires

Generates/Modifies

Has

launches…

Implies

1..*

Has

1..*

Has1Has1

Figure 2: Meta-model of knowledge types and

sources.

4.2 Knowledge portal structure

This meta model was used as a base to design the

structure for a knowledge portal. Figure 3 shows the
resulting general structure of the portal. This structure
comprises a first level in which initial interfaces
(pages) are accessible (e.g. home and registration
pages). The second and third levels are pages which
correspond to the manufacturing areas and sub-areas of
the organization, respectively, according to the rich
picture models developed during the analysis. The
fourth level corresponds to pages on the processes that
integrate each of the sub-areas identified from the
involved knowledge flows. Finally, the fifth level
presents all the identified knowledge sources for the
specific process of the sub-area. This structure is
representative of all and each of the manufacturing
sub-areas, as identified during the analysis.

4.3 Knowledge portal UI design

The design of presentation and navigational features

of the user interfaces (pages) of the knowledge portal
also emerged from insights identified in the analysis
and initial phases of design.

These include information about the identified
knowledge flows, the main sub-areas of the
organization, and the structure of the portal previously
identified, which resulted in the options included in the
menus and main layout sections of the pages. These
allow users to find the required information by simply
identifying the specific area in which information is
generated or required, and following the resulting
navigational structure (area sub-area process) to
locate the specific knowledge source, instead of just
alphabetically (or randomly) browsing through the
information.

Homepage

Area Area Area

Sub-area Sub-area Sub-area

Sub-process Sub-process Sub-process

Knowledge source Knowledge source Knowledge source

Homepage

Area Area Area

Sub-area Sub-area Sub-area

Sub-process Sub-process Sub-process

Knowledge source Knowledge source Knowledge source
Figure 3: General structure of the Knowledge

Portal.

Figure 4 depicts an example of the layout and

content of a page from the current prototype for the
“Formation” area.

a) Areab) Sub-areac) Process

d) Knowledge
sources

e) Contextual
menu

f) Search
engine

a) Areab) Sub-areac) Process

d) Knowledge
sources

e) Contextual
menu

f) Search
engine

Figure 4: Example of the page contents and
layout of the Knowledge Portal.

The information provided includes the name of the

manufacturing area being consulted (4.a), the name of
the specific sub-area (4.b), the name of the selected
process within the sub-area (4.c), and most
importantly, links to knowledge sources (and types)
available for that process (4.d).

Additionally, the page includes a “contextual” sub-
area menu to facilitate navigation through the
information (4.e), which is always available while the
user stays in that particular sub-area of the portal.
Also, it includes a search engine (4.f) which allows a
search to be performed by simply specifying a
keyword on the required topic, and optionally, the
“places” in which the information should be searched
for.

The interface in Figure 4 represents the final
destination for users looking for a particular
knowledge source who, by following only three links

431

(area sub-area process), arrive at the knowledge
sources (either documents, systems or people)
required to perform their intended activities.

Finally, this design adheres to the organization’s
established standard guidelines for this kind of
applications.

5. Preliminary Evaluation of the
knowledge portal

We conducted a preliminary evaluation in one of
the production areas to both determine the impact and
acceptance level of the users on the system, and to
provide support for the decision-making process
concerned with the continuation of the system’s
implementation in other areas of the organization. The
evaluation considered aspects concerning perception of
usefulness and ease of use [11].

The evaluation consisted of 1) an introductory
session, in which the system was presented to the users
and its functionality was demonstrated to them. This
included examples on how to search for and retrieve
knowledge sources by means of navigating through
areas, sub-areas and processes, as well as through the
search engine; and 2) the application of a questionnaire
containing 12 questions referring to perception of
usefulness (6) and ease of use (6). Each evaluation
session (induction and application of the questionnaire)
was done in approximately one hour.

The subjects of the study were 41 employees of the
“Formation” area for which the prototype was
developed. The subjects included leader mechanics,
process mechanics, operators and process engineers,
whose participation was voluntary. The sample was
divided into 4 groups according to the natural
operative processes (3 groups of ten people and 1 of
eleven). The application process of the evaluation was
completed in three days.

5.1 Analysis and discussion of evaluation
results

The subjects had positive appreciations with regard
to the knowledge portal, as is reflected in their answers
in the questionnaire. Table 1 shows the answers to the
questions about the perception of usefulness of the
tool. The users perceived that the portal would allow
them to increase their productivity and to perform their
tasks more easily (82.93% “Agree” in both cases),
although some of them had doubts regarding the fact
that this would increase their productivity (24.39%
“Have Doubts”). Only one person (2.44%)

“Disagreed” that the tool would help him/her to
complete his/her tasks faster.

Table 1: Perception of Usefulness.

Question Agree (%) Have Doubts
(%)

Disagree (%)

Complete the
task faster

78.05 19.51 2.44

Increase task
performance

82.93 17.07 0.0

Increase
productivity

75.61 24.39 0.0

Improve
efficiency

80.49 19.51 0.0

Ease the
task

82.93 17.07 0.0

Is useful 87.80 12.20 0.0.

Table 2: Perception of Easy of Use.
Question Agree (%) Have Doubts

(%)
Disagree (%)

Learning to
browse

85.37 14.63 0.0

Finding
information

60.98 39.02 0.0

Clear user
interfaces

65.85 34.15 0.0

Flexible
interaction

65.85 34.15 0.0

Becoming an
expert

53.66 46.34 0.0

Is easy to use 68.29 31.71 0.0.

Table 2 shows the answers to the questions about

the perception of ease of use. As can be seen, although
most of the users perceived that it was easy to learn to
browse through the information (85.37% “Agree”),
some had doubts concerning the ease of finding
information (39.02% “Have Doubts”), and even more
users had doubts concerning becoming experts on the
use of the tool (46.34% “Have Doubts”). A possible
explanation could be that a little more than a third of
the users had doubts concerning the clarity of the
presented interfaces, as well as about the interaction
flexibility that these provide (34.15% in both cases).

In general, most of the users considered the
knowledge portal as a useful (87.80% “Agree” – Table
1) and easy to use tool (68.29% “Agree” – Table 2) for
the accomplishment of their work.

6. Discussion and concluding remarks

Integrating KM into work processes is one of the
main concerns in the KM community [9]. Several
works related to the integration of KM into work
processes can be found in the relevant literature (e.g.
[1, 3, 10]). Most of the approaches we have found are
either orientated towards developing specific KM

432

systems, or require special tools or PMLs for their use.
Before proposing a specific approach for managing
knowledge in an organization, it is important to
analyze the organizations’ work processes from a
knowledge flow perspective [5], since supporting
knowledge flow should be the main focus of KM. The
main contribution of the present work is the use of an
approach which takes this observation into
consideration. We have illustrated how the KoFI
methodology [8] may be useful for proposing means to
improve the knowledge flow in a manufacturing
company. This should be accomplished not only by
developing new systems, changing organizational
culture, and so on, but also by integrating the current
infrastructure and the real work being done by the
people in charge of the organizational processes.

The main result of the study was illustrating the
usefulness of the KoFI methodology in a
manufacturing setting; particularly for the design of a
knowledge portal based on the real work structure of a
company. The portal integrates the knowledge sources
available, and presents them to the users by following
an organizational structure which emerges from the
application of the different steps proposed by KoFI.
Even though more research is required to evaluate if
the portal will allow the company to improve the
training of highly competitive personnel, and to
promote organizational learning, the preliminary
evaluation of this portal has led us to believe that it
could help to accomplish this, since such a portal was
considered to be highly useful and used by the
employees of the company. As future work, we are
planning to apply the KoFI methodology to the
analysis of all the company’s other processes, in order
to extend the use of the portal to the entire
organization. This should help us to continue
evaluating the benefits and limitations of KoFI.

Acknowledgements
This work is supported by UABC, project 0191 of the
XI Convocatoria Interna de Proyectos, the MELISA
project (grant PAC08-0142-3315) financed by the
Consejería de Educación y Ciencias de la Junta de
Comunidades de Castilla-La Mancha, and CALIPSO
(TIN20005-24055-E) supported by the Ministerio de
Educación y Ciencia (Spain). The authors
acknowledge the support provided by FAMOSA-
Ensenada, for the realization of this project.

References
[1] P. Bera, D. Nevo, and Y. Wand, "Unravelling Knowledge
Requirements through Business Process Analysis,"

Communications of the Association for Information Systems,
vol. 16, pp. 814-830, 2005.

[2] K. Ichijo and I. Nonaka, "Knowledge Creation and
Management: New Challenges for Managers." New York,
NY.: Oxford University Press, 2007, pp. 335.

[3] S. Kim, H. Hwang, and E. Suh, "A Process-based
Approach to Knowledge Flow Analysis: A Case Study of a
manufacturing Firm," Knowledge and Process Management,
vol. 10, pp. 260-276, 2003.

[4] A. Monk and S. Howard, "The Rich Picture: A Tool for
Reasoning About Work Context," Interactions, vol. 5, pp. 21-
30, 1998.

[5] M. E. Nissen, "An Extended Model of Knowledge-Flow
Dynamics," Communications of the Association for
Information Systems, vol. 8, pp. 251-266, 2002.

[6] M. Rao, "Knowledge Management Tools and
Techniques: Practitioners and Experts Evaluate KM
Solutions." Amsterdam: Elsevier, 2005, pp. 438.

[7] O. M. Rodríguez-Elias, A. I. Martínez-García, A.
Vizcaíno, J. Favela, and M. Piattini, "Identifying Knowledge
Flows in Communities of Practice," in Encyclopedia of
Communities of Practice in Information and Knowledge
Management, E. Coakes and S. A. Clarke, Eds. Hershey, PA,
USA: Idea Group Inc., 2005, pp. 210-217.

[8] O. M. Rodríguez-Elias, A. I. Martínez García, J. Favela,
A. Vizcaíno, and J. P. Soto, "Knowledge flow analysis to
identify knowledge needs for the design of knowledge
management systems and strategies: a methodological
approach," presented at 9th ICEIS, Funchal, Madeira -
Portugal, 2007.

[9] W. Scholl, C. König, B. Meyer, and P. Heisig, "The
future of knowledge management: an international delphi
study," Journal of Knowledge Management, vol. 8, pp. 19-
35, 2004.

[10] R. Woitsch and D. Karagiannis, "Process-oriented
Knowledge Management Systems based on KM-Services:
The PROMOTE Approach," International Journal of
Intelligent Systems in Accounting, Finance & Management,
vol. 11, pp. 253-267, 2003.

[11] F. D. Davis, "Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology," MIS
Quarterly, 1989, 13(3), pp. 319-340.

433

Performance: A Longitudinal Study
Nenad Stankovic

University of Aizu
Aizu-Wakamatsu City
Fukushima, 965-8580

Japan

ABSTRACT
Performance is an important nonfunctional requirement of any
software system. In this paper we describe our findings from a
one year longitudinal case study of the problems identified in two
related commercial projects. We divide those problems according
to the Pareto principle. The evidence has revealed that a smaller
number of modules affected the performance significantly. That
finding raises questions about our ability to chart a course and
maintain it at both system and subsystem level, and to recognize
problems while their resolution is feasible.

On these projects we have also learned that noncritical errors
could affect performance significantly. This is largely due to the
new technologies that were introduced with no previous in-house
experience. But, they could also be attributed to a possible lack of
accountability and weak participation in the control process.
Noncritical errors may not appear hard to fix, but their number
and small individual contribution towards a better performance
result when fixed makes their detection, implementation, and
testing labor intensive.

1. INTRODUCTION
Software quality has been an ongoing topic of interest in
academia and IT industry alike. Software performance has been
discussed in a number of forums, such as PDS, IEEE TSE, ICSE,
etc. However, the results have been presented as a summary of the
raw faults data in a postmortem analysis. Also, due to frequent
technological advances and increasingly more challenging
applications any past experience and benchmarks becomes harder
to correlate to and apply. Still, lessons learned from similar
endeavors and technologies should be gathered to enable broader
improvement.

Software performance must be constantly monitored [9]. The
activities to achieve the required quality can be formulated as
these three basic steps:

� Steps taken before implementation,

� Steps taken during implementation, and

� Steps take after implementation.

When developing a software system, we should iterate back and
forth among these three steps. In principle, software process also
follows these steps, and the steps involved in getting software to
perform also breaks down into them. Initial performance
evaluation and modeling serves to establish whether our
nonfunctional requirements are achievable and to guide our
decisions regarding design and software reuse. These can be
accomplished either by running a simple test on a raw component,
or by undertaking a more formal approach (e.g., [6]]). Also, there
is a growing body of performance (anti)patterns (e.g., [2]).

Towards the end of development a performance test is undertaken
to verify that the performance goals have been met. Between
these two steps, however, there is a long period when many
decisions are made and must be verified on their merits as part of
the process.

While working on a new software system the developers must
overcome two major sources of difficulties. Firstly, they must
understand the environment in which future system will operate.
This is often referred to as application domain and though they do
not have to be or become experts it is important to understand the
basic concepts and requirements as to design and implement a
quality solution. Thus, a system that is not reliable or does not
perform is equally unacceptable. Secondly, software development
process translates into multiple phases, activities, tasks, and
profiles of participants necessary to identify and define a system
as a sequence of models that addresses the end user’s problem.
Software engineering is a modeling activity as it deals with
complexity by focusing, at different points in time, only on those
details that are relevant and abstract away everything else. In
particular, software engineers need to understand the system they
could build, the technologies they could use, and the timeframe,
to assess different solutions and tradeoffs thereof. These models
and artifacts that accompany them cannot always be precisely
verified and their accuracy is largely experiential. Software
architecture is also influenced by business and social forces from
multiple stakeholders [10]. All these are especially true in early
project phases when, unfortunately, many important decisions
must be made with little evidence to back them up. As these can
easily turn into a complex set of issues, here we are primarily
interested in performance aspects that we follow through a
number of examples.

The analysis presented in this paper is based on two industrial
projects that produced two distributed software systems of 650
KLOC (i.e., the smaller project) and 800 KLOC (i.e., the larger
project). The systems are implemented in Java and J2EE, and they
share some architectural, design, and implementation details. Our
analysis is based on a static analysis of the software architecture,
design artifacts, and code. It is supported by profiling tools (e.g.,
OptimizeIt by Borland, and top) and a proprietary dynamic
memory code scanner. Multiple commercial load generating tools
are used (e.g., LoadRunner [8], Hammer [7]) as well. These help
in collecting the multiple metrics [1] that are used to identify
problems, and quantify and assess their impact on the
performance to the extent possible. In particular, we present a
range of results and examine the extent to which they support the
following hypothesis:

� A small number off classes is responsible for the major
(i.e., critical) performance problems.

434

� Software performance problems can also be attributed
to deficiencies in the staff background.

� Software development process is largely responsible for
consistency, and accountability of each participant.

� Similar to scale and distribution of other faults, software
projects executed in similar environments share similar
performance problems.

For the studied systems we provide evidence for and against these
hypotheses. This study is based on two projects only, but we
believe that the number and background of the participants works
in favor of a more general conclusion than an isolated incident.
We find that the first hypothesis holds for the larger project, while
is very weak for the smaller. However, these raise a question
regarding detection and resolution of performance problems. We
describe in detail some of the identified problems and classify
them as critical and noncritical with regard to the Pareto rule.

Many factors affect creation, detection, and resolution of
performance problems. They can be described as technical (e.g.,
availability of right tools) and nontechnical (e.g., knowledge,
motivation, process). Still, the second and third hypotheses hold.
In support, in the section that follows we profile the company. We
believe that the software engineers are not only product of their
own work, but also of the environment in which they work. Much
to our surprise, the forth hypothesis also holds that leads us to
conclude that the second, third and forth hypotheses are related.
Yet, more data from other companies and projects should be
collected to get a better understanding and more confidence in the
result.

2. COMPANY
The two projects presented in this paper are first of their kind for
this company, both in terms of technology used (i.e., Java, J2EE,
RDBMS, IMAP), and domain (i.e., Internet, Unix). To deal with
the lack of skills, the staff was trained and new staff were
recruited. We find the staff representative of this segment of IT
industry. They come from a number of leading companies, with
good credentials. During the project initiation phase the company
doubled in size at all organizational levels. The organizational
model and development process got improved and new software
and hardware were purchased. Table 1 and Table 2 present the
background as: years of work experience, total people count, and
people count per relevant technical and technology related
experience before the training and projects started.

Table 1 Management Profile (A=architect, M=manager,
P=project lead, T=team lead)

Role Work Total Java J2EE C++ RDB Unix

< 2

P, T 2 – 5 4 1 1 4 1 0

P 6 – 7 3 2 1 3 3 1

M,
A

13 – 22 3M,
1A.

2 1 4 2 3

Table 2 Developers Profile (E=engineer, S=senior engineer)

Role Work Total Java J2EE C++ RDB Unix

E < 2 2 1 1 2 1 0

E, S 2 – 5 23 12 5 23 14 7

S 6 – 10 11 11 2 11 10 6

S > 10 8 4 1 7 6 3

The staff have object-oriented background, and good knowledge
of C++. Many have exposure to distributed computing, although
not with multitier (four tiers or more) systems. They also had
some exposure to Unix, but their background is mainly in
Windows. Similarly, their exposure to RDBMS and networking
appears adequate in terms of years of experience and previous
projects and there is no shortage in the number of staff who can
participate creatively and make competent decisions.

In addition, the requirements were prepared well and remained
rather stable for the duration of both projects. The project plans
follow a waterfall model. The larger project scheduled only one
system integration attempt upon the completion of all preceding
tasks, which proved very costly. The schedule of the smaller
project was similar, but the project team managed to keep
functional faults in check but not performance problems. They
remained undetected until after the system integration phase. It is
important to mention here that before the projects started, solid
initial performance tests against a raw component (e.g., IMAP
server, RDBMS) or a library (e.g., Java Advanced Imaging) were
conduced and produced promising results.

Both schedules were perceived as realistic. The involved were
comfortable with their tasks, workload, roles, and organization.
All these got eventually confirmed, as the day of completion was
narrowly missed. However, the road from there to a product
launch proved difficult. The reasons could be attributed to the
nonfunctional requirements, i.e., performance and dependability,
as they proved interdependent.

Finally, the larger system was predominantly staffed with newly
recruited employees that nominally had the background that was
required. Some were recruited for a specific role (i.e., architect,
database, project leader, or manager). Staff on the smaller project
lacked Java and Unix skills, but have some RDBMS. However
they have on average 2 years of working together as a team on a
C++ / Windows project.

3. CRITICAL PROBLEMS
The 20/80 rule of Pareto, applied to software system performance,
stipulates that 20% of code is responsible for 80% of performance
problems. Thus, we should focus on those problems that have the
greatest potential for reducing the problems. The benefit of this
approach is evident in that we achieve most by changing least.
The problem is found in identifying the hot spots (or avoiding
them) and elaborating on solutions, and the risk in their fixing, all
of which can become too hard to overcome.

435

Figure 1 Larger system

Many critical problems described here were created early in the
design process and remained undetected until an integration took
place. These are multitier systems that run on Sun 280R
machines. Each machine has two CPU units and 2GB of RAM.
They are connected by a local 100 Mbps Ethernet. These two
applications interact with other applications that are not relevant
in this context. In this presentation, for the larger project we focus
only on the two middle tiers. The deployment diagram in Figure 1
shows two Sun machines with the participating processes of the
larger system assigned to each. The smaller system (Figure 2) is
the J2EE server that was initially split in two processes: a J2EE
process and a Java frontend process that talk via RMI. This
architecture was eventually challenged by the performance
consultants and consolidated into a single J2EE process.

3.1 Storage
By selecting a persistent storage strategy when designing a
system helps in dealing with other issues of storage management
(e.g., concurrency, crash recovery, and transactions). It also
contributes to system installation and operational cost, depending
on our assessment as to how much processing power is needed or
available in each particular model. A problem at this point is the
inability to back our decisions with solid data because there is no
application server in place to run a realistic performance test. The
best we can do is to test the raw storage system and assume that
this is the top performance that can be delivered by this model.
That will be affected negatively by the application server as it
progresses towards completion, because each use case will
introduce its performance penalty. A major factor here is our
understanding as to how much load and what content is expected
in production.
The storage consists of two subsystems, i.e., a RDBMS and an
IMAP enabled message store (Figure 1). Based on our
assumptions on volume of messaging traffic (i.e., data transfer
and level of concurrency) we must decide what performance and
capacity management characteristics a physical storage must have
to adequately support the IMAP server. In addition, what happens
once the disk capacity gets exceeded? Can another disk be simply
plugged in or do we have to relocate some folders, and upsize
manually the remaining. How much CPU time is needed to
maintain folders by removing the deleted or old messages and at
what time of day? To answer some of these questions we have
conducted additional tests. But this problem should also be
approached from another direction. The characteristics of these
three servers suggest that the IMAP server is predominantly an IO
intensive process, both in terms of disks and interprocess
communication, while in the same time does not require much
RAM to operate. The interprocess communication is highly

unpredictable because neither patterns of user behavior, nor size
of messages or their content can be accurately predicted, and
there are no historical data. However, it has a pool of persistent
communication channels, and the level of concurrency
approaches that of the Application J2EE.
On the other hand, the RDBMS is easier to model provided that
we have a well defined data model. It requires lots of RAM for
caching, and each IP connection is supported by one OS process.
The interprocess communication needs are constant in size within
a few hundred bytes. We know that for up to 10000 bytes the
communication cost is mainly affected by the latency and does
not change noticeably with message size. The amount of data per
query to be transferred here is well within this range. This flat
response time is further supported by a pool of connections. The
amount of disk space can be estimated for any number of
prospective users. The number of transactions approaches the
level of concurrency of the Application J2EE server. Finally, the
Application server is a major problem for modeling as there are
too many unknowns that cannot be verified as there is no
implementation yet, and there is no relevant experience as to what
resource requirements can be expected. Based on the use cases
and functional requirements, we can conclude that it has no
particular demands on hard disks, it benefits from a higher IP
bandwidth, and it requires, as the preliminary tests demonstrate,
lots of RAM and CPU time for the data conversion algorithms.
The RAM usage gets even more important as we increase the
level of concurrency within the server.
Given all these facts, we can conclude that a configuration in
which the IMAP and the Application server share one host
because their characteristics are orthogonal, while the RDBMS
occupies the other host is the most promising. Also, we have
eliminated the need for networking in Application-to-IMAP
server communication. The software architecture team, however,
decides that the RDBMS and Application should share the same
host. In addition, the DB team claims that the preliminary
RDBMS tests have proved that a pool of 100 connections is the
optimal. We do not know exactly what tests were conducted and
what were the assumptions, but we do know that the required
Application level of concurrency was 40 transactions per second,
and those did not always access the database. In fact, there was no
firm definition as to what a transaction is. Therefore, an end to
end transaction could spawn multiple subtransactions (e.g.,
logging) that were all added to the total.
From the logical DB design it is obvious that it is too fragmented.
For example, the user profile uses three tables, one of which has
each column indexed. The smaller system adds another three user
tables, for rules, conditions, and actions. While the latter three are
the result of a normalization taken too far, the rationale for the
former three cannot be easily explained. Therefore, to create the
user profile requires six queries (and J2EE beans), four of which
are wild card and two of which are recursive. One table, that
stores parameterized data, requires that all columns are indexed.
The fact that the RDBMS share the same host with the
Application does not make the response time acceptable. A
production version of the larger system proved that a pool of 20
persistent connections was sufficient because each query against a
loaded DB completes in about 400 milliseconds which meets the
requirement of 40 transactions per second, but does not leave
enough time for the Application to process messages. However,
the 100 was strongly defended.

436

Sun 280R

«executable»
Application J2EE

«executable»
Application Java

«executable»
RDBMS

RMI

Figure 2 Smaller system

The IMAP work and the RDBMS work were done in isolation
which serves better the DB team because they had one client less
to serve. IMAP team encountered problems because the IMAP
server did not provide the functionality to implement some of the
requirements. For example, depending on the class of service each
user is assigned the maximum available album size that must be
enforced. The class of service is stored in the DB, but the current
album size is not and must be calculated each time a message is
received. The size of a message is stored in the message header,
and the message is stored to a file. As a result, all messages (i.e.,
files) in the album must be accessed to retrieve the size and add
them all up. In a production setup that caused the Application
become overloaded with spurious exceptions due to timeouts once
the album content exceeded a thousand or so messages.

3.2 Java
These two projects are not challenging because of difficult
algorithms but because of the number of services they provide.
Although there are no obvious candidates that fall into this
category we can still provide a few examples:

� Each system maintains a database table of configuration
parameters (~400 per system) that can be updated via a
browser based user interface. An event is generated
upon change that informs the system to update the table
(and its in-memory cache if any). This can be achieved
either by executing a query or directly reusing the
event. Both approaches are acceptable, even though the
latter is much more efficient. A problem with the former
is that data must be parsed which makes it even more
computationally expensive as our performance profiling
has established. The smaller project team leader decided
not to maintain a cache but, instead, to execute a query
each time a user profile is queried for.

� The aforementioned two process division of the smaller
system Application process (Figure 2) requires a RMI
interface between the processes. RMI is useful and
transparent, but is also known to be very expensive due
to the serialization of complex Java objects. Due to
garbage collection Java objects are not linear (except
for unary native attributes) but are graphs of classes. To
make the serialization generic, it is impossible to know

how much contiguous memory a graph would require
for serialization. Since this RMI channel is the entry
point into the system, and the content to be serialized is
random in size and complexity, it became a serious
bottleneck. The reason for this approach was that the
engineers did not know that an applet could be used
instead of the J2EE servlet to open a TCP/IP port for
incoming traffic.

� To establish whether a substring can be found in a string
uses two standard library methods from the Java String
class. First a lowercase conversion is performed on the
target by making a copy, followed by a check for an
occurrence of the substring. This is used by routing
rules. There could be up to 20 rules, and each rule is
checked separately. The impact on performance is huge
as an entire document could be searched through. It is
much better to perform a direct case insensitive
comparison of both strings, and that code can be copied
from JDK. (Management decided that risk appeared too
high to implement a searching of multiple related rules
concurrently.)

3.3 Pareto
The larger project demonstrates a rather regular Pareto of 17% of
all the classes hat can be described as critical. The smaller project
is not a typical Pareto system because we can classify up to 35%
of the classes as critical. The problem here is not only due to
hypothesis 2 but mainly due to its structure. This system has two
entry points and two exit points that are of interest for
performance. The call stack from message to message is very
uniform, which means that most of the code is a candidate to
become critical as it gets executed almost if not every time a
transaction to process a message is started.
There is another problem with this categorization and that is due
to a fact that the critical problems have been identified, but only a
few (and those mentioned above) were indeed fixed and those
were not storage related. Therefore it is impossible to precisely
determine how much impact on the performance of the system as
a whole they had or what kind of improvement could have been
achieved. As mentioned before little attention was paid to
performance after the implementation started and before each
system was integrated. With all the coding completed and a lot of
unplanned time spent in fixing implementation faults, risk became
unacceptable to undertake more rounds of changes. However, we
have achieved an order of magnitude better performance on a
pilot version of the smaller system that has, apart from the other
changes mentioned above, consolidated the mentioned 6 database
tables into 3 with no recursion, among others.
These raise another question regarding merits of identification of
critical errors. If not caught on time there is little likelihood that
they will be fixed because of risk. This suggests that performance
consultants will more likely be focused on fixing the noncritical
errors towards accomplishing the performance goals than
attacking major architectural and implementation issues. These
projects certainly followed that route.

4. NONCRITICAL PROBLEMS
Java is a C/C++ look-alike language, but it has quite a different
runtime behavior that must be understood and programmed for.
Java makes use of a garbage collector to reclaim dynamically

437

allocated objects and because of that suffers from occasional
interruption of service while the garbage collector runs [3].
Garbage collectors provide different modes of operation to deal
with this problem, but here we are interested in programming
techniques and choices to minimize the impact of garbage
collection on performance by reducing the number of transient
objects during a method invocation. Programming problems like
these are not regarded as critical faults but given the size and
nature of this application they were responsible for a large portion
of the performance degradation.
Our goal with resolving the noncritical performance problems is
to stabilize the process memory image at runtime. We found that
for each byte of input 3 to 4 orders of magnitude more bytes were
needed to produce a byte of output.

4.1 Common Problems
To concatenate two or more Strings it is more efficient to use a
StringBuffer or StringBuilder than the + operator. In fact, this
solution is not that simple, and that leads to many programming
errors. We have to examine the StringBuffer class to understand
its attributes and behavior. The concatenation of two Strings via
the + operator creates a new String object, while the StringBuffer
approach creates a StringBuffer and requires a new String. It is
also important to estimate how long the result is. The default
length of a StringBuffer is 16 characters, and we do not want to
reallocate the internal char[] buffer due to insufficient capacity
and copy from the old into a new array. A StringBuffer is reusable
because it can be resized, overwritten, and deleted either partially
or completely. Many StringBuffer methods can be concatenated,
so that the compiler can directly reuse the same object reference
that is already loaded in the register.

To get a better understanding on the density of these problems
and potential for performance improvements we selected 200
classes in total from 20 engineers. It took us two person days to
analyze the code and some results are presented in Figure 3.

Figure 3 Density

The legend to Figure 3 as per Item is as follows:

1. Dynamic allocation of String constants

2. String concatenation with + operator

3. Dynamic allocation of numeric constants

4. High level logging

5. Not closing sockets

6. Exceptions thrown between local methods upon method
invocation

7. Exceptions thrown between classes upon method
invocation

8. Catching generic exceptions instead of specific when no
resolution is required

9. Replacing native exceptions with domain specific

10. Accessing private public attributes via final methods

11. Intra class nonfunctional integration - passing/reusing
buffers for transient data from caller to callee

12. Inter class nonfunctional integration - passing buffers
for transient data from caller to callee

13. Inter class functional integration - passing reusable
buffer(s) to store result from caller to callee

14. Customize Java core classes for efficiency

These deficiencies may appear simple to resolve but, when
multiple classes and methods are involved, they are not. Many are
hard to measure and categorize, and their individual impact on
performance is disproportionally small to the amount of work
required to fix them. To fix these problems, a list of potential
improvements was first built and scoped, and then reviewed by
the senior staff for a go-no-go decision. Given that our runtime
image comprises hundreds of thousands of dynamic objects made
the whole process slow and tedious. (As we mentioned before,
most of the critical 20% have been declared off limits.)

The initial code and design reviews could spot these flaws but,
being performed by peers, they generally failed to do so for the
same reason. (Code reviews have been regular and the process
was formalized.) Still, we find that peer inspections tend to
degenerate into comments on style and first order semantic issues.
This stands in contrast to the reported findings (e.g., [2]) and
commonly shared believes. We believe, though, these teams are
representative for a semidetached or embedded project both in
size, age, and experience.

Density

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Item

%

Item 4 is a serious problem due to the design of the Logger. The
Logger is a deeply nested hierarchy of classes that does not apply
a high level filtering of information for logging. Instead, if a
programmer does not check the logging level before attempting to
create a log, the logger will do it at the lowest level. This problem
is compounded by an excessive logging for tracing. Also, the
parameters are passed as an array of Strings and numbers of an
arbitrary size.

Items 11 through 14 are positive (i.e., desired outcome) and they
range from 0% to 7%. While the issues that fall under 11 and 14
could become candidates for improvements, the other two are not
trivial and point to the understanding as to how well a system is
integrated in those aspects that are not part of the functional
specification. They suggest that these engineers have not
discussed issues other than what is required to produce a result.

438

4.2 More Involved Java Example
This example falls under Item 14 that has a density of 0%. It
extends the findings in the String example above but, in order to
improve it, requires a bit more coding in addition to the default
behavior. The program reads from a stream by converting it into a
String, one per line (i.e., 80 characters) of input. Then, it creates a
StringTokenizer to remove the control characters from the String.
Each token is appended as a byte array to a ByteArrayOutput-
Stream (BAOS) of default size (32 bytes initially). Finally, the
BAOS is trimmed before being passed down the call stack.

This algorithm was implemented such that it uses whatever
functionality is provided by these classes. It is easy to read and
understand. However, each benchmark message of 1000
characters creates 13 transient Strings of input, 13 tokenizers, and
two Strings and two byte arrays per each control sequence found
(on average one per line), and two BAOS of ~1000 bytes each.
These figures include only those objects that are visible to and
manipulated by the programmer.

In reality, all these transient objects can be replaced by a single
BAOS (albeit slightly modified) and a simple filter as the switch
block with three cases. We read into a BAOS buffer, and then
shift left by one whenever a control sequence is found to
overwrite it. The BAOS could be passed down the stack as is to
avoid a copy and reused since it knows how many bytes are valid.

5. REMARKS
In a popular book on refactoring (i.e., [5]) the importance of
disciplined and one-step at a time approach to code improvements
is emphasized. Unfortunately, performance issue and goals were
not addressed. Thus, even some of the examples ended up in a
code that is performance-wise inferior to the original. In that
respect, the code improvements discussed here do not necessarily
follow the rationale for refactoring as presented in the literature.

Returning to these applications, the mentioned problems affected
the performance so that it was only a fraction of what was
required. The critical problems had not been addressed (or
identified) by the staff. Even so, they would most likely be
rejected by management as being too risky and costly, as we have
learned later. Only when the consultants joined the projects they
started identifying and investigating critical problems. It is
interesting to notice that, on the other hand, many code
improvements in terms of restructuring, consolidation, and reuse
were proposed and implemented. Unfortunately, the performance
improvements, as a result of that work, still remained sketchy,
which leads us to believe that performance as a goal in projects or
training is not a priority.

We can conclude that Hypothesis 1 holds, even though the
smaller system is significantly over the limit of 20%. Hypothesis

2 has deeper implications if we can generalize it to other projects.
The staff on these projects come from reputable companies and
their background that should facilitate a positive outcome, which
failed to eventuate. While some of the performance problems can
be attributed to politics and personal preferences it is still
troubling to see that they remained undetected until a system
integration. In that respect Hypothesis 3 is supported by the fact
that the smaller system was completed with lesser faults and
performance problems and managed to achieve substantial (5
fold) performance improvement before being launched. This is
counterintuitive when considering that most of those engineers
had no previous exposure to Java. However, their strength was in
the better project management and time on past projects to
improve their teamwork. Finally, Hypothesis 4 also appears
counterintuitive if we only consider the background of the staff.
On the other hand Figure 3 clearly suggests that in fact the density
of items under investigation was not in favor of larger project, but
was rather even in most aspects. We can find an explanation for
this outcome given that both projects were developed in the same
time, and shared many decisions and information as deemed
appropriate or when required. Hypothesis 3 suggests that what
was a weakness of one team became a strength of the other.

6. REFERENCES
[1] Armour, P.G. Beware of Counting Lines of Code.

Communications of the ACM, 47(3), 2004, pp.21-24
[2] Boehm, B., and Basili, V.R. Software Defect Reduction Top

10 List. IEEE Computer, 34(1), 2001, pp. 135-137.
[3] Blackburn, S. M., Cheng, P., and McKinley, K. S. Myths and

Realities: The Performance Impact of Garbage Collection, In
Proc. of the Conference on Measurement & Modeling Comp.
Sys., New York, NY, 2004, pp. 25-36.

[4] Brown, W.J., Malveau, R.C., McCormick III, H.W., and
Mowbray, T.J. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis, John Wiley and Sons
Inc., New York, NY, 1998.

[5] Fowler, M., Refactoring Improving the Design of Existing
Code, Addison Wesley Longman Inc., Reading, MA, 1999.

[6] Menasce, D.A., and Gomaa, H. A Method for Design and
Performance Modeling of Client/Server Systems. IEEE TSE,
26(11), November 2000, pp.1066-1085.

[7] Empirix, www.empirix.com
[8] LoadRunner, www.mercury.com
[9] Smith, C.U., Performance Engineering of Software Systems,

Addison Wesley, 1990.
[10] Weinstock, C.B., et al. Steps in an Architecture Tradeoff

Analysis Method: Quality Attribute Models and Analysis.
CMU/SEI-97-TR-029, Pittsburgh, PA, 1998.

439

A Formal Approach for Translating a SAM Architecture to PROMELA

Gonzalo Argote-Garcia, Peter J. Clarke and Xudong He
School of Computing and Information Sciences

Florida International University
{gargo001,clarkep,hex}@cis.fiu.edu

Yujian Fu
Department of Computer Science

Alabama A&M University
yujian.fu@aamu.edu

Leyuan Shi
Department of Industrial and Systems Engineering

University of Wisconsin at Madison
leyuan@engr.wisc.edu

Abstract

Quality assurance is recognized as a critical aspect in
software construction. SAM is a formal software architec-
ture description model that combines Petri Nets and Tem-
poral Logic. PROMELA is the language used in the Spin
model checker. This paper presents an approach to trans-
late a restricted SAM model to a PROMELA program, en-
abling the model checking of the SAM model. We define the
translation and show its correctness in terms of complete-
ness and consistency. Completeness establishes that a SAM
model maps all of its elements to PROMELA ones; whereas,
consistency defines that an execution of a SAM model has
a corresponding execution in a PROMELA program. The
translation is also implemented as part of our software tool
supporting SAM. Some aspects of the tool are discussed.

Keywords : SAM Architecture, PrT Nets, Spin, Model Check-
ing, Model Translation Validation, Tool Support.

1. Introduction

Software Quality Assurance is of great importance in the

development of software systems. From design to imple-

mentation, there is a need to ensure the system satisfies

desired properties. One way to help in achieving this, is

by defining a formal architecture model of the system and

proving its correctness with respect to the desired proper-

ties. This is critical, given the huge impact that software

architecture has on the software system.

The Software Architecture Model (SAM) Framework

[6] supports the formal modeling of software architectures.

Based on Petri Nets and Temporal Logic, SAM is used to

define the structure and behavior of a software architecture,

and the properties it needs to satisfy. The resulting SAM

model can then be analyzed using various formal methods

techniques and tools [6].

There are several techniques to formally analyze soft-

ware systems. Model checking is one successful technique

used in the verification of finite state systems. A prominent

model checking tool is Spin [9]. In Spin, a verification pro-

cess is done by executing a model written in PROMELA

(Spin’s input language), and checking it against a property.

In this paper, we present an approach to translate a re-

stricted SAM model to a PROMELA program, enabling the

use of the model checker Spin to verify properties for the

model. For the translation to be considered correct, the re-

sulting PROMELA code has to reflect every element in the

SAM model (completeness) and it has to preserve the se-

mantics of the model (consistency). For this to happen, we

restrict the kind of SAM models that can be verified.

This work is relevant to the “Grand Challenge” proposal

[8], in which Hoare highlighted the importance of incorpo-

rating techniques that have been proved successful in the

software development process to ensure software correct-

ness. Our work is also part of “A Framework for Ensuring
System Dependability from Design to Implementation” pro-

posed in [5], which incorporates analysis techniques such as

model checking, testing and runtime verification to assure

the quality of software systems. That framework is sup-

ported by a modeling and analysis tool. We extended the

tool with the implementation of the translation approach,

resulting in the automatic generation of PROMELA code

for a SAM model. Spin can then be used to execute the

PROMELA program to verify desired properties.

The rest of the paper is organized as follows. We provide

a brief background in Section 2. In Section 3, the restricted

SAM model and the translation approach are explained.

The translation implementation is discussed in Section 4.

Section 5 presents the case study, and Section 6 discusses

440

related work. Finally, Section 7 states our conclusions.

2. Background

A brief introduction to SAM and Spin is provided.

2.1. Software Architecture Model (SAM)

A SAM model consists of a set of compositions C =
{C1, C2, ..., Ck} with a top level composition Cl ∈ C rep-

resenting the top level design. Each composition Ci =
(Cmi, Cni, Csi) consists of a set of Cmi components, a

set Cni of connectors, and a set Csi of composition con-

straints. A component or connector Cij ∈ Cmi ∪ Cni is

non-elementary if it is refined by a lower level composition

in C; otherwise, it is elementary. Each Cij = (Sij , Bij)
has a property specification Sij and a behavior model Bij .

First order Linear Temporal Logic and Predicate Transition

Nets are used to define the properties and the behavior re-

spectively. The property specification and behavior model

for a non-elementary Cij is obtained by merging the behav-

iors and specifications of the components and connectors of

the composition mapped to it (see [6]). In our approach,

each non-elementary component/connector is replaced by

the corresponding components and connectors in the com-

position it maps to; as a result, the top level composition

will only contain elementary components and connectors.

Predicate Transition Nets (PrT Nets). A PrT Net [3] con-

sists of a net structure (P, T, F), an algebraic specification

(S, Op, Eq) and a net inscription (ϕ, L,R, M0). The most

important aspects to note are that each p ∈ P , where P is

the set of predicates (places), is mapped to a sort s ∈ S
(ϕ(p) = s) and contains tokens that are ground terms of

its corresponding sort s. T is the set of transitions and R
defines for each transition t ∈ T its precondition and post-

condition expressed as first order logic formulas. The arcs

in F connect places and transitions, and have labels defined

by L which are used in the pre and post conditions in transi-

tions. A transition is enabled if there is a substitution for the

variables in the incoming arcs that satisfies the transition’s

precondition. The substitution is achieved by assigning to-

kens in the corresponding place to each variable. A tran-

sition is fired if it is enabled, and the postcondition is then

satisfied. Finally M0 represent the initial marking, i.e. the

initial tokens contained in the places. For a more detailed

presentation on PrT Nets, refer to [3].

Linear Temporal Logic (LTL). LTL [10] has been widely

used to specify properties for software systems. In

the SAM framework, property specifications for compo-

nents/connectors and constraints for compositions are de-

fined in first order LTL. A first order LTL formula contains

predicates as terms and can contain universal quantifiers.

Since the model checker Spin verifies properties defined in

propositional LTL, in our approach the properties and con-

straints for SAM models are modified so that the LTL veri-

fication power of Spin can be applied to them.

2.2. Spin and PROMELA

Spin is a well known model checker used in the ver-

ification of finite state systems. PROMELA is its input

language. PROMELA’s emphasis is on models that de-

scribe the coordination and synchronization aspects of a

distributed system and not on the computational aspects

of it [9]. PROMELA is different to common procedural

programming languages, such as C, in that it includes fea-

tures intended to model distributed systems while lacking

some other features found in programming languages. Nev-

ertheless, we can still include complex computations in a

PROMELA model by using the embedded C-code feature.

In our case this is necessary since for transition firing, both

testing the enabledness of a transition and firing it can con-

sist of complex computations. For instance, tokens for a

place are stored in an array, and we need to iterate through

the array to find the appropriate tokens to be used in the

firing of a transition.

3. Translation

In this section, we first introduce a restricted version of

SAM and PrT Net models that allows us to provide a sound

translation approach. Next, the translation approach is de-

fined and we present the mapping between elements in the

SAM model and the PROMELA program. In addition, a

discussion on the correctness of the translation is provided.

Finally, we describe alternative translation approaches.

3.1. Restricted SAM and PrT Net Models

Components and connectors connect through ports, but

in the hierarchical view of a SAM model, a port can be

mapped to multiple ports in the lower layers. For this rea-

son, we define the following restriction:

One-to-one port mapping between compositions: Given

two compositions Ci and Ck, where Ck is the refinement

of one component or connector Cji in Ci, a port in Cji can

only be mapped to one port in Ck.

In order to be translated to a PROMELA program, a

SAM model needs to have a finite state space. The state

space of a SAM model is defined by its behavioral model,

a PrT net model; hence, the PrT net model needs to have a

finite state space. Not only do we restrict the sorts but also

limit the number of tokens each predicate (place) in the PrT

net can have.

441

Restrictions on Sorts. We consider the following: (1) finite

number of ground terms, (2) real numbers, (3) strings and

(4) derived sorts. We elaborate on these aspects next.

(1) Finite number of ground terms. The basic sorts for the

restricted version of PrT Nets are defined by:

sbasic ::= string |bit |bool |byte|short |int |unsigned

The number of ground terms for each basic type is con-

sidered to be finite.

(2) Real numbers. A finite set of real numbers can be

mapped to integer values. We assume that this map-

ping is done explicitly in the model built.

(3) Strings. Sort string is restricted to represent a fixed

number of strings by mapping it to the short type:

each string ground term is mapped to a unique integer

number in a sequential fashion (the strings encoding).

String operations are reduced to assignment and com-

parison. Concatenation and others are not available.

(4) Derived sorts. Derived sorts are of the form ℘(s)
(powerset) and s1 × s2 ... × sn (cross-product), with

s, s1 , ..., sn being sorts. Since basic sorts have a fi-

nite number of ground terms, so do the derived ones.

However, that number might explode. For instance,

sort short has 65536 ground terms, but derived sort

℘(short) accounts for 265536 possible ones. We limit

the number of elements each subset can contain.

With the above considerations, the set S of sorts for a

PrT Net contains elements defined by:

s ::= sbasic | s(×s)+ |℘(s)

Bounded Nets. Each p ∈ P , with P being the set of places

in the behavioral model, is bounded.

3.2. Translation Approach

First, a flattened version of the SAM model is created,

and next the actual translation takes place (See Figure 1).

SAM
model

Flatten Translate
Flattened

SAM
model

PROMELA
program

Figure 1. Translation approach.

3.2.1. Flattening SAM

Flattened version of a SAM Model. The set of composi-

tions C = {C1, C2, ..., Ck} for a SAM model, is reduced to

a set C ′ = {Cl} containing one composition. For each

non-elementary component/connector Cji in composition

Ci that is refined by composition Ck, we do the following:

(1) Cji is replaced by the components and connectors

Cmk and Cnk in Ck.

(2) The property specification Sji for Cji is added to the

set of constraints Csi for Ci.

(3) The set of constraints Csk in Ck is added to the set of

constraints Csi for Ci.

Having the flattened version of a SAM model, we obtain

its integrated behavioral model next.

Integrated Behavioral Model. Given a SAM model con-

sisting of only one composition Ci = (Cmi, Cni, Csi),
its integrated behavioral model Bi is created by combin-

ing the behavioral models of each Cji ∈ Cmi ∪ Cni

(Cji = (Bji, Sji)), i.e. Bi =
⋃

j Bji.

3.2.2. Translating Flattened SAM to PROMELA

In the translated PROMELA program, we use the em-

bedded C code feature of PROMELA to define functions

implementing various notions in the SAM model. For ex-

ample, a function that adds tokens to a place is defined.

In Figure 2 we show a table that gives a snapshot of a

PROMELA program. Each row represents a section in the

program and we briefly present each one next.

Section PROMELA code example Relation to SAM
1 #define BOUND_P1 maxP1 Bound value for place P1.

2
typedef PSET{
 string set[max];
 short num;
};

Definition of powerset sort PSET
to be used to define sets of strings.

3

c_code{
 int is_equal_PSET(PSET l, PSET r){
 // return 1 if equal, 0 otherwise
 }
}

Operations on sorts. Here, equality
testing for two elements of type
PSET is defined.

4 PSET v_Port1[BOUND_Port1]
short num_Port1 Port1 is a place related to a port.

5
c_code{
 void add_P1(…){ … }
 void remove_P1(…){ … }
}

Add/remove tokens to/from P1
when a transition having P1 as part
of its pre/post set fires.

6
c_code{
 int is_enabled_T1(…){ … }
 void fire_T1(…){ … }
}

Testing the enabledness and firing
a transition T1.

7

proctype Comp{
 // initial marking
 // wait for the other procs to initialize
 do
 :: atomic{ c_expr{is_enabled_T1(…)}
 ->c_code{fire_T1(…)}}
 od
}

Component Comp. Initial marking:
Comp process initializes its state,
waits for the other processes to
initialize. Behavior execution: after
initialization, Comp fires its
transitions if they are enabled.

8

init{
 // initial marking for port places
 // initialize synchronization constants
 atomic{
 run Comp();
 }
}

Initial marking: sets the initial
marking for places acting as ports.
Executes the Component processes
for them to start the execution of
the Petri nets.

9
#define p c_expr{P()}
never{
 // LTL automaton definition
}

The property to be verified.

Figure 2. Translated code overview.

442

Cij portP3portP1

P2 portP3t1 t2

x[1] != 2 y=x[1]+x[2]

{x}
portP1

{y}{x} {x}

Translation

#define BOUND_portP1 MAX_portP1
#define BOUND_P2 MAX_P2
typedef SHORT2{

short field1;
short field2 };

short num_portP1;
SHORT v_portP1[BOUND_portP1];
proctype procCij{

short num_P2;
SHORT2 v_P2[BOUND_portP2];
// initial marking
// wait until all other Cij’s are initialized
do

:: atomic{is_enabled_t1 fire_t1}
:: atomic{is_enabled_t2 fire_t2}

od
}
init{

atomic{
run procCij();

}
}

4(portP1)=short x short

Figure 3. A translation example.

In row 1, constant symbols representing the bounding

values for places are defined. Row 2 defines the cross prod-

ucts and power set types and their operations are imple-

mented in row 3 using PROMELA’s embedded C code fa-

cility. The definition of places acting as ports is done in

row 4; those variables are defined globally for two com-

ponents/connectors to communicate. Also, row 4 contains

global synchronization variables used to wait for each pro-

cess to finish setting the initial marking corresponding to its

behavioral model. Row 5 implements code to add/remove

tokens to/from places. In row 6 we have embedded C code

for testing the enabledness and executing the firing of tran-

sitions.

Row 7 is where the proctype definition for each com-

ponent is placed. This proctype defines variables for the

places of its behavioral model that are not related to ports

(the places related to ports are defined globally). Code for

setting the initial marking is added, and a synchronization

point is established to wait for the other processes to set

their initial markings. Finally, an infinite loop tests the en-

abledness and executes the firing of its transitions.

In row 8, process init sets the initial marking for places

related to ports, initializes the synchronization variables and

starts the execution of the processes. At last, row 9 includes

the never claim for the property to check.

In Figure 3 we can see a graphical example showing an

outline of the translation approach. Given their significance,

we present two aspects of the translation in more detail: the

behavior (PrT net) translation and the property/constraint

translation.

Behavior Translation. A PrT Net consists of a finite net

structure (P, T, F), an algebraic specification (S, Op, Eq)
and a net inscription (ϕ, L, R, M0). Those elements are

closely related; for example, a predicate p ∈ P has sort

ϕ(p) ∈ S, and initial marking M0(p). All these elements

are reflected in the target PROMELA code. We divide the

behavior translation process in three parts: sort translation,

place translation and transition translation.

(a) Sort Translation. Sorts are defined by:

s ::= sbasic | s(×s)+ |℘(s)
sbasic ::= string |bit |bool |byte|short |int |unsigned

Basic sorts. Each basic sort, except string, has a

PROMELA counterpart with the same name. Sort

string is mapped to type short. The usual operations

for integer and boolean types are available. For sort

string only comparison and assignment are allowed.

Cross product. Sort s = s1 × s2...× sn translates to:

typedef s = {
s1 field1 ;
s2 field2 ;
...
sn fieldn

};
Equality and assignment operations are defined. For

sort s the prototypes are:

int is equal s(s v1 , s v2)
void assign s(s ∗ v1 , s ∗ v2)

Powerset. Sort s = ℘(s1) is translated as:

typedef s = {
int num;
s1 set [max n];

};
With max n the maximum number of elements in a

set. The operations are the usual set operations, plus

equality and assignment. Some operation prototypes

for powerset sort s are:

int is equal s(s v1 , s v2)
s set union s(s p1 , s p2)

443

(b) Place Translation. Given a place p ∈ P the following

are defined in PROMELA:

Bounded Values. A constant symbol BOUND p is

defined to state the maximum number of tokens in p.

By default this number is set to 10.

Tokens Storage. Let s = ϕ(p) be the sort of place p.

We define two variables for dealing with tokens at p:

s v p[BOUND p];
short num p;

Array v p holds the tokens, BOUND p defines the

maximum number of tokens, and num p is the current

number of tokens in p (0 ≤ num p ≤ BOUND p).

Initial Marking. We translate M0(p) by creating a

series of expressions in PROMELA language to ini-

tialize each token. For example, assuming ϕ(p) =
s1 × s2... × sm, with each si being a basic sort, and

|M0(p)| = n, we generate:

num p = n;
v p[0].field1 = val1 ;
...
v p[n − 1].fieldm = valnm ;

Add, Remove and Test Tokens. For place p, functions

add p and remove p are implemented to add and re-

move tokens. Also, we define function in place p to

test whether or not a given token is at the place.

(c) Transition Translation. We only offer an overview

on how a transition t ∈ T is translated:

Enabledness. Given pi ∈ •t, testing the enabledness

of transition t involves a substitution on the variables in

L(pi, t), with tokens in pi, and then testing the precon-

dition in R(t). We define a function that given preset
•t, it either returns 1 if there is a substitution that sat-

isfies its precondition, or 0 otherwise:

int is enabled t(preset t)

Firing. When t fires, tokens are removed from •t and

tokens are added to t•. The function prototype that im-

plements the firing notion for t is:

void fire t(preset t , postset t)

Universal Quantifiers. We add functions to test the

truth value of universal quantifiers formulas whenever

a transition’s R(t) includes them:

int forall t(params)
int exists t(params)

Property and Constraint Translation. Constraints Csi

for composition Ci and property specification Sji for each

component/connector Cji ∈ Ci, are expressed in first order

LTL. We briefly mention some aspects on how an LTL for-

mula is translated to PROMELA code. Given an LTL for-

mula, first, all the universal quantifiers affecting predicate

terms, i.e., the places in the behavioral model, are removed.

Next, each predicate term P in f generates a macro:

#define p c expr{P()}
The body of function P () reflects an instantiation of the

predicate to a propositional formula. It returns an integer

value of 1 or 0, depending on whether the formula is true

or not. There are a few approaches on how to select the

ground terms for instantiating the predicate, we select the

one that considers the tokens in the initial marking as the

possible values. Finally, the never claim is generated using

property automaton generator facility available in Spin.

3.3. Translation Correctness

We show the completeness and consistency of our

translation approach.

Interleaving semantics. Both for the Behavioral model
in SAM and for the translated PROMELA model, the
interleaving execution semantics is chosen.

Since there is no true concurrency in PROMELA, this is an

important observation that will allow the two models to be

compared. For more on interleaving semantics w.r.t. true

concurrency refer to [9].

CLAIM 1 (Flattened version correctness) The flattened
version of a SAM model respects the original model’s be-
havior and specification.
PROOF Follows directly from the flattening procedure.

We can think of the compositions in a SAM model as dif-

ferent ways to partition it.

3.3.1. Completeness

CLAIM 2 (Completeness of the translation) Given
a restricted SAM Model, there exists a corresponding
PROMELA model that defines all of its elements.
PROOF Follows directly from the mappings.

In the translation process, each of the elements in the SAM

model are translated to a PROMELA construct. Two ele-

ments to pay special attention to are the property specifica-

tion and the initial marking. For the first one, we mentioned

how to convert a predicate into a proposition. For the sec-

ond one, we explained how to define a series of expressions

to build the initial marking for each component/connector

and how all the components/connectors are synchronized

before testing the enabledness and firing their transitions.

444

3.3.2. Consistency

CLAIM 3 (Initial Marking consistency) Given a re-
stricted SAM model sam and its translated PROMELA
program prom, the initial marking in the underlying
behavioral models in sam is consistent with the state prom

previous to the point where the processes test and fire the
translated transitions relations.
PROOF In model sam, the initial marking of its components
and connectors is defined as part of the model itself. In
the PROMELA program prom, there is a series of steps
that make the variables related to the places take the
initial values, and no process executes the enabledness
testing and firing of transitions before every other one has
initialized its variables. In prom, there is a synchronization
step before the do::...::od main loop in each process.
This synchronization step waits for a global variable to
reach the number of processes that have been initialized:
(init procs == num procs). Hence, the initial marking in
sam corresponds to the state in prom previous to which
each component/connector process starts to execute the
enabledness testing and firing of transitions.

For the semantic consistency claim, we define the notion

of abstract execution of a translated PROMELA program.

Translated PROMELA program abstract execution
sequence After initialization, when the initial marking of
the model is set, the only executable instructions in the
processes are the ones within the do..od construct:

proctype procij (){
do
:: atomic{is enabled t1 → fire t1}
:: atomic{is enabled t2 → fire t2}
...
:: atomic{is enabled tn → fire tn}
od
}
An abstract execution is a sequence σ0fire taσ1fire tb...,
where a change of state occurs only when an executable
statement fire t ∈ {fire t1, fire t2, ..., fire tn} to the
right of the arrow is executed.

Since, the enabling and firing are atomic constructs, the

firing of transitions in PROMELA has the same meaning as

the firings of transitions in the PrT model.

CLAIM 4 (Semantic Consistency of a SAM model and
its translated PROMELA program) A SAM model sam is
semantically consistent with its translated PROMELA pro-
gram prom, iff for every execution sequence in sam there is
a corresponding abstract execution in prom.
PROOF Follows directly from the definition of abstract exe-

cution for a PROMELA model.

Since in the PROMELA program there is a finer granular-

ity, for instance, when firing a transition there are multi-

ple instructions that need to be combined to realize it, we

work on the abstract version of an execution sequence in

PROMELA. This abstract sequence is just an aggregate of

the different sub steps. When firing a transition these sub

steps are part of an aggregate atomic construct, they are un-

interrupted and hence can be seen as a single step.

3.4. Discussion

Some alternatives to the translation are presented.

Non-flattened Composition Translation. A non-flattened

SAM model m, consists of multiple levels of compositions.

One way to translate m to PROMELA is to define each

component/connector at different levels as a process. A

consequence is that if a component maps to a composition,

then it will contain calls to other processes, the processes

corresponding to the components/connectors in the refining

composition. As a result, a flattened version is preferred.

Transition as process. Each transition in the PrT net model

can be defined as a process. Given that we have interleav-

ing semantics for the execution of the PROMELA code, we

have the same effect as if the transition code is part of a

process. If the transition is picked to be fired, it will fire

without interruption. Other reason for not choosing this al-

ternative is that Spin limits the number of processes that can

be run, so if we have a model with several transitions, we

might exhaust the available processes.

Transition enabling and firing construction. When test-

ing the enabledness of a transition t, another approach is

to compute all the substitutions for the variables in the in-

coming arcs, next we can compute the substitutions that

enable the transition, from these enabling substitutions, we

can next randomly choose one to be used for the actual fir-

ing. For each p ∈ •t, we create a matrix of indexes with

|L(p, t)| columns and (|p|)÷(|p|−|L(p, t)|) rows. Next we

can do a random selection on the matrices corresponding to

the incoming places for a transition. We haven’t conducted

experiments on this approach as yet.

First Order LTL Expansion. We can expand a formula

to include all possible substitutions for the predicates in-

volved in it. For example, given a formula ∀x·(�(P1(x) →
P2(x))), where ϕ(P1) = ϕ(P2) = short × short, we

have this complete enumeration: �(P1(< 0, 0 >) →
P2(< 0, 0 >)) ∧ ... ∧�(P1(< 0, n >) → P2(< 0, n >
))...�(P1(< n, 0 >) → P2(< n, 0 >)) ∧ ... ∧ �(P1(<
n, n >) → P2(< n, n >)). Where n is the size of short.

So we have n2 formulas. This provides impractical.

445

4. Tool Implementation

The translation approach presented in this paper was im-

plemented as part of our modeling and analysis tool for the

SAM framework (SAM tool). SAM tool incorporates func-

tionality for the graphical view and creation of SAM models

as well as their analysis. We show some aspects of the tool.

Features. SAM tool provides a graphical editor with edit-

ing capabilities to build SAM models as well as the PrT net

behavioral models for each component and connector. The

hierarchical structure is displayed as part of a tree view. We

can see a snapshot of the tool editor in Figure 4. It provides

the basic capabilities of any graphical editor. However, we

are still enhancing the editor with other functionality such

as drag and drop within the hierarchical view.

Figure 4. SAM Tool.

Intermediate XML format. A SAM model is serialized

and unserialized using the serialization techniques in Java,

so the model is saved in binary format. The tool also pro-

vides the capability to export and import the SAM model

in XML format. This XML format follows a similar layout

as the standard PNML (Petri Net Markup Language) for-

mat defined for Petri nets. We extended PNML format by

adding the notions of compositions, components, connec-

tors and first order LTL formulas.

Translation module. SAM tool has the option to gener-

ate the PROMELA code for the current SAM model be-

ing edited. The option is available through the menu bar as

shown in Figure 4. Since we plan on providing command

line tools, we implemented the translation module so that it

could be easily isolated from the editor. So, the translation

module, first internally exports the current model to XML

format, then performs the flattening procedure on the XML

model, and next generates the PROMELA code for it fol-

lowing the approach detailed in this paper. This is transpar-

ent to the user, since he/she only needs to enter the filename

of the target PROMELA program, and a notification dialog

is displayed after the translation is completed.

Implementation details. The tool is implemented as an

Eclipse RCP application (Rich Client Platform application).

It uses GEF (Graphical Editing Framework) for the graph-

ical editing of objects. GEF provides and enforces several

design pattern constructs, which are intended to make the

maintenance particularly easier. For more details on Eclipse

RCP and GEF refer to [12].

One other module of interest is the formula editor, which

is written using Java Swing. Since Java Swing and Eclipse

RCP define and use different libraries, we had to incorpo-

rate the formula editor to the Eclipse RCP Application. The

formula editor contains two submodules, a FOL (first or-

der logic) parser and a FO-LTL (first order LTL) one. Both

are implemented based on the well-known Java-CUP parser

generator. As a result we are able to tell the user whenever

a formula was properly written or not.

5. Case Study

We applied our approach to two non-trivial examples,

one an architecture for a communications virtual machine

and the other a communications protocol. We used our

SAM modeling and analysis tool (SAM tool) to model and

translate the examples to PROMELA programs. Spin was

then used to verify some properties.

The first case study is on the formal model of the Unified

Communication Machine (UCM) presented in [13]. We de-

fined a system with 6 top level components from which 2

were UCMs at different sites. One of the UCMs was re-

fined into 5 components, which were completely specified.

One of the components, the UCMM (UCM manager), was

of special interest, and some properties were verified for it.

The integrated behavioral model (PrT net) consisted of 63

places, 140 transitions and 476 arcs. Our software tool auto-

matically generated the PROMELA model for it. The size

of the verification code generated for this case study was

around 10,000 lines of code. This case study was based on

the formal modeling example presented in [11].

The second model we applied our technique to is the

well-known Alternating Bit Protocol. This model is much

simpler than the former one, it consists of only 3 compo-

nents: the sender, the channel and the receiver. The main

property we verified was a liveness property of the form:

∀x · (�(Send(x) → Recv(x))). We instantiated the for-

mula to propositional ones depending on the tokens avail-

able in the initial marking. For example, the initial marking

for Send was M0(Send) = {“first”, “second”}, and we

first verified a formula of the form �(Send(“first”) →
Recv(“first”)) and next another formula of the form

�(Send(“second”) → Recv(“second”)). However, if

446

|M0(Send)| is big, then the latter is impractical.

One observation, resulting from the experiments per-

formed, is that for a non-satisfiable liveness property, Spin

would not directly state that it was not satisfied. It would

report that an acceptance cycle was encountered. Hence,

when verifying a liveness property we must include the flag

for acceptance cycles in the Spin verification environment.

6. Related Work

There has been work done in both, model checking of

SAM models and translation of them into other models.

For example, a translation from SAM to Java was proposed

in [1], with the added capability of a runtime checker. In

our case, we are not interesting in translating to some exe-

cutable form that can be later refined to implement a work-

ing system, rather we want to assure the properties a SAM

architecture defines. In terms of model checking, SMV was

used in [7] to verify properties defined in CTL (Computa-

tional Tree Logic); in our case we use LTL.

Gannod et. al. [2] used Spin to verify Petri net models

using the DOME tool. They integrated DOME with Spin to

provide a modeling analysis environment. Also, Grahlmann

et. al. [4] integrated Spin into the PEP tool (Programming

Environment based on Petri Nets). We also did something

similar by combining our SAM modeling and analysis tool

with Spin. However, in our case we used PrT nets which

provide the behavioral model of architectural components

and connectors, and we used Spin to verify properties at the

architectural level.

7. Conclusions

Assuring the quality of software systems is a big chal-

lenge. There are well known techniques to analyze software

models. One prominent technique is model checking; how-

ever, its applicability is limited. Even at the architectural

level some trade offs need to be taken when dealing with

model checking techniques. In our case, we had to restrict

the kind of SAM models to be model checked in Spin. Fur-

thermore, we had to limit the properties to verify, from first

order LTL to propositional LTL.

By applying our translation approach, we were able to

successfully prove properties for SAM models using our

modeling and analysis tool and the Spin model checker.

Hence, extending our baggage of tools and techniques to

verify SAM models, all aimed at contributing to the general

framework presented in [5], to ensure system dependability

from design to implementation.

Acknowledgments. This research was supported by

NSF grant HRD-0317692 and NSF grant IIP-0534428.

References

[1] Y. Fu, Z. Dong, G. Argote-Garcia, L. Shi, and X. He.

An Approach to Validating Translation Correctness

from SAM to Java. In SEKE, pages 45–. Knowledge

Systems Institute Graduate School, 2007.

[2] G. C. Gannod and S. Gupta. An Automated Tool for

Analyzing Petri Nets Using SPIN. In ASE ’01, page

404, Washington, DC, USA, 2001. IEEE Computer

Society.

[3] H. J. Genrich. Predicate/Transition Nets. In

W. Brauer, W. Reisig, and G. Rozenberg, editors, Ad-
vances in Petri Nets, volume 254 of Lecture Notes in
Computer Science, pages 207–247. Springer, 1986.

[4] B. Grahlmann and C. Pohl. Profiting from Spin in

PEP. In SPIN’98 Workshop, 1998.

[5] X. He. A Framework for Ensuring System De-

pendability from Design to Implementation. In

U. Ultes-Nitsche, J. C. Augusto, and J. Barjis, editors,

MSVVEIS. INSTICC Press INSTICC Press, 2005.

[6] X. He and Y. Deng. A Framework for Developing

and Analyzing Software Architecture Specifications in

SAM. The Computer Journal, vol.45(no.1):111–128,

2002.

[7] X. He, J. Ding, and Y. Deng. Model checking soft-

ware architecture specifications in SAM. In SEKE ’02,

pages 271–274, New York, NY, USA, 2002. ACM.

[8] T. Hoare. The Ideal of Program Correctness: Third
Computer Journal Lecture. Comput. J., 50(3):254–

260, 2007.

[9] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,

sixth edition, September 2004.

[10] Z. Manna and A. Pnueli. Temporal Logic of Reactive
and Concurrent Systems. Springer, 1992.

[11] W. Sun, T. Shi, G. Argote-Garcia, Y. Deng, and X. He.

Achieving a Better Middleware Design through For-

mal Modeling and Analysis. In SEKE ’06, pages 463–

468, 2006.

[12] The Eclipse Foundation. Graphical Editing Frame-

work (GEF), 2007. http://www.eclipse.org/
gef/.

[13] C. Zhang, S. M. Sadjadi, W. Sun, R. Rangaswami,

and Y. Deng. A User-Centric Network Communica-

tion Broker for Multimedia Collaborative Computing.

COLCOM, 0:28, 2006.

447

An Algorithm for Computing Loop Functions

Ali Mili, Shir Aharon, Chaitanya Nadkarni
College of Computing Science

New Jersey Institute of Technology, Newark NJ 07102
mili@cis.njit.edu, ShirAharon09@comcast.net, cgn4@njit.edu

Abstract

We consider a while loop on some space S and we are
interested in deriving the function that this loop defines be-
tween its initial states and its final states (when it termi-
nates). Such a capability is useful in a wide range of ap-
plications, including reverse engineering, software mainte-
nance, program comprehension, and program verification.
In the absence of a general theoretical solution to the prob-
lem of deriving the function of a loop, we explore engineer-
ing solutions. In this paper we discuss the design and pre-
liminary implementation of a tool that derives or approx-
imates the function of while loops written in C-like lan-
guages.

Keywords

Reverse engineering; software maintenance; program
comprehension; while loops; program semantics; program
correctness; refinement calculi; software tools.

1. Introduction

As software is used in increasingly critical applications,
it is getting increasingly important to ensure its correctness,
and to analyze/ understand its function. Simultaneously, as
software grows increasingly large and complex, it is getting
more and more difficult and costly to do so to an adequate
level of confidence. Furthermore, recent software develop-
ment paradigms (software reuse, product line engineering,
COTS based software development, outsourcing, etc) are
heavily dependent on third party software products, whose
quality cannot be ascertained by process controls (process
standards, process maturity levels, etc); this places the bur-
den of quality assurance on analyzing the resulting prod-
uct. The convergence of these three trends places a great
premium on automated tools that allow us to analyze the
function of software components and software systems to
an arbitrary level of thoroughness and precision.

Deriving or approximating (characterizing) the function
of a software system involves reasoning at many different
levels of the software hierarchy, and modeling many aspects

of interaction between the components of a complex system.
At the lowest level, the source code level, one of the most
challenging tasks is the derivation or the approximation of
loop functions. In this paper, we present an algorithm that
derives the function of a while loop from a static analysis of
its source code; we also discuss and illustrate a current im-
plementation of the algorithm, as well as venues for its fu-
ture evolution. In the next section we showcase the current
capability of our algorithm by means of a sample program,
whose function we compute using our algorithm. Then, in
section 3 we present the broad structure of our algorithm,
and discuss its current status of development. In section 4
we briefly present the mathematical foundations of the al-
gorithm, and use these to present the detailed structure of
the algorithm, in section 5. In section 6 we assess the pro-
posed algorithm, outline its future evolution in light of this
assessment, and briefly discuss related work.

2. Brief Illustration

We consider the C++ program given below and we are
interested to derive the function of its loop. This program
handles integer variables, and also includes arrays, lists and
(symbolic) function calls.

1. #include <iostream>
2. #include <cmath>
3. #include <math.h>
4. #include <list>
5. using namespace std;
7. const int a= , b= , c= , d= , e= ;
8. const int N= ;
91 typedef list <int> listtype;
10 listtype l, m; int q, qc;
11 int x, y, z, t, i, j, v, w, SA, Sn;
12 int A[N], B[N];
13
14 void loop ();
15 int f (int x);
16 int main ()
17 {loop();}
18 void loop ()
19 { while (i != 0)

448

20 {y = y+b; v = v+a*t;
21 w = w+e*y-b*e;
22 x = x+a; t = t*d;
23 sA = sA + A[i];
24 sB = sB + B[j];
25 i = i-1; j = j+1;
26 z = z+c*x-a*c;
27 m.push_back(l.front());
28 l.pop_front();
29 q = f(q); qc = qc + q;}
30 }
31 int f (int x)
32 {return (//some function of
33 x);}

The function of this loop is given in figure 1 (where list con-
catenation is represented by a dot). It includes two terms:
the trivial term where i = 0 and all variables are preserved;
the non-trivial term where i �= 0 and program variables are
altered. This figure gives the final values (primed) of the
program variables as a function of the initial values (un-
primed).

For the sake of comparison, we submitted the same pro-
gram to Daikon [5], which generates loop invariants by ap-
plying machine learning techniques to the execution trace.
Because it operates on execution traces (rather than on
source code), Daikon requires that we fix all the constants
(a significant loss of generality, since then it makes a state-
ment not about a broad family of programs, but rather about
a single program). Daikon did find some of the clauses of
the function given in Figure 1, duly specialized to the con-
stant values. In fairness, we must recognize that, because
Daikon operates on execution traces, it can handle any pro-
gram structure, whereas we can only handle program struc-
tures for which we have made prior provisions.

3 Broad System Structure

To derive the function of a loop written in a given pro-
gramming language, we proceed in three steps.

1. Map the loop from its source programming language
notation to a predefined language-independent inter-
nal notation. The internal notation is defined in such
a way as to support the divide and conquer approach
that we advocate. We make it language independent so
as to support a wide range of programming languages
with minimal overhead.

2. We analyze the loop written in the internal notation to
derive equations between the initial (unprimed) vari-
ables and the final (primed) variables. This step is the
core of our algorithm. We analyze small parts of the
loop at a time with a view to answering the question:
What equations hold between the initial values and the
final values of the loop.

3. We submit the equations derived in the previous step
to a system for solving symbolic equations. We ob-
tain the function of the loop by solving the equations
in the primed variables, using the unprimed variables
as parameters. For now we are using Mathematica
(c©Wolfram Research), but we are also exploring other
systems as well.

The first step is currently carried out by hand, but can easily
be automated using compiler generation technology. The
third step is fairly trivial, since the equations generated by
the second step are written directly in Mathematica notation.
The second step is the focus of our subsequent discussion. It
is automated by means of a C++ program, whose capability
depends on storing pattern matching artifacts, as we discuss
below.

4. Mathematical Foundations

Space restrictions preclude us from a detailed discussion
of the mathematical background to the proposed work; the
interested reader is referred to [11]. Suffice it to say, for
the purposes of our discussion, that: we represent program
specifications by relations and program functions by deter-
ministic relations; specifications (represented by relations)
are ordered by refinement, which we denote by �; the re-
finement ordering is a partial ordering, and has lattice-like
properties, where the join is represented by �; if a specifica-
tion R refines two specifications R1 and R2 then it refines
their join R1 � R2; the lattice of refinement has a univer-
sal lower bound but has no universal upper bound; maximal
elements of the lattice are total deterministic relations.

4.1. Approximating a Loop Function

We consider a while loop of the form: while t do B
on some space S and we let W be the function of this loop;
we assume that this loop terminates for all initial states in
S.Our stepwise approach to the derivation of the loop func-
tion is that we obtain this function by accumulating a suffi-
cient number of (in)equations of the form W � T, where T
is some relation on S; we refer to T as a lower bound of W .
By virtue of lattice properties of the refinement structure,if
W refines T and T ′ then it refines their join. In practice, if
we find a set of lower bounds T1, T2, T3, ...Tk to W , then
we can infer:

W � T1 � T2 � T3 � ... � Tk.

By virtue of the structure of the refinement lattice, if the join
of all the Ti is total and deterministic, then it is maximal in
the refinement ordering, whence

W � T1�T2�T3� ...�Tk ⇔ W = T1�T2�T3� ...�Tk .

In such cases, we have found the function of the loop. If,
on the other hand, the join of all the lower bounds we have

449

{

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
z
v
w
t
i
j

sA
sB
A
B
l
m
q
qc

,

x′

y′

z′

v′

w′

t′

i′

j′

sA′

sB′

A′

B′

l′

m′

q′

qc′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|

d �= 1 ∧ abdei �= 0 ∧ i′ = 0 ∧ t′ = dit ∧ v′ = (atdi+vd−at−v)
(d−1) ∧

w′ = bei2−bei+2eyi+2w
2 ∧ x′ = x + ai ∧ y′ = y + bi ∧ z′ = aci2−aci+ecxi+2z

2

sA′ = sA +
∑i

k=1 A[k] ∧ sB′ = sB +
∑j+i−1

k=j B[k] ∧ j′ = j + i∧
q′ = f i(q) ∧ qc′ = qc +

∑i
k=1 fk(q)∧

i ≤ length(l) ∧ l′ = Resti(l) ∧ m′.Resti(l) = m.l

}∪

{

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
z
v
w
t
i
j

sA
sB
A
B
l
m
q
qc

,

x′

y′

z′

v′

w′

t′

i′

j′

sA′

sB′

A′

B′

l′

m′

q′

qc′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|
i = 0 ∧ abd2e �= abde ∧ x′ = x ∧ y′ = y ∧ z′ = z∧

t′ = t ∧ v′ = v ∧ w′ = w ∧ i′ = 0j′ = j ∧ sA′ = sA ∧ sB′ = sB∧
m′ = m ∧ l′ = l ∧ q′ = q ∧ qc′ = qc ∧ A′ = A ∧ B′ = B

}.

Figure 1. Function of the Sample C++ Program

loop.cpp loop.cca loop.mat loop.bn

loop.jav �
�
���

jav2cca

loop.c
�
�
���

c2cca

�cpp2cca �cca2mat �mat2bn

Figure 2. Broad Architecture of the Tool

450

found is not a total function, then we do not have the func-
tion of the loop, but we have an approximation of it.

The following results, which we present without proof
(the interested reader is referred to [11]), are geared towards
finding lower bounds of W .

Theorem 1 We consider the while statement while t
do B, where t �= false . Then

T = I(t) ◦ L ◦ I(t) ◦ [B] ◦ I(¬t) ∪ I(¬t)

is a lower bound for W .

Theorem 2 If R is a reflexive transitive relation that is a
superset of [B] such that R ◦ I(¬t) is total then T = R ◦
I(¬t) is a lower bound of W .

While theorem 1 gives an explicit expression of a lower
bound, theorem 2 relies on us to derive relation R that sat-
isfies some conditions; once R is found, this theorem pre-
scribes how we infer a lower bound from it.

5. Detailed Algorithm

5.1. The Internal Representation

Because theorem 2 requires that we find a superset of the
loop body, we must represent the loop body in a way that
makes supersets visible. In typical programming languages,
the loop body is represented as a sequence of statements,
a structure which does not lend itself to finding supersets:
in order to find the superset of a sequence, we must look
at each term of the sequence. To obviate this difficulty, we
propose to represent the loop body as an intersection instead
of a sequence: indeed, if B is written as

B = B1 ∩ B2 ∩ B3 ∩ ... ∩ Bn,

then a superset of B1 is a superset of B, a superset of B1 ∩
B2 is a superset of B, a superset of B1∩B2∩B3 is a superset
of B. The notation we have chosen to this effect is what is
called (Conditional) Concurrent Assignments, or CCA’s for
short. These represent variable assignments that are carried
out concurrently, or in an arbitrary order.

5.2. Deriving Lower Bounds

Once the loop body is structured in CCA form, we can
derive lower bounds by looking at one statement at a time,
or two statements at a time, or three statements at a time, etc.
To derive lower bounds of loop functions, we scan their loop
body written in CCA form, match their statements or com-
binations of statements against pre-cataloged code patterns,
and derive duly instantiated lower bounds in case of a match.
We use the term recognizer to refer to the aggregate made up
of variable declarations, code patterns, and corresponding
lower bound; and we distinguish between one-recognizers

that match one statement at a time, two-recognizers that
match two statements at a time, three-recognizers that match
three statements at a time. The current status of develop-
ment of the extraction algorithm can be characterized by the
following statements:

• All the machinery for recognizing code patterns and
generating instantiated lower bounds is currently in
place.

• We have a total of 28 recognizers, including ten
1-recognizers, fifteen 2-recognizers, and three 3-
recognizers.

We can augment the scope of applicability of the algorithm
by adding more recognizers, to handle new control struc-
tures and new data structures. Table 3 shows some sample
recognizers that are currently implemented. For the sake of
brevity, we do not show the term ¬t(s′) in the lower bounds,
although it should be there, by virtue of theorem 2.

The question of how recognizers are derived is beyond
the scope of this paper; suffice it to say that they are de-
rived using the concept of strongest invariant functions in-
troduced in [12], and that they are discussed in greater detail
in [11].

5.3. Combining Lower Bounds

The join of all the lower bounds is itself a lower bound of
the loop function. If this join is a total deterministic relation
(a total function) then it is the function of the loop; else it
is a lower bound of the function of the loop (i.e. it specifies
some, but not all, of the functional properties of the loop).
In practice, if Mathematica returns an expression for each
primed state variable, and no restriction on the unprimed
state variables, then we have found the function of the loop
(because then the equations that represent the join of the
lower bounds define a total deterministic relation).

5.4. Illustration

For the sake of illustration, we consider the loop pre-
sented in section 2 and we present in turn excerpts of the
loop written in the CCA format, then excerpts of the Math-
ematica file produced by the recognizers.

loop.cca:

{
const int a; const int b; const int c;
const int d; const int e; const int N;
const function f;
array int A; array int B;
list l; list m;
int q; int qc;
int x; int y; int z; int t; int i;
int j; int v; int w; int sA; int sB;
while !(i == 0)

{v = v+a*t, z = z+c*x, w = w+e*y,

451

ID State Space Code Pattern Lower Bound T =
1R1 x: int; const c: int >0 x=x+c {(s, s′)|x mod c = x′ mod c}
1R2 x: int x=x+1 {(s, s′)|x ≤ x′}
1R3 x: int x=x-1 {(s, s′)|x ≥ x′}
2R1: x, y: int; const a, b: int x = x+a, y=y+b {(s, s′)|ay − bx = ay′ − bx′}
2R2: x, y: int; const a: int x = x*a, y=y+x {(s, s′)|y(1 − a) + x = y′(1 − a) + x′}
2R3: x, y: int; const a, b: int x = x+a, y=y*b {(s, s′)| y

bx/a = y′

bx′/a }
2R4: x, y: listType y:=y.First(x), x:= Rest(x) {(s, s′)|y.x = y′.x′}
2R5: i: int;x: sometype i:=i-1, x:=f(x) {(s, s′)|f i(x) = f i′(x′)}
3R1: i: int; x,y: sometype i:=i-1, x:=f(x), y:=y+x {(s, s′)|y + Σi

k=1f
k(x) = y′ + Σi′

k=1f
k(x′)}

3R2 x: int; a[N]: int; i: int i=i+1, x=x+a[i], a=a {(s, s′)|a′ = a ∧ x +
∑N

k=i a[k] = x′ +
∑N

k=i′ a′[k]}
3R2 x: int; a[N]: int; i: int i=i-1,, x=x+a[i], a=a {(s, s′)|a′ = a ∧ x +

∑i
k=1 a[k] = x′ +

∑i′

k=1 a′[k]}

Figure 3. 1-, 2-, and 3-Recognizers

x = x+a, y = y+b, t = t*d,
sA = sA+A[i], sB = sB+B[j],
i = i-1, j = j+1, l = tail(l),
m = m.head(l), q = f(q),
qc = qc+q, A = A, B = B}

}

The algorithm produces 56 equations, of which we present
the following excerpts:

loop.mat

1. Reduce[Reduce[{
2. Mod[x,Abs[a]]==Mod[xP,Abs[a]],
6. i>=iP,
9. A==AP,
11. v+a*t/(1-d)==vP+a*tP/(1-d),
12. z-c*x*(x-a)/(2*a)==

zP-c*xP*(xP-a)/(2*a),
14. a*y-b*x==a*yP-b*xP,
16. t/dˆ(x/a)==tP/dˆ(xP/a),
17. a*i+1*x==a*iP+1*xP,
20. t/dˆ(y/b)==tP/dˆ(yP/b),
24. t/dˆ(j/1)==tP/dˆ(jP/1),
25. 1*i+1*j==1*iP+1*jP,
26. lP==Nest[Rest,l,i-iP],
27. i-Length[l]==iP-Length[lP],
28. Nest[f,q,i]==Nest[f,qP,iP],
30. j+Length[l]==jP+Length[lP],
31. Join[m,l]==Join[mP,lP],
32. sA+Sum[A[k], {k,1,i}] ==

sAP+Sum[AP[k], {k,1,iP}],
34. qc+Sum[Nest[f,q,k],{k,1,i}]==

qcP+Sum[Nest[f,qP,k],{k,1,iP}],
35. (iP==0),
41. {iP, jP, lP, mP, qP, qcP, sAP,
42. sBP, tP, vP, wP, xP, yP, zP},
43. Backsubstitution->True]

Lines 1 and 43 are Mathematica instructions/ options. Lines
41 and 42 specify that we want the given equations resolved

in these variables, which are the final values of the program
variables. Lines 2 through 6 represent the application of
1-recognizers. Lines 9 to 31 represent the application of 2-
recognizers. And lines 32 to 34 represent the application of
the 3-recognizers. Line 35 represents the clause ¬t(s′) that
we have factored out from all the lower bounds.

6. Assessment and Prospects

6.1. Related Work

Our work is related to three lines of research: research
on deriving loop functions, with which it shares a common
goal; research on deriving loop invariants, with which it
shares common analytical methods; and research on pro-
gram slicing, with which it shares common divide-and-
conquer approaches. We discuss these in turn, below.

The closest work we have found to our effort, in terms of
goal (generating loop functions) and means (using Mills-
like functional/ relational logic) is work by Dunlop and
Basili [4]. In this work, Dunlop and Basili discuss a syntac-
tic method that derives the function of a loop by attempting
to generalize from known formulas that capture the behav-
iors of the loop under special conditions.

Generally, the derivation of loop invariants is closely re-
lated to the derivation of loop functions since they both aim
to discover the inductive argument that underlies the behav-
ior of the loop. Many researchers in the theorem proving
and the program verification communities have lent much
attention to the goal of extracting loop invariants. In [5]
Ernst et al. discuss a system for dynamic detection of likely
invariants; this system, called Daikon, runs candidate pro-
grams and observes their behaviors at user-selected points,
and reports properties that were true over the observed exe-
cutions, using machine learning techniques. In [3], Denney
and Fischer analyze generated code against safety proper-
ties, for the purpose of certifying the code. In [2], Colón et
al. consider loop invariants of numeric programs as linear

452

expressions and derive the coefficients of the expressions
by solving a set of linear equations; they extend this work
to non linear expressions in [13]. In [9] Kovacs and Jebe-
lean derive loop invariants by solving recurrence relations;
they pose the loop invariants as solutions to recurrence re-
lations, and derive closed forms of the solution using a the-
orem prover (Theorema) to support the process. In [1] Ro-
driguez Carbonnell et al. derive loop invariants by forward
propagation and fixed point computation, with robust the-
orem proving support. In [10], we discuss the difference
between traditional loop invariants (in the sense of Hoare’s
logic [7, 6]) and the loop invariants that we derive in this
paper from invariant functions, which we call reflexive tran-
sitive loop invariants.

In [8] Hu et al present a technique for slicing while loops
while attempting to minimize slice sizes. The technique
is based on identifying the induction variable of the loop,
and applying semantics-preserving transformations that rep-
resent the effect of the loop by an if-then-else statement.
Our work differs from that of Hu et al in many ways, in-
cluding: first, we do not need to identify an inductive vari-
able; second, our lower bounds can be arbitrarily partial,
as they are not driven by the syntactic structure of the loop
(while slicing techniques slice the program, our divide-and-
conquer techniques slices the program’s function); third the
relation of our lower bound to the function of the loop is
well defined (refinement), as is the rule for composing lower
bounds (join).

7. Conclusion

The goal of computing program functions, notably for
iterative programs, is a difficult goal, but is nevertheless
a worthwhile goal, given the advances that it affords us
in terms of program comprehension, program analysis, re-
verse engineering, software maintenance, software inspec-
tion, etc. In this paper, we outline an algorithm for com-
puting loop functions, and illustrate its behavior on a simple
example. The current algorithm has all the necessary infras-
tructure to derive Mathematica equations; the capability of
the algorithm evolves through the addition of new recogniz-
ers. In the short term, the bottleneck of this process is that
we can only generate symbolic equations that Mathematica
can resolve. Yet new application domains involve domain-
specific knowledge, whose integration requires an inference
capability; we are not sure yet whether Mathematica can
fulfill this need. Another bottleneck, that may arise in the
medium term as the number of recognizers grows, is the
need to control redundancy; while we have many ideas on
how to do this, they are all likely to significantly increase
the complexity of the algorithm. An equally pressing need,
of course, is the ability to deal with conditionals; we have
a theorem (not presented in this paper, but alluded to) that
supports this step, using relational identities. We fully ex-
pect such a solution to increase the complexity of the algo-
rithm; in particular, it will involve a more intensive inter-

action between the recognizer-based matching and the sym-
bolic equation manipulation of Mathematica.

On balance, we argue that the proposed approach is wor-
thy of further investigation, as it takes an angle to the anal-
ysis of while loops that is fairly orthogonal to existing ap-
proaches, and is likely to complement their results and their
insights.

References

[1] E. R. Carbonnell and D. Kapur. Program verifi cation using
automatic generation of invariants. In Proceedings, Inter-
national Conference on Theoretical Aspects of Computing
’2004, volume 3407, pages 325–340. Lecture Notes in Com-
puter Science, Springer Verlag, 2004.

[2] M. A. Colon, S. Sankaranarayana, and H. B. Sipna. Linear
invariant generation using non linear constraint solving. In
Proceedings, Computer Aided Verifi cation, CAV 2003, vol-
ume 2725 of Lecture Notes in Computer Science, pages 420–
432. Springer Verlag, 2003.

[3] E. Denney and B. Fischer. A generic annotation inference
algorithm for the safety certifi cation of automatically gen-
erated code. In Proceedings, the Fifth International Confer-
ence on Generative programming and Component Engineer-
ing, Portland, Oregon, 2006.

[4] D. Dunlop and V. R. Basili. A heuristic for deriving loop
functions. IEEE Transactions on Software Engineering,
10(3):275–285, May 1984.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Science of
Computer Programming, 2006.

[6] D. Gries. The Science of programming. Springer Verlag,
1981.

[7] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576 – 583, Oct. 1969.

[8] L. Hu, M. Harman, R. Hierons, and D. Binkley. Loop
squashing transformations for amorphous slicing. In Pro-
ceedings, 11th Working Conference on Reverse Engineering.
IEEE Computer Society, 2004.

[9] T. J. L. Kovacs. An algorithm for automated generation
of invariants for loops with conditionals. In D. Petcu, edi-
tor, Proceedings of the Computer-Aided Verifi cation on In-
formation Systems Workshop (CAVIS05), 7th International
Symposium on Symbolic and Numeric Algorithms for Scien-
tifi c Computing (SYNASC05), pages 16–19, Department of
Computer Science, West University of Timisoara, Romania,
2005.

[10] A. Mili. Reflexive transitive loop invariants: A basis for
computing loop functions. In First International Workshop
on Invariant Generation, Hagenberg, Austria, June 2007.

[11] A. Mili, S. Aharon, M. Pleszkoch, and R. Linger. Towards
the automated derivation of loop function. Technical report,
NJIT, http://web.njit.edu/m̃ili/fxloop.pdf, September 2007.

[12] A. Mili, J. Desharnais, and J. R. Gagne. Strongest invari-
ant functions: Their use in the systematic analysis of while
statements. Acta Informatica, April 1985.

[13] S. Sankaranarayana, H. B. Sipna, and Z. Manna. Non lin-
ear loop invariant generation using groebner bases. In Pro-
ceedings, ACM SIGPLAN Principles of Programming Lan-
guages, POPL 2004, pages 381–329, 2004.

453

Verifying Behavioral Correctness of Design Pattern Implementation

Tu Peng, Jing Dong, Yajing Zhao
Department of Computer Science

University of Texas at Dallas, Richardson, TX 75083, USA
{txp051000, jdong, yxz045100}@utdallas.edu

Abstract
Design pattern describes a recurring problem and its

common solution, which usually is in abstract form. The
application of design pattern requires coding the generic
solution. It is necessary to assure the coding process cor-
rectly implements not only the structure but also the desired
behavior of the design pattern. This problem is called im-
plementation correctness in this paper. By providing the
definition of partial order between sequence diagrams, we
formally describe the implementation correctness. We verify
the implementation correctness with model checking by us-
ing process algebra to specify the source code and temporal
logic to specify the behavior of the pattern.

KEYWORDS: Design pattern, model checking, temporal
logic, partial order, process algebra
1. Introduction

Design pattern [12] is a reusable software development
strategy. While design pattern documents expert experience,
the correctness of its implementation is critical to assure the
quality of the software system. Each design pattern is usu-
ally described by its intent, motivation, structural and be-
havioral solutions, consequences, known uses, and etc. The
structural and behavioral solutions are typically modeled by
class and sequence diagrams, respectively. In this paper, we
focus on analyzing the behavioral correctness of design pat-
tern implementation by exploiting the partial order relation-
ship between the sequence diagram of a general design pat-
tern and that of its implementation. We identify this prob-
lem as implementation correctness: given a design pattern X
and its implementation program P, is the program the cor-
rect implementation of X? For example, consider the source
code shown in [21] which is adopted from [19]. This source
code is claimed to be an implementation of the Observer
pattern [12]. However, how could we justify this? More
generally, how do we know whether the implementation of
a design pattern satisfies its behavior? To know whether the
behavior of a pattern is implemented correctly is critical in
assuring software reliability.

Formal methods have been widely used in verification
because of two advantages. First, formal verification renders
rigorous results. Second, formal verification can be facili-
tated by tool support, e.g. a model checker, thus less human
efforts and human errors are involved. However, there are

three obstacles to formally verify design pattern implemen-
tation. First, design pattern is more like guidance rather than
any concrete algorithm; hence it is not easy to formally de-
scribe what rules to be verified. Second, design pattern im-
plementation may be different from the original description,
in terms of class names, method names, class numbers,
method numbers, and so on. This makes it difficult to apply
a single algorithm to verify the correctness of different im-
plementations. Third, regarding to the correctness of behav-
ioral characteristics of patterns, software program which has
a large number of states can cause significant runtime delay
and even state explosion when using model checker.

Our approach to tackle these obstacles is based on the
following ideas. First, since the behavior of design patterns
can be normally modeled by sequence diagrams, we abstract
the verification rules from sequence diagrams and use tem-
poral logics, e.g., CTL [10] and its extensions, to specify
them. Second, we introduce anonymous specification, so
that the implementation with different class/method names
can be checked against the original design pattern. Third, we
use CCS [15] to specify the sequence diagram recovered
from the program, instead of the program itself. This makes
the resulted system less complex by involving fewer states.

There have been many researches on the formal specifi-
cation and verification of design pattern. Some approaches
[1][3][11][14][17] focused on the formal specification of
design pattern. Other approaches [4][5][6][8] discussed the
verification of design pattern applications, supported by
model checker. Previous works mainly focus on verifying
the properties of design patterns at the design level, e.g., the
liveness and safety properties of design pattern [6], the cor-
rectness of design pattern composition [4], or the security
design patterns [8]. Little effort on verifying design pattern
implementation has made, which is very important to assure
the reliability of software system [13].

In the next section, we introduce the partial order between
sequence diagrams, from which we can formally define the
implementation correctness problem. In Section 3, we dis-
cuss in detail how to verify the implementation against the
design pattern. Related theorems and algorithms are also
presented. In Section 4, we present a case study to demon-
strate the algorithms for implementation correctness prob-
lem, and provide other application which can be reduced to
the same problem. We conclude this paper in Section 5.

454

2. Partial Order of Sequence Diagrams
Sequence diagram reflects the order of the method invo-

cations in an object, and the interaction between different
objects in a software system. There are three advantages of
using sequence diagram to capture the behavior of a design
pattern or a program. First, the methods, the order of their
occurrence and their interactions are rigorously described,
which make it easy for formalizing. Second, there exist tools
which are able to recover sequence diagrams from source
code. This can release human from analyzing source code
directly. Third, sequence diagram is an abstraction of the
behavior of objects, which involves less variables and states;
hence the system derived from a sequence diagram is more
suitable for model checking [2]. Figure 1 displays the se-
quence diagram that models the behavior of the general
Observer pattern. Figure 2 shows the sequence diagram of
the source code in [21] which is an implementation of the
Observer pattern. Sequence diagrams can be automatically
generated from the source code by tools, e.g., Together [20].

aConcreteSubject aConcreteObserver

SetState()

Notify()

Update()

GetState

anotherConcreteObserver

Update()

GetState()

Figure 1 sequence diagram of observer pattern

Our goal can now be reduced to studying the relationship
between the sequence diagram in Figure 1 and that in Figure
2. If the sequence diagram of the implementation satisfies
that of the design pattern, it is reasonable to believe that the
implementation is correct. This relationship between two
sequence diagrams is defined in partial order in this paper.

There have been several researches on discovering design
pattern from source code [7][9][16], so that the original de-
sign decisions of the source code can be recovered. The
correctness of the recovery can actually be reduced to
checking the partial order relationship between the sequence
diagram of the recovered pattern and that of the source
code. We will discuss how the partial order is formally de-
fined in the rest of this section, how the partial order can be
automatically checked in Section 3, and how the partial or-
der can be applied to solve practical problems in Section 4.

stock:Stoc investor:java.util.ArrayList #:Investor out:java.io.PrintStream

SetPrice(double value)

Notify()

len:=size()

while(i<len)

ii:=get(int arg0)

Update(Stock stock)
println(String arg0)

GetPrice()

price

println()

Message1

Figure 2 Sequence diagram of the implementation

In our approach, we found the order of the actions in a
sequence diagram is the key factor to decide the relationship
of two sequence diagrams. Hence we first define a conven-
ient notation to denote the time order between actions.
Definition 1 Suppose a and b are two actions. We use

ba (to denote a occurs before b, and ba , to denote a
occurs after b.

As the sequence diagrams may come from different
sources, e.g., from a design model by a designer or recov-
ered from a piece of source code, the actions usually are
named differently although they may define the same se-
quence of actions. Hence we are interested in the order of
two different sets of actions, rather than the action names,
from two different sequence diagrams. We define the order
of actions as follows.
Definition 2 Suppose A is a set of actions and f is a one-one
function with domain and range over A. Suppose t is a set of
actions, which are mapped into another set of actions)(tf
by function f. We say actions in t and actions in)(tf have
the same order, denoted by)(tft 0 when the following
formula applies,

:, 21 ttt ��

)).()(())()((21212121 tftftttftftt ((�,,

This definition specifies that the renaming function f re-
serves the order of the actions in t.
Lemma 1 If)(tft 0 and ts � , then)(sfs 0 .

The proof is obvious.
Definition 3 Suppose 1D and 2D are two sequence dia-
grams and t is a set of actions. We say 1D satisfies 2D with

455

respect to t, expressed by the formula 21 DD t� , if and only
if the following conditions are observed:
1) 2D contains all the actions of t, and 1D contains a set

of actions 1t , which can be mapped one by one onto t.
That is, there exists a one-one function f from t to 1t .

2))(tft 0 .
This definition states that one sequence diagram satisfies

another sequence diagram.
Theorem 1 t� is a partial order.

Proof: We need to prove the transitive, asymmetric, and
reflexive properties of t� .
Transitive: suppose there are three sequence diagrams, 0D ,

1D and 2D , with 21 DD t� and 10 1
DD t� . Since

21 DD t� , there is a one-one function f that maps the ac-
tions from t to 1t . Since 10 1

DD t� , there is a one-one
function 1f that maps the actions from 1t to 2t . Then it is
clear that ff �1 is the one-one function from t to 2t . On
the other hand, for any two actions a and b from t, if a oc-
curs before b in 2D , then f(a) occurs before f(b) in 1D be-
cause 21 DD t� . Then))((1 aff occurs before

))((1 bff because 10 1
DD t� . Hence 20 DD t� .

Asymmetric: it is clear that 21 DD t� and 12 DD t�

cannot be true at the same time. Otherwise, t may contains
actions not in 1D .
Reflexive: it is obvious that 11 DD t� .
Hence we complete the proof that t� is a partial order.

Informally, partial order describes to what extend two se-
quence diagrams are similar to each other. If a partial order
exists between two sequence diagrams, one could say the
behavior of one sequence diagram is captured or included in
another sequence diagram.
Definition 4 Suppose nttt ,,, 21 � are n sets of actions, we
write 2,,1 1

DD
ntt �� to mean that 21 1

DD t� , …, 21 DD
nt�

hold.

3. Verify Design Pattern Implementation
In this section, we will discuss how to verify if the im-

plementation of a given design pattern is correct. We start
by formally defining the implementation correctness.
Definition 5 Given a design pattern X, whose sequence dia-
gram is XD . Given a program P, whose sequence diagram
is PD . Given n sets of actions nttt ,,, 21 � which occur
in XD . Then we say P is a correct implementation of X with
respect to nttt ,,, 21 � , if and only if XttP DD

n,,1�
� .

This definition formally specifies the implementation
correctness problem. That is, by comparing the order of the
actions in nttt ,,, 21 � (from the design pattern) and their
correspondent actions (from the implementation), one could
know whether the design pattern is correctly implemented.
We will then propose an approach to verify whether

XttP DD
n,,1�

� .
Given design pattern X and program P. The following is

the outline of our approach.
1) For a given design pattern X, XD is known. That is,

the behaviour of a given pattern is known and is used
as the standard to be verified against.

2) For X’s implementation P, PD can be obtained
automatically by using a software tool which can re-
cover the sequence diagram from a program.

3) For all actions in nttt ,,, 21 � , we use temporal logic to
specify their existence and the order of their occur-
rence. This specification consists of a set of temporal
logic properties, which is denoted by XPROP .

4) Formally specify PD , using CCS that is a process cal-
culus, and obtain the formal expression of PD de-
noted by PCCS , which is a set of processes.

5) Verify if XP PROPCCS
| is true, which will be de-
fined in Definition 6.

We use the CCS (calculus for communicating system)
[15] as the specification language. CCS is a process algebra
which describes labelled transition system where several
subsystems communicate with each other. The syntax of
CCS is shown as follows

][|\||||'.|.:: fALAAAAAAaAaA �
 .
where A is a CCS process. a is an incoming message and a'
is an outgoing message. a.A means after accepting message
a, process A happens, where “.” is sequential operator; A|A
means process A and A are concurrent, where “|” is parallel
composition operator; A + A means either one of the two
processes can happen, where “+” is summarization operator;
A\L means all the messages of A which are included in set L
are restricted as internal message, and “\” is restriction op-
erator; A[f] means that the messages of A are renamed by the
rule provided by f, and [] is referred as relabel operator.
Definition 6 XP PROPCCS
| holds when every property
in XPROP is satisfied by PCCS . More specifically, for
every property ip in XPROP , there exists a process in

PCCS which satisfies ip .

The following definition provides a way to compute
XPROP . We will specify the order of the actions in set

nttt ,,, 21 � , in terms of temporal logic. These temporal logic
specifications are usually called properties. XPROP is
actually a set of these properties.

456

Definition 7 XPROP is a set of temporal logic properties,
which specify the existence and order of the actions in it .
Namely, XPROP ={ ni ..1 | ip }. For each action a in it ,
suppose f is the function defined on it . Suppose itm � such
that mmf
)(:
1) Let ip specify the existence of all actions in it .
2) Let ip specify the order of occurrence of all actions in

m by referring their names.
3) Let ip specify the order of occurrence of all actions in

mti � without referring their names.
There are a few points about this definition that need to be

mentioned. First, it is not fully automatable and human ef-
forts are needed in every step. Second, the actions in mti �
have different names in the implementation from those in
the design pattern, which need to be specified anonymously,
so that the name difference between design pattern and its
implementation can be tolerated in model checking.

In the rest of this section, we present two algorithms for
our approach. Algorithm 1 provides the steps to compute

PCCS , which is an abstract model of program P. PCCS is
a set of processes specifying the actions of objects in PD .
Algorithm 2 provides steps to check XP PROPCCS
| ,

Algorithm 1

For each class C appearing in PD , the specification of C’s
actions, Cspec , is obtained by the following steps:
1) For each activation bar in a sequence diagram, spec-

ify its actions with sequential order. For all the out-
going actions, specify them with a prime symbol be-
fore their names. For all the other messages, just
specify them with their names.

2) Connect the specification of each activation bar with
summarization operation.

3) Add a recursion and we complete the specification of
the actions performed by C.

}|{ CPP specDfromCCCS

Object
a

b'
c

d

e'

Figure 3 A Simple Sequence Diagram

Let us use an example to illustrate how Algorithm 1 is
used to specify a sequence diagram in CCS. Figure 3 shows
a simple sequence diagram. Its CCS process is {a.b'+c.d.e'},
where a.b' is obtained through the first activation bar and
c.d.e' is obtained from the second one.
Algorithm 2

For every property r in tPROP , if there exist a process s
in PCCS , such that s satisfies r, then r is checked by model
checker CWB-NC [18].

Theorem 2 Specification of PD is automatable.

Proof: This comes naturally from the existence of the Algo-
rithm 1 to specify PD .
Theorem 3 XP PROPCCS
| holds in Definition 7 if and
only if XttP DD

n,,1�
� holds.

Proof: On one hand, if XttP DD
n,,1�

� holds, then

XtP DD
i
� holds for ni ..1 . That is,)(ii tft 0 . Let

Xi PROPp � be the temporal logic property specifying it .
Since)(ii tft 0 , which means the actions in it and their
correspondence in)(itf happen in the same order. It fol-
lows that the process containing actions in)(itf must sat-
isfy ip . Hence XP PROPCCS
| holds.

On the other hand, if XP PROPCCS
| holds, then all the
properties in XPROP are satisfied by P. Hence the actions
specified by the properties must happen in the same order as
their correspondence in P. This would mean that

XtP DD
i
� holds for ni ..1 . Thus we complete the proof.

This theorem demonstrates that it is reasonable for us to
use model checking to check XP PROPCCS
| , so as to
determine whether XttP DD

n,,1�
� holds.

4. Case Study
In this section, we apply our approach presented in Sec-

tion 3 to study the case in Section 2, that is, whether the
source code is the correct implementation of the Observer
pattern. As described in [12], the behaviour of the Observer
pattern can be specified by the sequence diagram shown in
Figure 1. The basic property of the Observer pattern can be
summarized: 1) whenever the setstate in Subject is invoked,
2) the notify action must be performed, 3) the update in
every Observer must be invoked, followed by the getstate.
Hence the problem is to verify whether observertP DD � , with
t={notify,update,setstate,getstate}, where we assume the
action names are case insensitive. In particular, we specify
the following properties of the Observer pattern.
� The first property states that there must be an action

that happens before “notify”. This action can be “set-

457

state” or named differently. Since “setstate” can have
different name in real implementation, this considera-
tion is essential.
prop subject_order1=
(E F{setstate}-> (E F{notify}))\/ (E F{-
setstate}-> (E F{notify}))

� The second property states that actions “notify” and
“update” must exist in the Subject. Symbol “'” is ap-
plied before update to denote this message is outgoing.
prop subject_exist=
E F{notify}/\ E F{'update}

� The third property states that action “update” must
happen after the “notify” action.
prop subject_order2=
E F{notify}-> (E F {'update})

� The fourth property states that there must be an action
happens after the “update” action. Usually this is “get-
state”, but can have different name.
prop subject_order3=
(E F{'update}-> (E F{getstate}))\/ (E
F{'update}-> (E F{-getstate}))

� The final property of process subject is the conjunction
of the above properties.
prop subject=
subject_order1 /\ subject_order2 /\
subject_order3 /\ subject_exist

All these properties are specified in GCTL, which is an
extension of traditional temporal logic CTL* [10] that is
tailored for reasoning about systems whose transitions are
labelled by actions. The syntax of GCTL is

ppppSSSSppS F|G|E|A||||:: ���

PPPPPPPPPSP R||X|||||:: 	���
 55

where S is state formula, P is path formula. p is atomic
proposition, and 5 is atomic action proposition. A is a uni-
versal quantifier which means the formula after A is true in
every state starts from the current state. E is an existential
quantifier which means that there exists a state following the
current state, where the formula after E is true. G is a path
universal quantifier which means the formula is true along
all the states in the path from the current state. F is a path
existential quantifier which means the formula is true in
some state in the path from the current state. G, F are always
used together with A and E. More detailed specification of
the semantics of GCTL is in [18].

A practical implementation of the Observer Pattern is
shown in [21], whose sequence diagram is recovered from
its source code in Figure 2. Note that this discovery is
automatically done by Together [20].

Then, we need to specify the behaviour of the Observer
pattern formally in CCS as follows
proc observer=
(stock|investors|investor|printer)\{
setprice,get,update,getprice,println}

proc stock=setprice.notify.'size.'get
.'update.stock1
proc stock1=getprice.'println.stock

proc investors=
size.investors1+get.investor1
proc investors1=investors

proc investor=update.'println.investor1
proc investor1='getprice.investor

proc printer=println.printer1
proc printer1=println.printer

Once we obtain the CCS specification of the source code,
we could simply verify it against the properties previously
defined, with a model checker [18].

We save the properties of the Observer pattern, tPROP ,
in the file “observer.gctl”. We save the system specification
of the sequence diagram of the program in the file “ob-
server.ccs”. Then we can model-check it with the following
commands and results:
cwb-nc> chk -L gctl stock subject
Generating ABTA from GCTL* formula...done
Initial ABTA has 56 states.
Simplifying ABTA:
Minimizing sets of accepting states...done
Performing constant propagation...done
Joining operations...done
Shrinking automaton...done
Computing bisimulation...
Done computing bisimulation.
Simplification completed.
Simplified ABTA has 30 states.
Starting ABTA model checker.
Model checking completed.
Expanded state-space 29 times.
Stored 0 dependencies.
TRUE, the agent satisfies the formula.
Execution time (user,system,gc,real):
(0.047,0.000,0.000,0.047)

Comparing to a conventional approach of model check-
ing, that is, to specify the system from source code, our ap-
proach is more efficient and fast, because the system model
is concisely built and thus involves far less states than the
model built from source code directly. Hence our approach
reduces the possibility of state explosion and increases
model checking speed. As shown in the runtime scripts
above, our system model contains as few as 56 states in total
and is simplified to only 30 states, due to the specification
from sequence diagram instead of the source code. The run-
ning time is only 0.047 seconds.

458

5. Conclusions and Future Work
Design patterns have been widely adopted in software

industry to reuse expert design experience. Use of design
patterns generally involves implementing them in different
forms. So far, there has been lack of methods to ensure the
correctness of the design pattern implementation.

In this paper, we provide a method to formally verify de-
sign pattern implementation. We formally define the im-
plementation correctness problem in terms of a partial order
of two sequence diagrams. We obtain the system specifica-
tion (PCCS) by recovering the sequence diagram from the
source code, and specifying it with CCS. We generate the
properties (XPROP) of the design pattern by using temporal
logic to specify its behaviour, which is usually modelled by
a sequence diagram (XD). We verify PCCS against

XPROP with CWB-NC model checker. Our approach pro-
vides a formal standard and concrete method to solve the
implementation correctness assurance problem. Moreover,
since PCCS is built concisely, it is easy and fast to use
model checking in our approach.

Future work includes verifying the structural correctness
of design pattern implementation and exploring other
methods of verification. One possible way of verifying the
structural correctness is to exploit the current work on de-
sign pattern recovery, which is able to extract structural in-
formation such as classes, methods, and their associations
from source codes and compare such information with gen-
eral design pattern to determine whether the system cor-
rectly implement the pattern from structural point of view.
One alternative way of verifying the behavioral correctness
is to specify design pattern and its implementation as two
systems respectively, and check the behavioral relationship
of those systems. Since specifying design pattern directly is
a better way to capture design pattern behavior than speci-
fying the summarized properties of the pattern, we could
expect more accurate result in this approach.

There are other issues that can be addressed by the im-
plementation correctness. For example, to recover design
pattern from source code is an important task in reverse en-
gineering [7][9][16]. However, there lacks research on how
to formally specify and verify the correctness of design pat-
tern recovery results. This problem may be addressed as the
implementation correctness problem because program P
correctly implements design pattern X, if and only if design
pattern X is correctly recovered from program P.

References
[1] Paulo Alencar, Donald Cowan, and Carlos Lucena. A Formal

Approach to Architectural Design Patterns. Proceedings of
the Third International Symposium of Formal Methods
Europe (FME), pages 576–594, 1996.

[2] E.M Clarke, E.A. Emerson, A.P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic

specifications. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 8(2), April 1986.

[3] S. Chinnasamy, R. R. Raje, and Z. Liu. Specification of de-
sign patterns: An analysis. Proceedings of the 7th Interna-
tional Conference on Advanced Computing and Communica-
tions, pages 300–304, 1999.

[4] Jing Dong, Paulo Alencar, and Donald Cowan, Ensuring
Structure and Behavior Correctness in Design Composition,
Proceedings of the 7th Annual IEEE International Conference
and Workshop on Engineering of Computer Based Systems
(ECBS), pp279-287, Edinburgh UK, 2000.

[5] Jing Dong, Paulo Alencar, and Donald Cowan. A Behavioral
Analysis and Verification Approach to Pattern-Based Design
Composition. International Journal of Software and Systems
Modeling, Springer Verlag, 3(4):262–272, December 2004.

[6] Jing Dong, Paulo Alencar, and Donald Cowan, Automating
the Analysis of Design Component Contracts, Software -
Practice and Experience, Wiley, 36(1), pp. 27-71, Jan. 2006.

[7] Jing Dong, Dushyant S. Lad and Yajing Zhao, DP-Miner:
Design Pattern Discovery Using Matrix, the Proceedings of
the Fourteenth Annual IEEE International Conference on En-
gineering of Computer Based Systems (ECBS), pages
371-380, Arizona, USA, March 2007.

[8] Jing Dong, Tu Peng, Yajing Zhao, Model Checking Security
Pattern Compositions, the Proceedings of the Seventh Inter-
national Conference on Quality Software (QSIC), pages 80-89,
USA, October 2007, IEEE CS Press.

[9] Jing Dong, Yajing Zhao, and Tu Peng, Architecture and De-
sign Pattern Discovery Techniques – A Review, Proceedings
of International Conference on Software Engineering Re-
search and Practice (SERP), pages 621-627, USA, June 2007.

[10] E.A. Emersion and J.Y. Halpern. ‘Sometime’ and ‘not never’
revisited: On branching versus linear time temporal logic.
Journal of the Association for Computing Machinery,
33(1):151-178, January 1986.

[11] A.H. Eden and Y. Hirshfeld. Principles in formal specification
of object-oriented architectures. Proceedings of the 11th
CASCON, Toronto, Canada, November 2001.

[12] Gamma E., Helm R., Johnson R. and Vlissides J. (1995).
Design Patterns-Elements of Reusable Object-Oriented Soft-
ware. Reading, Massachusetts: Addison- Wesley.

[13] Peter C. Mehlitz, John Penix. Design for verification using
design pattern to build reliable system. Proceeding of 6th

workshop on component-based software engineering, 2003
[14] Tommi Mikkonen. Formalizing Design Pattern. Proceedings

of the 20th International Conference on Software Engineering,
pages 115–124, 1998.

[15] Robin Milner. Communication and Concurrency. Prentice
Hall, 1989.

[16] Nija Shi and Ron Olsson. Reverse Engineering of Design
Patterns from Java Source Code. The International Confer-
ence on Automated Software Engineering, Japan, Sept. 2006.

[17] Neelam Soundarajan and Jason O. Hallstrom. Responsibilities
and Rewards: Specifying Design Patterns. Proceedings of the
26th International Conference on Software Engineering,
pages 666–675, May 2004.

[18] CWB-NC User's Manual. http://www.cs.sunysb.edu/~cwb/
[19] http://www.dofactory.com/Patterns/Patterns.aspx
[20] http://www.borland.com/us/products/together/index.html
[21] http://www.utdallas.edu/~jdong/papers/Observer.java

459

Automated Multiperspective Requirements Traceability
Using Ontology Matching Technique

Namfon Assawamekin*, Thanwadee Sunetnanta†, Charnyote Pluempitiwiriyawej‡

Department of Computer Science, Faculty of Science, Mahidol University
Bangkok 10400, THAILAND

Phone: +66(0) 2354-4333, Fax: +66(0) 2354-7333
*g4536828@student.mahidol.ac.th, †cctth@mahidol.ac.th, ‡cccpt@mahidol.ac.th

* The first author is also a lecturer at School of Science, University of the Thai Chamber of Commerce.

Abstract

Large-scaled software development inevitably
involves a group of stakeholders, each of which may
express their requirements differently in their own
terminology and representation depending on their
perspectives or perceptions of their problems.
However, those stakeholders will need to interoperate
or collaborate by tracing, verifying and merging their
requirements in order to achieve a common goal of
their development. In this situation, ontology can play
an essential role in communication among diverse
stakeholders in the course of an integrating system.

This paper presents an alternative multiperspective
requirements traceability (MPRT) framework to
automatically generate traceability relationships of
multiperspective requirements artifacts. Requirements
ontology is designed and constructed as a knowledge
management mechanism to represent multiperspective
requirements artifacts in a common way, which
intervene mutual “understanding” among various
stakeholders. Ontology matching takes two ontologies
and produces correspondences (i.e., equivalence, more
general, less general, mismatch and overlapping)
between the concepts of ontologies that correspond
semantically to each other. As a result, the traceability
relationships can be automatically generated when a
match is found in the ontologies.

Keywords: Interoperability, Multiperspective software
development, Ontology, Requirements traceability

1. Introduction

Nowadays, the development of most large and
complex software systems inevitably involves many
people or stakeholders. Different stakeholders may
deal with different pieces of software requirements
depending on their perspectives or perception of their

problems. Each of the stakeholders may define his/her
requirements in his/her own point of view using
different terminologies. Such requirements are termed
multiperspective requirements artifacts. A variety of
stakeholders need to interoperate, collaborate or trace
requirements among each other in order to achieve a
common goal of their development. Consequently, the
overlapping characteristic of multiperspective
requirements artifacts makes it difficult to trace and
verify the requirements.

As part of our attempt in resolving traceability
problems of multiperspective requirements artifacts,
we have investigated existing requirements traceability
approaches and tools to manage software requirements
and architecture. However, the proposed approaches
for requirements traceability still encounter the
following problems.

Firstly, the majority of existing commercial
requirements traceability tools [1] utilize
straightforward traceability links that must be manually
defined by the users at coarse-grained level during
software development process. Defining large number
of traceability relationships manually can be a tedious,
error-prone, labor-intensive and time-consuming task.
The cost of using such tools for a large software
development team is high on account of the licensing
expense for each user. Additionally, the characteristic
of these tools is the non-uniformity in dealing with the
heterogeneity problems found in multiperspective
requirements artifacts.

Secondly, automated solutions to requirements
traceability problems face a difficult challenge due to
the need to handle the overlapping among
multiperspective requirements artifacts generated
during software development process. For example,
PROART [2] supports the automatic generation of
traceability relationships among multiperspective
requirements. Nevertheless, this approach forces the
users to use the same set of vocabularies and their
definitions stored in a repository. Alternatively, even
though Huang [3] and Sherba [4] propose event-based

460

and open hypermedia approach respectively to
automatically generate traceability links but they do
not tackle the overlapping among multiple views of
requirements.

Lastly, the granularity of requirements traceability
is typically too coarse-grained level. For example, the
works in RQML [5], XmlTRAM+ [6] and ROM &
IREQ [7] aim to use XML as a mechanism for
managing requirements artifacts or as the
representation of requirements. However, RQML and
XmlTRAM+ allow the users to generate traceability
relationships manually at coarse-grained level, which
are a very difficult and time-consuming task. Even if
ROM and IREQ can automatically generate
traceability relationships at fine-grained level, it is
based on explicitly predefined rules.

To resolve the aforementioned problems, our
proposed approach applies requirements ontology as a
knowledge management mechanism in order to define
an explicit account of a shared understanding among
diverse stakeholders for knowledge interchange
purposes. This work endeavors at handling ontology
interoperability that does not force various
stakeholders to express their requirements with the
same or shared set of vocabulary, but supports multiple
ontologies which represent different perspectives of
stakeholders towards the same domain. Ontology
matching is used to match the concepts between
different and independent ontologies that correspond
semantically to each other. The traceability
relationships can be automatically generated when a
match is found in the requirements ontologies.

The rest of this paper is organized as follows.
Section 2 provides an overview of existing schema and
ontology matching approaches, which are applied to
our work for interoperability and traceability purposes.
In section 3, a multiperspective requirements
traceability (MPRT) framework is proposed. In section
4, we illustrate an example of how to automatically
construct requirements ontologies from
multiperspective requirements artifacts and produce
their traceability relationships. Finally, we conclude
the paper with the discussion of our ongoing work in
section 5.

2. An Overview of Existing Schema and
Ontology Matching Approaches

The purpose of this section is to survey on existing
schema and ontology matching approaches in [8] and
[9] which have emerged during the last decade. These
approaches are classified into schema-based and
instance-based systems. The main focus of this work is
on schema-based matching (i.e., DIKE [10], TranScm
[11], SKAT [12], ARTEMIS [13], Cupid [14], COMA
[15], SF [16], CtxMatch [17], S-Match [18], COMA++

[19], DCM [20] and H-Match [21]). The instance-
based and mixed systems are excluded from this
consideration. We specifically apply S-Match [18]
approach to match the concepts between requirements
ontologies based upon the following observations.

Firstly, various approaches take as input a pair of
schemas or ontologies, including S-Match, while only a
small number of approaches take as input multiple
schemas (e.g., DCM [20]).

Secondly, a large number of approaches handle
graphs. Some examples include Cupid [14], COMA
[15], SF [16], CtxMatch [17], COMA++ [19], H-
Match [21] and S-Match [18].

Thirdly, most of existing approaches under
consideration deal with particular schema or ontology
types, such as relational, XML, RDF and OWL. Only a
small number of approaches aim at being generic (i.e.,
handle multiple types of schemas or ontologies). Some
examples include Cupid [14], COMA [15], SF [16],
COMA++ [19] and S-Match [18].

Finally, most of existing approaches focus on
computing similarity measures in [0, 1] range. Only
little approaches compute semantic relations (i.e.,
equivalence, subsumption, mismatch, overlapping)
between the concepts. Some examples of the latter
include CtxMatch [17] and S-Match [18]. The semantic
relations can be applied to our work for automatically
generating traceability relationships.

3. Our Approach

The crucial goal of this work is to automatically
generate traceability relationships of multiperspective
requirements artifacts at fine-grained level, which can
be applied to any software requirements domain. We
propose an alternative multiperspective requirements
traceability (MPRT) framework as depicted in Figure 1
in order to reach the goal.

Figure 1 illustrates our MPRT framework. The
main modules in the framework can be summarized as
follows:

1. Requirements analyzer obtains a set of
requirements artifacts represented in terms of
natural language or plain English text and uses
the Stanford parser [22] to syntactically and
semantically analyze the requirements artifacts.

2. Requirements elements generator (REG)
generates the rules to extract requirements
elements.

3. Base ontology constructor (BOC) uses IEEE
Std 830-1998 [23] and ESA PSS-05-03 [24] to
classify requirements types of requirements
artifacts in the domain of software
requirements.

461

4. Requirements ontology constructor (ROC)
attaches requirements elements into the base
ontology to automatically construct
requirements ontology of each stakeholder as a
common representation for knowledge
interchange purposes.

5. Ontology matcher applies ontology matching
technique in order to automatically generate
traceability relationships between two
requirements ontologies.

Ontology
Matcher

Matched
Concepts

Pre-Process of
Multiperspective Requirements Traceability Automated Multiperspective Requirements Traceability Process

Base
Ontology

Requirements
Elements
Generator

Requirements
Ontology

Constructor

Requirements
Elements

Requirements
Elements

Generator

Requirements
Ontology

Constructor

Requirements
Elements

Requirements
Ontology 1

Base
Ontology Requirements

Ontology 2

Base Ontology Constructor

IEEE Std
830-1998

ESA
PSS-05-03

Traceability
Relationships

Requirements
Analyzer

Semantic
Representation

Requirements
Analyzer

Semantic
Representation

Natural
Language

Requirements
Artifacts

Natural
Language

Ontology
Engineer

Stakeholder 1

Stakeholder 2

Requirements
Artifacts

Figure 1. A Multiperspective Requirements Traceability (MPRT) Framework

3.1. Automatic Generation of Requirements
Elements

Our REG module uses NLP techniques and a rule-
based approach to extract requirements elements. We
extract objects and relationships by using noun-verb
analysis defined in CM-Builder [25] approach. We also
use CM-Builder to generate the relationship between
the objects (i.e., aggregation, attribute,
generalization/specialization and association).
However, CM-Builder approach only concerns the
analysis of requirements text (static view) with the goal
of building UML class models; it cannot recognize
behavioral view of requirements artifacts for our work.
As a consequence, we construct the transformation
rules in SWI-Prolog [26] to extract the remaining
requirements elements. The underline represents the
grammatical relations [27] generated from the Stanford
parser.

1. If an object participates in some prepositions
(e.g. by) with a verb in the requirements
artifacts, then the verb are taken as a process
and the object as an input of the process.

2. If an object acts as a subject of a process in the
requirements artifacts, then the object is taken
as an actor of the process.

3. If an object acts as an object of a process in the
requirements artifacts, then it is taken as the
output of the process.

4. Two objects are the same concept (semantically
equivalent) if one object is an abbreviation
modifier of the other object.

5. If an object is a numeric modifier of another
object, then it specifies a property of the object.

3.2. Automatic Construction of Requirements
Ontology

The requirements elements are attached into the
base ontology in order to automatically construct
requirements ontology of each stakeholder as a
common representation for knowledge interchange
purposes. In our work, we represent each construct in
the ontologies by using the first-order logic (FOL)
representation for machine-readable and the
visualization view for the users. The graphical
notations of the visualization view are defined in
Figure 2. Note that some notations are enhanced from
unified modeling language (UML)-like but they have
more specific meaning used in this work.

A base ontology, constructed by ontology engineer
using IEEE Std 830-1998 [23] and ESA PSS-05-03
[24], can be represented in FOL and graphical
representation as illustrated in Figure 3. It contains
requirements types of requirements artifacts in the
domain of software requirements. We use a top-down
approach [28] in order to construct a base ontology
starting from creating the most general concept of
requirement artifact which is classified into two

462

concepts: functional requirement and non-functional
requirement. The functional requirement concept can
be further classified as data specification, process
specification and control specification. We apply the
same principle to categorize other concepts in the base
ontology.

Aggregation relationship (partOf)

Attribute relationship (attributeOf)

Generalization/Specialization relationship (isA)

Actor relationship (actorOf)

Input relationship (inputOf)

Output relationship (outputOf)

Equivalence relationship (sameAs)

Association relationship (associatedWith)

Property relationship (propertyOf)

Ontology RelationshipsGraphical
Notations

Figure 2. Graphical Notations of
Ontology Relationships

data data relation function

requirement artifact

object

functional requirement non-functional requirement

data specification process specification control specification

relationship process

Figure 3. A Graphical Representation of
a Base Ontology

3.3. Automatic Generation of Traceability
Relationships

We match the concepts between two requirements
ontologies by applying S-Match [18] approach with the
reason as mention earlier in Section 2. However, we
extend it to cover nine kinds of ontology relationships
and to produce overlapping relation. We also allow the
users to incorporate domain knowledge for resolving
lack of background knowledge found in S-Match. The
proposed base ontology is used to reduce the number
of all possible matching concepts for increasing the
matching performance.

The S-Match algorithm is organized in four macro
steps described in [18]. For element matching (step 3),
we use external resources (i.e., domain knowledge,
WordNet [29]) and string matching techniques (i.e.,
prefix, suffix, edit distance, n-gram) with threshold
0.85. Lexical relations provided by WordNet are
converted to semantic relations according to the rules
as shown in Table 1.

Table 1. Conversion of lexical relations to
semantic relations

Lexical Relations Semantic Relations
Synonym a = b
Hypernym or holonym a � b
Hyponym or meronym a � b
Antonym a 6 b

Each concept is converted into a propositional
validity problem. Semantic relations are translated into
propositional connectives using the rules described in
Table 2. We extend the overlapping relation in the last
row of the table.

Table 2. The relationships between
semantic relations and propositional formula

Semantic
Relations

Propositional
Logic

Translation of Formula into
Conjunctive Normal Form

a = b a 7 b axioms � �(context1 � �context2)
axioms � �(�context1 � context2)

a � b a b axioms � �(context1 � �context2)
a � b b a axioms � �(�context1 � context2)
a 6 b �(a � b) axioms � �(context1 � context2)
a 8 b (a � b) �

(a � �b) �
(�a � b)

axioms � 9(�context1 � �context2) �
9(�context1 � context2) �
9(context1 � �context2)

The criterion for determining whether a relation
holds between the concepts is the fact that it is entailed
by the premises. Thus, we have to prove that this
formula (axioms) � rel(context1, context2) is valid. A
propositional formula is valid iff its negation is
unsatisfiable. A SAT solver [30] run on the formula
fails.

We use types of overlap relations defined in [31] to
generate traceability relationships in our work. The
traceability relationships can be generated when a
match is found in the ontologies. Thus, the semantic
relations will be mapped to traceability relationships as
shown in Table 3.

Table 3. Conversion of semantic relations into
traceability relationships

Semantic Relations Traceability Relationships
Equivalence (=) overlapTotally (=)
More or less general (�,�) overlapInclusively (�,�)
Mismatch (6) noOverlap (6)
Overlapping (8) overlapPartially (8)

The distinction among different types of
traceability relationships is important because these
have a different impact on the requirements traceability
status of two requirements artifacts. More specifically,
the ontology matcher module discards noOverlap
relationship in this work because there is no effect on
multiperspective requirements artifacts changes.

463

4. An Illustrative Example:
Multiperspective Requirements
Traceability

This section provides an example to illustrate how
the proposed MPRT framework can solve the
heterogeneity problems found in multiperspective
requirements artifacts efficiently. We demonstrate that
two different stakeholders (System User 1 and 2)
produce Doctor Investigation System (DIS) and In-
Patient Registration System (IPRS) Requirements
respectively as depicted in Figure 4. They want to
collaborate with each other by sharing the requirements
of two overlapping systems which are parts of a
hospital information system. These requirements are
overlapping and generated with respect to different
perspectives. Multiple sets of vocabularies may be
used in the requirements descriptions.

Doctor Investigation
System Requirements

Patient Record
System Requirements

System User 2

In-Patient Registration
System Requirements

In-Patient Payment
System Requirements

System User 4

System User 1

System User 3

Figure 4. Distributed Collaboration of
Multiperspective Requirements Artifacts in a

Hospital Information System

Assume that a system user 1 of DIS expresses
his/her requirements as follows:

Each patient has a unique hospital number (HN) and a name. A
patient is admitted by a doctor. Nurses and doctors are considered
as staffs. A nurse has a name. The nurse’s name consists of a first
name, an initial and a last name. A doctor is identified by an
identification number and a name.

A system user 2 of IPRS defines his/her
requirements in the following.

Physicians and nurses are staffs. Staffs have an ID, a name and
an address. A surgeon is a physician.

Both requirements are presented as a source (DIS)
and a target (IPRS) in our MPRT browser. After both
requirements are passed to requirements analyzer and
REG modules, the ROC module will attach
requirements elements into the base ontology.
Accordingly, the DIS and IPRS requirements ontology
are automatically constructed as depicted in Figure 5
(exclude a base ontology).

staff

nurse doctor

name

first
name

last
name

initial

name

staff

nurse physician name address

surgeon

ID

identification
number

patient admit

hospital
number

HN

name

object relationship object

IPRS Requirements OntologyDIS Requirements Ontology

Figure 5. DIS and IPRS Requirements Ontology

To check the unsatisfiability of a propositional
formula done by ontology matcher module we use the
standard DPLL-based SAT solver [30]. From the
example in Figure 5, trying to prove that doctor1 in
DIS requirements ontology is less general than
physician2 in IPRS requirements ontology, requires
constructing the following formula.

((staff1 7 staff2) � (doctor1 7 physician2)) �
(staff1 � doctor1) � �(staff2 � physician2)

The above formula turns out to be unsatisfiable,
and therefore, the less general relation holds. It is
noticeable that if we test for the more general relation
between the same pair of concepts, the corresponding
formula would be also unsatisfiable. As a result, the
final relation for the given pair of concepts is the
equivalence.

Some parts of traceability relationships between
DIS and IPRS requirements ontology can be
automatically generated by ontology matcher module
as shown in the predicate terms below.

overlapTotally(staff1, staff2)
overlapTotally(staff1/nurse1, staff2/nurse2)
overlapTotally(staff1/doctor1, staff2/physician2)
overlapTotally(staff1/nurse1/name1, staff2/nurse2/name2)
overlapTotally(staff1/doctor1/name1, staff2/physician2/name2)
overlapTotally(staff1/doctor1/identification_number1,
staff2/physician2/ID2)
overlapPartially(staff1/nurse1, staff2/physician2)
overlapPartially(staff1/doctor1, staff2/nurse2)
overlapInclusively(staff1/nurse1/name1/first_name1,
staff2/nurse2/name2)
overlapInclusively(staff1/nurse1/name1/last_name1,
staff2/nurse2/name2)

5. Conclusions and Ongoing Work

In this paper, we point out the heterogeneity
problems found in multiperspective requirements
artifacts. Requirements ontology can be used as a
knowledge management mechanism to describe these
artifacts in a common way to share understanding
among various stakeholders for interoperability and
traceability purposes. The traceability relationships can
be automatically generated by using ontology matching

464

technique. Hence, the combination of NLP techniques,
a rule-based approach, an automated reasoning process
and ontology concepts provides a practical and
powerful multiperspective requirements traceability
mechanism.

Currently, our MPRT framework emphasizes on
requirements artifacts represented in terms of natural
language or text but we can extend a base ontology to
cover software artifacts in other phases of software
development process.

Acknowledgements

The first author is supported by the grant from the
Department of Computer Science at Mahidol
University. Also I would like to acknowledge
University of the Thai Chamber of Commerce for their
financial support for this presentation.

6. References
[1] “SE Tools Taxonomy - Requirements Traceability Tools”,

International Council on Systems Engineering (INCOSE),
Available at
http://www.incose.org/productspubs/products/setools/tooltax/re
qtrace_tools.html, September 22, 2004.

[2] K. Pohl, “PRO-ART: Enabling Requirements Pre-
Traceability”, Proceedings of the 2nd International Conference
on Requirements Engineering (ICRE'96), Colorado Springs,
Colorado, U.S.A., April 15-18, 1996, pp. 76-84.

[3] J.C. Huang, C.K. Chang, and M. Christensen, “Event-Based
Traceability for Managing Evolutionary Change”, IEEE
Transactions on Software Engineering, Vol.29, No.9,
September, 2003, pp. 796-810.

[4] S.A. Sherba, M.A. Kenneth, and M. Faisal, “A Framework for
Mapping Traceability Relationships”, Proceedings of the
Second International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE'03), In Conjunction
with the 18th IEEE International Conference on Automated
Software Engineering, Montreal, Quebec, Canada, October 7,
2003.

[5] G. Gudgeirsson, “Requirements Engineering and XML”,
September 22, 2000.

[6] J. Wu and J. Han, “XmlTRAM+: Using XML Technology to
Manage Software Requirements and Architectures”,
Proceedings of the 8th Australian World Wide Web
Conference, Twin Waters Resort, Sunshine Coast, Australia,
July, 2002, pp. 237-245.

[7] G. Spanoudakis et al., “Rule-Based Generation of
Requirements Traceability Relations”, Journal of Systems and
Software, Vol.72, No.2, 2004, pp. 105-127.

[8] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching”, The International Journal on
Very Large Data Bases (VLDB), Vol.10, No.4, 2001, pp. 334-
350.

[9] P. Shvaiko and J. Euzenat, “A Survey of Schema-Based
Matching Approaches”, Journal on Data Semantics IV, 2005,
pp. 146-171.

[10] L. Palopoli, D. Sacca, and D. Ursino, “Semi-Automatic,
Semantic Discovery of Properties from Database Schemes”,
Proceedings of International Database Engineering and
Applications Symposium (IDEAS'98), IEEE Computing, July 8-
10, 1998, pp. 244-253.

[11] T. Milo and S. Zohar, “Using Schema Matching to Simplify
Heterogeneous Data Translation”, Proceedings of the 24th

International Conference on Very Large Data Bases (VLDB),
1998, pp. 122-133.

[12] P. Mitra, G. Wiederhold, and J. Jannink, “Semi-Automatic
Integration of Knowledge Sources”, Proceedings of the 2nd
International Conference on Information Fusion'99,
Sunnyvale, U.S.A., July, 1999.

[13] S. Bergamaschi, S. Castano, and M. Vincini, “Semantic
Integration of Semistructured and Structured Data Sources”,
ACM SIGMOD Record, Vol.28, No.1, 1999, pp. 54-59.

[14] J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic Schema
Matching with Cupid”, Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB), Roma, Italy,
2001, pp. 49-58.

[15] H.H. Do and E. Rahm, “COMA - A System for Flexible
Combination of Schema Matching Approaches”, Proceedings
of the 28th International Conference on Very Large Data
Bases (VLDB), Hong Kong, China, 2002, pp. 610-621.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching”, Proceedings of the 18th
International Conference on Data Engineering (ICDE), San
Jose, C.A., 2002, pp. 117-128.

[17] P. Bouquet, L. Serafini, and S. Zanobini, “Semantic
Coordination: A New Approach and An Application”,
Proceedings of International Semantic Web Conference
(ISWC), 2003, pp. 130-145.

[18] F. Giunchiglia, M. Yatskevich, and P. Shvaiko, “Semantic
Matching: Algorithms and Implementation”, Journal on Data
Semantics IX, 2007, pp. 1-38.

[19] D. Aumuller et al., “Schema and Ontology matching with
COMA++”, Proceedings of International Conference on
Management of Data (SIGMOD), Software Demonstration,
Baltimore, Maryland, U.S.A., June 14-16, 2005.

[20] K.C. Chang, B. He, and Z. Zhang, “Toward Large Scale
Integration: Building a Metaquerier Over Databases on the
Web”, Proceedings of the Conference on Innovative Data
Systems Research (CIDR), 2005, pp. 44-55.

[21] S. Castano, A. Ferrara, and S. Montanelli, “Matching
Ontologies in Open Networked Systems: Techniques and
Applications”, Journal on Data Semantics V, 2006, pp. 25-63.

[22] “The Stanford Parser: A Statistical Parser (version 1.6)”,
Stanford University, Available at
http://nlp.stanford.edu/software/lex-parser.shtml, August 18,
2007.

[23] “IEEE Recommended Practice for Software Requirements
Specifications”, IEEE Std 830-1998, The Institute of Electrical
and Electronics Engineers (IEEE), June 25, 1998.

[24] “Guide to the Software Requirements Definition Phase”, ESA
PSS-05-03, European Space Agency (ESA), Issue 1, Revision
1, March, 1995.

[25] H.M. Harmain and R. Gaizauskas, “CM-Builder: A Natural
Language-Based CASE Tool for Object-Oriented Analysis”,
Automated Software Engineering (ASE), Vol.10, No.2, April,
2003, pp. 157-181.

[26] J. Wielemaker, “SWI-Prolog version 5.6.30”, University of
Amsterdam, Available at http://www.swi-prolog.org/, 1990-
2007.

[27] M.-C. de Marneffe, B. MacCartney, and C.D. Manning,
“Generating Typed Dependency Parses from Phrase Structure
Parses”, 5th International Conference on Language Resources
and Evaluation (LREC 2006), 2006.

[28] N.F. Noy and D.L. McGuinness, “Ontology Development 101:
A Guide to Creating Your First Ontology”, Technical Report,
Stanford Knowledge Systems Laboratory, March, 2001.

[29] G.A. Miller, “WordNet: A Lexical Database for English”,
Communications of the ACM, Vol.38, No.11, November, 1995,
pp. 39-41.

[30] D.L. Berre, “A Satisfiability Library for Java”, Available at
http://www.sat4j.org.

[31] G. Spanoudakis, A. Finkelstein, and D. Till, “Overlaps in
Requirements Engineering”, Automated Software Engineering,
Vol.6, No.2, April, 1999, pp. 171-198.

465

Eliciting Scenarios from Scenarios

Abdolmajid Mousavi and Behrouz H. Far
Department of Electrical and Computer Engineering

University of Calgary
2500 University Drive N.W., T2N1N4

Calgary, AB, Canada
amousavi@ucalgary.ca, far@ucalgary.ca

ABSTRACT
Scenario-based software development has been widely ac-

cepted for the description of concurrent systems. However,

scenario-based software development is inherently partial

as scenarios can only show instances of the system behav-

iour and because the behaviour of each component is only

meaningful in collaboration with other components in sce-

narios. Therefore, sound, formal, and structured approaches

which help in eliciting scenarios that cover more aspects of

the system requirements are welcome in software engineer-

ing.

This paper presents an approach for incorporating the

domain knowledge and the system architecture depicted in

scenarios for elaborating scenario specifications. Our ap-

proach can be repeatedly applied in a cycle that consists

of eliciting the domain knowledge from scenarios and pro-

ducing new scenarios until a satisfactory specification is

reached.

KEY WORDS
Scenario-based specifications, domain knowledge, emer-

gent scenarios

1. Introduction

Scenario-based languages such as Message Sequence

Charts (MSCs) [1], are one of the popular ways for the

description of concurrent systems because of the desire of

stakeholders to describe system’s functionality by small and

partial stories. However, scenario are only instances of the

system behaviour and might not cover all the system re-

quirements [7], [13]. Furthermore, the behaviour of each

system component is only meaningful in conjunction with

other components. This means that a mechanism is needed

for composing component’s behaviours in each scenario in

order to build behaviour models for components [5], [14],

[15].

In this paper, we present an approach for incorporating

the domain knowledge and the system architecture depicted

in scenarios for elaborating scenario specifications. The

required domain knowledge will be obtained by referring

to an available (and possibly incomplete) set of scenarios.

The domain knowledge and the available set of scenarios

are used for the synthesis of behaviour models for system’s

components (also called processes). Then, emergent behav-

iours obtained from this synthesis process are converted into

scenarios that can be added to the current set of scenarios

and enrich the system specification.

The advantage of our approach can be better envisaged

in the general software development practice of Figure 1.

In this figure, first behaviour models are constructed from a

scenario specification as an initial approximation of system.

Then, an analysis phase begins in which any mismatch be-

tween the scenario specification and behaviour models are

found in terms of emergent behaviours. After being de-

tected, emergent behaviours will be validated against sys-

tem goals and properties in order to provide the required

feedback for the system analyst to correct the specification.

The process of correction and analysis continues until a sat-

isfiable specification is obtained.

2. Related Work

Recently, there has been a growing body of research

around scenario-based software development with different

motives, assumptions and methodologies. Nevertheless, we

can sketch some boundaries for different groups of work

-though with overlap - in this research area.

The first group assumes that while a scenario specifica-

tion is complete with respect to the behaviour of individual

processes, it might not be complete with respect to the be-

haviour of system [2], [11], [13]. Some common problems

addressed by this research area are deadlocks, implied sce-

narios, and safe or weak realizability. Our work in [10],

which introduces the notion of strong safe realizability be-

longs to this category.

466

Figure 1. A framework for elaborating scenar-
ios.

The second group assumes that a scenario description

might not be complete with respect to the behaviour of indi-

vidual processes, and therefore in the first place, they are in-

terested in building the right behaviour models for processes

using scenarios and the domain knowledge [7], [9], [14],

[15]. The assumption here is that the scenario specifica-

tion is describing a state machine that models the behaviour

of system components. Thus, components in scenarios are

considered to model both a set of states in the state ma-

chine (which are called component states) and the events

that fire state change (called labeled transitions). Therefore,

the same component states in different scenarios provide in-

formation of how the state machines from different scenar-

ios should be combined.

In the current practice of synthesis of behaviour mod-

els, similar states in different state machines will be merged

in order to obtain a single state machine for the behaviour

of each component [3], [5], [6], [8], [9], [12], [14], [15].

While many of these approaches use the domain knowledge

in addition to scenarios, they do not give a formal and clear

picture of the domain knowledge needed for their purpose.

Furthermore, because they do not consider the system ar-

chitecture defined by scenarios, they usually result in spuri-

ous emergent behaviours for the components (and system)

(a phenomenon that is also called overgeneralization). In

contrast, in our approach the required domain knowledge is

clearly defined and emergent behaviours occur only if the

system architecture allows for them.

3. Basic Definitions

We assume that scenarios are represented by Message

Sequence Charts defined as follows. Let P be a finite set of

processes (system’s components) with the total number of

processes |P | ≥ 2, and C be a finite set of message contents

(or message labels). Denote Σi = {i!l(c), i?l(c)|l ∈ P\ {i},

c ∈ C} to be the alphabet of process i ∈ P , where i!l(c)
denotes an event that sends a message from process i with

content c to process l, whereas i?l(c) denotes an event that

receives on process i a message with content c from process

l. Also, the alphabet (of all processes i ∈ P) will be Σ =⋃
i∈P Σi.

Definition 1 (Message Sequence Chart): A Message
Sequence Chart (MSC) over P and C is defined to be a
tuple m = (E,α, β,≺) where:
- E is a finite set of events.
- α : E → Σ maps each event to its label. The set
of events located on process i is Ei = α−1(Σi). The
set of all send events in the event set E is denoted by
E! = {e ∈ E|∃i, l ∈ P, c ∈ C : α(e) = i!l(c)} and the set
of receive events as E? = E\E!.
- β : E! → E?, is a bijection mapping between send
and receive events such that whenever β(e1) = e2 and
α(e1) = i!l(c), then α(e2) = l?i(c).
- ≺ is a partial order on E such that for every
process i ∈ P , the restriction of ≺ to Ei is a
total order, and ≺ is equal to the transitive clo-
sure of {(e1, e2)|e1 ≺ e2,∃i ∈ P : e1, e2 ∈ Ei} ∪
{(e, β(e))|e ∈ E!}.

Fig. 2 shows a set of scenarios for an ATM machine in MSC

notation.

We also define the projection m|i for process i in MSC

m to be the ordered sequence of messages that corresponds

to the events occurring on process i in the MSC m. For

m|i, ‖m|i‖ indicates its length, which is equal to the total

number of events of m on process i, and m|i[j] refers to

jth element of m|i, so that if ej is the jth event on process

i according to the total order of the events of i in m, then

αm(ej) = m|i[j − 1], 0 < j < ‖m|i‖.

Definition 2 (equivalent Finite State Machine of a projec-
tion): For the projection m|i, we define an equivalent FSM
(eFSM) Am

i = (Sm, Σi, δ
m, qm

0 , qm
f) such that:

- Sm =
{

qm
0 , · · · , qm

f

}
is a finite set of states

- Σi is the alphabet
- qm

0 is the initial state
- qm

f = qm
‖m|i‖ is the final state (accepting state)

- δm is the transition relation such that δ(qm
j ,m|i[j]) =

qm
j+1, 0 ≤ j < f , and the only word accepted by Am

i is m|i.

For instance, the eFSM of the projection of scenario m2 in

Fig. 2 on ATM process is shown in Fig. 3 in which qm2
0 is

its initial state and qm2
13 is its final state.

4. From Scenarios to Domain Knowledge

4.1. Semantical Causality

Assuming that scenarios do not provide all the neces-

sary behaviours for processes, the domain knowledge will

be needed for building the right behavioral models for

processes [7], [9], [15]. In this regard, a distinct feature of

our approach is that it defines the domain knowledge based

467

Figure 2. A preliminary set of scenarios for an ATM system.

Figure 3. A state machine (eFSM) for ATM extracted from m2.

on a fixed relation between messages in scenarios called se-
mantical causality. Semantical causality captures perfor-

mance dependability between messages as a part of the do-

main knowledge that is not explicitly defined in scenarios.

Definition 3 (Semantical causality): We say message m|i
[j] is a semantical cause for message m|i[k] and denote it
by m|i[j] se

→ m|i[k] if process i has to keep the result of the
operation of m|i[j] in order to perform m|i[k].

Similar to [7], by the operation of a message we mean

the ultimate purpose of the message. For example, the cor-

responding operation for the insert card message for the

ATM is: card is inserted. Note that, semantical causality

comes from the domain knowledge and can be found with-

out referring to ordering of messages in scenarios. Also,

note that semantical causality is an invariant property for a

system because it is the system’s architecture and the do-

main knowledge that dictate whether or not one message is

needed by a process in order to perform another message.

For example, in m2, insert card is a semantical cause

for eject card because ATM has to keep the card inserted

before it can eject the card. As another example, in a lift

system, the message close door is a semantical cause for

the message open door or the message lift moving because

the lift has to keep the door closed before it can open the

door or before it can move.

4.2. State Values and Identical States

The main problem in behaviour modeling is how to de-

tect identical states for a process in different eFSMs ex-

tracted from scenarios. The work of [15] uses global system

variables to mark states that a process goes through as it is

communicating with other processes in a scenario. How-

ever, different domain experts can choose different system

variables. Consequently, different behavioural models for a

process might be obtained for a given application and at the

end it is not clear which model is the right one. Note that,

this problem is the result of choosing different variables not

updating the values of variables (in fact, an implicit assump-

tion in [15] is that the domain expert makes no mistakes in

updating variables). To overcome this drawback, we let the

current state of the process in any eFSM to be defined by the

messages that the process needs them in order to perform

the messages that come after its current state. Consider-

ing Definition 3, these are the messages that are semantical

causes for the messages in the transitions after the current

state of the process in the eFSM.

More specifically, we associate a state value υi(q
m
k) to

468

every state qm
k in the eFSM Am

i , i ∈ P , m ∈ M as follows.

Definition 4 (State value): The state value υi(q
m
k) for the

state qm
k in eFSM Am

i = (Sm, Σi, δ
m, qm

0 , qm
f) is a word

over the alphabet Σi∪{1} such that υi(q
m
0) = 1, υi(q

m
f) =

m|i[f − 1], and for 0 < k < f is defined as follows:
i) υi(q

m
k) = m|i[k − 1]υi(q

m
j), if there exist some j and l

such that j is the maximum index that m|i[j − 1] se
→ m|i[l],

0 < j < k, k ≤ l < f
ii) υi(q

m
k) = m|i[k−1], if Case i) does not hold but m|i[k−

1] se
→ m|i[l], for some k ≤ l < f

iii) υi(q
m
k) = 1, if none of the above cases hold

In Definition 4, first state values of the initial and the final

states of an eFSM are defined. Then, the states value of the

state qm
k is defined depending on whether for the transitions

that come after this state: there exists a message m|i[j − 1]
as a semantical cause, 0 < j < k (Case i)), or m|i[k − 1] is

the only semantical cause (Case ii)), or neither m|i[k − 1]
nor any other message is a semantical cause (Case iii)). In

particular, the last case marks all the states qm
k that from the

processes perspective are like its initial state with the state

value of 1.

Since for a given application and process, semantical

causality between messages is an invariant property defined

by the domain knowledge, state values of the states of a

process are independent of the choice of the domain expert.

Let’s calculate state values of states qm2
3 and qm2

7 in Fig.

3. From the domain knowledge pertinent to ATM system,

the maximum index j for which m2|ATM [j−1] is a seman-

tical cause for a message in the transitions after qm2
3 is j = 2

for which m2|ATM [2− 1] =insert card (for instance insert
cardse

→ eject card). Thus, based on Case i) of Definition 4 we

have: υATM (qm2
3) = m2|ATM [3 − 1]υATM (qm2

2). To cal-

culate υATM (qm2
2), observe that insert card is the only se-

mantical cause for messages after qm2
2 , and therefore, based

on Case ii) of Definition 4, we have υATM (qm2
2) =insert

card. Thus, υATM (qm2
3) = (request password) (insert

card). For qm2
7 because none of the messages bad password,

verify account, and enter password is a semantical cause for

the messages in the transitions after qm2
7 , still the maximum

index j would be j = 2 for which m2|ATM [2 − 1] =insert
card. Thus, with the same reasoning as for qm2

3 , we have:

υATM (qm2
7) = m2|ATM [7 − 1] υATM (qm2

2) = (request
password) (insert card). This means that from ATM’s per-

spective, two states qm2
3 and qm2

7 are identical in Figure 3.

An interesting case is the state values of the user. Since

the user does not need any message in order to perform

other messages, there would be no semantical causality be-

tween messages for the user. Thus, according to Case iii) of

Definition 4, all the states of the user except its final state are

identical with the state value of 1. This is the result of the

fact that no protocol is imposed on the user to communicate

with ATM (see [4]).

5. From Domain Knowledge to Scenarios

5.1. Criteria for Merging Identical States

The common practice in the synthesis of behaviour mod-

els from scenarios is to merge identical states of processes

[5], [6], [9], [14], [15]. However, this is a blind process

since it can create many spurious emergent behaviours in

the resulting behaviour models [5], [9]. One way to reduce

this effect is to first check whether the emergent behaviour

that could be generated as the result of merging states is al-

lowed by the system architecture defined in scenarios. By

system architecture, we mean the processes, the partial or-

der between events in scenarios, and the available informa-

tion regarding process’s identical states (see Figure 3).

Figure 4 shows a general case where two identical states

qi and qj of two state machines (eFSMs Am
k = A and An

k =
B obtained from scenarios m and n) for the process k are

merged into a single state q. ai, ai+1,..., are the send or

receive messages for the process from scenario m, whereas

bj , bj+1, ..., are are the send or receive messages for the

process from scenario n. Thus, ...ai shows a sequence of

send and receive messages that ends in ai and bi+1... shows

a sequence that starts with bi+1.

A possible emergent behaviour in Figure 4 is the se-

quence ...aibj+1... (or ...bjai+1...) where ...ai shows a be-

haviour from state machine A whereas bj+1... is a behav-

iour from state machine B. Thus, the possible emergent

behaviour ...aibj+1... is obtained from a combination of a

behaviour from A with another one from B. Now, we shall

look for a set of criteria under which ...aibj+1... is possible.

The intention behind these criteria is to avoid generalization

(merging identical states) unless we have enough evidence

in scenarios.

Having this said and depending on whether bj+1 is a

send or receive message for k, to have ...aibj+1... as the

result of merging qi and qj , one of the followings cases

must hold:

i) bj+1 is a send message for the process k. There-

fore, nothing can prevent k to initiate sending bj+1 when it

is in state q and generate the emergent behaviour ...aibj+1...

ii) k stops after bj . In other words, qj is a final state

for B. In this case if ai+1 is a send message for k, then k
has initiative to send (because of the state machine A) or

stop to send (because of the state machine B) ai+1 when

it is in state q resulting in (when it stops sending ai+1) the

emergent behaviour ...ai i.e. it stops after sending ...ai

while according to the scenario m and the state machine A,

it must continue with message ai+1

iii) bj+1 is a receive message for k and in scenario

469

Figure 4. Two states qi and qj of state ma-
chines A (eFSM Am

k) and B (eFSM An
k) are

merged.

m, another process say k′, can send bj+1 to k even when

ai+1 does not happen for k, and in m, k receives bj+1 after

ai+1. In this case, again the emergent behaviour ...aibj+1...
can happen

Criteria i) and ii) represent conditions where the process

has initiative either to send or stop sending a mes-

sage, whereas criterion iii) represents conditions over two

processes involved in sending and receiving a message.

This latter case can be justified using our basic rule outlined

before, that is: we look for any evidence in scenarios that

allows for emergent behaviours. Because bj+1 is a receive

message for the process, we should look for an evidence that

shows the process is able to receive bj+1 after ai happens

for it. Therefore, first we must make sure that in m there

is a process (k′) other than k that sends bj+1 to k. Second,

we must make sure that k′ can send bj+1 to k even when

ai+1 does not happen for k because is ai+1 is a necessary

condition to have bj+1 sent by k′, then by removing ai+1,

k′ will not be able to send bj+1. As a result, k will not

be able to receive bj+1, and so, it would be impossible for

the emergent behaviour ...aibj+1... to happen for k. Also,

the requirement for receiving of bj+1 after ai+1 is to ensure

that in m, bj+1 is not consumed by k before ai+1 otherwise

there would be impossible to have the emergent behaviour

...aibj+1... and bj+1 would be simply one of the messages

in the sequence ...ai.

Note that since the aforementioned criteria are defined

over scenarios, they can be automatically checked using

syntactic constructs employed in Definition 1 (processes,

events and messages, and partial order between events), and

identical states. More specifically, assuming that identical

states of processes are available, for criteria i) or ii) we need

respectively to check whether or not a message is a send

message or a state is a final state for a given process. For

Case iii), we need to check whether a process is receiving

a message in a sequence diagram and does the partial order

between events of the sequence diagram or the state infor-

mation of another process that sends the message allows for

receiving the message.

5.2. Emergent Scenarios

In this section we show how the formalized domain

knowledge along with the criteria for merging identical

states discussed in the previous section result in emergent

scenarios. Consider Figures 3 and its two identical states

(qm2
3 and qm2

7 with the same state of requesting password).

Since both messages after these states are receive messages

for ATM, Case iii) of our criteria needs to be checked. In

other words, it should be checked whether or not the process

(user) that sends these messages to ATM is able to send

them.

The outgoing transitions from states qm2
3 and qm2

7 are

respectively the enter password and the cancel messages,

which are two send events for the user that occur after a pair

of its identical states (remember from Section 4.2 that all the

states of the user have the state value of 1 except its final

state). Therefore, Case i) applies to the user and the states

after two request password will be merged for the user. This

means that the user can either send enter password or cancel

after receiving request password. Therefore, ATM also can

either receive enter password or cancel after sending request

password. Thus, Case iii) applies for ATM for states qm2
3

and qm2
7 and these states can be merged. As the result of

this merge, the state machine of Figure 5a) will be obtained

from Figure 3 as a part of behaviour model for ATM.

Figure 5a) shows an emergent behaviour for ATM (in-

dicated as the darker path in the figure), which is shown in

Figure 5b) in terms of a scenario. This is a valid scenario

for ATM that is ignored in the original specification given

by m1, m2, and m3. The system analyst (see Figure 1)

can enrich the scenario specification for the ATM system

by adding the scenario of Figure 5b) as the fourth scenario

to Figure 2 and starts a new cycle of synthesis-emergent

behaviours-correction.

6. Conclusions and Future Work

Our approach for eliciting scenarios is a two steps cy-

cling process. In the first step, scenarios are used for elicit-

ing the domain knowledge. In the second step, the acquired

domain knowledge is used along with the system architec-

ture depicted in scenarios to infer emergent scenarios that

cover overlooked system’s aspects. As it is shown in Figure

1, by cycling through these steps we hope to end up in a

more complete specification.

For future work, scalability of our approach is an issue

that needs to be verified on systems in different domains

and with various complexities, particularly because finding

semantical causality between messages might be difficult

when the application domain or size is changed.

470

Figure 5. a) A state machine obtained from Figure 3 when merging states qm2
3 and qm2

7 ; b) An emergent
behaviour for ATM that can be added to the set of scenarios of Figure 2.

References

[1] Recommendation Z.120: Message Sequence Charts
(MSCs). Geneva., 1996.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of

Message Sequence Charts. IEEE Trans. on Software
Eng., 29(7):623–633, July 2003.

[3] D. Harel and H. Kugler. Synthesizing state-based

object systems from lsc specifications. International
Journal of Foundations of Computer Science, 13(1):5–

51, 2002.

[4] J. Hopcroft, R. Motwani, and J. Ullman. Introduc-
tion to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 2001.

[5] K. Koskimies and E. Mäkinen. Automatic synthesis of

state machines from trace diagrams. Software Practice
and Experience, 24(7):663–658, 1994.

[6] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From

MSCs to statecharts. In: Franz J. Rammig (ed.): Dis-

tributed and Parallel Embedded Systems, Kluwer Aca-

demic Publishers, 1999.

[7] A. v. Lamsweerde and W. L. Inferring declarative

requirements specifications from operational scenar-

ios. IEEE Trans. on Software Eng., 24(12):1089–

1114, December 1998.

[8] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing

ROOM models from Message Sequence Charts spec-

ifications. In Proc. of 13th IEEE Conf. on Automated
Sofware Eng. (ASE ’98), pages 192–195, 1998.

[9] E. Mäkinen and T. Systä. MAS - an interactive syn-

thesizer to support behavioral modeling in uml. In

ICSE 2001, pages 15–24, Toronto, May 2001.

[10] A. Mousavi, B. Far, A. Eberlein, and B. Heidari.

Strong safe realizability of Message Sequence Chart

specifications. In International Symposium on Funda-
mentals of Software Engineering (FSEN), pages 334–

349. LNCS 4767, April 2007.

[11] H. Muccini. Detecting implied scenarios analyzing

non-local branching choices. In FASE 2003, Warsaw,

Poland, april 2003.

[12] S. Somé, R. Dssouli, and J. Vaucher. From scenar-

ios to timed automata: Building specifications from

user requirements. In Proc. Asia Pacific Software Eng.
Conf. (APSEC ’95), pages 48–57, 1995.

[13] S. Uchitel. Incremental Elaboration of Scenario-
Based Specifications and Behaviour Models Using Im-
plied Scenarios. PhD thesis, Imperial College, Lon-

donn, 2003.

[14] S. Uchitel, J. Kramer, and J. Magee. Synthesis of be-

havioral models from scenarios. IEEE Trans. on Soft-
ware Eng., 29(2):99–115, February 2003.

[15] J. Whittle and J. Schumann. Generating statecharts de-

signs from scenarios. In ICSE 2000, Limerick, Irland,

2000.

471

Tailoring an Aspectual Goal-Oriented Approach to Model Features�

Carla Silva*, Fernanda Alencar
Univ. Federal de Pernambuco
Recife-PE, Brasil, 50732-9

ctlls@cin.ufpe.br, fmra@ufpe.br

João Araújo, Ana Moreira
CITI/FCT, Univ. Nova de Lisboa

Caparica, Portugal, 2829-516
{ja, amm}@di.fct.unl.pt

Jaelson Castro
Centro de Informática

Univ. Federal de Pernambuco
jbc@cin.ufpe.br

Abstract
A feature model can represent commonalities and

variabilities in software product lines, but it does not
describe how these features are achieved through
system functionality and how these functionalities work
together to achieve the expected system behavior.
Moreover, feature models lack foundations to reason
about the relationships among different requirements.
Thus, it makes it difficult to justify why a specific
feature configuration is required. In this paper, we
propose to use the aspectual i* approach to capture
common and variable features in software product
lines requirements. In doing so, we aim at addressing
the issues pointed out previously and facilitating the
selection among configuration alternatives to fulfill
customer requirements. ∗

1. Introduction
Research in requirements for software product lines

(SPLs) [5] has been exploring ways by which one can
define core assets capable of serving as the basis for
cost-effective derivation of products for individual
users. Feature modeling [12] is a key technique for
capturing commonalities and variabilities in system
families and product lines. A feature may denote any
functional or non-functional characteristic at the
requirements, architecture, or any other level [6]. ∗

According to Czarnecki and Antkiewicz [7],
although a feature model can represent commonalities
and variabilities in a very concise taxonomic form,
features in a feature model are merely symbols.
Therefore, feature models lack foundations to reason
about the relationships among different requirements
[9] and artifacts of a variant [3]. They are not able to
show how the features of an individual product fulfill
the stakeholders’ goals and, therefore, to keep trace
between them. Moreover, feature models do not

*∗Currently in post-doc position at Universidade Nova de Lisboa
�∗This work was supported by several research grants:

CAPES/GRICES Proc. 129/05; SOFTAS Project,
POSC/EIA/60189/2004; European project AMPLE IST-033710.

capture explicitly non-functional requirements and the
positive/negative influence among them. This kind of
reasoning would help to choose a specific
configuration for an individual product according to the
stakeholders’ goals. The variability of the product line
has to be documented explicitly to enable a strategic
reuse of requirements artifacts. In this light, it seems
clear that goal-oriented requirements engineering could
be used to capture features using more meaningful
models and, therefore, to keep trace of system features
to their motivations.

Goal models provide a natural way to identify
variability at the early requirements phase, by allowing
the capture of alternative ways by which stakeholders
achieve their goals [13, 15]. However, using only goal
oriented approaches does not guarantee a proper
capture of features variability. Indeed, a set of variable
features differ from a specific product to another, i.e.,
they are not part of the common features of the product
line. Besides, it is required an improved localization of
features in software artifacts to facilitate the
incremental evolution of feature functionality. Thus,
these variable features could be modularized into
aspects and later composed with common features in
application engineering. Based on this, we present
guidelines to map feature models to aspectual goal-
oriented models. These models are defined based on
the aspectual i* modeling language [1]. Aspectual goal-
oriented model allows modeling stakeholders’ goals,
system requirements and aspects, and the relationships
among them. We show how this model can be used to
capture features in both domain engineering and
application engineering. We argue that using an
aspectual goal oriented approach can improve reuse
and, therefore, reduce time and costs associated with
evolving and configuring features to a specific product.

This paper is organized as follows. Section 2
overviews the aspectual i* modeling language and
software product line engineering. Section 3 presents
our mapping heuristics. Section 4 shows an example of
using the proposed heuristics. Section 5 describes some
related work. Finally, Section 6 summarizes our
proposal and points out directions for future work.

472

2. Background
This section overviews the basis of our proposal,

i.e., the aspectual i* modeling language and the
principles of software product lines engineering.

2.1. Goal and Aspect Oriented Requirements
Engineering

During the early stages of requirements engineering
(RE), it is necessary to identify and specify how the
intended system meets organizational goals, why the
system is needed, what alternatives were considered,
what the implications of the alternatives are for the
various stakeholders, and how the stakeholders’
interests and concerns might be addressed. The i*
framework [17] is a goal-oriented approach widely
adopted in the earlier phases of RE, as it offers a
modeling language that describes the system and its
environment in terms of actors and dependencies
among them.

The i* framework offers two models: the Strategic
Dependency (SD) and Strategic Rationale (SR). The
SD model is described in terms of intentional
relationships among strategic actors. An actor can
depend upon another one to satisfy a goal, execute a
task, provide a resource or satisfy a softgoal. Softgoals
are associated to NFRs, while the other intentional
elements are associated to system functionalities.

To illustrate some of the i*concepts and models, let
us consider the Media Shop example [4]. Media Shop
sells and ships different kinds of media items (e.g.,
books, newspapers, magazines, etc.). To increase
market share, Media Shop has decided to open a
Business-to-Consumer (B2C) retail sales front on the
Internet (the Medi@ system). The goal is to allow an
on-line customer to examine the items in its catalogue
and place orders. For the sake of space, the SD model
for this example is not shown in this paper, but an
interested reader can find it in [4].

Figure 1 shows the SR model used to expand the
description of the Medi@ actor. In this model three
types of relationships are incorporated: (i) task-
decomposition links describe what should be done to
perform a certain task; (ii) means-end links suggest that
one model element can be offered as a means to
achieve another model element; (iii) contributions links
suggest how a task can contribute to satisfy a softgoal
(not shown in Figure 1).

Since the i* framework does not support the
separation of crosscutting concerns, the approach
presented in [1] has adopted principles of Aspect-
Oriented Software Development (AOSD) [2] to
identify candidate aspects in i* models, separate them
in specific modules and compose them with other
concerns.

Figure 1. Aspectual i* model

473

For modularization purposes, and following the
AOSD principles, we should externalize and
modularize the identified crosscutting concerns, taking
them away from the original actors, and place each of
them in a new kind of model element, the aspect. The
aspect is represented by a star (see Figure 1). A
“crosscuts” relationship between the aspect and the
actor (or another aspect) it affects is defined. The
“crosscuts” relationship is represented by an arrow and
its direction is indicated by a black triangle (see Figure
1) suggesting the composition direction. It means that
the behavior of the source element needs to be
transferred to the behavior of the target elements. The
“crosscuts” relationships can be of two types: Means-
End (ME) and Task-Decomposition (TD). These types
are part of the composition rules defined to recover the
relationships defined in the original model (e.g. the
crosscuts TD link between Search aspect and Maintain
Catalog task).

2.2. Software Product Lines Engineering
According to [5], a Software Product Line (SPL) is

a set of software-intensive systems sharing a common,
managed set of features satisfying the specific needs of
a particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way. Feature-oriented domain analysis
gathers abstract concepts of the domain and organizes
them as features [12]. A feature is a system property
that is relevant to some stakeholder and is used to
capture commonalities or discriminate it among
systems in a family. Feature modeling can be used at
any stage of the software product-line engineering (e.g.,
requirements, architecture, design) and for any kind of
artifacts (e.g., code, models, documentation). At an
early stage, feature modeling enables product-line
scoping to decide which features should be supported,
or not, by a product line [6].

At its essence, a product line involves core asset
development (also known as Domain Engineering) and
product development using the core assets (also known
as Application Engineering). Commonalities, as well as
the flexibility to adapt to different product
requirements are captured in core assets. Those
reusable assets are created during domain engineering.
During application engineering, products are either
automatically or manually assembled, using the assets
created during the domain engineering process and
completed with product-specific artifacts. Thus,
products differ by the set of features they include to
fulfill customer requirements [16].

The feature model [6] describes the configuration
space of a system family. An application engineer may
specify a member of a system family by selecting the

desired features from the feature model within the
variability constraints defined by the model. Features
can be mandatory, optional, or alternative.

To illustrate a feature model, let us consider a
family of online B2C solutions presented in [7]. It is
represented using the cardinality-based feature model
[6] and a fragment of this model is shown in Figure 2.
Feature cardinality is an interval denoting how often a
feature with its subfeatures can be cloned as a child of
its parent when specifying a concrete system. The
model in Figure 2 contains one feature diagram, with
eCommerce as its root feature.

Figure 2. Online B2C Feature Model (taken from [7])

The root feature has a solitary subfeature:
Storefront. The filled circle symbol indicates that
Storefront has a feature cardinality of [1..1], meaning
that the feature must exist once and only once. On the
other hand, the empty circle symbol indicates that
Quick Checkout Profile is an optional feature with
cardinality [0..1]. Available checkout types, in this case
Registered and Guest, are members of a feature group.
The ramification symbol to denote a group indicates
group cardinality (1– k), where k is the group size.
Thus available checkout types can be any non-empty
subset of the two checkout types. Grouped features are
indicated by the filled square symbol.

In Section 3 we will illustrate how the aspectual i*
framework can be used to both describe features in the
domain engineering and in application engineering.

3. From Feature Models to Aspectual i*
Models

Features are a de-facto standard in distinguishing
the individual products in a product line, since each
product is defined by a unique combination of features
[12]. A feature may denote any functional or non-
functional characteristic at the requirements level [6].
However, features in a feature model are merely
symbols defining which features should be present in a
product line and which should not. In fact, to specify in
a requirements model “what is the system intended
for?”, a process view of the system to meet the business
goals is required. Moreover, a justification of why a
process is structured in a certain way, i.e., why a

474

certain alternative solution has been chosen, is also
needed. In fact, mapping features to other models, such
as the i* SR Model, can improve understanding the
interdependencies among system features to achieve
the expected system behavior.

Besides, aspect-oriented techniques have been
applied to deal with highly volatile concerns [14] to
increase software flexibility associated with the
meeting of new requirements. Similarly, we can use the
aspectual i* approach to modularize variabilities and to
compose variable features with common features. In
fact, optional and alternative features may be added or
removed from a specific product, just as aspects.
Representing these features as aspects can reduce time
and costs associated with the configuration activity.

To illustrate how an aspectual goal oriented strategy
can be used to represent variability in requirements
models, we propose a set of heuristics to create
aspectual i* models from feature models. These
heuristics have been defined based on our previous
experience [1, 14] and are described below:

H1. Separation of features in i* models:
(i) Mandatory features are part of the core assets of

product lines and, therefore, can be mapped to internal
elements in the actor representing the system;

(ii) Optional or Alternative features are part of the
variable features of a product line and, therefore, can
be mapped to internal aspect elements. In fact, some of
them are going to be selected to configure the features
of a specific product.

H2. Feature types and relationship among
features in i* models:

(i) If a feature (mandatory or optional) is
decomposed into other features, the root feature is
mapped to a task and a task-decomposition link is used
to relate the root feature with its sub-features: (a) If a
sub-feature is not specialized into subtypes and is not a
subtype of a super feature, then it is mapped to a task;

(ii) If a feature (mandatory or optional) is
specialized into subtypes and they cannot be used
simultaneously (i.e., they are alternative features), then
a means-end link is used to relate the root feature with
its subtypes and: (a) If the root feature denotes a
functional requirement, it is mapped to a goal; (b) If the
root feature denotes a non-functional requirement, it is
mapped to a softgoal; (c) If the subtypes denote
specialized ways of doing something, then they are
mapped to tasks; (d) If the subtypes only denote types
of information, then they are mapped to resources;

(iii) Relationships between features of type requires
will be mapped to task-decomposition links from the
required feature to the “requirer” feature. In this case,
the “requirer” feature is a task.

H3. Check Relationship Correctness:
(i) If there is a relationship between an optional

feature (encapsulated into an i* aspect) and a
mandatory feature (encapsulated into an i* actor) or
only between optional features, this relationship must
be of type crosscuts: (a) If the relationship has been
stated in previous guideline as task-decomposition link,
then replace it by a crosscuts Task-Decomposition
(TD) link; (b) If the relationship has been stated in
previous guideline as means-end link, then replace it by
a crosscuts Means-End (ME) link. Observe that often
the names of the features could not be mapped directly
to the names of internal elements in i*. Some
adaptation needs to be made to produce a
comprehensible i* models. The following heuristic is a
step towards a systematic mapping of names.

H4. Mapping feature names to aspectual i*
model element names:

(i) Mapping feature names to resources names: copy
the name of the feature to the name of the resource;

(ii) Mapping feature names to task names: join the
name of the feature with a verb to indicate an action in
the present tense;

(iii) Mapping feature names to goals or softgoal
names: join the name of the feature with a verb to
indicate an action in the past tense;

(iv) Optional and alternative features (already
mapped to aspects), have their names mapped directly
to the names of the respective aspects. The biggest
challenge in these mapping is that feature models
describe the characteristics the system family have to
present, but do not describe how these characteristics
are achieved through system functionality and how
these functionalities work together to achieve the
expected system behavior. For this reason we cannot
map feature models to aspectual i* models
automatically. Indeed, it is needed to analyze the
feature model to extract behavioral information to be
used in the creation of aspectual i* models. To help this
task, one can use the heuristics presented in previously.

4. Example: The Medi@ System
For the e-commerce system introduced in section

2.2, let us consider the feature model presented in [7]
(whose fragment is shown in Figure 2) to apply the
mapping heuristics and derive the aspectual i* model.

According to the mapping heuristics, the mandatory
features are mapped to an internal element of the actor
representing the commonalities of the product line.
Notice that we add a meaningful verb to the name of a
feature to denote functionality. For example,
eCommerce, Buy Path, Shopping Cart, Checkout and
Checkout Type are features mapped to the eCommerce
actor in Figure 1 (H1-i). On the other hand, Registered,

475

Guest and Quick Checkout Profile are features that can
be or not present in a specific product configuration.
Thus, these features are modularized independently as
aspects (H1-ii).

Decomposed features, such as Store Front, Buy Path
and Checkout are all mapped into tasks (H2-i).
Subfeatures, such as Persistent Between Sessions (not
shown in Figure 2), are all mapped to tasks (H2-i-a).
Relationships between decomposed features and
optional sub-features must be stated as Crosscuts TD
links (H3-i-a). For example, the relationship between
Quick Checkout Profile and Registered. Specialized
features, such as Checkout Type, are mapped into
Goals since they denote system functionality (H2-ii-a).
Feature subtypes, such as Registered and Guest, are
mapped into tasks because they are ways of doing
something (H2-ii-c), while Electronic Goods, Physical
Goods and Services features (not shown in Figure 2)
are mapped to resources because they are kinds of
handled information (H2-ii-d). In the example found in
[7] we could not find a case to use the heuristic “H2-ii-
b”. Relationships between specialized features and
alternative sub-features must be stated as Crosscuts ME
links (H3-i-b). For example, we have the relationship
between Checkout Type and Registered.

After performing the domain engineering for the
eCommerce example, we have captured both the
common and the variable features of a family of online
B2C solutions. The concrete system configured in the
feature model presented in [7] is the same of the one
presented in Figure 1. The next step is to select a set of
features to configure a specific product to be developed
in the application engineering.

A configuration in feature models specifies a
concrete system and comprises the mandatory features
plus the features checked with � symbol (not shown in
Figure 2 for the sake of space). In the configuration
sample found in [7], checkout for registered customers
is the only available checkout type, the catalog is sub-
divided into categories, a product can be classified in
multiple categories, the catalog contains only electronic
goods, a wish list is maintained, etc.

Using the aspectual i* modeling language to capture
the features in domain engineering also allows us to
choose a configuration in application engineering. This
makes easier building configuration models for a
specific product and transferring the configuration
information to other software artifacts (e.g.
architectural design) in order to maintain tracing among
different software artifacts of a variant. Besides, using
a goal-oriented approach, such as i*, allows answering
questions, such as “why a system configuration has
been chosen?”.

5. Related Work
The possibility of capturing variability in use cases

is discussed in [11], where variation points are
introduced within use case diagrams. Mapping feature
models to UML 2.0 activity and class models have
been proposed in [7]. The approach presented in [10]
proposes concepts and tools that support the expression
of feature-based variability in structural models and
hence the selective adaptation of models. Goal
orientation has been used in software customization
approaches [13] where all variants are in one single
system and the focus is on studying what customization
is needed by a single user. Goals have also been used
to explore alternatives [15] by focusing on exploring a
space of alternatives before selecting the one to be
implemented.

The approach presented in [8] uses goal oriented
variability analysis to help selecting the best variant,
given product requirements (functional and non-
functional). In fact, NFRs (or softgoals) [17] provide
natural rationale about why a given variant was
selected. Thus, goal model brings to light the rationale
behind variability by linking variants to softgoals.

In [9], the authors propose representing a
requirements model with all possible combination of
tasks (representing the system functionality) and
softgoal solutions (variants) affecting them. This kind
of combination will create a complex model. To reduce
this complexity, they use aspect orientation to improve
modularity. Thus, goal and softgoal graphs are
maintained separately. In fact, they consider only
softgoals as being aspects. Moreover, it is necessary to
handle the complex interrelationships between goal and
softgoal graphs that appear to analyze how softgoals
solutions affect each part of the system (represented by
tasks) and, therefore, producing a requirements model
with variability. This reduction of relationships
complexity is achieved by using labeling mechanism
which attaches what softgoals solutions affect each task
in the goal model. This approach considers variant as
being alternative operationalizations of softgoals. We
consider variant as alternative operationalizations of
goals as well as additional functionalities (tasks), all of
them modularized into aspects. It makes easier the
configuration of new products by adding a set of
variants to the system core assets through aspects
weaving. Although our approach can also consider
softgoals (NFRs) as being variants, we could not
illustrate them in this paper because we have created an
aspectual i* model from a feature model and the latter
does not explicitly capture NFRs,

Most approaches define variability in terms of
varying characteristics of the system-to-be, and not in

476

terms of the causes of these variations, i.e. the varying
characteristics of the problem, the stakeholders and
their needs. In [13], the authors propose a variability-
intensive process for decomposing and analyzing goals.
A key concept in this approach is the variability
concerns, that is, types of questions whose alternative
answers result in alternative refinements of the original
goal. The collection of all concerns relevant to a goal is
the variability frame evoked by the goal. Frames of
variability concerns can be constructed from past
projects, particularly artifacts of early elicitation efforts
(e.g. interview transcripts, reports etc) and used in a
concern-driven decomposition process. This process
aims at attaining completeness in the variability
acquisition results and allows reasoning about
alternatives while taking into account the circumstances
that hold in the context of attaining a goal. They
capture variability in the early requirements phase
before variation points of the system-to-be are defined.
However, they are not concerned with the reuse of core
assets or the easy configuration of specific products
from domain engineering models. In fact, producing
domain engineering models using aspect orientation
makes it easier creating configuration models to be
used in application engineering and improves the reuse
of core assets.

6. Conclusions and Future Work
Our purpose in this paper was to show that the

aspectual i* can be used to represent variability in
domain and application engineering of SPL. In fact, we
argue that the selection of specific features for an
individual product and their composition with the core
assets of SPL becomes facilitated due to the use of
aspect orientation principles. Moreover, to enrich the
variability captured by aspectual i*, we can combine it
with approaches which elicit variability earlier in SPL
development lifecycle, i.e., in the level of stakeholders’
goals (e.g. [13]). In fact, variability in the stakeholders’
goals will imply in variability in domain engineering.
Also, capturing variability in aspectual i* can facilitate
the interrelationships among several kinds of
requirements (e.g., organizational, functional and non-
functional) in the same model. This makes it easier
answering why a specific feature configuration is
required, and selecting among alternatives to fulfill
customer requirements.

Future work includes investigating the integration of
aspectual i* with the approach presented in [13].
Performing real case studies is also required to evaluate
the widespread of the mapping heuristics. We also
intend to investigate how features selected for a
specific application and specified using the aspectual i*
could be used to derive an aspect-oriented architectural

design. Currently we are focusing on the improvement
of models scalability by proposing structuring
mechanisms such as views. The mapping heuristics
cannot be performed automatically, since the mapping
from feature models to aspectual i* models is not
straightforward and some rationale is required from the
analyst to perform this task.

References
[1] F. Alencar, et al. Integration of Aspects with i* Models,

Agent-Oriented Information Systems IV, LNCS, Vol. 4898,
Springer-Verlag, 2008, pp. 183-201.

[2] Aspect-Oriented Software Development (AOSD).
Available at: http://www.aosd.net/. Last access in 01/08.

[3] S. Bühne, et al. Why is it not Sufficient to Model
Requirements Variability with Feature Models?. Ws on
Automotive Requirements Eng. IEEE Press, Japan. 2004

[4] J. Castro, et al. Towards Requirements-Driven
Information Systems Engineering: The Tropos Project.
Information Systems Journal, 27(6), 2002, pp. 365-389.

[5] P. Clements, et al. Software Product Lines: Practices and
Patterns, 1st ed. Boston, USA: Addison-Wesley. 2002.

[6] K. Czarnecki, et al. Staged configuration through
specialization and multilevel configuration of feature
models. Software Process: Improvement and Practice, vol.
10, 2005, pp. 143-169.

[7] K. Czarnecki, et al. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. 4th
Generative Programming and Component Engineering,
Estonia, Springer, 2005, pp. 422-437.

[8] B. González-Baixauli, et al. Visual Variability Analysis
with Goal Models. 12th IEEE Requirements Engineering
(RE’04), IEEE Press, 2004.

[9] B. González-Baixauli, et al. Using Goal-Models to
Analyze Variability. 1st Ws on Variability Modelling of
Software-Intensive Systems, Ireland, 2007, pp. 101-108.

[10] I. Groher and M. Völter. Expressing Feature-Based
Variability in Structural Models. 10th Ws on Managing
Variability for SPL at SPLC’07, Kyoto, Japan, 2007.

[11] G. Halmans and K. Pohl. Communicating the variability
of a software-product family to customers. Software and
System Modeling, 2(1), 2003, pp. 15–36.

[12] K. Kang, et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. CMU/SEI-90-TR-021, USA.

[13] S. Liaskos, et al. On Goal-based Variability Acquisition
and Analysis. 14th IEEE Requirements Engineering
(RE’06), USA, 2006, pp. 76-85.

[14] A. Moreira, et al. Modeling Volatile Concerns as
Aspects. 18th Conf. on Advanced Information Systems
Engineering, LNCS, 4001, Springer, 2006, pp. 544-558.

[15] J. Mylopoulos, et al. Exploring Alternatives during
Requirements Analysis. IEEE Software, 18(1), 2001, pp.
92-96.

[16] K. Pohl, et al. Software Product Line Engineering:
Foundations, Principles, and Techniques, Springer, 2005.

[17] E. Yu. Towards modelling and reasoning support for
early-phase requirements engineering. 3rd IEEE
Requirements Engineering (RE’97), USA, 1997.

477

REPRESENTING TEXTUAL REQUIREMENTS AS
GRAPHICAL NATURAL LANGUAGE FOR UML DIAGRAM GENERATION

Magda G. Ilieva
Dept. of Computer Science and Software Engineering

Concordia University, Montreal, Canada
magda AT cse.concordia.ca

Harold Boley
Institute for Information Technology

National Research Council Canada, Fredericton, NB
harold.boley AT nrc.gc.ca

ABSTRACT
Since the establishment of the Unified Modeling Language
(UML) as a standard graphical notation for representing knowl-
edge, new ideas have emerged about tools that can automatically
extract knowledge from text and represent it with UML diagrams.
As the targeted representation of knowledge is in a graphical nota-
tion, we propose to also represent Natural Language (NL) and the
knowledge it carries in a common graphical form, and then trans-
late this Graphical NL (GNL) into another graphical form (UML).

KEY WORDS
Knowledge representation, Knowledge reformulation, NLP, Se-
mantic Networks, UML, SE modelling

1. INTRODUCTION
Knowledge can be represented in variety of forms. In Soft-
ware Engineering (SE), for example, perhaps the most
common way of representing knowledge is with diagrams.
This way of representation fits the understanding of a wide
range of users. Graphical representation is done with self-
explanatory shapes, it is semi-formal, and is suitable for
subsequent formal processing into program code. This type
of knowledge representation is easy to understand and
widespread in information technology.
Quite often knowledge is extracted from text. Texts are
written in Natural Language (NL), which is the universal
method for representing knowledge. As the targeted model
of knowledge extracted from text employs a graphical lan-
guage, UML for example [12], why not also represent the
source text itself graphically? We can then match the two
graph models – UML and Graphical NL (GNL) [14] – and
discover analogies as well as simplify translation. This arti-
cle is organized as follows. After a review of related work,
we explain the main principles of Graphical NL. Then, the
use of GNL is demonstrated with a study case. In the fourth
part analogies are presented between the two ways of
graphical representation of knowledge – GNL and UML.
These analogies are used for deriving rules for the auto-
matic translation of textual user requirements into SE graph
models. We conclude with an evaluation and comparison of
the proposed GNL and other graphical representations for
NL and knowledge.

2. RELATED WORK
The importance of automatic translation of software User
Requirements (URs) from text to SE diagrams is evident
from the continuing emergence of new theories and appli-
cations in this domain. In brief, the purpose of those appli-
cations is to automate user requirements analysis and to
speed up the phase of software design.

Mainly, two types of expertise have to be united in order to
develop technology for translating textual URs into SE dia-
grams: linguistic engineering and software engineering.
Often, those two types of competence are applied in order
to represent or reformulate knowledge during several
stages. Reformulation consists of distinguishing and re-
structuring the initial natural language represented knowl-
edge of humans in order to obtain formal language
represented knowledge for computers. The first phase is
Language Modeling (LM), which manages linguistic ob-
jects (texts, sentences, words, etc.) and their relations. The
second phase, Knowledge Modeling (KM), defines con-
cepts and relations, which are important for problem solv-
ing. Subsequent reformulation of knowledge, Intermediate
Knowledge Modeling (IKM), is needed in order to obtain a
form appropriate for mapping into a final SE model. Draw-
ing those phases together (Fig1),we can use them as a
frame for reviewing existing projects.

Fig1. Conceptual schema summarizing approaches

For example, in [7] LM is syntax patterns of restricted NL;
KM consists of eight conceptual graphical patterns pro-
posed for representing linguistic patterns extracted from
text. Object Model (OM) and Behavior Model (BM), de-
signed to capture the static and dynamic nature of require-
ments, serve as IKM (Intermediate Knowledge Model)
from which the target OO diagram is derived. In a similar
way, in [5], LM is restricted NL with particular syntax pat-
terns; KM represents the types of data, operations over
them and relations between them; for IKM a tree data struc-
ture is proposed, having three types of nodes: data, func-
tionality and context. The authors in [6] consider KM as
three types of graphs representing three types of knowledge
for activity (emitted, absorbed and internal) extracted from
restricted NL, namely, use case scenario specifications.
Another example can be found in [4], where the few syntax
constructs (LM) derived from the controlled language are
grouped into relations (KM) that are subsequently repre-
sented as a conceptual lattice – an abstraction of a use case
diagram. All of the above cited approaches obtain only one
final graph model.
Other researchers focus on processing unrestricted NL. An
example can be found in [1], where NL is modeled with a
functional grammar, KM is presented as a Conceptual Pro-
totyping Language, and two groups of graphs (IKM) are
obtained – one for static knowledge and one for dynamic
knowledge.

478

Another example can be found in [2, 3] where Case Gram-
mar serves as LM while KM is presented as General Con-
ceptual Model. Two IKMs are used for designing two
target SE graph models: conceptual graphs - for obtaining
activity diagrams and semantic networks - for supporting
OO class diagrams.
A main point of correspondence between all theories is that
they treat KM separately from LM. This separation limits
the application of theories: they process specific types of
knowledge applied to specific texts and receive one final
graph model. Our approach differs here by offering a
common graphical representation simultaneously of NL
and the knowledge (both general and domain specific) in-
cluded in it. After building the diagram of the text, we
compare it with the diagram of the target SE graph model
built by a human expert. Based on the discovered analogies
between the two diagrams, we then define rules for transla-
tion of one graph into the other. This approach will make
our methodology applicable to various texts, diverse
knowledge and different target SE models. Our technology
has fewer processing phases, which can increase its effi-
ciency.

3. GRAPHICAL REPRESENTATION OF NL
Table structuring of an unrestricted NL: The graph rep-
resentation of both language and knowledge in one unit is
based on the graphical representation of relations between
concepts. In order to represent text graphically we structure
unrestricted NL into a table representation (TR). TR is de-
scribed in [8,9], but for convenience we are going to dis-
cuss here one brief example from a case study: “In a road
traffic pricing system, drivers of authorized vehicles are
charged at toll gates automatically. The gates are placed at
special lanes called green lines. A driver has to install a
device (a gizmo) in his/her vehicle.”
Structuring the text into a table is nothing but arranging it
into three main columns – Su(bject), Pr(edicate) and
Ob(ject), as also used in RDF. We obtain information for
syntax structures and attached phrases when we process the
text with one of the available POS taggers/chunkers [17].
Here is the outcome we got from the cited tagger:
1) In/IN ([a/DT road/NN traffic/NN]) pricing/VBG ([system/NN
]),/, ([drivers/NNS]) of/IN ([authorized/JJ vehicle/NN]) <:
are/VBP charged/VBN :>at/IN ([tool/NN gates/NNS]) auto-
matically/RB./.
2) ([The/DT gates/NNS])<:are/VBP placed/VBN:>at/IN ([spe-
cial/JJ lanes/NNS])<: called/VBD :>([green/JJ lines/NNS])./.
3) ([A/DT driver/NN])<: has/VBZ to/TO install/VB :>([a/DT
device/NN]) (/(a/FW gizmo/FW)/) in/IN his/PRP$ //CC ([
her/PRP$ vehicle/NN])./.
Tags for the syntax category of words, attached phrases and
sets of rules are used in order to arrange the text into TR
(shown in Tab 1). Su and Ob columns are noun phrases, Pr
is a verb phrase.
Looking at TR, we can outline the following advantages:
i) TR is convenient for automatic processing: a) representa-
tion in another semi-formal notation, for example XML,
and then, e.g., in SVG; b) fast access for storing and re-
trieving information; c) unlimited, expandable space with

new rows for storing extra text and new columns for storing
diverse syntactic and semantic information required for
automatic text processing. We thus use TR as a knowledge
base supporting text analysis.

Tab.1. Structuring text into a table
ii) The roles of phrases in sentences and relations between
them are easy to explore. At the top-level of text structures
we have a sequence of predicative relations.
iii) The relations in the next structural level are clearly dis-
tinguished – in each of the three components (Su, Pr, Ob).
These relations can be summarized as: prepositional, noun-
noun(s) modifier, adjective-noun modifier, verb-adverb.
iv) TR can be used as verification for the correctness of the
tagging..
Basic building blocks of GNL: Table structuring helps us
to reveal that NL can be represented graphically as ordered
triplets (concept1 relation concept2). In order to define
such a triplet we have to define its members:
Concepts are noun phrases which can be simple (consist of
one noun) or complex (main noun with modifiers – adjec-
tive(s) or noun(s)). For example, sensor is a simple concept
and toll gate sensor a complex one. Complex concepts con-
sist of more than one noun, connected with a relation (im-
plicit has_a). The interpretation of “toll gate sensor” is:
toll has a gate which has a sensor.
Relation can be: predicative, prepositional, is_a, has_a.
. Predicative relation is defined as two concepts connected
with a verb, for example: A driver installs a device;
. Prepositional relation is defined as two concepts con-
nected with preposition. For example, gizmo in vehicle;
. Attributive (“noun is adjective” or “adjective noun”). For
example, ‘lane is green’ or ‘green lane’;
. Compositional relation could, in turn, fall into one of the
following types:
 - Noun-noun modifiers (toll gate sensor);
 - Key-word/Enumerative structure (types of tool gate:
single, entry, exit); (services: deposit, withdraw, transfer,
get balance).
 - Possessive (bank’s client);
 In summary, all relations can be represented with a triplet,
i.e. through Su, R, Ob. In a predicative relation R is a verb;
in a prepositional relation R is a preposition; in an attribu-
tive relation R is equal to is a; in a compositional relation R
is one of the following: has a, colon (:), key-words (types
of, kind of, consist of, include, …).
Besides members, a relation has a direction.
Direction signifies where the relation points. Predicative
relations can have two directions: straight – from Su to Ob,
which is represented through active voice, and reverse –
from Ob to Su, represented through passive voice. In GNL

PrSe
sub
se

Pre
conj

Su
verb adverb

Ob Post
conj

1 In a road traffic
pricing system ,1

2 drivers of autho-
rized vehicles

are
charged

auto-
matically

at toll gates
.

1 The gates are placed at special lanes 2 2 called green lines .

3 1 A driver has to
install

 a device (a gizmo)
in his/her vehicle .

479

we represent a predicative relation through its straight di-
rection, i.e. when we turn passive voice into active. The
direction of a prepositional relation, too, does not match the
order in which it is encountered in the prepositional phrase,
which is from left to right, word after word. For example,
“A to B” and “A from B” are two different directions. Or,
the phrase “from A to B via C”, does not mean to place
them in order A,B,C but A,C,B. The attributive relations
also have direction – for example, “green lanes” and “lanes
are green” are the same relation represented with reversed
directions. Opposite direction does not change the meaning
of such relations, but it can change the importance of mem-
bers when changing their positions. Normally, the most
important member comes in the first position and becomes
the head of the relation. This fact is used in some heuristics
to discover empty positions in triplets (discussed in [14]).
During the process of restructuring the text into triplets
some of the positions within a triplet may stay empty.
Empty positions mean that their content is implicitly known
from the context, or it is not important at this moment, or
the sentence is not syntactically correct. For example, the
gate is placed at a special lane, after changing the verb into
active voice verb (straight direction), means that (Someone)
(place) (the gate at a special lane). The position of Su
(Someone) is left empty. It can remain empty until the ana-
lyst fills it or until we apply heuristics for discovering and
filling it.
Graphical glue among triplets: In the previous section we
discussed the decomposition of text into basic triplets.
Their detailed graphical representation can be seen in [14].
In brief, a concept (noun) is represented as a solid oval; an
attribute (adjective), as a dashed oval; a predicate, as a di-
rected solid arc which connects related concepts; and a
preposition, as a directed dashed arc which connects related
concepts.
Now, we will explain how to graphically synthesize the
diagram of an entire text from these basic triplets. In order
to form a text representation, triplets are joined upon the
relations between them. Relations are categorized upon the
reason/result relationship between concepts/triplets. Tab 2
summarizes and gives examples of the different categories:

Tab 2. Examples of relation types between triplets
The graph of a simple predicative relation, i.e. the ordered
triplet Su, Pr, Ob, is represented as in Tab 2a). In Tab. 2b) a
complex implicative relation between two relations is
shown, representing the following text: If a vehicle passes
through a green line, the system turns on a green light.
Two simple predicative relations are connected into one

complex, implicative relation via a directed arc connecting
the predicative arcs of the simple sentences. At the start of
the connecting arc there is a small diamond, which indi-
cates the condition of an implication. Tab. 2c) shows an
example (taken from [11]) of a simple (eats) relation at the
end of a complex epistemic (believes) relation, which itself
is at the end of another complex epistemic (thinks) relation:
Sue thinks that Bob believes that the dog eats a bone. Three
different relations are aggregated with a relative pronoun
(that), which defines the direction and connections between
them: Sue thinks � Bob believes � the dog eats a bone.
Tab. 2d) shows an example of a resultant relation (framed
as a box): Sensor reads gizmo. Read info is stored by the
system and used to debit account. Both sentences have to
be aggregated because the concept “read info” in the sec-
ond sentence is the result of the activity “read” from the
previous sentence. In the second sentence we have three
simple predicative relations (store, use and debit) which
form a complex sentence. We represent them as connected
relations.
This was a summary of the principles which stand at the
basis of graphic representation of text. The most important
part of our methodology is to restructure the text in the
form of basic triplets – relations, which would be subse-
quently represented in a unified graphic manner. In order to
structure the text as basic triples we use technologies such
as POS taggers, parsers, and chunkers. We write the basic
building blocks (triplets: Su, Pr, Ob) into a table representa-
tion (TR), which helps us in further automated processing:
i) turning the passive voice into active; ii) defining the heu-
ristics and algorithms for filling out the empty positions of
the triplets; iii) making it easier to resolve an anaphora and
ellipsis. In [8,9] we described the stages of text analysis for
the tabular representation of text. The Graphical Natural
Language with which the text is made into a Semantic
Network (SN) is described in [14]. Different aspects and
applications of these TRs and SNs are described in [15].

4. CASE STUDY ON MODEL DISCOVERY
The objective of graphical NL is to represent concepts in a
compact object-centered manner, i.e. to attach to each con-
cept all relations in which it participates. This way we ob-
tain a structured diagram of an entire text which shows the
exact place and role of each concept, group of concepts,
and connection between them. Fig. 2 illustrates a graphical
representation of short text taken from [13]. Let us examine
part of the diagram in order to explain how to read graphi-
cal symbols. We focus our attention on ‘vehicle’.
Vehicle is a concept (noun) and as such it is represented
inside an oval. Vehicle has two attributes – authorized and
non-authorized (each attribute is represented inside a
dashed oval). Vehicle participates in two predicative rela-
tions (drawn as solid lines) and three prepositional relations
(dashed lines). The predicative relation that starts from non-
authorized vehicle is labeled pass. It directs activity to-
wards green lane and this activity is conditional (inside a
diamond). If the condition is met, the implicative arrow that
goes out of the diamond leads to one complex relation con-
sisting of two simple relations connected conjunctively

Concept-concept Relation - Relation

Concept - Relation Relation - Concept

 c)

480

(double circle): System turns on yellow light and camera
takes a photo. Photo has a ‘pin’ with a number inside,
which is compressed information about the photo (listed in
a legend) and explains what photo’s role and features are.
The graph which is obtained after processing the text has a
lot of similarities with UML models. In order to show these
similarities, we observe a part of the graphically repre-
sented text.

Fig.2. Graphical representation of text – Semantic Network

Domain model discovery: By a slight rearrangement of
the shapes in a Semantic Network (SN) and ignoring the
predicative relations, we notice that we can directly obtain
a domain model (DM) from our GNL, as shown in Fig.3.
By analysis of the linguistic structure and DM structures,
we come to defining the following rules for translation of
SN into DM. Since DM is a static model and represents a
hierarchical structuring of concepts, the following language
structures are important for its generation: noun-noun at-
tachment; adjective-noun attachment; prepositional attach-
ment; key-word attachment. We use the term ‘attachment’
(rather than a phrase), to express the analogical relations
that exist in NL and DM. We are interested in the static
prepositions within prepositional attachments – the ones
expressing place and possession. Key-word attachments are
important for their representation of structural relations. For
example: consist of, involve, type of, part of, has a, etc.

Fig.3. Mapping Semantic Network to Domain Model

Having defined which linguistic structures we have to
translate into DM, we still have the knowledge engineering
effort of the translation: extracting certain linguistic struc-
tures from the text, representing them in the nested format

(see formula 4.1), defining operations over nested struc-
tures, simplifying, regrouping, and visualizing. The tech-
nology is described in detail in [16].
Object oriented (OO) model discovery: The concepts in
the target model have properties and behavior. The first is a
static characteristic while the second is dynamic. By ana-
lyzing our SN we notice that, apart from the structural rela-
tions (static), the nodes also have communicative relations
(they ‘send’ and ‘accept’ predicative arcs). According to
the number and type of predicative relations in which the
different nodes of SN enter, they can be characterized as
active and passive. The active nodes are candidates for ob-
jects in the OO model. By comparing in this way the pecu-
liarities of the two graphic models – SN and OO diagrams,
shown in Fig.4, we arrive at defining heuristics and rules
for the translation of SN into OO diagrams. In general: (i)
The domain model can serve as a structural basis for orga-
nizing the OO model. (ii) The nodes that are distinguished
with attribute(s) / adjective(s) are candidates for parent
nodes with instances. For example, instances of vehicle are
authorized vehicle and non-authorized vehicle.

Fig.4. Mapping Semantic Network to Object Oriented Model

 (iii) All predicative arcs which come out of “object nodes”
are represented as methods. For example, display and turn
on come from system and are represented as system meth-
ods; (iv) Terminal nodes – those that do not send predica-
tive arcs – are regrouped as part of methods or data types.
For example, amount, photo, green light, yellow light, are
attached to the methods and represented as: displyAmount,
takePhoto, turnLightOn. (v) Simplifying and regrouping,
conceived for DM [16], can be applied to OOM. For exam-
ple, two methods ‘turn on green light’ and ‘turn on yellow
light can be represented as one method with an argument
thus:
turnOnLight (lightType (green, yellow)). (4.1)
We regroup the two adjectives of light into one abstract
group, namely lightType; (v) the common methods of a
node’s instances are lifted to the parent node. For example,
passLane is a method of authorized as well as of non-
authorized vehicle and that’s why we lift this method from
instances to the parent node Vehicle. The same lifting tech-
nique is applicable for properties. The OO model is de-
scribed in detail in [8].
Use Case Path (UCP) model discovery: Another type of
model, which is important for the representation of the dy-
namics of a system, is derived from tracking different ac-
tivities. The SN gives us a basis to arrange groups of
concepts, as working nodes in which different actions are
being executed. In our example from Fig.2 such structures
of concepts (after their spatial arrangement guided by the
prepositions for place with which they are connected) are as

481

shown in Fig.5: vehicle has driver and gizmo; green lane in
which toll gate and sensor are placed; RTP System. If we
write down the executable activities in the so-defined
nodes, and we connect them with directed arcs in the order
in which we read them in the text, we will obtain the dia-
gram in Fig.5. In order to succeed in building this diagram,
we change the point of view by considering triplets of the
form ‘actor-action-result’. We accept the following basic
rule: the result of an activity is transferred, only if the
working node is being changed, no matter if there is a re-
cipient of the activity like it is in a UML sequence message
chart. Based on this rule, no signal will go to gizmo after
install gizmo or activate gizmo. Driver does not communi-
cate with the other nodes. The type of vehicle is important
for System to switch to green or yellow light and therefore
verification of vehicle type is performed in the System node.
The connection between vehicle and system is clear from
the SN, while the connection between vehicle and sensor
(depicted with a dashed line) has to be determined by the
analyst.
The UCP model has no precise analog among the UML
diagrams, but it is natural and stays close to the NL descrip-
tion of activities, hence can be used as an intermediary be-
tween NL and other UML diagrams (further explained in
the article). The algorithm and a detailed description for
processing this kind of diagram can be found in [15].

Fig.5. Use Case Path model

Hybrid Activity Diagram (HAD): This diagram can be
obtained from UCP if we rearrange the working nodes as
‘swimming lanes’. We inscribe the activities that are being
executed in a swimming lane/working node in the same
sequence in which we read them in the text. A message
arrow connects swimming lanes in places where the result
of the activity is being transferred. Following this logic we
obtain the graph in Fig. 6a. Since our activity diagrams
combine characteristics from both sequence message charts
(swimming lanes and messages between them) and activity
diagrams (conditional diamonds and activities), we call
them Hybrid Activity Diagrams. From an HAD we can
obtain sequence message charts by unrolling every path
separately, as shown in Fig.6b).
Use Case (UC) model: In order to build this type of dia-
gram, we are guided by the UML understanding of use
cases as interactions only between the user and the system.
The relations that we need from the text for this type of
diagram are: i) only those in which the user is a Su, and the

Fig.6. From an HAD to Sequence Message Charts

system is an Ob; ii) the system is a Su and continues an ac-
tion initiated by the user. These types of relations, extracted
from the graph of the text in Fig.2 are represented in Fig.7.
The actions from case i) are connected with user, while
those from case ii) are in the backend, and are represented
as <extend> or <include>, depending on whether they are
executed under specific condition, or not. For example, we
observe in Fig.2., that turn on green/yellow light are activi-
ties placed after the diamond shape, i.e. they are condi-
tional. In this case, activities will be included in the UC
Diagram (UCD) as <extend> of the activity ‘pass green
lane’. The activities of the system, with which a response
is given to ‘Sensor read gizmo’, are not included into an
UCD diagram, because there is no user participation, and
thus they are not a part of the Use Case.

Fig.7. Use Case diagram

5. FINAL REMARKS
Summary: The idea of representing NL graphically is not
new. Diverse graphical models keep appearing from both
the fields of computer linguistics and SE modeling. While
linguists tend to concentrate their efforts on the graphic
representation of natural languages and aim to create more
complete and precise models of languages, engineers are
more interested in the domain knowledge, its extraction and
representation. In order to automatically extract knowledge
from text, we need a common model, which would repre-
sent both the text and the knowledge it contains. In order to
make the model of the language (text) more universal and
applicable to a wide range of problems, it has to represent
both general and domain knowledge. While linguists offer
models which mostly represent the general knowledge,
engineers often prefer to create their own models of lan-
guage, where they implicitly include specific domain
knowledge. For example, the eight graphic templates pro-
posed in [7] aim to summarize those characteristics of the
NL model that are appropriate for its automatic mapping
into an OO model. These templates are not likely to be ap-
propriate for texts in which we cannot find these special
language constructs, or for other target SE models. The

482

model in [5] is also obtained after the processing of special
texts where the focus is on special linguistic templates, rep-
resenting data structures and various processes applied to
them.
The right balance between linguistic, general and problem
domain knowledge in a single common representation has
still not been discovered.
The current paper suggests one possible solution. We pro-
pose a unified model of natural language and the knowl-
edge it carries. Working upward from the definition of
natural language building blocks as relations between con-
cepts, which are also building blocks of the knowledge rep-
resented by UML diagrams, we achieved a correlation
between the two graphic representations. The graphic rep-
resentation of text through Semantic Networks has served
us in discovering patterns, analogical to the UML represen-
tation. This analogy helps us to reveal heuristics and rules
with which the automatic generation of UML diagrams can
be considered as a process of translating one graphic lan-
guage into another.
Advantages of graphical formalisms: GNL was designed
for SE purposes, namely, for creating executable models of
knowledge described in natural language. GNL tries to cap-
ture unrestricted NL and to represent language and knowl-
edge in one common model. That is what differentiates our
methodology from other ones that separate the two models.
The disadvantage of this separation is that if language pat-
terns do not correspond to knowledge patterns, the theory
loses validity.
In Fig.8 we present the same example in the two notations -
Conceptual Graph formalism [10] and GNL. This brief vis-
ual comparison leads us to the following observations:
1) GNL is more compact, uses less space, and allows pre-
senting larger volumes of information for visual inspection.

Fig.8. Two representations of the same example - comparison

2) In GNL, concepts and relations which form one simple
sentence are free to participate in other relations too. This
makes the concepts dynamic, and one concept can partici-
pate in many relations. 3) As a consequence of the dyna-
mism of the concepts in GNL, we can build a diagram of an
entire text. 4) The unambiguousness of the relations in
GNL is supported by their strict indication with labels and
with the use of different graphic symbols according to their
semantic interpretation.
GNL is appropriate for the automatic drawing of text. An
important supporting phase of its processing is the tabular

representation (TR) of text. In order to construct a TR we
use technologies of NL processing – POS taggers, parsers,
chunkers. Then, for proceeding from TR to graphical and
visual representations (e.g., SVG), it is possible to use
scripting languages (e.g., PHP) and XML technologies.
Future work: We are going to develop GNL in two direc-
tions: 1) Theoretical research which comprises the follow-
ing: i) New extension to the knowledge base: examples,
case studies, and comparison with examples from similar
theories. ii) Add to, update and improve the collection of
rules and heuristics. iii) Explore various methods and logi-
cal languages for the formal representation of SN. 2) We
will continue with the development of a software applica-
tion which comprises the following projects: i) Architecture
of an integrated environment for automatic analysis and
formal representation of textual software requirements; ii)
Structured representation of the text in a tabular format; iii)
XML format of the TR; iv) Visualization.

REFERENCES
1. Burg, J.F.M. and van de Riet, R.P.: Analyzing Informal Re-

quirements Specifications: A First Step towards Conceptual
Modeling, Proc.of the 2nd Int. Workshop on Applications of
Natural Language to Information Systems, Amsterdam, 1996.

2. Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.; Winkler
Ch.: The NIBA workflow: From textual requirements specifi-
cations to UML-schemata In: ICSSEA, Paris, 2002.

3. Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements:
From Natural Language to Conceptual Schemata, In Proc. of
the 6th Int. Conf. SEA, Cambridge, USA, 2002.

4. D. Richards, K. Böttger, O. Aguilera: A Controlled Language
to Assist Conversion of Use Case Descriptions into Concept
Lattices. In 15th Australian Joint Conference on AI, 2002

5. Lee, B.-S., Bryant, B.R.: Automated conversion from require-
ments documentation to an object-oriented formal specification
language. In Proceedings of SAC(ACM), Madrid, Spain, 2002.

6. Mencl, V.: Deriving Behavior Specifications from Textual Use
Cases. In Proc of ‘Workshop Intelligent Technologies for Soft-
ware Engineering (WITSE, part of ASE), Linz, Austria, 2004.

7. Moreno A.: Object-Oriented Analysis from Textual Specifica-
tions", In Proc. of 9th International Conference on Software
Engineering and Knowledge Engineering (SEKE), 1997.

8. Ilieva M., Ormandjieva O.: Automatic Transition of Natural
Language Software Requirements Specification into Formal
Representation, NLDB 2005.

9. M. G. Ilieva, O. Ormandjieva: Models Derived from Automati-
cally Analyzed Textual User Requirements. Proc. of SERA’06

10. John F. Sowa: Knowledge Representation: Logical, Philoso-
phical, and Computational Foundations, Brooks Cole Publish-
ing Co., Pacific Grove, CA, ©2000

11. John Sowa: SemNet http://www.jfsowa.com/pubs/semnet.htm
12. Unified Modeling Language (UML) 2.0 http://www.uml.org/
13. J. Araújo, A. Moreira, I. Brito, A. Rashid. Aspect-Oriented

Requirements with UML. Workshop on "Aspect-oriented
Modeling with UML", UML 2002, Dresden, Germany

14. Ilieva M.: Graphical Notation for Natural Language and
Knowledge Representation. In Proc. of 19th SEKE, 2007.

15. Ilieva M.: Use Case Paths Model Revealing Through Natural
Language Requirements Analysis, Proceedings of ICAI, 2007.

16. Ilieva M, Ormandjieva O.: NLP and FCA Technology for
Automatic Building of DM, Proceedings of SEA, 2007

17. Infogistics’ NLProcessor Interactive Demo: Tagging and Syn-
tax Chunking http://www.infogistics.com/posdemo.htm

483

A Dynamic Adjusting Method for Test Case Prioritization*

Bo Qu Changhai Nie Baowen Xu Xiaofang Zhang
School of Computer Science and Engineering

 Southeast University, Nanjing, China
{boqu, changhainie, bwxu, xfzhang}@seu.edu.cn

Abstract

Test case prioritization is an effective technique that
helps to increase the rate of fault detection or code
coverage in regression testing. In previous work, most
of the techniques address on finding a best order of test
cases to run. However, since the performance and
context of program under test are unknown before the
testing takes place, it is hard to build a best ordered
test suite in advance. To address this problem, we
propose a new dynamic adjusting method for test case
prioritization. Our method uses feedback to sort test
suit so that it can be gradually refined in regression
testing phase. Compared with other techniques, our
method has some merits in time complexity and
applicable scenarios. The case studies also show that
our new method is helpful in detecting more regression
faults under some circumstances.

Keywords: Regression testing; dynamic adjusting;
design information; test case prioritization;�

1. Introduction

Regression testing is a necessary but expensive
testing process as software evolves. To reduce the cost,
numerous techniques have been reported in the
literature on effective regression testing[1-11]. One
effective approach for regression testing, test case
prioritization, schedules test cases so that those with
the higher priorities, according to their potential
abilities to meeting some certain performance goals,
are executed earlier in the regression testing process
than lower priority test cases[2].

Most test case prioritization techniques focus on
sorting and reusing test cases based on their historical
performances[1,2,5,8]. To exhaust the use of the
feedback, we present a new method that involves the

�*This work was supported in part by the National Natural Science
Foundation of China (60425206, 60773104, 60633010), Excellent
Talent Foundation on Teaching and Research of Southeast
University, Doctor subject fund of education ministry
(20060286020), and Jiangsu Planned Projects for Postdoctoral
Research Funds (0601009B, 0701003B).

use of the run time information. We firstly initialize the
priorities of all test cases and an associated matrix
which describes the relationship between test cases.
Then we perform regression testing and consider
feedback to adjust the priorities of unused test cases
based on this matrix. The main contribution of our
work is that we proposed a new dynamic adjusting
method and its corresponding algorithm which has
some merits in time complexity and applicable
scenarios. We also perform a case study. The result
shows that the new method is helpful in detecting
faults in some circumstances.

2. Dynamic prioritization technique

2.1. General method

The definition of the test case prioritization problem
suggests that prioritization techniques aim at finding a
best prioritized test suite[8]. However, since the
performance and context of program under test may be
unknown before regression testing takes place, it is
hard to build a best ordered test suite in advance. As an
alternative method, we can initialize the test suite
before testing. And then, after a test case is selected to
run, we resort all unused test cases based on its
feedback. So the test suite will be gradually refined.

A key point to this dynamic adjusting method is to
find which test cases should be prioritized to higher or
lower place. Consider a piece of code P and its
modified version P’ showed as follow:

Suppose there are four test cases which cover two
set of execution paths, and t1 and t4 are designed to test
boundary values. According to their historical fault
detection numbers on P, the initial order of test cases is
t1> t3> t2> t4. When t1 is selected and run on P’, if we
set t4 to higher priority due to their same designing
goals, we could detect/locate the bug earlier.

Figure 1. Sample code and its modified version
with test cases

484

So we propose a dynamic adjusting method for test
case prioritization with following steps: (1) Find test
cases that have same or similar ability in detecting
faults; (2) Re-evaluate the unused test case based on
feedback; (3) Repeat step 2 until all test cases are
selected to run. Section 2.2 will address step 1, and
Section 2.3 will address step 2.

2.2. Similar relation and relation matrix

Test suite design information plays an important role
in the testing phase. In test suite design information,
testing objective of test case implicitly indicates the
desired result. So test cases with same testing objective
may reveal the same or similar regression faults. In
order to describe the potential affiliation between
different test cases which have the same testing
objective, we here define the similar relation.

Definition 2.1: Given a test suite T={t1, t2, …,tn},
test objectives R={r1, r2, …,rn}, for each t�T, let
f(t)�R denotes the test objective covered by t. If ti,
tj�T and f(ti)=f(tj), we say ti and tj have a similar
relation. This is written ti:tj.

Test cases with the same test objective may cover
different codes or units. Therefore, they may not be
redundant and should not be reduced. However, once a
test case detected a defect, it indicates that the same or
similar types of faults may exist elsewhere. So running
other test cases with the same test objective earlier
could be of benefit to detecting such unknown faults in
time. On the other hand, once a test case passed, it
enhances our confidences, so similar test cases could
be set to lower priorities.

Definition 2.2: The relation matrix MRS is defined
as a n�n matrix. This is written MRS=(ki,j) n�n, where
element ki,j=1 when ti:tj, otherwise, ki,j=0.

MRS is defined to facilitate the using of such
information between test cases. The algorithm of
constructing MRS could be enumerating each test case
and assigning the corresponding element value. Its
time complexity would be no more than O(n2).

The advantages of using MRS are: (1) it could be
easy to acquire information for constructing this matrix,
and it is applicable for white or black box testing; (2)
the cost of building MRS is low; (3) building and using
this matrix would not involve collecting extra source
related information, and it is independent from the size
of target program.

2.3. Dynamic adjusting algorithm(DA)

In our prioritization method, we assign each test case
a more flexible priority. During the regression testing
procedure, its priority would not be a fixed value any
more. Every value would be influenced by associated
run-time results of test cases. So the test suite keeps
evolving to adapt to the testing context gradually.
 According to the testing result, we should deal with
the failed or passed situation after one test case is
executed. Here we define a structure �s={s1, s2}
(s1,s2-0), where s1 denotes the adjusting range of
associated test case’s priority when test cases passed,
and s2 denotes that when test cases failed. The
dynamic adjusting algorithm is showed in Algorithm 1.

input T�: the selected test suite; R: the relation matrix MRS; �s: the range structure for test cases
output T��: the set of failed test cases

1. for each tm in T’
2. if tm failed then
3. T�� += tm
4. for i = m+2 to n //adjust rest test cases. Ignore tm+1.
5. range = Min(i-m-1, �s.s2) //set max adjusting range
6. if Rmi= 1 then //only adjust related test cases
7. for j = i-1 to i-range step -1 //escalate priority in range
8. if Rmj = true then //see if there is other related test case in range
9. j = j + 1
10. break //ensure the order of test cases in one subset
11. for k = i-1 to j step -1
12. Swap tk+1 and tk //escalate the priority of ti
13. else
14. for i = n-1 to m+1 step -1 //adjust rest test cases. Ignore tn.
15. range = Min(i-m-1, �s.s1) //set max adjusting range
16. if Rmi= 1 then //only adjust related test cases
17. for j = i+1 to i+range //de-escalate priority in range
18. if Rmj = true then //see if there is other related test case in range
19. j = j – 1
20. break //ensure the order of test cases in one subset
21. for k = i +1 to j
22. Swap tk+1 and tk //de-escalate the priority of ti
23. return T��

Algorithm 1. Algorithm for dynamic adjusting priorities

485

2.4. Algorithm analysis

Compared to existing algorithms, our dynamic
adjusting algorithm DA has some merits. For example,
its time complexity is independent from the size of
target program; it won’t affect the order of subset in
which test cases have the same testing objective.

Theorem 2.1: Time complexity of algorithm 1 is
independent from size of target program.

Proof: Suppose the number of test cases is n, the
size of program is m, the maximum adjusting range is s.
The enumerating and running action takes place n
times(line 2). Inside this loop, adjusting action takes
place n times(line 5 and 20). Every single adjusting
action would run 2s times, where s could be deemed as
a constant. So the time complexity is O(n2).

Lemma 2.1: Algorithm 1 would not change the order
of two test cases which have the similar relation.

Proof: Given test cases ti and tj, with i<j and ti:tj,
suppose test case tk is executed.

When k-i, ti has been executed, so the order of ti and
tj would be affected.

When k<i and tk passes. If MRS[k][i]=1, that is tk:ti,
since ti:tj, MRS[k][j]=1. Thus priorities of ti and tj are
kept. If MRS[k][i]=0, because ti:tj, MRS[k][j]=0. Thus
ti would be at most exchange to the place of tj-1. There
is still ti<tj after adjusting.

When k<i and tk fails. If MRS[k][i]=0, because ti:tj,
MRS[k][j]=0. Thus priorities of ti and tj are kept. If
MRS[k][i]=1, that is tk:ti, since ti:tj, MRS[k][j]=1. Thus
tj would be at most exchange to the place of ti+1. There
is still ti<tj after adjusting.

To sum up, algorithm would not change the order of
test cases ti and tj when ti:tj.

Theorem 2.2: Algorithm 1 would not affect the order
of subset in which test case have the same testing
objective.

Proof: For any T’={ti1, ti2, ti3… tin } where T’ is a
subset of T and its all elements have the same testing
objective. According to Lemma 3.1, for any test cases
tim and tin, algorithm won’t change the order. Thus,
algorithm would not affect the order of T’.

3. Case study

3.1. Description

We choose Microsoft PowerPoint1 to be our target
program. We firstly randomly replace one or more
bytes of normal PowerPoint (.ppt) documents, and then
open the malicious documents with target program. If
the document crashed or lead to a denied of service

1 “PowerPoint” is registered trademarks of Microsoft Corporation.

(DoS) of target programs, the test case is failed.
Otherwise, the test case is passed.

According to experience, we have six different types
of testing objectives, based on which we design and
generate malicious documents as test cases. For
example, if we want to detect null address reference,
we randomly select four continuing bytes from normal
document and set them to zero. Or if we want to detect
the buffer overflow faults, we replace continuing bytes,
often more than 255, to a null terminated string.

All test cases are generated and selected to execute
in the former version of the target program. And we
pick some of them which revealed faults in history to
reuse. In our case study, test cases were selected and
executed for 4 times. Each time, we use different �s
value. We assign that �s1={0, 0}, �s2={0, 2}, �s3={1,
0} and �s4={1, 2}, where different �s value represents
different typical adjusting method.

3.2. Results and analysis

After running all 1656 test cases, there are 357 test
cases failed, the rate of fault detection is about 21.65%.
Table 1 shows the details.

The time cost of executing all test cases is also
recorded. Table 2 shows the time cost when different
�s value is used.

According to Table 2, it is clear that when different
�s value is used, the time costs are nearly the same.
Compared with no adjusting takes place(�s1), the
dynamic adjusting strategy merely costs 3% more time
on average(1.98%, 2.82% and 4.98% for �s2, �s3 and
�s4 respectively). Since it is to wait program under test
to generate results that spends more time in most
testing situations, the extra cost brought by adjusting
procedure is very low, and this won’t obviously affect
the total time cost.

Figure 3 shows the test results when different values
of �s are used. As observed in this figure, the
performances of �s2, �s3 and �s4 are nearly the same,
while the performance of �s2 is lower than others. The
APFD value[7] for �s2, �s3 and �s4 are around 76%,
and the APFD value for �s1 is about 70%. So in this

Table 1. Failed and passed test cases
testing objectives failed passed Total
Null address (NA) 142 267 409
Illegal pointer (IP) 34 212 246
Buffer overflow (BO) 9 209 218
Control exception (CE) 70 201 271
Illegal offset (IO) 40 257 297
Other exception (OE) 62 153 215

Table 2. Time cost
�s �s1 �s2 �s3 �s4

Time(sec) 34310 34991 35277 36017

486

case, we can say the dynamic adjusting method(�s2,
�s3 and �s4) achieves about 8.6% higher APFD value
than that of no adjusting action performed(�s1).

In practice, regression testing often stop before all
test cases have been executed due to the budget. In
such situations, more failed test cases are helpful for
fault localization and correction. In such resource
constraint case, if only 50% test cases could be
executed, normal method(�s1) could detect about 70%
faults, while the dynamic adjusting method(�s2, �s3
and �s4) could detect about 83% faults, which is about
20% higher. If the testing goal is to detect 80%
regression faults, normal method(�s1) will spend about
21000 seconds. However, the dynamic adjusting
method(�s2, �s3 and �s4) would spend only 15000
seconds to achieve this goal.

4. Conclusion and future work

The definition of the test case prioritization problem
indicates that prioritization technique addresses on
finding a best permutations of test cases to execute.
Since the performance and context of program under
test are unknown before regression testing takes place,
it is hard to build a best ordered test suite in advance.
Instead, we present a new dynamic adjusting method
for test case prioritization based on test design
information. The main idea behind our method is to
gradually refine the test suite during the testing phase.

Though the theoretical analysis and the results of
case study are encouraging, there are still many
challenges ahead of us. First, the similar relation and
its associated matrix approximately describe the
potential relation of detecting regression faults between
test cases, while this potential relation may be much
more complex than what is depicted in a fixed matrix.
So, an improved method could be building the matrix
based upon test history and refining it during the
testing phase. Second, different subset of test cases
may correspond to different �s value. This value could
be given by experienced testers, or calculated in terms

of test history rather than be assigned to a fixed
number. Finally, we propose an algorithm that focuses
on the order of each test case. However, the order of
test cases is sometime represented by different
selective probabilities. In the future, we are going to
design new algorithms that adjust priorities in finer
granularity. Also, we will carry out experiment to
study if new algorithms would perform better.

References

[1] S. Elbaum, A. Malishevsky and G. Rothermel.
Prioritizing test cases for regression testing. In
Proceedings of the International Symposium on
Software Testing and Analysis, pages 102-112, August
2000.

[2] S. Elbaum, A. Malishevsky and G. Rothermel.
Incorporating varying test costs and fault severities into
test case prioritization. In Proceedings of the 23rd
International Conference on Software Engineering,
pages 329-338, May 2001.

[3] S. Elbaum, A. G. Malishevsky and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159–182,
February 2002.

[4] S. Elbaum, G. Rothermel, S. Kanduri and A. G.
Malishevsky. Selecting a cost-effective test case
prioritization technique. Software Quality Journal,
12(3):185-210, September 2004.

[5] J. M. Kim and A. Porter. A history-based test
prioritization technique for regression testing in resource
constrained environments. In Proceedings of the 24th
International Conference on Software Engineering,
pages 119-129, May 2002.

[6] Z. Li, M. Harman and R. M. Hierons. Search Algorithms
for Regression Test Case Prioritization. IEEE
Transactions on Software Engineering, 33(4):225-237,
April 2007.

[7] G. Rothermel, R. H. Untch, C. Y. Chu, Mary J. Harrold.
Test case prioritization: an empirical study. In
Proceedings of the International Conference on
Software Maintenance, September, 1999

[8] G. Rothermel, R. H. Untch, C. Y. Chu, M. J. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27(10):929-948,
October 2001.

[9] A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In Proceedings of the
International Symposium on Software Testing and
Analysis, pages 97-106, 2002.

[10] K. R. Walcott, M. L. Soffa, Gregory M. Kapfhammer
and Robert S. Roos. Time-aware test suite prioritization.
In Proceedings of the International Symposium on
Software Testing and Analysis, page 1-12, July 2006.

[11] W. E. Wong, J. R. Horgan, S. London and H. Agrawal.
A study of effective regression testing in practice. In
Proceedings of the 8th IEEE International Symposium
on Software Reliability Engineering, pages 264-274,
November 1997.

Figure 3. Test results

487

A Systematic Mapping Study on Non-Functional Search-Based Software Testing

Wasif Afzal, Richard Torkar and Robert Feldt
Blekinge Institute of Technology,

S-372 25 Ronneby, Sweden
{waf,rto,rfd}@bth.se

Abstract

Automated software test generation has been applied
across the spectrum of test case design methods; this in-
cludes white-box (structural), black-box (functional), grey-
box (combination of structural and functional) and non-
functional testing. In this paper, we undertake a systematic
mapping study to present a broad review of primary studies
on the application of search-based optimization techniques
to non-functional testing. The motivation is to identify the
evidence available on the topic and to identify gaps in the
application of search-based optimization techniques to dif-
ferent types of non-functional testing. The study is based
on a comprehensive set of 35 papers obtained after using
a multi-stage selection criteria and are published in work-
shops, conferences and journals in the time span 1996–
2007. We conclude that the search-based software testing
community needs to do more and broader studies on non-
functional search-based software testing (NFSBST) and the
results from our systematic map can help direct such efforts.

1. Introduction

Search-based software testing (SBST) research has at-

tracted much attention in recent years as part of a general

interest in search-based software engineering approaches

[27, 28]. The growing interest in SBST can be attributed to

the fact that there is a need for automatic generation of test

data, since it is well-known that exhaustive testing is infea-

sible and the fact that software test data generation is con-

sidered NP-hard [36]. All approaches to SBST are based on

satisfaction of a certain test adequacy criterion represented

by a fitness function [27, 36]. McMinn [36] has written

a survey on search-based software test generation, which

shows the application of search-based techniques for white-

box testing, black-box testing, grey-box testing and for the

verification of non-functional properties. The survey shows

that for non-functional testing, the search-based techniques

are applied for execution time testing of real-time systems.

Now, it is both important and interesting to know the extent

of application of search-based optimization techniques for

testing other non-functional properties. It is with this moti-

vation that the current study has emerged from our work to

gather, map and summarize primary studies about NFSBST

in an accurate, fair and partial manner [34]. It is essen-

tially a systematic mapping study to identify available evi-

dence on NFSBST. A systematic map provides an overview

of a research area to assess the quantity of evidence existing

on a topic of interest [34] (see e.g. Bailey’s et al. mapping

study [4]).

The remainder of this paper is organized as follows. Sec-

tion 2 describes our research protocol, including the search

strategy and study selection. In Section 3, we describe the

results. Sections 4 and 5 comprises of analysis and discus-

sion of results, while the paper is concluded in Section 6.

2. Identification of research

We defined the following research question inline with

the overall purpose of the study:

RQ: In which non-functional testing areas have search-

based techniques been applied and what are the different

metaheuristics used ?

A clear definition of population, intervention, outcomes

and experimental design helps identifying relevant primary

studies [34]. Our population is limited to the application

area of software testing. Our intervention includes appli-

cation of metaheuristic search techniques to test different

types of non-functional properties. The outcome of our

interest represents different types of non-functional testing

that use metaheuristic search techniques.

2.1. Generating a search strategy

We used the following search terms to find relevant pa-

pers:

488

• Population: testing, software testing, testing software,

test data generation, automated testing, automatic test-

ing.

• Intervention: evolutionary, heuristic, search-based,

metaheuristic, optimization, hill-climbing, simulated

annealing, tabu search, genetic algorithms, genetic

programming.

• Outcomes: non-functional, safety, robustness, stress,

security, usability, integrity, efficiency, reliability,

maintainability, testability, flexibility, reusability,

portability, interoperability, performance, availability,

scalability

We used Boolean OR to join alternate words and syn-

onyms and Boolean AND to join major terms for popula-

tion, intervention and outcome. The non-functional proper-

ties listed under outcomes are guided by five existing tax-

onomies, namely McCall software quality model, Boehm

software quality model [19], ISO/IEC 9126-1 [30], IEEE

Standard 830-1998 [29] and Donald G. Firesmith’s taxon-

omy [20]. The non-functional properties obtained from ex-

isting taxonomies are restricted to high-level external at-

tributes only for the sole purpose of guiding the search strat-

egy. The different non-functional testing areas that are dis-

cussed later in the paper cannot be mapped as it is with these

listed non-functional properties. Therefore, while quality

of service includes attributes such as availability and relia-

bility, we have retained the term quality of service in later

part of the paper (Subsection 4.2) to remain consistent with

the terms used by the original authors in their respective

papers. Similarly, one can argue execution time (Subsec-

tion 4.1) and buffer overflow (Subsection 4.3) to fit under

performance and security respectively, but we remain con-

sistent with using the common terms of execution time and

buffer overflow according to the authors’ usage.

The search was applied on digital libraries accessed

via IEEE Xplore, ACM Digital Library, Compendex and

ISI Web of Science. In addition, manual search was

performed on the following journals (J) and conference

proceedings (C): Real Time Systems Symposium (C),

Real Time Systems (J), Genetic and Evolutionary Com-

putation Conference—Search-based Software Engineering

Track (C),Software Testing, Verification and Reliability (J)

and Software Quality Journal (J). To have confidence in

the completeness of search, the results of the search were

matched against a core set of studies to compare that the

search found the entire core set.

To have a more representative set of studies, we also

scanned the reference lists of primary studies and contacted

researchers who authored most of the papers in a particu-

lar non-functional area. Only studies within the time span

1996–2007 were included. It is important to note that hav-

ing restricted the search within these years excluded stud-

ies by Schultz et al. [42, 43] (authored in year 1992 and

1995 respectively) which applies evolutionary algorithms

for robustness testing of autonomous vehicle controllers.

We therefore, do not include these two studies in the analy-

sis.

2.2. Study selection

Optimization techniques have been applied across dif-

ferent engineering and scientific disciplines. Moreover

within software testing, search techniques have been ap-

plied from planning to execution. Therefore, it is impera-

tive that we define comprehensive inclusion/exclusion cri-

teria. We excluded studies that do not relate to software

engineering/development, do not relate to software testing,

do not report application of optimization techniques, do

not report application of metaheuristics (metaheuristics in-

clude hill climbing, simulated annealing, tabu search, ant

colony methods, swarm intelligence and evolutionary meth-

ods [10]), describe search-based testing approaches which

are inherently structural (white-box), functional (black-box)

or grey-box (combination of structural and functional) (this

exclusion criterion is relaxed to include those studies where

a structural test criterion is used to test non-functional prop-

erties, e.g. [5]), are not related to the testing of the end prod-

uct e.g. [55], are related to test planning e.g. [16], make use

of model checking and formal methods e.g. [3, 17], report

performance of a particular metaheuristic instead of its ap-

plication to software testing e.g. [35], report on test case

prioritization e.g. [50], are used for prediction and estima-

tion of software properties e.g. [6, 44].

In the beginning, a single researcher excluded 37 refer-

ences out of a total of 404, primarily based on reading the

title and abstract. The remaining 367 references were sub-

jected to detailed exclusion criteria, which involved three

researchers. This resulted in 60 remaining papers, which

were further filtered out by reading full-text. A final figure

of 24 primary studies was reached after excluding similar

studies that were published in different venues. The 24 pri-

mary studies were complemented with 11 more papers by

scanning the reference lists of the primary studies and con-

tacting relevant authors.

3. Results

The results indicate that within non-functional testing,

the application of metaheuristic search techniques can be

classified under execution time, quality of service (QoS),

buffer overflow, usability, and safety.

Figure 1 shows the year-wise distribution of primary

studies within each non-functional property as well as the

frequency of application of different metaheuristics. The

489

Non-functional
property

Safety

Usability

Buffer
overflow

Quality of
service

Execution
time

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 GASA GE LGP HC,SA,
TS

GA,
PSO

TS,SA,
GA

SA,
HC

TS AC,
GA

GA,
SA

Year Range of metaheuristics

2,7,
21-23,37,
39-41,47,

51-54

11,
12

9,24,
25

45

5,
26

8381446

31,
33

1832

48

13,
15

14949

13-15,
38

51
37,39,
41,48,

52
40 23,

53
21

46

22

1,5

18

45

7

12

9,24,
32

26

47

31

11

25,
33

8

2,
54

GA = genetic algorithm
SA = simulated annealing
GE = grammatical evolution
LGP = linear genetic programming
PSO = particle swarm optimization
TS = tabu search
HC = hill climbing
AC = ant colony

Figure 1. Distribution of NFSBST research over range of applied metaheuristics and time period.

bubble at the intersection of axes contains the reference

number of papers. It is evident from the figure that ge-

netic algorithms are the most widely used metaheuristic

with applications in 21 papers across different types of non-

functional testing. In the left quadrant of Figure 1, each

bubble represents the reference numbers of primary stud-

ies within each non-functional area in respective years from

1996–2007.

4. Analysis

The focus of this section is to present a broad overview

of research within NFSBST, discussion of range of meta-

heuristic techniques used and satisfaction of problem ob-

jectives.

4.1. Execution time

The application of metaheuristic search techniques to

test real-time requirements in embedded computer systems

involves finding the best and worst case execution times

(BCET, WCET) to determine if timing constraints are ful-

filled. Our systematic map indicates that the papers mea-

suring BCET and WCET are by far the largest contribu-

tor in NFSBST research. The study by Briand et al. [7]

has differentiated the temporal testing research into two di-

rections. The one direction focuses on violation of timing

constraints due to input values and has attracted the bulk

of research. The other direction, which is the one taken

by Briand et al. [7], analyses task architectures and con-

sider seeding times of events triggering tasks and tasks’ syn-

chronization. This study does not considers tasks in isola-

tion. Both approaches to temporal verification, however, are

complementary. Another dimension of research into tempo-

ral testing using metaheuristic search techniques focuses on

properties of test objects inhibiting evolutionary testability

and formulation of complexity measures for predicting evo-

lutionary testability [21, 22].

Genetic algorithms have been used as the metaheuristic

in majority of studies (14 out of 15). The fitness functions

vary according to research dimensions described above,

which includes measurement of execution time of the test

object, coverage of code annotations inserted along shortest

and longest algorithmic execution paths and exponential fit-

ness function based on the difference between execution’s

deadline and execution’s actual completion.

4.2. Quality of Service (QoS)

Under the umbrella of service-oriented software engi-

neering, genetic algorithms have been used for quality of

service aware composition and violation of service level

agreements (SLAs) between the integrator and the end user.

The range of fitness functions used are based on the maxi-

mization of desired QoS attributes with a static or dynamic

penalty function and a combination of distance-based fit-

ness with a fitness guiding the coverage of target statements.

4.3. Buffer overflow

Buffer overflow can cause unauthorized exploits, thus

compromising software security. Grammatical evolution,

linear genetic programming, genetic algorithm and parti-

cle swarm optimization have been used for detecting buffer

490

overflows. The objective is to detect buffer overflows, vul-

nerable statements, exceptions and evolving plausible at-

tacks. Most of the fitness functions are based on the ability

of an attack to fulfill the conditions necessary for a success-

ful exploit. The work of Kayacik et al. [31, 32, 33] is no-

table as they describe an approach to a framework for attack

generation based on the evolution of system call sequences.

4.4. Usability

Search-based usability testing of software has been ap-

plied in the form of interaction testing where the goal is to

test the t-way interactions taking place through the user in-

terface. The research into interaction testing has focused

on generating covering arrays which is a combinatorial ob-

ject representing interactions. These studies show the use

of hill-climbing, simulated annealing, tabu search, genetic

algorithms and ant colony algorithms as the applied meta-

heuristics. The objective is either rapid coverage of interac-

tions or obtaining smaller test suites. The fitness function

used for constructing covering array is the number of un-

covered t-subsets.

4.5. Safety

Search-based safety testing is an area where the research

has targeted real world problems such as safety of car con-

trol systems [5] and steam boilers [1]. The research into

search-based safety testing can be differentiated into two

themes. One is the case where generation of separate inputs

is discussed to test the safety property while the other case

discusses generation of sequence of inputs. The objective is

the violation of a safety property. The used metaheuristics

include genetic algorithms and simulated annealing. The

fitness functions used measures the cost related to the vio-

lation of the safety property.

5. Discussion

We presented the results of the initial scoping study (sys-

tematic map) to identify the extent and form of literature

within NFSBST. The results of our systematic map indi-

cates that NFSBST is focused on five areas, with execu-

tion time testing being the most researched non-functional

property. This indicates that execution time testing repre-

sents a suitable search problem. On the other hand, for ex-

ecution time testing this might also mark the beginning of

more in-depth analysis of problem characteristics including

comparative and performance evaluation studies [21, 22].

As compared to execution time testing, the application of

metaheuristic search techniques for detecting buffer over-

flows, usability testing, safety testing and quality of service

is more recent. Further feedback from empirical studies into

these niche non-functional areas is required to gain confi-

dence into the efficacy when applying search-based tech-

niques.

We also find that the current taxonomies for non-

functional properties need to assemble a more complete set

of non-functional properties for software systems.

Apart from the final set of 35 papers, our search also

resulted in studies which, although, applies search-based

techniques, are not related to test data generation. Examples

of such studies include reliability modeling [44] and test

planning [16]. Studies relevant to test planning reflects the

growing application of metaheuristics across the software

testing lifecycle, while studies related to reliability model-

ing offers yet another dimension where the application of

search techniques can offer near optimal solutions. These

studies, together with existing SBST literature, can offer an

exciting future arena where studies are not only limited to

automated software test data generation but also extended

to address broader verification and validation problems that

are open to the application of search-based techniques. Our

future work with a systematic review should explore these

possibilities in more detail.

In terms of validity threats, there is a possibility that we

might have missed relevant studies. However, our rigorous

search strategy (Subsection 2.1) should have assembled a

reasonable sample.

6. Conclusions

This work presents initial findings related to the ap-

plication of metaheuristic search techniques to test non-

functional properties. A total of 35 papers published in

the years 1996–2007 are used a basis to map the applica-

tion of metaheuristic search techniques to five different non-

functional areas of execution time, quality of service, buffer

overflow, usability and safety.

We presented an analysis of these studies in terms of

problem objective, applied metaheuristic and range of fit-

ness functions used. A large percentage (42.8%) of the stud-

ies deal with execution time testing with evidence of exper-

imentation with real world applications. Regarding the rest

of the non-functional properties, further feedback from em-

pirical studies is desirable. We also found that diverse meta-

heuristic search techniques have been applied to achieve

problem-specific objectives, with genetic algorithms being

the most frequently used metaheuristic.

There is still plenty of potential for automating non-

functional testing using search-based techniques. The re-

sults of our systematic map also indicate that the current

body of knowledge concerning SBST does not report stud-

ies on many of the other non-functional properties. On the

other hand, there is a need to extend the early optimistic re-

sults of applying NFSBST to larger real world systems, thus

491

moving towards a generalization of results.

Future work includes extending the presented results into

a systematic literature review.

References

[1] O. Abdellatif-Kaddour, P. Thevenod-Fosse, and H. Waese-

lynck. Property-Oriented Testing based on Simulated An-

nealing. In Proceedings of ACS/IEEE International Con-
ference on Computer Systems and Applications (AICCSA’
2003), Tunis (Tunisie), 2003.

[2] J. T. Alander, T. Mantere, and G. Moghadampour. Search-

ing Protection Relay Response Time Extremes using Ge-

netic Algorithm – Software Quality by Optimization. In

Proceedings of the 4th International Conference on Ad-
vances in Power System Control, Operation and Manage-
ment, APSCOM-97, Hong Kong, November 1997.

[3] E. Alba and F. Chicano. Finding Safety Errors with ACO.

In Proceedings of 9th Annual Conference on Genetic and
Evolutionary Computation, ACM, New York, USA, 2007.

[4] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brere-

ton, and S. Linkman. Evidence Relating to Object-Oriented

Software Design: A Survey. In Proceedings of First Interna-
tional Symposium on Empirical Software Engineering and
Measurement, IEEE, 2007.

[5] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and

Functional Sequence Test of Dynamic and State-Based Soft-

ware with Evolutionary Algorithms. In Proceedings of Ge-
netic and Evolutionary Computation Conference (GECCO
2003), Lecture Notes in Computer Science (LNCS 2724),
Springer–Verlag, Berlin, Germany, 2003.

[6] S. Boukif, H. Sahraoui, and G. Antoniol. Simulated Anneal-

ing for Software Quality Prediction. In Proceedings of the
8th Annual Conference on Genetic and Evolutionary Com-
putation, ACM, New York, USA, 2006.

[7] L. C. Briand, Y. Labiche, and M. Shousha. Stress Testing

Real-Time Systems with Genetic Algorithms. In Proceed-
ings of the 2005 Conference on Genetic and Evolutionary
Computation, GECCO 05, Washington, DC, USA, June 25–

29 2005.

[8] R. C. Bryce and C. J. Colbourn. One-Test-at-a-Time Heuris-

tic Search for Interaction Test Suits. In Proceedings of the
2007 Conference on Genetic and Evolutionary Computa-
tion, GECCO 07, London, UK, July 7–11, 2007.

[9] J. Budynek, E. Bonabeau, and B. Shargel. Evolving Com-

puter Intrusion Scripts for Vulnerability Assessment and

Log Analysis. In Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, GECCO 05, pages

153–160, Washington, DC, USA, June 25–29, 2005.

[10] E. K. Burke and G. Kendall. Search Methodologies – In-
troductory Tutorials in Optimization and Decision Support
Techniques. Springer Science and Business Media, New

York, USA, 2005.

[11] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.

Search-based Testing of Service Level Agreements. In Pro-
ceedings of the Conference on Genetic and Evolutionary
Computation, GECCO ’07, London, UK, July 7–11, 2007.

[12] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.

An Approach for QoS-aware Service Composition based on

Genetic Algorithms. In GECCO 05: Proceedings of the
2005 Conference on Genetic and Evolutionary Computa-
tion, Washington, DC, USA, June 25–29, 2005.

[13] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Construct-

ing Strength Three Covering Arrays with Augmented An-

nealing. Discrete Mathematics, 2003.
[14] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Col-

bourn. Constructing Test Suites for Interaction Testing. In

Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE 03), IEEE, 2003.

[15] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Col-

bourn, and J. S. Collofello. Variable Strength Interaction

Testing of Components. In Proceedings of the 27th Annual
International Computer Software and Applications Confer-
ence (COMPSAC 03), IEEE, 2003.

[16] Y. S. Dal, M. Xie, K. L. Poh, and B. Yang. Optimal Testing-

Resource Allocation with Genetic Algorithm for Modular

Software Systems. The Journal of Systems and Software,

66(1), 2003.
[17] K. Derdarian, R. M. Hierons, M. Harman, and Q. Guo. In-

put Sequence Generation for Testing of Communicating Fi-

nite State Machines (CFSMs). In Proceedings of Genetic
and Evolutionary Computation Conference (GECCO 2004),
Lecture Notes in Computer Science (LNCS 3103), Springer–
Verlag, Berlin, Germany, 2004.

[18] G. Dozier, D. Brown, J. Hurley, and K. Cain. Vulnerabil-

ity Analysis of Immunity-Based Intrusion Detection Sys-

tems Using Evolutionary Hackers. In Proceedings of the
2004 Conference on Genetic and Evolutionary Computa-
tion, GECCO 04, Seattle, Washington, USA, June 26–30,

2004.
[19] N. E. Fenton and S. L. Pfleeger. Sofware Metrics - A Rig-

orous and Practical Approach, 2nd Edition. International

Thomson Computer Press, Boston, USA, 1996.
[20] D. G. Firesmith. Common Concepts Underlying Safety,

Security, and Survivability Engineering. Technical Note

CMU/SEI-2003-TN-033, Carnegie Mellon Software Engi-

neering Institute, 2003.
[21] H. G. Gross. A Prediction System for Dynamic

Optimization-based Execution Time Analysis. In Proceed-
ings of First International Workshop on Software Engineer-
ing using Metaheuristic Innovative Algorithms (SEMINAL),
ICSE 2001, Toronto, 2001.

[22] H. G. Gross. An Evaluation of Dynamic, Optimization-

based Worst-case Execution Time Analysis. In Proceedings
of the International Conference on Information Technology:
Prospects and Challenges in the 21st Century, Kathmandu,

Nepal, 2003.
[23] H. G. Gross, B. F. Jones, and D. E. Eyres. Structural Perfor-

mance Measure of Evolutionary Testing Applied to Worst-

case Timing of Real-time Systems. Proceedings of IEE Soft-
ware, 147(2), 2000.

[24] C. Grosso, G. Antoniol, M. D. Penta, P. Galinier, and

E. Merlo. Improving Network Applications Security: a New

Heuristic to Generate Stress Testing Data. In Proceedings of
the Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 05, ACM, New York, USA, 2005.

492

[25] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinear. De-

tecting Buffer Overow via Automatic Test Input Data Gener-

ation. Computers and Operations Research, Elsevier, 2007.

[26] A. G. H. Pohlheim, M. Conrad. Evolutionary Safety Test-

ing of Embedded Control Software by Automatically Gen-

erating Compact Test Data Sequences. In SAE 2005 World
Congress Exhibition, Detroit, MI, USA, April 2005.

[27] M. Harman. The Current State and Future of Search-based

Software Engineering. In Proceedings of Future of Software
Engineering (FOSE 07) at 29th International Conference on
Software Engineering. IEEE Computer Society, USA, 2007.

[28] M. Harman and B. Jones. Search-based Software Engineer-

ing. Information and Software Technology, 43(14), 2001.

[29] IEEE Std 830-1998. IEEE Recommended Practice for Soft-
ware Requirements Specifications, 1998.

[30] International Standard. ISO/IEC 9126-1:2001 Software En-
gineering Product Quality Part 1: Quality Model, 2001.

[31] H. G. Kayacik, M. Heywood, and A. N. Zincir-Heywood.

On Evolving Buffer Overflow Attacks Using Genetic Pro-

gramming. In Proceedings of the 2006 Conference on Ge-
netic and Evolutionary Computation, GECCO 06, Seattle,

Washington, USA, July 8–12, 2006.

[32] H. G. Kayacik, A. N. Zincir-Heywood, and M. Heywood.

Evolving Successful Stack Overflow Attacks for Vulnerabil-

ity Testing. In Proceedings of the 21st Annual Computer Se-
curity Applications Conference (ACSAC 2005), IEEE, 2005.

[33] H. G. Kayacik, A. N. Zincir-Heywood, and M. Heywood.

Automatically Evading IDS Using GP Authored Attacks. In

Proceedings of the IEEE Computational intelligence in Se-
curity and Defense Applications - CISDA 2007, pages 153–

160, April 2007.

[34] B. Kitchenham. Guidelines for Performing Systematic Lit-

erature Reviews in Software Engineering. Technical Re-

port EBSE-2007-01, Keele University and University of

Durham, UK, 2007.

[35] J. Koljonen, M. Mannila, and M. Wanne. Testing the Per-

formance of a 2D Nearest Point Algorithm with Genetic Al-

gorithm Generated Gaussian Distributions. Expert Systems
with Applications, 32(3), 2007.

[36] P. McMinn. Search-Based Software Test Data Generation:

A Survey. Software Testing,Verification and Reliability,

14(2), 2004.

[37] F. Mueller and J. Wegener. A Comparison of Static Analysis

and Evolutionary Testing for the Verication of Timing Con-

straints. In Proceedings of the 4th IEEE Real-Time Technol-
ogy and Applications Symposium, Denver, USA, June 1998.

[38] K. J. Nurmela. Upper Bounds for Covering Arrays by Tabu

Search. Discrete Applied Mathematics, Elsevier, 2003.

[39] M. OSullivan, S. Vossner, and J. Wegener. Testing Temporal

Correctness of Real-Time Systems - A New Approach using

Genetic Algorithms and Cluster Analysis. In Proceedings of
the 6th European Conference on Software Testing, Analysis
Review (EuroSTAR 1998), Munich, Germany, 1998.

[40] H. Pohlheim and J. Wegener. Testing the Temporal Behavior

of Real-Time Software Modules using Extended Evolution-

ary Algorithms. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), 1999.

[41] P. Puschner and R. Nossal. Testing the Results of Static

Worst-Case Execution-Time Analysis. In Proceedings of
the 19th IEEE Real-Time Systems Symposium (RTSS ’98),
Madrid, Spain, December 1998.

[42] A. C. Schultz, J. J. Grefenstette, and K. A. D. Jong. Adap-

tive Testing of Controllers for Autonomous Vehicles. In Pro-
ceedings of the 1992 Symposium on Autonomous Underwa-
ter Vehicle Technology. IEEE, 1992.

[43] A. C. Schultz, J. J. Grefenstette, and K. A. D. Jong. Learning

to Break Things: Adaptive Testing of Intelligent Controllers.

Naval Research Laboratory, Oxford University Press, 1995.
[44] A. Sheta. Reliability Growth Modeling for Software Fault

Detection Using Particle Swarm Optimization. In IEEE
Congress on Evolutionary Computation. IEEE, 2006.

[45] T. Shiba, T. Tsuchiya, and T. Kikuno. Using Artificial Life

Techniques to Generate Test Cases for Combinatorial Test-

ing. In Proceedings of the 28th Annual International Com-
puter Software and Applications Conference (COMPSAC
04), IEEE, 2004.

[46] J. Stardom. Metaheuristics and the Search for Covering and

Packing Arrays. Masters Thesis, Simon Fraser University,

2001.
[47] M. Tlili, S. Wappler, and H. Sthamer. Improving Evolution-

ary Real-Time Testing. In Proceedings of the 2006 Con-
ference on Genetic and Evolutionary Computation, GECCO
06, Seattle, Washington, USA, July 8–12 2006.

[48] N. Tracey, J. Clark, and K. Mander. The Way Forward for

Unifying Dynamic Test Case Generation: The Optimisation

– Based Approach. In International Workshop on Depend-
able Computing and Its Applications, IFIP, 1998.

[49] N. J. Tracey, J. Clark, J. McDermid, and K.Mander. Inte-

grating Safety Analysis with Automatic Test Data Genera-

tion for Software Safety Verification. In Proceedings of the
17th International Conference on System Safety, IEEE, Au-

gust 1999.
[50] K. R. Walcott, M. Soffa, G. M. Kapfhammer, and R. Roos.

TimeAware Test Suite Prioritization. In Proceedings of
the 2006 International Symposium on Software Testing and
Analysis, ACM, New York, USA, 2006.

[51] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer, and

B. Jones. Systematic Testing of Real-time Systems. In

Proceedings of the 4th European Conference on Software
Testing, Analysis Review (EuroSTAR 1996), Amsterdam,

Netherlands, December 1996.
[52] J. Wegener and M. Grochtmann. Verifying Timing Con-

straints of Real-Time Systems by Means of Evolutionary

Testing. Real-time Systems, 1998.
[53] J. Wegener, R. Pitschinetz, and H. Sthamer. Automated Test-

ing of Real-Time Tasks. In Proceedings of the 1st Interna-
tional Workshop on Automated Program Analysis, Testing
and Verification, Limerick, Ireland, June 2000.

[54] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Test-

ing Real-time Systems Using Genetic Algorithms. Software
Quality Journal, 6(2):127–135, June 1997.

[55] Y. Zhan and J. Clark. Search-based Automatic Test-Data

Generation at an Architectural Level. In Proceedings of Ge-
netic and Evolutionary Computation Conference (GECCO
2004), Lecture Notes in Computer Science (LNCS 3103),
Springer–Verlag, Berlin, Germany, 2004.

493

A Degraded ILP Approach for Test Suite Reduction

Zhenyu Chen, Xiaofang Zhang and Baowen Xu
School of Computer Science and Engineering, Southeast University, Nanjing, China.

{zychen, xfzhang, bwxu}@seu.edu.cn

Abstract— As the cost of executing and maintaining a large test
suite is always expensive, many heuristic techniques have been
brought out for test suite reduction in spite of no guarantee of
minimum size. The integer linear programming (ILP) approach
can generate minimum test suites but it may cost exponential
time. This paper proposes a degraded ILP (DILP) approach
to bridge the gap between the ILP method and traditional
heuristic methods. The DILP can produce a lower bound of
minimum test suite and then search a small test suite close to
the lower bound. An empirical evaluation of DILP is designed
on Boolean specification-based testing. Four typical heuristic
reduction strategies: G, GRE, H and GC are compared with
DILP empirically. The experimental results show that DILP
always outperforms other heuristic reduction strategies and it
sometimes can guarantee the minimum size.

I. INTRODUCTION

In a software testing process, the testing requirements firstly

need to be defined from software specifications or implementa-

tions. Then, test cases are designed to satisfy the requirements

manually or automatically. The test cases designed for a

particular requirement may also satisfy other requirements in

practice, i.e. a requirement may be satisfied by more than one

test case. As a result, the constructed test suite may contain

redundancy. Some subsets of the constructed test suite may

still satisfy the same testing requirements. As the redundancy

increases the cost of executing and maintaining the test suite,

it is valuable to generate a small test suite satisfying all testing

requirements.

We use R = {r1, · · · , rm} to denote the set of testing

requirements which must be satisfied in the testing process. A

testing requirement is said to be feasible if there is at least one

test case satisfying the testing requirement. We assume that

every testing requirement is feasible in this paper. A test suite

is a set of test cases, denoted by T = {t1, · · · , tn}. The set of

all testing requirements satisfied by t is denoted by Req(t).
The set of all test cases satisfying r is denoted by Test(r). A

test suite T satisfies R if for each testing requirement r in R,

there is at least one test case in T satisfying r.

T ′ is said to be a representative set of T if T ′ is a subset

of T such that T ′ can satisfy R. A test case t is said to be

1-1 redundant to T if Req(t) ⊆ Req(t′) for an other t′ ∈ T .

This work was supported in part by the National Natural Science Founda-
tion of China (60425206, 60773104, 60403016, 60633010), Natural Science
Foundation of Jiangsu Province (BK2005060), High Technology Research
Project of Jiangsu Province (BG2005032), Excellent Talent Foundation on
Teaching and Research of Southeast University, and Open Foundation of
State Key Laboratory of Software Engineering in Wuhan University, Doctor
subject fund of education ministry(20060286020), Jiangsu Planned Projects
for Postdoctoral Research Funds (0701003B).

T − {t} is a representative set of T for a 1-1 redundant test

case t. This is so-called 1-1 reduction strategy. A test case t
is said to be essential to R if there exists r ∈ R such that

Test(r) = {t}. An essential test case t must be in every

representative set.

The objective of test suite reduction is to find a small

representative set for a given test suite. A minimum sized

representative set is desirable. However, the problem of finding

a minimum test suite is equivalent to the set covering problem,

which is known to be NP -complete [8]. A test suite reduction

problem can be translated into an ILP problem, then some

ILP tools could be used to produce a minimum test suite

[11]. However, ILP is not suitable for large test suites because

it may cost exponential time. A practical approach for test

suite reduction is to develop heuristic strategies in spite of no

guarantee of minimum test suites. It is often referred to search

based software engineering [9].

A challenge of existing heuristic methods is so-called stop-

ping criteria. That is the testers could not estimate whether

the result is good enough. Hence, they could not determine

whether it needs to use expensive method (such as ILP) to

improve the existing result. In this paper, a degraded ILP

(DILP) method is proposed to bridge the gap between the

ILP method and traditional heuristic methods. The DILP first

produces a lower bound (Lb) of minimum test suites. Then

it uses single-branch strategy to search a small test suite T ′

close to Lb efficiently. As a result, the testers can make a

choice in three cases: (1) The size of T ′ equals to Lb then T ′

is a minimum one, i.e. the best result. (2) The size of T ′ is

close to Lb then T ′ can also be considered as a good result.

(3) The size of T ′ is far from Lb then it needs to use ILP or

other expensive methods to improve T ′.
The rest of this paper is organized as follows. In the next

section, we describe some related work of test suite reduc-

tion. In section 3, we propose the DILP approach, including

the preprocess by 1-1 reduction, single branch strategy and

DILP algorithm. Section 4 describes an empirical evaluation

on Boolean specification-based testing. Four typical heuristic

strategies are compared with the DILP approach. The conclu-

sion is drawn in the last section.

II. RELATED WORK

The greedy strategy (denoted by G) [7] has been used in

many fields of computer science including test suite reduction.

M.J. Harrold et al. proposed the heuristic reduction strategy

H by grouping test cases [10]. T. Y. Chen et al. proposed two

494

enhance versions of G, called GE and GRE, by combining 1-1

reduction strategy and essential strategy [2].

The above reduction strategies ignore the fact that there

are some complex interrelations among testing requirements.

Based on testing requirement optimization, it is possible to

obtain a smaller test suite more efficiently. X. F. Zhang et al.

presented a requirement optimization model to enhance the

existing test suite reduction strategies G, GE, GRE and H [16].

Recently, Z. Y. Chen et al. improved it and proposed a graph

contraction (denoted by GC) method for testing requirement

optimization to achieve test suite reduction [6]. The experi-

mental results shown that GC was very competitive with GRE

and it always outperformed other heuristic strategies. GRE, H,

ILP and genetic method also have been studied for insight into

the selection of test suite reduction techniques [17].

Four typical reduction heuristics strategies: G, GRE, H and

GC are compared with DILP in this paper.

• G is the greedy algorithm [7] for test suite reduction. It

selects one test case t satisfying the maximum number

of testing requirements in R and removes the satisfied

requirements in Req(t). And then it selects one test case

satisfying the maximum number of remaining testing

requirements. The selection repeats until all requirements

in R are satisfied.

• GRE is an enhanced version of the greedy heuristic [2].

It combines the following three strategies: the essen-

tial strategy, the 1-1 reduction strategy and the greedy

strategy. It is basically the alternate application of the

essential strategy and the 1-1 reduction strategy. The

greedy strategy is applied only when both strategies

cannot be applied.

• H is a heuristic algorithm categorizing test cases ac-

cording to different degree of ‘essentialness’ [10]. All

requirements r1, · · · , rm are divided into R1, · · · , Rd. Ri

denotes the set of all requirements in R that are satisfied

by exactly i test cases in T . d denotes the maximum

number of test cases that a requirement can be satisfied.

Roughly speaking, test cases satisfy requirements in Ri

are considered to be more ‘essential’ than those satisfy

requirements in Rj for i < j. Clearly, H first selects test

cases that satisfy requirements in R1. And then it consid-

ers the group of unsatisfied requirements in R2, · · · , Rd

orderly and selects test cases until all requirements are

satisfied.

• GC is a heuristic algorithm contracting testing require-

ments based on requirement relation graph [6]. A require-

ment relation graph G(V, E) is constructed first based

on testing requirement analysis. V is the set of testing

requirements. An edge (v, v′) ∈ E if and only if there

are some test cases satisfying both v and v′. Then, some

graph contraction strategies are proposed to merge the

vertices. As a result, a minimal set of testing requirements

is obtained and test suite reduction is achieved.

In the real-world software testing, there are often multiple

test criteria [1]. K. R. Walcott et al. considered the execution

time of the test suite as an important cost driver [13]. S. Yoo et

al. introduced the concept of Pareto efficiency to solve multi-

object test suite reduction [15]. For simplicity, this paper treats

test suite reduction as a single objective optimization problem.

III. DEGRADED ILP APPROACH FOR TEST SUITE

REDUCTION

A. Preprocess of Reduction

At present, all known algorithms for NP -complete prob-

lems require time that is superpolynomial in the input size. It

is unknown whether there are any faster algorithms. However,

there exists some polynomial time, even linear time, algo-

rithms which can simplify the original NP -complete problem

to be a small one. Although the resulting problem is still NP -

complete, it can be solved more efficiently than the original

one.

The satisfiability relation between T and R could be rep-

resented as a set S(T, R) = {(r, t) ∈ R × T : t satisfies r}.

Let TS(T, R) denote the set of all representative sets of T
w.r.t. R and OptTS(T, R) denote the set of all minimum

representative sets of T w.r.t. R. For a 1-1 redundant test case

t in T , OptTS(T − {t}, R) ⊆ OptTS(T, R). That is, a 1-1

redundant test case can be eliminated to simplify the satisfia-

bility relation between R and T [4]. Similarly, a requirement

r is said to be 1-1 redundant to R if there exists an other

requirement r′ such that Test(r′) ⊆ Test(r). For a 1-1 re-

dundant requirement r, TS(T, R−{r}) = TS(T, R). Hence,

OptTS(T, R − {r}) = OptTS(T, R) [6]. A 1-1 redundant

requirements could be removed to simplify the satisfiability

relation. Given a satisfiability relation S(T, R), a 1-1 reduction

satisfiability relation S′(T ′, R′) can be obtained by removing

1-1 redundant test cases and testing requirements one by one

until there is no 1-1 redundant one in S′(T ′, R′). S′(T ′, R′)
is smaller than S(T, R) and OptTS(T ′, R′) ⊆ OptTS(T, R),
thus the test suite reduction problem is simplified.

B. ILP Approach

In mathematics, integer linear programming (ILP) problems

involve the optimization of a linear objective function subject

to inequality constraints with integer variables [12]. Given a

satisfiability relation S(T, R), the test suite reduction problem

can be translated into an ILP (actually 0-1-ILP) problem as

the form [11]:

Min (
n∑
j

xj) : xj ∈ {0, 1}

subject to S × x ≥ 1 (1)

S is an m× n relational matrix with si,j = 1 if tj satisfies

ri and si,j = 0 otherwise. 1 is an m-vector (1, · · · , 1). x is

an n-vector (x1, · · · , xn) to be determined.

A naive approach of ILP is to enumerate all possible

solutions, nevertheless this is feasible only for very small

problems. The usual methods of ILP are implicit enumeration

techniques. The “implicit” means that many solutions will

495

hopefully be skipped during enumeration as they are known

to be non-optimal.

One of the usual implicit enumeration techniques used to

solve ILP problems is Branch-and-Bound algorithm [12]. A

branching strategy of 0-1-ILP is to pick a variable xj and

to replace the current problem by two subproblems, which

are copies of the current problem with the variable xj set

to 0 in one and set to 1 in the other. Since the variable xj

has to take value either 0 or 1 in an optimal solution, this

branching scheme guarantees that an optimal solution of the

original problem will be an optimal solution of one of the two

subproblems. The Bounding operation is a function that returns

a bound on the optimal solution of the current subproblem. It

is possible to discard some subproblems that have a bound

worse than the value of the best currently known solution of

the original problem.

C. Single-Branch Strategy

The Branch-and-Bound algorithm used to solve ILP prob-

lems may create exponential subproblems in the worst case,

because it creates two subproblems for each variable. The

basic idea of degraded ILP (DILP) is the single-branch strat-

egy, i.e. to select only one most possible subproblem for each

variable. Hence, DILP creates at most n subproblems for n
variables.

The LP relaxation of an ILP problem is obtained by remov-

ing the integrality constraints on the variables. LP problems

can be solved in the polynomial time, whereas ILP problems

are NP -hard in general [12]. Since the feasible solutions

of the ILP problem are all feasible for the LP problem, LP

solution also provides a lower bound on the optimal value of

the ILP problem. If the solution of the relaxation has integer

components, then it also solves the ILP problem fortunately.

Given a satisfiability relation matrix S, an LP relaxation of

the ILP problem is formed as Min(
∑n

j xj) subject to S×x ≥
1 with x ∈ [0, 1]. The LP relaxation is easy to solve by some

algorithms, such as simplex algorithm [12]. A feasible solution

v can be output by some LP algorithms, in which vj is the

value of xj . If vj is not an integer for some j, then v is not

a solution of the original ILP problem. However, the value vj

could be considered as the possibility of optimal solution of

ILP problem. For example, vi = 0.9 and xj = 0.3 indicate xi

will more potentially be 1 than xj in the optimal solutions of

ILP problem.

A single-branch strategy of 0-1-ILP is to pick a variable

xj with vj close to 1 and to replace the current problem by a

restricted problem, which is a copy of the current problem with

fixing the variable xj to 1. A challenge of the single-branch

strategy is which variable should be fixed firstly. A natural

choice is to fix the variable xj with a high value vj to 1. Note

that the variable xj will contribute each testing requirement

ri only if si,j = 1, i.e. tj satisfies ri. Hence a more suitable

metric is introduced as follows.

dj :=
m∑
i

si,j ∗ vj (2)

D. DILP Algorithm

The pseudo-code of degraded ILP (DILP) approach is

shown in algorithm 1.

Algorithm 1: DILP(S)

1: 1-1 reduction S;

2: v = LP (S);
3: Lb = Int(

∑n
j vj);

4: while 1

5: if each vj is an integer

6: return v and Lb;

7: end if

8: Maxd=0;

9: for each j
10: if vj == 1
11: Fix xj to 1;

12: else

13: Compute dj ;

14: if dj >Maxd

15: Maxd=dj ;

16: k = j;

17: end if

18: end if

19: end for

20: Fix xk to 1;

21: v = LP (S);
22: end while

Firstly a satisfiability relation matrix S is input in the

procedure DILP. We use 1-1 reduction as a preprocess of DILP

until there is no 1-1 redundant test case and no 1-1 redundant

testing requirements (line 1). An LP relaxation of ILP problem

in equation (1) will be solved by LP algorithms (line 2). The

sum of result v can be considered as a lower bound Lb of

minimum test suite (line 3), because any ILP solution is also

an LP solution. If each vj is an integer, then v is an optimal

solution of the original ILP problem (line 5-7). Otherwise,

each xj will be fixed to 1 for vj = 1 (line 11). We calculate

the metric dj for each remained xj , i.e. vj < 1, (line 13).

The maximal dk is selected (line 15-16) and xk is fixed to 1

(line 20). It is formed as a restricted LP problem and it will

be solved by LP algorithms again (line 21). The statements in

loop (line 4-22) are repeated until each vj is an integer and

v and Lb are output. The loop will stop in at most n times,

because at least one xj is fixed in each iteration and there are

total n variables in x.

IV. EMPIRICAL EVALUATION

In this section, an experiment on a suite of Boolean specifi-

cations from TCAS II is designed and implemented to evaluate

the DILP approach. Four heuristic reduction strategies: G,

GRE, H and GC, are also compared with DILP.

A. Experiment Design

Given a Boolean specification P , an implementation expres-

sion may be a mutant M by making simple syntactic changes

to P . A test case t is an assignment for all variables. P (t)

496

TABLE I

EXPERIMENTAL SUBJECTS

No. |V | |L| |T | |LNF | |LRF |
1. 7 23 62 21 235
2. 9 36 113 36 539
3. 12 46 2970 46 981
4. 5 5 29 5 40
5. 9 20 392 20 302
6. 11 28 142 25 468
7. 10 21 210 21 362
8. 8 17 36 17 228
9. 7 10 16 10 120

10. 13 15 256 15 353
11. 13 20 2188 20 443
12. 14 17 4290 17 438
13. 12 13 1731 13 279
14. 7 12 107 12 142
15. 9 18 372 18 266
16. 12 37 2834 37 794
17. 11 11 1033 11 220
18. 10 11 584 11 198
19. 8 9 116 9 126
20. 7 8 24 8 96

and M(t) denote the values of P and M evaluated by the test

case t, respectively. In general, a mutant M may happen to be

logically equivalent to the specification P and hence it cannot

be distinguished by any test case. A non-equivalent mutant is

called a fault and an equivalent mutant is not regarded as a

fault. A fault M is said to be killed (or detected) by a test

case t if M(t) �= P (t). That is, t is a satisfying assignment

of M ⊕ P (⊕ is the exclusive-or operator). For each mutant

Mi, a testing requirement is formed as a Boolean expression

ri = P ⊕Mi. A testing requirement ri is feasible if and only

if ri is satisfiable. It is not difficult to see that the number of

test cases is finite. Before test suite reduction, all test cases,

i.e. satisfying assignments, could be generated to construct an

initial test suite.

Our experimental analysis was done using software that

was specifically designed and implemented for the purpose

above. The software allows the analysis of a given Boolean

specification. The experimental steps involved in the empirical

analysis were as follows:

1. Select the subject Boolean specifications.

2. Generate the mutants and testing requirements.

3. Construct the initial test suites.

4. Reduce the test suites using the reduction strategies.

We used the set of 20 Boolean specifications, which were

originated from the specification of an aircraft collision avoid-

ance system called TCAS II [14]. Two of fault classes, LNF

and LRF [5], were considered in the experiment. Literal

Negation Fault (LNF): A literal is replaced by its negation,

e.g., (a ∧ b) ∨ (¬b ∧ c) implemented as (a ∧ b) ∨ (b ∧ c) with

¬b replaced by b. Literal Reference Fault (LRF): A literal is

replaced by another literal that appears in the decision, e.g.,

(a ∧ b) ∨ (¬b ∧ c) is implemented as (a ∧ b) ∨ (¬a ∧ c) with

¬b replaced by ¬a.

Each mutant M of P was generated first, and then the

testing requirement was formed as P ⊕M . |LNF | and |LRF |

TABLE II

EXPERIMENTAL RESULTS OF LNF

No. |T | Rsti(∗) Bsti
G GRE H GC DILP ILP

1 62 7 7 8 7 7 7
2 113 6 6 6 6 6 6
3 2970 10 10 10 10 10 10
4 29 2 2 2 2 2 2
5 392 6 5 6 5 5 5
6 142 4 4 5 4 4 4
7 210 3 3 4 4 3 3
8 36 2 2 2 2 2 2
9 16 2 2 2 2 2 2
10 256 3 3 4 3 3 3
11 2188 5 5 5 5 5 5
12 4290 4 4 5 4 4 4
13 1731 3 3 3 3 3 3
14 107 4 4 4 4 4 4
15 372 4 4 4 4 4 4
16 2834 7 7 9 7 7 7
17 1033 3 3 3 3 3 3
18 584 3 3 3 4 3 3
19 116 2 2 3 2 2 2
20 24 2 2 2 2 2 2

denote the numbers of feasible testing requirements and the

infeasible testing requirements are ignored. |V | and |L| denote

the number of variables and the number of literal occurrences

in Boolean specifications, respectively. The number of all test

cases is 2|V |. |T | denotes the number of test cases used in

LNF and LRF. The details were shown in Table I.

The number of LNF mutants equals to Li and the number of

LRF mutants equals to Li · (|Vi|−1) ·2. However, the number

of feasible testing requirements may be less than the number

of mutants, because there may be some equivalent mutants for

P . For example, |R1| = 21 < 23 = |L1| for LNF in Table I.

The size of test suite is 2|Vi| in the worst case. However, the

real size was always much smaller than 2|Vi|. For example,

|T8| = 36 < 28 = 256 for LNF in Table I.

B. Experimental Results and Analysis

The effectiveness of each reduction strategy was measured

by computing the size of resulting test suites for each Boolean

specification. To a further comparison, four typical reduction

strategies: G, GRE, H and GC, were also implemented for

test suite reduction. Rsti(∗) denotes the size of resulting test

suite for the no. i Boolean specification using the reduction

strategy ∗. A minimum test suite is desirable for test suite

reduction. We computed the size of minimum test suite for

each Boolean specification using ILP method [11], denoted

by Bsti. |T | denotes the size of initial test suite for LNF or

LRF. The detail experimental results of LNF and LRF were

shown in Table II and III, respectively. Main observations of

the empirical analysis were made as follows.

Effectiveness of DILP Approach.
The 1-1 reduction was implemented first as a preprocess of

reduction until there is no 1-1 redundant testing requirements

and no 1-1 redundant test cases. The experimental results

of evaluation for 1-1 reduction were shown in Fig. 1 and

2. The number of original requirements and test cases were

497

TABLE III

EXPERIMENTAL RESULTS OF LRF

No. |T | Rsti(∗) Bsti
G GRE H GC DILP ILP

1 62 19 18 19 18 18 18
2 113 26 26 26 26 26 26
3 2970 36 36 38 35 33 31
4 29 5 5 5 5 5 5
5 392 18 15 16 15 15 15
6 142 26 25 27 25 25 25
7 210 21 21 20 19 19 19
8 36 18 18 18 18 18 18
9 16 12 12 12 12 12 12
10 256 16 16 17 16 15 15
11 2188 19 20 23 21 18 17
12 4290 16 17 18 17 15 15
13 1731 13 13 15 13 13 13
14 107 14 13 14 13 12 12
15 372 17 17 17 16 16 16
16 2834 28 28 36 28 25 25
17 1033 13 13 12 11 11 10
18 584 13 12 14 13 11 10
19 116 12 11 11 10 9 8
20 24 10 10 10 10 10 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

Boolean Specification

Nu
mb

er
of

tes
tin

g r
eq

uir
em

en
ts

1−1 Reduction of Testing Requirements

Redundant
Remained

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Boolean Specification

Nu
mb

er
of

tes
t c

as
es

1−1 Reduction of Test Cases

Redundant
Remained

Fig. 1. Evaluation of 1-1 Reduction for LNF

represented as the whole plots. The numbers of 1-1 redundant

requirements and test cases were represented as the gray plots.

The number of remained requirements and test cases were

represented as the black plots. As is evident from Fig. 1 and

2, the results of 1-1 reduction were very inspiring, particularly

for 1-1 reduction of test cases for LNF. One reason may be

testing requirements are much less than test cases for LNF, as

a result, there are many 1-1 redundant test cases.

The lower bound was output from LP relaxation by LP

algorithms. Then DILP would search a feasible solution close

to the lower bound. Note that the lower bound may not be the

greatest lower bound, i.e. it might not be reached realistically.

The greatest lower bound, i.e. minimum size, of reduced test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

600

700

800

900

1000

Boolean Specification

Nu
mb

er
of

tes
tin

g r
eq

uir
em

en
ts

1−1 Reduction of Testing Requirements

Redundant
Remained

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Boolean Specification

Nu
mb

er
of

tes
t c

as
es

1−1 Redundant of Test Cases

Redundant
Remained

Fig. 2. Evaluation of 1-1 Reduction for LRF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

9

10

11

Boolean Specification No.

Siz
e o

f T
es

t S
uit

e

LNF

DILP Result
Lower Bound
Minimum Size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

Boolean Specification No.

Siz
e o

f T
es

t S
uit

e

LRF

DILP Result
Lower Bound
Minimum Size

Fig. 3. Evaluation of DILP Approach

suite can be calculated by ILP algorithms. However, if the

result of DILP equals to the lower bound, then the DILP

result must be a minimum sized test suite. That is, DILP

approach solves the ILP problem fortunately. The comparison

of DILP result, lower bound and minimum size was shown in

Fig. 3. The experimental results of DILP approach were very

inspiring. In the case of LNF, DILP could generate minimum

test suite for all Boolean specifications. The lower bounds of

no. 1 and 3 Boolean specifications were not the greatest lower

bounds, hence we could not conclude that the DILP results

were minimum ones despite they were so actually. In the case

of LRF, DILP could generate minimum ones for 15 Boolean

498

G GRE H GC DILP
0

2

4

6

8

10

12

14

16

18

20

Reduction Strategy *

BT
(*)

Comparison of Best Results

LRF
LNF

G GRE H GC DILP
0

0.5

1

1.5

2

2.5

3

Reduction Strategy *

DV
(*)

Comparison of Deviation Analysis

LRF
LNF

Fig. 4. Comparison of Heuristic Reduction Strategies

specifications. DILP can guarantee to generate the minimum

ones for 10 Boolean specifications, because they reached the

lower bounds.

Comparison of Heuristic Reduction Strategies.
The detail experimental results of different reduction strate-

gies were shown in Table II and III. To facilitate the compre-

hension for readers, two evaluation metrics were introduced

to show the results of comparison. BT (∗) denotes the times

of reduction strategy ∗ generating a minimum test suite. That

is,

BT (∗) =
20∑

i=1

(Rsti(∗) == Bsti) (3)

To a further comparison, standard deviation analysis was

introduced to quantify the goal of test suite reduction. The

formalization is described as follows.

DV (∗) =

20∑
i=1

Rsti(∗) − Bsti
Bsti

(4)

For a reduction strategy, a higher value of BT (∗) suggests

that it obtains better results with respect to the other reduction

strategies. A lower value of DV (∗) suggests that it obtains

better results with respect to the other reduction strategies.

The results of four typical heuristic reduction strategies and

DILP approach were shown in Fig. 4. For BT (∗), the DILP

approach wined the best score among all reduction strategies,

for both LNF and LRF. The results of DV (∗) conformed to

the ones of BT (∗). In general, the results of LRF was more

significant than the results of LNF, because the numbers of

requirements and test cases of LRF are much more than the

ones of LNF. The experimental results shown that DILP was

always outperformed other heuristic reduction strategies.

V. CONCLUSION AND FUTURE WORK

In this paper, a degraded ILP (DILP) approach was proposed

to bridge the gap between the ILP method and traditional

heuristic methods. DILP could produce a lower bound of

minimum size and then search a feasible solution close to

the lower bound. The experimental results shown that DILP

always outperformed typical heuristic reduction methods and

it can sometimes guarantee the generation of minimum test

suite. However, the complexity of LP algorithms was higher

than the typical heuristic methods, although LP problems can

be solved in the polynomial time. The comparison of time cost

need to be discussed further. The empirical evaluation is still

very primary, it could not draw rich conclusions for DILP and

other heuristic reduction strategies. In the future, large scale

testing objects [17] and simulation data [3] would be studied

for insight into the selection of test suite reduction techniques.

REFERENCES

[1] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria models for all-uses
test suite reduction. In Proceedings of 26th International Conference on
Software Engineering, pages 106–115. ACM Press, 2004.

[2] T. Y. Chen and M. F. Lau. A new heuristic for test suite reduction.
Information and Software Technology, 40(5):347–354, 1998.

[3] T. Y. Chen and M. F. Lau. A simulation study on some heuristics for test
suite reduction. Information and Software Technology, 40(13):777–787,
1998.

[4] T. Y. Chen and M. F. Lau. On the completeness of a test suite reduction
strategy. The Computer Journal, 42(5):430–440, 1999.

[5] Z. Y. Chen, B. W. Xu, and C. H. Nie. Comparing fault-based testing
strategies of general Boolean specifications. In Proceedings of the 31st
International Computer Software and Applications Conference, pages
621–622. IEEE Computer Society Press, 2007.

[6] Z. Y. Chen, B. W. Xu, X. F. Zhang, and C. H. Nie. A novel approach
for test suite reduction based on requirement relation contraction. In
Proceedings of the 23rd Annual ACM Symposium on Applied Computing,
pages 390–394. ACM Press, 2008.

[7] T. H. Connen, R. L. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theorey of NP-completeness. W. H. Freeman and Company, 1979.

[9] M. Harman. The current state and future of search based software
engineering. In Proceedings of Workshop on Future of Software
Engineering (FOSE’07), pages 20–26. ACM/IEEE, 2007.

[10] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling
the size of a test suite. ACM Transactions on Software Engineering and
Methodology, 2(3):270–285, 1993.

[11] J. G. Lee and C. G. Chung. An optimal representative set selection
method. Information and Software Technology, 42(1):17–25, 2000.

[12] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, 1998.

[13] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos.
Time aware test suite prioritization. In Proceedings of International
Symposium on Software Testing and Analysis (ISSTA’06), pages 1–12.
ACM Press, 2006.

[14] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test
data from a Boolean specification. IEEE Transactions on Software
Engineering, 20(5):353–363, 1994.

[15] S. Yoo and M. Harman. Pareto efficient multi-objective test case
selection. In Proceedings of International Symposium on Software
Testing and Analysis (ISSTA’07), pages 140–150. ACM Press, 2007.

[16] X. F. Zhang, B. W. Xu, C. H. Nie, and L. Shi. An approach for
optimizing test suite based on testing requirement reduction. Journal
of Software, 18(4):821–831, 2007.

[17] H. Zhong, L. Zhang, and H. Mei. An experimental comparison of four
test suite reduction techniques. In Proceedings of 28th International
Conference on Software Engineering, pages 636–640. ACM Press, 2006.

499

A Meta-Model to Support Regression Testing of Web Applications

Yanelis Hernandez, Tariq M. King, Jairo Pava and Peter J. Clarke

School of Computing and Information Sciences

Florida International University

Miami, FL 33199, USA

email: {yhern004, tking003, jpava001, clarkep}@cis.fiu.edu

Abstract

As businesses strive to keep pace with the rapid evo-
lution of web technologies, their efforts to maintain au-
tomated regression testing strategies are being hindered.
Technological migration of a web application can lead
to test scripts becoming incapable of validating the mi-
grated application due to differences in the testing plat-
form. Regression tests that are still applicable to the
application would therefore have to be re-written to be
compatible with the new technologies. In this paper,
we apply a model-driven approach to the development
of automated testing scripts for validating web appli-
cations from the client-side. We define a meta-model
using UML 2.0 profiles, and describe the model trans-
formations needed to automatically port regression tests
to various platforms. A prototype of the test imple-
mentation for an e-commerce application is presented
to demonstrate the feasibility of the approach.

Keywords: Regression Testing, MDSD, UML Pro-
files, Web Application

1 Introduction

The many advances in web technologies has led to
the development of web applications that compete in
solution areas that traditional software previously ad-
dressed. Web applications are no longer simple streams
of static web pages, but instead provide a collection of
interactive services with the added flexibility, mobility,
and connectivity of the Internet. These characteris-
tics have made web-based solutions highly attractive
to businesses, and this has led to the creation of many
development and testing tools to support web program-
ming [5, 16, 17, 18]. However, a negative consequence
of these advancements is the persistent growth in the
complexity of web applications, and the rapid evolution
of their supporting technologies.

Software testing is a very costly and time-consuming
endeavor. Some studies indicate that the cost of soft-
ware testing may account for between fifty to seventy-
five percent of total development costs [7, 8]. In addi-
tion, testing costs tend to exceed those of design and
implementation, and therefore the methodologies and
tools employed at these stages are pertinent to the de-
velopment of affordable quality software.

Automation is an effective way to reduce time and
costs of software testing, and so many businesses con-
duct their testing process with some degree of automa-
tion. The level of automation of software testing typi-
cally exists at the test script level. Software testers en-
code a set of test cases for the application in a scripting
language, and use the script as input to an automated
testing tool which executes the tests. If subsequent
changes are made to the system, the test script pro-
vides a means for automatically performing regression
testing to determine whether new errors were intro-
duced into previously tested components [6].

Script-level test automation becomes problematic
when an application migrates to include technologies
that are not supported by the testing tool currently
being utilized. Regression tests that are still applica-
ble to the migrated application therefore have to be
re-written in the scripting language of a new testing
tool, thereby defeating the purpose of test automation.

The model-driven software development (MDSD)
paradigm emphasizes the use of models and model
transformations to generate executable code for a spe-
cific platform. In this paper, we apply MDSD to the
generation of an automated testing script for validat-
ing the client-side of a web application. To address the
aforementioned problem of script-level automation, we
propose that the test set for the web application be
designed as a platform independent model which can
be automatically transformed into a platform specific
automated testing script.

The main contributions of this work are that it: (1)

500

presents a model-driven approach to the design and
development of automated testing scripts to validate a
web application; (2) provides meta-models for a subset
of web-based development and testing technologies us-
ing UML 2.0 [12] profiles; and (3) elaborates on a case
study developed using the proposed modeling approach
to support testing.

This paper is organized as follows: the next section
contains background information on web-based tech-
nologies, regression testing, and meta-modeling. Sec-
tion 3 presents the proposed approach to support test-
ing a migrated web application. Section 4 contains the
meta-models used in our approach and describes the
generation of the testing script. Section 5 provides the
details of the case study. Section 6 presents related
work, and in Section 7 we give concluding remarks and
discuss future work.

2 Background

In this section we provide background information
on the technologies commonly used to develop web ap-
plications. We then discuss the technique of regression
testing, including tool support for automatically vali-
dating web applications. Approaches to meta-modeling
are also described in this section.

2.1 Web-Based Technologies

There are two broad categories of web programming
technologies used to develop web applications – client-
side and server-side [4]. Client-side scripting technolo-
gies involve the use of a web-browser on the client ma-
chine to perform operations without having to commu-
nicate with the server. This type of scripting is gener-
ally used to dynamically modify the behaviors within a
specific web page in response to user input [4]. Popular
examples of client-side scripting technologies include
[16, 18]: HTML and Javascript.

In contrast, server-side technologies perform opera-
tions on the web server instead of on the client machine.
They are preferable when operations utilize informa-
tion that is not available on the client, or when data
storage from the client to the server is needed [4]. Dy-
namic operations on the server-side may involve chang-
ing the web page supplied to the client, or providing
a new sequence of web pages to the browser. Active
Server Pages (ASP) [4] and Hypertext Preprocessor
(PHP) [17] are two examples of server-side scripting
languages commonly used to develop web applications.

Many web technologies can be integrated with oth-
ers and hence web applications usually employ a myr-
iad of technologies on both the client and the server.

In essence, the classification of a scripting language de-
pends on its implementation within the web applica-
tion. For example, Flash [1] technologies may be im-
plemented on the client using companion technologies
such as HTML [18], or on the server by providing syn-
chronized updates to the client.

2.2 Regression Testing

Software testing is the process of operating a soft-
ware system under specified conditions, recording the
results, and making an evaluation of some aspect of the
software [10]. Testing is particularly useful for validat-
ing changes made to a system during software main-
tenance or evolution. Regression testing refers to re-
running test cases to determine whether or not new er-
rors have been introduced into previously tested code
[3]. In an effort to reduce costs, many testing strategies
employ automated tools to support the performance of
regression tests on modified software systems.

There has been a rapid growth of tools to sup-
port testing web applications on both the client and
server sides. HTMLUnit [5] simulates the behavior of
a web browser by providing an API to interact with
web pages. Functional testing tools such as TestSmith
provide facilities for simulating mouse and keyboard
events and hence can be used on the client-side to test
Flash applications. On the server-side, PHPUnit [13],
a member of the xUnit family of testing frameworks, is
a unit testing solution for PHP [17].

2.3 Meta-Modeling

Model-driven software development (MDSD) fo-
cuses on the combined use of software models and asso-
ciated transformations to build complete software sys-
tems. This typically involves the use of a source model
or Platform Independent Model (PIM), and a target
model or Platform Specific Model (PSM) [15]. The
PIM does not rely on any specific technological plat-
form that could be used to implement the software,
and therefore represents the essence of the solution.
A model transformation language can then be used to
transform the PIM into a PSM that is executable on
the target platform [15].

A technique known as meta-modeling is used to en-
sure the consistency of models during transformation.
This involves defining the abstract syntax of models
and the interrelationships between the model elements
[14]. Meta-modeling should consist of orthogonal di-
mensions that support two forms of instantiation [2]:
linguistic – relates to the language definition, and onto-
logical – relates to the domain definition. In this paper

501

the ontological meta-modeling will be implemented us-
ing UML 2.0 [12] profiles.

3 MDSD Approach to Support Testing

In this section we define the scope of the problem
being addressed in this paper. We then present our
approach which applies MDSD to the generation of an
automated testing script for validating a web applica-
tion.

3.1 Problem Definition

Automating the process of testing a web application
involves developing a script that can be recognized by
a testing tool, which then applies predefined test cases
to the application under test. This is depicted in the
left-hand portion of Figure 1, where a test script TS1
validates an application under test AUT1; both of which
can be thought of as targeting the same set of web
technologies WT1.

The migration from AUT1 to AUT2 in Figure 1 repre-
sents when a business updates their application to in-
clude a new set of web technologies, labeled WT2. How-
ever, this migration usually leads to the test script TS1
becoming incapable of validating the application AUT2.
Therefore, regression tests that are still applicable to
AUT2 would have to be re-written in a new test script
TS2 to be compatible with the testing tool for WT2.

TS 1 AUT 1 migrates

Web Technology 1 (WT1)

validates TS 2AUT 2

Web Technology 2 (WT2)

validates

Figure 1. Testing a migrated web application.

3.2 Model-Driven Solution

Our approach harnesses the power of MDSD to au-
tomatically generate the testing script for a web appli-
cation that has migrated to new technologies. Figure
2 shows the models and transformation processes used
in our approach. A key aspect of our methodology is
the use of a test script generator, shown at the center
of Figure 2, to produce platform specific tests for the
migrant web applications. Inputs to the generator are
represented by dotted lines, while solid lines are used
to represent the output.

First, a platform independent model, representing
the essence of the test set for the web application, is in-
put to the generator. This PIM is then combined with
a model of the constructs used for testing a particular
set of web technologies. For example, in Figure 2, PI

WT Model 1
(HTML, Javascript)

PI Test Set

Test Script Generator

PS Test Set 1
(HTMLUnit Tests)

WT Model 2
(Flash, Actionscript)

PS Test Set 2
(TestSmith Tests)

Figure 2. Model-driven test script generation.

PagePart

Static

CheckBox TextBox ComboBox RadioGrp

+hasFocus() : bool

Interactive

Button

Text Image

+getValue()

FillableControl

WebObject
-id : string

WebPage
-url : string

+loadWebPage()

WebBrowser

+getControl()

Form

Link

1*

1*

Container

*1

+press()

ButtonControl

Figure 3. Conceptual model of a web interface.

Test Set would be combined with WT Model 1, which
models constructs for testing HTML and Javascript, to
automatically generate an HTMLUnit script PS Test
Set 1. If the application later migrates to a new set
of web technologies (e.g., Flash and Actionscript), the
test set can also migrate automatically by combining
PI Test Set and WT Model 2.

4 Meta-Models

In this section we provide a conceptual model de-
picting abstractions for a subset of the visual elements
of a web application. We then present a UML 2.0 pro-
file of a meta-model to support testing web applications
based on the conceptual model.

4.1 Conceptual Model of a Web Interface

Figure 3 shows a conceptual model for the user in-
terface of a web application. The purpose of the model
is to provide abstractions for the visual elements of the
web application that are relevant to testing. At the
top of the hierarchy of object types is the WebObject
(top-left of Figure 3), which is a general representa-
tion for any element of the web interface. These object
types include web pages and the elements contained
within them, which are classified as follows: (1) inter-
active – allows for dynamic user interaction, e.g., forms,

502

Stereotype Base Class Tagged Value Constraints
<<TestSet>> Class id: String May only declare instances of classes stereotyped TestCase. id is

unique.
<<TestCase>> Class id: String May only declare instances of classes stereotyped TestSection, and

be associated with at most one instance each of classes stereotyped
Setup, Precondition, Input, Postcondition, and Rollback. id is
unique.

<<TestSection>> Class id: String id is unique.
<<TestCommand>> Class id: String May be associated with at most one instance of a class stereotyped

TestSubject. id is unique.
<<WebObject>> Class id: String id is unique.

<<TestSubject>> WebObject

<<Setup>> TestSection May only declare instances of classes stereotyped CreateCommand.
<<Precondition>> TestSection May only declare instances of classes stereotyped InputCommand.

<<Input>> TestSection May only declare instances of classes stereotyped InputCommand.
<<Postcondition>> TestSection May only declare instances of classes stereotyped AssertCommand.

<<Rollback>> TestSection May only declare instances of classes stereotyped DestroyCommand.
<<CreateCommand>> TestCommand

<<InputCommand>> TestCommand

<<AssertCommand>> TestCommand

<<DestroyCommand>> TestCommand

<<contains>> Association Connects instances of TestSet with instances of TestCase, and in-
stances of TestCase with instances of TestSection

<<manipulates>> Association Connects instances of Command with instances of TestSubject.

Table 1. UML profile of the test model for a web application.

textboxes, buttons; and (2) static – remains fixed re-
gardless of external stimuli, e.g., text, images, tables.

An interesting aspect of the model is that the type
WebBrowser is also derived from WebObject. This is
because the browser allows users to break the normal
flow of control of the application, and testing should
address such scenarios. For example, a user may press
the Back button of the browser during the execution of
the application causing unexpected results [19]. In ad-
dition, the WebBrowser type facilitates changes to the
browser configuration, and allows testing to simulate
the use of a specific browser; both of which can affect
the behavior of the web application.

4.2 Meta-Model to Support Testing

The UML 2.0 profile for the test model of a web
application is shown in Table 1. It consists of four
kinds of artifacts indicated by the column headings
(from left to right): (1) stereotype – represents spe-
cific meta-classes; (2) base class – denotes an exten-
sion relationship from a UML meta-class or inheritance
from another stereotype; (3) tagged value – defines at-
tributes of the stereotype; and (4) constraints – enforce
restrictions on how the meta-model may be used. For
example, in Row 1 of Table 1 the stereotype TestSet
extends of the UML meta-class named Class; contains
the tagged value id of type String; and may only con-
tain variables of a class whose stereotype is TestCase.
The constraints for this table entry also specify that

the tagged value id should only hold unique values.
It should be noted that the stereotype TestSubject in
Row 5 extends WebObject, which is the base class from
the conceptual model of a web interface presented in
Subsection 4.1.

5 Case Study

In this section we present a case study developed as
an initial proof of concept realization of our method-
ology. We first outline the features of the applica-
tion, and describe the technologies and test support
tools required to setup the experiment. We then pro-
vide details on a test set implementation that uses the
proposed approach, including the generation of test
scripts. The findings and limitations of the study are
also discussed in this section.

5.1 FastBooks Application

FastBooks is a small e-commerce application for pur-
chasing college textbooks on-line. Users may choose
to purchase their textbooks in three different formats
(Print, Audio, or Electronic), and then submit their
billing and shipping information for validation. Two
versions of the FastBooks application were developed
to set up the scenario of a business migrating from one
web platform to another that uses technologies unsup-
ported by the current testing tool.

503

edu.fiu.strg.mdsd.webtest

WTModel
[from technology]

HTMLUnitModel
[from technology]

PITestSet
[from independent]

FastBooksTestSet
[from independent]

ScriptGen
[from generator]

MetaDictionary
[from metalevel]

Figure 4. Minimal class diagram of the prototype.

The first version of the application was developed
using HTML 4.01 and Javascript on the client-side,
and implemented its automated testing using HTM-
LUnit 1.4. The second version of the application was
developed using Flash 9 and Actionscript 3.0 on the
client-side. Both versions used PHP 5.25 on the server-
side for transferring data to and from persistent stor-
age, while Apache HTTP Server 2.2 provided the web
server functionality.

5.2 Test Implementation

We developed a prototype in Java 5.0 to implement
the model-driven testing solution presented in SubSec-
tion 3.2. First, test cases for the FastBooks applica-
tion were designed using boundary value analysis and
equivalence partitioning techniques. The initial test
set, consisting of 12 test cases, was then encoded us-
ing the constructs and rules of the testing meta-model
proposed in this paper.

The package labeled edu.fiu.strg.mdsd.webtest
in Figure 4 shows the main communicating classes from
various sub-packages of the prototype. The types from
the conceptual model of a web interface were stored
in the class MetaDictionary, which was used to de-
sign generalized classes for modeling the web testing
technology WTModel and platform independent test set
PITestSet. These two classes were then specialized
to create objects for holding the HTML and Javascript
testing constructs, as well as the test cases designed for
the FastBooks application; represented by the classes
HTMLUnitModel and FastBooksTestSet respectively.

5.3 Generation of Test Scripts

The class ScriptGen in Figure 4 is responsible for
iterating through FastBooksTestSet, and generating
a test script using the platform specific constructs in
HTMLUnitModel. This is achieved by retrieving the
test case definitions that are represented as abstract
test commands, along with variable names and their
associated values. These abstract test commands are

then mapped to the HTMLUnit constructs that also
contain placeholders for the variable names and val-
ues. The generator then overwrites the placeholders
with the actual variable names and values stored in
FastBooksTestSet, and appends the completed in-
struction to the output file FastBooks.htmlUnit.

5.4 Discussion

The purpose of the case study was to demonstrate
the feasibility of applying a model-driven approach to
the design and development of testing scripts for a
web application. Implementing the prototype gives cre-
dence to the claim that the strategy can be used to de-
fine platform independent tests, and convert them into
scripts for an automated testing tool. All of the base
test cases developed for the case study were success-
fully transformed into syntactically correct HTMLUnit
tests. This suggests that the abstract constructs used
in the current prototype were therefore sufficient for
representing the platform specific constructs required
to validate the FastBooks application. Although the
current version of the prototype does not implement
the technology model for Flash, this could be easily
incorporated by extending the generalized classes pro-
vided by the infrastructure.

Conducting the study also provided us with insight
into the intricacies of developing a framework for the
proposed approach. Although the FastBooks test set
only required the prototype to address a limited num-
ber of test scenarios, designing the framework to main-
tain independence among the test model, technology
model, and script generator was very challenging. Lim-
itations of the current prototype include coverage of
only a subset of web controls and widgets, and man-
ual detection of model constraint violations. However,
the latter could be solved through the use of model-
driven architecture tools such as the Eclipse Modeling
Framework.

6 Related Work

There has been great effort in the research commu-
nity to assure the quality of web applications through
effective testing methodologies. However, most of the
work that focuses on the use of models for testing web
applications relies heavily on specific platforms for the
creation of their models. In contrast, our approach
uses a platform independent test model to facilitate
the generation of test scripts.

The work presented by Li et al. [11] is most closely
related to our work. It proposes a model-driven test-
ing methodology for web applications. A model of the

504

web application is built to describe the system under
test, and test cases are developed based on that model.
Test scripts are generated from the test cases and exe-
cuted by a test engine. Our approach differs from [11]
in that we consider the negative impact that migration
has on the ability to automatically validate web ap-
plications. Therefore, the technique proposed in this
paper for modeling the technological constructs could
be used in [11] to provide a more extensible solution.

The Object Management Group (OMG) [12] ex-
tended UML with testing concepts such as test ar-
chitecture, test data, and test behavior. Similar to
the profile presented in this paper, the UML Testing
Profile 1.0 is based on the UML 2.0 specification and
provides a modeling language that can be used to de-
sign, visualize, and specify the artifacts of a test sys-
tem. The meta-models presented by [12] encapsulate
a broad view of testing as a process. However, in this
paper we focus on defining a profile for the structure of
a test set for the client-side of a web application, and
leverage the resulting models to generate test scripts.

Heckel et al. [9] present an approach for testing web
applications designed with a model-driven approach.
Design patterns such as Bridge and Proxy are used to
execute the same test cases in a local and distributed
testing environment, respectively. Their methodology
takes advantage of the separation of PIMs and PSMs
on both the model-level and implementation-level. Al-
though the scope of our work does not include test
execution, the strategies in [9] could be used to design
a test harness for scripts generated by our approach.

7 Concluding Remarks

In this paper we presented a model-driven technique
for designing platform independent tests for validat-
ing web applications. Our approach leverages these
test case models for the generation of automated test
scripts, thereby addressing the problems associated
with technological migration of the web application.
An e-commerce application was used as the basis of
our study and a prototype was implemented.

Future work calls for deeper investigation into the
problem by: (1) extending the prototype to include
the technology model for Flash and Actionscript; (2)
formulating additional test scenarios for the applica-
tion used in the case study, and (3) developing a plat-
form independent model for tests that target server-
side scripting languages.

8. Acknowledgements

The authors would like to thank Dr. Robert France
for his contribution to this work.

References

[1] Adobe Systems Inc. Flash 9, April 2007. http://www.
adobe.com/products/flash/ (Mar. 2008).

[2] C. Atkinson and T. Kühne. Model-driven develop-
ment: A metamodeling foundation. IEEE Softw.,
20(5):36–41, 2003.

[3] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, second edition, 1990.

[4] D. Buser, C. Ullman, J. Duckett, J. Kauffman, J. T.
Llibre, and D. Sussman. Beginning Active Server
Pages 3.0. Wrox Press Ltd., Birmingham, UK, UK,
2000.

[5] Gargoyle Software Inc. HTMLUnit 1.14, Jan 2008.
http://htmlunit.sourceforge.net/ (Mar. 2008).

[6] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter,
and G. Rothermel. An empirical study of regression
test selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):184–208, 2001.

[7] B. Hailpern and P. Santhanam. Software debug-
ging, testing, and verification. IBM Systems Journal,
41(1):4–12, 2002.

[8] M. J. Harrold. Testing: a roadmap. In ICSE - Future
of SE Track, pages 61–72, 2000.

[9] R. Heckel and M. Lohmann. Towards model-driven
testing. Electr. Notes Theor. Comput. Sci., 82(6),
2003.

[10] IEEE Computer Society. Std 610.12-1990(r2002):
Standard glossary of software engineering terminology.
Technical report, 2002.

[11] N. Li, Q. qin Ma, J. Wu, M. zhong Jin, and C. Liu.
A framework of model-driven web application testing.
In COMPSAC (2), pages 157–162, 2006.

[12] Object Management Group. Unified modeling lan-
guage. http://www.uml.org/ (Mar. 2008).

[13] Sebastian Bergmann. PHPUnit 3.2.15, Feb. 2008.
http://www.phpunit.de/ (Mar. 2008).

[14] S. Sendall and W. Kozaczynski. Model transforma-
tion: The heart and soul of model-driven software de-
velopment. IEEE Softw., 20(5):42–45, 2003.

[15] T. Stahl, M. Voelter, and K. Czarnecki. Model-
Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons, 2006.

[16] Sun Microsystems, Inc. JavaScript, December 1995.
http://java.sun.com/javascript/ (Mar. 2008).

[17] The PHP Group. PHP 5, Nov. 2007. http://www.

php.net/ (Mar. 2008).
[18] W3C. HyperText Markup Language 4, December

1999. http://www.w3.org/TR/REC-html40/ (Mar.
2008).

[19] Y. Wu and J. Offutt. Modeling and testing web ap-
plications. Technical report, GMU ISE Technical ISE-
TR-02-08, November 2002.

505

Service Granularity Effects in SOA

Ned Chapin

InfoSci Inc., Box 7117

Menlo Park CA 94026-7117

NedChapin@acm.org

Abstract
In service-oriented architecture (SOA), what are chosen

to be the services is a matter of local choice. That choice

includes what degrees of service granularity are used. The

degrees range from fine grained to very large grained, and

usually are not uniformly used. The effects of the choices of

service granularity are major. The choices effect the fabric

and outcome of the SOA design and implementation, as

experienced by managers, software users, and the

information systems personnel developing and maintaining

the resulting SOA using information system. The choices

usually adversely effect the cost and time and effort needed

to achieve the goals managers typically seek in making the

change to using SOA.

1. Categories of services granularity

In service-oriented architecture (SOA) software work, a

service is instantiated as a piece of software that is or is to be

reusable by the organization [7]. Depending upon their

circumstances and management choices, some SOA-using

organizations also require other characteristics, reflecting

usually the operating environment in which the reusable

software is to run. An example is running in a Web services

environment [8]. Some of the other common characteristics

are noted in the bullet sub-sections below.

The granularity of a service as used is determined by the

dominance of the views and preferences of one of three

groups of personnel in a SOA-using organization [22].

Middle and upper-level managers are especially attuned to

giving service to whomever they regard as their customers.

Their view of a service is something that contributes

positively to serving whomever they regard as their

customers. The users of the software-implemented systems

in an organization often view a service more narrowly. A

service is something that helps them get their assigned job

done faster or more easily or better. The information

systems (IS) and information technology (IT) group in an

organization regard a service as software that directs the

hardware in doing some wanted processing of data. The

personnel specifying what processing of data is wanted may

come from any of these same three groups.

Services often consist of smaller services, and sometimes

may overlap other services. One basic and sometimes

convenient unit of measure for the size of a service is the

number of lines of source code or its equivalent needed for

the implementation of the service. Since common kinds of

software units have typical size ranges, those generic unit

names are used in this paper as an indicator of the size

needed for implementing a service [19]. Sixteen such

categories of service granularity in SOA are listed and

briefly sketched below, with the groups’ interest in them

noted with respect to implementing SOA. The order of

listing is from smallest size to largest size (or as levels from

lowest to highest):

Clones. Clones are more than two consecutive lines of

imperative or declarative source code in any mix that are

identical except for some or all of the operand names

[5]. Clones may be executed either by drop in and drop

out, or by transfers of control. The minimum size for a

clone is three lines of source code, and the maximum

commonly is less than 150 lines. When used as services,

clones are useful for IS/IT personnel for their reusability,

but not useful for users or managers.

Subroutines. Subroutines are named parts of routines that

are executed by transfers of control, and usually consist

of less than 250 lines of source code. When used as

services, subroutines are like routines.

Modules. Modules are specialized routines designed and

implemented to perform as integral parts of some larger

unit of software. When used as services, modules are

like routines.

Routines. Routines are named, and may have two or more

constituent subroutines, or none. Routines are executed

by transfers of control, and usually consist of less than

450 lines of source code. When used as services,

routines are useful for IS/IT personnel and sometimes

for users, but rarely for managers.

Mobile agents. Mobile agents are specialized routines that

are executed remotely from the environment from which

they are sent [1]. In some forms of SOA, services may

be required to be qualified to perform as mobile agents,

and then are useful for all three groups of personnel.

Procedures. Procedures are named aggregations of inter-

acting routines, and consist usually of less than 1000

lines of source code. When used as services, they are

more useful for IS/IT personnel than for users or

managers.

506

Object methods. In object-oriented software work, objects

normally have both data and methods that use those and

other data. Object methods usually are examples of

either routines or procedures, and as services, are treated

as such.

Components. Components usually are procedures or

modules or methods used by an organization as a part of

its portfolio of software, but provided by a third party,

such as a vendor or an open source [16]. Maintenance of

a component is normally done by its provider. Hence,

when used as services, components are treated like

routines.

Files. Some components, procedures, modules, or objects

with their methods are packaged and then termed “files.”

The data in such files may be compiled object code

(“binary”), or source code, or both. When used as

services, such files are treated by the three groups as they

would treat the respective contents of the files.

Mashups. Some components, procedures, or objects with

their methods are loosely lumped together based usually

on some sharing of data, and termed “mashups” [23].

When used as services, mashups are usually treated like

routines, or more rarely like programs.

Aspects. Aspects are concern-focused clusterings of source

code that execute when triggered by the needs of other

pieces of software [17]. Aspects may be routines,

modules, procedures, components, or files, depending

upon their form. When used as services, they are usually

treated by the three groups based upon the form of the

aspect.

Programs. Programs are named interacting aggregates of

routines, components, procedures, objects, and aspects,

that serve as parts of one or more subsystems. When

used as services, programs are useful for IS/IT

personnel, and are used extensively by users.

Subsystems. Subsystems are named interacting aggregates

of programs, although sometimes a single program may

be also a subsystem or a system. When used as services,

subsystems are usually used like programs by users, but

are useful also to IS/IT personnel and to a lesser extent

to managers.

Applications. Applications are named subsystems or

systems. As services, they are primarily useful to users

and to managers. Managers sometimes use the term

“application” to refer to any large piece of software, such

as a program, subsystem, or system.

SaaS. Software as a service (SaaS) provides user access to

application software [2]. Selected applications can then

be used (run or executed) by an organization at the cost

of a usage charge, and the cost of transmitting data to

and from the SaaS Internet site of the organization that

has the application software to be executed. When used

as services, SaaS applications can be useful for personnel

in all three groups.

Systems. Systems are named interacting aggregates of sub-

systems that may exceed one million lines of source

code, but sometimes may consist of only a single

program. When used as services, systems are most

useful to managers. Users of systems usually make use

of only portions of the systems. For example, the user

personnel of an accounting system usually specialize and

use only the included applications helpful to them, such

as payroll or accounts receivable. And for example,

IS/IT personnel only occasionally work with an account-

ing system as a whole, but often work with its parts.

2. Effects of granularity

2.1. Concepts and communication

The original specification of what is to be a service was

rapidly lost sight of as the SOA bandwagon attracted more

attention and local customization was de facto encouraged

of what is SOA [8, 11]. In hindsight, the loss of the original

view of SOA appears to have arisen from the different

perspectives and interests of the IS/IT personnel, of the

users of computer-implemented systems, and of the

managers in organizations. Within each group, gradations

in perspectives and interests are also present. For example,

in the manager group, top-level (such as “C-level” and

higher) personnel typically are more focused on organization

wide matters than are area, department, section, or unit level

managers.

Of the three groups, the user group is usually the least

concerned about what is a service. As long as the users are

getting substantially the performance they want from the

applications in the organization’s portfolio of information

systems and accessed outside resources, and are not being

directly charged on the basis of their usage, they could not

care less about whether SOA is there or not. The other two

groups are more likely to have concerns about what is a

service.

The manager group typically considers a service to be at

the system or at least subsystem level, and when used as part

of a SOA implementation, as a potential means for progress

toward attractive goals [4, 6 Chapter 3]. The IS/IT group

typically considers a service to be at the routine or

subroutine level, and when used as part of a SOA

implementation, as another piece of software to be

maintained. Hence, an attempted communication about

services for or in or re SOA among members any two or

three of the groups usually results in miscommunication to

some degree, and sometimes in hype. Attempts to bridge the

resulting communication gaps have taken several forms,

including using local redefinitions of what is meant by the

term “ SOA.”

2.2. IS/IT attempts to meet managers’ expectations

IS/IT personnel have generally thus far not succeeded in

getting either manager or user acceptance for what they

consider as services in a SOA context. Instead, managers

507

have usually assigned IS/IT personnel to implement SOA as

the managers envision SOA by reusing as much of the

existing software as possible and doing as little additional

software maintenance as possible.

To attempt to do this, the IS/IT response has usually

relied on inserting the use of wrappers or middleware or

enterprise service buses (ESB), or some combination of

them. IS/IT and vendor proposals to make such insertions

have been justified to managers generally on the grounds

that they are software development actions (not

maintenance) that can bring faster adaptability of the

organization to meet the ever changing needs of the user

group. Such proposals has also been justified as avoiding

having to do adaptive software maintenance work to upgrade

some existing software in sizes ranging from clones through

objects, in order to change that existing software to make it

work as part of SOA.

Wrappers are software that give the appearance of a

different interface for existing pieces of software than its

usual or former interface, while minimizing doing adaptive

maintenance on the existing software [21]. With a wrapper,

relevant invocations, input, and output of the existing piece

of software are automatically routed through the wrapper,

and any needed data conversions done. The usual reason for

creating wrappers is to facilitate the reusability of existing

software. Another is to provide an XML interface for exist-

ing software, because XML interfaces are required in some

versions of SOA, but currently are rare in existing software.

Middleware is software that provides interoperability

among pieces of existing software to assist their use as part

of a SOA implementation, or provides additional services if

needed in a SOA implementation [14, 20]. Since one of the

lures of SOA for managers is the claim that it facilitates

developing new applications quickly to meet users’

expressed needs, managers sometimes warmly greet

additional services via middleware. More commonly,

however, managers find that the process of implementing

SOA gets bogged down in delays in getting adequate

interoperability, and managers reluctantly find themselves

approving more middleware development, or the acquisition

of middleware from various vendor’s offerings.

Where incorporating existing (and especially “legacy”)

software is a major portion of a SOA implementation, one

variety of middleware often gets included. It is the enter-

prise service bus (ESB) [15]. It works as an integrating

communication means, and as a router for some execution

requests. Also it can work as both a router and buffer for

data flows among the parts of the SOA implementation.

This can reduce the need for using some wrappers, since the

buffering may include data conversions, such as to or from

XML.

2.3. Distributed execution environment

Meeting managers’ directives to attempt implementing

their vision of SOA encounters a cost-raising constraint.

That constraint is the growing role of the Internet in the

transactions involving the organization, and the normal

built-in recognition of the role of the Internet and its World

Wide Web in SOA. A consequence of the constraint is that

a SOA implementation almost always has to be able to

operate in a distributed environment [4, 6 Chapter 3]. In

nearly all organizations this means at a minimum working

with the Internet and geographically distributed users, and

for some organizations at a maximum meeting those

organizations’ needs from globally distributed computer

sites [3].

As a part of its normal performance, any working

implementation of SOA has to be able to receive requests

and remote procedure calls coming in via the Internet, and

to send results and remote procedure calls out via the

Internet. The software comprising the entire SOA imple-

mentation need not be at just one physical location (site), but

portions of the SOA software may exist and be working

asynchronously at different and/or multiple sites. For

coordinated action among the distributed sites, SOA

software usually uses the Internet.

The tie of SOA to a distributed execution environment

has been a source of concern to some managers of users

when the tie has consequentially also involved or

encouraged a distributed data environment. Some managers

of users regard having control or ownership of data as being

a key foundation for their effectiveness in their user manager

roles [6 Chapter 6]. Such managers usually have sought and

often won more local customizations in SOA

implementations to preserve restricted access to and

distribution of selected parts of an organization’s data,

usually via some database modifications and/or some

objects’ data and methods.

3. Issues related to service granularity

3.1. Organizational distinctiveness and culture

Commonly, an organization distinguishes itself from

other organizations by encouraging its own “culture.” In

practice that means doing things a little differently from how

other organizations do things, and that can include how the

information systems interface with the employees. The bias

toward culture differences can affect the implementation of

a SOA. One version of SOA does not fit all organizations

equally well.

Managers usually take culture into account when they

consider introducing or extending SOA in an organization,

for they want the users to be facilitated in doing their work

“our way.” To the extent managers give it consideration,

this makes the user group be customers of services meriting

quality of service (QoS) care from the information systems.

This gives direction to the services that the managers expect

to find in or have put into a SOA implementation.

Customization is one common way to add to the

distinctiveness of the information systems running as part of

508

a SOA implementation. Modifying open source software or

an organization’s own reusable software adds maintenance

effort to creating a SOA implementation, and negates some

of the major advantages of using reusable and open source

software in a SOA implementation. Acquiring vendor-

supplied proprietary software may limit the extent of the

customization possible. But if the proprietary software is not

popular, then its unpopularity may obviate the need to do

any major customization. Any customization may also have

an adverse effect on reliability or security.

3.2. Reliability and security

Users tend to take reliability and security in information

systems for granted, something that is taken care of for them.

Managers tend to be more aware of the need for reliability in

information systems’ performance, than in their security.

Yet security breaches can result in violations of reliability.

Unfortunately, SOA provides an environment that is

comfortable for hackers and intruders for three major

reasons. One is SOA’s close ties with the Internet. This

makes implemented SOA software be a potential target for

denial of service attacks, for example. Hence, the common

defenses associated with Internet usage, such as firewalls,

are very important for use with SOA. A second reason is the

big use of remote procedure calls in most SOA

implementations, because remote procedure calls can be

hijacked and infected. Defending against corrupted calls

often becomes part of the tasks assigned to middleware and

wrappers. A third reason arises from the distributed environ-

ment provided by SOA implementations. Infections can be

spread easily among the distributed sites, because the usual

Internet traffic between parts of the SOA implementation

usually gets light inspection by the firewalls.

3.3. SLA and alignment

Because of the complexity added by wrappers and

middleware to the complexity arising from SOA’s close ties

with the Internet, users tend to worry about the robustness

and reliability of SOA implementations. The classic line of

defense for users to protect themselves from too frequent

service outages or other service impairments, has been to ask

for service level agreements (SLAs) from the service

provider [12]. Such requests typically result in negotiations

between the middle managers in the user and IS/IT groups.

The availability of good quantitative metrics makes SLA use

both more effective and less contentious.

While the manager group is rarely involved with SLAs,

the personnel of the manager group are involved with the

effects of SOA on the alignment of IS/IT with their general

goals and objectives for the organization overall. SOA

implementation software projects typically start small, and

then spread out being more inclusive. Hence, managers

often get concerned about their respective domains being

either penalized or favored as the SOA work progresses, and

depending on how well it progresses. This can result in

political conflicts and power plays within an organization.

3.4. Maintainability

Keeping ahead of the hackers and intruders requires a

continuing and varied software maintenance effort. For

SOA implementations, the effort usually is a mix of three

types of maintenance: enhancive, adaptive, and preventative.

In many organization, this maintenance work is done only

partially by the regular IS/IT personnel, and done mostly by

security personnel who may or may not be assigned as IT

personnel.

The more significant burden of software maintenance

comes from the way that the SOA has been implemented. If

vendor-provided or open-source software serves as most of

the middleware, then applying supplier-provided patches

and updates is an important part of the maintenance. Some

of that work has to be done dynamically on-the-fly without

turning off the execution of the software being updated.

If in-house wrappers and middleware have been used

instead of vendor or open-source software, then the

maintenance may be less costly because of the trade-off

between the added costs of employees and the added costs

maintenance fees. Having to apply some changes on-the-fly

does not disappear, but the personnel hours expended

depends on the relative amounts of the various levels of

granularity used in the SOA implementation.

The informal field experience thus far is that the higher

the proportion of implementing from the higher levels of

granularity, the higher is the subsequent stream of main-

tenance expenses. The situation is the common economics

trade-off of trying for the optimum balance between the up

front investment in maintenance and the continuing stream

of subsequent maintenance costs. Neither can be held to

zero money outlay. The underlying reason is the additional

complexity introduced by trying to make existing software

appear to do what it was not designed and implemented

originally to do. Another reason is the complexity

introduced by changing data flows and control sequences, as

by such techniques as inserting wrappers and middleware.

Increased complexity results usually in decreased

maintainability.

As was noted at a conference in Europe last year, one

potentially powerful way to make SOA software more

maintainable would be to provide IS/IT personnel with a

high-level vocabulary of service commands [9]. Those

commands could the be used instead of IS/IT’s current

vocabulary of commands from the newer and most powerful

design or programming languages, such as those of

executable UML. The commands, however, to be useful

would have to be supported by compilers or translators to

convert them into executable object code. Currently, we

have neither the commands nor the supporting compilers or

translators.

509

3.5. Hardware considerations

Today and in at least the near-term future, organizations

will continue to operate by using data to produce a compact

communicable manipulable model of their operations and

activities. Thus far, computers have greatly reduced the cost

and greatly increased the power and usefulness of such data

models. Software has enabled using the {data in :: data out}

normal capability of computers to handle a tremendous

diversity of data models in an enormous diversity of fields,

such as music, bioinformatics, taxation, genealogy, etc. To

use computers, we have to express as data the things to be

conceptually worked with. Unfortunately, we have not yet

succeeded in cleanly expressing “service” as data. But to

use today computers in SOA, we have to work with what we

have. To do that today, we have to settle at least temporarily

upon some way of expressing a service as data. Here again,

the granularity choice has major effects.

The lower levels of granularity can far more easily and

cleanly be used as services, since the complexity level of

them individually is relatively low. IS/IT personnel can

usually and fairly easily also express these as functions in a

strict-use mathematical sense. And IS/IT personnel know

how to use function-rigorous techniques to create

subroutines and routines, and then use those to build

instances of almost any of the higher levels of service

granularity [18]. To implement something successfully on

a computer requires a full accurate expression of the

software parts and their interactions in specific data terms.

Such a building process while possible is not fast or easy,

and hence is relatively costly. To date, the economics of

implementing SOA from the bottom starting with the lower

levels of granularity has appeared unattractive to the

manager group in organizations. Thus far, the track record

of the compromises and high-level granularity approved by

organizations’ managers as courses of action to be attempted

in planing and implementing SOA has been littered with cost

and time overruns, shortfalls from targeted capability, and

some recognized failures [13].

3.6. Software considerations

Largely because of the software factors, the financial

track record thus far for SOA implementations has been

mostly disappointing to the manager group. Part of this may

flow from the usual track record of development projects, for

development projects are generally riskier than and with

higher failure rates and lower user satisfaction rates than

maintenance projects [10]. Following the manager groups’

choices of working from the higher levels of service

granularity with minimal maintenance changes to the

existing (including legacy) software, runs counter to a

common IS/IT rule of thumb: getting software to act as it

was not designed and implemented to perform increases

complexity and raises the cost of future work done on that

software. Adding to that complexity increase is that the

distributed asynchronous execution obscures traceability and

governance, reduces the effectiveness of controls, and makes

testing more difficult. The complexity increase and upward

cost bias are impairing progress toward a common manager

goal in going to SOA, the goal of enabling fielding faster

and at a lower cost the new applications that users need, and

that could boost a manager’s standing in an organization.

To possibly mitigate that impairment, the IS/IT group would

like, but as noted earlier does not yet have, a new

methodology to enable designing and implementing software

in terms of services [9].

Using the Internet in working with customers, suppliers,

and an organization’s own distributed locations continues to

grow in importance because of the opportunities for growth

that it offers. In practice, exploiting that opportunity without

effective countermeasures in place and working, exposes the

assets of an organization to increasingly sophisticated

criminally-motivated attacks via the Internet.

4. Conclusions

Managers’ typical choices thus far have been to have

SOA be implemented as development projects nominally

reusing existing software at the higher levels of granularity

but in distributed environments open to the Internet. The

managers have been generally accepting of the commonly

higher failure rates of development projects compared to

maintenance projects. Concurrently, the managers have

discouraged software maintenance work on the existing

software, but tolerated developing or acquiring and using

middleware and wrappers. The results of these choices has

been projects often troubled by overruns on cost and

schedule and shortfalls on meeting project expectations,

while increasing the complexity of their organizations’

software assets. Unless offset, that added complexity will in

turn increase the difficulty and cost of maintaining user

satisfaction with the SOA software.

5. References

1. Bernichi, M. and Mourlin, F., 2007, “Software manage-

ment based on mobile agents,” Proceedings Second

International Conference on Systems and Network

Communications (ICSNC 2007), IEEE Computer

Society, Los Alamitos CA, pp. 64–69.

2. Choudhary, V., 2007, “Software as a Service: impli-

cations for investment in software development,” Pro-

ceedings 40 Annual Hawaii Internation Conference onth

System Sciences (HICSS’07), IEEE Computer Society,

Los Alamitos CA, pp. 209–218.

3. Cuomo, G., 2005, “IBM SOA ‘on the Edge,’” Pro-

ceedings of the 2004 ACM SIGMOD International Con-

ference on Management of Data, ACM Press, New York

NY, pp. 840–843.

4. Dan, A.; Johnson, R.; and Arsanjani, A., 2007, “Informa-

tion as a service: modeling and realization,” Proceed-

510

ings International Workshop on Systems Development in

SOA Environments (SDSOA’07), IEEE Computer

Society Press, Los Alamitos CA, pp. 2–7.

5. Ducasse, S.; Nierstrasz, O.; and Rieger, M., 2006, “On the

effectiveness of clone detection by string matching,”

Journal of Software Maintenance and Evolution, Vol.

18, No. 1, pp. 37–58.

6. Erl, T., 2008, SOA Principles of Service Design, Prentice

Hall, Upper Saddle River NJ, 573 pp.

7. Erradi, A., 2006, “SOAF: an architectural framework for

service definition and realization,” Proceedings Inter-

national Conference on Services Computing (SCC’06),

IEEE Computer Society, Los Alamitos CA, pp. 151–158.

8. Ferris, C, and Farrell, J., 2001, “What are Web services?”

Communications of the ACM , Vol. 46, No. 6, p. 31.

9. ICSM. 2007, “MESOA working session on maintenance

and evolution of service-oriented systems,” Proceedings

of the 2007 IEEE International Conference on Software

Maintenance, IEEE Computer Society, Los Alamitos

CA, Appendix. URL of MESOA wiki is pending.

10. Jones, C., 2003, “Variations in software development

practices,” IEEE Software, Vol. 20, No. 6, pp. 22–27.

11. Jones, S., 2005, “Toward an acceptable definition of

service,” IEEE Software, Vol. 22, No. 3, pp. 87–93.

12. Kajko-Mattsson, M.; Ahnlund, C.; and Lundberg, E.,

2004, “CM : service level agreements,” Proceedings 203 th

IEEE International Conference on Software Main-

tenance, IEEE Computer Society, Los Alamitos CA, pp.

432–436.

13. Kajko-Mattsson, M.; Lewis, G. A.; and Smith, D. B.,

2007, “A framework for roles for development, evolution

and maintenance of SOA-based systems,” Proceedings

International Workshop on Systems Development in SOA

Environments (SDSOA’07), IEEE Computer Society,

Los Alamitos CA, pp. 7–12.

14. Kon, F.; Costa, F.; Blair, G.; and Campbell, R. H., 2002,

“The case for reflective middleware,” Communications

of the ACM , Vol. 45, No. 6, pp. 33–38.

15. Manes, A. T., 2007, Enterprise Service Bus: A

Definition, Burton Group, Midvale UT, 35 pp.

16. Mariani, L., and Pezzè, M., 2007, “Dynamic detection

of COTS component incompatibility,” IEEE Software,

Vol. 24, No. 5, pp. 76–85.

17. Pace, J. A. D., and Campo, M. R., 2001, “Analyzing the

role of aspects in software design,” Communications of

the ACM , Vol. 44, No. 10, pp. 67–73.

18. Prowell, S. J.; Trammell, C. J.; Linger, R. C.; and Poore,

J. H., 1999, Cleanroom Software Engineering, Addison

Wesley, Reading MA, 390 pp.

19. Ralston, A., and Reilly, E. D. (Editors), 1993, En-

cyclopedia of Computer Science, Third Edition, Van

Nostrand Reinhold, New York NY, 1558 pp. Refer to

article with size item name (e.g., routine).

20. Sarna-Starosta, B.; Stirewalt, R. E. K.; and Dillon, L. K.,

2007, “Contracts and middleware for safe SOA

applications,” Proceedings International Workshop on

Systems Development in SOA Environments

(SDSOA’07), IEEE Computer Society, Los Alamitos

CA, pp. 5–10.

21. Sneed, H. M., 2001, “Wrapping legacy COBOL pro-

grams,” Proceedings Eighth Working Conference on

Reverse Engineering (WCRE 2001), IEEE Computer

Society, Los Alamitos CA, pp. 189–197.

22. Sneed, H. M., 2006, “Integrating legacy software into a

service oriented architecture,” Proceedings of the Con-

ference on Software Maintenance and Reengineering

(CSMR’06), IEEE Computer Society, Los Alamitos CA,

pp. 3–14.

23. Taft, D. K., 2008, “Mashups spawn debate,” eWeek,

Vol. 25, No. 6, p. 20.

511

Securing Service-Oriented Systems Using State-Based XML Firewall*

Abhinay Reddyreddy and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA
{g_areddyreddy, hxu}@umassd.edu

Abstract. Web services security has been a challenging
issue in recent years because current security
mechanisms, such as conventional firewalls, are not
sufficient for protecting service-oriented systems from
XML-based attacks. In order to provide effective security
mechanisms for service-oriented systems, XML firewalls
were recently introduced as an extension to conventional
firewalls for web services security. In this paper, we
present a state-based XML firewall architecture that
supports role-based access control and detection of XML-
based attacks. We develop a detailed design of our state-
based XML firewall by defining state-based information,
user information, and various access control policies and
detection rules. The detection rules are modularized into
separate units, which support real-time detection and
verification of various types of XML-based attacks using
state-based information and user information. To
illustrate the effectiveness of our approach, we develop a
prototype state-based XML firewall, and demonstrate
how XML-based attacks can be efficiently detected.

1. Introduction

Enterprises are increasingly employing web services
technology in order to achieve interoperability at
application levels. Web services are both platform and
language independent service components that can be
exposed using a standard Web Services Description
Language (WSDL) and registered at UDDI registries.
They can be automatically discovered over the Internet by
potential clients, and support loosely coupled interactions
between applications through a standard XML-based
protocol, called Simple Object Access Protocol (SOAP).
Since web services create open interfaces into core
enterprise applications and data, attacks on web services
can be more severe than those attacks perpetrated via e-
mail, web servers and network connections.

* This material is based upon work supported by the Chancellor’s
Research Fund and UMass Joseph P. Healey Endowment Grants,
and the Research Seed Initiative Fund (RSIF), College of
Engineering, UMass Dartmouth.

Conventional firewalls are not sufficient for protecting
service-oriented systems because web services attackers
can initiate attacks as request/response traffics using
HTTP protocol that can pass conventional firewalls. The
most commonly used conventional firewalls are package
filtering firewalls, stateful inspection firewalls, and
application level firewalls [1]. A packet filtering firewall
only restricts IP addresses or TCP ports recorded in an IP
table; however, the port 80 reserved for HTTP and SOAP
traffics cannot be blocked on a server that hosts the web
services. Thus, a malicious web service invocation can
easily pass a packet filtering firewall. On the other hand, a
stateful inspection firewall can keep track of TCP/IP
connection states and take actions accordingly, but it does
not look into packet contents. Similarly, an application
level firewall also blocks only those suspicious network
traffics with protocols that might be used by an attacker.
For example, an application gateway for an FTP server
can be configured to accept FTP traffics only and reject
all packets using other protocols. Therefore, both stateful
inspection firewalls and application level firewalls are not
capable of detecting XML-based attacks, e.g., SQL
injection attack and overloaded payload attack, which are
embedded in XML-based messages [2, 3].

Lack of effective security mechanisms for web
services is one of the major reasons why there are so
many organizations hesitating to adopt service-oriented
technologies despite their significant advantages. In this
paper, we introduce an approach to securing service-
oriented systems by developing a state-based XML
firewall at the application level. Our approach supports
Role-Based Access Control (RBAC) [4] for users and
detection of XML-based attacks. The XML firewall
design introduced in this paper is based on a formal XML
firewall model presented in previous work [5], where
access permissions to web services are only granted to
users who are authenticated and authorized. We develop a
detailed design by defining state-based information, user
information, and various access control policies and
detection rules. Finally, to demonstatrate the effectiveness
of our approach, we implement a prototype state-based
XML firewall for efficient detection of XML-based
attacks to a hospital management service-oriented system.

512

2. Related Work

Web services security has been an active research area
in recent years. Many organizations such as IBM and
Cisco, tried to identify major threats to web services in
order to protect service-oriented systems more effectively
[6, 7]. Typical XML-based attacks include request
flooding attack, SQL injection, parameter tampering,
overloaded payload attack, and recursive payload attack
[2]. A request flooding attack is a type of XML Denial of
Service (XDoS) attack, where the attacker floods the web
service provider with a large number of web service
requests in order to exhaust the resources at the server
side. XDoS attacks are similar to packet-based DoS
attacks that flood servers with lots of data (e.g., SYN
packets); however, conventional firewalls cannot detect
XDoS attacks because XDoS attacks are threats to the
availability of web services rather than network
connections. An SQL injection attack involves tampering
the input fields of database requests in order to obtain
unauthorized access to data or stored procedures; while a
parameter tampering attack is a process of tampering the
method parameters passed to a web service operation, and
resulting in undesired service behaviors. An overloaded
payload attack and a recursive payload attack can exhaust
the XML parser of a service provider by sending huge
XML data and embedding deeply nested elements in a
web service request, respectively.

There is very little previous work on protecting web
service providers from being attacked. Fernandez
proposed a pattern-based language for XML firewall [8].
Two patterns for design of XML firewall were proposed,
which are security assertion coordination pattern using
role-based access control for access to distributed
resources, and filter pattern for filtering XML messages
or documents according to institution policies. Hoktamp
discussed the need for XML firewall and possible
techniques to protect web services [9]. He analyzed the
security issues at three levels of enterprise application
integration, namely intranet, extranet and Internet.
Cremonini et al. discussed about integrating XML
firewall with existing web services security specifications
[10]. They analyzed serious security risks in stateful
SOAP protocols such as WS-Reliable Messaging, and
presented some design guidelines to develop semantics-
aware firewalls that can be integrated with the Web
Service Architecture (WSA). Bebawy et al. discussed
how to apply business specific rules in a centralized
manner to develop a web services firewall, called Netdgy
[11]. In their implementation, SOAP messages are
removed from the transport layer and examined for attack
detection, and then induced back into the OSI stack if the
XML message is not corrupt. The Netdgy system only
supports prevention of limited types of web services
attacks such as buffer overflow and SOAP-based DoS
attacks. Furthermore, it does not provide any access

control mechanisms for users; instead, it supports
authorization based on IP tables, which is in the same
manner as a conventional packet filtering firewall where
messages originating from certain IP address are either
dropped or accepted according to a list of blocked IP
addresses. Different from the Netdgy system, our effort is
to develop a modularized XML firewall that is
customizable and targeted for various types of XML-
based attacks, thus our approach provides a more
comprehensive solution to web services security.

3. Development of State-Based XML Firewall

3.1 State-Based XML Firewall

Based on the formal model of XML firewall we
introduced previously [5], we design the state-based
XML firewall as a software module with four functional
components, namely client interface, RBAC processor,
SOAP filter, and admin interface, which coordinate to
protect the web services deployed on a web server. As
shown in Figure 1, the four major components in an XML
firewall are supported by two databases: User_Info
database and State_Info database, which store user
information and state-based information, respectively.
The client interface module interacts with web service
clients and is responsible for receiving requests and
sending responses back to the service clients. The actual
web services can be deployed either on the same or a
different machine where the XML firewall is installed;
however, they can only accept requests from a service
client through a service proxy defined in the client
interface module. As illustrated in Figure 1, each
deployed web service (e.g., WS1) has a corresponding
web service proxy (e.g., WS1P) defined in the client
interface module. The client interface module provides
exactly the same interface for web service invocation as
the deployed web services, so it is transparent to the web
service clients. A client can access an actual web service
only after it successfully passes through the XML firewall
because the service proxies are the only interface for web
service invocations. Authentication and authorization are
the major features of the XML firewall for providing user
access control. These features ensure that only valid users
are allowed to access services. The login block defined in
the client interface module provides a basic mechanism
for user authentication; while the RBAC processor is
responsible for authorizing a user with predefined roles
and access permissions. The RBAC processor can
determine whether a client has appropriate permissions to
access a web service. If a malicious user is detected for a
lack of access permissions, any attempts to access the
web service by that user will be denied, and the user will
be forced to log out of the system. In order to provide a
valid duration for a user to invoke web services, we first
define the concept of user session as follows.

513

Definition 3.1 A user session is defined as a 5-tuple
(UID, SID, RO, ST, ET), where UID is a user ID, SID is a
session ID, RO is a set of roles that will be assigned to the
user, ST is the session start time, and ET is the session
expiration time. A user session is created when the user
logs in and destroyed when the user logs out.

After a user logs in and passes the authentication step,
his user information is transferred to the RBAC processor
module for authorization. Before the User Role and
Permission Assignment (URPA) module assigns the user
appropriate roles and corresponding access permissions,
the session management module in the RBAC processor
creates a user session for that user, which has a start time
and an expiration time. During the period of time when
the session is valid, a user can make requests to web
services without being authenticated again. The URPA
module, which is used to assign roles to users and
permissions to roles, interacts with the Policy Base, which
is a repository of access control policies defined in Prolog
by an administrator through the admin interface. The
reasoning process for authorization is supported by a
Prolog engine as well as user’s information, such as a
user’s trust level, stored in User_Info database.

For every incoming web service request from a user,
the RBAC controller verifies whether the associated user
session is valid and the user has sufficient permissions to
invoke the web service. If the user has enough permission
to access the web service, his request in a form of XML
message, along with the session information will be
passed to the SOAP filter for threat detection and content

analysis. Otherwise, the user’s request will be denied by
the RBAC controller immediately.

The filter controller in the SOAP filter module is
responsible for detection of suspicious requests. It
examines the session information passed to it as well as
the data from the User_Info and State_Info databases to
determine whether the user request is suspicious of any
kind of attacks. The detection process is supported by the
detection rules defined in Prolog by an administrator,
which are modularized into different rule sets for
detection of different types of XML-based attacks, e.g.,
an XDoS attack and an SQL injection attack. Thus, the
modularized rule sets can be invoked individually, which
support efficient reasoning in real-time. In addition, there
is also a set of rules used by the filter controller for
detection of attacker suspects. For example, when the
filter controller detects a suspicious user with high
frequency of requests (determined by predefined
thresholds as shown in Section 3.4), the user’s request
will be passed to the XDoS verification module to verify
if the user is performing an XDoS attack. Similarly, if the
controller detects that a user request exceeds the normal
packet size, the XML message will be sent to the XML
validation module to verify for oversized payload attack.
On the other hand, if a user request is a normal one, the
request will be immediately passed to the web server for
web service invocation.

The XDoS verification module requires investigation
of a user’s previous behavior in order to verify if a user is
performing an XDoS attack. If the user has a very low
trust level or has been suspected as an XDoS attacker for

Figure 1. Architectural design of state-based XML firewall

User Info State Info

User Role
& Permission

Assignment (URPA)

RBAC Controller

Session
Management

Admin Interface Detection Rules

Filter Controller

XDoS
Verification

SQL
Injection

XML
Validation

Policy Base

RBAC Processor SOAP Filter

Web Server

WS1

WS2

WS3

WS4

WS5

XML
Parser

Web
Service
Client

Session Info

WS Request
Info

Login

WS1P

WS2P

WS3P

WS4P

WS5P

Administrator

Client Interface

WS Request

WS Response

Prolog
Engine

…

514

a number of times, not only the request from that user will
be dropped, but also the user’s trust level may be
degraded further. Different from the XDoS verification
module, the SQL injection module only evaluates the
parameters passed to a web service operation by matching
them with predefined regular expressions in order to
check for any malformed parameters or parameter
tampering. Similarly, the XML validation module
interacts with the XML parser to evaluate if the request
message is well formed by comparing it with an XML
schema, and also checks for the size and nesting depth of
the message. If any malicious activity is detected and
confirmed, the request for the web service invocation is
denied immediately; otherwise, the request is passed to
the web server for processing. When the service
invocation is completed, the result will be forwarded back
to the client through the client interface.

One of the major advantages of our approach is that
the access policies and the detection rules are
modularized; therefore, they can be dynamically updated
without recompiling and reinstalling the XML firewall.
As shown in Figure 1, a human administrator can add,
remove or update any of the access policies and detection
rules through the admin interface at runtime. However,
during the updating process, the Prolog engine must wait
until the updating process is completed.

3.2 Database Design for State-Based XML Firewall

In the detection process, the critical information used
by the XML firewall for decision making is the data
stored in State_Info and User_Info databases, which are
used for detecting and verifying different types of XML-
based attacks. In the following, we give some key
definitions of data types used in State_Info and User_Info
databases for detection of XDoS attacks.

Definition 3.2 A user state is a 5-tuple (UID, SID, TR,
FR, TL), where UID is the ID assigned to the user at the
time of registration, SID is the ID of the session that is
initiated, TR is the total number of requests made by the
user in the current session, RF is the request frequency,
i.e., the number of requests made by the user in a recent
time interval, and TL is the user’s current trust level.

Definition 3.3 A firewall state is a triple (RE, DE, RT),
where RE is the number of requests that are received by
the XML firewall but not yet forwarded to the web server.
DE is the number of requests that are being processed by
the detection modules in the SOAP filter. RT is the
number of requests in a recent time interval, e.g., the last
five minutes. A firewall state is a measure of the work
load on the XML firewall system.

Definition 3.4 A web service state is a triple (WID, NR,
SI), where WID is the ID of the web service, NR is the
number of requests currently being processed by the web

service, and SI is a state indication of the web service,
which can be busy, normal or free. The state indication of
a web service indicates the work load of the web service
that is determined by thresholds set by an administrator.

Definition 3.5 A user credential is a 4-tuple (UN, PW,
UID, TL), where UN is the user name, PW is the
password specified by the user at registration time, UID is
the user ID, and TL is the current trust level assigned to
the user. A user receives a “normal” trust level at the time
of registration, and his trust level can be updated later at
runtime based on the user’s most recent behavior.

Based on the above state-based information and user
information, the SOAP filter can detect and verify XDoS
attacks in real-time. Note that the databases store not only
the current state and user information, but also the
previous states and the recent user information that are
useful for attack verification.

3.3 Role-Based Access Control Policies

A role is an abstraction that represents a set of
permissions that are needed to perform the tasks
associated with a position. Role-based authorization
policies specify the roles that each user may adopt, and
the permissions associated with each role [4, 12]. From
earlier research, it has been argued that it is desirable to
separate policy from the application code, so policies can
be easily changed over time [13]. Therefore, in this
project, we choose Prolog as a specification language for
both access control policies and detection rules. Prolog is
a declarative language, and can be used to specify both
facts and production rules or policies. With a solid
mathematical foundation, Prolog allows to reason from a
set of rules and supports meta-level reasoning, making
policy conflict detection possible. Consider the following
access control policies. In a hospital management system,
a staff member (e.g., a billing clerk) and a pharmacist can
only access a patient’s contact and billing information but
not his medical records. A patient can be assigned to a
doctor or a nurse, who may have full access to the
patient’s medical records and contact information, but not
his billing and account information. A patient can access
all records of his own, including his contact information,
billing and accounts, and medical records. The access
control policies can be specified in Prolog as follows.
isValidRole(patient).
isValidRole(doctor). isValidRole(nurse).
isValidRole(staff). isValidRole(pharmacist).
assignRole(U,R) :- isValidRole(R).
canInvoke(R,T,billingService,accessBill):-
 contains(R,[staff,pharmacist,patient]),
 contains(T,[normal,high]).
canInvoke(R,T,billingService,computeBill):-
 contains(R,[staff,pharmacist]),
 contains(T,[normal,high]).
canInvoke(R,T,accessService,readRecord):-
 contains(R,[doctor,nurse,patient]),

515

 contains(T,[normal,high]).
canInvoke(R,T,accessService,writeRecord,P,U):-
 contains(R,[doctor,nurse]),
 contains(T,[normal,high]), assignPatient(P,U),
 assignRole(P,patient), assignRole(U,R).
canInvoke(R,T,contactService,accessContact):-
 contains(R,[staff,doctor,nurse,patient]),
 contains(T,[normal,high]).

Note that in the above Prolog code, R and T represent
a user’s role and the trust level of a user, respectively.
Any user must take certain role and have at least a
“normal” or “high” trust level before he can access any
resource. The predicate isValidRole lists various roles
defined in the system. The predicate assignRole(U, R) is
true when a user with UID U is assigned a valid role R.
Similarly, assignPatient(P, U) is true when the patient
with UID P is assigned to a doctor or a nurse with UID U.
The predicate canInvoke determines whether a user with a
certain role has the permission to invoke a web service
operation. For example, the predicate canInvoke(R, T,
accessService, readRecord) specifies that a user with role
R and trust level T can invoke the web service operation
readRecord defined in web service accessService.
Similarly, the predicate canInvoke(R, T, accessService,
writeRecord, P, U) ensures that a doctor or a nurse U can
update a patient P’s record only if the patient P has been
assigned to the doctor or nurse with UID U.

3.4 Real-Time Detection of XML-Based Attacks

The SOAP filter is responsible for real-time detection
of XML-based attacks. The process of detecting XML-
based attacks involves two major steps, which are
detection of suspicious SOAP messages and verification
of attacks. Suspicious SOAP messages are detected by the
filter controller, which uses the session and state
information to find possible request flooding attacks, uses
certain predefined patterns to find matched strings in the
parameters passed to a web service operation; and also
keeps track of the maximal allowed message size and the
maximal allowed nesting depth in the incoming XML
messages in order to detect oversized or recursive payload
attacks. We now use an XDoS attack as an example to
show how to detect XML-based attacks using our state-
based XML firewall. To detect XDoS attacks, the filter
controller looks into the session information to check if
the current frequency of requests (e.g., the number of
request during the last minute) made by a certain user
exceeds the threshold set by an administrator. If the
frequency exceeds the limit, any new requests from that
user will be sent to the XDoS verification module for
further analysis. Some sample rules used by the filter
controller for XDoS detection are illustrated as follows.
checkThreshold(W,S,X):- threshold(W,SI,Y),X > Y.
threshold(accessService,busy,20).
threshold(accessService,normal,40).
threshold(accessService,free,60).

In the above rules, W is the web service name, S
represents the session ID, and X is the number of requests
per minute made by a user who is currently under
investigation. The predicate checkThreadhold evaluates
to true when the number of requests made by the user
during the last minute exceeds the limit determined by the
web service state indication. For this example, the state
indication of a web service is busy, normal, or free if the
number of requests processed by the web service during
the last minute is larger than 40, between 20 and 40, or
less than 20, respectively. According to the above rules,
when the web service is busy, normal or free, the
corresponding limit on number of requests per minute is
20, 40 or 60, respectively. Note that the information about
the web service state and the number of requests the user
made during the last minute are stored in State_Info
database. To simplify matters, the threshold in our current
XML firewall implementation does not depend on the
firewall state that is specified in Definition 3.3.

If a query to the predicate checkThreshold returns
true, the corresponding request will be passed to the
XDoS verification module where the user’s violation
history is analyzed. The following Prolog rules
demonstrate how to verify an attacker and when to
degrade a user’s trust level.
xdosVerify(U,T):- inspectHistory(U,T,V).
inspectHistory(U,T,V):-
 T = high, dataConnect(U,3,V), V = '3',
 degradeTrustLevel(U,normal).
inspectHistory(U,T,V):-
 T = normal, dataConnect(U,5,V), V = '3',
 degradeTrustLevel(U,low).
inspectHistory(U,T,V):-
 T = low, dataConnect(U,7,V), V = '3'.
 degradeTrustLevel(U,permanentlyBlocked)
dataConnect(U,X,V):-
 java_object('DataConnect',[],data),
 data<-getHistorySessionStatus(U,X) returns V.
degradeTrustLevel(U,T):-
 java_object('DataConnect',[],data),
 data <- recordTrustLevel(U,X).

The Prolog code inspects a user’s violation history of
exceeding service invocation frequency threshold. If the
user’s trust level is “high”, the XDoS verification module
only checks the user’s previous 3 sessions. If the user has
3 violations, his trust level will be degraded to “normal”.
On the other hand, if the user’s trust level is “normal” or
“low”, then the user’s previous 5 or 7 sessions need to be
checked. Similarly, when the user reaches the limit of 3
violations, his trust level will be degraded to “low” or
“permanentlyBlocked”, respectively. In all above cases, if
a query to the predicate xdosVerify evaluates to true, the
user’s current session will be immediately closed. In this
case, the user must log in again before he can make
further requests. Note that the Prolog code listed above
requires invoking Java methods getHistorySessionStatus
and recordTrustLevel to acquire information from
State_Info database, and record a user’s trust level as
history information in User_Info database, respectively.

516

Another example to show how to detect attacks using
our XML firewall is to detect SQL injection attacks. SQL
injection is a technique used to exploit the vulnerabilities
in web applications that communicate with databases. The
basic idea behind SQL injection is to convince the
application to run some malicious SQL code that may
result in unauthorized data access or data loss. SQL
injection attacks mostly occur due to a lack of user input
validation. Although SQL injection is a general technique
to attack web-based applications, in the context of
service-oriented systems, it can tamper web service
parameters which are embedded in XML messages. Thus,
in this paper, we treat it as a type of XML-based attack. A
simple example of SQL injection attack is called
concatenated query attack, where the user manipulates a
parameter to form a concatenated query. When a normal
query “SELETE * FROM users WHERE userid =
'user1'” is manipulated to “SELECT * FROM users
WHERE userid = 'user1'; DELETE FROM users;
-- x'”, the execution of the query results in data loss.

In our current implementation of XML firewall, the
SOAP filter uses regular expressions to specify string
patterns such as concatenation of “';” and “';--”. If any
input string matches one of the predefined patterns, the
user will be detected as an attacker for SQL injection, and
the user’s current session will be closed immediately.

4. A Case Study

In this section, we use a case study to demonstrate
how a state-based XML firewall can be used to
effectively detect XML-based attacks. We developed a
prototype XML firewall, and installed it on the same
machine where a service-oriented system was deployed.
The service-oriented system we adopted in this case study
is a hospital management system, where different roles
and access control policies are defined to determine a
user’s access permission to specific services. The hospital
management system is an adaptation of the system
presented in previous work [13], which is implemented as
a service-oriented system. The related user roles as well
as their corresponding access permissions are the same as
those defined in Section 3.3. We now first simulate an
SQL injection attack by accessing the web service
accessService, which allows a user with sufficient
permissions to write medical records for a patient.
Consider User1 with a patient role who is assigned to
nurse User2. Since User1 is assigned to User2, User2 has
permission to write User1’s medical records by invoking
writeRecord operation defined in web service
accessService. The invocation requires four parameters,
namely the ID of the user who writes the record, the ID of
the patient whose record is to be updated, a string
containing medical report information, and the type of the
report. A legitimate request from the nurse could be
writeRecord(“User2”, “User1”, “The patient reacted

abnormally to new drugs.”, “Observation”), which
results in an SQL query as follows.
INSERT INTO patientRecords VALUES('User2',
'User1', 'The patient reacted abnormally to new
drugs.','Observation');

Now a malicious user may perform an SQL injection
attack by tampering the parameters in the web service
invocation. User2 may send the fourth parameter as
“Observation’); DELETE FROM users; --
dummystring”. The resultant query in the web service
will delete all the records in users table if the server
allows execution of multiple queries.

With the installed XML firewall, when User2 makes
such a request, the XML firewall can successfully detect
the SQL injection attack and prevents unauthorized data
access by checking the parameters of the request against
predefined regular expressions. Figure 2 is a snapshot of
the log information showing the successful detection of a
simulated SQL injection attack.

Figure 2. Log information for SQL injection detection

To demonstrate that our prototype XML firewall can
effectively detect and prevent XDoS attacks, we simulate
request flooding attacks on a web service with a large
number of requests from an attacker, and record the
response behavior of the server for requests from a
normal user. We choose the report generation service
implemented in the service-oriented hospital management
system because it consumes significant amount of
memory space and CPU time. The web service takes
around 10 seconds to process a request; thus, the normal
response time should be around 10 seconds. We now set
up the flooding attack with a number of threads, each of
which sends web service requests continuously to the
report generation service. When the XML firewall was
disabled, we observed that when the number of requests
received by the server increases, the response time of a
request from a normal user increases significantly. When
the frequency of requests reaches around 128 per minute,
the web service becomes unavailable to the normal user
because the server crashes due to a heap space error. This

517

is illustrated by one of the curve (denoted as “without
XML Firewall”) in Figure 3. When we enable our XML
firewall and set an appropriate threshold, the web server
can be successfully prevented from crashing. Figure 3
shows two other curves that represent the experimental
results with the XML firewall enabled when the
thresholds for the firewall with free state indication are
set to 80 and 60, respectively. As shown in Figure 3,
when the threshold is 80, the worst response time is 25
seconds, but it drops to normal response time when the
attacker increases the request frequency further. To
enhance performance, we lower the threshold from 80 to
60, and the worst response time now becomes 17 seconds.

Response Time vs. Number of Requests Per Minute

0

5

10

15

20

25

20 40 60 80 100 120 140 160 180 200
Number of requests per minute from attacker

R
es

po
ns

e
tim

e
in

 s
ec

s

without XML Firewall
with XML Firewall (80
with XML Firewall (60

Figure 3. Experimental results for XDoS attacks

Note that a very high threshold could overload the
system while a very low threshold might block legitimate
users with high request rates. Thus, it is important for the
administrator to choose an appropriate threshold for the
XML firewall in order to make it work efficiently.

5. Conclusions and Future Work

Service-oriented systems are increasingly deployed
over the Internet due to their standardized protocols and
techniques that enable the efficient integration of loosely
coupled applications over networks. However, due to the
open interface for service-oriented architecture, attacks on
service-oriented systems are more complicated than
traditional attacks that can be handled by conventional
firewalls. Thus, there is a pressing need to introduce new
security mechanisms to protect service-oriented systems.
In this paper, we introduced a state-based XML firewall,
which can be used to protect service provider from
various XML-based attacks. We developed a detailed
design of our state-based XML firewall, and implemented
a prototype XML firewall. Our experimental results show
that our prototype XML firewall can effectively protect
web services from various XML-based attacks. In our
future work, we will study new types of XML-based
attacks and show how their corresponding attack

verification modules can be easily integrated into our
current implemented system due to the modular design.
We will also consider adopting agent-based technology to
provide more intelligence in XML firewall for efficient
detection and verification of XML-based attacks.

References

[1] E. B. Fernandez, M. M. Larrondo-Petrie, N. Seliya,
N. Delessy-Gassant, and M. Schumacher, “A Pattern
Language for Firewalls,” In M. Schumacher, et al.
(Eds.), Security Patterns: Integrating Security and
Systems Engineering, Wiley, March 2006.

[2] E. Moradian and A. Håkansson, “Possible Attacks on
XML Web Services,” International Journal of
Computer Science and Network Security (IJCSNS),
Vol.6, No.1B, January 2006, pp. 154-170.

[3] M. Andrews and J. A. Whittaker, How to Break Web
Software: Functional and Security Testing of Web
Applications and Web Services, Addison-Wesley
Professional, February 2006.

[4] H. Feinstein, R. Sandhu, E. Coyne, and C. Youman,
“Role-Based Access Control Models,” IEEE
Computer, Vol. 29, No. 2, 1996, pp. 38-47.

[5] H. Xu, M. Ayachit and A. Reddyreddy, “Formal
Modeling and Analysis of XML Firewall for Service
Oriented Systems,” International Journal of Security
and Networks (IJSN), Vol. 3, No. 3, 2008.

[6] P. Crocker and B. Thompson, “Integrating
WebSphere DataPower SOA Appliances with
WebSphere MQ,” Technical Report, IBM Hursley
Software Lab, March 2007.

[7] Reactivity, “Architecting the Infrastructure for SOA
and XML,” White Paper, Cisco Systems, Inc. 2007.

[8] E. B. Fernandez, “Two Patterns for Web Services
Security,” In Proceedings of the 2004 International
Symposium on Web Services and Applications
(ISWS'04), Las Vegas, Nevada, 2004.

[9] M. Holtkamp, “The Role of XML Firewalls for Web
Services,” The 1st Twente Student Conference on IT,
Track B, June 2004.

[10] M. Cremonini, S. Vimercati, E. Damiani, and P.
Samarati, “An XML-Based Approach to Combine
Firewalls and Web Services Security Specifications”,
In Proceedings of the 2003 ACM Workshop on XML
Security, Fairfax, Virginia, 2003, pp. 69-78.

[11] R. Bebawy, H. Sabry, S. El-Kassas, Y. Hanna, and Y.
Youssef, “Nedgty: Web Services Firewall,” In
Proceedings of the IEEE International Conference on
Web Services (ICWS’05), 2005, pp. 597-601.

[12] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and
R. Chandramouli, “Proposed NIST Standard for Role-
Based Access Control,” ACM Transactions on
Information and System Security (TISSEC), Vol.
4, No. 3, August 2001, pp. 224-274.

[13] M. Y. Becker and P. Sewell, “Cassandra: Flexible
Trust Management, Applied to Electronic Health
Records,” In Proceedings of the 17th IEEE Computer
Security Foundations Workshop, 2004, pp. 139-154.

518

������ ����	
������ ��� �������� ���� ��� ���

���� �� ���	�

	��� � ���������		�∗

��������

��� �� ����� ��	�
���
 �� ���������� ��� �������� �
��

��� ��������
 ����������� ������� ����� �� ����� ������

�����
�� �������
� ������� �� ��� �� ������� ��
���

�� ��������� ��� ���� �
���
� ���������� ��� �� ����

�
� ���� ��� ����
 �������	� ��
��� ��������

��
����

��������� ������� �������� ��� ����������� �
������ ��

���� �� ��� �������� ����� ��������� ���� ������ !��

���� ��	� ������ ��� ����
 �������� ����
�� ���� ��� ����

�� ��� ��������� ��		��� ��������� ������ �� ���� ����

�������

� ��������� ���� �� ���� ������ "��� ���� ����

���� ����� ������ �� ��������� �������
�� ������ ��

���� ����� �� ��� ��������� #� ���
��� ��� ��������� ��

������� ���� ����
 �������	 �� �� ��	���� ���� ���

�������� ��������� ���
��	 ������������ �� ���� ���
�

���������� ����
 �������	 ���� ����� ��
�������

��������� ��� ��������� ����� ��������� ������� ��������

	������������ ����	� ������	�����

�	
����������

�� 	 ��� ������� �� ������! ��� ��� 	��������� ���"

������ �	�� �	���� 	 ����� ������	��� 	��������� ��������	�"

��!� 	�� � ������ ���	����� ������� #������� �������������

$�#�% 	�� ���� �������! �� �������� 	� ��� ���������

����� ����� �������� �#�&� ���� ������ ��� ���� ��������

���� �	������ �� ������	����� 	�� �����������
���� ����"

����� �������� ������ ���� ��	������	� ������� ������'���

������������ (������ 	����� �� ������ ���� �� �������� ��	�

�	! ��� ���	�� 	� 	���������� ���������� ��	�� ����	����

	�� �� ����� 	���� ����� �	� �	��� �	�� ���������� ��	� ���

�� ��	����� �� ����� ��������� �����	������)� ���� ��������

�	�	������ ����� �� ������	�� �� �� ��! �	���! �� ���	��!"

������	� 	 ���	����� 	� ��� ���������

� �����! ����� *	�	+��	 ,-./ 	 ���� ����� ��������

�� ��� �������� �� ��� ��������� 0���� ���� ���� 	����	���

������� �� 	 ���������� �� (�� �������� 1������� 2������

34������� 5	���	�� $(�"1235% 	�� (�� �������� 6�"

���� ���� 5	���	�� $(�65%� *	�	+��	 �� ���� �������"

∗������� ��� 	
���	� �� ���
�� ��
�� ���� �
��
������ ������
�	�� �
������ ����������� ���
���
��� ����������
� �
������ �	���	�

��� ������������ ��
���� ������	 !��"������� #
	� ���
�� �� $$%$& !� '

(
��) *+,&-./0�$//%� ��1) *+,&-./0�.233'

��� ����� 	����	��� �� 	 ����� ��	�� ����� ����	��� ��� �����

��������� ���� �������� �� 	 ������'�� ��� �4�	�������!

�����!��� ��� �������� �! 	����	���	��! ������	���� ����!

��	�� ����	���� �������� �	�� ��� ����	����� �� � ������

 �� ������� ��� �������!� ����� 	 ����� ��	�� ����� �� 	

�!����� ����� �������� �� 	 ��	�� �� �����!��� �� ����	��

 �� ������ ���� ��� ��	��	��� ��	��� ������ ��� ��	�� � 	��

�����	��� ���� ��	� ������ � �����! �� ����	� ��������

��������� ����� ��������� 	 �	�� �� ,7/�

(� �������� ��� ����� �������� �	�� �������! ����

����� ���� ����� �� ������	�� ��	����� �� 	 �� ���� �#�

��� ����� �������� ��� ��������� 	�� ������� ��� ���� 	�"

�����������
��� ���� ���� �	�����	�� ������ ���� �� ����"

��"����� ������	���� ������������ �! ��������� �����

�������� ������'��� ���� ���"��	���� 	 ���	������

�� ���	����� �� ���� 	 �� �� ���	��8�� 	� �������� ���"

���� 9 ��������� ��� ����� �������� �	�� ���� �������!

����� 1	��� �� ����� ��	�� ������ �� �������� �� �����

��	�� �� �����	���� �����	��� ������ ���� ������ ���"

������� �� ������� :� �������� �! 	 �� "����� 	����������� ��

������� ; ���������� ���� ������� <�

�	 ������ ����� �����

�� ��� �������� ���� �����	���� 	������ ���� ���� ��

����� �������� ��	� ���� ��� ����! 	����� 	��� �! ��� ����"

��	� ���� ������ ����
��� ������� ������� ������ ��	�� 	�"

����� �� ����� �������� �� ������	�� ������� 	�� ������

��	� �	! ��=����� ������ 	������������� >����� - �� ����

��� ����� �������� �� �������! ���� �� ��� �������� ��"

���� ����� *��� ��	� ����� �������� ������ �	��� 	����

��� ����� ��� �������� �� ��� : 	�� ��������� �������

��������! �� ��� 9� ������� �	����� ������ �!����	�����

�������� �	��� ������ �� ��!����� 	!��� �����	��� 	����"

���� �� ����"������� ��	��	������� 	�� ����� ��	���� �����"

����	� ����� �������� ���� 	 �����	�� ��������� 	�	�����

	�� ��� 	 ��� ������ ��	� ���� ��	��� ���� ������ ������ ���

��4� ��� !�	��� (� ������� �	�� ����� �� ��	� ��������

���� �����	
���� ��� ��������

�� ���� ��� ���� �	������ 	����	��� ��������! 	��

��� ������� �� ��� �������� �������� 	�������� �� ��� ���"

���� ������ ������
�� 	������ �� ,-</ ������ ��	� ?�����"

519

������ �� 	��
��� �������

��� ������	
��� �������� ��� ��
����
��� ������ ������	�

���� ���� �� ��		�����
�� ��
� ��
���
������� �	�������

����
��
 �������
�� ����� ���� ��� ����� �������� ���

�� ��� ��
����� ������� ��� !����
��� ��� �!� �����

�	������
���� ���
������
��	���� ����
����
�"

������ ��� ������� �������
��� ��� ��������# ���

����� ����
� ����
��� �������
��
 	������ �� $�%����

���

���$ �� � ����� �� ������ ��
����
�� ��� �������"

&��� ��	����
�� ����
� ��
��
 ������ ����� �� ���������

	�
� ���������� ' � ����
������
� ����� �� ���� �������

��� ���������
�
��
 ���� ��		��
� ��		��
 ����� ������

��� ()# *+,"

���� ������� 	�
���
�

-�������
�� %����
� �� � ��� ������ ���	���
��� ��

�
 ���
�����
� ���� ��	�� �
� ���
��� ��	������
��%�����

	��
	�����
�� �������� 	���� �� ����� �������� ��
�� ��
��

!
�	 . �� /����� *" &�� 01-234 	��5��
 (., ����� ������

���
���� ���	����
�
��
 ����# ��
 ���
 ��
��� �
����	�

���� �� �
��	���	�
�" &��� ���
���� �����
��
��� �����

�		����� ��������� ������� ��	�����
�� ���
���� ���	��

���
�" ��������
�� ����� ��������# ���
 ��������� �� (6),

��� ��
�� ���� �� 01-234# ��� ����
�
�����%��� ��� ����

���
��� ��� ������7���
�� �
�
� �	��� �� ��� ���	����

����������� ��	����� ���
���"

&�� ���������
� �� ����� �������� �� � ���
�� �����

��	���� ��
��
�	� �� ���
��# ����� �������� 0����� ����

���# ������������� ���
���# ��������	���� ���
���# ���

�	���� ���
���" &�� ��
���� ������� ��
�� ������
��#

�����������
�� ��

��
�� �� ���� ��������"

0����� ���
��� ��� � �8�� ��
 �� ���	����
� ��� �

�8�� ������
�� �� ���� ���� ��
����
" &���� ��� ������

��
����
� ��� �� $��
 �� �
���$# ������
���
�� ���
 ����

�����
� ����� �����" 9���
��� �� ����
��
� �	�������

��� ���	����
 �� �
� ������
�� ��
�
���� ����� ����	��

��� ��
������ ��� ������� �8������ �������" ��� ������

��
����
� ������ ��������� �����
�� ��	�����
�
���
��

�	���
�� ������
�� �!� ��
����
 ��"�" ������ �� �������

���� 	��
����# �� �	��
�� �8���
������ �������" �
� ����

	���
��� ��� �� ���
 ��	�����
�� �� �� ������
��
��� ��

�!�:;9 ��� ����� ������� ��
� �8��
���
���� �
 ������

���" 0����� ���
��� �� ��
 ��	��
 /����� *" -�
�����

����
 ���������#
�� �����
� ��� ���� ����
�
���
 ��� ������

� �� ����	�����
�� �	�������� ���������
�� �
����
�� ��

!�-"

������������� ���
��� ��� �������
�	�� �� ���������

��
���
��
 ���� ��%���� ���
��� ����� ��������" !��� �

���
�� ��� � �8�� ��
 �� ���	����

�	�� �� �����# ��
 �
�

���� ���� �
��� ��� ����������� ����
� ��������
 ��
 ����

�
�	���� ��������	 �������" ���
���# ����
��� ������

���		��� � ������ ���
���� �� � ����
�	� ��
� ���
���

���
���� ��
�� ����
�	�" �� ��� �������#
�� 	���� ��

� ������������
������
��� ��
�� ������ ��

���� ������

���
�� �����# ����
������	�# ��� �������� �� ��
��� ���

�� ���
 ������� �� � ��
��
������" /�� �8��	��# �����

�������
������
���� �� ���	�
�� ���� ���������
 ���� ���

���� ��%���� �� �

������ 	�������� ��� ��� ���	�
���7��

	�
���
" ��
��
 	�������� �� ����������# � ��������
 	�����

���� ���

��	������� ������
�� �
�� �� �

������ 	�����

����" &�� ��� �

������ 	��������# ������# ��� 	������

������ �
 � ��������

��� �� ���# 	�
��
����� ��	��
��� ���

��
�� ����<���" &��� �� ������������� ���
��� ��� �� ����

������ ��
� ������ ���
��� ����� ��������	�� �%������

�������# ����� ��������
��
 ���� ����
�
�
��� ���� ��
 ���

������ ��	��
 �8��
��� ����<���"

!���� ���� ���
��� �	���
� ��������������#
���� �
�
�

�	���� ��� ������ ��
���
���� �����# �������
�
���
�� ���

�� ��������
�� ����� ��������" -�
����� (., 	��	���� ���

�� � ������ �� �
��
����� ��� ������� ���	���
���# ������

�����
���# ��� ������
��� �� ������������� ���
���#
��

���
� �
��� ��
" /���
��#
��� ������� ��������
�� �������

��� ���� ��%���� ��� �� � ������ �	
���7�� 0 ��������

����� ����� ��������
���# ����� ��
��
��
���� ������

��
�� !	�� ����� �������" !�������#
��� ������
��
 ���

������� ����������
��� �
��
��� ���� ��
 �� �		��	���
� ���

�����
��� ���
��� �� ��� ���
��� ���5��

� ����
��� ����

�
����
�"

&���# ����� ���
 ������ ����� �������� �		�������

����� �� �
��������
������� ��
���� <�8�����
�# ������

����# ��� 	����������" &�� ���
 ��� ��� ��	� ��� ��
� ���

520

�� �������� ���� ���	
	�� �� ���� ����� ���	����� �	���

��� ���� ����� ����	��
��� ��� �
� ���	�� ��� ���	��

����	���	��� �� ��	 ���� ���	�� ������	�� ��� ����
�	��

��	� ������� �� ��� ������ �� ������
�����

���� �����	��
�� ������� ���
���

�	��� �
���� 	 �� �������	��� 	� ������ �� �	������ ���

� � ������� ���	����� ��������
���� ���� �� ���� ����

��� �� �������� ��� ��� !"# ���� ����� �	���� ��� �� �� ����

���
�� ��

�� 	����	��� �����
����� �������� ���	��

	������ �������	�� ���� ��� �� ���������� ��� ���� ��

�� ���
	��� �� �� ������	�� ��	� �� �����
	�� �������

��� ��� �� ���������� ��� ���� ���� �� ������� ��� 	��

������� $�� ������ �� !%&# ��� !'(# ���	�	������ �	��� ��

�������� ���� ��	�	�� ���
��� ��� �����	��)����������

�
���* ��� ���� ��
����� ���	� ���
��� ��� ���� ���� 	�

��� ���� ���� !%&#� �� ���� ���		�� 	� ��� ����� ���� ���

+����� 	� ��� ���� ���� !'(#�

,�	�	�� ���
��� ��� �� ��������� ��
���� ���� 	��

�� ��� �����	�� �� ���� ��
����� ���	� �������	�� -�� ���

��	�	�� ���
��� ��� ��� �������� ��	���	� ��� �� ������

���� �	�� ��� .	���� $�
����� .��	�).$.* �	 � ���� ���

������ �� ��	�� �	��� /�
�����	���� $��� .��	�)/$.*

��� ��������� ������ ��	 �����	��� !%&# ��� ��� �01

���� ���� ��� �������� ��� 2,,33. ���	����	�� ���	����

��� ��� ������ /$. !%#� 4������
���� � ��� ���� ��

 ��� 	� � ������ �	�� ����	�� �������	�� �� 	���������� �����

��
��� �� ��� ���5�� ���������� ���� �����	�� ��� ����

��� �
��� 	����
����� ���		�� 	� ��� ��
��	�	��� �� � ���

��	�����
��� 	����
��� ������ �� ���	���� ���� � ����

�� ��� ��� ��� �� ��������� ���� �� �� ��� �������

	� ����� ���� ��� �� ��� ������ �� ��������

$��� �� ��
���� ���� �� � ��� ��� ��������� ����

���	�� ����	�� � ��
��� �� ��� ������� 6������	��

�����	����	�	� ����	��� 	� ����	�� & �	�� ����
�	�� ��	

��� �� ���

���� ��
����
��� ���
��	��
�
���

�����
�����	�� ����	�� ������� ���� ����	�� ���

��� ���	�� ��
��	�	�� �������� ������� 7������ ���

��� !%(# ���	��� �	�� ��	� ��
���� ���� ��� ���	�� ���

�������	��� 	� ���8����	�� �	�� �� �� ���	� ������� 9���

���	�� 3����	 ���� ��� :��;,9.)93<;*� $�	 ������

����� 	��=)	* ��� �� ���� ������ ��� ���������	�� ���

����� 	� ��	�� :��;,9. �������� ��������)		* ������

��������	�� �� ���	�� ������	�� �� 	����	�� ��� ����� ��

�� �������� ���	��� ���)			* �	� ��� ��� 	�
� 	�� 	��

���
�� ���		�� �� ��������� �� ������� �����	��� $���

������ 	����
���	�� :��;,9. ���	���� � ���� ��� ���

����	�� ������	�� ��� ���	����	�� ��� �� ������
��� ��

��� ��� ���� ������	
�
��	���	��� �� 	��������� �	�� ��	��

�� ��� ������ �� ���� ���	� :�� ����	�� 3����	 $���

):�3$* !%># ��� �������� :��;,9. ���	���� �� ,��
���

����� ���� ��� 	���� �� ��	�� ��	� ��� ���� �������� ����

��	�	�� ��� �����	�� ��� ���� ��	�� ��� �� �������� ��

��� ��� ���	�� ��
��	�	�� ��� ����	�� ��� �	���	���	��

�	�� 93<;�

������� ��	�	
 �� ����� ��� �� �	����� ���	�� ����

����	�� �� � ������ 	�����	�� ���� +��� ��	�� 	�����

���	��� ��� ������� +��� 3� 	������	�� �������� ���

�����	� ��� +�� ����	���	�� 	������ �� �� ��	����������

�����	� �����	��
 ����	��� �� �� 0���	�� !?#� 4�� ���

���	��� ��	 �	������ ��� ��
��� ��	�� 	��� ��� ����

��������� ������ �� :��;,9. ������ 	
���
�����	�� ��

���� � ���� �� ��� +�� ������� !'%#� 4�	����� ����������

�	�� �� � :��;,9. ���	���� �	�� �����
	�	�� ��� ����

��� ������ ��� ����	�� �� 	����
�����	��� �� ����	�� ����

������ ���� ��� ����� �� �������� ��� ��� ������	�� 	�

��� ����� ��� ��� ��� ����������	�� 	 ��
������

���� �
�
���� ��� ��������

:�� ���	��
�� ����	� ���� � ����	� �� � �����

����	�� �������	�� ����� ��� ��	�� �� ���� � ��� ���	��

��
��	�	��
�� ���	������
�	���	� ��� ���� �� 	� ���	�

�����

3 �	������� �� ��� ���
���� ���� 	��� 	������ �������

���� ���� 	�� �� �
� �� �� ���
 ������� 	� � �������

�	 � :��;�	��3��	�	��� @�
� �� ��� ��� !%A# ������

� ��� ��� ��� �������	�����	�����)	��� �������* ��� ���

�	�� ��
��	�	�� �����
����� �� ���	���� ���
 ��� :��

;�	��3��	�	�� �������� B��� �	
�� ��� ��
��	�	��

�� ��������� ����	�� ���� �� ����	� �� � ���������	��

�������	��� � 	� ���
�����
��� ��� +�� 	
���
�����

� ��� ���	�� �����������	�� 2	�� ����� ���� �������

���	� ������� 	� ��� ��� �����
���� ��� �������� �	��

������ �� �
� �� �� ��
��	�� ����
�� ��� ������

���������� ��� �	����� �� ��� ���� �
��	�� 	� ��	 ��������

	 ��� ��	�	�� �� ���
����
���� ��� ���� �������	� 	� :��

;�	��3��	�	�� ���	�����

C���� ��� ��� !'D� '?# ������ �
��� �� ����
���� ����

����	�� �� ��� ��� ���
 :��;,9. ���	���� ����
�����

���� ���������	�� $��� ��
���� ���� �� �� ����
��	�

����� �������� ���� +�� ��� ���� ���	���� �� ���
����	��

��� ��	���	� � ���� �������	� E ��� �����	�� �� ��� ��	��

	��� �������	� ��	�� ���	���� ��	�� 	 � 	
	��� ��������

�� �� �� !%&# ��� !'(#� :��� �������	�� ��� ��� �������

��� ���	��� !'?# ���	��� :��;,9. �������� ��� ��	���

����	�	�� 	� ����	� ���	� �� �� ��� ���	�� ����
��� �

�� 	����
��	��� ����������	�� ���� ����� ���� �� ���������

	��� �	���� ,��
��� �� �01�

���� ����������� �
�
� ������

1	���	���	�� ��� ����	�� 	�	��� 	��� ��� ��������

��� �����	�� �� ���������� ���
� :	�� ��� ���	���	��

	�� �� �������� ���
�� ����	��� 	� ����	�� &� �	����

	���	��
�� ����
�
��� ����	���� ���� 0��	����� ��

521

���� ����� 	

� ������� ��� ��� �� ��� ����� ���������

����� ���������� ������� ���� ������� ������������� ����

��� �� ������� ����� ������ !� ��� �� ��"������� ��#

������������	
���
�������������������� $�� ������

������� �������� �� ����� �� ��� ����������	� ���"�

�� ��� ������� �� ������� �������� �������� �����% ����

�%������� ���� ��� ����%� ����% �� ����

$�� ����� ������� �� �������� �� %����� ������ ����

��� ���������� ��%��% ��� ��������� �������� ����

���� �� ��������� "�� ������� !� ������� ����%���% &'

������������� ������ �� ����� ������ ����� �� ���� �����

��%���� ��������# (�) ��*����� �� ���� ����� �� ��� �������

������ (��) ��� ���� �� ������ �������� �� ���������� �� ����

�� ���� �������� ��� (���) �������� �� ��� ������� �� ���

�������% ����� ����� +� ��� ������� ����� ��������������

������� ����� %������% ��� �������� ��� �%��������� ��

�����%���� �%������� ���������� �������� ����������

$�� ������� �������� ����� �������% ������������� ���

�����% ����� ����� ���������� �� ����"��� ��%� ��� �%�

����� �������� �������� ������� 	&� '������� � ����

������ ���������� �� ���� ������ �������% ��������� ��

��������� ��� �����*� �� �������% � ������������� ����

"���� ���� ����� ��� ������� ��� ������� ���� ��� ��� �����

����� ��� ������� ����� �� ���� ����%����� ����� �������

���% ��� ���� ��"�� ���������%� ���� "��� �� � ���� ��

%�������% ����� ������ �� ���� ����� �� ���� ������� �����

����%� ����� �� ����� ���� ��� ������������� ���������

�� �����

�� ������	��
��� 	��
�	�

,� �������% ���%� ����� �� ����� �������% "�� ���

������ "� �������� ��� ������� ���� ���� �� ����������

���� ��� -+. ���� �� �������% "�� ������� $�� ��� ���

������
�������� ��������������	 ������ �� ����� ������

�� �� ���� ���� ��� ��������� ���� �"� ������ �������

���� ���������� $�� ������ ������ ����	���	 	���
�

��		 �� "�� ������ ������������ �� ���������% "�� ���

���� �������� �� ���� ������� �������� ������ ��� ����

����� ��� �� ������ $�� ���� �/���� 	����������� ���

����		���� "���� �������� ��� ���� ��0���� �� ���� ��� ���

��� 1������� � ����� �������% ���������� ������ �������

��	 ����� �� ��	��������� �� ���� ��� ������ ��� �������� ��

������ �� �� ��������� ����� �� ������� ���0��� �� ��� ����

�� ��� ����� �����

���� �����	
� ��������
����

.� �� ���������� ������� ����� �������% "�� �������

�������� (�) ��������% � "�� ������ ������� �� � ����� ��

����� �������%� (��) ��������% ��� ����� �� � ����� ������

(���) �����% ��� ����� ����� �� ���������� �� �������

��%�� ��������� (��) �������% �������*������� ��� (�)

������% ����� ���� ����%� ��� �*�������� "�� ������ ��

������ 2�������� ����� ������� ���� ��%���� ����� (��)

����%� (��)

-���������� ���� �������% ��� ���������� ���� ������

��% �/���� ���������% ���� (���) ��� (��) 1� ����������

���� �� ������ �� ��� �"� ������� �� ���� ��� ������ ��

��" ��� ����� ����� "�� %������� �� (��) � ��������� ��

(���) ����"���� � ������ �� ����� ����� %�������� ��� ����

��% ������/��� ���� �������� �� ����� ���������� � �����

�� ���������� ���� ������ ���� ����������� �� � �����

�� ����� �������� ��� ������ ���� �� ��������� �� ��� �"�

������ '��������% ����� �������% ��������������� �� ��

/���� �� ��� ���������� ����������� ������� �������� ��

��� �������% �����������

'��������% ������� ��� ��������� �� ��������%� ������

-��� (�) "��� �/��� � -+.2 �����%� ���� ���� ��� ����

���� ��� ����� ����� ����� �������� �� ����� �������% .�

�������� ���� �����%� ���� ���� �� ������� �� �*������%

������ ���� �� ����� ������� ������� �������% �� ���

�������� $���� ������� ��� ������� ������ �� -��� ���

-34� ��� 3����%� -�/����� ����� (3-�) �� ��� ��������

$�������� -����� .������ (�$-.) ���������� ����� ���

��� ����� �������� �� 522..� -��� (��) "��� �/��� �� ���

����� ������������ �� � ����� ����� ���� ������� ��������

�����% �� ���� ����� $�� ���� �� ����������� �� � ������

�� �������� ����� �� ���� (���) ���� �� ��������� -��� (��)

"��� �/��� %�������% �� ����� ��% ���������% -+.2 ����

��%�� �������� �� ��� "�� ������ ����������� ���� ����

���� ��	������ ���������

-���� �������� ���������� ��� ��������� �������������

�� ���� �������� "��� �� ������ �� � ��������� �����

�������% ����"�� $���%���� ��� -+. ���������� ����

������ ���� �� ��� ������ �� �� ������� �/��� ����

6-'� ��� 6-�,27� �������� 6-'� �� ���� �� �����

��% ��� �������� �� � "�� ������ ���"��� ��� ������ ���

������ ������ "���� 6-�,27� �� ���� �� ��������% �����

"�� ������� ���� �� ����������� '�� �� ��� ����������

��������� �� 6-�,27�� � ����� �� �������� ���� ������

������������% ����� �������� "��� � ����� ������%� ���

����� �� +6��- ������� �� 	
8�
9� �9� . ������ ���

���� ��� �� �������� �� ������% � ���������� �� �����%

6-�,27� �������� ���� �� ����� �� ����������� $��

������� �� ��� �������% ��������� ��� ����� ��� ���� ��

+6��- �������������� ����� ����� �������%�����

���� �����
��� ����	���������

7*������� ���� ������ "��� �� ������ �� ��������%

6-�,27� �������� �� ������ �������� �� �������% ���

����� ��� ���� �������� ���� ���� �� 6-.$ �� �������

��% �� -��� ��� -34 	
9� �$-. ���� �� 7������ ���%�

�� �� �� ���� ��������� ���� ���� ������� ������������

"���� ��� ������ �� ������� �� ���� %������� ��� ����

�������� �����%� ��/����� ����� 	:� $��� ������ ��

��������� �� ���� ����� ������� �� ����"��� ����� .�

522

���� �� ������	�
� ���� ����	��� ��� ���� �	�� �������

�
�� ���� ��������� ��� ���	��
�� ��
�
�	��� �����
� ���

������� 	��
�	���

�����������
�� �	� 	��
 ���� �	���
� ��� ���� ������

�� ������ ��� � 	����� !� ����
�� 	����������� ����

������ 	�
� ���� ���� ����������� �	� !� ���
�
���
�

"	!�� �	���� �!�
	�
�� ��� ��� �� ������ ���� �	��� ��	��

��	��� #$%�

���� ������	
���	 � �����������

��	� �����
����� 	� 	������
	�� ����� �� 	!���	��
�� �	�

!��� ���� �� �!	��� &� !������ �����	�� ���� '
(����

�����
��
��������	� ��	����
� ��� 	� '

(�����
�
�� 	

��
�	!�� ����� ��
���������	�
�� ��� ������� �
�
��� &� 	�

��������	� ��	���
� ��� �	��� 	 �	
����� !�� ��
���� ���

���� ���
�� ����
"�	�
�� ��	���� ���� �
���� ��� ����

�� ��� ����
"�	�
�� ���� ������� ��"������ �� ��	� ��� ���

��	��� !�
��
�� 	!��� ��� �	
���� ��
����� �������� 	�����

���� ��� ���� �������� &� ������� �
�
��� 	 ���� �	�� ����

��	�� !� 	 ���� ������� ��� ������
�� 	���	�
��
� 	�

����� ��� �
�� ������� ��� ��� ��� ���� ��	
��
���������

�	�
��� �
���
�� 	 ���� �	�� 	���	�
��
� 	� ����� ��� ���

������
�� 	���	�
��
� ��� ���� �	��� �����	�� !� 	 ����

������� �������� ��� ��� ��� 	 ���� ��	
�� ����� ��	��

��	�� �
)�� �������� ������	
�� 	�� ���� ��"�������

�� � �����	
�� ��	��
�	
���

*�����
��� ���������� �� �+,-� ���
"� !� ���

���� �� .����� #/0% 	� ����	�� #/1% �	� !� 	���
� ��

������
�� 	� �+, ��� ���� �����
�� ��! ����
��� ����

��� ��!� , ������
��� 	����	�� �	��� ����
�� ����

��� ������� 	�����
!�� �� ��	��
������ &� ��
� ���
��������

��� !�������� �� ���	�
�� 	 ������� 	��
�	�� �	� !� 	

���� ��
�	!�� ��� ���� �����
��� *��� �����
���
�

����� �	� �����	�� ��
��� ��� ����
�� ��� ������� 	��
�	���

.��� �� ������ 	 ������
��� 	����	�� �� 	����
��

2�	�
�� �� ��! ����
�� ������
�
���� , ��! ����
�� ����

���
�
�� �	� ����� �
���3 '
(�������� ���	 ����
�� �����

�"�� 	��
�	��� �� ��	��
�	� �����
��� �������� '

(
���

���	 ����
��
�� 	����	�	 	� �������� ����
"�	�
���� 	�

'

(������
�������� ���	 ����
�� 	� ����� ��� ��	�� ����

�
��� �	
������� ������������ ��� ��! ����
�� 	��
�	��� *	�

�
���	�
�� ��� �
�� �
�� ����	�	�� ��	���� �� ��� ���	
��

�� �
���� �
���
��� 	�� ����� �
��� �	� !� ������������

���� 	�� ���	
�
�� �
���

�
���� 0 ����� ��� 	��	� �� ��	���� 4�� "���
�������

���� 0
� ��
�� ���!	��
� ���
�
�� !� ��� ���
�	��� ����

��� ���� 	�
� ������� ����
!�
� #05%� 4�� ����� 	��	

������� ��� ���� �����
�� �������
� ���� 5� ����������

������
�
��
� 	 ������� ������� �����
� �
���� /� �
��

��� 0 �	��� ��! ����
�� ������
�
��� ����	!�� !� ��2�
��

��
� ���� $ ��� ������	�
�� �� 	 ��6� ����
"�	�
�� ���

��� ������
�
��� ��
�� ��
�����
�� !��� !	��
��� ��� 766&

������ �� 	�
�
�� ����
���

���
����� ,������� 	��
�	�� ���� 	��� !� ��� �� ����	
�

���"�
���
�����	�
�� ��� � ��	��
�� �� ��� ���	
�
�� �
����

.���� ���� 8 �� �
���� 0 �	� ��2�
�� 	��
�	��� ��
���� ��

����
���������� � ����
�� �� �������� 9��� ��� ���

	���
�	�
�� !�
��� 	������ ���� �������
!
�
�� ��� ���
"�	�

�
��� ��	�
�� �������
!
�
�� ������ �� ��� ������ �� ��
�
���

�	�
�� 	� 	�
��
�� �	�� ���� �� �	���� �����������

4�� ������
� ��� 	!
�
�� ��
����� �	�
 ��! ����
�� ����

���
�
���
� 	
�
�� �� ��� ����
��
��� ��
�
�
�	� ����

�
��� ��	� �	�� ��	
�
��	��� �	� �� ��� 766& ���
�����

:����2������� ��� �	� ��	�
)� 	 ���� �� �
��	���
�	� ������

�
�
��
� ��
�� �	�� ������� 	��
�	�� �	� ����	�� !��
�

�� ��� ��6� 	��
�	�� �
����� ��� �������� �� !�
����

��� �	� ��!��2������ ��� ��	� ������
�
���

������� �
��
�� �� !�
� 	 ��! ����
�� ������
�
��

����� 	� ���	� �
�� ��6� 	��
�	���� �
����� ������� ���

������� 	�� ����
��
�
����� 	 ������
�
��� ,����
�� ��
�

��
�� �� ��� 4�	��� ,����� ���!���� ��!�

	�� ����
��� ��

	
��	�� 	� ����� �	� �	�� !�
��������� 	� 	 ������
�
	�

��������	�
��
�����
�� ����
��� ����
�� ����
��� #00%�

4�
� ��
�� �	� ����	������	�
)� 	� 	�
�
�� #0% �� 	 �	��

	���� ���� ��	�� �� �	�� ��!�

	�� ����
�� ������
�
���

4��
���������	�
�� �
�� ��2�
��� 	� ����� ��� ��	� �	�

�	
������� ����������� 	 ������� 	��
�	��� ����
�� 	� 	�

	�����	�
�� ���������	�
��� ��
� �
�� ���� ����	
� 	�� ����

��	�� ���� �	���� �����	� ���� ��
��� �	� !� �����	�� ����

"�
�� ��	�� ����� ��
�� ���� ���������
� ������� �
�
���

523

������ ��� 	�
������� ���� �� ������

��� � ����� ���������� �� ����� ������� ���� ���

�����

�� ������	
��	

���� ����� ������� ���
� ����� ��� ����������� ����

����� ��

����
 � ������������ �������� � ����������

�� ��	 �������� ����
 ��	 ��������� ����
 ���� ���
��

��� �������� �������� � ���� �� ������������ ����������

��������
 ����
��� ���� ��� �������� �������� ���� ����

�� ���������� ��� �������������� ��� ��	������� ����

���� ����������� ��� ���������

��������
 �������� ����� ��� �����
�������� ���

���������� ��������� �� ���������� �������� ���� �������

�����	������� 	� �����
 �����
 ��� ������������ �� ����

���
�� ��� ������ �����	��� ���
 ��	 ������� ��������

��� �����
��� � ����������� �� ��� �� ����� ��� ������

��� ��������� �������� ����������� ��� ����� ���� ���	��

��������� �� ����� ��� �����	�� ��������
� ������� ����

���� ���� �� ��� ��� ���������� ���
����
 ����� ������

��
 ������������� ��� � ��	����	��� !"��

��������	

��� �� ���	
��� �� ����� ��� �� �� ��	���� � ����	��� �� ������� ��

�� ��	��	�� ��� �� ��		����� �����	� ��� ����
� �� ! �" �����	�

���� � �������	 ������ ��#�� $%%&$�'� (�	��#�	 $%%)�

�$� �� ��	������ ��� �� *������ +�� �������� "	�
�,�	- "�	 ������# ,�.

��	��/�� ����	���	�.����0� �� �������������� ��#�� ��)&�)$�

�111 ��
����	 (�/���0 $%%!�

��� (� ���
 2� ��--��- 3� �� �	���� �� ��� ���#������ �� �����	 ���

3� ��� �� *��� μ/	�4 � ������� "�	 ����0���# ��#�.	��/ ���/�5/�������

�� �� ��		0 6� ��
�� ��� �� ���-�� �����	� ��� ����
� $�%$ �"

�����	�
���� � �������	 ������ ��#�� $!%&$!)� (�	��#�	 $%%��

�)� �� ��//���	��� �� *����� *� *����//���� ��� �� +������ +�,�	�� ��

�	/����/��	�� ���	��/� "�	 ��� �0��
�/ ��� ����
���/ /�
��������

�" ��"�,�	� /�
�������� �� ������� ���� �	���� �!� �" �#� ���

��� $��� %�	&�#�� �� ��'� �" ��"�%(� (�#�����	� "�	 �����! (�

(�(')�� ��#�� �$&$� 7�, 8�	- 78 9(� $%%'� ����

�!� +� ������ 3� (� ��� :� ��� ����0;��# /����	������� �" ,�. ��	��/���

���� ����	��� �������! �%<�=4� &$! $%%'�

�'� 1� �� ���	-� 3� �� 2��# >� ���	 >� ���������� �� ���� �� 1
�	?

��� (� ��	���� (� ��	
�� 3� �����# �� 6��� +� 6��;��#�	

�� 6��;
��� �� 3���� >� ��	���� 7� ������� �� �/������

3� ���	� �� *���� �� *����� 3� >���.0 7� (���-�	 3� (�"�-��

*� (����� �� (��""�� *� 2����	 3� 2���/�/- ��� *� @���� ��	
��

������4 ����� �" ��� �	� ��� "���	� ��	�/������ ��� �������! ��	�

*�)� $ <)=4'$'&')� �AA'�

�B� �� �� �� �� �����	��� +����� �	����� ���!� *�� ������ +�/�?

���/�� 9����	������ 1�������� 7���
.�	 $%%'�

� � �� 1�#��� �� �� �� ���C� ��� (� ���,� +��� #���	����� "�	 �������?

#��� ���,�	-� ����#
���� /��/-��#� �� 1� �	��-�
� �����	 �����

����
� �$�B �" �����	�
���� � �������	 ������ ��#�� �)&�A �

(�	��#�	 �AAB�

�A� 6� �����	 (� 9/����� 3� ��#�� ��� 3� �	�
�	� ����?,�4 � ���� "�	

����?.���� ��	�5/����� �" ,�. ��	��/� /�
��������� ��� /��	��#?

	���0� �� �� 3� D���	,��� 6� �� >�
.�/� ��� �� �� (�""� �����	�

���� ��#�� BB�&BB)� ��� $%%'�

��%� �� �	���� :� �� ��� 3� (�� �� ����0��� ���� "�	 �E�/����� �" .���

��	��/��� �� ���,��� ��#��)$A&)�$� �111 ��
����	 (�/���0

$%%B�

���� 3� �� �	���� ��� �� ��� 6�
� ����	�/���� �������;����� �" ��	#� �����

���/��� ����	�(���(' -��	�(' �� ��"�%(� ���'� "�	 ���#��'�!)

�	(��"�	 .����/ <�=4BB&A� $%%'�

��$� >� 6�/-�� ��� 6� F��#�� �����?.���� �������
��� �" �E�/���.��

.������� �	�/����� "�	 ,�. ��	��/��� �����	�� �� �����		���) (�

���	
��� $��0 �%A 4!!A&!) ��	�� $%%)�

���� 6� (� 6��# (� �� ��� �� ��� D� (�-���-0 ��� 6� 9	��� ���� G�,

������# ��
���� /��/-��#� �� ���� ��#�� $�$&$)�� �111 ��
����	

(�/���0 $%%��

��)� 6� 6���# 2�?+� +��� >� *��� ��� 8� ����� ����
����
����

/��/-��# ��� ������# "�	 /�
������ ,�. ��	��/��� �� ����� ��1�

�	���� �!� �" �#� �!#�# ���� ����	�(���(' �)������ �� �23����

�	���� ��('���� 4��	2��� �������! .�������1/ ��#�� �%%&

�%B 2�����#��� �� 9(� $%%!� �111 ��
����	 (�/���0�

��!� >� 6��� ��� 3� (�� +���� "�	 ����#� �" /�
������ ,�. ��	��/��� ��

�� 2��-�
 �� �� �H���# ��� (� ��I��/� �����	� ��+��4 ���"�	�

���� ��#�� A! &A'�� ��� $%%)�

��'� �� ����-��� ��� �� ��� �	��#��� ��������# ��� ��	�"0��# ,�. ��	?

��/� �	/����	����� .0
���� �" ��� /��/�		��/0 ,�	-.��/�� ��+�

���� ��"�%5 ��!5
���� $A<!=4�&�% $%%)�

��B� �� ���
��� �� ��	���� ��� >� 6�/-��� �
����?�	���� ���	��/�

�� ���/���	0 ������# ���
�����	��# �" ,�. ��	��/��� �� �� ��	���

��� 1� �� 7���� �����	� ���� (� ��(')�� �" 6�2 ��	*��� ��#��

�B�&$%)� (�	��#�	 $%%B�

�� � (� 7�-�C�
�� F�	�5/����� �" ,�. ��	��/� G�,� ,���
����?/��/-��#

��/���J���� ��47������",�%,$��$ ��#�� �B &� !� �111 ��
����	

(�/���0 $%%$�

��A� *� >�
��-�� ��� (� >�
���� � ���� .�� "�	 ,�. ��	��/�� �	���/���� ��

����� ����	�(���(' ���"�	���� �� ����	��� (� 6�2 ���'�(����

(� ��	*��� 8 ���6 ��9 ��#�� �'&$$ $%%B�

�$%� (� >�0���	#�
 ��� �� *� 1� 6��
����� ����	�#� .���� ����?/���

#���	����� ����#
���� /��/-�	�� �� ��7� ��#�� �&� �111 ��
?

����	 (�/���0 $%%��

�$�� 7� >������ �� 6� �� ��	 6�"����� 2� �� *� ��� ��	 ����� ���

7� ���0�	� 2�	-G�, /���	��?G�, �����	�� � 	������ ���,� +�/���?

/�� >���	� �*� �����	 >���	� �*�?%'?$$ K��������� 9����	���0

�" +�/�����#0 �	��.��� K�� ����	���� 3����	0 $%%'�

�$$� 3� �� (���� +� �� �����#�"���	 ��� �� �����/�� +�����# ,�. ��	��/��

�� �#����� �� �	���� �!� �" �#� :;�# ����� ��'(2'�) (� <�('�)

� 4��!� ���"�	����� �((�+ $%% �

�$�� D� F� (�-���-0 ��� (� �� (
��-�� ��/	�
�����
���� /��/-��# �� ���

����
�?/��/����� �	���� �!� �" �#� �=�# ����	�(���(' ���"�	�

���� �� �������	�� � ��	>�(��� .���/? �����	�
���� � ����

����	 ������ @:@ ��#�� �!�&�'� �AA)�

�$)� 8� (�� (� 6� ��� 3� 8� ���� (0���/����# ,�. ��	��/��4 � J�� ���

���	?�	���� ���	��/�� 4����� �����	� �)�����)�<�=4$)�&$!!

$%%B�

�$!� 8� 2��# :� ��� 3� �� ��� >� 6���#� D�����#0?.���� ���� /���

#���	����� "�	 ������# ,�. ��	��/��� �� ���4� ��9� �	���� �!� �"

�#� �!#�# ����	�(���(' �)������ �� ���������� 4�����	('A�

�)����� ��#��)�&!% 2�����#��� �� 9(� $%%B� �111 ��
����	

(�/���0�

�$'� 8� @���# 3� @��� ��� *� �	����� ����0��� �" .��� ���� ��������?

/���� �� �������������� ��#�� �!�&�! � �111 ��
����	 (�/�?

��0 $%%B�

�$B� 8� @���# 3� @��� ��� *� �	����� �
���� /��/-��# .���� ���� /���

#���	����� "	�
�,�	- "�	 ,�. ��	��/��� �� ��
+ ��#�� B�!&B$$�

�111 ��
����	 (�/���0 $%%B�

524

A Metadata Model for Managing and Querying
XML Resources in Peer-to-Peer Systems

Deise de Brum Saccol, Nina Edelweiss, Renata de Matos Galante
Instituto de Informática - Universidade Federal do Rio Grande do Sul (UFRGS)

Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
{deise, nina, galante}@inf.ufrgs.br

Abstract
Peer-to-peer (P2P) systems provide access to shared

resources, such as XML files. Keyword-based P2P systems do not
retrieve the necessary file if a synonym is used as part of the
query. This situation happens because different but related terms
may be used to describe similar information. Besides, automatic
systems lack to find, extract and integrate relevant information
spread over different resources. Thus, two important questions
must be answered for searching and retrieving purposes: which
peers have the files that satisfy the query, and how to deal with
structural incompatibilities. To address these issues, our work
proposes the use of annotations (represented by metadata and
mapping functions) that allow defining the structural and the
semantics of a document. Using such annotations provides an
intelligent query processing that allows users to pose queries
without being aware of the file location and structure.

1. Introduction

Data semantics defines the relations between symbols and
what they denote. In particular, semantic heterogeneity refers
to differences in the meaning of the data and it makes difficult
to identify the relations that exist between objects in different
components. The problem of semantic heterogeneity can be
described as integrating structurally dissimilar but
semantically equivalent objects and determining semantic
equivalence of objects [1]. Thus, the semantic interoperability
aims to allow the cooperation of applications that were not
initially developed for this purpose.

Search engines provide automatic support for information
retrieval which helps in finding data sources. However, the
remaining action of extracting and using the information to
solve a given task remain for the user [2]. Keyword-based
systems do not retrieve the necessary file if a synonym is used
as part of the query [5]. This situation happens because
different terms may be used to describe similar information.
Representing and managing the semantics of applications are
essential for the interoperability. In order to address these
issues, our approach employs annotations that allow structural
and semantic definitions of documents. In this way, our
proposal provides an intelligent query processing that allows
users to pose queries in a P2P system without being aware of
the location and structure of the files.

Moreover, another problem arises from the lack of
semantics in the resources. Consider two P2P applications
that need to exchange data. One possible approach is to build

an adapter that transforms data and structure between them.
However, the adapter construction is a hard task that

requires knowing the data organization in both applications.
Furthermore, the complexity and the developing time tend

to be quadratic in relation to the number of component
applications [3]. A possible solution is to employ some kind
of metadata for describing the file semantics. However, this
scenario states two critical questions [4]: how to deal with
different concepts used to describe the same information, and
how to acquire and maintain the necessary metadata to solve
the vocabulary sharing issue.

The searching optimization in P2P scenarios also faces two
other problems. The first problem is the existence of multiple
resource representations. The existence of duplicated
resources may be necessary for increasing the performance,
since the user poses a query and the results are returned from
a specific peer. Nonetheless, in order to take advantage of
resource replication, it is necessary to manage these multiple
representations.

The second problem arises from the evolutionary behavior
of some resources. The evolving issue is a fundamental aspect
in any persistent information system. also, it is even more
evident in XML domain, with frequent structure and content
changes. The evolution aspect must be managed to allow
historical retrieving, for example by using versions. Although
the version concept is well known for managing co-authoring
on software engineering, it is still a big challenge in
distributed environments.

To overcome the semantic heterogeneity issue in such
systems, our work relies on the use of ontologies, metadata
and mappings for interoperability enhancement. The
presented approach is part of DetVX [6], a framework for
detecting replicas and versions of XML files in P2P systems.
The main contributions of this paper are:
�The specification of a metadata model for managing XML
files in a P2P scenario;

�The definition of mapping transformation functions for
accessing equivalent XML objects in different files.
The paper is organized as follows. Section 2 presents the

motivating scenario for this work. Section 3 overviews the
DetVX environment. Section 4 presents the metadata
management. Section 5 discusses the proposed mapping
mechanism based on transformation functions, using XPath.
Section 6 details the query processor capabilities. Sections 7
and 8 discuss related work and concluding remarks,
respectively.

525

2. Motivating Scenario

Consider a network composed of n peers, where peer p1
stores the file f1 and peer p2 stores the file f2. The files are
described in Figure 1 (a) and (b). Consider query Q1: “get the
name of people that live in Garbonzoville”. The goal is to
guarantee that: (i) all peers that receive the requesting
message are able to process Q1; (ii) only the peers that are
able to process Q1 receive the requesting message; (iii) the
user does not worry about structural and content
incompatibilities between the files; and (iv), the user does not
worry about location and peer organization.

Fig. 1. Examples of XML files, f1 and f2, with structural
incompatibilities

Two main problems must be solved toprocess the query [4]:
� Resource discovery - which files satisfy the query? Where

are they located?
� Vocabulary problem - how to deal with structural

incompatibilities? How to access the desired information?
To address these issues, two aspects are considered. First,

documents with different structures can be described by the
same ontology, as depicted in Figure 2.

Fig. 2. Application domain concepts described by an ontology

The user issues a query over the system by defining content
and structural constraints based on the available ontologies.
Then, the system is in charge of finding and retrieving the
information. For instance, the query Q1 formulated over the
ontology is expressed as “get the firstname of person whose
address contains Garbonzoville”. Therefore, an ontology can
be used as a common global model for describing related
documents. However, in order to use an ontology to hide the
heterogeneity issue in P2P systems, we need a mapping
structure that captures the equivalence relations between the

files and the respective ontologies.
To solve these two issues (i.e., resource discovery and

vocabulary problem), our work relies on three aspects:
ontologies, semantic annotations (denoted by metadata), and
mapping transformations between ontologies and resources.
The approach presented in this paper is part of DetVX [6], a
framework for detecting replicas and versions of XML files in
P2P systems. The DetVX framework is briefly described in
the next section.

3. Framework

DetVX (Detection of Replicas and Versions of XML
Documents) [6] is a framework for detecting, managing and
querying replicas and versions of XML files in a P2P context.
In this framework, files are stored following the super peer
architecture. Files within the peers are related to a specific
application domain, described by an ontology (e.g.,
curriculum domain). Peers must connect to the super peers in
order to share their files. Super peers are managed by the
administrative super peer. Metadata are used to represent
information related to peers, super peers and files. Ontologies
are used as a peer grouping criterion into super peers. [15].

The functionalities of DetVX are available through the
following modules. The user interacts with the system
through the user interface, which allows registering peers and
files (using the peer manager). To get connected, a peer must
choose a suitable peer. This is done by verifying the
application domain of its files (using the ontology manager).
After the peer connection, the framework verifies if the shared
resources refer to versions or replicas of existent files already
available in the network (using the replica and version
manager). Finally, the user is able to submit queries (using
the query processor).

The focus of this paper is the metadata and mapping
maintenance. Such metadata and mappings are mainly
generated by the peer manager and the ontology manager.
Their maintenance aims to allow users to pose a query over
the ontology. Then, the system:
� Verifies where the information can be found (in which file,

peer and super peer), based on the ontology manager
metadata;

� Translates the query to the underlying source format, based
on the mapping functions generated during the file and
ontology matching phase (the matching is performed by
the ontology manager);

� Processes the query and retrieves the results;
� Translates the results to the ontology format.

A repository stores the ontology manager metadata and the
mappings between the ontologies and the data sources
(including some information needed to handle semantic
heterogeneities), as follow.

4. Metadata Management

Our approach uses metadata to describe information about
the distribution of data. Maintaining metadata is critical for
query processing, since they provide valuable information that
can be used for optimization. For example, they are used to
manage identifiers, file registering and modification times,

<resume>
 <name>

 <firstname>Hu</firstname>
 <surname>Doe</surname>

 </name>
 <address>

<street>123 Elm #456
</street>
<city>Garbonzoville</city>
<state>NX</state>
<zip>99999-9999</zip>
<contact>555.555.5555
</contact>

 </address>
</resume>

<resume>
 <fullName>Jo Doe</fullName>
 <address>

<adr>123 Elm #456,
Garbonzoville </adr>
<state>NX</state>
<zipCode>99999-
9999</zipCode>

 </address>
<contact>

<phone>555.555.5555</phone>
<email>doe@doe.doe</email>
<url>http://doe.com/~doe/</url>

</contact>
</resume>

526

file locations and some other relevant information. Metadata
are represented as XML files and classified as follows.

4.1 Ontology Manager Metadata
The ontology manager metadata describes information that

relates the XML files and the ontology (which describes such
document). Information about ontology association is
described in a XML document, as shown in Figure 3.
Metadata allow specifying the ontology (attribute ontology) for
a super peer (attribute id), a domain label (domain), and the file
of the ontology (file). It also represents the associated peers
(peers) to a specific ontology (ontology) in a certain super peer.

Fig. 3. Ontology Manager Metadata

These metadata are maintained whenever the ontology and
XML file matching is performed. For a document file stored in
a peer id matched to an ontology ontology, the metadata
describe the domain (domain) to which the document belongs.
Given a query belonging to a specific domain, the system
accesses the metadata and identifies which super peer must
get the user query. We assume that one query is related to one
domain, so not domain correlation is necessary.

For instance, a query posed over the research project
domain is formulated on the ontology Ont1, as described in
Figure 3. This query is routed to super peer SP2. By looking
at the metadata, the system also knows that peers P3 and P4
contain files that belong to the desired domain. Thus, the
query is routed only to those proper peers that are able to
answer it, instead of flooding the entire network.

4.2 Super Peer Metadata
Each super peer has metadata about its aggregate peers and

the respective files. These metadata are structured as an XML
file, as shown in Figure 4.

Fig. 4. Super peer metadata

Those metadata define the available versions and replicas

of XML files in a specific super peer (superPeerId), and the
corresponding timestamps for each element (TS, TE) that is
found in a certain document instance (fileID) in a peer (peerID).
The metadata information is updated whenever a new file is
registered and is used during the querying process.

We assume that each element has two timestamps, TS and
TE, inferred from the file modification time in which the
element is represented.

4.3 Administrative Super Peer Metadata
The administrative super peer metadata are presented in

Figure 5. They describe some file information, such as
identifiers, location and registering/modification time.
Specifically, this metadata represent the existent super peers
(ID) and its current aggregate peers (peerID), the local
identifier (fileID), its hash result (hashResult), registering time
(registeringTime), and modification time (modificationTime) for
each file in each peer. The registering time denotes the time
that the file was shared within the system. The fileID attribute
is a value mapped from the hash result. The document
identifier is denoted by docID.

Fig. 5. Administrative super peer metadata

The metadata are accessed in the following situations:
� The system needs to verify peer modifications - peer

changes are detected when the hash function result returns
a different value for a specific file, compared to the value
stored in the metadata. We also consider the file
modification time to optimize this process, by calculating
the hash result only if the modification time has changed.

� The system needs to update the metadata at the first time
peer connection – in this case, the metadata are updated
with information related to the connection, such as: peer
and super peer identification and hash results, registering
time and last modification time of each file.

� The system needs to update the metadata after a peer
reconnection – this is the case when a peer changes some
files and reconnects to the system.

5. Mapping Management

Instances corresponding to terms in the ontology are stored
in the underlying XML documents. Therefore, the mapping
information relates terms in the ontology to data elements of
the underlying XML files. Mappings are the information
needed to retrieve the underlying data corresponding to each

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Metadata SYSTEM "C:\METADATA.dtd">
<Metadata superPeerId="SP1">

<document docID=”D1” fileID="F7" HDoc=’’YES”>
<version versionID="1" peerID="P1" registeringTime="10/10/2005"

modificationTime="08/08/2004" duplicate="no"
hashResult="d49622ddab3733549e54749755fd52b5">
<element name="author" TS="08/08/2004" TE="10/15/2004"/>
<element name="address" TS="08/08/2004" TE="10/15/2004"/>

</version>
<version versionID="2" peerID="P2" registeringTime="11/20/2005"

modificationTime="10/16/2004" duplicate="yes"
hashResult="7c00bb062edc60fa548729a3d55c04fd">
<locationDuplicate>Peer 3</locationDuplicate>
<element name="author" TS="10/16/2004" TE="now"/>
<element name="address" TS="10/16/2004" TE="now"/>
<element name="phone" TS="10/16/2004" TE="now"/>

</version>
</document>
<document fileID="D8">…</document>

</Metadata>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<AssociatedOntologies>
<superPeer id="SP2" ontology="Ont1"><domain>Research

Projects</domain><file>ResearchProjects.owl</file>
<peers> <peer id=”P3”><doc>F2</doc> <doc>F7</doc>

<doc>F8</doc></peer>
<peer id=”P4”><doc>F1</doc> <doc>F5</doc></peer>

</peers>
</superPeer>

</AssociatedOntologies >

<?xml version="1.0" encoding="UTF-8"?>
<metadata>

<superPeer ID="SP1"><message peerID="P1">
<document docID=”D1” fileID="F1"
hashResult="ece50ed4d6d48dac839bfe8fa719fcff"
registeringTime="10/10/2005"
modificationTime=08/08/2004”/>
<document docID=”D2” fileID="F2"
hashResult="e3732b09b5b2a9aa452b8ef7802db638"
registeringTime="10/15/2005"
modificationTime=12/12/2004”/>
<document docID=”D3” fileID="F3"
hashResult="73cbe8e94c7fa839ba1246b34b2a49cd"
registeringTime="10/20/2005"
modificationTime=10/08/2005”/></message>…

</superPeer>
<superPeer ID="SP2">....</superPeer>

</metadata>

527

term in the ontology. The management involves generating
and storing information about those mappings.

Two general approaches can be used for specifying links
among ontologies and data repositories and for using them on
query reformulation [7]: global-as-view (GAV) and local-as-
view (LAV). This proposal assumes the former approach. In
the GAV approach [10], for each term in the semantic view, a
query over the data repositories is written specifying how to
obtain instances from the data repositories. Thus, each term in
an ontology is associated to the mapping information that
relates that term to the underlying XML elements. The
mappings are defined/updated whenever the ontology and
document matching task is performed and they are important
for query transformation, as shown in Section 6.

For each term in the ontology the mapping information is
represented as a transforming function. Mapping definition
for a term in the ontology is a list of mappings (one mapping
for each underlying document with different structure). The
transforming functions are represented in XPath [8]. Besides
relating concepts, the transforming functions also can change
values of an element or attribute such that the meaning of the
information is unchanged. If underlying data are stored in one
format and we have defined a concept in a different format,
the mappings should specify a function that transforms such
representations.

For example, consider the ontology presented in Figure 2
and the XML files shown in Figure 1. Some mappings are
described in Figure 6. Assume that the element address in the
ontology corresponds to information related to street, number,
city and state. Where: concat function returns the
concatenation of its arguments; substring-after returns the
substring of the first argument string that follows the first
occurrence of the second argument string. The power of the
mapping expressiveness is limited by the XPath
expressiveness. However, XPath allows several interesting
mappings, such as: relative and absolute paths; predicates
(i.e., filters); functions for manipulating strings, numbers, and
booleans; node set functions (e.g., last and first position), etc.

Fig. 6. Transforming functions in XPath for the resumé ontology

The mappings are generated by the ontology manager
(Section 3) during the document and ontology matching
activity. The matching task aims to establish correspondences
among the ontologies and the XML documents. This task
determines the overlapping concepts, and the concepts that
are similar in meaning but have different name or structure.

It is possible for an ontology term to have alternative
mappings. For example, when the extension of such term is
stored in several XML documents. In general, alternative
mappings can be defined when there are different ways to

access the data corresponding to a term in an ontology. Also,
alternative mappings can be used when some document is not
available or reachable (e.g., if the peer is off-line) and due to
optimization issues. In this situation, the creator of the
ontology can establish a priority for each alternative mapping
based on the access time or computation time [4], which
depends on the complexity of the mapping itself. When the
system cannot access the repositories corresponding to the
mapping of a term, it tries to use alternative mappings. Also,
only when all the possibilities are exhausted is the term
classified temporally as a term without mapping.

We assume that the mappings are static and do not change
over time. However, when there is a change in the structure of
an underlying document, an addition of a new document with
different structure, or a deletion of an existent document, the
mappings to the associated ontology should be changed. In
our case, all we need is to modify the mappings of the
ontology that describes that document. If a change in a
repository alters its semantics, only the obsolete semantic
relations must be updated.

6. Query Processor

The query processor asks the ontology manager for a
graphical representation of a given ontology, to allow the user
to navigate and select one to edit the query. Before
forwarding the edited query to a specific peer, the system
should know which files each peer has. If the posed query
requires the current status of an element or attribute, only
peers that have the last version of that document should
receive the request. Therefore, the whole system is not
flooded with requests that only specific peers are able to
respond. To evaluate which files must be queried to answer a
specific request, our approach proposes the use of metadata,
presented in Section 4. Such metadata are accessed to
optimize the searching process, as follow described.

6.1 Querying the Metadata
The infrastructure available in the proposed environment is

enough to allow metadata analysis and query routing. The
defined metadata are used for this purpose. For example,
consider the queries get the first version of the person address
and get the last version of the person address. The query
submission works as follows: the user poses a query in a
specific peer (named querying peer). This query belongs to a
specific domain, such as resumé domain. There are two
situations that must be considered:
1. The query domain and the peer domain are the same,

represented by D. In this case, if the querying peer is able
to answer, the query is computed and the results are
returned. Otherwise, the query is routed to the super peer,
which is responsible for defining the routing, based on the
available metadata.

2. The query domain and the peer domain are not the same.
In this case, the query must be routed to a suitable super
peer that aggregates documents belonging to the domain D.
Based on super peer metadata, as described in Figure 4, it is

possible to access the version vi of an element ej, the history
of an element ej, the version vi of a document Di, the history of
an element ej between the time interval x and y, and some
other temporal queries. For example:

Ontology concept XPath mapping
 Document 1 (a) Document 1 (b)

Person
Person/resume //resume //resume
Person/Name /resume/name /resume/fullName
Person/Name/

Firstname
/resume/name/firstname substring-before

(/resume/fullName, “ ”)
Person/Name/

MiddleName
- -

Person/Name/
LastName

/resume/name/surname substring-after
(/resume/fullName, “ ”)

Person/Name/
Suffix

- -

Person/Address concat(/resume/address
/street,../city,../state)

concat(/resume/addre
ss/adr, ../state)

528

1. Retrieve the version vi of an element ej – for instance, get
the first version (versionID="1", line 5) of the element author
(element name="author", line 8). By searching the version
number represented in metadata, the system can verify that
the first version of the queried element is found in peer 1
(peerID="P1", line 5) located at super peer 1
(superPeerId="SP1", line 3). Thus, the system must access
this document and returns the results.

2. Retrieve the version vi of a document D – for instance, get
the second version of the document D1. To answer this
query, the system searches the desired version
(versionID="2", line 12) of the document (docId="D1", line 4).
Looking at the metadata, the system verifies where this
version is located and accesses the specific file.

6.2 Querying the XML Files
The query processor evalutes queries formulated over an
ontology by translating the query and accessing the necessary
underlying data. The following steps are executed to obtain
the data corresponding to a user query:
� Query construction - the user formulates a query using the

terms of the ontology (Qm);
� Query translation - the query formulated over an ontology

is rewritten (Qm) in terms of the XML files;
� Data retrieval - the mapping expression is sent to the

proper peer, data are accessed, individual results (Ru) are
combined, and the final answer (Ro) is returned to the
query processor. This step is represented by the activities
data access and result translation.

 This process is depicted in Figure 7.

Fig. 7. Query processing flow

The tasks on query processing are as`follows:
- Query construction - the user builds a query through a user

interface. For that, the system shows the available
ontologies in order to restrict the query domain. After
choosing a specific ontology, the user can navigate it and
build the query. No extra user intervention is necessary.
The query is represented in XPath.
For instance, the query Qo “get the name of people that live

in Garbonzoville” is represented as:
/Person/Name/Firstname [contains(../../address, ”Garbonzoville”]

Where: function contains returns true if the first argument
string contains the second argument string.

We assume that users formulate queries over only one
ontology. After obtaining the user query, the query processor
invokes the query translator. The query translator uses the
pre-defined mapping information that relates terms in the

ontology to terms in the XML files. The data are later
retrieved, with the help of the transformer functions and the
metadata/ mapping repository.
- Query translation: the system takes a query against the

ontology, transforms it into several mapping expressions,
and executes the queries in the underlying files. When
submitting a query on a P2P system, the user should
consider only the data semantics, without worrying about
aspects related to syntax, location, structure, and data
repositories; those issues are handled by the system.
For instance, using the mapping definitions presented in

Figure 6, the query Qo is translated to two expressions:
Qm1:

/resume/name/firstname[../../address/city= ”Garbonzoville”]
Qm2:

substring-before (/resume/address/adr
[contains(.,"Garbonzoville")]/../../fullName," ")

- Data access: the system retrieves the data that correspond to
the query and that are valid according to the chosen
ontology. For this task, the system uses the mapping
information to translate the user query into different sub-
queries for the underlying XML documents. By looking at
the metadata presented in Section 5, the system identifies
which XML documents are related to the chosen ontology,
on which peer they reside, and how to access them.
Data are retrieved from the different repositories in

different structures and data formats. Therefore, different sub-
answers should be combined (correlated) and presented to the
user. The correlation step has two goals [4]: to solve the
heterogeneity at structural level, and to join answers coming
from different files. Repository answers still follow the
structure of the specific XML source. Thus, each repository
answer is changed from the structure of the file into the
structure of the corresponding ontology supported by such a
file. Then, after this process of applying inverse transformer
functions, all the repository answers are expressed in the
format of the ontology that describes such repositories. So,
after correlating the different repository answers, the result is
returned to the query processor.

In order to correlate sub-answers, we have to deal with two
issues: (i) entity identification - how one identifies
representations of the same real-world entity in different files;
and (ii), attribute-value conflicts - how one deals with
differences in data values among attributes that represent the
same real-world entity? The previous work presented in [9]
discusses the proposed approach for solving these issues.
- Result translation – the transformer functions are also

defined to solve the vocabulary problem at the structural
level, For instance, the query Qm produces the following
results:

Ru1: <firstname>Hu</firstname> Ru2: Jo
By considering the mapping expressions in Figure 6, the

following transformation is performed:
Ru1(<firstname>Hu</firstname>)Ro1: Firstname: Hu

Since the second result is only a substring (Ru2: Jo), the
returned answer for this file is Ro2: Jo.

7. Related Work

Several research works have addressed the problems of how
to specify the links (i.e., the mappings) among semantic views

7.Qm2.Qo

11.Results expressed
in the semantics of
the ontology (Ro)

10.Ru
5.User query
expressed in terms of
the mappings (Qm)

Access to the
underlying files

1.User
query

expressed
in terms

of the
ontology

(Qo)

GUI Query translator

Metadata and
mappings repository

4.Qo

Transformer
functions

6.Qm
3.Qo

8.Results expressed in the
semantics of the

underlying files (Ru)

Result translator

9.Ru

Inverse transformer
functions

12.Ro

529

and data repositories, and how to use them for query
reformulation. In the GAV approach [10], for each term in the
semantic view, a query over the data repositories is written
specifying how to obtain instances from the data repositories.
The LAV approach [10] takes the opposite way: for every
data repository D, a query over the terms in the semantic view
is written for describing the instances found in D. The main
advantage of the GAV approach is that query reformulation is
simple, since it reduces to view unfolding.

In [11], a data model is proposed for encoding semantic
information that combines features of ontology with a
description and rating model that allows handling
heterogeneous views on the domain of interest. [12] describes
the AutoMed repository and some associated tools, which
provide the implementation of the both-as-view (BAV)
approach to data integration. They also describe
transformations between those data modeling languages. [13]
proposes TIQS, an approach to data integration that uses semi-
automatic schema matching to produce source-to-target
mappings based on a predefined conceptual target schema.

Although several data integration systems have been
proposed to address these problems, no single system
addresses all the important issues (such as heterogeneity,
scalability, change of local information sources, query
processing complexity, and global schema evolution) in a
unified approach. Our approach handles heterogeneity by
using mapping functions and it is designed for preserving the
scalability (since it has been proposed for a p2p scenario).
Furthermore, changes of local sources are a constant
requirement, since peers get on-line and off-line constantly
and the shared files can also change. Finally, the global
schema evolution is easily achieved by updating the ontology
and the necessary mappings.

8. Final Remarks

Technology such as search engines in the WWW
currently supports automatic information retrieval that helps
in finding information sources. However, the remaining tasks
of extracting the information and using the information to
solve a given task remain for the human user. There are
severe bottlenecks that must be passed in order to overcome
the current lack of standards in the internet, such as: lack of
ways to represent and translate and lack of a means for
content descriptions. In consequence, there is a clear need and
a large commercial potential for new standards for data
exchange and domain modeling [2].

This paper presented two main contributions: the
specification of a metadata model for managing resources in a
P2P scenario; and the definition of mapping transformation
functions to allow accessing equivalent resources in different
resources. The key point of our proposal is the use of
ontologies. Ontologies are vital for developing the semantic
web.

We are currently developing a graphic tool for peer
management based on JXTA platform [14]. The system will
allow managing the super peers, peers and corresponding
shared files. We are also working on the prototype that
implements the metadata and the mappings presented in this
paper. The conclusion of the prototype implementation will
allow assessing the system performance and scalability.

Acknowledgments
This work has been partially supported by CNPq under

grant No. 142396/2004-4 for Deise de Brum Saccol. It is also
supported by Pronex FAPERGS under grant No. 0408933 and
CNPq under grant No. 481055/2007-0 for Renata de Matos
Galante. We would like to thank Mirella Moura Moro and
Eduardo Kessler Piveta for their helpful comments.

References
1. Elmagarmi, A., Rusinkiewicz, M., and Sheth, A (ed).

Management of Heterogeneous and Autonomous Database
Systems. San Francisco: Morgan Kaufmann, 1999

2. Fensel, D. Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce. Springer, 2001

3. Staab. S. and Studer, R. Handbook on Ontologies (Intl.
Handbooks on Information Systems). Springer, 2004

4. Mena, E., and Illarramendi, A. Ontology-based query
processing for global information systems. Springer, 2001

5. Freenet. Available at http://freenet.sourceforge.net
6. Saccol, D.B., Edelweiss, N. and Galante, R.M.. Detecting,

Managing and Querying Replicas and Versions in a Peer-
to-Peer Environment. In: 1st IEEE TCSC Doctoral
Symposium (7th IEEE Intl. Symp. on Cluster Computing
and the Grid), Rio de Janeiro, 2007

7. Florescu 98 : D. Florescu, A. Levy, and A.Mendelson.
Database techniques for the world wide web : a survey. In
SIGMOD Record, 1998

8. XML Path Language (XPath) 2.0. W3C Recommendation
23 January 2007. Available at
http://www.w3.org/TR/xpath20/

9. Saccol, D., and Heuser, C. Integration of XML Data.
Lecture Notes In Computer Science, V. 2590. In: Proc. of
the VLDB - Workshop on Efficiency and Effectiveness of
XML Tools and Techniques and Data Integration over the
Web, 2002

10. Lenzerini, M. Data integration: A theoretical perspective.
In: Proc. of the Symposium on Principles of Database
Systems, ACM, 2002

11. Broekstra, J., Ehrig, M., Haase, P., and et al. A Metadata
Model for Semantics-Based Peer-to-Peer Systems. In: Proc.
of the WWW'03 Workshop on Semantics in Peer-to-Peer
and Grid Computing, 2003

12. Boyd, M.., Kittivoravitkul, S., Lazanitis, C., McBrien, P.,
and Rizopoulos, N. AutoMed: A BAV Data Integration
System for Heterogeneous Data Sources. In Proc. of the
16th Advanced Information Systems Engineering
Conference, Latvia, 2004

13. Xu, L. and Embley, D. Using schema mapping to facilitate
data integration. 2003

14. Gong, L.. JXTA:A Network Programming Environment.
IEEE Internet Computing, 5(3):88–95, May 2001.

15. Saccol, D.B.. et al. An Ontology-based Approach for
Semantic Interoperability in P2P Systems. Accepted for
presentation in: ICEIS - International Conference on
Enterprise Information Systems, Barcelona, Espanha, 2008.

530

Minimal Observability for Transactional Hierarchical Services ∗

Debmalya Biswas and Blaise Genest
IRISA/INRIA & CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France

{firstname.lastname}@irisa.fr

Abstract

For complex services, logging is an integral part of many
middleware aspects, especially, transactions and monitor-
ing. In the event of a failure, the log allows us to deduce the
cause of failure (diagnosis), recover by compensating the
logged actions (atomicity), etc. However, for heterogeneous
services, logging all the actions is often impracticable due
to privacy/security constraints. Also, logging is expensive
in terms of both time and space. Thus, we are interested
in determining the absolute minimal number of actions that
needs to be logged, to know with certainty the actual se-
quence of executed actions from any given partial log. This
problem happens to be NP-Complete. We consider complex
services represented as a hierarchy of services, and propose
a decomposition mechanism which dramatically decreases
the complexity (up to 2 exponentials).

1. Introduction

An interesting problem for complex systems is to deter-
mine a minimal set of actions that needs to be observable
such that a given property holds. Some of the properties
studied in literature of discrete event systems are normal-
ity [6], observability [5], state observability [9], diagnos-
ability [13], etc. Our system corresponds to a composite
(workflow) Web service. A Web service [1] refers to an on-
line service accessible via Internet standard protocols. A
composite service, composed of already existing (compo-
nent) services, combines the capabilities of its components
to provide a new service. A service schema which specifies
the execution order of its components, can be modeled as a
graph, performing actions on global variables. We do not
tackle here the modelization of a service as a graph, which
should be handled with care to yield a graph of reasonable
size (see [15] and example 1).

Our long-term objective is to provide a transactional
framework for (composite) Web services. A transaction

∗This work is supported by la Region Bretagne (CREATE ACTIVE-
DOC) and ANR-06-MDCA-005 DOCFLOW.

can be considered as a group of actions encapsulated by
the operations Begin and Commit/Abort, having the fol-
lowing properties: Atomicity (A), Consistency (C), Isola-
tion (I) and Durability (D). Here, we focus on the atomicity
aspect, that is, either all the actions of a transaction are ex-
ecuted or none. In the event of a failure, atomicity is pre-
served by compensation [3, 14]. Compensation consists of
executing the compensating actions, corresponding to each
executed action of the failed process, in reverse order of
the original execution. Many advanced transactional mod-
els have also been proposed, e.g. “semantic compensation”
[14] which do not require any knowledge of the execution
sequence. However, their application to more autonomous
systems like Web Services has been limited, where the de-
fault compensation mechanism of the widely used Busi-
ness Process Execution Language (BPEL) is to “execute the
completed actions in reverse order”. Thus, for compensa-
tion to be feasible, we need to reconstruct each executed
action or the complete history of any execution. To achieve
that, we maintain a log of the observable actions. In addition
to the obvious space overhead of logging, the complete log
may not always be accessible. For a composite service, the
providers of its component services are different. As such,
their privacy/security constraints may prevent them from
exposing (part of) the logs corresponding to the execution
at their sites. Also, heterogeneity may lead to the logs be-
ing maintained in different formats, rendering some of them
incomprehensible. Existing Web services specifications to
provide transactional guarantees, such as WS-Coordination,
WS-AtomicTransaction and WS-BusinessActivity [16], are
basically distributed agreement protocols which are based
on the assumption that “all state transitions are reliably
recorded” and can be compensated. Our approach is tar-
geted towards a more heterogeneous environment where all
transitions may not be observable. Hence, we want from a
partial log of the observable actions to know with certainty
the actual sequence of executed actions, to be able to com-
pensate it.

Section 2 introduces the required formal preliminaries
including the precise problem statement. Clearly, we are
interested in logging the smallest number of actions possi-

531

ble. However, determining the minimal number of actions
to log, such that any execution of a system is compens-
able, is NP-Complete. This is not very surprising, since the
closely related sensor selection problems [17, 8] are also
NP-Complete (see section 3). Also, the problem cannot be
approximated [11] in polynomial time, which means that
polynomial time algorithms cannot give a minimal set for
all graphs, and that for many graphs, the observable set pro-
duced would be much bigger than the minimal set.

A complex service is often constructed hierarchically
(see section 4), with some services at a high level corre-
sponding to many composite services at a lower level. Each
hierarchical level potentially describes the interactions at a
different level of abstraction, e.g., the top level may describe
the interactions between several providers, then the next
level between services of a provider, and so on. Moreover,
components can be reused in a hierarchical system, giving a
compressed way to represent big systems. Hierarchical sys-
tems are often used for words [10], Finite State Machines
[2], and even trees [7]. For words, e.g., hierarchical struc-
tures correspond to the LZ compression [10]. We show in
section 5 how to use the hierarchical representation to com-
pute efficiently a minimal observable set of transitions. The
algorithm is not straightforward since the log of both mini-
mal sets of actions of different components is not necessar-
ily enough to recover the actual sequence of executed ac-
tions of the whole graph. One solution could be to resort to
function summarization, but then only an overapproxima-
tion of the minimal set of actions would be obtained. Nev-
ertheless, we show that it suffices to run the algorithm with
slightly different parameters on each component. We thus
obtain a divide and conquer algorithm. We present a the-
oretical complexity analysis which illustrates the benefit of
our method (up to two exponentials better when using the
full hierarchical representation and one exponential better
by using the hierarchical representation even if components
are used only once, compared to flattening the hierarchical
graph), that is verified experimentally (section 6). Proofs
and details omitted for lack of space can be found in [4].

2. Preliminaries

Formally, we model a transactional service as a 4-tuple
M = (Q, s0, sf , T), where (Q, T) is a graph (q ∈ Q is
called a state and t ∈ T a transition) and s0 ∈ Q and sf ∈
Q are the initial and final states, respectively.

Our systems are thus graphs with a unique input and
output point, each node and arc corresponds to a state and
transition, but we ignore the alphabet. We assume that the
service M does not have any unreachable states and that
all states can reach the final state sf . For convenience, we
also assume that there are no outgoing edges from sf and

no incoming edges to s0.1 We say that an execution se-
quence ρ = τ1 · · · τn ∈ T ∗ is a path of M if there exists
q0, · · · , qn ∈ Qn+1 with τi = (qi−1, qi) for all 1 ≤ i ≤ n.
A path is called initial if furthermore q0 = s0. We denote
by P(M) the set of initial paths in M . Finally, we denote
by |M | the size of M , that is, its number of transitions.

In general, for any execution ρ, we call observation pro-
jections the observation we have after ρ was executed (a se-
quence of actions, control points, data . . .). We say that an
observable projection σ is uncertain if there exists two paths
having the same projection. The service M is execution se-
quence detectable iff none of its observable projections are
uncertain.

Definition 1 Let TO ⊆ T be the set of observable transi-
tions. The observation projection ObsO : T ∗ −→ T ∗

O is the
morphism with ObsO(a1 . . . an) = o1 · · · on with oi = ai if
ai ∈ TO, and oi = ε if ai ∈ T \ TO , with ε the empty word.

That is, ObsO(ρ) is the subsequence of ρ obtained by
eliminating from ρ every occurrence of a tuple which is not
in TO. With such an observation projection ObsO, the only
way of having execution sequence detectability is to have
every transition observable. Indeed, as soon as there exists
even one non-observable transition, the service is not execu-
tion sequence detectable. Else, let us take a path ρτ with the
last transition τ /∈ TO. Then, ObsO(ρτ) = ObsO(ρ). An
usual way to overcome such a problem is to ask for certainty
only up to the last few events of the sequence [9]. How-
ever, this workaround does not make sense in our frame-
work since if we cannot compensate the very last action,
then we cannot compensate any action at all. As such, we
design a new observation mechanism, where the last control
point reached before failure is monitored, even if the last ac-
tion is not logged. In practice, it means that every state that
is reached is monitored, and overwrite the previous state in
a special memory buffer.

Definition 2 Let M be a service, TO ⊆ T . The observa-
tion projection Obslast

O : T ∗ −→ (T ∗
O , Q) is the function

Obslast
O (ρ) = (ObsO(ρ), q) for all ρ ∈ P(M) ending in q.

We will stick with this definition of observability for the
rest of the paper. As mentioned before, we are interested in
logging as few transitions as possible.

Problem statement. Given an service M = (Q, s0, sf , T),
we call TO an observable set of transitions if the service
is execution sequence detectable with Obslast

O . We want to
determine a minimal observable set of transitions TO ⊆ T .

The cardinality of such a minimal observable set TO of a
service M is referred to as its observable size MO(M) =

1Notice that we could deal with a service without these requirements,
but the proof would be more technical.

532

Initiate
Payment
Request

Currency
Type?

Finance
Director's
approval?

$

Order Citibank
Cheque

Order
American
Express
Cheque

Euro

Y

N

Update Accounts
Database

Deliver Cheque Terminate
Request

Get Supervisor's
Approval

Y

Get Team
Lead's

Approval

N
Student

?

Send by Courier

Hand Deliver
Geographic
Location?

Initiate
Delivery

Same campus

Different
campus Terminate

Delivery

Figure 1. Travel funds request workflow.

|TO|. Notice that as is usual with decision and computation
algorithms, it is sufficient to have an algorithm which from
a service gives its observable size. That is, we can derive a
minimal observable set of the service based on knowledge
of its observable size in polynomial time.

Example 1 We consider in Fig. 1 a travel funds request ser-
vice, inspired by the workflow in [12]. It involves different
departments across organizations, and it is hierarchical in
that the deliver cheque service is hierarchically described.

We model the service using the service M =
(S, s0, sf , T), as shown in Fig. 2. Notice that this service
is a simplification, since for instance the choice between the
team leader or supervisor approvals is not represented. The
reason is that they are both associated with an empty com-
pensating transition, hence knowing which path was taken
here is not necessary to be able to perform recovery. How-
ever, it is necessary to know which bank issued the cheque in
order to be able to compensate it, by a “Cancel Last Amer-
ican Express (Citibank) Cheque”. Note that we do not ex-
clude the logging of data values (in some persistent storage)
required for compensation. For instance, if there wasn’t any
“Cancel Last Cheque” mechanism, then it would be needed
to log the amount and account number associated with the
’‘Update Accounts Database” transition. Recovery would
manually credit the amount of money written in the log to
the corresponding account. Obviously, we cannot save on
logging the data values, but we optimize the logging asso-
ciated with the path visited. Our experiments performed
on BPEL representations of some workflows reveal that one
transition out of five is logged (which is confirmed in section
6) and that data values logs are small compared to logging
the path.

Now, let TO = {e2, e3, e9} and a failure occurs while
processing e8, that is, the cheque is not issued or deliv-
ered correctly. Then, Obslast

O (e1e2e5e7) = (e2, s5) =
Obslast

O (e1e2e4e6e7). Thus, we do not know if an Amer-

ican Express or Citibank cheque was processed. With
T ′

O = {e2, e6, e9}, we have Obslast
O (e1e2e5e7) = (e2, s5) �=

Obslast
O (e1e2e4e6e7) = (e2e6, s5) �= Obslast

O (e1e2e4e6) =
(e2e6, s4), and T ′

O is an observable set of transitions. Ev-
ery path from s0 to sf uses at least one transition from T ′

O .

s2

s3

Initiate Funds
Request (e1)

Process $
(e2)

Process
Euros (e3)

Order American
Exp. Cheque (e5)

Order Citibank
Cheque (e6)

Update Accounts
Database (e7)

Send by courier
(e8)

s5s0

Process Euros on
Finance Director's

Reject (e4) sfs4s1

Hand deliver (e9)

Figure 2. Modelization of Fig. 1.

3. Problem Hardness

We first relate the problem of computing MO(M) using
our definition of observable projections with other known
problems. We state now that computing the minimal ob-
servable set is equivalent to the uniconnected subgraph
problem, also called the minimal marker placement prob-
lem [8], in the meaning of the following proposition.

Proposition 1 Let M be a service and TO a subset of tran-
sitions of M . Denote by M ′ the service M obtained by
deleting all transitions belonging to TO. Then, TO is an
observable set of M iff there does not exist a pair of paths
ρ1 �= ρ2 of M ′ with ρ1 beginning and ending at the same
states as ρ2.

To prove proposition 1, it suffices to prove that if there
does not exist a pair of paths ρ1 �= ρ2 of M ′ with ρ1

beginning and ending at the same states as ρ2, then from
any observable projection (σ, qn+1), we can reconstruct in
a unique way a path with Obslast

O (ρ) = (σ, qn+1). The
converse is trivial. Indeed, it suffices to define the only
path ρi of M ′ between q′i and qi+1 for σ = (qi, q

′
i)

n
i=1,

and i = 0 · · ·n (we fix q′0 = s0 the initial state of M ′,
and recall that qn+1 is the last observed state). Then, the
path ρ = ρ0(q1, q

′
1)ρ1 · · · (qn, q′n)ρn is the only path with

πlast
O (ρ) = (σ, qn+1). The search for each path ρi can be

performed in linear time by a simple depth first search of
M ′.

The fact is that the marker placement problem is an NP-
Complete problem. The question is then to know if there
is a structural subclass of graphs which has a tractable al-
gorithm to give the minimal observable size. We know
from [8] that the minimal marker placement problem is NP-
Complete even for acyclic graphs. However, the proof uses
a graph with unbounded (in and out) degree. We show
that the problem is NP-Complete even if the graph is both
acyclic and the sum of its in and outdegree bounded by 3

533

(that is, indegree 2 and outdegree 1, or vice versa). The
core of the proof follows the same strategy as [8], but the
encoding to get a unique starting and ending point is both
easier to understand and allows a lower in and outdegree.

Theorem 1 Let M be a service, and k a number. Knowing
whether MO(M) ≤ k is NP-Complete, even if the corre-
sponding graph is acyclic and the sum of in and outdegree
of every node bounded by 3.

This theorem does not mean that the problem is impos-
sible to solve, but that it cannot be solved for all possible
services. For instance, the complexity of the brute force
method which generates every subset of transitions and tests
whether it is observable, is O(2|M|) for a service M with
|M | transitions. The question then is which structural prop-
erty makes the problem easier to solve and often holds for
(real life) composite services. We propose hierarchical ser-
vices as a candidate property.

4. Hierarchical Services

Hierarchical services provide an efficient way to
model large and complex services by allowing a mod-
ular decomposition. We consider hierarchical services
where two transitions (supertransitions) can be further
refined into another service. A hierarchical service
H is a finite sequence 〈Mi〉i=1···n, where M i =
(Qi, si

0, s
i
f , T i, (τ i

1, k
i
1), (τ

i
2, k

i
2)) is defined as follows:

• (Qi, T i) is a finite graph,

• si
0 and si

f are the initial and final states, respectively,

• τ i
1, τ

i
2 ∈ T i∪{ε} are two supertransitions representing

services Mki
1 , Mki

2 respectively, with ki
1, k

i
2 > i.

For instance, the workflow in Fig. 1 can be described by
a hierarchical service 〈M1, M2〉, where M2 is made of an
initial and final state, and two transitions e8, e9 from the
initial to the final state. The service M1 is very similar to
Fig. 2, except that there is a unique transition e10 between
s5 and sf instead of two. This is a supertransition (τ 1

1 , k1
1),

with τ1
1 = e10 and k1

1 = 2, meaning that e10 represents M2.
With each hierarchical service H , we associate an ordi-

nary service H obtained by taking M i, and recursively sub-
stituting each supertransition by the service it represents.
For example 1, H is depicted in Fig. 2. Given a hierarchi-
cal service 〈Hn〉, Hj is a component of Hi, if there is a
supertransition (t, j) in Hi. We define the size |H | of a hi-
erarchical service H as the sum of the number of transitions
of its components M i. Its diameter ||H || is the number of
transitions of H. The diameter ||H || of H can be expo-
nential in the size of H , because components can be reused
several times (for instance, a supertransition of H3 and two

supertransitions of H4 can represent H10, in which case one
does not need to redefine H10 three times).

Now, let us define a hierarchical system H with two lev-
els. The top level H1 has two states, one initial and one
final, with two transitions τ1, τ2 from the initial to the fi-
nal state. Transition τ2 is a supertransition. It is not easy
to determine a minimal set of transitions for H . Consider
first that τ2 describes a system H2 similar to H1, that is
two transitions τ3, τ4 from the initial to the final state, but
without supertransitions. The set T2 = {τ3} is a minimal
observable set of transitions for H2. Now, looking at H1

as a normal system (without supertransitions), T1 = {τ1}
is also a minimal observable set of transitions for H1. We
have furthermore that T1 ∪ T2 is a minimal observable set
of transitions for H .

However, if we take H ′
2 to be the system described in

Fig. 2 and the associated minimal observable set T ′
2 =

T ′
O = {e2, e6, e9} of transitions described in example 1,

then T1 ∪ T ′
2 is not minimal among the observable set of

transitions for H . The reason is that T ′
2 is already an observ-

able set of transitions, because all paths that pass through
H2 use at least one transition in T ′

O , so they can be differ-
entiated from the path τ1. That is, the fact that a subset
of transitions is a minimal observable set of transitions is
global to the whole graph, not local.

5. Algorithm for Minimal Observability

We turn now to defining an algorithm which uses the hi-
erarchical structure of a complex service to compute the
minimal observable set. First, we need the following no-
tations. Given TO , a path ρ is said to be an unobserved path
if it does not use any transition of TO. For a service M
and a set of transitions TO of M , we define the following
predicates:

• P0(M, TO) holds if there does not exist more than one
unobserved path between any two states s1 �= s2 ∈ Q
(TO is an observable set of transitions).

• P1(M, TO) holds if (i) P0(M, TO) holds, and (ii) there
does not exist an unobserved path from s0 to sf .

• P1′(M, TO) holds if (i) P0(M, TO) holds, and (ii)
there do not exist states s1, s2 ∈ Q such that (a) there
is an unobserved path from s0 to s2, (b) there is an
unobserved path from s1 to sf , and (c) there is an un-
observed path from s1 to s2. We refer to such a com-
bination of nodes and edges as an unobserved reverse
cyclic pattern between s1 and s2 (within M) .

For instance, on Fig. 2 with T ′
O = {e2, e6, e9}, P0(T ′

O)
holds because T ′

O is observable, P1(T ′
O) holds because ev-

ery path from s0 to sf uses at least one transition of T ′
O ,

534

but P1(T ′
O) does not hold since there exists three non ob-

servable paths: e4 from s2 to s3/ e1e3 from s0 to s3/ e5e7e8

from s2 to sf .
By definition, P1′(M, TO) ⇒ P1(M, TO) ⇒

P0(M, TO), since for all s, there always exists a path
from s to s. Let ε < 0 < 1 < 1′. We define
Best(M, TO) = x ∈ {ε, 0, 1, 1′} such that Px(M, TO)
holds, but not Pxx(M, TO) with xx > x, with the conven-
tion Pε(M, TO) is always true. Informally, Best refers to
the best properties a given set of transitions can ensure, if
observed.

Proposition 2 Let C be a component of M , and T1, T2

be subsets of transitions of C, respectively such that
Best(C, T1) = Best(C, T2). Then, for all subset of tran-
sitions TO of M \ C, we have Best(M, TO ∪ T1) =
Best(M, TO ∪ T2).

For x ∈ {0, 1, 1′}, we define Tx(M) as a smallest sub-
set TO of transitions of M such that Px(M, TO) holds.
For a subset of transitions T of a component C of M ,
we also denote by T T,C

x (M) a smallest set TO such that
TO ∩ C = T and Px(M, TO) holds. Every algorithm to
compute the minimal observable set of transitions is recur-
sive, taking the set of transitions considered observable as
input. It is easy to modify them to input in the beginning
not ∅ but T , and disallowing to select any new transitions
in C, such that they compute T T,C

x (M), and they do it
faster than Tx(M) because they cannot choose among the
transitions of C. As proved in proposition 2, the size of
TO is constant for several T such that Best(C, T) = y.
If |T ′| > |T | with Best(C, T) = Best(C, T ′), then
|T T ′,C

x (M)| > |T T,C
x (M)|. We can use this idea to com-

pute Tx(M) in a compositional manner, for a service M
having component C:

MinimalDecomposition(M, C):

1. Compute a minimal set Ty(C) of transitions of C,
∀y ∈ {0, 1, 1′}.

2. Compute a minimal set T Ty(C),C
0

(M) of transitions of
M , ∀y ∈ {0, 1, 1′}.

3. Output a set of smallest size among T Ty(C),C
0 (M).

For example, consider the service M having component
C in Fig. 3.

1. A minimal set T0(C) = {(s′0, s2), (s1, s
′
f)},

T1(C) = {(s′0, s1), (s2, s
′
f)}, and T1′(C) =

{(s′0, s2), (s1, s
′
f), (s1, s2)}.

2. The corresponding observable sets of M :
T T0(C),C

0 (M) = {(s′0, s2), (s1, s
′
f), (s0, sf)} of

size 3, T T1(C),C
0 (M) = {(s′0, s1), (s2, s

′
f)} of size 2,

 s2 s1 s' f s' 0 s0 sf

Figure 3. Service M = (Q, s0, sf , T) having
component C = (Q′, s′0, s′f , T ′).

and T T1′(C),C
0 (M) = {(s′0, s2), (s′1, sf), (s1, s2)} of

size 3.

3. T T1(C),C
0 (M) is a minimal observable set of M .

We can now state the main theorem of the paper.

Theorem 2 Let H = (Mi)
n
i=1 be a hierarchical service. It

is NP-complete in the size of H to compute MO(H). More-
over, it takes at most time O(

∑n
i=1

2|Mi|).

It is important to notice that since a service is in par-
ticular a hierarchical service (with hierarchy height of 1),
we know that the problem is at least NP-hard. However,
the complexity could be exponentially worse for hierarchi-
cal graphs, since a small hierarchical graph can represent an
exponentially bigger flat graph. We prove that this is not the
case. Moreover, we prove that the complexity is linear in the
number of components, and exponential only in the size of
each base component. That is, we prove that with a smart
algorithm, one can compute efficiently the absolute minimal
observable size even for huge hierarchical systems, as long
as each component is small enough. The best case com-
parison is with respect to a hierarchical service of diameter
O(2n), having n base components of size 2 (each one be-
ing reused 2n−1 times). The brute force non-compositional
method runs on H and takes time O(22

n

), while our method
takes O(n), that is a doubly exponential improvement (one
exponential due to the reuse of components, and another
due to decomposition).

6. Experimental Results

We tested our decomposition algorithm on hierarchical
graphs. First, we choose a number (between one and nine)
of base subcomponents in the graph. Then, we generate
each of them randomly by using the Synthetic DAG gen-
eration tool (http://www.loria.fr/˜suter/dags.html). We then
generate inductively a hierarchical graph having these base
subcomponents randomly using the same tool, by assign-
ing two edges to these components. There is no reuse of
components. For each value, we generate each hierarchi-
cal graph and each base subcomponent five times to com-
pute the mean values (because of variation in runtime and

535

0,01

0,1

1

10

100

1000

0 20 40 60 80 100
Number of edges (nbr. of subcomponents)

se
co

nd
s

(lo
g

sc
al

e)

Decomposition

Brute Force
mean decomp.

"mean brute"

5
7

9
11

13
15

17
19

21
23

25

0 20 40 60 80 100

number of edges

%
 o

f l
og

ge
d

ed
ge

s

values
mean values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Figure 4. Execution time & observable size

observable size). We then unfold the hierarchical graphs
as (flat) graphs, whose size is linear in the number of base
components. We then run both a brute force algorithm and
our hierarchical algorithm on these graphs. We do not in-
put the hierarchical shape of the graph, instead the algo-
rithm finds the optimal decomposition with a polynomial
time algorithm, see [4]. Fig. 4(left) shows the times (in log-
arithmic scale) needed to compute a minimal observable set
using brute force and our decomposition algorithm with re-
spect to the number of edges (which is linear with respect
to the number of base subcomponents). Our decomposition
algorithm is indeed linear time with respect to the number
of base subcomponents/number of edges (0.14s for an aver-
age number of edges of 18 and 0.73s for an average number
of edges of 108), while the brute force is exponential in the
number of edges, already timing out at a little over 40 edges.
For 1 subcomponent, the overhead of our method makes the
decomposition slightly worse than the brute force method.
Fig. 4(right) shows the percentage of edges needed to be
logged among all the edges. Both algorithms answer the
same number on the same graphs but there is a huge vari-
ation among graphs, from one edge needs to be logged out
of 4 to one edge out of 15. The mean value seems to tend to
one out of 6.

7. Discussion and Conclusion

We studied compensation under partial log visibility. To
the best of our knowledge, this problem has never been con-
sidered in the context of transactional services. We pro-
posed a framework which uses the hierarchical nature of
composite services, and gives an efficient algorithm to com-
pute the absolute minimum number of transitions to observe
in order to get compensability.

The algorithm we proposed considers only a subset of
the whole set of transitions. It is thus straightforward to add
constraints, such as, a subset of transitions “can/cannot be
observed”. It is very useful since in practice, we have to take
into account privacy/security issues. The algorithm would
then answer the absolute minimal observable set among
those satisfying the constraints. Also, the hierarchical de-
composition allows to deal with dynamicity. Indeed, if a
service gets transformed (e.g., after the discovery/death of

a sub-service), obtaining a minimal observable set would
need recomputation, only at its level of the hierarchy (not
below), plus few levels above (until the properties of a level
are unchanged). It also allows to describe more accurately
the details of a service which was considered atomic until
now, in order to have feedback on where a service failed
exactly. We explain in [4] how to deal with distributed sys-
tems, and with systems which are not given in a hierarchical
way (using a folding algorithm).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices: Concepts, Architecture and Applications. Springer
Verlag, ISBN: 3540440089, 2004.

[2] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines. ACM TOPLAS, 23(3), pages 1–31, 2001.

[3] D. Biswas. Compensation in the world of web services com-
position. In SWSWPC, pages 69–80, 2004.

[4] D. Biswas and B. Genest. Minimal observability
for transactional hierarchical services. available at
http://www.crans.org/g̃enest/BG08.pdf.

[5] R. Kumar and V. Garg. Modeling and control of logical
discrete event systems. Kluwer Academic, 1995.

[6] F. Lin and W. Wonham. On observability of discrete-event
systems. Information Sciences, 44(3), pages 173–198, 1988.

[7] M. Lohrey and S. Manneth. The complexity of tree automata
and xpath on grammar-compressed trees. Theoretical Com-
puter Science, 363(2), pages 196–210, 2006.

[8] S. Maheshwari. Traversal marker placement problems are
np-complete. Boulder Univ. Report CU-CS-092-76, 1976.

[9] C. Ozveren and A. Wilsky. Observability of discrete event
dynamical systems. IEEE Trans. Auto. Control, 35(7), pages
797–806, 1990.

[10] W. Plandowski and W. Rytter. Complexity of language
recognition problems for compressed words. In Jewels are
Forever, Springer, pages 262–272, 1999.

[11] K. Rohloff and J. Schuppen. Approximating the minimal
cost sensor selection for discrete-event systems. JDEDS,
16(1), pages 143–170, 2006.

[12] W. Sadiq and M. Orlowska. Analyzing process models using
graph reduction techniques. Inf. Syst., 25(2), pages 117–134,
2000.

[13] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen,
and D. Teneketzis. Diagnosability of discrete event systems.
IEEE Trans. Auto. Control, 40(9), pages 1555–1575, 1995.

[14] G. Weikum, A. Deacon, W. Schaad, and S. H. Open nested
transactions in federated database systems. IEEE Data
Engg. Bulletin, 16(2), pages 4–7, 1993.

[15] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform-
ing bpel into annotated deterministic finite state automata
for service discovery. In ICWS, pages 316–323, 2004.

[16] Web services transactions specifications.
http://msdn2.microsoft.com/en-us/library/ms951262.aspx.

[17] T. Yoo and S. Lafortune. Np-completeness of sensor se-
lection problems arising in partially observed discrete-event
systems. IEEE Trans. Auto. Control, 35(7), pages 797–806,
1990.

536

Using Boolean Cardinality Constraint for LTS Bounded Model
Checking

Sachoun Park, Gihwon Kwon
Department of Computer Science, Kyonggi University

San 94-6, Yiui-Dong, Youngtong-Gu, Suwon-Si, Kyonggi-Do, Korea
{sachem, khkwon}@kgu.ac.kr

Abstract

Generally concurrent software is harder to find a bug
than sequential one. Thus there have been a number of
works on formal verification which exhaustively checks
all behaviors of concurrent software. Bounded Model
Checking (BMC) is widely used in formal verification of
concurrent software systems and exhaustively checks
whether some errors exist in execution traces of the given
system or not within the given limit called as a bound.
In this paper, we develop the tool LTS-BMC that accepts

both LTS (Labeled Transition System) as a modeling
language and FLTL (Fluent Linear Temporal Logic) as a
specification language. And the specification is checked
against the model using a SAT solver. To translate them
into a set of CNF clauses which is the input format to
most SAT solvers, we propose efficient CNF encoding
techniques and apply to several case studies. As a result,
LTS-BMC shows a good performance. �

Keywords : Formal Verification, Bounded Model checking,
Labeled Transition System, Boolean Cardinality Constraint

1 Introduction

Model checking technique, which was designed for
verifying hardware system in 19801s, had made rapid
progress through 19901s with adoption of BDD(Binary
Decision Diagram) as their inner data structure[1]. BDD
based symbolic model checking tools were promptly
disseminated in the field of system verification, also now
a days, several verification tools based BDD are still

* This work was partly supported by the GRRC program of
Gyeonggi province [2007-081-7, Context-aware Information
Processing Technology for Effective Digital Contents
Service] and the Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korea government (MOST)
(No. R01-2005-000-11120-0)

widely used. But, that technique involves fatal problem,
called state explosion. With changing the matter of
concern of model checking from hardware to software
verification, there were many active efforts to overcome
the state explosion problem, so some studies make major
accomplishment. For instance, in SLAM project, initiated
by Microsoft to detect bugs of device driver, the
framework of abstraction-verification-refinement was
proposed and some real bugs were detected without state
explosions[2,3].

Recent years, many researches, in which the model
checking is considered as satisfiability problem, have
made progress for alternative approach to alleviate the
state explosion. These researches called BMC[4,5]
(Bounded Model Checking) were based on high
performance of SAT-Solver recently developed[6].

In this paper, in the line of previous studies, BMC for
LTS(Labeled Transition System) is proposed because
LTS is a proper model to describe concurrent system.
Above all, how to encode a model into an input part of
SAT-solver is precisely presented. FSP(Finite State
Process), a textual language to express LTSs, was
introduced for modeling and analyzing of behavioral flow
of multi-threads of an java program[7]. In the LTSA(LTS
Analyzer), a tool to support to analysis FSP, basically the
explicit method is used for analyzing FSP, and the model
checking method is trying lately[8], in which the
automata theoretic approach was applied for LTL(Linear
Temporal Logic) of LTS[9], but there is no approach to
BMC for FSP yet. By the way, one research for BMC of
LTS is accomplished by Toni[10,11]. Toni explained
three different semantics for parallel composition of LTS
in his Ph.D. thesis, and showed experimental results for
verifying reachability, deadlock, and consistency
properties. However the LTL bounded model checking
for LTS was not described.

537

Due to the action-centered feature of LTS, to LTL
model checking for LTS, the semantics of LTL is
redefined by actions used in a corresponding to LTS. For
model checking based on actions, a fluent, a sort of
virtual state, must be defined and bounded model
checking must be described based on the fluent. In the
previously proposed fluent model checking, automata-
theoretic approach was used, in that way firstly, given
LTL formula was translated into Buchi automata, and
then the automata was converted into property LTS, and
finally, checking was performed on the composition
between model LTS and property LTS[9]. But in this
paper, this checking is performed by BMC and through
experimental results with LTS-BMC we can check the
model which cannot check with the existential LTS
analyzing tool.

This paper is organized as follow. We overview BMC
and define LTS and its parallel composition as a
background in section 2. Then in section 3 the encoding,
which translates given LTS model into the input part of a
SAT-solver, is explained. Section 4 describes LTS-BMC
tool we developed and analysis results of experiment and
finally section 5 contains the conclusions and future
works.

2 Background

2.1 BMC
The model checking exhaustively searches state space
with breadth first method therefore during the model
checking the amount of main memory become more
exponential. So before finishing that the model checker
searches for all state space, the main memory frequently
is not available. But not all properties need to search for
all state space. If the length of the counterexample of the
property to be check is k, then the verification is finished
within k-th iteration.

BMC has model, property, and bound k as inputs and
then only performs verification within the bound. So
BMC cannot provide information as to whether the
property may be violated when more execution steps are
taken. Therefore this technique is falsification, not
verification.

In BMC, LTL formula is generally used to specify
property. Both model and property are translated into
CNF (Conjunctive Normal Form) formula, and SAT-
Solver decides the satisfiability of the generated CNF
formula. If the result of SAT solving is satisfable, then the
property holds in the model, otherwise the property does
not hold in the model. If the property holes however, then

the error exists in the model, because the property means
the error.

2.2 LTS
To model the behavior of components which work in
concurrent systems LTS is used. LTS M consists of four
tuples qAS ,,, ; :

� S is a non-empty finite set of states,
� A is a non-empty set of actions,
� ; � S � A < {>} � S is the transition relation, the

elements of which are called transitions of M and > is
silent action symbol which cannot be observed to the
environment.
� q � S is an initial state of M.

By occurring of an action a, if the LTS M =
qAS ,,, ; transits other LTS M1 = qAS 1;,,, , that is

represented by 'MM a?? and (q, a, q1)�;.
Continuously occurring of actions makes the system to
behave, so the sequence of actions is referred as to
execution path or path.

In LTS M, the sequence of transitions generated by the
sequence of actions <a1, a2, …, an> denotes / = <(s1, a1,
s2), (s2, a2, s3), …, (sn, an, sn+1)>, where s1 = q, �1.i.k. (si,
ai, si+1) � ;, and length of path |/| is n.

Let / is a path on M, i-th step of the path becomes (si, ai,
si+1). If there is no outgoing transition in the state si, then
that sates is called deadlock state and if the last state of a
path is deadlock state, then the path is deadlock path.

For the set of LTS {M1, …, Mn}, their parallel
composition is represented by M1 || … || Mn. Some action
labeled in more than two LTSs synchronously occur in
the composed LTS M and that action is called
synchronized action, and the action labeled in specific
LTS, the local action, occur by means of interleaved
manner. Therefore at once also one action occur in
composed LTS M. The definition of parallel composed
LTS M = M1 || … || Mn is as follow, when Mi =

iiii qAS ,,, ; .

� S = S1 � … � Sn,
� A = A1 < … < An,
� ; = {([s1, …, sn], a, [t1, …, tn]) � S�A-{>}�S |

�1.i.n.(a�Ai @ (si, a, ti)) � (aAAi @ si = ti))} <
{([s1, …, sn], >, [t1, …, tn]) � S�{>}�S | 91.i.n. (si, >,
ti)�;i � �1.j.n. i'j @ si = ti },
� q = [q1, …, qn].

The state in composed LTS by the number of n is
expressed by n-tuple but the set of actions in composed

538

LTS is the union of each Ai, so that the element of A is
called global action. If a global action occurs, then LTS
that has the corresponding to local action can move but
LTS that never have the same local action is idle. If the
silent action > occurs, then the local LTS have the silent
action can transit.

3 Encoding using BCC

3.1 BCC
Before we describe encoding of LTS model, we explain
the BCC(Boolean Cardinality Constrants) frequently used
in the encoding of our model and predicates. Given a set
of Boolean variables X = {x1, …, xn}, BCC are formulae
expressing that at most (resp. at least) k out of n variables
are true. If selecting at least one element among X denotes
AtLeastOne(X), then the formula is expressed as follow.

AtLeastOne(X) = i
n
i x1/\

 Similarly selecting at most one among X is as below.

AtMostOne(X) = � �ji
n

ij
n
i xx ����

�

 1

1
1 \/\/

Therefore the predicate of selecting exactly one
element among X, ExactlyOne(X) is AtMostOne(X) �
AtLeastOne(X). However, above encoding method is
naïve and more efficient encoding ways are introduced by
Bailleux[12], Sinz[13], and Kwon[14]. The BCC
encoding of Bailleux is efficient for selecting exactly k
out of n variables and he uses binary tree and unary
representation of an integer value. Sinz’s method is
optimal for selecting at most k among n variables and
takes advantage of a sequential counter for encoding BCC
into CNF. And Kwon proposed an encoding method that
has best performance in selecting one out of n variables
and he adopted the concept of hierarchies among Boolean
variables. We experiment with these encoding methods
and compare with them in our tool.

3.2 Mode Encoding
Now we will explain some predicates used in definition
of encoding of LTS. Below step i is i-th step on the
execution path.
� Select(s, i) is true if state s is selected in the i-th step.
� Select (a, i) is true if action a is selected in the i-th

step.
� Enable(s, Act, i) is true if in the i-th step set of

actions Act is enable in state s. when Act = {a1, …,
an}, Enable(s, Act, i) = Select(s, i) @ Select(a1, i) �
… � Select(an, i).

� Disable(Act, i) is true if in the i-th step set of actions

Act is disenable, is equal to the formula �a�A.
�Select(a, i).

Already mentioned LTS M = qAS ,,, ; consists of a set
of states, a set of actions, transition relations, and an
initial state. Therefore encoding of M can be split into
encoding of each component in i-th step. First, the
formula the corresponding to the set of states is (1).

ExactlyOne(S, i) (1)

Figure 2. At most one of six: (a) Naïve method, (b)
Sinz’s, method (c) Bailleux’ method, (d) Kwon’s method

Only one state is selected at each step of the execution
path, so the predicate (1) which expresses to select one
state in i-th step is defined by extending the predicate
ExactlyOne(S). And more detail, given a set of states S =
{s1, …, sn}, ExactlyOne(S, i) is equal to the predicate
ExactlyOne({Select(s1, i), …, Select(sn, i)}). Similarly the
extended predicate for the set of actions can be defined.
Because only one global action may occur in M, the
predicate about selecting action in i-th step is denoted by
(2).

AtLeastOne(A, i) (2)

Also given a set of actions {a1, …, an}, AtLeastOne(A, i)
is equal to AtLeastOne({Select(a1, i) , …, Select(an, i)}).
Encoding about transition relations needs two formulae,
that is, the condition for occurring transition and the
condition after the transition occurring. In each state s,
when step-i, the predicate expressing the condition for
occurring transition is (3).

�s.Enable(s, Act, i) (3)

The condition of enable transition is when a state is
selected the possible action to occur in s is selected. Thus
occurring transition is represented by predicate express

539

possible actions to occur in each state. And then for all
transition relations (s, a, t)�; in i-th step, the formula of
the condition after the transition occurring is defined by
(4).

Trans(;, i) = �(s, a, t)�;. Select(s, i)
� Select(a, i) @ Select(t, i+1) (4)

Because the initial state of M is selected in step zero, we
can use below predicate about q in M. where q represents
the Boolean variable of the initial state.

Select(q, 0) (5)

Thus given a bound k, the formula to encode LTS M
Encode(M, k) is denoted (6), conjunction from (1) to (5).
About encoding for the initial state, because of exactly
one state can be selected and Select(q, 0), in step 0, it
guarantees that other states is not selected except q.

Encode(M, k) = Select(q, 0)
� �0.i<k.(ExactlyOne(S, i)

� AtMostOne(A, i)
� �s. Enable(s, Act, i)
� Trans(;, i)) (6)

Universal quantifier means �-operation of all instances,
so the final formula of the model (6) is kept up CNF. The
formula of the deadlock property can be expressed by
90.i<k.Disable(A, i) which means that there is the state
in which any actions can be occurred.

3.3 Encoding a parallel composed LTS
There are two approaches for encoding of the parallel
composed LTS. One approach is that we first generate the
composed model by means of explicit manner and then
encode the composed model, and another one is that we
first encode each local LTS, and next compose. First
approach is finished by encoding for the composed LTS
M, Encode(M, k). And second approach is that
interleaving semantics among local models is encoded
with encoding for each local model. The brief description
of the second approach is as follow.
� States, actions, initial state, and enable actions in the

particular state are encoded by the same method of the
local LTS.

� Variables for interleaving and global actions are
declared and the connection between global actions and
local actions are encoded with interleaving variables.

� Transitions in each LTS are encoded with the
occurrence of global actions.

In previous chapter as we described, initial state of
composed LTS M = M1 || … || Mn is [q1, …, qn], so we can
encode like below (7).

�1.j.n.Select(qj, 0) (7)

For states, actions, and enable actions of each LTS, in i-
step, we can encode such as (8), (9), (10).

�1.j.n.ExactlyOne(Sj, i) (8)
�1.j.n.AtMostOne(Aj, i) (9)
�1.j.n.�s�Sj. Enable(s, Act, i) (10)

The set of global actions G = {g1, …, gm} is encoded like
the set of local actions as the formula (11). And the
formula (12) is the encoding for the set of variables for
interleaving semantics IN = {in1, …, inn}, which is
encoded by selecting exactly one of n, because only one
LTS must be selected.

AtMostOne(G, i) (11)
ExactlyOne(IN, i) (12)

The set G is corresponding to the set of actions of the
parallel composed LTS. For the connection between
global and local action, let the MA(g) = {a | 91.j.n. a�Aj

� a = g}is the set of actions, which are corresponding to a
global action g, in each local LTS and ING(g) = {inj �
IN| g � Aj}. At i-th step, the encoding of each global
action is (13).

Matching(i) = �g�G.�a�MA(g).Select(g, i)
B Select(a, i)
� 91in�ING(g).Select(in, i) (13)

Finally, encodings for transition relations of each LTS M
= qAS ,,, ; at i-th step are formulated by (14) and
(15). The formula (14) is the constraint for transit, and
(15) is the constraint for idle, where s�S, a�A, (s, a,
t)�;, and g�G.

Select(s, i) � Select(a, i) � Select(g, i)
@ Select(t, i+1) (14)
Select(s, i) � Select(a, i) � �Select(g, i)
@ Select(s, i+1) (15)

Therefore the formula made by conjunction from (7) to
(15) is encodings for a given parallel composed LTSs.

3.4 Encoding property
Property is generally represented by LTL formula which
is defined by follow.

540

C ::= F

Fl means fl
of initiating

where IFl,
initially be
attribute Iin
which value
actions. EFl

actions nor
the value o
follow, and

Encodi

4. Experi

The LTS-B
phases as fi
file and the
formulae o
decision wh
is perform
minisat[17].
the bound k
then becaus
counterexam
Although af
unsatisfiable
counterexam

To compare
example ap

Fl | �Fl | C�D

uent, which i
actions IFl an

Fl �EIF

TFl F G and I
true or false

ntiallyFl. There
e is true or fals
l F G is also
terminating ac

of fluent is p
for the rest LT

ing(Fl) = Iinti
� IFl @
� TFl @
� EFl �
� EFl �

ments

BMC tool we
igure 2. In the
result is LTS
f model and

hether generat
med by the
. If the result

k is increment
se this case m
mple, it resolv
fter increasing
e, it is rega
mple and solvi

Figure 2. Ov

e encoding m
ppeared in [

| C�D | XC | F

s defined by
nd a set of term

Fl, TFlG Iintially

IFl 8 TFl = 3
e at step 0
efore a fluent
se according t
o actions and
ctions. For the
reserved. Enc
TL formula, w

iallyFl

@ Fl
@ �Fl

Fl @ Fl
�Fl @ �Fl

 developed i
e parsing phas
s. And in the

property are
ted formulae
e state-of-th
t of solver is
ed, and if the

means to fine a
ves the error
g k enough, th
arded as to
ing is termina

erview of LTS

methods, we e
[18]. The co

FC | GC | CUD

a pair of sets
minating action

lyFl

and a fluent F
as denoted b
t is a kind of
to the occurre
d neither init
e occurrence o
coding fluent
we follow [15,

s consists of
se, the input i
second phase
e encoded. F
is satisfiable

he-art SAT-s
 unsatisfiable
 result is satis
an error, whic
traces by de

he result still r
fail to fin

ated.

S-BMC

xperiment wi
oncepts of a

.

, a set
n TFl.

Fl may
by the
f state
nce of
tiating
of EFl,
t is as
,16].

f three
is FSP
, CNF

Finally
or not
solver,
e, then
sfiable
ch is a
coder.

remain
nd the

ith the
atomic

o
p
w
st
a
2
In
a
e

T
a
m
p
1
m
o
n
th
o

operation and
programs are
with two proc
tatement N :=

an initial zero
2K; [18] descr
n our experim

are increased o
mployed exam

Figure 3.

Table 1 shows
and LTS-BMC
method[13] a
performed on
.86GHz CPU

means the exp
overflow. #P
number of stat
he bound used

of variables an

<

#P
#state #

2 272

3 7,540
4 170,425 1,

5 -

6 -

bound 20
const Imax
range Int =

VAR(Init =
VAR[v:Int]

Proc = Proc
Proc[i:Int

||C = ({a,b

Test = (end
||C_Test =

fluent F =
assert A =

d interleaved
conveniently
esses, each o

= N + 1, whe
value. Intuitiv

ribed a scenar
ments, K = 3
one by one. T
mple in the ca

FSP code for

s experimenta
C. LT-SEQ s
s encoding B
Windows X

U and the timeo
periment to b
is the numb

tes, #trans. is
d in BMC, #va
nd clauses in C

<Table 1> Ex
LTSA

#trans. time

842 0.11

34,712 3.68
,130,530 6.91

- -

- -

= 3
= 0..Imax

0) = VAR[In
= (read[v

|print[
|write[

c[0],
] = (when(i

rea
 inc

wri
 | when(i

end

b}::VAR || a

d -> {a,b}.p
(C || Test)

<{{a,b}.pri
<> F

d execution
demonstrated

f executes K
ere N is a shar
vely, in the fin
rio whose fina

and the num
The FSP code
ase of two proc

the extreme in

al results by
stands for tha
BCC in LTS

XP with a 1G
out is 1000sec
be failed cau
ber of proces
the number o
ar. and #claus

CNF, respectiv

xperimental re
LTS-BMC

k #var.

20 5,523

29 11,520
38 19,695

47 30,624

56 42,579

nit],
v] ->VAR[v]
v]->VAR[v]
c:Int]->VAR

i < Imax)
ad[j:0..Imax
c ->
te[j+1] -> P
 == Imax)
d -> END)+{w

a:Proc || b:
 {end

print[2] ->S
).

int[2]}>

of concurr
d by a progr
iterations of

red variable w
nal state K . N
al state is N =

mber of proces
in figure 3 is
cesses.

nterleavings

means of LT
at we use Sin
S-BMC. It w
Gb memory a
c. the symbol

used by mem
ss, #state is
f transitions, k

se are the num
vely.

sults
C(LT-SEQ)

#clause time

16,882 0.3

35,771 6.1
61,662 146.5

95,699 780.7

134,450 286,2

R[c]).

x-1] ->

Proc[i+1]

write[0]}.

:Proc)/
/{a,b}.end}
STOP).

rent
ram
the

with
N .

= 2.
sses
the

TSA
nz’s
was
and
“-”

mory
the
k is

mber

32

8
59

78

25

.

541

In the table 1, although the solving time of LTS-BMC is
slower than one of LTSA, we recognize state spaces of
LTSA are growing exponentially in contrast of the linear
increasing of the size of CNF formulas generated by LTS-
BMC. So LTS-BMC has more benefit than LTSA when
the number of processes is growing. However the solving
time of LTS-BMC must be improved. We consider the
formula (10) described in section 3.3 as one of main
obstacle. Below figures are consumed memory and time
for experiments with several BCC methods. Commander
indicates Kwon’s method[14] and UT_MGAC indicates
Bailleux’s method[12]. In this experiment LT-SEQ shows
the best performance among several BCC methods.

Figure 4. Amount of the memory used in solving

Figure 5. Sloving times

5 Conclusions

To overcome the limitation of the model checking
technique, the problem of state explosion, the research
about BMC is active. In this paper, we developed the
BMC tool for LTS, which is a proper model to describe
concurrent system, and experimented with interleaving
models. Through experiment, we showed verifying LTS
model which could not deal with an LTSA. Remained

works are improving the encoding method of model and
developing unbounded model checking for LTS.

References

[1] E. M. Clarke and E. Emerson, “Design and synthesis of
synchronization skeletons using branching time temporal
logics,” In Logic of Programs: Workshop, volumn 131 of
LNCS, pages 52-71. Springer-Verlag, 1981.

[2] J. P. Quielle and J. Sifakis, “Specification and verification
of concurrents systems in CESAR”, In Proceedings of the
5th International Symposium of Programming, pages 337-
350, 1981.

[3] http://research.microsoft.com/slam/
[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic

model checking without BDDs”, In Proceeding of
Workshop on Tools and Algorithms for the Construction
and Analysis of Systems, LNCS, Springer-Verlag, 1999.

[5] A. Biere, A. Cimatti, E. Clarke, Ofer Strichman, and Y.
Zhu, “Bounded Model Checking”, Vol. 58 of Advances in
Computers, 2003. Academic Press (pre-print).

[6] M.W. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,” In
Proceedings of Design Automation Conference, 2001.

[7] J. Magee and J. Kramer, Concurrency – State Models and
Java Programs, Chichester, John Wiley & Sons, 1999.

[8] http://www.doc.ic.ca.uk/ltsa/
[9] D. Gannakopoulou and J. Magee, “Fluent Model

Checking for Event-based Systems,” In Proceedings of
ESEC/FSE03, 2003.

[10] T. Jussila, “BMC via dynamic atomicity analysis,” In
Proceedings of the International Conference on
Application of Concurrency to System Design, IEEE
Computer Society, June 2004.

[11] T. Jussila, K. Heljanko, and I. Niemela, “BMC via on-the-
fly determinization,” In Proceedings of the 1st

International Workshop on Bounded Model Checking,
2003.

[12] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of
Boolean cardinality constraints,” In Proceedings of the CP
2003, vol. 2833, LNCS, 2003.

[13] C. Sinz, “Towards an optimal CNF encoding of Boolean
cardinality constraints,” In Proceedings of the CP 2005,
vol. 3709, LNCS, 2005.

[14] G. Kwon and W. Klieber, “Efficient CNF Encoding for
Selecting 1 from N Objects,” In the Proceeding of CFV07,
2007.

[15] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani,
“Improving the Encoding of LTL Model Checking into
SAT,” In the Proceeding of 3rd VMCAI, vol. 2294, LNCS,
2002.

[16] T. Latvala, A. Bere, K. Heljanko, and T. junttila, “Simple
Bounded LTL Model Checking,” In proceedings of the 5th

VMCAI, vol. 2937, LNCS, 2004.
[17] N. Een and N. Sorensson, “An Extensible SAT-solver,” In

the Proceedings of SAT 2005, vol. 2919, LNCS, 2005.
[18] Mordechai Ben-Ari , Alan Burns, Extreme Interleavings,

IEEE Concurrency, v.6 n.3, p.90-91, July 1998.

542

Japanese Puzzle as a SAT Problem

Sachoun Park, Gihwon Kwon

Department of Computer Science, Kyonggi University
San 94-6, Yiui-Dong, Youngtong-Gu, Suwon-Si, Kyonggi-Do, Korea

{sachem, khkwon}@kgu.ac.kr

Abstract

In this paper, we are interested in automatically solving
Japanese puzzle which is also known as Nonogram and
aims to reveal a hidden picture according to numbers
given at the side of the two-dimensional board. For
example, the numbers “4 3” mean there are sets of four
and three consecutive filled squares, in that order, with
at least one blank square between successive groups.
To regard it as a SAT problem, Boolean Cardinality

Constraint (BCC) is seemed to be a natural choice to
represent as a set of CNF clauses. However, BCC alone
is not enough to identify a sequence of n filled squares
given the number n. To select a sequence of filled
squares, we add the adjacency constraint to traditional
BCC and applied this idea to a number of this kind of
puzzles. As a result, our idea shows much better
performance than when BCC alone is used. �

Keywords : Adjacency, Boolean cardinality constraints, CNF
encoding, Satisfiability, Solving puzzle

1 Introduction

After the DPLL[1] was proposed for the algorithm of
SAT solving in 60’s, in the last decade the performance of
SAT solvers was highly improved[2,3,4]. Due to these
improvements, in many application areas such as AI
planning[5], hardware and software verification[6,7],
solving puzzles[8], and reconstruction of images[9],
problems are regarded as SAT problems. To deal with
problems via SAT, those are specified by several
constraints and then encoded to conjunctive normal form
(CNF). CNF is the conjunction of clauses composed of

* This work was partly supported by the GRRC program of

Gyeonggi province [2007-081-7, Context-aware Information
Processing Technology for Effective Digital Contents
Service] and the Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korea government (MOST)
(No. R01-2005-000-11120-0)

disjunction of literals that is an atomic proposition or the
negation of an atomic proposition.

However, many types of constraints that appear in
practical problems have no natural expression in the CNF.
Boolean cardinality constraint, which expresses bounds of
the number of variables to be true in the set of Boolean
variables, is one of these. So far, there are many
researches about CNF encoding of BCC, which are
concentrated on generating efficient CNF formulae. Here,
the efficiency means that generated formulae must be
kept relatively small number of variables and clauses with
respect to given variables and must be made the solving
time shorter. Sinz applied sequential counter into CNF
encoding for BCC in [10], and Bailleux and Boufkhad, in
[9], used binary tree whose nodes function as the middle
summation. When � is the number of given Boolean
variables and � is the number of variables to be true,
Sinz’s and Bailleux’s methods need ��� � �� , �����
clauses and ��� � �� , ��� � 	
� �� auxiliary variables,
respectively.

Another approach showing the efficiency of encoding
technique is testing it on some applications. In [9],
Bailleux and Boufkhad had tested their technique on a
problem arising in 2-D discrete tomography which is the
reconstruction of a 2-D grid, given its projections in four
directions. From the problem we could get an idea about
the adjacency constraint (ADC) and define its CNF
encoding. So given projection in two direction with
adjacency information, we could reconstruct the image of
a 2-D grid. In fact, this method is close to solve Japanese
puzzle(Nonogram)[11,12,13]. To express the ADC, we
assume the sequence of given Boolean variables and we
say that variables assigned true are adjacent when all
those are neighbored with each other in the sequence.

Through experiments we prove the applicability of the
ADC. To do this, we define the naïve encoding of ADC
and then we explain how to combine it within BCC to
translate problems of reconstructing image to CNF
formulae. Also we show the method of applying ADC to
BCC using binary tree and sequential counter.

This paper is organized as follow. As background CNF
encodings for BCC is described in section 2, where BCC

543

is described by the constraint 	 � �� � �, which means
that the number of set of Boolean variables assigned true �� in given Boolean set � is between 	 and �. And the
description parts into three subsection: naïve encoding,
encoding using a binary tree, and encoding using a
sequential counter. Then in the section 3, we propose the
concept of adjacency constraint and define CNF encoding
for ADC in those three parts. In section 4, we present
experimental results on three types of examples with four
different methods. Finally we conclude in section 5.

2 Backgrounds

2.1 Naïve encoding
In this subsection, we explain naïve encoding for BCC.
Let � � ���� � � ��� is a set of Boolean variables and �� � � represents a set of variables to be true. To translate
BCC for 	 � �� � � into CNF formulae, we must
separate the constraint into two parts 	 � �� and �� � �, and translate each part of the constraint into
CNF, and then make the conjunction of two formulae.
These two constraints 	 � �� and �� � � mean that
the size of �� is at least 	 and at most �, respectively. For
all subsets of �, ��� � � � ���� �� , where each length of subsets
is 	, the naïve way of converting the constraint 	 � �� to
CNF is as follow.
 � � �� �!��"�"#�"!"��� �

 (1)

If the size of a subset �� � � to be true is at most �, then
we can surely exclude variables included in � $ �� .
Therefore, all subsets of � , ����� � � �� �%&'��� , where each
length of subsets is �(), the second constraint �� �� is expressed by follow.
 � � ��� �!���"�"*+��"!"� �%&'�

 (2)

Thus for the problem of selecting exactly � elements in
the set � � ���� � � ��� , we can generate corresponding
propositional formulae as converting � � �� � � to
CNF. In the case of the constraint �� � � , it requires � �,+�� clauses of length � () . In the worst case of � � -�./0 $) , the number of generated clauses is ��/�.1�./� , so next subsections present better
encodings for 	 � �� � �.

2.2 Encoding using a binary tree
The encoding method explained in this subsection was

proposed by Bailleux and Boufkhad[9]. The encoding
uses a unary representation of integers, so to express the
number of variables assigned true, it must use auxiliary
variables. For example, if we want to present the value of
an integer � such that 2 � � � � with Boolean variables 3�� 3�� � � 3�, then it becomes 3����3,��3,+�����3�.
Thus when the value of � is in the bound 	 � � � �, we
can generally express it as follow formula.
 � 3!�"!"# � � �3�*+�"�"� (3)

For example, given the set of Boolean variables � ����� ��� �4� �5� �6�, to convert the BCC to CNF using the
unary representation, it requires 5 auxiliary variables. Let
the set of auxiliary variables is 7 � �3�� 3�� 34� 35� 36�, if
variables to be true in � are only �� and �5, then for the
number 2, it could be expressed by the formula 3��3���34��35��36. Therefore, to represent all cases of
allowing variables to be true in � as unary representation
of 7, the set 7 is allocated to the root node of the tree,
each group of auxiliary variables (�� 	��� �8�� 8�� 84�� �85� 86� is allocated to each non-terminal nodes in the tree
like figure 1, and each variable in � is allocated to a leaf
node in a one-to-one way, thus all nodes in the tree
represent the sum of the sub-tree whose root is that node.

Figure 1. Binary tree and assigning auxiliary variables

As the previous example, if variables allowed to be

true are only �� and �5 , then each variables located by
non-terminal node is converted to 	���	� , 85��86 , and 8���8���84, respectively, which are correspond to their
sub-sum. Consequently, to convert 	 � �� � � to CNF
using a binary tree, it start from a isolated node located by
variables for the integer � and proceed iteratively: to each
terminal node which has �� 9) variables, we connect
two children to be located by :��

�; , �� $:��

�; variables,
respectively. This procedure builds a binary tree with �
leaves assigned by �! � . In this binary tree, when < � �=��� � =>� is a set to assigned in a non-terminal
node and ? � �	�� � � 	>'� and @ � �8��� � 8>A� are
variables assigned in left and right child of the node, the
following CNF formula expresses their relation, where =B � 	B � 8B �) and =>+� � 	>'+� � 8>A+� � 2.

544

 � � �	! C 8�D@D=!+��B"�">AB"!">' C �=!+�+� @D	!+� E 8�+�� (4)

According to our observation, the conjunction of (3) and
the left part of the above formula is the CNF
representation of 	 � �� constraint and the conjunction
of (3) and the right part is for �� � �. Therefore, if we
apply formula (4) for all non-terminal nodes and conjoin
them with (3), we can represent 	 � �� � � . As I
mentioned in section 1, this method requires F�� G 	
�D��
clauses and F���� variables.

2.3 Encoding using a sequential counter
In this section, we explain the translation method using a
sequential counter proposed by Sinz[10]. Let input
variables are � � ���� � � ���. A sequential counter circuit
computes partial sums 3! � H ��!�I� for increasing values
of J up to the final J � �, and the values of all 3!’s are
represented as unary numbers. Sub-circuit is computing a
partial sum 3! in unary representation and the maximal
value of the partial sum is � . Therefore, it requires �� $)� G � auxiliary variables.

To convert this circuit to CNF, we define equations for
the partial sum 3!�� such as formula (5). In [10], to convert
this circuit to CNF, implication operator is used at (a),
(b), and (c) in (5). This way could optimize the CNF
encoding of the constraint �� � � , but if we use
equivalence operator instead of implication, then
remaining relatively small number of clauses the
constraint 	 � �� � � can be represented.

If we use equivalence operator instead of implication at
(a), (b), and (c) in formula (5), then the constraint 	 � ��
is represented by the formula (6).
 ��@3��� (a)

for) K L � �
 �3���
for) K J K �
 ��!D�D3!M����@3!�� (b)

for) K L � �
 ���!D�D3!M���M���D3!M����@3!�� (c) �!@D�3!M��*

(5)

 D3#�#���D3�M��#����D� 3�M��#M�� (6)

Therefore, the CNF formulae encoding of 	 � �N � �
consist of O� � � $ P� (O clauses. Although the
number of clauses of CNF formula for 	 � �N � � with
equivalence operator is larger than CNF formula for �N � � requiring /� � � (� $ Q� $) clauses, we

could translate 	 � �N into CNF simply and the
increasing rate of whole formulae is still linear.

3 CNF encoding for Adjacency constraint

To express adjacency, we consider the sequence of
Boolean variables, so we regard the set of Boolean
variables � used in the previous section as a sequence of
Boolean variables.

3.1 Naïve encoding for ADC

To present adjacency of variables, we must assume the
order between those variables. For example, if we want to
represent to allow adjacent two variables to be true out of
five Boolean variables � � ���� � � �6�, then we can think
about two different type of adjacency. If the third variable
is the one of two variables assigned by true, then we can
say that either the second variable or the forth variable
will be true, or at least the first and the fifth variables will
be false; the former for the positive representation, the
latter for the negative representation. Firstly, the positive
representation of ADC is a formula to fulfill that the
exactly one out of (e1�e2), (e2�e3), (e3�e4), and (e4�e5)
comes true. More generally, in a set of Boolean variables � � ���� � � ���, the CNF formula of the representation of
a adjacent � variables is expressed by (7). In the formula
(7), the function �R=ST	U������ receives a set of Boolean
variables as a parameter and returns a CNF formula to
express the exactly one of them to be true. From (7), CNF
formula is generated with � $ � () auxiliary variables
and (� $ � ()� � �� ()� (� clauses, where the �
corresponds to that function.

� V�=!B � ��!+,M�
�I! W�M,+�

!I� D�DD
�R=ST	U�����=��� � =�M,+���

(7)

Secondly, the negative representation of ADC for the
above example is expressed like the formula (e1 @ �e3 �
�e4 � �e5) � (e2 @ �e4 � �e5) � (e3 @ �e5) and in this
formula any auxiliary variables are not needed. For a set
of Boolean variables � � ���� � � ��� , the negative
representation of a adjacent � variables is identical to the
blow formula (8), and it generates ��M,+�����M,�� clauses.

� � �! @D����
�I!+,

�M,
!I� (8)

545

So far, we explained negative and positive representation
for ADC, but on applying the ADC, it must be used
together with the formula for BCC, that is, the BCC for
the number of variables allowed to be true and the ADC
for the constraint that those variables must be adjacent
each other. However, the positive representation of ADC
belongs to the constraint of � � �� because all of
adjacent � variables are included among the ��,�
combination using (1). Consequently, as the positive
representation combined with the constraint �� � � , it
can be formulated that exactly adjacent � variables
become true.

Similarly, the negative representation of ADC belongs
to the constraint of �� � � because the formula (8)
implies the formula (2). Consequently, as the negative
representation combined with the constraint � � ��, it
can be formulated that exactly adjacent � variables
become true. In the next subsections, we will describe
how to apply the ADC into methods using binary tree and
sequential counter in the viewpoint of the negative
representation.

3.2 Encoding of ADC using a binary tree
If we adopt BCC using a binary tree to express ADC, we
can apply the advantage of structure of the tree. For
example, if we want to restrict adjacent two variables to
be true out of five Boolean variables, then the formula of
ADC becomes ���@�8������@�85����4@��6�
because according to the formula (4) �8� and �85 are
identical to ��4���5���6 , ��5���6 , respectively.
Therefore, when � � ���� � � ��� is a set of Boolean
variables, CNF encoding for ADC using a binary tree is
formulated by follow.

� � �!D@D�8�X!YZ[�\�\�]^_�!�
�M,
!I� (9)

 ?`<�J� � �	S=�J� L�J (� � L � �� presents the set of the
indices of non-terminal node for �!, where 	S=aDb c b db is the function that from indices of two nodes returns
the index of the least common ancestor of them. Also 8J�eTa b d b is the function that from the index of a
non-terminal node returns the index of the right child of
it. Thus 8�X!YZ[�\� means the first assigned variable in the
non-terminal node whose index is = . Consequently the
conjunction of (3), (4), and (9) is CNF encoding of ADC
using a binary tree, which requires no auxiliary variables
and (� $ �� � 	
� � clauses in the worst case. We will say
this method with TA which means the adjacency in a tree.
As we mentioned in the previous subsection, the left
part(TL) and the right part(TR) of the formula (4)
corresponds to the constraint � � �� , �� � � ,

respectively. So, TL�(8) and TR�(7) are available for
another encoding methods using binary tree.

Figure 2. An example of 100�100 Japanese puzzle

3.3 Encoding of ADC using a sequential counter
There are four different methods in encoding of ADC
using a sequential counter. SC is referred to as the
formula (5) which is optimized to represent �� � �.
While SC means that the number of variables to be true is
at most �, if we consider that the number of variables to
be false is at most �� $ 	�, also the constraint 	 � �� is
represented with a sequential counter. To do this, we add
negation operator to each input variable in a sequential
counter and for use �� $ 	� instead of the parameter 	 .
This method is called SC-1. And the method using
equivalence at (a), (b), and (c) in (5) is called SCM.
Therefore, the first method expressing ADC with a
sequential counter is SC�(7), the second is SC-1�(8). The
table 1 is a simple experiment for comparing of these two
methods. Because the number of auxiliary variables
depends on the number of variables to be true, the number
of clauses of SC�(7) is increasing in accordance with �
and the number of clauses of SC-1�(8) is decreasing in
accordance whit �. Hence CS(Compositional method of
Sequential counters) is the third method which uses
SC�(7) when � K �� and SC-1�(8) when �� � �.

Table 1. Comparison of SC � (7) and SC-1 � (8)

�.� SC-1�(8) SC�(7)
#var. #Clauses Time #var. #Clauses Time

100/20 2200 6017 0.031 8020 19099 0.062
100/50 5127 12725 0.062 5050 11224 0.031
100/80 8053 17630 0.093 2080 4249 0.031

Finally, in the point a view of negative representation,

if the ADC adopt to SCM, the formula (10) is generated,
and it has /�� $ �� clauses.

546

��!D@D�M*
!I� 3!+*M��*DDD�DDDD � �!D@D��

!I*+� 3!M*�� (10)

4 Experiments

In this section, through experiments we compare with
each encoding method. We deal with solving puzzles
such as figure 2, Japanese puzzle which is form of logic
drawing: the puzzler gradually makes a drawing on grid,
by means of logical reasoning.
The puzzler is provided with information about the

horizontal and vertical arrangement of the black pixels
along every line. For each line, the description indicates
the sizes of the segments of adjacent black pixels, in the
order in which they appear on the line. To consider
Japanese puzzle as a SAT problem, firstly we allocated
each Boolean variable into a cell as figure 2, and then for
each line, CNF formula is encoded by ADC, finally for an
overlapped cell, like the right side of figure 3, we
introduce additional clauses to avoid misuse of variables.

Figure 3. Encoding puzzle into CNF

Our experimental environment is follow: ubunto linux,
1.86GHz CPU, and 2G RAM. And we use Minisat
solver[4]. We experiment different four methods for
several Japanese puzzles. The label symbol “-” means to
fail to generate CNF formula.

In the case of convex style, the number of clauses of
TA is smaller than SCM�(10), because of the shape of the
data whose lines are consecutive and the method of
SCM�(10) generates the most clauses because it use
equivalence operator in the sequential counter and the
sequential counter is very sensitive to the number of
variables assigned with true. However, the CS method
makes the smallest clauses, and the reason is that the

method computes which method generates the smallest
clauses between SC-1�(8) and SC�(7).

In the case of the random data, the SCM�(10) method
generates the smallest clauses and the method is the
fastest. In the case of Japanese puzzles from 10�10 to
100�100, its results are similar to random data, but these
data less complex than random style and more complex
than convex style. Regularly the CS method shows good
performance, but because it uses naïve ADC, so about
bigger problems the TA method will be better than CS.

Table 2. The number of clauses
Problem TA SAM�(10) CS SC�(7)

c10 3500 3576 1576 2768
c20 23740 30156 11340 20448
c30 73632 103736 36172 67044
c40 166000 248316 84136 156564
c50 312932 487896 161068 303004
c60 526404 846476 276360 520324
c80 1204400 2016636 645956 1223680

c100 2296164 3950796 1251168 2378872
c120 3897648 6840956 2149744 4097608
r10 3537 2473 2211 2596
r15 12627 8613 8636 9129
r20 30065 19688 20024 20849
r25 66845 41932 43129 44266
r30 120641 72755 76027 76997
r35 200403 118452 124257 125634
r40 316406 181614 191192 192474
r45 480998 269496 283107 283739
r50 689632 377894 399634 400152

10x10 4251 3060 2616 3074
18x10 5343 6132 2269 4460
15x20 23399 18485 12613 15999
20x20 37453 26206 23159 25253
25x25 66835 52076 42844 46570
40x40 345895 200919 185750 190410
40x79 1030041 575821 503588 515940

50x100 1752110 1142766 916629 1007446
100x100 5217099 2932747 2372118 2521863

Table 3. The number of variables

Problem TA SAM�(10) CS SC�(7)
c10 780 1000 676 1172
c20 3920 8000 4684 8656
c30 9780 27000 15044 28464
c40 18880 64000 34728 66584
c50 31100 125000 66784 129024
c60 46320 216000 114092 221756
c80 88320 512000 266768 522152

c100 144400 1000000 516920 1015944
c120 214080 1728000 888324 1750880

547

r10 861 633 759 911
r15 2777 1999 2702 2885
r20 6117 4243 5852 6104
r25 12449 8299 11549 11953
r30 21017 13683 19505 19837
r35 33263 20984 30174 30696
r40 49339 30528 44397 44800
r45 70503 43329 62797 63006
r50 97218 57107 84173 84258

10x10 994 763 858 1085
18x10 1281 1721 844 1952
15x20 4023 4284 3916 5294
20x20 6777 5733 6846 7599
25x25 11069 11677 13005 14378
40x40 42917 37369 45547 47364
40x79 90420 99630 114222 118500

50x100 175199 202626 203305 240511
100x100 343959 511821 530367 581625

Table 4. Solving time

Problem TA SAM�(10) CS SC�(7)
c10 0.003 0.003 0.000 0.003
c20 0.015 0.015 0.008 0.012
c30 0.045 0.059 0.021 0.039
c40 0.101 0.172 0.092 0.089
c50 0.195 0.404 0.096 0.167
c60 0.321 0.832 0.171 0.825
c80 0.715 5.115 0.420 9.254

c100 1.424 13.726 1.031 4.726
c120 2.441 31.787 1.733 2.679
r10 0.004 0.004 0.000 0.004
r15 0.016 0.012 0.012 0.012
r20 0.032 0.056 0.068 0.076
r25 0.140 0.176 0.172 0.192
r30 0.496 0.816 0.904 1.328
r35 10.668 2.188 4.300 1.868
r40 165.880 165.090 93.749 159.080
r45 40.234 25.985 11.244 11.536
r50 81.753 32.382 46.498 71.364

10x10 0.004 0.004 0.000 0.004
18x10 0.004 0.004 0.000 0.008
15x20 0.028 0.028 0.036 0.032
20x20 0.032 0.028 0.040 0.040
25x25 0.084 0.128 0.144 0.184
40x40 0.652 0.540 2.256 4.468
40x79 2.224 1.964 3.648 4.823

50x100 4.144 4.084 12.904 15.341
100x100 6.472 7.896 20.197 24.046

5 Conclusions

In this paper we explained several CNF encodings for
BCC and proposed the concept of ADC. We could
basically represent the ADC with two ways: positive and
negative representation. And then to fine more efficient
method we adopted methods using a binary tree and a
sequential counter, and to apply ADC to those encodings
for BCC, we modified the sequential counter with
equivalence operator and newly design the inverse form
of the sequential counter. Also we split the method using
a binary tree into two parts: at least 	 part and at most �
part.

Through experimental results, we confirmed the
necessity of ADC to translate problems into CNF formula
in the point a view of efficiency. The experiments were
performed by three types of data: convex style, random
style, and Japanese puzzle. Although TA, SCM�(10), and
CS among methods showed good results similarly, we
would predict, because of the size of generated clauses,
that the TA method will be better than SCM�(10) and CS
in cases of big problems.

References

[1] M. Davis, G. Logemann, and D. Loveland, "A Machine

Program for Theorem Proving". Communications of the
ACM 5 (7): 394–397 , 1962.

[2] Marques-Silva, J. P., and Sakallah, K. A., “GRASP: A
Search Algorithm for Propositional Satisfiability,” IEEE
Transactions on Computers, vol. 48, 506-521, 1999.

[3] M.W. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,” In
Proceedings of Design Automation Conference, 2001.

[4] http://www.cs.chalmers.se/Cs/Research/For-
malMethods/MiniSat/

[5] H. Kautz and B. Selman. Planning as satisfiability. In
Proceedings of the ECAI’92, pages 359–363. John Wiley
& Sons, Inc., 1992.

[6] A. Biere, A. Cimatti, E. Clarke, Ofer Strichman, and Y.
Zhu, “Bounded Model Checking”, Vol. 58 of Advances in
Computers, 2003.

[7] http://alloy.mit.edu/
[8] G. Kwon and H. Jain, Optimized CNF Encoding for

Sudoku Puzzles, in The Proceedings of LPAR06, 2006.
[9] O.Bailleux and Y. Boufkhad, “Efficient CNF encoding of

Boolean cardinality constraints,” in Proceedings of the CP
2003, vol. 2833, LNCS, 2003.

[10] C. Sinz, “Towards an optimal CNF encoding of Boolean
cardinality constraints,” In Proceedings of the CP 005,
vol. 3709, LNCS, 2005.

[11] K. J. Batenburg, An evolutionary algorithm for discrete
tomography, Discrete Applied Mathematics, 2004.

[12] K. J. Batenburg and W. A. Kosters, “A discrete
tomography approach to Japanese puzzles,” in
Proceedings of the Belgian-Dutch Conf. Artificial
Intelligence, 2004.

[13] http://en.wikipedia.org/wiki/Nonogram

548

Bridging the semantic gap between process documentation and process execution

Gregor Scheithauer∗, Guido Wirtz
Distributed and Mobile Systems Group, University of Bamberg

Feldkirchenstraße 21, 96052 Bamberg, Germany
gregor.scheithauer@gmail.com, guido.wirtz@uni-bamberg.de

Candemir Toklu
Knowledge Management, Siemens Corporate Research, USA

candemir.toklu@siemens.com

Abstract

Process documentation and process execution are part of
companies business information systems which describe the
way how companies process information. Between these two
levels of abstraction exists a gap that has been identified
as the main drawback for business process implementation.
This paper proposes a holistic methodology using BPM on
top of SOA to overcome this gap by providing an architecture
that bridges these different levels of abstraction by transition
strategies, and a life cycle to support transitions.

Keywords: BPM, SOA, Process Modeling, BPMN, BPEL

1. Introduction

Process documentation and process execution are part of com-

panies business information systems which describe the way

how companies process information [6]. Two levels are differ-

entiated within business information systems; The first level

compromises business tasks which are associated with in-

formation relationships, whereas the second level is the task

bearer level. The latter consists of a set of task bearers which

are associated by communication systems. Between both lev-

els exists an allocation relationship which represents the map-

ping of tasks and task bearers. This classification supports the

understanding of the difference between process documenta-

tion and process execution. Process documentation is part

of the task level. It represents the sequence of tasks which

need to be performed in order to run a business. Also, it com-

prises the substantiation of business goals and strategies, and

is carried out by people with business domain knowledge. The

methodology used for process documentation is a visual de-

piction of processes [25]. The degree of formalization is ei-

ther non-formal or semi-formal. The purpose of it is threefold:

to reduce business process complexity, to ease communica-

tion between business partners, and to communicate business

logic for the task bearer level. Process execution is associ-

ated with the task bearer level and represents software appli-

cations. The purpose of it is to support automated business

processes. The solution is a formalized software code.

∗The first author is funded by means of the German Federal Ministry of

Economy and Technology under the promotional reference 01MQ07012.

Mapping business tasks to software applications comprises

several issues which need to be overcome in order to success-

fully map business requirements to software applications. The

most prominent one, i.e., the loss of information during the

mapping process [7, 19, 20, 23, 25], often results in a false

translation from process models to implementation plans. The

entirety of problems that occur in this context are often re-

ferred to as the semantic gap.

The aim of this paper is to offer an analysis of the seman-

tic gap, and to examine the mapping between tasks and task

bearers. Additionally, it addresses the issues described above

by means of a holistic methodology, and offers a solution by

narrowing the semantic gap.

Section two depicts work that is related to the holistic

methodology. Section three presents a more detailed analy-

sis of the semantic gap. Section four offers Business Process

Management (BPM) [22] on top of Service-oriented Architec-

tures (SOA) [25] as a holistic methodology to bridge the se-

mantic gap. Section five summarizes the findings and presents

future work to be done.

2. Related Work

The works of Decker, and Dehnert and van der Aalst also dis-

cuss interesting level concepts. Decker [4] differentiates be-

tween a business layer and an execution layer, and presents

four strategies to map these. His work defines a process sup-

port layer, and patterns to support the mapping between the

business layer and the execution layer.

Dehnert and van der Aalst [5] propose an approach to

bridge the gap between business processes (EPC notation) and

workflow specifications (Petri nets). Different levels of busi-

ness process abstraction are addressed with different model-

ing techniques. The transition between different levels is im-

plemented in a set of rules, which does not limit the designing

facilities of the EPC notation.

Hofmeister’s and Wirtz’s [8] work relates to service inte-

gration. They present a pattern taxonomy to standardize the

design of coupling systems and thus, to ease integration. To

do this, they introduce a refined approach of Business Pro-

cess Integration Oriented Application Integration (BPIOAI),

which is based on message-based integration on a more ab-

549

Figure 1. Different views on the semantic gap.

stract level. Regarding mapping and decomposition strate-

gies, they propose an architectural framework to design com-

posite applications on top of existing legacy applications. The

framework includes service reuse, coupling, different layers

of abstraction, and patterns.

Lastly, Model Driven Architecture is an approach by OMG

to design software on the basis of formal models [11]. Its aim

is to decrease the time to implement software applications.

Platform independent formal models (PIM) are transformed

into executable code.

3. Exploration of the Semantic Gap

The semantic gap is explained with the help of three different

views to refer to the problems it implies; namely the mind

share gap, the time gap, and the continuous improvement gap.

Figure 1 summarizes these different views of the semantic gap

between process documentation and process execution.

The mind share gap refers to the difficulty to translate busi-

ness requirements directly into supporting applications. Busi-

ness owners and software developers talk different languages,

perceive problems and solutions differently, apply different

methodologies, and use different approaches to communicate

and understand business processes and requirements. These

different contexts make it difficult to transform business re-

quirements into executing software applications [20, 23].

The time gap refers to the time delay between the setting

of business requirements and the development of the software

applications. Software applications which support business

logic are complex, involve a team of developers, need to be

reliable, and need to be set up for a whole company. Hence,

a great amount of time elapses between the moment of order-

ing the system and the moment of completion. In the worst

case this could mean that business requirements change dur-

ing software application development and consequently, the

application becomes obsolete [7, 21].

The continuous improvement gap deals with the ability to

refine business processes and the underlying supporting soft-

ware applications. According to Woodley and Gagnon [25],

simple steps in a business process do not change often. What

does change often, are sequences and the integration of these

into different business contexts. Right now, business require-

ments are hard-coded into software applications and cannot

be changed easily. The association between original business

processes, and applications supporting the process, is not for-

mally captured and cannot be repeated or managed when pro-

cesses need to be changed in order to adapt to new market

needs. Moreover, as it is crucial for companies to accommo-

date their business processes according to their visions and

business goals to match market requirements, it is not desir-

able anymore to hard-code business logic into one application

but to store the business logic separately from implementa-

tion code. However, in a fast changing business environment,

business requirements need to be adapted frequently [7, 21].

4. Holistic Methodology

This section presents a solution to bridge the semantic gap.

The holistic methodology comprises (1) a level concept to

clearly separate the task level and the task bearer level, (2)

a life cycle to drive the whole methodology, and (3) transi-

tion strategies, which provide relations between levels. Every

level serves as a classification for BPM goals, views on the se-

mantic gap, the BPM life cycle, BPM stakeholders, design no-

tations, execution languages, and technology. The level con-

cept will be the basis for the transition strategies. Transition

strategies are the bridge between process documentation and

process execution.

The emerging BPM [22] technologies are providing an op-

portunity to manage the life cycle of the business processes

for a company and therefore, effective deployment and ex-

ecution of information technology [21] in order to support

the bridging of the semantic gap. The BPM definitions from

zur Muehlen and Ho [26], Gartner [10], van der Aalst et al.

[22], and the BPM Standard Group1 were considered for the

derivation goals for BPM. Table 1 summarizes the findings

about the essential BPM goals. Thus, BPM is a methodology

to discover and document processes as well as to integrate

software applications to support business processes in an au-

tomatic way, and it offers a life cycle to improve and adapt

business processes according to changing business environ-

ments.

SOA supports BPM by offering a platform that supports

business processes and integrates heterogeneous business ap-

plications and business partners. Business processes consume

and leverage such SOA services, tying them together to solve

business challenges [25]. BPM on top of SOA as a method-

ology provides a solution to narrow the semantic gap by solv-

ing the mapping problems and thus, to diminish the conse-

quences. The independence between business processes and

services helps to separate the business model and the technical

implementation. The velocity of the implementation matches

the speed of the quickly changing business requirements. Pro-

cesses need to be independent from a specific platform. Oth-

erwise, the logic is hard-coded into software applications and

thus, expensive to change. Woodley and Gagnon [25] claim

1BPM SG, http://www.bpmstandardsgroup.org/resources.asp

550

Table 1. BPM definition comparison.
zur Muehlen and Ho Gartner Group BPM SG van der Aalst et al.

Business driven X X X

Flexibility X X X

Integration X

Improvement X X X

Automation X X X

that both BPM and SOA are IT concepts. This is only partly

true. IT is only one part of the BPM methodology since so

many more aspects need to be considered, such as manage-

ment issues, business strategies, and people. However, SOA

serves as an integration platform for business services that are

loosely coupled and easy reused [9, 12, 15, 20].

4.1. The Level Concept

This subsection introduces a three level concept: the busi-

ness level, which represents business process documentation

and improvement, and the integration level, which represents

a SOA implementation. It orchestrates services that support

business processes [15]. The third level is the execution level

that represents business applications.

The business level addresses the process documentation.

Business processes, business tasks, business objects, and busi-

ness partners are documented with the aid of business process

diagrams designed with process notations such as Business

Process Modeling Notation (BPMN) [24] and Event-driven

Process Chains (EPC) [17]. Business processes are funda-

mentally very abstract. They consist of a flow of business

tasks connected by a control flow. Business objects refer to

information that is processed by business tasks. The inter-

action between two companies within a business process de-

scribes business partners. Business logic is refined by process

decomposition. This makes it possible for business analysts

to describe the requirements for supporting software applica-

tions in detail and in a language that is understood by busi-

ness analysts. Furthermore, the flexibility of process design

notations allows to express business logic without limitations.

This narrows the mind share gap. Lastly, ongoing improve-

ment allows the continuous adaption of business processes to

a changing business environment, which leads to a narrow-

ing of the improvement gap. Regarding the life cycle man-

agement process design, process monitoring, and process im-

provement occur on this level by business analysts, process

owners, and business owners. This level is neither technical

nor platform specific. The flexibility to change business pro-

cesses is very high.

The integration level serves two purposes: firstly, it is the

target platform for formal and executable processes; secondly,

it provides the means for a common uniform representation

for services. Business Process Execution Language (BPEL)

[1] allows the implementation of complex business processes

on the basis of existing web services. The BPEL code rep-

resents the sequence flow of business processes registered

on the business level. The service functionality is described

with a specification such as the Web Service Description Lan-

guage (WSDL) [3]. This specification also includes message

type definitions which are processed by the service. A ser-

vice represents an atomic business function. Otherwise, too

much interaction is needed between services and partners. An

integration-oriented architecture allows to integrate heteroge-

neous business applications onto a homogeneous level, which

makes it easy to access and combine business applications to

support business processes completely. Furthermore, the de-

coupling of services eases the change of business processes.

In that case business logic may be changed on the business

level. This change does not require an adaptation of a hard-

wired business application. In fact, it is adequate to rearrange

the supporting service using tools without the need to change

application code, to recompile the code, and to redeploy the

code with all the difficulties involved in application change

management. This fact addresses the time gap and the con-

tinuous improvement gap. The integration level comprises

the life cycle steps process configuration, service integration,

and service development. The system analyst is responsible

for process configuration, and service integration, whereas the

software developer is responsible for developing the services.

This level encounters middleware solutions, such as EAI, pro-

cess configuration tools, and tools to deploy configured pro-

cesses. The integration level is the soft glue between flexible

business processes and hard-coded applications. Though the

integration level is technical, it is still not platform specific. It

is possible to take process configurations and deploy them in a

different technical environment that supports open standards.

The execution level addresses business applications, legacy

code applications, process execution engines, and other mid-

dleware. It forms the technical basis for automated business

processes. Many business functions are hidden within busi-

ness applications, which makes it difficult to use or even reuse

them in loosely coupled business processes. The execution

level comprises the life cycle steps service development, pro-

cess deployment, and process execution. The software devel-

oper is responsible for service development and is involved in

the process deployment step. This level encounters develop-

ment and middleware tools. Thus, this level is technical and

platform specific.

4.2. Life Cycle

Using the level concept, a life cycle to transform business pro-

cess diagrams into executable processes will be introduced.

Table 2 summarizes the findings of the life cycle concepts of

Smith and Fingar [21], Netjes et al. [14], and the BPM Group.

551

Table 2. BPM life cycle comparison.
Smith and Fingar Netjes et al. BPMG

Process Discovery X X X

Process Design X X X

Process Configuration X

Service Integration X

Service Development X

Process Deployment X

Process Execution X X

Process Monitoring X X X

Process Improvement X X

A comparison of the three life cycle concepts, resulted in a

nine step life cycle for managing business processes.

Process discovery refers to the detection of business goals

and strategies in order to conduct a business. A way to for-

malize goals and strategies are either ontologies or a business

model [16].

Process design refers to the transformation of goals and

strategies into a process diagram on the business level. In or-

der to perform this step, two intermediate steps are required:

first, business analysts will need a business process design no-

tation. In this context, this might either be the BPMN or the

EPC notation. Subsequent, business analysts will use their

experience, design paradigms, and the purpose of the docu-

mentation for transforming the informal goals, strategies, and

rules into a process documentation. The design paradigm is

process-oriented. Business analysts decompose tasks and ob-

jects to substantiate business processes. Second, they need to

simulate the process in the diagram to verify the semantical

behavior of the process.

Process configuration refers to the transformation of pro-

cess documentation into a platform independent process con-

figuration. It implies the mapping strategy on the integration

level. It is intended to transfer the process documentation as

complete as possible, not to change any business logic, and

to reuse existing implementations. To achieve this step, sys-

tem analysts need to perform four steps: First, the process

documentation is transformed into a technical representation.

At this point, a switch in notation is not necessary. The con-

figuration tool offers additional constructs to enrich the pro-

cess documentation with technical details. Hence, the flow of

business tasks (service composition) can be derived from the

business process diagram. Second, web services are mapped

to atomic business tasks. The integration is done by using

middleware technology, such as webservices. Third, message

descriptions need to be applied to web services. They also

need to be maintained and integrated by the system analyst.

Fourth, system analysts need to validate the work and build

the process configuration. In case no service for an atomic

business task is available, two possibilities are conceivable:

consultation of a software developer, who develops an appli-

cation function to address the business taskss requirements, or

to integrate a service from a service provider.

Service integration follows either the development step, or

the configuration step. It supports the integration strategy. In-

tegration is twofold. Both, developed services, and services

from business partners need to be integrated before they can

be used for process configurations.

The development of an application function that is

wrapped as a service and fulfills the requirement of an atomic

business task is called Service development. The objective is

to develop a service which is not bound to a specific business

process resulting in a self contained service which is easy to

reuse. Since business analysts break business processes down

into loosely coupled business tasks and decompose business

tasks (treated as business processes) recursively into atomic

business tasks, the whole complexity and semantic is broken

down into seizable and easy to communicate requirements,

which are understood by software developers. Software de-

velopers grasp the requirements and build an application func-

tion using programming languages such as Java, or .NET and

wrap this function as a reusable service.

Process deployment refers to the final transformation of the

process configuration onto a platform. It supports the trans-

formation strategy. However, the deployment should not have

an influence on other running processes on that platform. The

executable process configuration needs to be transferred to

the execution engine. The configuration of other middleware

technologies, which are involved in the process, as well as

security policies, is optional.

Process execution alludes to the state where configured

business processes are executed to support business processes.

The procedure to execute a process differs in terms of how

processes are triggered and whether the service is known in

the first hand. First, process consumers need to know about

the service. Second, processes need to be triggered. Process

might be triggered by an event, other services or by human

interaction through a process portal. Third, running processes

are referred to as process instances. Process instances save

the state of a process, as well as message and variable values.

The tracking of the process performance and to display it

in a human understandable format is referred to as Process
monitoring. The formal goals are to highlight bottlenecks and

offer suggestions for action in order to improve process per-

formances. Often, a dashboard is used as a paradigm. Busi-

ness owners should be in the position to view the performance

of process instances on a consolidated level. It should be al-

552

lowed to break the level down to a single instance which may

be a source of failure or a bottleneck. Business owners are

then allowed to take action, e.g. improve the process.

Process improvement points to the adaption of processes

due to a changing situation or environment. Objectives are to

improve execution time, execution cost (total cost of owner-

ship), and process efficiency. Business analysts and business

owners gather new information and feedback from process

monitoring, process users and business owners. They change

the process diagram according to the new requirements. The

new process diagram needs to be validated. Moreover, de-

pending processes need to be checked whether they are af-

fected by the current change of the original process. Adapted

processes are configured and deployed for execution.

4.3. Transition Strategies

Transition strategies address the transition between the busi-

ness level and the integration level, and the integration level

and the execution level. The mapping between the execution

level and the integration level will be carried out once for ev-

ery service on the basis of standards. The mapping between

the business level and the integration level occurs every time

a new business process is introduced or a business process is

adapted, and thus, new configured and deployed.

The decomposition strategy starts with documented busi-

ness processes and business objects using a process nota-

tion, such as BPMN, according to business strategies, goals,

and rules, provided by business owners and process own-

ers. These documentation may serve as a communication

basis between business owners and business analysts. How-

ever, to communicate business logic to process participants

on a more operational level, it is necessary to concretize the

business logic. This is done by business analysts in connec-

tion with business owners. They decompose abstract business

tasks. This is possible if business tasks are treated as pro-

cesses themselves. The process notations BPMN and EPC

support the decomposition strategy. Decomposition is an it-

erative procedure. In case a business task cannot be decom-

posed anymore without loosing business relevance, the de-

composition stops. Tasks which cannot be decomposed any-

more are referred to as atomic business tasks. Though de-

composing business tasks reduces the complexity of business

logic, the reduction in complexity has its limits, if business

language is enriched with too many details. Furthermore, this

hierarchical adjustment of business tasks allows business an-

alysts to change business processes easily. The decomposi-

tion strategy narrows the mind share gap and the improvement

gap.

The mapping strategy urges business analysts to create

self-contained atomic business tasks for three reasons. Self

contained business tasks improve the reusability of these

business tasks, since they are applicable in more than only

one process. Furthermore, self-contained business tasks are

mapped more easily to stateless web services [25]. The se-

mantics of self-contained business tasks is communicated to

system analysts more easily, since no context knowledge is

necessary. Thus, atomic business tasks are the ones to be

mapped to services on the integration level, and atomic busi-

ness objects are the ones to be mapped to message types. In

conclusion, services must be available which correspond to

atomic business tasks. According to Natis [13], the reason

for coarse-grained services is that the message interaction be-

tween services does not need to be chatty. System analysts

take over at this point. They are responsible to map atomic

business tasks to business services. They need to search for

an appropriate service, which might be a difficult task, in case

the service repository is huge, and in case the semantic of the

atomic business task is not well understood by the system an-

alyst. In both cases, system analysts may consult business an-

alysts for support, or system analysts are supported by clever

tools. The mapping strategy addresses the time gap and the

mind share gap.

The integration strategy is carried out by system analysts.

System analysts are responsible for the service repository.

They integrate services and message types from within the

company and from external service providers. Thus, it is pos-

sible to use powerful software applications, in a standardized

fashion. Business processes do not stop at application bor-

ders, they cross application functionality as well as depart-

ment responsibilities. However, it is not intended to integrate
services on the basis of availability. Since BPM should be

business-driven, requirements for atomic business tasks and

atomic business objects should be the trigger to develop or

integrate a service. Thus, system analysts in connection with

business analysts define requirements for services which need

either to be developed by software developers on the basis

of existing software applications, or to be searched in service

repositories. The integration strategy supports the integration

goal of the BPM methodology, and addresses the time gap.

The transformation strategy refers to the procedure of

transferring the atomic business task orchestration [18] into

executable code. Business analysts decompose abstract busi-

ness processes into an orchestration of atomic business tasks.

System analysts map these atomic business tasks to corre-

sponding business services. The configured process is now

ready to be transformed into executable code. All informa-

tion required is provided by the mapping of atomic business

tasks to web services. Executable code refers to an execution

language which may be executed by execution engines, like,

e.g., BPML [21], BPEL [1], or a vendor specific execution

language. The transformation procedure is an automatic step,

thus it is easy executed and does not limit the improvement of

business processes. Transformation supports the automation

and improvement goal, and addresses the time gap.

5. Conclusion and Future Work

The aim of this paper was to bridge the semantic gap between

process documentation and process execution. Problems orig-

inating from the semantic gap were identified and classified

into the three different views. BPM on top of SOA was in-

553

Figure 2. Architecture: Levels & Strategies.
troduced as a platform for a solution. The methodology com-

prises three levels, four transition strategies, and a life cycle.

Figure 2 illustrates how the four transition strategies link lev-

els, as well as how the life cycle corresponds to the levels

and the transition strategies. In conclusion, the combination

of the presented holistic methodology is capable to bridge the

semantic gap.

Future work needs to address the strategic level and the

transition between the strategic level and the business level.

The strategic level is on top of the business level and cov-

ers business strategies and business goals, which are handled

by business owners and process owners. Furthermore, ex-

isting process design notations need to be improved regard-

ing the semantic of elements, and the methodologies how to

use the notations to express processes. The EU-aided IP-

Super project2 addresses this question. Standards must be

available to easily exchange process diagrams between stake-

holders and tools. Process execution languages need to in-

clude more concepts to match business requirements. Patterns

and standards for the transformation of process design no-

tations into process execution languages must be improved.

Moreover, existing tools and technologies must collaborate

better to match requirements for BPMS. Finally, business-

to-business integration must be raised to another level. Ap-

proaches, and tools must come available for the upcoming

concept of service ecosystems, which Barros and Dumar de-

pict in [2].

References

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,

F. Curbera, M. Ford, Y. Goland, A. Guzar, N. Kartha, and C. K.

Liu. Specification: Business Process Execution Language for

Web Services vers. 2.0. Tech. rep. 2.0, OASIS, Jan. 2007.
[2] A. P. Barros and M. Dumas. The rise of web service ecosys-

tems. IT Professional, 8(5):31–37, 2006.
[3] D. Booth and C. K. Liu. Specification: Web Services Descrip-

tion Language (WSDL) Version 2.0 Part 0: Primer. Technical

report, W3C, March 2006.
[4] G. Decker. Bridging the Gap between Business Processes and

existing IT Functionality. In Proc. 1th Int. WS on Design of
Service-Oriented Applications (WDSOA’05),2005.

[5] J. Dehnert and W. Aalst. Bridging the Gap between Business

Models and Workflow Specifications. International Journal of
Cooperative Information Systems, 13(3):289–332, 2004.

2IP-Super, http://www.ip-super.org/, last accessed 2008-02-29

[6] O. Ferstl and E. Sinz. Modeling of Business Systems Using

SOM. Handbook on Architectures of Information Systems,

1:347–368, 2005.
[7] M. Hammer. Reengineering work: Don’t automate, obliterate.

Technical report, Harvard Business Review, July 1990.
[8] H. Hofmeister and G. Wirtz. A multi-layered framework for

pattern-aided composite application design. In Proc. of the
11th World Multi-Conference on Systemics, Cybernetics and
Informatics, July 2007.

[9] F. Leymann, D. Roller, and M.-T. Schmidt. Web Services and

Business Process Management. IBM Systems Journal, 41:198–

211, 2002.
[10] M. J. Melenovsky, J. Sinor, J. B. Hill, and D. W. McCoy. Busi-

ness Process Management: Preparing for the process-managed

organization, June 2005.
[11] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object

Management Group, Framingham, MA, June 2003.
[12] Y. Natis. Service-Oriented Architecture Scenario. Gartner Re-

search, ID Number: AV-19-6751, April 2003.
[13] Y. V. Natis. Service-Oriented Architecture (SOA) Ushers in

the Next Era in Business Software Engineering. Business In-
tegration Journal, May 2004:23–25, May 2004.

[14] M. Netjes, H. Reijers, and W. v. d. Aalst. Supporting the BPM

life-cycle with Filenet. In 18th Int. Conf. on Advanced In-

formation Systems Engineering (CAiSE’06), ed., Proc. of the
EMMSAD Workshop. Namur University Press, 2006.

[15] J. Noel. BPM and SOA: Better Together. IBM Website, White

Paper, 2005.
[16] A. Osterwalder, C. Parent, and Y. Pigneur, editors. Setting up

an Ontology of Business Models. Faculty of CS and Informa-

tion Technology, Riga Techn. Univ., Riga, Latvia, 2004.
[17] A.-W. Scheer and M. Nuettgens. Architecture and Reference

Models for Business Process Management. Lecture Notes in
Computer Science, 1806 / 2000:376–389, 2000.

[18] A. Schoenberger and G. Wirtz. Using Webservice Choreog-

raphy and Orchestration Perspectives to Model and Evaluate

B2B Interactions. In Proc. of SERP 2006, volume 2006, pages

1–7. CSREA Press 2006, June 2006.
[19] H. Smith. Business Process Management–the third wave:

Business Process Modelling Language (BPML) and its Pi-

calculus foundations. Information & Software Technology,

45(15):1065–1069, 2003.
[20] H. Smith. The Emergence of Business Process Management.

Information & Software Technology, 45(15):1065–1069, De-

cember 2003.
[21] H. Smith and P. Fingar. Business Process Management, the

third wave. Meghan-Kiffer Press, 1th edition, January 2003.
[22] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske.

Business Process Management: A Survey. In W. M. P. van der

Aalst, A. H. M. ter Hofstede, and M. Weske, editors, Business
Process Management, volume 2678 of Lecture Notes in Com-
puter Science, pages 1–12. Springer, June 2003.

[23] L. Verner. BPM the Promise and the Challenge. ACM Queue:
Tomorrow’s Computing Today, 2(1):82–91, March 2004.

[24] S. A. White. Specification: Business Process Modeling Nota-

tion Specification, February 2006.
[25] T. Woodley and S. Gagnon. BPM and SOA: Synergies and

Challenges. In A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold,

J.-Y. Chung, and Q. Z. Sheng, eds., WISE, Vol. 3806 of Lecture
Notes in Computer Science, pages 679–688. Springer, 2005.

[26] M. zur Muehlen and D. T.-Y. Ho. Risk Management in the

BPM lifecycle. In C. Bussler and A. Haller, eds., Business Pro-
cess Management Workshops, vol. 3812, pg. 454–466, 2005.

554

Performance challenges in migrating to SOA based healthcare systems

Suyog Gaidhani, Vijayananda Jagannatha
Philips Healthcare,

Bangalore, India
{suyog.gaidhani,vijayananda.j}@philips.com

Abstract

The increasing need to deliver healthcare in a
pervasive and cost-effective manner has led to a steady
rise in the prevalence of distributed hospital
environments. This has led to the migration of existing
healthcare systems to Service-Oriented Architecture
(SOA) based environments. The benefits of SOA to
provide for a loosely coupled system and ease of
integration of existing applications are well known.
However these benefits are accompanied with several
challenges, especially those related to ensuring the
existing levels of performance. This paper discusses
our experiences in a SOA migration with an emphasis
on the techniques that we have used to address
performance related challenges.

1. Introduction

Traditionally, hospitals have operated in a single
location mode with all possible medical specialty
departments housed under a common roof. This leads
to the problem of access to specialist radiologists and
diagnostic equipment being restricted to only these
large medical centers. Rapid strides in communication
networks and distributed computing have led to many
hospitals adopting a distributed network of
geographically spread locations. Such a hospital
network typically consists of a central location similar
in capabilities to the single location hospital discussed
earlier. The remote locations are scaled down units
provided with diagnostic equipment along with basic
viewing and archiving facilities. Expensive resources
such as post-processing systems capable of performing
operations like image segmentation or computer-aided
detection are usually located only at the central location
with the ability of making the results available at any
remote location. Remote access to medical databases
becomes essential in such scenarios.

Existing healthcare applications need to scale up to
meet these changes. Given their complex and

heterogeneous structure, developing large scale
distributed healthcare systems with stringent
performance and security requirements poses a
daunting challenge. Service-Oriented Architecture
(SOA) [7] is an enabler to design such systems. This is
due to its inherent support of loosely coupled design
and ability to deploy services based on existing
applications or new ones in a platform agnostic way.

Consider a typical large hospital with centralized
healthcare applications as shown in Figure 1.

Figure 1. Existing monolithic healthcare
enterprise

In such a system a patient diagnosis workflow will

involve the following entities – a Radiology
Information System (RIS) server, a Picture Archiving
and Communication System (PACS) and a Viewing
and Analysis Station. A patient with a referral for a
scan walks in and completes the registration with the

555

relevant personal information and the required scan
details. This information is stored in the RIS server and
the scan scheduled on the required modality. After the
scan is performed, the images are archived onto the
PACS and the RIS updated with the scan results. Later,
the images are retrieved for diagnosis and further
recommendations by the concerned physician or
specialist and viewed on the Viewing and Analysis
Station. All the entities discussed are located in one
single location.

If we model the existing monolithic healthcare
system on a SOA based model (as shown in Figure 2),
the RIS and the diagnostic equipment will continue to
be located locally.

Figure 2. SOA based healthcare enterprise

This is to ensure that the patient specific systems
should be as close to the patient as possible. Due to
bandwidth considerations in the transfer of images, the
PACS is also almost always located local to the
diagnostic equipment. However, the Viewing and
Analysis station is available at another location as is the
post processing grid. As soon as the data is made
available in the PACS, specific patient studies can be
viewed and analyzed at any location by the concerned
specialist. Relevant post processing which requires the

usage of expensive hardware resources can also be
performed remotely. All these systems will
communicate via services based on standardized
interfaces and data contracts, making the entire setup
agnostic of the platforms, vendors and infrastructures.

2. Migration Strategy

Once the decision to migrate SOA has been made,
the next step is the actual migration process. A typical
SOA migration strategy is depicted in the Figure 3.

Figure 3. Migration strategy

The initial step in the migration process is to
partition the existing system into a set of independently
deployable services. The choice of the services may be
driven both by business needs, the current architecture
and future deployment considerations.

Figure 4 depicts the taxonomy of a typical
healthcare software organized into functional layers.
The lowermost layer is composed of application
infrastructure components like Logging, Licensing,

556

Process and Thread management etc. These are
services that are available across the entire application.
Progressing further upwards are the healthcare
infrastructure components like the DICOM (Digital
Imaging and Communications in Medicine) Services,
Imaging and Rendering Algorithms and Job Handlers
which make use of the Application Infrastructure
services. Further up is the business layer which
provides core business functionalities. The granularity
of the service and the composition of the system are
decided based on the requirements and the deployment
scenario. Some of these components can be exposed as
individual service or may be aggregated together, for
instance, one may look for a clustered approach to Job
Handling where a single job (e.g. image reconstruction)
can be broken into individual concurrent units and can
be executed on multiple processing nodes while one
may bundle the DICOM Service with the connectivity
service in the Business Layer.

Figure 4. Taxonomy of healthcare software
depicted as functional layers.

Service development encompasses a common set of

activities both during the development and deployment
phase. It is essential to abstract these boiler plate
functionalities in a framework on top of which the
services can be built. The framework provides support
for elements like Service Discovery, Hosting, Logging,
Exception Handling, Monitoring and Recovery etc.
This technique,

• Avoids duplication of common functionality
across services.

• Provides uniformity and a common feel for all
services in the system.

• Enhances the productivity of the developers by
enabling them to concentrate on the functional
cases rather than plumbing the boiler plate
code.

• Makes maintenance easier since the boiler plate
code is confined to the framework instead of
being scattered throughout the application.

• Decreases the Time-to-Market (TTM) by
providing a better starting point for building
applications.

The subsequent step in the migration process is
technical feasibility analysis. This step examines the
technology, tooling and framework support for carrying
out the migration process. Chief use cases in the
product may be prototyped to demonstrate proof of
concept. It is also equally important to make sure that
the new framework or technology does not in any way
hamper the existing performance and scalability of the
product. Additionally the cost of migration must not
offset any perceived benefits of the migration.

Finally a phase wise migration plan is created taking
into account the organization’s business strategy,
commitment to existing customers as well as the results
of the technical feasibility phase and a clear road map
is chartered out. The process involves interacting with
the various stakeholders of the system in order to
prioritize the features based on the business goals and
resource availability.

The final step is the actual migration which is
carried out in a phased manner. However, the process
of migration has challenges related to various aspects
of the system such as those related to security,
deployment, versioning, reliability and performance. In
the next section, we focus specifically on the
performance related challenges and the techniques used
to overcome them.

3. Overcoming performance challenges

Performance in a distributed environment is limited

by a number of factors including the available network
bandwidth, traffic, current load on the system etc. It is
normal for a radiologist who reviews a certain number
of images at a dedicated PACS reading room to expect
the same kind of performance no matter where he/she
is physically located with access to a medically
certified display unit. For SOA implementations with
large numbers of users, services, and traffic,
maintaining the necessary performance levels presents

557

a substantial challenge. It is advisable to incorporate
performance elements of the system into the design
phase itself. The idea is to provide a reasonable
performance if not the same kind of performance in a
PACS reading room. Some of the techniques that we
have used to gain performance are presented below.

3.1 Efficient Management of Resources

Certain resources in the system are expensive to
create or scarce which accentuates the need for an
efficient and a more robust technique for resource
management. This can significantly improve the
performance as well as the scalability of the system.

As an example, consider an enterprise PACS backed
by a database like SQL server. At peak loads the
system might experience an overwhelming number of
connections. This significantly degrades the
performance of the system. However, not all
connections to the system might be currently used (a
client can hold an idle connection). Figure 5 depicts the
scenario in a typical componentized architecture where
multiple clients load the data access component in-proc
and establish individual connections with the database.

Figure 5. Non-pooled data access in a
componentized architecture

SOA provides a solution to solving problems of this

genre. Wrapping a light weight service oriented
wrapper around the PACS data store lets the system to
cap and pool the incoming connections. Connections
can be efficiently reused without having to re-create
them. This increases the performance as well as the

scalability of the system. Figure 6 depicts the scenario
in a typical SOA architecture where a dedicated data
access service provides a single entry point to the
physical data store and in turn throttles the number of
incoming connections by reusing a set of pooled
connections.

Figure 6. Connection pooled SOA data access

3.2 Optimized Image Transmission

Region of Interest or ROI essentially is a particular
area(s) of the image of which radiologists are interested
in to arrive at their diagnostic conclusions. Consider a
case wherein the ROI of the generated image
constitutes hardly 40% of the overall image.
Representing the regions other than the ROI in high
resolution simply increases the memory foot print of
the viewer without adding any significant value to the
user. Figure 7 represents a typical diagnostic image and
its corresponding ROI.

Now, take the scenario of a radiologist accessing
diagnostic images stored in a hospital PACS from a
remote location. To start with, the radiologist can be
supplied with images having only the ROI portions
encoded in high resolution and the non-ROI portions
encoded at a lower resolution. Only if the radiologist
wants to access the complete image, will the entire
image be delivered at its highest resolution. This
technique conserves bandwidth, increases the

558

throughput and reduces the memory foot-print of the
viewer.

Figure 7. ROI based image encoding

Another alternative to conserve bandwidth and
provide faster response times is to embed intelligence
in the viewing terminals which will evaluate the way
images need to be served to the radiologist. So instead
of transmitting gigabytes of data at a time, small
chunks of data are transmitted that would give just
enough information for the radiologist to view at a
time. Only when the radiologist tries to access more
images or requests for the existing images at a higher
resolution, will further data be fetched from the PACS
and delivered to the radiologist. This technique,
referred to as “Just-in-Time Delivery” or “On-the-Fly
Compression”, is increasingly making traditional needs
of compressing the data itself redundant. [6]

3.3 On-Demand Data Transfer

Continuing with the use case of a radiologist at a
remote terminal, in most cases he/she will want to
request the studies of patients assigned to him/her. The
meta-attributes of the patient (like name, sex etc) rather
than the pixel data is what assists the physician to
navigate to a study of interest. Only when the
radiologist navigates to the detailed study is the pixel
data actually needed. This underscores the need for On-
Demand data transfer i.e. only the meta-attributes are
fetched in the first shot and subsequent requests for
diagnostic images fetches the image or the pixel data.
Thus while migrating to SOA it is important to
segregate these systems for metadata access and pixel
data access.

For transfer of image data, SOA streaming can be
employed where only the message headers are buffered
without buffering the entire pay-load. This reduces the
memory foot print of the application, the network
traffic and also increases response times. Segregating
the system this way lets it scale independently with
different concurrency levels and different deployment
considerations. For instance, the Image Streaming
service is expected to be more resource intensive.
Additionally, since the data is not buffered prior to

transmission (streamed), it is essential to implement a
custom reliability management technique here.

Figure 8. Segregating data access
components in SOA

This Data Access Service should also be intelligent

to eliminate redundant data. Take the example of a
typical MR Scan which will involve about 600 images
in a single study. All these images will have the same
meta information until the series level. Hence it would
make sense to send this kind of information only once
instead of sending it every time with the images.

3.4 Choice of Messaging

In SOA, service interactions are typically
characterized by accessing and invoking clearly
defined service contracts. However, in some of our
applications especially those related to notification of
status messages, this style of method invocation is not a
suitable option since inherently, these messages are
asynchronous by nature and an entity sending this
message is decoupled from the receiver of the message
at the other end. Apart from this, there can be multiple
entities receiving messages from a single entity. A
traditional method invocation mechanism providing
such an asynchronous one-to-many type of messaging
would be inefficient especially with respect to
performance. This is primarily due to the cost of setting
up and executing the method calls for such a scenario

559

being non-trivial. The other option that was examined
was of services polling for these messages from a
queue or a repository. However, this was ruled out due
to the increased network load that this polling would
cause. In addition, most of the data would be
unchanged leading to wasted calls. We finally opted for
an open standards based messaging technology with a
publisher-subscriber mechanism to provide a
decentralized messaging infrastructure to meet our
requirements. Using this mechanism, services
interested in specific events subscribe to them and get
notifications when there is an occurrence of those
events. Our initial performance measurements lead to
us believe that as the system scales up, the publisher-
subscriber mechanism results in better performance as
shown in Table 1.

Time taken to receive
the event (msec)

Event
Generation
Rate (/min)

Event
Receiver
Count Publisher/

Subscriber
Method
Invocation

10 10 30 30
50 50 50 50
100 50 4800 6000

Table 1. Performance Measurements

4. Open Issues

Despite the fact that we have managed to meet the
existing performance requirements in diagnostic remote
viewing, it is still difficult to accurately predict the
actual performance when deployed in the production
scenario. With the deployment being at various levels
scaling from a few nodes to hundreds, the task of
measuring the performance is not easy as the
performance depends on many dynamic parameters like
concurrent users, bandwidth and service etc.

The other related open issue concerns the testing
strategy. All along the strategy for the existing systems
has revolved around test clients and test infrastructure
keeping in mind the client-server or single box
solutions. In theory, these should have been
deployment agnostic and developed in conjunction
with the interfaces exposed by the various components.
However, in practice this has not been always true.
Hence we are looking at several testing models where
the current test cases can be executed in the new SOA
enabled systems and accommodate the new ones as
well.

5. Conclusions

SOA has emerged as a leading contender in moving
existing healthcare delivery systems to a distributed
environment. In our case, taking into account the
diverse and large-scale nature of our existing
healthcare applications and the need to overcome the
challenges posed on the performance front, a phased
approach to migration has been adopted. The remote
diagnostic system was selected to be the first system for
the transition. The initial results are encouraging as
already highlighted in the earlier sections and we
expect the other applications such as Remote Servicing,
DICOM services among others to also move to a SOA
based architecture in the long run. It is of our opinion
that the general strategy of migration and the
techniques used for handling the performance related
challenges will prove to be useful guidelines when
taking up migration in other healthcare applications
where distributed computing is becoming a necessity.

6. References

[1] S.Van Assche, D. De Rycke, W. Philips, and I.
Lemahieu, Exploiting interframe redundancies in the lossless
compression of 3D medical images. Data Compression
Conference, pp. 575, 2000.

[2] A.Vlaciu, S. Lungu, N. Crisan, and S.Persa, New
compression techniques for storage and transmission of 2-D
and 3-D medical images, Advanced Image and Video
Communications and Storage Technologies, Amsterdam,
Netherlands, vol. 2451, pp. 370-7, March 1995.

[3] Sarah A. Rajala, Majid Rabbani, Progressive ROI coding
and diagnostic quality for medical image compression,
Visual Communications and Image Processing Proc. SPIE,
vol. 3309, pp. 674-685, 1998.

[4] Channabasavaiah, Holley, Tuggle, Migrating to a service-
oriented architecture, IBM DeveloperWorks, 16 Dec 2003

[5] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns – Elements of Reusable Object
Oriented Software, Addison-Wesley Pub Co., 1995

[6] Paul Chang, Enterprise Integration Strategies toward the
Image-Enabled HER, HIMSS 2007, New Orleans, 2007.

[7] Thomas Erl, Service-Oriented Architecture - Concepts,
Technology and Design, Prentice Hall, 2006.

[8] HIPAA. www.hipaa.org

[9] DICOM. www.medical.nema.org

560

Dynamically Optimize Process Execution Based on
Process-Agent

Jian Dai1, 2, Junchao Xiao1, Qing Wang1, Mingshu Li1, 3, Huaizhang Li1

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100190, China

{daijian, xiaojunchao, wq, mingshu, hzli}@itechs.iscas.ac.cn
http://www.cnsqa.com

2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China
3State Key Laboratory of Computer Science, Institute of Software, The Chinese Academy of Sciences

Beijing 100190 China

Abstract

 Generally, one often uses his experience to optimize his
action to achieve a certain goal. However, it is not true
for the software process to help software engineers in
making decision. Mainly there are two difficulties in
dynamically optimizing software process execution; at
first, many factors such as effort, cost, quality etc., are
need to be considered and also the complex relationship
among them, Secondly, there are different set of actions
that should be taken with reference to the human
resources’ capabilities. So, in this paper we propose an
approach based on Process-Agent to dynamically
optimize the software process.

1. Introduction

Many aspects are involved in software process
execution, such as cost, schedule, and quality. Generally
speaking, Goal/Question/Metric (GQM) is used to support
the quantitative evaluation of software processes and
products [1, 2]. However, to implement the GQM, as [3]
points out, the major problem is using such metrics in
isolation, each indicator can just measure one aspect of
the software process execution. However goal of a
software project plan is often made up of different
concerns. Project managers have to make tradeoffs among
many aspects. To solve this problem, a method is
proposed in [4] using the idea of separating concerns. By
using this idea in software process diagnosis, the
complicated and correlated aspects can be expressed
clearly. However, due to the fact that the capability of
individual is quite varying, we can not use one skilled
coder’s experience to a rookie. So the usage of this
method is limited to fixed capability human resources and
organizations.

Since human resources with varying capacities can use
different experience to direct their action, we introduce
the concept Process-Agent in this paper, defined at [5].
The Process-Agent represents a group of human resources
having the same capability including skills, processes, etc.
we can treat one process agent in the process execution as
one component defined at the well-known Model-Based
Diagnosis method [6-8]. Because each process agent
concerns only a few activities in the whole process, we
eastablished related diagnosis experience of it according
to histoical executions of activities. The core concept used
is state; we define it as a combination of the activity,
measurement indicators, measured resluts and projects. So
when the process agent perform the activity again in a
new project, it can first measure its current state; and then
comparing current state with the old ones to find the most
similar state; finally according to the most similar one, it
can predict what will happen next and provides some
useful actions to the current project managers or current
implementers to reach the next best one recorded in the
historical data.

In sum, the approach we proposed uses a set of
indicators measuring the historical data, distributes the
measured results to each process agent, and updates the
experience drawn from history through the current goal to
figure out which one is better to be followed as an
example and which are not so good states and should be
avoided.

Rest of the paper is structured as follows. Section 2 is a
brief introduction of related work. Section 3 presents the
concepts used in this paper. Section 4 gives the details
about approach as well as an example to demonstrate how
to use this approach. Section 5 gives a discussion to make
a conclusion and future prospects of our work.

2. Related Work

2.1 SoftPM and Process Agent

561

In [9, 10], Institute of Software Chinese Academy of
Sciences (ISCAS) presented a solution for software
process management and also implemented a toolkit:
SoftPM. In [5, 11] Process-Agent was used to organize
the process assets, and based on it, a process modeling
method called an Organization Entity Capability Based
Software Process Modeling (OEC-SPM) was presented to
model standard processes. In this paper, we extend the
process agent’s experience library by adding states
transformed from historical execution of process with the
help of the software metrics defined in SoftPM. Our
example process in this paper is a real process used in a
CMMI4 company and its two executions are drawn from
the SoftPM.

2.2 Problem Diagnosis

There are many problem diagnosis models and
approaches used in the artificial intelligence field, which
provides guidance to figure out problems in running
process.

[12] is a traditional state based approach, and gives a
new problem solver called STRIPS that attempts to find a
sequence of operators in a space of world models to
transform a given initial world model into a model in
which a given goal formula can be proven to be true.
When we try to use it in software process, it performs
well if we treat the robots as no capability difference.

[13,14] give a simple framework and protocols for
presenting plans, resources and goals of agents, where
plans are defined as directed acyclic graphs of skills and
special resources can be realized from given adequate
initial resources, called goals. In this work, we extend this
idea to software process using state and process agent to
represent the historical executions of process, where an
execution can be viewed as a directed acyclic graph of
states linked by process agents.

the concept problem is defined in another way that is
the state with low value evaluated by the value function.
Here, problems may include exceptions, but we focus on
optimizing process execution, so we don’t distinguish
them, just try to identify better one and problems to give
clues for optimization. Our contribution in this paper also
includes extending the oridinary diagnosis methods by
predicting what will happen next and optimizing the
process agent’s action to avoid upcoming problems.
Hence with the support of each process agent’s
optimization the process execution will be done in a better
and smoother way.

3. Definitions

 As metioned earlier, the execution of organization
software process often considers many aspects. However,
each measurement indicator often focuses on one aspect

of execution, and we believe even if we only want to
change one aspect of the execution, we should not only
observe one aspect and take actions only on that aspect,
because those aspects are highly correlated, and the
relationships are often complicated. Here we establish
process related experience of the process agent by using
multiple indicators to measure the historical process
execution. And when the process agent execute the same
process, it can refer to the already eastablished experience
to make a decision on what actions should be taken to
reach the wanted state.

Here, we give some definitions used in this paper:
Definition 1. State
State is a triple S = (Set (activity, begin_end), Set

(project), Ordered Set (Indicator, result)), where
(a) Set (activity, begin_end) is a set including activity

and its status pairs. And each pair represents what the
activity is and when the state is measured i.e. either at the
beginning or at the end of the activity.

(b) Set (project) is a historical project set, representing
from where the state has been measured.

(c) Ordered Set (Indicator, result) is an indicator and
its measured result set, representing which indicators are
used and what are the resultant states.

Definition 2. Value function
Value function is defined as: Result of Indicator1* +

Result of Indicator2* + + Result of Indicatori* ,
where Indicator i is selected to measure current goal,and

… is used to represent the weight of the measured
result of specific indicator.

Definition 3. Edge
An edge is a quadruple E= (Set (process agent ids),

value, state_from, state_to), where
(a) Set (process agent ids) contains process agents who

lead to the change from one state to another.
(b) Value is calculated by the value function got from

current project.
(c) State_from represents from where the edge begins.
(d) State_to represents to where the edge ends.

the whole concepts can be briefly viewed in Fig. 1.

Fig. 1. Brief overview of the relationship among state,
edge and process agent

4. Solution

In this section, we present overview of our approach;
next we give the details about each step in our approach.

562

4.1 Approach Overview

Fig.2. Approach overview

Fig. 2 shows the approach overview. Here, we assume
that standard processes have been predefined in an
organization and process agents have been established,
which means we can get the relationship between
historical tasks and activities in a specific process.
Moreover, based on the human resources assignments in
historical tasks, we can find the relationship between
historical tasks and activities in a specific process
segment of a specific process agent. So after many
executions of a process, huge historical data can be
accumulated during the process. Our approach mainly
consists of three steps. First, we measure historical data
using predefined metric indicators to get one state
sequence for one historical execution. Then, combining
with process knowledge in each process agent, we
distribute states to each process agent to establish the state
trees in order to represent its experience. Finally, after
updating the value in the edges of states in each process
agent by current project’s value function, we can locate
currently observed state obtained from measured results
on the process agent’s state trees, then forecast what has
happened based on historical data and provide solutions to
optimize current execution.
4.2 Measure historical data using specified
Metrics Indexes

In this step, we measure process’ historical execution

data so that we can get one state sequence for each
individual historical process execution. The procedure can
be divided into three sub-steps, for the data related with
each historical project: first, we get related processes by
searching organization standard processes. Because it is
hard to consider the similarity between historical state and
current state without support of the same process, in this
paper, we ignore those historical data that cannot tie with
process; second, for each related process, measure the
execution data at the beginning and end of each activity
by a set of pre-defined metric indicators. Here, the set of
indicators is used to reflect historical execution states, so
the selection of the indicators should comply with the rule
that the set of indicators should represent different
dimensions to provide enough historical information as
reference to current execution; third, after getting the
measured results sequence, the state node can be built by
combining historical project information and process
information with each measured results sequence node.

4.3 Distribute states to each process agent

In this step, state sequences are distributed into each
process agent. In order to decide which process agent the
state belongs to, firstly, human resources are used as one
condition. By observing the time when the state is
measured, we can get related tasks undertaken and then
can get the participants of the tasks. After that, to decide
which activity in the process agent the state belongs to,
we use the activity information in the task. After getting
both human resources information and activity
information, the state can be distributed to specific
process agent under specific activity as a historical state.
Since there may be already many states existing under the
activity, we need to merge the new one with the old one.
The merge rule is obvious: if all values in a new state are
same with another existing state except the Set (project),
then we can merge them by merge Set (project), otherwise
the new state will be linked as similar to the old states
belong to the same activity in the process agent.

4.4 Dynamically monitor and optimize Process
Execution

In this step, we can make the prediction by locating
current measured state on historical state trees built
previously. Though we may not find the identical state on
the trees, we can still give some advice based on most
similar states. By comparing the most similar state’s next
states with current state, we can optimize the process
agent’s action towards a better direction. Here, we define
better direction by introducing the value function, which
is got by the weighted average of measured results
calculated by indicators got from current running project
goal using GQM. Once a new project comes, all the

563

weights on the edges are re-calculated, for historical states
just express what happened, while which state is better is
decided by the goal of current running project.

This step is divided into four sub-steps: first, we can
draw indicators from all indicators which are relevant to
the goal of the current project to form the value function
according to the importance of different aspects; second,
we update weight values for all edges from the results
calculated by value function for each historical project;
third, by comparing current measured state with historical
states, we locate current result in state trees; fourth, we
can provide optimizing advice by comparing the next best
state with current measured state.

5. Conclusion

It is important to learn lessons from historical data,
to direct current projects. It is quite common about an
individual to use his experience to direct his current
action. However, the key points to model this procedure
in software process are: experiences from historical
projects are hard to reuse, because they might be different
in terms of goals, human resource’s experiences are also
hard to reuse, due to the varying capabilities. To solve
these, we introduce the GQM idea to relate goals to
specific indicators and the concept of process agent to
organize historical data based on the capabilities of
human resource. Basically, we propose an approach
which treats historical data as only facts, organize them
according to different human capacities, and use current
project’s goal to update the facts to help project managers
dynamically optimize current project execution.

Acknowledgments. Supported by the National Natural
Science Foundation of China under grant Nos. 60573082,
60473060,90718042 and the Hi-Tech Research and
Development Program (863 Program) of China under
grant No. 2006AA01Z185, 2007AA010303, as well as the
National Basic Research Program (973 Program) of China
under grant No. 2007CB310802.

We are also grateful to many teachers and students in
the Laboratory for Internet Software Technologies. In
particular, we wish to thank Professor Yongji Wang,
Assistance Professor Juan Li, Qiusong Yang, M. Wasif
Nisar, Jian Zhai, Dapeng Liu and Lizi Xie for their advice,
support and encouragement.

References
[1] A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G.
Oldano, E. Orazi: Applying GQM in an industrial
software factory, Vol. 7. ACM (1998)
[2] Van Latum, F., Van Solingen, R., Oivo, M., Hoisl, B.,
Rombach, D., Ruhe, G.: Adopting GQM based
measurement in an industrial environment. Software,
IEEE 15 (1998) 78-86

[3] Fenton, N.E., Neil, M.: Software metrics: successes,
failures and new directions.Journal of Systems and
Software 47 (1999) 149-157
[4] P.Tarr, H. Ossher, W. Harrison, S.M. Sutton, Jr.: N
degrees of separation:multi-dimensional separation of
concerns. Software Engineering, 1999.Proceedings of the
1999 International Conference on (1999) 107-119
[5] Q. Wang, J. Xiao, M. Li, M. Nisar, Y. Rong., L.
Zhang,: A Process-Agent Construction Method for
Software Process Modeling in SoftPM. Software Process
Change (2006) 204-213
[6] L.Console, P.Torasso: A spectrum of logical
definitions of model-based diagnosis. Computational
Intelligence 7 (1991) 133-141
[7] R.Reiter,: A theory of diagnosis from first principles.
Vol. 32. Elsevier Science Publishers Ltd. (1987) 57-95
[8] C.Witteveen, N.Roos, R.v.d.Krogt, M.d.Weerdt,:
Diagnosis of single and multi-agent plans. International
Conference on Autonomous Agents ACM (2005) 805 –
812
[9] Q. Wang, M. Li,X Liu,: An Active Measurement
Model for Software Process Control and Improvement.
Journal of Software 16 (2005) 407-418
[10] Q. Wang, M. Li,: Software Process Management:
Practices in China. International Software Process
Workshop. Springer (2005) 317-341
[11] J. Xiao, Leon J. Osterweil, L. Zhang, A., Wise, Q.
Wang.: Applying Little-JIL to describe Process-Agent
knowledge and support project planning in SoftPM:
Research Sections. Vol. 12. John Wiley and Sons Ltd.
(2007) 437-448
[12] N.J.Nilsson, R.E. Fikes: STRIPS: A New Approach
to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 5 (1971) 189-208
[13] H.Tonino, A.Bos, M.de Weerdt, C.Witteveen: Plan
coordination by revision in collective agent based systems.
Artificial Intelligence 142 (2002) 121-145
[14] N. Roos, A. ten Teije, C.Witteveen: A protocol for
multi-agent diagnosis with spatially distributed
knowledge. Proceedings of the second international joint
conference on Autonomous agents and multiagent
systems. ACM, Melbourne, Australia (2003)

564

Mobile-FIRST: A Mobile Agent Based
FIrst Responder SysTem

Jason Honda

Harry H. Cheng∗

Integration Engineering Laboratory

University of California, Davis

{jmhonda, hhcheng}@ucdavis.edu

Donna Djordjevich

Exploratory Computer and Software Engineering

Sandia National Laboratories

dddjord@sandia.gov

Abstract

There is a growing demand for first responder training
applications. The ability to dynamically change the appli-
cation is critical, but there are currently no applications
that add this kind of flexibility and have the power and
ease of use that is necessary. In this paper, we propose
Mobile-FIRST, a Mobile Agent Based First Responder Sys-
tem, that uses mobile agents in order to add much needed
flexibility to first responder training applications. Using a
mobile agent system for managing migration and execution
of mobile agents which can interface with the running appli-
cation, we can achieve a flexible and powerful system. Dif-
ferent architectures that take advantage of a mobile agent
based system are presented in the paper. A case study is
then examined where we have integrated our mobile agent
system into a first responder training video game currently
in development at Sandia National Laboratories.

1. Introduction

In the world of first responder training, flexibility is im-
portant. There is a growing demand for training applica-
tions and flexibility makes the difference between a valuable
or useless application. The ability to change and create new
scenarios is critical. Being able to change the training sce-
nario from something general to something not routine is
important in training[1]. The ability to easily script out all
of these changes and execute them dynamically would be
incredibly powerful. Being able to change a running appli-
cation can also be beneficial. An interpreted mobile agent
solution could help to solve these problems.

The current technologies for changing an application are
lacking. An area of interest in changing an application
is scripting in video games[2]. There are also proprietary
scripting languages used by developers that are application
specific, such as Linden Scripting Language (LSL) used in
Second Life[3]. The problem with these is that they are
usually application specific and do not have a great amount

∗Address all correspondance to this author

of power to change the application. There are also more
general programming languages used for scripting such as
Python[4] and Lua. These scripting languages also do not
have the ability to change a running application.

Another way that we can change an application is to
rewrite the application. We can of course go into the core
application code and add features, add/change scenarios,
and then recompile the application. This takes a lot of ef-
fort and also requires expert programmers that have access
to the source code and also intimate knowledge of the ap-
plication itself. This is impractical as a continued model of
adding to and tweaking an application.

Another area of research that is related is that of dy-
namic software updating[5]. The way that this works is
that we can swap certain things at runtime such as types,
classes, or objects but usually involving simple definitions.
This is mainly designed for long running applications that
can not afford to have downtime and may need to be up-
dated or fixed on the fly.

There is also edit-and-continue technology where you
can change certain aspects of the program and compile it
while the program is running and relink to the new code[6].
This is usually tied to an integrated development environ-
ment. This is designed to be used in the development pro-
cess in order to make changes quickly, without recompiling
and running. Edit-and-continue is not ideal for a stable
release application.

In this paper we propose adding a mobile agent based
system to first responder training applications. Using an
embedded interpreter that can interface with the running
binary application and a mobile agent system for mobile
code agents to migrate and execute in these applications,
we can achieve a flexible and powerful mobile agent based
system.

This paper is broken down as follows. In sections 2 and 3,
Mobile-FIRST, a Mobile Agent Based First Responder Sys-
tem, is introduced and the different architectures that we
can use with it are explored. Section 4 discusses how we im-
plemented the Mobile-FIRST library and how applications
can use it. In section 5, we look at a case study integrating

565

the mobile agent based system into a first responder train-
ing video game in development, GroundTruth. In section
6 we conclude the paper by summarizing the results.

2. Mobile-FIRST

Agents are program entities that execute independently
and are impacted by the environment and have control over
themselves and the environment. Creating large software
systems using agents has been explored before. The nature
of many kinds of software including first responder training
applications lends nicely to agent-based encapsulation of
modules. Agents could represent entities in the application
that have changing behaviors and locations, such as first
responders, traffic, and population entities.

A mobile agent is an agent that can migrate to different
machines and begin executing. It can stop executing, mi-
grate again, and continue executing. Adding mobile agents
will provide us with greater power and flexibility in alter-
ing an application. These mobile agents can represent any
number of things and can come from anywhere, peers play-
ing a game in a multiplayer fashion, a server that stores
scenarios and scripts, or a designated “red team” that can
change the application while running and altering the sce-
nario to increase or decrease difficulty. Being mobile agents,
they can communicate with other agents on a system, as
well as migrate in order to accomplish whatever task it is
doing.

Mobile-FIRST encompasses a mobile agent system and
interpreter along with Mobile-FIRST libraries. Mobile-
FIRST provides applications with the ability to have mo-
bile agents being executed within an application interfacing
with the binary space and changing the running applica-
tion.

2.1. Mobile Agent System

The mobile agent system used in Mobile-FIRST is
Mobile-C[7] developed at the Integration Engineering Lab-
oratory at University of California, Davis. Mobile-C[8][9] is
a mobile agent platform for C/C++ agents. Agents are en-
capsulated in XML and are sent to other machines. Upon
arrival they are executed in an interpreter. Mobile-C exe-
cutes agents in an Embedded Ch[10] interpreter which can
interface with the binary application space. Mobile-C is a
full featured mobile agent system and is fully accessible by
Mobile-FIRST.

2.2. Benefits

One benefit of using a mobile agent based system is that
we can write our scripts in C/C++. This is a more familiar
language that most people know and can program in. This
means that there is little or no learning curve for most
developers, and it also facilitates an easier transition from
script code writers to developers since they are not writing
in a watered down proprietary scripting language.

By providing the proper interface to binary space for
the interpreted agent space, an agent could do anything

Figure 1. Client-Server Architecture

that could have been done hard coding the program. This
provides a great amount of power to affect the application
in any way that we can think of through the given API.

3. Architectures in Mobile-FIRST

There are many possible architectures that we can use
with a mobile agent based system. These different architec-
tures can be used in a wide variety of applications. An ap-
plication might use a combination of different architectures
at the same time in order to accomplish differing objectives
with Mobile-FIRST.

The application will use Mobile-FIRST which contains
Mobile-C and Embedded Ch interpreters. Mobile-C will
wait for incoming agents and when one arrives, it will ini-
tialize it in its own interpreter that has access to a library
of functions in the binary application space.

3.1. Client-Server Architecture

The first way that we can use a mobile agent system
is in a client-server manner as shown in Figure 1. One
application of this architecture could be designated servers
that store agents for varying scenarios or modules that can
be requested at execution time of the application, retrieving
these agents and executing them. In an architecture such as
this the client would send a request agent that will migrate
to the server where it can intelligently request the needed
agent to be sent back. An application does not need all
possible agents and scripts, it can at runtime intelligently
download the needed agents from one central server. This
could also be used when security is an issue and a client
can run an agent but should not be storing these agents so
they get agents from a secure server.

Another application is a more standard mobile agent ap-
plication where an agent can migrate from a client machine
to the server to process something that is either more ef-
ficient to run on a server or can only be ran on a server.
This could be computationally intensive things that can
be computed remotely and the results sent back or maybe
proprietary algorithms that are sensitive and need to be
protected and only run and reside on a secure server.

566

Figure 2. Peer-to-peer Architecture

3.2. Peer-to-peer Architecture

We could also use a peer-to-peer architecture in a mul-
tiplayer environment as shown in Figure 2 where there are
multiple clients both sending and receiving agents from
other connected clients. The actions of one player could
affect the others in new and unplanned ways. One client
could have an agent migrate to other clients and change
their application. There are many ways that this can be
used where many people are running an application and
agents are migrating from user to user affecting each other,
sharing data, or sharing computing resources.

3.3. Red Team Architecture

Another architecture that could be used is a “red team”
architecture. A “red team” is an adversary group that is
monitoring a trainee and would have the ability to ramp
up or decrease the difficulty in order to test them appro-
priately. This architecture would resemble a peer-to-peer
architecture where there are two connected clients with one
affecting the other, and the trainee seemingly unaware of
the “red team”.

With the mobile agent architecture they could at run-
time inject agents into the application that could increase
difficulty such as setting up another incident that the
trainee might have to respond to, or they could send in ad-
ditional resources to help the player out. There are many
things that can be done here and is only limited by what
can be written in scripts from changing the difficulty to
advanced monitoring of user actions for later assessment or
omniscient knowledge of their actions in order to react in
an adversary manner quickly.

4. Implementation

Mobile-FIRST is currently being developed as a library
that can easily be added into any project. Mobile-FIRST
handles all aspects of including mobile agents into the
project. The library handles creating and destroying the
mobile agent server. As agents arrive at the machine, it
provides a mechanism for arriving agents to register them-
selves as a module for later use by the application or register
to be ran at a certain time interval or at a certain time in
the future, providing flexibility for the agent to choose how

to run. By having the agents register themselves, it be-
comes known what these agents represent and what func-
tions these agents will handle. Other classes in the ap-
plication can then access the mobile agents through the
Mobile-FIRST class and then call functions on the agents.

4.1. Exposing Classes to Interpreted Space

We want agents to be able to change objects and call
functions in the application. In order for the interpreted
agent space to be able to interact with the binary applica-
tion space, the C++ classes in the application need to be
exposed to interpreted application space. They need to be
written in a way to expose member variables and functions
of the class. More information on this process can be found
in Embedded Ch documentation.

5. Case Study: GroundTruth

Ground Truth is a first responder training video game
developed by Sandia National Laboratories and USC
GamePipe. It is a 3D real time strategy video game for
training first responders on how to handle emergency sit-
uations from the incident commander point of view. The
current game is written in C++ and uses the OGRE 3D
open source graphics engine.

The game is designed to have fast paced scenarios that
stress the user into making quick, correct decisions. The
initial scenario is a large scale chemical release in the mid-
dle of a densely populated city. Proper use of resources
is necessary to mitigate harm to the public. This can be
done by having police and fire evacuate or shelter in place
buildings, direct traffic, and rescue people.

5.1. Mobile-FIRST Integration

A simple interface into the binary space of the
GroundTruth game has been created to test the concept of
sending agents with Mobile-FIRST. This simple interface
wraps some basic functionality of the game that is immedi-
ately visible in a running game. These features include log-
ging, alert pop-ups, and killing of the population. The mo-
bile agent coded in XML in Program 1 was used to produce
the effects seen in Figure 3. Upon arrival, the agent dy-
namically added an incident into the running game, killed
some of the population, and notified the player. This is an
example of a “red-team” architecture as presented in 3.3
where a “red-team” has sent in an agent that applies an
incident dynamically in order to increase the difficulty for
the trainee by having to deal with another incident.

As you can see in the Figure 3, there are many apparent
things that happened when the agent was sent over. An
alert popped up alerting the user of a new situation, along
with the population being affected.

Work was then done to replicate a more realistic appli-
cation involving abstracting out the algorithm that affects
population. This involved exposing whole class interfaces
to the mobile agent space. By exposing the class that man-
ages the population and giving the population algorithm

567

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>gtagent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">

<DATA
persistent="1"
number_of_elements="0"
name="no-return"
complete="0"
server="localhost:5051">

</DATA>
<AGENT_CODE>
<![CDATA[

#include <chscript.h>
int main()
{

logMessage("Killing 100 people");
createFullAlert("A gas main just exploded killing 100 people", \

"Police on scene", "Police", "Red", 35, 35);
int i;
for(i = 0; i<100; i++){

killPerson();
}
return 0;

}
]]>

</AGENT_CODE>
</TASK>

</AGENT_DATA>
</MOBILE_AGENT>

</MESSAGE>
</GAF_MESSAGE>

Program 1. A mobile agent with mobile code

Figure 3. Effects of a simple agent with enlarged
visuals

agent a pointer to this class, the agent can at will affect
the population. The agent can choose how often to run,
the severity at which to affect the population and the cri-
teria for which people are affected.

Work was done to seamlessly transition from a binary
algorithm to the agent algorithm upon arrival. Using the
Mobile-FIRST libraries, the application can check to see if
an agent is available for a certain module, and then start
calling functions on the agent, or if not present, it can send
an agent to intelligently request an agent for this module
from a server, as in the client-server architecture presented
in 3.1

Many benefits can be seen with using the mobile agent
system in this application. We gain the ability to swap
modules at run time. Using mobile agents allows for in-
telligent agents to be dynamically added to the running
application and change it in new and unforseen ways inter-

acting with the binary space.

6. Conclusion

Mobile-FIRST, a mobile agent based first responder sys-
tem, has been presented in this paper. Three architectures
using this system have been outlined. Mobile-FIRST has
been implemented and verified with GroundTruth, a Sandia
National Laboratories first responder training application.
Using Mobile-FIRST and mobile agents provides a power-
ful solution to adding dynamic behavior to a first responder
application. Using an embedded C/C++ interpreter to ex-
ecute the mobile code, these agents provide a great amount
of power to interface to the binary space of the running ap-
plication at runtime. Modules and features can be added at
runtime and can change the running appliction. Integrat-
ing Mobile-FIRST into an application provides us with the
ability to move agents from foreign servers or other peers
using the application in a cooperative manner or from oth-
ers playing in an adversarily manner.

Mobile-FIRST could provide a whole new way of looking
at how to create dynamic behavior in an application as well
as how certain applications are architected. It also provides
the ability to integrate easily into real world deployments
that interface with many other devices.

References

[1] J. K. Ford and A. M. Schmidt, “Emergency response
training: strategies for enhancing real-world perfor-
mance,” Journal of Hazardous Materials, vol. 75, no.
2-3, pp. 195–215, Jun 2000.

[2] A. M. Phelps and D. M. Parks, “Fun and games:
Multi-language development,” Queue, vol. 1, no. 10,
pp. 46–56, 2004.

[3] LSL Portal - Second Life Wiki, Linden Lab,
wiki.secondlife.com/wiki/LSL Portal.

[4] B. Dawson, “Game scripting in python,” in Game De-
velopers Conference Proceedings, 2002.

[5] M. Hicks and S. Nettles, “Dynamic software updat-
ing,” ACM Trans. Program. Lang. Syst., vol. 27, no. 6,
pp. 1049–1096, 2005.

[6] M. Eaddy and S. Feiner, “Multi-language edit-and-
continue for the masses,” Tech Rep CUCS-015-05.
Dept. of CS, Columbia Univ., Apr 2005.

[7] Mobile-C: A Multi-agent Platform for Mobile C/C++
Code, http://www.mobilec.org.

[8] B. Chen, H. H. Cheng, and J. Palen, “Mobile-c: a mo-
bile agent platform for mobile c/c++ agents,” Soft-
ware: Practice and Experience, vol. 36, no. 15, pp.
1711–1733, 2006.

[9] B. Chen, D. D. Linz, and H. H. Cheng, “Xml-based
agent communication, migration and computation in
mobile agent systems,” Journal of Systems and Soft-
ware, 2007, doi:10.1016/j.jss.2007.10.026.

[10] Embedded Ch, SoftIntegration, Inc.,
http://www.softintegration.com/products/sdk/
embedch/.

568

Ontology-based and Evolutionary Search for Computational Agents Schemes

Roman Neruda∗

Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodarenskou vezi 2, 18207 Prague 8, Czech Republic
roman@cs.cas.cz

Abstract

This work deals with a problem of automatic composition of
multi-agent system satisfying given constraints. A general con-
cept of representation of connected groups of agents (schemes)
within a multi-agent system is introduced and utilized for au-
tomatic building of schemes to solve a given computational in-
telligence task. We propose a combination of an evolutionary
algorithm and a formal logic resolution system which is able
to propose and verify new schemes. The approach is illustrated
on simple examples.

1 Introduction

Autonomous agents are small self-contained programs that

can solve simple problems in a well-defined domain [10]. In

order to solve complex problems, agents have to collaborate,

forming Multi-Agent Systems (MAS). A key issue in MAS

research is how to generate MAS configurations that solve a

given problem [5]. In most Systems, an intelligent (human)

user is required to set up the system configuration. Devel-

oping algorithms for automatic configuration of Multi-Agent

Systems is a major challenge for AI research.

We have developed a platform for creating Multi-Agent

Systems [7], [9]. Its main areas of application are compu-

tational intelligence methods (genetic algorithms, neural net-

works, fuzzy controllers) on single machines and clusters of

workstations. Hybrid models, including combinations of ar-

tificial intelligence methods such as neural networks, genetic

algorithms and fuzzy logic controllers, seem to be a promis-

ing and extensively studied research area [2]. Our distributed

multi-agent system — provides a support for an easy cre-

ation and execution of such hybrid AI models utilizing the

Java/JADE environment.

The above mentioned applications require a number of co-

operating agents to fulfill a given task. So far, MAS are created

∗This research has been supported by the the project 1ET100300419 of

the Program Information Society (of the Thematic Program II of the National

Research Program of the Czech Republic) “Intelligent Models, Algorithms,

Methods and Tools for the Semantic Web Realization”.

and configured manually. In this paper, we introduce two ap-

proaches for creation and possible configuration of MAS. One

of them is based on formal descriptions and provides a logical

reasoning component for the system.

The second approach to MAS generation employs evo-

lutionary algorithm (EA) which is tailored to work on

special structures—directed acyclic graphs—denoting MAS

schemata. The advantage of EA is that it requires very little

additional information apart from a measure of MAS perfor-

mance. Thus, the typical run of EA consists of thousands of

simulations which build and assess the fitness values of various

MAS. Since the properties of logical reasoning search and evo-

lutionary search are dual, the ultimate goal of this work is to

provide a solution combining these two approaches in a hybrid

search algorithm. This paper presents the first steps towards

such a goal.

2 Description of MAS by means of Logics

The most natural approach to formalize ontologies is the

use of First Order Predicate Logics (FOL). The disadvantage

of FOL-based languages is the expressive power of FOL. FOL

is undecidable [4], and there are no efficient reasoning proce-

dures. Nowadays, the de facto standard for ontology descrip-

tion language for formal reasoning is the family of description

logics. Description logics are equivalent to subsets of first or-

der logic restricted to predicates of arity one and two [3]. They

are known to be equivalent to modal logics [1]. For the pur-

pose of describing multi-agent systems, description logics are

sometimes too weak. In these cases, we want to have a more

expressive formalism. We decided to use Prolog-style logic

programs for this. In the following we describe how both ap-

proaches can be combined together.

An agent is an entity that has some form of perception of its

environment, can act, and can communicate with other agents.

It has specific skills and tries to achieve goals. A Multi-Agent
System (MAS) is an assemble of interacting agents in a com-

mon environment [6]. In order to use automatic reasoning on

a MAS, the MAS must be described in formal logics. For the

computational system, we define a formal description for the

static characteristics of the agents, and their communication

569

channels. We do not model dynamic aspects of the system yet.

Agents communicate via messages and triggers. Messages

are XML-encoded FIPA standard messages. Triggers are pat-

terns with an associated behavior. When an agent receives a

message matching the pattern of one of its triggers, the associ-

ated behavior is executed. In order to identify the receiver of

a message, the sending agent needs the message itself and an

id of the receiving agent. A conversation between two agents

usually consists of a number of messages conforming to FIPA

protocols. In order to abstract from the actual messages, we

subsume all these messages under a message type when de-

scribing an agent in formal logics.

Definition 1 (Message type) A message type identifies a cat-
egory of messages that can be send to an agent in order to
fulfill a specific task. We refer to message types by unique iden-
tifiers.

The set of message types understood by an agent is called

its interface. For outgoing messages, each link of an agent is

associated with a message type. Via this link, only messages

of the given type are sent. We call a link with its associated

message type a gate.

Definition 2 (Interface) An interface is the set of message
types understood by a class of agents.

Definition 3 (Gate) A gate is a tuple consisting of a message
type and a named link.

Now it is easy to define if two agents can be connected:

Agent A can be connected to agent B via gate G if the mes-

sage type of G is in the list of interfaces of agent B. Note

that one output gate sends messages of one type only, whereas

one agent can receive different types of messages. This is a

very natural concept: When an agent sends a message to some

other agent via a gate, it assigns a specific role to the other

agent, e.g. being a supplier of training data. On the receiving

side, the receiving agent usually should understand a number

of different types of messages, because it may have different

roles for different agents.

Definition 4 (Connection) A connection is described by a
triple consisting of a sending agent, the sending agent’s gate,
and a receiving agent.

Next we define agents and agent classes. Agents are cre-

ated by generating instances of classes. An agent derives all its

characteristics from its class definition. Additionally, an agent

has a name to identify it. The static aspects of an agent class

are described by the interface of the agent class (the messages

understood by the agents of this class), the gates of the agent

(the messages send by agents of this class), and the type(s) of

the agent class. Types are nominal identifiers for characteris-

tics of an agent. The types used to describe the characteristics

of the agents should be ontological sound.

Concepts
mas(C) C is a Multi-Agent System

class(C) C is the name of an agent class

gate(C) C is a gate

m type(C) C is a message type

Roles
type(X,Y) Class X is of type Y

has gate(X,Y) Class X has gate Y

gate type(X,Y) Gate X accepts messages of type Y

interface(X,Y) Class X understands mess. of type Y

instance(X,Y) Agent X is an instance of class Y

has agent(X,Y) Agent Y is part of MAS X

Table 1. Concepts and roles used to describe MAS.

class(decision tree)

type(decision tree, computational agent)

has gate(decision tree, data in)

gate type(data in, training data)

interface(decision tree, control messages)

Figure 1. Example agent class definition.

Definition 5 (Agent Class) An agent class is defined by an in-
terface, a set of message types, a set of gates, and a set of types.

Definition 6 (Agent) An agent is an instance of an agent
class. It is defined by its name and its class.

A Multi-Agent System can be described by three elements:

The set of agents in the MAS, the connections between these

agents, and the characteristics of the MAS. The characteristics

(constraints) of the MAS are the starting point of logical rea-

soning: In MAS checking the logical reasoner deduces if the

MAS fulfills the constraints. In MAS generation, it creates a

MAS that fulfills the constraints, starting with an empty MAS,

or a manually constructed partial MAS.

Definition 7 (Multi-Agent System) Multi-Agent Systems

(MAS) consist of a set of agents, a set of connections between
the agents, and the characteristics of the MAS.

In order to describe agents and Multi-Agent Systems in de-

scription logics, the definitions 1 to 7 are mapped onto descrip-

tion logic concepts and roles as shown in table 1. An example

agent class description is given in figure 1. It defines the agent

class “decision tree”. This agent class accepts messages of

type “control message”. It has one gate called “data in” for

data agent and emits messages of type “training data”.

In the same way, A-Box instances of agent classes are de-

fined: instance(decision tree, dt instance) An agent is as-

signed to a MAS via role “has agent”. In the following exam-

ple, we define “dt instance” as belonging to MAS “my mas”:

has agent(my mas, dt instance)
Since connections are relations between three elements, a

sending agent, a sending agent’s gate, and a receiving agent,

570

we can not formulate this relationship in traditional descrip-

tion logics. It would be possible to circumvent the problem

by splitting the triple into two relationships, but this would

be counter-intuitive to our goal of defining MAS in an on-

tological sound way. Connections between agents are re-

lationships of arity three: Two agents are combined via a

gate. Therefore, we do not use description logics, but tradi-

tional logic programs in Prolog notation to define connections:

connection(dt instance, other agent, gate)
Constraints on MAS can be described in Description Log-

ics, in Prolog clauses, or in a combination of both. As an

example, the following concept description requires the MAS

“dt MAS” to contain a decision tree agent: dt MAS � mas�
has agent.(∃instance.decision tree)

An essential requirement for a MAS is that agents are con-

nected in a sane way: An agent should only connect to agents

that understand its messages. According to definition 4, a con-

nection is possible if the message type of the sending agent’s

output gate matches a message type of the receiving agent s

interface. With the logical concepts and descriptions given in

this section, this constraint can be formulated as a Prolog style

horn rule. If we are only interested in checking if a connection

satisfies this property, the rule is very simple:

connection(S,R,G) ←
instance(R, RC) ∧
instance(S, SC) ∧
interface(RC, MT)∧
has gate(SC, G) ∧
gate type(G, MT)

The following paragraphs show an example for logical de-

scriptions of MAS. Computational MAS: A computational

MAS can be defined as a MAS with a task manager, a com-

putational agent and a data source agent which are inter-

connected.

comp MAS(MAS) ←
type(CAC, computational agent)∧
instance(CA, CAC)∧
has agent(MAS, CA)∧
type(DSC, data source)∧
instance(DS, DSC)∧
has agent(MAS, DS)∧
connection(CA, DS, G)∧
type(TMC, task manager)∧
instance(TMC, TM)∧
has agent(MAS, TM)∧
connection(TM, CA, GC)∧
connection(TM, DS, GD)

3 Evolutionary search

The proposed evolutionary algorithm operates on schemes

definitions in order to find a suitable scheme solving a spec-

ified problem. The genetic algorithm has three inputs: First,

the number and the types of inputs and outputs of the scheme.

Second, the training set, which is a set of prototypical inputs

and the corresponding desired outputs, it is used to compute

the fitness of a particular solution. And third, the list of types

of building blocks available for being used in the scheme.

We supply three operators that would operate on graphs

representing schemes: random scheme creation, mutation and

crossover. The aim of the first one is to create a random

scheme. This operator is used when creating the first (random)

generation. The diversity of the schemes that are generated

is the most important feature the generated schemes should

have. The goal of the crossover operator is to create offsprings

from two parents. The crossover operator proposed for scheme

generation creates one offspring. The operator horizontally di-

vides the mother and the father, takes the first part from father’s

scheme, and the second from mother’s one. The mutation op-

erator is very simple. It finds two links in the scheme (of the

same type) and switches their destinations.

4 Experiments

This section describes the experiments we have performed

with generating the schemes using the genetic algorithm de-

scribed above.

The training sets used for experiments represented vari-

ous polynomials. The genetic algorithm was generating the

schemes containing the following agents representing arith-

metical operations: Plus (performs the addition on floats), Mul
(performs the multiplication on floats), Copy (copies the only

input (float) to two float outputs), Round (rounds the incoming

float to the integer) and finally Floatize (converts the int input

to the float).

The selected set of operators has the following features: it

allows to build any polynomial with integer coefficients. The

presence of the Round allows also another functions to be as-

sembled. These functions are the ‘polynomials with steps’ that

are caused by using the Round during the computation.

The results of the experiments depended on the complex-

ity of the desired functions. The functions, that the genetic

algorithm learned well and quite quickly were functions like

x3 − x or x2y2. The learning of these functions took from

tens to hundred generations, and the result scheme precisely

computed the desired function.

Also more complicated functions were successfully

evolved. Having in mind, that the only constant that can be

used in the scheme is −1, we can see, that the scheme is quite

big (comparing to the previous example where there was only

approximately 5–10 building blocks) — see Fig. 2. It took

much more time/generations to achieve the maximal fitness,

namely 3000 in this case.

On the other hand, learning of some functions remained in

the local maxima, which was for example the case of the func-

tion x2 + y2 + x.

571

BlockConstNeg1 (0)

BlockFloatize (2)

0

BlockConstNeg1 (1)

BlockFloatize (3)

1

BlockMul (4)

2 3

BlockCopy (5)

4

BlockMul (6)

5 6

BlockCopy (7)

7

BlockCopy (9)

9

BlockMul (28)

34

BlockCopy (10)

10

BlockCopy (13)

13

BlockCopy (11)

11

BlockPlus (14)

14BlockCopy (12)

12

BlockMul (22)

26

15

BlockPlus (16)

18

BlockCopy (15)

1625 17

BlockMul (17)

23

BlockMul (18)

221920

BlockMul (21)

24

28

BlockMul (25)

29

BlockFloatize (19)

30

BlockConstNeg1 (20)

21

33

BlockRound (26)

31

BlockFloatize (23)

BlockPlus (27)

32

BlockConstNeg1 (24)

27

35BlockFloatize (29)

36

BlockPlus (30)

38 37

BlockPlus (31)

39

40

41

8

BlockCopy (8)

Schema Input

Scheme Output

Figure 2. Function x3 − 2x2 − 3. The scheme with fit-

ness 1000 (out of 1000), taken from 3000th generation.

5 Conclusions

We have presented a hybrid system that uses a combina-

tion of evolutionary algorithm and a resolution system to au-

tomatically create and evaluate multi-agent schemes. So far,

the implementation has focused on relatively simple agents

computing parts of arithmetical expressions. Nevertheless, the

sketched experiments demonstrate the soundness of the ap-

proach. A similar problem is described and tackled in [11] by

means of matchmaking in middle-agents where authors make

use of ontological descriptions but utilize other search methods

than EA.

In our future work we plan to extend the system in order to

incorporate more complex agents into the schemes. Our ulti-

mate goal is to be able to propose and test schemes containing a

wide range of computational methods from neural networks to

fuzzy controllers, to evolutionary algorithms. While the core

of the proposed algorithm will remain the same, we envisage

some modifications in the genetic operators based on our cur-

rent experience.

Namely, a finer consideration of parameter values, or con-

figurations, of basic agents during the evolutionary process

needs to be addressed. So far, the evolutionary algorithm rather

builds the −3 constant by combining three agents representing

the constant 1, than modifying the constant agent to represent

the −3 directly. We hope to improve this behavior by intro-

ducing another kind of genetic operator. This mutation-like

operator can be more complicated in the case of real computa-

tional agents such as neural networks, though. Nevertheless,

this approach can reduce the evolutionary algorithm search

space substantially.

We also plan to extend the capabilities of the resolution sys-

tem towards more complex relationship types than the ones

described in this paper. In our work [8] we use ontologies for

the description of agent capabilities, and have the CSP-solver

reason about these ontologies. The next goal is to provide

hybrid solution encompassing the evolutionary algorithm en-

hanced by ontological reasoning.

References

[1] F. Baader. Logic-based knowledge representation. In

M. J. Wooldrige and M. Veloso, editors, Artificial Intel-
ligence Today, Recent Trends and Developments, pages

13–41. Springer, 1999.

[2] P. Bonissone. Soft computing: the convergence of emerg-

ing reasoning technologies. Soft Computing, 1:6–18,

1997.

[3] Alexander Borgida. On the relative expressiveness of de-

scription logics and predicate logics. Artificial Intelli-
gence, 82(1–2):353–367, 1996.

[4] M. Davis, editor. The Undecidable—Basic Papers on Un-
decidable Propositions, Unsolvable Problems and Com-
putable Functions. Raven Press, 1965.

[5] J. E. Doran, S. Franklin, N. R. Jennings, and T. J. Nor-

man. On cooperation in multi-agent systems. The Knowl-
edge Engineering Review, 12(3):309–314, 1997.

[6] Jacques Ferber. Multi-Agent Systems: An Introduction
to Distributed Artificial Intelligence. Harlow: Addison

Wesley Longman, 1999.

[7] Pavel Krušina, Roman Neruda, and Zuzana Petrova.

More autonomous hybrid models in bang. In Interna-
tional Conference on Computational Science (2), pages

935–942, 2001.

[8] R. Neruda and G. Beuster. Towards dynamic gener-

ation of computational agents by means of logical de-

scriptions. In MASUPC’07 – International Workshop on
Multi-Agent Systems Challenges for Ubiquitous and Per-
vasive Computing, pages 17–28, 2007.

[9] Roman Neruda, Pavel Krušina, Petra Kudova, and Gerd

Beuster. Bang 3: A computational multi-agent system.

In Proceedings of the 2004 WI-IAT’04 Conference. IEEE

Computer Society Press, 2004.

[10] H. S. Nwana. Software agents: An overview. Knowledge
Engineering Review, 11(2):205–244, 1995.

[11] Zili Zhang and Chengqi Zhang. Agent-Based Hybrid In-
telligent Systems. Springer Verlag, 2004.

572

A Goal-Oriented Mixed-Granularity Component Selection Method
 for Huge Component Repositories

Xiaolin Xi Jiyong Park Jiakun Liu Seongsoo Hong

Seoul National University, Korea
sinia@redwood.snu.ac.kr parkjy@redwood.snu.ac.kr jkliu@dsp.snu.ac.kr sshong@redwood.snu.ac.kr

Abstract: In the component-based software development,
component selection is a critical step since the selected
components considerably affect the system quality. Traditionally,
the selection has been done in an ad-hoc manner, which takes a
long time and does not guarantee the quality of the resultant
system. These problems become more significant as the complexity
of a system or the size of component repositories increase.
Although a number of selection methods have been proposed, they
cannot ensure the suitability of selected components on system-
level and fail to consider mixed-granularity components. We
present a goal-oriented mixed-granularity (GOMG) component
selection method to solve these problems. It adopts a hierarchical
goal tree to provide options to use components in different
granularities. Also, it exploits a hierarchical evaluation method
that systematically measures the appropriateness of component
sets on the system level. We have conducted a case study of
building a composite SoC CAD tool. The component repository
consisted of 250 components that varied considerably in both
granularity and performance. The results show that our GOMG
method yields a better aggregated score than the existing method
by 33% and reduces the time consumed on the selection by 73%.

1. Introduction
Component-based software development (CBSD) is an

engineering practice used to build a software system by
composing software components, which are software
artifacts that are specially designed to be used in diverse
contexts. A typical CBSD process includes five main steps
as shown in Fig.1: requirement analysis, component
selection, adaptation, integration and evolution [1]. Among
these steps, the selection step is especially important
because finding an appropriate component set is a
prerequisite for developing a high-quality system.

Traditionally, the selection has been performed in an ad-
hoc manner, which takes a long time and the suitability of
selected components cannot be ensured as the complexity of
systems and the number of available components increase.

In the literature, methods have been proposed to address
the component selection problem, e.g., OTSO [2], CEP [3]
and CARE [4]. In practice, however, they face many
problems. First, since they evaluate each component
individually, it is difficult for them to guarantee the
optimality of a selected component set on the system level.
Second, since they ignore the possibility of selecting
components in different granularities, they may fail to find
utilizable components.

To tackle these problems, we propose a goal-oriented
mixed granularity (GOMG) approach employing two main
techniques. First, a goal-oriented requirement analysis

method is adopted to decompose the system to be designed
into a hierarchy of mixed-granularity sub-systems. Then, a
hierarchical evaluation method explores mixed-granularity
components for the system and evaluates these combinations
from the lowest level to the system level to find out the best
component set with respect to the design goals.

Requirement Analysis

Component Selection

Component Adaptation

Component
Repository

Component Integration

Evolution
Fig. 1. A typical CBSD process.

The paper is organized as follows. In Section 2, we define
the problem and give a solution overview. In Section 3, we
present a goal-oriented requirement analysis that derives a
hierarchical goal tree. Then, a three-step selection method is
explained in Section 4. Section 5 shows a case study to build
a composite SoC CAD tool using our approach. Finally, we
conclude our work in Section 6.

2. Problem Definition and Solution Overview

In this paper, we are going to solve the problem of how to
objectively find a combination of components, possibly with
different granularities, that best meets customer
requirements. Therefore, our GOMG component selection
approach respects the following two important criteria.
� A systematical and objective evaluation method is needed

to ensure the optimality of the selected component set on
the system level.

� The components in different granularities should be
explored.

Our GOMG method meets these criteria through a
systematic process as shown in Fig. 2.
� First, the goal-oriented requirement analysis method

formalizes customers’ unstructured requirements into a
goal tree. The goals on each level match components with
different granularities. Components in small-granularity,
which accomplish low-level goals, can be joined together
to form large-granularity components to achieve high-
level goals. Hence, options for selecting components in
all granularities are provided.

573

� Second, for each goal in the tree, we obtain candidate
components from the repository through search.

� Third, we score the candidate components to measure
how well they meet the non-functional requirements.

� Finally, through a hierarchical evaluation, a component
set that has highest aggregated score is obtained. The
evaluation is done in a bottom-up way, from the lowest-
level leaf nodes to the system-level root node. At each
node, the component with the highest score is identified
from the candidate components. Then the identified
components are promoted to the candidate component of
their parent goals. This process repeats up to the root
system-level goal. As a result, the component set with the
best score is selected.

requirement analysis

1. search

3. evaluation

component selection

component adaptation

2. scoring

component
repository

search-level
metadata

scoring-level
metadata

goal tree

candidate
components

...

scored candidate
components

selected
components

step

artifact

legend

Fig. 2. The overview of GOMG component selection method.

3. Goal-Oriented Requirement Analysis
The requirement analysis transforms a set of informally

expressed requirements into detailed, structured
specifications. Our approach refers to goal-oriented
requirement engineering [5], where goals are defined as
objectives the system under consideration should achieve [6].
Goals are categorized into functional goals and non-
functional goals. Functional goals describe system services
or functions, e.g., modulating a signal. Non-functional goals
are constraints on the system or on the development process,
e.g., performance requirements, security or reliability [7].
To illustrate our method, we present a chatting client as a
walk-through example.

3.1. The Structure of a Goal Tree

Our goal-oriented requirement analysis transforms the
requirements into a hierarchical structure which we call a
goal tree. A goal tree is a tree in which a node represents a
functional goal and a link represents a dependency between
functional goals.

In a goal tree, the top-level functional goal specifies the
overall functional objective of the system, while low-level
functional goals specify concrete functional objectives of
components. An AND-link specifies conjunctive sub-goals
which need to be achieved together to fulfill their parent-
goal whereas an OR-link specifies disjunctive sub-goals any
of which achieves the parent-goal.

A node, hence a functional goal, has non-functional goals
as its attributes. The maximum degrees to which the
components fulfilling the functional goal can contribute to
the non-functional goals are called contribution factors.
Mathematically, sets of all functional goals and non-
functional goals in the system are denoted as

and , respectively.

Then the contribution factor of functional goal
1 2{ , ...}FG fg fg
 1 2{ , ...}NFG nfg nfg

fg FG� to
non-functional goal nfg NFG� is derived by function cf,

: { 0 1,cf FG NFG x x x }.� . . �H (1)

3.2. Deriving a Goal Tree

Our method derives a goal tree by breaking down the top-
level functional goal into more concrete sub-goals in child
nodes. It keeps breaking down the goals until no more levels
of details are needed.

The contribution factor in the root node is defined to be ‘1’.

 � �: , 1 if is a top - level goal.nfg cf fg nfg fg�
 (2)

The contribution factors in the internal and leaf nodes are
derived by splitting and inheriting the contribution factor
from their parent node as in equation (3). AND-linked child
nodes split the contribution factor of their parent node. OR-
linked child nodes directly inherit the contribution factor
from their parent node.

� � � �

� � � �

 is a child of
: , ,

 if is a parent of an AND-linked child node

: , ,

 if is a parent of an OR-linked child node .

c p
c p

fg fg

c p

nfg cf fg nfg cf fg nfg

fg fgp c

nfg cf fg nfg cf fg nfg

fg fgp c

�

�

�

 (3)

The goal tree of our walk through example is shown in
Fig. 3 and the descriptions of the goals are listed in Table 1.
Contribution factors in the root node fg1 are all ‘1’. These
contribution factors are then split into child goals since they
are AND-linked. For example, cf(fg1, nfg2) is split into 1, 0
and 0 to cf(fg1.1, nfg2), cf(fg1.2, nfg2) and cf(fg1.3, nfg2),
respectively. On the other hand, in node fg1.3, contribution
factors are inherited by its OR-linked child nodes.

Legend

nfg1 nfg2 nfg3
1 1 1

fg1
Contribution Factors

nfg1 nfg2 nfg3
0 1 1/3

fg1.1
Contribution Factors

nfg1 nfg2 nfg3
0 0 1/3

fg1.2
Contribution Factors

nfg1 nfg2 nfg3
1 0 1/3

fg1.3
Contribution Factors

nfg1 nfg2 nfg3
1 0 1/3

fg1.3.1
Contribution Factors

nfg1 nfg2 nfg3
1 0 1/3

fg1.3.2
Contribution Factors

Function goal

AND-link

OR-link

Fig. 3. An example goal tree for a simple chatting client.

The portion of a contribution factor each child node gets
depends on the child functional goal’s contribution to the
non-functional goal. For example, ‘minimize the cost’ (nfg3)
is relevant to all components; therefore, the contribution

574

factor is evenly split by all the child nodes. However, for
nfg2, the contribution factor of fg1 is entirely given to fg1.1
as only the goal ‘send message’ contributes to satisfying
‘average send response time .10ms’.

Table 1. Goal description list.
Goal Description
fg1 Develop a simple chatting client-side system.

fg1.1 Send messages.
fg1.2 Receive messages.
fg1.3 Use networks protocols.

fg1.3.1 Use UDP protocol.
fg1.3.2 Use TCP protocol.
nfg1 Networks reliability, ensure data integrity.
nfg2 Minimize send response time, average time . 10ms.
nfg3 Minimize the cost, cost . 500 USD.

4. GOMG Component Selection Method
The GOMG component selection method is a three-step

process: search, scoring and evaluation. In the search step,
for each node in the goal tree, it retrieves a group of
candidate components. In the scoring step, it scores all the
candidate components using the customer provided scoring
functions. In the evaluation step, for each goal, it selects a
component with the largest aggregated score from the
candidate group of a node and promotes it to a new
candidate of the parent node. This process repeats from the
bottom lowest level up to the top level. As a result, the root
node eventually contains the best candidate for the system-
level goal.

4.1. Step 1: Search

In the search step, candidate components for each
functional goal are retrieved from the component repository
through keyword search. Specifically, nouns and verbs are
extracted from descriptions of a functional goal and used as
keywords. In a component repository, a component is stored
with search level metadata that consists of its interface
names, operation names and descriptions. The set of
candidate components retrieved for a functional goal forms
a candidate group of the goal.

4.2. Step 2: Scoring

After finding candidate groups for all nodes in the goal
tree, we give scores to each candidate component so that the
suitability of a component for goals is clearly quantified.
The scoring functions for functional and non-functional
goals are defined respectively as below:

: {0,1}

: { 0 1,
f

nf

score CC FG

score CC NFG x x x

�

� . . �H}
 (4)

where CC is a set of all the candidate components.
For functional goals, we use function scoref in (4) where

scoref (cc,fg)=0 implies that candidate component cc does

not satisfy goal fg and scoref (cc,fg)=1 denotes that cc
satisfies fg.

For non-functional goals, given a pair of (cc, nfg),
function scorenf translates cc’s measurement for nfg to a real
number within interval [0, 1]. The measurements, such as
reliability, speed, size, memory footprint and cost, are
recorded as the scoring level metadata in the component
repository.

4.3. Step 3: Evaluation

After scoring, we use a hierarchical evaluation method to
select a set of components that has the highest aggregated
score. It is performed in three steps. First, we quantify the
relative importance of the non-functional goals by using the
concept of an importance factor. Second, we use a weighted
sum to derive the aggregated scores for all candidate
components. Third, for each goal, we select a component
with the largest aggregated score from the candidates of a
node and promote it to a new candidate of the parent node.
This process repeats from the leaf nodes up to the root node.
In the following subsections, we explain these steps in detail.

4.3.1. Reflecting the Tradeoffs among Non-Functional Goals

Non-functional goals have tradeoffs among them.
Therefore, we use a concept of importance factors to
quantify their relative importance. Importance factor ifnfg of
non-functional goal nfg is defined as its share in influencing
the customer’s satisfaction. Table 2 shows the importance
factors for the simple chatting client example.

Table 2. Importance factors for the simple chatting client.
Non-functional goal nfg1 nfg2 nfg3
Importance factor 0.2 0.2 0.6

Importance factors are used to adjust the contribution
factors so that they also reflect the relative importance of
non-functional goals. These adjusted contribution factors are
called weights. At each node, each contribution factor is
multiplied by importance factor ifnfg and denoted as

(,) (,) .nfgweight fg nfg cf fg nfg if
 � (5)

This weight reflects node fg’s contribution to the customer’s
satisfaction through non-functional goal nfg.

4.3.2. Calculating Aggregated Scores

Since a component has multiple scores for non-functional
goals, it is difficult to compare the component with other
components. Therefore we derive a single score, called an
aggregated score, for each component. Aggregated score for
candidate component cc, which is in functional goal fg’s
candidate group, is calculated by (6).

� �0 ,if , 0,
(,) (,) (,), otherwise.

f

agg
nf

nfg

score cc fg
score cc fg weight fg nfg score cc nfg

&

#
 % �#$
�

(6)

If component cc cannot satisfy a functional goal, its
aggregated score is defined as 0. This is because satisfying

575

the functional goals is the most fundamental requirement.
Otherwise, the aggregated score is defined as the weighted
sum of all the non-functional goal scores.

4.3.3. Traversing the Goal Tree from Bottom to Top

After the aggregated score for each candidate component
is obtained, we compare the aggregated scores while
traversing the goal tree from bottom to top. In this process,
for each node, the candidate component with the highest
aggregated score is identified. The identified component
then becomes a candidate for the parent node via promotion.
The promotion works differently depending on whether the
node is an AND-linked child or an OR-linked child.

For AND-linked child nodes, the candidate components
with the best aggregated score are grouped into a composite
component and promoted to their parent goal’s candidate
component. When sub-components are independent, the
aggregated score of the composite component is simply
defined as the sum of the aggregated scores of the sub-
components as follows,

 is a sub-component of
, (agg agg

c cc
,).score cc fg score c fg
 �

 For the case in Fig. 4, cc2, cc3, cc4 are the candidate
components with the highest aggregated score for AND-
linked child goals fg1.1, fg1.2 and fg1.3, respectively.
Therefore, the composite candidate component cc(2+3+4)
is promoted to a candidate component for fg1.

(7)

For OR-linked child nodes, the candidate component with
the best aggregated score is directly promoted to its parent
goal’s candidate component. For instance, in Fig. 4, cc4 and
cc5 are promoted to candidate components for fg1.3 since
they have the highest aggregated scores in the OR-linked
child goals, fg1.3.1 and fg1.3.2, respectively.

Finally, on the top-level functional goal, the component
set with the highest aggregated score is selected. Fig. 4
shows the process of the evaluation.

fg1.3.2
cc6cc5 …

fg1.2
cc3 …

fg1.1
cc2 …

fg1.3.1
cc4 …

fg1.3
cc5cc4 cc7 …

fg1
cc1 cc(2+3+4) …

legend

function goal

AND-link
OR-link

candidate component
candidate component
with the highest scoreagg

candidate component
promoted from lower level

Fig. 4 Evaluation of candidate components for the chatting client

5. Experimental Evaluation
In order to validate the proposed GOMG component

selection method, we conducted a case study of building a
composite CAD tool for System-on-Chip (SoC) design. We
built a component repository with 250 components in this
field that varied significantly in granularity, performance
and cost. A domain expert was invited to select components

using both our method and the existing method, OTSO. We
compared the two methods by measuring the aggregated
scores and the time consumed for component selection.

Requirements for the SoC tool to develop were given by
the customers. With those requirements, we then derived a
goal tree by our goal-oriented requirement analysis. After
the requirement analysis, the domain expert performed
component selection using the two methods. Under OTSO,
we tried to select one component at a time that fulfills one of
the goals of the system. The domain expert picked a
component for each goal and repeated it in a trial-and-error
manner until all the selected components satisfied the
system-level goal. In contrast, in our method, the domain
expert systematically selected a set of components. Our
method allowed him to select multiple components
simultaneously using the hierarchical goal tree.

As shown in Table 3, the aggregated score of our method
yields a better aggregated score than OTSO by 33% and also
reduces the time consumed by 73%.

Table 3. Comparison of the GOMG method and OTSO.
Metric GOMG method OTSO

Aggregated score 0.812 0.61
Time consumed on selection (man-hour) 15 56

6. Conclusion
We have presented the GOMG component selection

method which allows developers to select the best possible
components in mixed granularities from enormous
component repositories. Our method was evaluated through
a case study. The results clearly show that it outperforms
OTSO in terms of the overall quality and the time consumed
for component selection. As for future study, we will
improve the evaluation by considering the influence of sub-
components interoperations on composite components’ non-
functional scores. We are also attempting to perform more
extensive case studies to assess its effectiveness. The results
look promising.

References
[1] A.W. Brown, K.C. Wallnan, "Engineering of component-based

systems," iceccs, p. 414, Second IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS'96), 1996.

[2] Kontio, J. “A case study in applying a systematic method for COTS
selection,” 18th International Conference on Software Engineering
Berlin, 1996.

[3] Philips, B., Polen, S, “Add Decision Analysis to Your Cots Selection
Process”, Software Technology Support Center Crosstalk, April 2002.

[4] Chung, L., and Cooper, K., “Knowledge based COTS aware
requirements engineering approach,” Proc. 14th Int. Conf. Software
Eng. Knowledge Eng., 2002, (ACM Press), pp. 175–182.

[5] Alves, C., “Challenges in CoTS-making: A goal-driven requirements
engineering perspective”, Workshop on Software Engineering Decision
Support, Ischia, Italy, July 2002.

[6] Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour”, Proceedings of the IEEE International Conference on
Requirements Engineering, 2001, pp. 249-261.

[7] Ian Sommerville, Software Engineering, 6th edition, Addison-Wesley,
2000.

576

A Case Study: Self-Managed COTS Component-Based Elevator System

Michael E. Shin
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

(806) 742-3527
Michael.Shin@ttu.edu

Fernando Paniagua
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

(806) 742-3527
Fernando.Paniagua@ttu.edu

Abstract

This paper describes a case study for the elevator
system, which is implemented using self-managed COTS
components. Each COTS component for the elevator
system is encapsulated in a wrapper that provides the
properties of self-management. By consideration of
reusability, application-independent algorithms for the
wrapper for COTS components of the elevator system is
implemented separately from the application-dependent
information so that the application-independent
algorithms can be reused for other COTS components in
different applications.

1. Introduction

Although COTS (commercial off-the-shelf)
components are getting used more and more for many
applications, COTS components may still have design
faults or unexpected events resulting in system failures.
Self-management [Thomas00, Anderson03, Koopman03,
IBM03, Dashofy02, Garlan02, Garlan03, Guerra04,
Meulen05, Shin06, Shin07] of COTS components has
been considered to improve the reliability of COTS
component-based systems. Self-managed COTS
components detect anomalies in the COTS components,
reconfigure the system against the anomalies detected,
and repair the anomalies at runtime using a self-managing
mechanism encapsulated in a wrapper.

This paper describes a case study for developing a
self-managed COTS component-based elevator system.
By consideration of reusability, the objects of a wrapper
for COTS components are implemented into application-
independent algorithms and application-dependent
information.

This paper begins by describing self-managed COTS
components in section 2. Section 3 describes our
approach to implementing self-managed COTS
components. Section 4 describes the self-managed
elevator system. Section 5 concludes this paper.

2. Self-Managed COTS components

Using a wrapper, a self-managed COTS component
implements the properties of self-management. The
wrapper is structured into COTS Monitor, COTS
Modified Interface, Wrapper Controller, Reconfiguration
Manager, and Repair Manager objects (Fig. 1) [Shin6,
Shin7].

«device»

:InputDevice

«controller»
:Wrapper
Controller

«manager»

:Reconfiguration
Manager

«manager»
:Repair

Manager

«interface»
:COTS Modified

Interface

«monitor»
:COTS Monitor

A1: Request Operation1

A2: Operation1 Requested
A4: Operation1 Called
A6: OperationK Required
A8: OperationK Requested

A3: Call Operation1 A5: Require OperationK

A7: Request OperationK

B1 [Failed]:
Notify

B2: Operation1 Failed
C3: Repair COTS
C9: COTS Repaired

B4: Notify Operation1
Failure
C6: Operations Blocked
C12: COTS Service Ready

C10: COTS
Repaired

B3: Block Malfunction
Operation1
C4: Block Operations
C11: Unblock Operations

C5: Operations Blocked

C7: Repair COTS

C8: COTS Repaired

B5: Operation1 Failure
C1: COTS Repair
C13: COTS Repaired

C2: Acknowledgements

:COTS Component
«component»

«wrapper»

Fig. 1 Self-Management of COTS Component
The operations provided by a COTS component are

monitored by the COTS Monitor. The COTS Modified
Interface maintains the status of each operation in a
COTS component. An operation is “unblocked” if it
performs its obligation normally. An operation is marked
“malfunction blocked” if the operation is anomalous,
“dependency blocked” if the operation requires other
operation in a different COTS component that is
anomalous, or under repair block. Only unblocked
operations are allowed to be invoked by the COTS
Modified Interface. The message sequence A1 through
A8 in the UML collaboration diagram [Booch05,
Rumbaugh05] (Fig. 1) describes the monitoring of the
Operation1 of the COTS component that is requested by
an input device such as an elevator button.

577

The COTS Monitor presumes that an operation is
anomalous if the expected notification messages have not
arrived within reasonable time intervals (messages A2,
A4, A6, and A8). The Wrapper Controller in a wrapper
for a COTS component determines whether an operation
in a COTS component should be repaired immediately or
not - either just reconfiguring anomalous operations or
reconfiguring/repairing the whole component – based on
the criticality of operations.

The Reconfiguration Manager generates a
reconfiguration plan against the anomalous operation.
Based on the plan, it sends a message to the COTS
Modified Interface to block the anomalous operation as
“malfunction” (e.g., message B3). The Reconfiguration
Manager also sends a failure notification to the
neighboring COTS components (messages B4 and B5)
through the Wrapper Controller.

An anomalous operation is repaired by the Repair
Manager by means of re-initialization, re-installation, or
replace of the component with a variant. In Fig. 1, the
repair is performed by means of re-installation of the
COTS component - message sequence C1 through C13.

3. Our Approach

By consideration of reusability, the wrapper for COTS
components is designed and implemented into
application-independent algorithms and application-
dependent information. Application-independent
algorithms for a wrapper are common to all COTS
components so that they can be reused for different
COTS components once they are implemented.
Application-dependent information of a wrapper contains
information specific to a COTS component, which should
be updated for a different COTS component.

Fig. 2 depicts the Floor COTS Monitor, which is an
object supporting the wrapper for Floor COTS
component in the elevator system. The Floor COTS
Monitor provides the following application-independent
operations: Modified Interface Notification, Start Time,
Monitor Time Notification, and Reinitialize Statechart.

Floor COTS Monitor

- Floor Operation Statechart Table

- Floor Operation Statechart Information Table

- ModifiedInterfaceNotification(in operation, in event)

- StartTime(in operation, in time)

- MonitorTimeNotification(in operation)

- ReinitializeStatechart(in operation)

Fig. 2 Floor COTS Monitor
Application-dependent information is described in a

wrapper by means of tables. The Floor COTS Monitor
(Fig. 2) has information specific to the Floor COTS

component: a) Floor Operation Statechart Table (Table 1)
that captures statecharts for the operations provided by
the Floor COTS component; and b) Floor Operation
Statechart Information Table that contains the time
duration in which operations of the Floor COTS
component should be performed.

Operation State Event Action Next Event

floorButton
Request

Idle floorButtonRequest
Arrived

Start
Timing

Calling Floor
Button
Request

floorButton
Request

Calling Floor
Button Request

floorButtonRequest
Called

Start
Timing

Processing
Floor Button
Request

floorButton
Request

Processing
Floor Button
Request

serviceRequest
Arrived

Start
Timing

Calling
Service
Request

floorButton
Request

Calling Service
Request

serviceRequest
Called

Start
Timing

Idle

Table 1. Floor Operation Statechart

4. Self-Managed Elevator System

The elevator system with multiple elevators
[Gomaa00] is structured into three Elevator COTS
components, ten Floor COTS components, and one
Scheduler COTS component. The objects in the wrappers
for the COTS components were implemented using Java
programming language. In the software architecture, each
Elevator COTS component is allocated to an elevator,
while each Floor COTS component is allocated to a floor.
The Scheduler COTS component is allocated to a
separate node for performance reasons, so it can rapidly
respond to elevator requests.

4.1. Monitoring and Detection

The Floor Modified Interface has the Floor Operation
Status table containing information about the status of
Floor COTS operations: floor button request, off floor
lamp, on off direction lamp. The status of each operation
is unblocked so that the Floor Modified Interface can call
the Floor COTS operations.

When the floor button sends an elevator request to the
Floor Modified Interface, the Floor Modified Interface
checks the status of floor button request operation in the
Floor COTS component using the Floor Operation Status
table. If the operation status is ‘Unblock’, the Floor
Modified Interface notifies the Floor Monitor of the
arrival of floor button request using the Modified
Interface Notification function (Fig. 2). The statechart for
the floor button request operation encapsulated in the
Floor Monitor makes transition from the Idle state to the
Calling Floor Button Request state (Table 1). The Floor
Modified Interface then calls the floor button request
operation in the Floor COTS component and notifies this
event to the Floor Monitor by sending the “Floor Button

578

Request Called” message through the Modified Interface
Notification function. The statechart makes transition
from the Calling Floor Button Request state to the
Processing Floor Button Request state (Table 1).
Similarly, the Floor Modified Interface sends the next
notification message, “Service Request Arrived”, to the
Floor Monitor when the Floor COTS component finishes
processing the floor button request operation. By this
message, the statechart makes transition from the
Processing Floor Button Request state to the Calling
Service Request state (Table 1). The Floor Modified
Interface notifies the Floor Monitor again when it has
sent “Service Request Called” message to the Scheduler
Modified Interface. Then the Scheduler COTS
component adds the floor and direction to the Scheduler’s
plan. This notification message makes transition from the
Calling Service Request state to the Idle state in the
statechart (Table 1).

Using the Start Time and Monitor Time Notification
functions (Fig. 2), the Floor Monitor checks if each time
interval between the notification messages from the Floor
Modified Interface is within a specified time interval. For
example, the Floor Monitor presumes that the floor
button request operation is anomalous if the “Service
Request Arrived” message is not arrived within a
specified time interval. In this case, the Floor Monitor
notifies the Floor Wrapper Controller of the anomaly of
the operation.

4.2. Reconfiguration

The Floor Wrapper Controller has the Floor Operation
Criticality table containing criticality information for each
operation provided by the Floor COTS component.
Operations are classified as a critical or non-critical
operation based upon the criticality of system failure. The
floor button request operation is critical for the elevator
system because it handles the elevator requests from the
elevator users. Thus, it needs to be both reconfigured and
repaired immediately. The other two operations - off floor
lamp and on off direction lamp - can be non-critical.
Although the non-critical services provided by the Floor
COTS component are degraded, malfunction of these
operations may not affect the whole elevator system.

The Reconfiguration Manager has been implemented
by means of the Reconfiguration Plan Generator and the
Reconfiguration Plan Executor. The Reconfiguration Plan
Generator generates a reconfiguration plan against an
anomalous operation and the Reconfiguration Plan
Executor performs the plan generated. To reconfigure the
elevator system, the Floor Wrapper Controller sends the
Floor Reconfiguration Plan Generator a message saying
both the name of an anomalous operation and its level of
criticality.

The Floor Reconfiguration Plan Generator checks the
status of floor button request operation in the
Floor/Callee/Caller Operation Status Table - containing
the status of the operations provided by the Floor COTS
component as well as their caller and callee operations -
to determine whether the floor button request operation
should be blocked or not. The Reconfiguration Plan
Generator also uses the Floor Reconfiguration table
(Table 2) to obtain the dependencies among operations. If
there is some operation in caller components
corresponding to the anomalous operation, the
reconfiguration plan includes caller components so that
the caller components should be notified for dependency
block in response to the operation’s anomaly. The floor
button request operation will be blocked for repair (repair
block) because the operation is critical. The floor button
request operation has no operation in caller, so the plan
does not include any operation of different components.

Callee Caller
Operation

Operation Component Operation Component

floorButtonRequest Service Request Scheduler

upDownRequest Elevator 1

upDownRequest Elevator 2 offFloorLamp

upDownRequest Elevator 3

Approaching
Requested Floor

closeDoor

Elevator 1

Approaching
Requested Floor

closeDoor

Elevator 2

Approaching
Requested Floor

onOffDirectionLamp

closeDoor

Elevator 3

Table 2. Floor Reconfiguration Table

The Floor Reconfiguration Plan Executor performs all
the actions in the reconfiguration plan. The
Reconfiguration Plan Executor notifies the Floor
Modified Interface to update the status of the floor button
request operation in its table with “Repair Block”. The
Floor Reconfiguration Plan Executor will also change the
status of the floor button request operation from
“Unblock” to “Repair Block” in the Floor/Callee/Caller
Operation Status Table. Then the Floor Reconfiguration
Plan Executor notifies the Floor Wrapper Controller that
the plan has been executed successfully. The Floor
Wrapper Controller initiates the repair process by calling
the Floor Repair Manager.

4.3 Repair

The Floor Repair Manager contains the Floor Repair
Table, which shows different techniques that are
available for repairing the anomalous COTS component.
The repair techniques can be re-initialization of the
COTS component, modification of inputs, re-installation
of the same COTS component, replacement with a

579

variant, or any other technique that is available. The Floor
COTS component has only two techniques available: re-
installation and replacement.

The Floor Repair Manager starts repairing the Floor
COTS component using the first technique that has not
been used yet. If the technique selected is “Re-install
component”, a copy of the Floor COTS component kept
in a safe place is re-installed. If the technique selected is
“Replace component”, a variant version of the Floor
COTS component is selected as a new component. After
executing one of those techniques, the Floor Repair
Manager sends the “Component Repaired” message to
the Floor Modified Interface to use this component
version. The Floor Repair Manager notifies the Floor
Wrapper Controller of the finalization of the repair.

When the Floor Wrapper Controller receives the
notification from the Floor Repair Manager, it starts the
reconfiguration process again as the Floor COTS
component resumes its services. The Floor Wrapper
Controller notifies the Floor Reconfiguration Plan
Generator, which generates the corresponding
reconfiguration plan again. The Floor Reconfiguration
Plan Executor notifies the Floor Modified Interface to
‘unblock’ all of its own operations, and notifies the Floor
Monitor to re-initialize the statechart for the floor button
request operation using the Reinitialize Statchart function
(Fig. 2). The Floor Reconfiguration Plan Executor
changes the operations status in the Floor/Callee/Caller
Operation Status Table to “Unblock”, notifying the Floor
Wrapper Controller that the repair process has been
executed.

5. Conclusions

This paper has described a case study for self-
managed COTS component-based elevator system in
which each COTS component is encapsulated in a
wrapper. While the wrapper for COTS components
provides the properties of self-management, COTS
components deal with application perspectives. By
consideration of reusability, the wrapper is implemented
into application-independent algorithms and application-
dependent information.

This research can be extended to further research. The
wrapper implemented needs to be applied to other
applications to check how well the wrapper implemented
is reused for other COTS components. In addition, the
objects constituting a wrapper for COTS components
may need to be refined to reduce the complexity of the
wrapper architecture based upon the experience from case
studies. The current implementation of a wrapper for
COTS components requires many message
communications between the objects in the wrapper,

which result in low performance and resource overhead
in the system.

References

[Anderson03] Tom Anderson, Mei Feng, Steve Riddle, Alexander
Romanovsky, Protective Wrapper Development: A Case Study, in
Proceedings of the 2nd International Conference on COTS-Based
Software Systems (ICCBSS 2003), Ottawa, Canada, 10-13 February
2003.

[Booch05] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling
Language User Guide”, Second Edition, Addison Wesley, Reading MA,
2005.

[Dashofy02] Eric M. Dashofy, Andre van der Hoek, and Richard N.
Taylor, “Towards Architecture-based Self-Healing Systems,” Workshop
on Self-healing systems, Proceedings of the first workshop on Self-
healing systems, Charleston, SC, November18-19, 2002.

[Garlan02] David Garlan and Bradley Schmerl, “Model-based
Adaptation for Self-Healing Systems,” Workshop on Self-healing
systems, Proceedings of the first workshop on Self-healing systems,
Charleston, SC, November18-19, 2002.

[Garlan03] David Garlan, Shang-Wen Cheng, and Bradley Schmerl,
“Increasing System Dependability through Architecture-based Self-
repair,” in Architecting Dependable Systems. R. de Lemos, C. Gacek, A.
Romanovsky (Eds), Springer-Verlag, 2003.

[Gomaa00] Hassan Gomaa, “Designing Concurrent, Distributed, and
Real-Time Applications with UML,” Addison-Wesley, 2000.

[Guerra04] Paulo Asterio de C. Guerra, Cecília Mary F. Rubira,
Alexander Romanovsky, Rogério de Lemos, “A Dependable
Architecture for COTS-Based Software Systems using Protective
Wrappers,” in Architecting Dependable Systems ADS II LNCS 3069.
October 2004, pp. 147-170.

[IBM03] IBM, “An architectural blueprint for autonomic computing,”
IBM and autonomic computing, April 2003.

[Koopman03] Philip Koopman, “Elements of the Self-Healing System
Problem Space,” Workshop on Software Architectures for Dependable
Systems (WADS2003), ICSE’03 International Conference on Software
Engineering, Portland, Oregon, May 3-11, 2003.

[Meulen05] Meine van der Meulen, Steve Riddle, Lorenzo Strigini,
Nigel Jefferson, Protective Wrapping of Off-the-Shelf Components, in
Proceedings of the COTS-Based Software Systems: 4th International
Conference, ICCBSS 2005, Bilbao, Spain, February 7-11, 2005.

[Rumbaugh05] J. Rumbaugh, G. Booch, I. Jacobson, “The Unified
Modeling Language Reference Manual,” Second Edition, Addison
Wesley, Reading MA, 2005.

[Shin06] Michael E. Shin and Fernando Paniagua, “Self-Management of
COTS Component-Based Systems Using Wrappers,” 30th Annual
International Computer Software and Applications Conference
(COMPSAC 2006), Chicago, September 17-21, 2006.

[Shin07] Michael E. Shin and Fernando Paniagua, “Design of Wrapper
for Self-Management of COTS Components,” 19th International
Conference on Software Engineering and Knowledge Engineering
(SEKE’2007), Boston, July 9-11, 2007, pp. 314-319.

[Thomas00] V. Thomas, SuriKumar Kareti, Walter Heimerdinger,
Sunondo Ghosh, “Mediators and obligations: An architecture for
building dependable systems containing COTS software components,”
Proceedings Workshop on Dependable System Middleware and Group
Communication (DSMGC 2000), Nuremberg, Germany, October 2000.

580

Using Scenario Monitoring to Address State Based Crosscutting Concerns

Mark Mahoney1, 2
Tzilla Elrad2

1Carthage College
2Illinois Institute of Technology

mmahoney@carthage.edu
elrad@iit.edu

Abstract

This paper describes how the completion of well
defined scenarios can be used to indicate events of
interest to state based crosscutting concerns. Core
concerns are monitored for scenarios that represent
events of interest to a crosscutting concern. When a
monitored scenario completes, an event is injected into
a crosscutting state machine that may react by
introducing additional behavior. This is a form of
Aspect-Orientation that deals with non-state based
core concerns interacting with state based crosscutting
concerns.

1. Introduction

A crosscutting concern is an aspect of a system that
influences many other core concerns. Crosscutting
concerns cannot be easily modularized using
traditional decomposition techniques. Fault tolerance,
for example, is a crosscutting concern that affects
many parts of a system. However, fault tolerance code
is typically scattered throughout the system and tangled
with the core concerns interfering with their logical
flow. The field of Aspect-Oriented Software
Development (AOSD) [1] addresses crosscutting
concerns by separating them from core concerns at one
level of abstraction and providing a means to weave
them back together at a lower level of abstraction. The
woven product is one step closer to an executable
system. For humans analyzing the system, the
separation of concerns allows one to reason about core
and crosscutting concerns independently while
understanding how they affect each other.

Many core concerns exist that have no state based
behavior. They do not require any knowledge of the
past in order to satisfy a requirement. Occasionally, a
crosscutting concern requires knowledge of a core
concern’s history or state in order to function properly.
Consider a banking system with different types of
accounts that are accessible from a bank teller, ATM,
or online. From a security standpoint, repeated

transfers in a single day through an ATM or online
rather than through a bank teller might require that the
transaction be logged as suspicious activity. The core
transfer behavior is not state based and does not require
any state information to function properly. The
crosscutting security logging concern, however, does
require knowledge of the core’s state. In particular, it
needs to know how many transfers have been
attempted in a day and by what means the transfers
took place. This is an example where tracking the state
of a core concern is necessary for a crosscutting
concern to behave correctly.

A state machine can be used by a crosscutting
concern to model the history information of the core,
but it should not be tightly coupled to any particular
core concern. It should be abstract so that the
crosscutting concern is usable in different contexts and
by many different core concerns. The events that this
crosscutting state machine reacts to must come from
the core concerns. This is how core and crosscutting
concerns are woven together. The obliviousness
property of AOSD [6] states that the core concerns
need not be aware of any crosscutting concerns
affecting them. The core developer must not be
responsible for creating a state machine if it is used
solely for a crosscutting concern.

The contribution of this work is to show the benefits
of monitoring a set of non-state based core concern
objects for events that are useful to a state based
crosscutting concern. In the example above, the core
objects can be monitored to determine when a user
transfers money using an ATM or online. When that
scenario occurs it can be used as an event in a state
machine for the security logging crosscutting concern.
This provides separation of concerns and maximizes
reusability of both core and crosscutting concerns.

In order to perform the monitoring several
approaches can be used. The least invasive approach
uses combination of well known patterns to track the
state of a set of core concern objects. However, other
tools and language extensions exist that can be used for
the same purpose.

581

The rest of this paper is organized as follows:
section two briefly discusses different approaches to
scenario monitoring and gives an overview of our
approach. Section three provides an example of using
scenario monitoring to inject events into a crosscutting
concern state machine. Section four describes related
work.

2. Scenario monitoring for generating
events

In our approach, a crosscutting concern developer
models the state of the core concerns with a state
machine. That is, the crosscutting concern has a
particular need to know the state of the core concerns.
This is so that behavior can be injected on certain
transitions of the core’s state. The crosscutting state
machine is abstract in that the events are not directly
bound to a core concern’s implementation. Rather, the
core concerns are monitored for events of interest. A
scenario is an ordered set of messages sent and
received from objects in the system. Traditionally,
scenarios are modeled with sequence diagrams [18].

When the core objects are monitored and an event
of interest occurs the event will be sent to a state
machine that may react to it. This is how additional
behavior is added to the core concerns. Scenario
monitoring is the crucial element in this approach. Two
different approaches to scenario monitoring will be
discussed in the following subsections.

2.1. Scenario Monitor Pattern

Ideally, scenario monitoring should be done in a
minimally invasive way. Requiring the monitored
objects to be aware of the monitoring introduces strong
coupling between the core concerns and the monitoring
code. The coupling makes it difficult to reuse the core
concerns in a context where scenario monitoring is not
required.

In an upcoming work we will present a design
pattern that allows monitored objects to be oblivious to
monitoring code. Scenario monitoring can be turned on
and off at run time. Although the exact details are
beyond the scope of this work, the pattern makes use
of the Decorator, Observer, and Abstract Factory
Patterns [7] to shield the core concern developer from
being aware that monitoring is taking place.

2.2. The Play-Engine

Harel et. al. [9][15][8] created Live Sequence
Charts to specify scenarios and reactions that occur in
response to the completion of those scenarios. In this

approach a proprietary tool called the Play-Engine
monitors scenarios. In Maoz [15] the idea was
reworked to eliminate a separate monitoring tool.
Instead, monitoring is accomplished using the Aspect
Oriented Programming language AspectJ [11]. The
only drawback of these approaches is that they cannot
be used without committing to new tools and
programming languages.

2.3. Overview of our approach

Although we prefer scenario monitoring solutions
that don’t require special language extensions or tools,
any of the approaches above can be used to separate
non-state based core and state based crosscutting
concerns. State based crosscutting concerns are
modeled with state machines. The state machines have
states, transitions, and actions associated with
transitions. These actions are used to weave in
additional behavior into a system. The state machines,
however, should not be coupled directly to any
particular set of core concerns. The state machine
should receive abstract events. A mapping must be
made from the concrete core concerns to the abstract
events that will be handled by the crosscutting state
machine.

Our initial approach is for completed scenarios in
the core concerns to represent events of interest. This is
reasonable because an event is an occurrence in time
and space that has significance to the system [16].
Therefore, the scenario monitor will inject events into
the crosscutting state machine and it will react
accordingly, perhaps changing state and executing
behavior associated with the transition.

We feel an example of our approach is the best way
to explain our approach. The following section gives a
detailed example on a relatively small set of
requirements.

3. Example using our approach

The following describes a set of requirements that
we use to elucidate our approach. The system is for a
financial advisor that generates and sells reports to his
customers about potential companies to invest in. The
financial advisor gets some of his financial data from a
much larger financial services organization referred to
as the Investment Warehouse.

582

3.1. Report generating system

Requirement R1: Financial Advisor Attempts to
Sell Report

A financial advisor requests an investment report
from the Report Generating System to sell to his
customer. If the Report Generating System does not
have the requested report it will ask an independent
Investment Warehouse for information in order to
generate the report. The Report Generating System
will then generate a report and send a summary to the
financial advisor. The financial advisor shows the
customer the summary and tries to sell it to her. If the
customer wishes she may purchase the full report. If
that happens the report will be stored by the system
and presented to the customer. When a customer
requests a report that already exists, the Report
Generating System will pull the report from storage
and display a summary to the customer. If the customer
chooses to purchase the report it will be presented to
her.

The first requirement is modeled with the following

use case:

Use Case: Financial Advisor Attempts to Sell Report
Actors: Financial Advisor, Investment Warehouse
Normal Flow:

1. Financial Advisor requests a report from the
System.

2. System searches report database for existing
report.

3. The report does not exist, System requests
information from Investment Warehouse.

4. System generates the report.
5. System sends summary report to the Financial

Advisor.
6. Financial Advisor gets approval from the

customer to purchase the report.
7. System stores the report in the database.
8. Financial Advisor presents the report to

customer.

Alternate Flow: Report Already Exists
3. The report already exists, retrieve it from the

database.
4. System sends summary report to the Financial

Advisor.
5. Financial Advisor gets approval from the

customer to purchase the report.
6. Financial Advisor presents the report to

customer.

In the early design phase the Sequence Diagrams in
figures 1 and 2 are created.

Figure 1. Financial advisor attempts to sell

report (new report)

583

Figure 2. Financial advisor attempts to sell

report (report already exists)

3.2. Crosscutting billing concern

Now imagine the financial advisor has the option of
becoming a franchisee of the Investment Warehouse or
a pay-as-you-go customer. If the financial advisor
becomes a franchisee, he is charged a relatively high
flat yearly rate for access to financial services
information. A pay-as-you-go customer is charged per
access to the Investment Warehouse. The financial
advisor has negotiated an additional term in the
contract. The Investment Warehouse will only charge
the financial advisor once when he accesses data the
first time a report is sold. If the financial advisor does
not sell the report, or the report is already in his
database of sold reports, he is not charged for the data
access.

The financial advisor would like the flexibility to
switch between the different types of customer. If he
switches he would like to keep his existing Report
Generating System in place. The main difference is
that a franchisee does not need to handle billing.

The state machine in figure 3 describes how pay-as-
you-go customers are charged for access to the
Investment Warehouse’s data. The requirement is to
charge $10 for the first 5000 accesses in a month, $5

for the next 5000 accesses in a month, and charge
nothing for more than 10000 accesses in a month.

Full Price

Discount Price

Free

H

hits = 0

access data
[hits == 5000] / bill $10; hits++

access data
[hits == 10000] / bill $5; hits++

access data / bill $10; hits++

access data / bill $5; hits++new month / hits = 0

new month / hits = 0

new month / hits = 0

Figure 3. ‘Access Data’ state machine

The problem is determining when a billable ‘access

data’ event has been performed. From the requirements
it is clear that the only time a billable access occurs is
when a new report is actually purchased. One cannot
simply bill after accessing the data from the Investment
Warehouse because there is no charge unless the
customer purchases a report. Further, one cannot
simply bill after the customer purchases a report
because they may be purchasing a report that already
exists. The billing system needs to know the state of
the interaction with the Investment Warehouse.

The important states to the billing concern are Idle,
Pending Purchase New Report, Pending Purchase
Existing Report, and New Report Purchased. The
important events are when a new report is generated,
when an existing report is requested, when a report is
purchased, and when a report is abandoned. The state
machine in figure 4 describes when billing should take
place.

Figure 4. ‘Billing’ State Machine.

3.3. Concern Modeling

Scenarios of interest can be modeled in a variation
of UML interaction diagrams. We are proposing the
use of Interaction Fragments from UML 2.0 to specify
scenarios that will map to events in a crosscutting

584

concern state machine. Interaction Fragments model a
sequence of events that has special properties to a
developer [18]. A Combined Fragment is a container of
Interaction Fragments with operators specified for the
contained Interaction Fragment. We are proposing a
new interaction operator called ‘event-op’. The ‘event-
op’ operator, when applied to Interaction Fragments,
specifies that upon completion of the Interaction
Fragment a corresponding event or events will be
introduced into one or more state machines. The state
machine may react to the events by introducing
behavior associated with the transition.

The state machine in figure 4 describes (in an
abstract way) when the crosscutting billing concern
should be applied. What remains is the concrete
mapping of scenarios in the core objects to the events
in the crosscutting concern state machine. The events
‘new report’, ‘report exists’, and ‘purchase’ are directly
related to the completion of certain scenarios. The
‘new report’ event from the ‘Billing’ state machine is
bound to the completion of the scenario specified in
figure 5a. That is, the completion of that part of the
sequence diagram is equivalent to the event where a
new report is created. Whether that event is handled is
determined by the current state of the crosscutting
concern state machine. Similar events are bound to the
scenarios ‘purchase’ and ‘report exists’ in figure 5b
and 5c.

a. New Report Event

b. Purchase Event

c. Report Exists Event

Figure 5. Specification of bindings between
scenarios and events.

4. Related Work

There is some existing research that has addressed
scenario monitoring and AOSD. Trace-Based Aspects
[5], also referred to as Stateful Aspects, are defined on
traces of events that occur during program execution.
Stateful Aspects use system state to represent the
evolution of crosscutting concerns according to events
that are encountered. Stateful aspects have two main
characteristics. First, aspects are defined over
sequences of observable execution states. Second,
weaving is performed on executions rather than
program code. The weaver can be seen as a monitor
interleaving the execution of the base program and
execution of inserts.

The Aspect-Oriented Programming language
JASCO [10] was extended to allow for the
implementation of Stateful Aspects. The additional
constructs permit the order of messages to be
monitored and behavior to be applied upon completion
of scenarios.

585

In [2] the authors argue that Stateful Aspects are a
consequence of designing a state based system using
transformational techniques. They propose an approach
to dealing with crosscutting concerns in state based
systems using state based design techniques and tools
including the Specification and Design Language
(SDL)[3][4]. We believe there is a place for Stateful
Aspects in transformational systems if they can be
modeled correctly.

The work of Stein [17] relates to modeling. In that
approach, one models the state of the core concerns
with state machines like we do but the events come
directly from individual messages from the core
concern models. That is, the events in the state
machines are directly bound to method invocations
from the core. We provide a more abstract model that
allows one to specify the concrete messages outside of
the crosscutting concern. The events in the state
machine using our approach are not coupled to the
messages in the core implementation. Using Stein’s
approach it would be difficult to use the crosscutting
state machines in other implementations because they
are coupled to particular core models.

5. Conclusion

History sensitive crosscutting concerns are difficult
to implement when the history lives in the core
implementation. We have described a way to monitor
the core concerns and create events for the crosscutting
concerns.

The primary benefit of our approach is the loose
coupling between core and crosscutting concerns. The
specification of binding between the core and
crosscutting concerns is at a higher level of abstraction
than other approaches. The consequences are that
developers can specify state based behaviors required
for crosscutting concerns in an abstract way that is
reusable in different contexts. Crosscutting concern
developers can emphasize the state based nature of
concerns without requiring the core concern developers
to create a state machine model- they are oblivious.

6. References

[1] AOSD web page. http://aosd.net
[2] Cottenier, T. van den Berg, A. Elrad, T. Stateful Aspects:
The Case for Aspect-Oriented Modeling. Proceedings of
AOM @ AOSD’07 10th Int'l Workshop on Aspect-Oriented
Modeling Vancouver, Canada, 12 March 2007
[3] Cottenier, T., van den Berg, A., Elrad, T. Joinpoint
Inference from Behavioral Specification to Implementation,
ECOOP'07

[4] Cottenier, T., van den Berg, A., Elrad, T. The Motorola
WEAVR: Model Weaving in a Large Industrial Context.
Industry Track paper at AOSD'07
[5] R. Douence, P. Fradet, M. Sudholt Trace-based AOP in
M. Aksit, S. Clarke, T. Elrad, R. E. Filman editors, Aspect
oriented software development, Addison-Wesley, 2004
[6] Filman R.E., Friedman, D.P. “Aspect-Oriented
Programming is Quantification and Obliviousness”,
Workshop on Advanced Separation of Concerns, OOPSLA
2000, October 2000, Minneapolis.
[7] Gamma, Helm, Johnson, Vlissides; Design Patterns,
Elements of Reusable Software Design, Addison-Wesley
1995
[8] D. Harel and S. Maoz, "Assert and Negate Revisited:
Modal Semantics for UML Sequence Diagrams", Software
and System Modeling (SoSyM), to appear. (Early version in
5th Int. Workshop on Scenarios and State Machines: Models,
Algorithms and Tools (SCESM'06), 2006.)
[9] Harel, D., Marelly, R. Specifying and Executing
Behavioral Requirements: The Play In/Play-Out Approach
Software and System Modeling (SoSyM) 2 (2003), pp. 82-
107.
[10] JASCO Home Page. http://ssel.vub.ac.be/jasco/
[11] Kiczales, G. et al., Aspect-Oriented Programming Proc.
European Conf. Object-Oriented Programming, Lecture
Notes in Computer Science, no. 1241, Springer-Verlag,
Berlin, June 1997, pp. 220-242.
[12] Mark Mahoney, Atef Bader, Tzilla Elrad, Omar
Aldawud, Using Aspects to Abstract and Modularize
Statecharts, The 5th Aspect-Oriented Modeling Workshop in
Conjunction with UML 2004 Lisbon, Portugal, October 2004
[13] Mahoney, M., Elrad, T. A Pattern Based Approach to
Aspect Orientation for State Based Systems, Workshop on
Best Practices in Applying Aspect Oriented Software
Development (BPAOSD ' 07) at the Sixth International
Conference on Aspect-Oriented Software Development
(AOSD 2007). March 2007. Vancouver, BC.
[14] Mark Mahoney, Tzilla Elrad, Weaving Crosscutting
Concerns into Live Sequence Charts Using the Play Engine.
7th International Workshop on Aspect-Oriented Modeling
held in conjunction with the 8th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS'05), Montego Bay, Jamaica, October 2005.
[15] Maoz, S. Harel, D. From multi-modal scenarios to code:
compiling LSCs into aspectJ Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering Portland, Oregon, USA 2006: 219 –
230
[16] Samek, M. Practical Statecharts in C/C++. CMP Books.
2002.
[17] Dominik Stein, Stefan Hanenberg, Rainer Unland:
Visualizing Join Point Selections Using Interaction-Based vs.
State based Notations Exemplified With Help of Business
Rules. EMISA 2005: 94-107
[18] UML Specification. http://www.uml.org/

586

Negotiating Service Levels - A generic negotiation framework for WS Agreement

Sebastian Hudert
Chair of Information Systems Management, University of Bayreuth

95440, Bayreuth, Germany
Email: sebastian.hudert@uni-bayreuth.de

Heiko Ludwig
IBM Research, T.J. Watson Research Center

Hawthorne, New York, USA
Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg
96045, Bamberg, Germany

Abstract

The Web Services Agreement specification draft proposes a
simple request-response protocol for agreement creation only
addressing bilateral offer exchanges. Analyzing negotiation
taxonomies from the literature clearly proves that as insuffi-
cient. This paper proposes a framework that augments the
WS-Agreement in order to enable negotiations according to a
variety of bilateral and multilateral negotiation protocols in a
manner that is compatible with the WS agreement standard.
Keywords: SLA, Negotiation Protocols, WS Agreement

1 Introduction

Managing quality of service (QoS) in loosely-coupled dis-

tributed systems such as computational Grids cannot rely on

traditional, centralized management. QoS guarantees must be

obtained in the form of bi- or even multi-lateral service level

agreements (SLAs). SLAs represent qualitative guarantees

placed on service invocations within a service oriented envi-

ronment. Service consumers benefit from guarantees because

they make non-functional properties of service predictable.

On the other hand, SLAs enable service providers to manage

their capacity, knowing the expected requirements. By em-

ploying SLAs, a robust service oriented architecture (SOA)

can be realized, even across company boundaries.

To support broad application, standards for the structure of

agreement documents as well as a standard process to estab-

lish and monitor them automatically are required. The Web

Services Agreement (WS-Agreement) specification is a stan-

dardization effort conducted by the Open Grid Forum (OGF)

in order to facilitate creation and monitoring of SLAs [1].

It defines an XML-based structural definition of SLA docu-

ments, a request-response protocol for agreement creation as

well as corresponding interfaces for agreement creation and

monitoring. A WS-Agreement specifies functional properties

and qualitative service level guarantees by a set of terms.

Unfortunately, the agreement creation process proposed by

the standard is restricted to a simple request-response proto-

col. Taking a closer look at the literature on negotiation tax-

onomies originating in e-commerce research and economics

shows that simple request-response pattern are far from be-

ing sufficient to constitute complex SOAs. Enabling a variety

of negotiation protocols supporting advanced formats involv-

ing numerous parties in different roles would result in a much

wider applicability of the WS-Agreement standard.

In order to have a common basis for a more powerful

framework for automated negotiation, a thorough study of

the literature has been carried out (refer to [7] for details).

Whereas much work is focussed on auctions ([3, 14, 15]), re-

cent work originating in electronic negotiation research par-

ticularly deals with e-commerce settings ([8, 2]). The detailed

taxonomy by Ströbel and Weinhardt [13] provides in our opin-

ion a classification of negotiation parameters independent of

concrete technologies. The requirements and characteristics

discussed in the literature have been used in an integrated and

consolidated manner to derive a set of attributes that are suit-

able for SLA negotiation settings supporting various auction

types or one-on-one bargaining protocols.

Current SLA negotiation frameworks lack the ability to

provide different negotiation protocols. Such efforts either

only support one particular negotiation protocol that is fixed

within the system (see for example [4, 5]) or even employ hi-

erarchical management structures that hardly negotiate with

the resource providers at all but act as brokers distributing

jobs on the registered services (see [6], [11]). Other systems

provide the ability of different protocols but only by introduc-

ing a central market instance mediating all negotiations ([10]),

which in our view contradicts the decentral nature of dis-

tributed service-based systems.Our framework aims at over-

coming this lack of generity in SLA negotiation mechanisms

as proposed up until now.

Incorporating different negotiation protocols seamlessly

into the agreement creation process of the overall WS-

587

Agreement protocol, however, requires solving several is-

sues: In an automated negotiation, all participating compo-

nents (called agents) must be aware of all rules and constraints

concerning the negotiation protocol. Moreover, an infrastruc-

ture of role definitions, interfaces and methods has to be pre-

sented to facilitate the actual negotiations.

Although publishing a fixed, predefined set of negotiation

protocol definitions would suffice for lots of scenarios, faced

with the rapid development of SOA and its applications, a

more generic approach is more appropriate. We propose a

generic approach in which parties in a distributed system

agree on a negotiation mechanism first, then conduct the SLA

negotiation and then fulfill the SLA. To this end, we define a

meta-language for negotiation protocols. Using such a meta-

language, a multitude of specific negotiation protocols can be

defined using a well-defined set of attributes and parameters.

Making a specific protocol definition available to all prospec-

tive negotiators before the actual negotiation informs them

about which protocol has been chosen. Further, we propose an

exchange protocol to distribute the negotiation definitions to

all prospective negotiators and to choose a specific negotiation

protocol. Finally we propose, as an example, a generic nego-
tiation protocol that is able to support all specific negotiation

protocols that can be described with the presented negotiation

attributes as extension to basic WS-Agreement offers.

The rest of this paper is organized as follows: Section 2 in-

troduces the basic concepts and data structures of the frame-

work. Afterwards, in sections 3 and 4, the underlying philos-

ophy as well as the interfaces and building blocks offered for

the exchange protocol and the negotiation protocol itself are

described. We conclude with some remarks on future work.

2 Basic Definitions and Data Structures

The negotiation protocol actually conducted is defined with

the means of a negotiation meta-language. In this section

we sketch the meta-language and data structures forming the

basis for our framework. A multitude of different negotiation

protocols can be specified using the provided well-defined set

of negotiation parameters, resulting in a structured protocol

description document. There are four general negotiation

configurations:

1:1 exactly two negotiators exchange bids, i.e. Bargaining
1:n classical auctions, where n service consumers post bids

to a single service provider

n:1 reverse auctions where n service providers post offers to

a single service consumer

n:m (broker) markets, where n service providers and m
service consumers post bids to a central broker that

matches offer and demand

Our framework currently covers bargaining situations, and

(reverse) auctions. Incorporating markets will be subject

to future work. Based on the literature on negotiation

taxonomies (cf. section 1), a set of negotiation attributes has

been identified by analyzing common SLA scenarios which

inherently exhibit distinct characteristics:

• SLAs normally comprise more than just a single at-

tribute, therefore an SLA framework must focus on

combinatorial negotiations (in contrast to, e.g., [14])
• Each service is referenced individually and defines an

individual item. Hence multi-unit negotiations are not

appropriate in SLA negotiation settings.
• An SLA always governs one or more service invo-

cations done by a service consumer. The service is

offered by the service provider. Therefore SLA negoti-

ations primarily focus on these two roles in a negotiation.
• In order to guarantee integrity of the negotiation a

common concept in negotiation theory is a trusted third

party governing the negotiation process. This is also

appropriate for SLA environments in which service

consumers and providers can utilize such a central

service for discovery of potential negotiation partners.
• A special requirement posed here is the need for

fully automated negotiations. Negotiation protocol

descriptions used in such scenarios must conform

to a very strict structure and must be syntactically

processable by software agents negotiating on service

consumers’/providers’ behalf.
A detailed description of our taxonomy can be found in [7]

along with a data model for negotiation protocol descriptions,

formalized as an ER Model, as well as an XML- based

representation of this data model for seamless integration

with the WS-Agreement specification. Based on the analysis

the following high level attribute categories were identified:
• General Negotiation Process attributes abstractly define

the overall negotiation process, e.g., the starting and

termination rules for a negotiation, the number of rounds

or whether or not the negotiation protocol is rewarding

protocol compliance or punishing protocol violation, i.e.

employing reputation concepts.
• Negotiation Context groups attributes define a negoti-

ation’s configuration. This includes for example the

definition of roles and the admission rules for each role.
• Negotiated Issues attributes define the values of the SLA

to be negotiated and, hence, which attributes of a service

are subject to the negotiation and to which extend this

set can be extended.
• Offer Submission attributes govern the bidding process.

Rules concerning the submission of bids or the relation

between bids are specified with these attributes. They

define which roles are allowed to post bids and under

which conditions a bid can be posted or is evaluated to

be valid within the negotiation.
• Offer Allocation attributes govern the matching process

of a negotiation, more precisely the agreement formation

in SLA scenarios.
• Information Processing attributes determine what kind

of information, e.g., about the current status of the

negotiation or past offers from negotiating agents, are

accessible during a negotiation.
Employing the identified attributes, an XML Schema docu-

ment describing the structure of our negotiation protocol de-

scription documents, so-called negotiation types, are derived.

588

2.1 Negotiation Types and Instances

In order to allow for the specification of a reusable proto-

col definition we distinguish two different protocol descrip-

tion documents: negotiation types and instances. Negotiation

types describe general classes of negotiation protocols and de-

fine their common attributes and elements. Negotiation in-

stances, in contrast, stand for a particular negotiation of some

type that can be unambiguously referenced by (potential) par-

ticipants. A negotiation type document can therefore be seen

as an instantiated protocol description employing our meta-

language, whereas a negotiation instance refers to a particular

negotiation process conducted according to such a protocol

description. A negotiation type does not contain a identifier

that is used to refer to a given negotiation process and does

not state the agents involved in a given negotiation, since they

change between each actual negotiation process. The other at-

tributes identified in the previous section, however, have to be

initialized when defining a negotiation type as the negotiation

type essentially describes the protocol to be executed.

The involved agents are not specified in a negotiation type

document because not every agent participating in the negoti-

ation should have to be known when a negotiation type is cre-

ated. Such a constraint would corrupt the flexible approach

of our framework. Instead, the exchange protocol (see sec-

tion 3) allows for agents to subsequently join the negotiation.

Hence the negotiating agents will subsequently filled in the

negotiation instance document.

In order to supply the negotiating agents with the re-

quired information about negotiation types and instances, two

XML document descriptions (formalized XML-Schema doc-

uments) were defined in a manner that is suitable to exhaus-

tively describe a multitude of different 1:1, n:1 and 1:n nego-

tiation protocols ([7]).

2.2 Negotiation Documents

The main negotiation object is a WS-Agreement template [9]

with its corresponding creation constraints as defined in the

current WS-Agreement specification. The framework aug-

ments the current specification with possibilities to negoti-

ate over a WS-Agreement by adapting this fundamental data

structure for the (partial) definition of some service(s) to be

negotiated. The creation constraints as part of this template

are also used to give syntactical restrictions on the elements

still to be initialized or to be altered during the negotiation.

The negotiation type document refers to the WS-Agreement

template the negotiation is defined upon and defines which

terms of a WS-Agreement can be negotiated and how to do

so. A concrete negotiation is represented by a negotiation in-
stance document as already hinted. This document refers to

the negotiation’s type, its participants and specifies a unique

identifier. Finally, the result of the complete negotiation pro-

tocol is a valid WS-Agreement document satisfying the initial

creation constraints of the WS Agreement template it is based

upon.

Protocol
Definition

Distribution
of Protocol
Description

Agreement
Negotiation

Agreement
Acceptance

Figure 1. Agreement Creation Process

2.3 Involved Roles

Since our framework is intended to augment the WS-

Agreement specification, we identified a set of service inter-

faces representing the roles present in a SLA negotiation pro-

cess. Each of these roles offers a distinct functionality to the

other actors in the system in order to enable the exchange and

negotiation protocols (see sections 3, 4). The Negotiation Par-
ticipants represent a regular participant/negotiator in the ex-

change and negotiation protocol. In terms of service oriented

environments the service consumers and providers make up

such negotiation participants. The Negotiation Coordinator
is a logically centralized instance which handles admission

of agents to a given negotiation as well as (re)distribution of

the negotiation documents to the prospective negotiators. The

information distribution during the actual negotiation is ad-

ministrated by the Information Service. It serves as an access

point for the negotiators to access information about the cur-

rent negotiation process.

3 Exchange Protocol

The overall process of agreement creation can be divided into

four distinct phases, as depicted in Figure 1: First an appro-

priate protocol description in terms of our meta-language and

the respective negotiation type and instance documents is cre-

ated. In a second step this protocol description is distributed to

all prospective negotiators according to the exchange protocol
presented here. Subsequently the actual negotiation process

takes place according to the rules defined and distributed in

the previous phase. The generic negotiation protocol used for

this phase is presented in the next section. Finally one offered

agreement is accepted by one of the participants to conclude

the negotiation. Alternatively, there may be no acceptable of-

fer and the negotiation is terminated by rejecting all offers.

Neither the exchange nor the negotiation protocol definition

focus on exchanged messages primarily, but on the provided

services and respective methods to be invoked subsequently.

This approach was taken due to the envisioned service ori-

ented environment for our framework defining protocols in

terms of method invocation sequences.

3.1 Interfaces for the Roles Involved

During the exchange process a negotiation instance document

is distributed to all prospective negotiators. At the end of the

exchange protocol every involved agent should be aware of

the negotiation protocol to be executed and all agents involved

as negotiators. Hence two roles are present in the exchange

process: the Negotiation Participants joining a given negotia-

589

idle active

proposeNegotiation()
<successful>

invoke accept() on

proposing agent

all coordinated
negotiations finish

invoke accept() on
proposing agent

clear list of curr-
ent negotiations

publishNegotiation()

update list of
Negotiation Instances

getAllNegotiationTypes()

return list of available

Negotiation Types

getCurrentNegotiations()

return list of available
Negotiation Instances

proposeNegotiation()
<unsuccessful>

<nothing>

timeout in proposing
agent

joinNegotiation()

update and redistribute
Negotiation Instance

getAllNegotiationTypes()
getCurrentNegotiatoins()

publishNegotiation()
proposeNegotiation()

--> analog

Figure 2. NegotiationCoordinator statemachine

tion and a centralized Negotiation Coordinator governing the

distribution of the protocol description documents.

The Negotiation Coordinator provides the protocol

description documents and handles the admission of nego-

tiators. The corresponding interface defines a set of query

methods used for requesting the available negotiation type

and instance documents.

• getAllNegotiationTypes() / . . .TypesForTemplate(. . .)

• getCurrentNegotiations() / . . .ForTemplate(. . .)

Employing these methods the negotiators can query all

available negotiation types as well as currently active nego-

tiation instances. Additionally it is possible to use a given

WS-Agreement template as a search parameter in order to

query all possible negotiation protocols for a given service.

Besides simply joining an already running negotiation,

an agent may actively propose a negotiation instance to a

coordinating agent.

• joinNegotiation(negotiationID, agentEPR, ’credentials’)

• proposeNegotiation(NegotiationInstance-document)

• publishNegotiation(NegotiationInstance-document)

• publishNegotiationToReceipients(. . ., [receipients])

Processing admission of agents at one logical centralized

coordinator service eases the integration of reputation or se-

curity related external systems involved in the admission pro-

cess. All agents joining a negotiation do so by invoking the

corresponding method on the central coordinator service.

There are two different types of methods proposing a nego-

tiation instance to the coordinator: proposeNegotiation() and

publishNegotiation(). The latter differs from the former in

that it is not assumed that the coordinator used for publish-

ing also is to act as Negotiation Coordinator for the respec-

tive negotiation. It only offers this negotiation instance for

look-up purposes while the actual admission and information

(re)distribution tasks are conducted by the actual coordinating

agent, probably the one publishing the negotiation instance.

This method can be used to implement systems of distributed

idle awaiting
negotiation

negotiatingsubscribed

<timeout>

initiate a negotiation

invoke proposeNegotiation()
at a prospective coordinator

acceptNegotiation()

acceptAgreement()/
rejectAgreement()

deploy SLA

start of Negotiation
<stated in starting rule>

proposeNegotiation()
<successful>

invoke joinNegotiation()

at the coordinator

placeOffer()

continue Negotiation

updateNegotiation()

update instance

document

proposeNegotiation()
<unsuccessful>

<nothing>
timeout in

proposing agent

Figure 3. NegotiationParticipant statemachine
look-up servers. With the proposeNegotiation()-method a ne-

gotiation instance is proposed to the agent acting as Negotia-

tion Coordinator in the subsequent negotiation process. Fig-

ure 2 outlines the overall behavior when using the Negotia-
tionCoordinator interface.

The Negotiation Participant role is adopted by all

prospective negotiators, i.e., by service providers as well

as consumers. However, this role is present in both, the

exchange and the negotiation protocol. The methods used for

the exchange protocol are described here while the ones used

in the actual negotiation will be sketched in the context of

section 4.

• updateNegotiation(NegotiationInstance-document)
• proposeNegotiation(NegotiationInstance-document)
• acceptNegotiation(negotiationID)

Whenever new agents join a negotiation, the negotiation in-

stance document is updated and redistributed to all negotiators

already known using the updateNegotiation()-method. On the

other hand, it should be possible for a Negotiation Coordi-

nator to propose a negotiation instance to a (potential) Nego-

tiation Participant. For this purpose a proposeNegotiation()-
method is also present in the Negotiation Participant interface.

The acceptNegotiation()-method is offered as a counterpart

for the proposeNegotiation-method to support asynchronous

communication. When a negotiation is proposed to a Negoti-

ation Coordinator, this agent can decide whether to coordinate

this negotiation or not using the acceptNegotiation()-method

on the proposing agent. Figure 3 sketches the overall behavior

of a NegotiationParticipant).
Based on the two roles explained above, our framework

offers three basic logical protocol components that may be

combined in order to create a concrete exchange process.

3.2 Request for Negotiation Documents

This step describes the process of one agent requesting nego-

tiation type or instance documents from the respective Nego-

590

tiation Coordinator, employing the methods defined in section

3.1.

An agent may, for example, query all negotiation types

supported by the respective Negotiation Coordinator using

the getAllNegotiationTypes()-method. As a result the coor-

dinator returns a list of negotiation type documents. On the

other hand, agents may query already instantiated negotia-

tions with the getCurrentNegotiations(). In the former case

the Negotiation Coordinator only defines which protocols are

supported and waits for the other agents to propose a partic-

ular type to be instantiated. In the latter the coordinator re-

turns all currently available instances for the requesting agent

to join. Analogously to requesting all available negotiation

types or instances, agents may also query only types and in-

stances defined for a given WS-Agreement template, i.e. for

some service they already know. If one of the returned nego-

tiation types or instances is appealing for the requesting agent

and it wishes to take part in the respective negotiation, the in-

volved agents have to conduct an additional step. In case of

the request for negotiation types an agent can create a corre-

sponding negotiation instance document and propose it to the

coordinator (see next subsection). The proposing agent can

join a successfully instantiated negotiation instance by invok-

ing the joinNegotiation()-method afterwards.

If an agent wants to join an already instantiated negotia-

tion, the agent requests the currently available negotiation in-

stances first, chooses an appropriate one and invokes the join-
Negotiation()-method on the coordinator afterwards.

3.3 Proposal of Negotiation Documents

This step represents the process of actively proposing some

instance document to a prospective participant or coordinator.

This way negotiations can either be proposed to agents simply

taking part in or to some agent coordinating the subsequent

bidding process. The protocol component regularly follows

a request for negotiation types in order to propose the newly

created instance to the coordinating agent.

3.4 Mediated Exchange Processes

The third building block offers publish/subscribe functional-

ity to the participants. Agents may publish negotiation in-

stances at some Negotiation Coordinator to make it available

to a larger community of prospective negotiation participants.

In order to implement such systems of distributed look-up

servers, the Negotiation Coordinator offers the publishNegoti-
ation() interface method. This method allows for publication

of instantiated negotiations at some coordinating service. The

other agents requesting the available protocols again query

these by invoking the already introduced request-methods.

By combining these three basic protocol components as

building blocks, a multitude of different exchange processes

can be specified, all resulting in distributing the informa-

tion, needed to participate in a particular negotiation, to all

placeOffer ()

acceptAgr()

rejectAgr()

Agent A

placeOffer ()

acceptAgr()

rejectAgr()

Agent B

Agent C

placeOffer ()

acceptAgr()

rejectAgr ()

Figure 4. Auction Process

prospective participants.

4 Negotiation Protocol

After supplying all negotiation participants with the protocol

description, the actual negotiation can start. We propose a

generic negotiation protocol able to cope with the different

negotiation types that can be expressed with the means of our

protocol description documents.

In general, every negotiation is specified as a bidding pro-

cess. Each party involved in a negotiation offers an agreement

to the other party concerning the issues subject to the negotia-

tion that is currently acceptable for them. Then the other party

assesses the offered agreement and generates a counter-offer,

accepts the offer or rejects it and terminates the negotiation.

This way the two parties (service consumer and provider) in-

volved move from a conflict situation concerning some (log-

ical) resource(s) to a consensus represented by the resulting

agreement. In order to support such processes our generic

negotiation protocol has to provide the agents with means to

post offers and to promote the decision made about a concrete

offer.

The two roles present within the actual negotiation

protocol are the Negotiation Participant and the Information
Service. Given its role during a negotiation the Negotiation

Participant interface offers methods for placing offers as well

as methods for accepting and rejecting offered agreements.

• placeOffer(agentEPR, WS-Agreement-document)
• acceptAgreement(negotiationID, agreementID)
• rejectAgreement(negotiationID)

The Information Service role provides access to information

on the current negotiation status or past offers. Hence the

corresponding interface provides the following methods:

• getStatus(negotiationID)
• getPastOffers(negotiationID)/

getPastOffers(negotiationID, agentID)

The getStatus-method is used by all negotiation participants to

access the current negotiation status. This allows, for exam-

ple, to assess which offer is currently winning the negotiation

591

placeOffer()

acceptAgr()

rejectAgr()

Agent A

placeOffer()

acceptAgr()

rejectAgr()

Agent B

Figure 5. Bargaining Process

and if necessary to adopt the own offer. The remaining meth-

ods let participating agents access past offers of a negotiation.

This information can be used for internal decision making of

the negotiating agents. Such a request may be restricted to

offers posted by a specific agent denoted by its ID as an addi-

tional parameter.

Figures 4 and 5 schematically show how the interfaces are

used during an auction and a bargaining scenario.

It should be noted that currently only a polling mecha-

nism is available for accessing negotiation related informa-

tion. Other concepts of information distribution, such as pub-

lish/subscribe and notification functionality for a more flex-

ible information processing mechanism, are explored at the

moment.

Using these roles and interfaces a rather generic negoti-

ation protocol is defined, capable of conducting any nego-

tiation protocol describable with the attributes identified be-

fore. Agents allowed to post bids (stated in the protocol de-

scription) do so via the placeOffer()-method offered by the

respective negotiation partner (the auctioneer in auctions or

both agents in bargaining protocols offer this method). When

terminating a negotiation each participant is notified using the

accept/rejectAgreement()-methods. Additionally the negotia-

tors can query negotiation related data at the Information Ser-

vice.

5 Conclusion

This paper proposes a negotiation framework for WS-

Agreement, enabling the integration of a variety of negotia-

tion protocols suitable for different application domains based

on an exchange protocol determining the actual negotiation

protocol used. Negotiation protocols can be specified in a de-

scription language and made available to parties interested in

negotiations. Parties interested in negotiating an agreement

first run the negotiation exchange protocol to establish which

negotiation protocol is used. Subsequently, the protocol is ex-

ecuted to determine the resulting, negotiated WS-Agreement

document. Finally, after winner determination, acceptance

and rejection is performed again according to the standard

WS-Agreement protocol. With these two protocols fully au-

tomated WS-Agreement negotiations according to a variety

of different negotiation protocols can be conducted in Web

Service environments.

Future work focuses on testing a variety of negotiation pro-

tocols, e.g., service level agreements in the context of grid

environments, such as [12], and thus verifying the expressive-

ness of the negotiation description language and the capabili-

ties of the exchange protocol.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,

T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web

services agreement specification draft, version 09/2005. 2005.
[2] C. Bartolini, C. Preist, and N. R. Jennings. A software frame-

work for automated negotiation. Software Engineering for
Multi-Agent Systems III (eds. R. Choren, A. Garcia, C. Lucena,
and A. Ramonovsky), pages 213–235, 2005.

[3] M. Bichler and J. R. Kalagnanam. Software frameworks for

advanced procurement auction markets. Communications of
the ACM (CACM), 49(12), 2006.

[4] M. B. Chhetri, J. Lin, S. Goh, J. Y. Zhang, R. Kowalczyk,

and J. Yan. A coordinated architecture for the agent-based

service level agreement negotiation ofweb service composi-

tion. In Proc. of the Australian Software Engineering Confer-
ence (ASWEC’06), pages 90–99, Washington, DC, USA, 2006.

IEEE Computer Society.
[5] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and

S. Tuecke. Snap: A protocol for negotiating service level

agreements and coordinating resource management in dis-

tributed systems. In JSSPP 2002, Vol. 2537 of LNCS, pages

153–183. Springer, 2002.
[6] F. D’Andria, J. Martrat, P. Laria, G. Ritrovato, and S. Wes-

ner. An enhanced strategy for sla management in the business

context of new mobile dynamic vo. In Proceedings of the 4th
eChallenges Conference, 2006.

[7] S. Hudert. A proposal for a web services agreement protocol

framework. Bamberger Beiträge zur Wirtschaftsinformatik 70,

Bamberg University, February 2007. ISSN 0937-3349.
[8] A. R. Lomuscio, M. Wooldridge, and N. R. Jennings. A clas-

sification scheme for negotiation in electronic commerce. Int.
J. of Group Decision and Negotiation, 12(1):31–56, 2003.

[9] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web

service level agreement (wsla): Language specification version

(1.0), January 2003.
[10] E. D. Nitto, M. D. Penta, A. Gambi, G. Ripa, and M. L. Villani.

Negotiation of service level agreements: An architecture and

a search-based approach. In Intern. Conf. on Service Oriented
Computing (ICSOC) 2007, pages 295–306, 2007.

[11] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, K. Kr-

ishnakumar, and A. Meisels. A multi-agent infrastructure

and a service level agreement negotiation protocol for robust

scheduling in grid computing. Advances in Grid Computing -
EGC 2005, 3470/2005:651–660, 2005.

[12] SORMA. EU Information Society Technologies project

SORMA - Self-Organizing ICT Resource Management. 2007.
[13] M. Stroebel and C. Weinhardt. The montreal taxonomy for

electronic negotiations. Journal of Group Decision and Nego-
tiation, 12:143–164, 2003.

[14] P. R. Wurman, M. P. Wellman, and W. E. Walsh. The michigan

internet auctionbot: A configurable auction server for human

and software agents. Prof. of the Second Intern. Conf. on Au-
tonomous Agents, May 1998.

[15] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A

parametrization of the auction design space. Games and Eco-
nomic Behavior, 35(1-2):304–338, 2001.

592

Taxonomy on Consistency Requirements in
the Business Process Integration Context

Andreas Schönberger and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg
Feldkirchenstr. 21, 96052 Bamberg, Germany

E-mail: {andreas.schoenberger | guido.wirtz}@uni-bamberg.de

Abstract

Consistency is a general goal in software development. The
development of B2B integration (B2Bi) software has extended
consistency requirements (CR) because B2Bi projects require
personnel from different organizations to agree about the
what and how of integrations and these projects require dis-
tributed computing as central IT infrastructure frequently is
not available. The rise of numerous approaches targeting at
consistency in the B2B area are evidence of these enhanced
CRs. This paper refines the Open-edi business transaction
model into a B2Bi schema by analyzing abstraction levels,
development phases and distribution aspects of B2Bis. A tax-
onomy of CRs is then derived accordingly. Thus, this paper
underlines the extended importance of consistency in B2Bis,
furnishes a criterion for choosing B2Bi methods, helps clas-
sifying consistency support in B2B approaches and gives a
starting point for finding consistency checking approaches.

Keywords: consistency, compatibility, business process inte-

gration, business collaboration, SOA

1. Introduction

Consistency is a predominant requirement in software de-

velopment. This holds true for the early design phases of

software development where methods like model checking

(cf. [1]) are applied, for the transition between development

phases (cf. [2]) and particularly for ensuring operational con-

sistency using transactions in databases or transaction moni-

tors.

The B2Bi domain even has extended CRs. First, this becomes

clear by looking at the special organizational and technical

conditions in the B2Bi domain. Organizationally speaking,

people from different organizations with possibly different

background and vocabulary have to agree about what goals

to achieve in an integration and have to develop the necessary

interaction protocols therefore. Technically speaking, central

technical infrastructure is frequently not available or prohib-

ited by business politics so that truly distributed computing

is needed. Second, in order to provide consistent change of

the common business state of integration partners, standards

for realizing transactions in the Web Service domain are be-

ing developed, e.g.,Web Services Atomic Transaction (WS-

AtomicTransaction, [3]) and Web Services Business Activity

(WS-BusinessActivity, [4]) which are both constituent parts

of the OASIS Open Web Services Transaction specification1.

Taking into account that Web Services are an important tech-

nique for implementing B2Bis the development of these stan-

dards also bears witness to the special consistency needs of

B2Bi.

Therefore, in this paper, we develop a B2Bi schema by an-

alyzing the abstraction levels of B2Bi projects, its develop-

ment phases and the purpose of relevant B2Bi standards. We

then identify CRs between the components of this schema and

thus derive a taxonomy of CRs. Note, that this paper does

not define a new notion of consistency. For the purpose of

identifying CRs the following, rather general, standard defi-

nition is used instead so as to capture a large amount of CRs:

“consistency. The degree of uniformity, standardization, and
freedom from contradiction among the documents or parts of
a system or component.” [5].

Finally, after having discussed related work, we conclude the

paper and point out directions for future work.

2. A B2B integration schema

The analysis of CRs in B2Bis needs a conceptualization of

the domain in order to define between which concepts con-

sistency is required. The development of our B2Bi schema

therefore considers three important aspects which lay behind

the need for consistency.

• Abstraction levels. B2Bis can be viewed on several ab-

straction levels where these abstraction levels should be

consistent with each other.

• Development phases. B2Bis are developed according

to some Software Engineering Process (SWE) of choice

which consists of several phases. The artifacts produced

during these phases should be consistent with each other.

1http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=ws-tx

593

• Organizational distribution. Multiple parties are inter-

acting in B2Bis. These parties usually have their own

IT infrastructure and IT policies. So the techniques

and tools used for implementing B2Bis have to con-

sider interoperability between the partners and transac-

tions crossing enterprise boundaries.

Clearly, these three aspects overlap, but this distinction is use-

ful for identifying gaps in the derivation of the schema accord-

ing to only one aspect.

The derivation of our B2Bi schema starts out by consider-

ing the Open-edi reference model [6] which looks at business

transactions on two abstraction levels. The so-called Business
Operational View (BOV) covers the business aspects of busi-

ness transactions while the so-called Functional Service View
(FSV) covers the information technology aspects of business

transactions [6]. This model, used as a B2Bi schema for iden-

tifying CRs, already furnishes a basic CR of the FSV being

consistent with the BOV but this obviously is far too general

for a CRs taxonomy of B2Bis.

The Open-edi reference model of business transactions is fur-

ther refined by [7] for the purpose of classifying current B2B

methodologies and technologies. This refinement splits up the

BOV into business models {A} and business process models
{B} while the FSV is split up into deployment artifacts {C}
and software environments {D} (see figure 1 taken from [7]).

According to [7], business models describe the exchange of

Figure 1. Classification schema based on re-
finements of the Open-edi reference model [7]

values between partners on an abstract level whereas business

process models detail the relationships between the partners

by specifying the flow of information and type of interac-

tion. We agree with the authors in this point and also keep

these two levels for our B2Bi schema. Further, [7] paraphrase

deployment artifacts as machine-processable descriptions of

business transactions and software environments as concrete

implementations of information systems. While this distinc-

tion may be sufficient for surveying B2B methodologies and

technologies we refine the schema of [7] in two points.

First we claim that, for a CRs taxonomy, the deployment ar-

tifacts level should be separated in a so-called choreography
and a so-called orchestration layer. This finer distinction is

necessary for respecting the distribution of the collaborating

partners adequately, so that the overall message exchanges

can be specified on the choreography level while the mes-

sage exchanges of a single partner can be specified on the

orchestration level. Apart from this argument, the develop-

ment of choreography standards like WS-CDL [8] and ebxml

BP (formerly known as BPSS, [9]) as well as orchestration

standards like WS-BPEL [10] evidence the need for this dis-

tinction. Moreover, the orchestration level should be split

up into so-called public processes and so-called private pro-
cesses. This separation pays tribute to the obligation of an

integration partner to obey a particular externally observable

message sequence (public process) and, at the same time, in-

tegrate this public process with its (preexisting) backend sys-

tems (private process). One could argue, that if the partici-

pation of multiple integration partners leads to the dichotomy

of choreography and orchestration, then the business process

models would also have to be divided into global and local
business process models. We claim that, from a B2Bi point

of view, the core task of business process models is providing

a means of communication for agreement of how to achieve

business goals and we also developed a modeling approach

for this task [11, 12, 13]. Nonetheless, B2Bi process models

may be enhanced by local process models when doing local

optimizations which then would introduce new CRs not dis-

cussed here.

Second, we refine the concept of software environments in [7]

as we do not simply consider these to be implementations of

information systems but to be the source for tracing consis-

tency between actual process executions and process specifi-

cations. Hence we rename the software environments level as

runtime systems furnishing the raw data for checking confor-

mance of process executions with process specifications.

Although the B2Bi schema developed so far already lays the

foundation for finding very important CRs, we enhance it by

the following findings.

Looking at software development processes in general and

in particular at the system/software requirements engineering

phase, the lack of the real world in the schema is apparent.

Keeping the distribution of integration partners in mind, it

is also clear that not only the message exchanges of the in-

tegration partners matter but also a way for synchronizing

their local views on the global state of the B2Bi is essen-

tial. Thus, a way for implementing distributed transactions

has to be found. A proof for this necessity is the develop-

ment of standards like WS-AtomicTransaction [3] and WS-

BusinessActivity [4]. Apart from distributed transactions,

the integration partners have to agree about and provide for

Quality-of-Service (QoS) aspects of their collaboration. Re-

garding the provision of QoS aspects, the integration partners

either have the option to use the same integration frameworks

or to use interoperability standards for ensuring QoS aspects

like WS-Reliability [14] or WS-Security [15]. Thus, the ap-

plication and the interoperability of such standards is another

source for the identification of CRs.

The results of this discussion are summarized by figure 2

which does not only visualize the B2Bi schema developed but

also identifies relevant CRs which are detailed in the next sec-

tion.

594

Figure 2. Consistency requirements

3. Consistency requirements

The identification of CRs using the given B2Bi schema is

achieved by analyzing the relations between the components

of the schema where each component contains a set of mod-

els for representing the B2Bi on a particular abstraction level.

CRs between two schema components are actually CRs be-

tween the models of different components and usually emerge

if these models are produced in subsequent phases of a par-

ticular software engineering process (SWE) used for imple-

menting the B2Bi. Clearly using this way of identifying CRs

would be heavily dependent on particular SWEs but it helps

at least eliminating obscure CRs that would emerge from no

reasonable SWE, e.g., no reasonable SWE would propose the

definition of WS-BPEL [10] processes as the first step in im-

plementing a B2Bi. Further, following the phases of a SWE,

the models become more and more detailed. These addi-

tional informations cannot be completely derived from more

abstract models because the more concrete models wouldn’t

present any further information otherwise. Theoretically this

would lead to a further CR between any schema component

and the real world but this theoretical requirement is neglected

for practicability reasons. Finally, there are also CRs between

the models of a single level, intra-model CRs (e.g. syntac-

tic conformance to modeling languages used) and evolution
consistency [26] requirements but these requirements are ne-

glected here because they are a different area of concern. Ap-

plying this approach for identifying CRs leads to the set of

CRs depicted in figure 2. The naming of the CRs is derived

from the schema components that give rise to those CRs. This

naming convention pays tribute to the fact that we are talk-

ing about consistency requirements and not about specialized

definitions of consistency like process inheritance or compat-
ibility [2] although these notions clearly may be related to our

CRs. For each of these CRs we were able to find at least

one approach that supports it which constitutes empirical ev-

idence for the existence of the respective CR. Moreover, the

solutions of the approaches under study could all be mapped

to our CRs which may be a hint that there are not too many

CRs missing in our taxonomy. As a detailed discussion of the

approaches found must be omitted due to space limitations we

provide a classification in table 1 that relates the approaches

(Appr.) to the CRs of our taxonomy. Note that CR 10 and

CR 11 are merged to one column and that we have included

595

Consistency requirement

Appr. RW ↔
BM

BM ↔
BPM

BPM ↔
PUBP

BPM ↔
CHOR

CHOR ↔
PUBP

PUBP A ↔
PUBP B

STD A ↔
STD B

TX A ↔
TX B

PUBP ↔
PRIP

SPEC ↔
RUNT

A/C

[16] + - - - - - - - - - A

[17] - + - - - - - - - - C

[11, 13] - + + - - - - - - - A/C

[18] - - + - + + + - + + A

[19] - - - + - - - - - - C

[20] - - - + + - - - - - A/C

[21] - - - - + - - - - - A

[22] - - - - - + - - + - A

[23] - - - - - - + - - - A

[3, 4] - - - - - - - + - - C

[24] - - - - - - - - + - A

[25] - - - - - - - - - + A

Table 1. Survey of approaches targeting at consistency and CRs supported

an extra column that describes whether a particular approach

supports consistency by means of analyzing models (A) or by

constructing models (C) or both (A/C). In the following, we

discuss the CRs of our taxonomy in more detail:

CR 1: Real World (RW) ↔ Business Model (BM). This re-

quirement is sometimes overlooked because the BM may not

be part of the regular SWE artifacts produced during a B2Bi

or the BM is quite nontechnical. If modeled, the BM cannot

be checked for consistency with the RW automatically. How-

ever the BM itself is at least amenable to automatic analysis

and thus inconsistencies within the BM may reveal inconsis-

tencies between the RW and the BM.

CR 2: Business Model (BM) ↔ Business Process Model
(BPM). The task of the BPM is to specify how to achieve

the business goals defined in the BM by defining the types of

information to be exchanged, the flow of information and or-

ganizational aspects. CR 2 demands, that these specifications

ensure the business goals or at least don’t contradict them.

One could argue that there should also be a CR between RW

and BPM in case there’s no BM. We do not reject this argu-

ment but leave out this CR for practical reasons.

CR 3: Business Process Model (BPM) ↔ Public Processes
(PUBP). While the BPM is a common model the integration

partners have to agree upon, the PUBP is the definition of the

communication tasks of each partner. If BPM is transformed

into PUBP directly, CR 3 demands that the PUBP strictly con-

form to the BPM. This conformance is achievable with respect

to control flow but it is also necessary to specify Quality-of-

Service (QoS) attributes of the PUBP which frequently lack

in BPM, e.g., Reliable Communication or Security. These

QoS attributes can be more easily checked for conformance

if BPMs are not directly transformed into PUBP but first in

CHOR and afterwards in PUBP.

CR 4: Business Process Model (BPM) ↔ Choreography
(CHOR). The differences between BPMs and CHOR stan-

dards are sometimes fluent but it helps to think of BPM as a

model that serves as communication means between business

analysts while CHOR is a detailed technical communication

specification intended to be processed by machines. The main

claim of CR 4 is the conformance of information types and

control flow in CHOR to the same aspects in BPM while the

aforementioned QoS aspects frequently have to be introduced

in CHOR.

CR 5: Choreography (CHOR) ↔ Public Processes (PUBP).
It is feasible to generate PUBP from a CHOR specification

to a large extent. But taking into account that the results of

this transformation are not unique, the demand of CR 5 for

conformance of information types, control flow and QoS as-

pects should not be neglected, in particular for bottom-up ap-

proaches.

CR 6: Public Process of partner A (PUBP A) ↔ Public Pro-
cess of partner B (PUBP B). CR 6 defines the first of three

CRs between arbitrary integration partners who are simply re-

ferred to as partner A and partner B for the sake of practica-

bility. CR 6 particularly refers to the compatibility (as a form

of consistency) between the observable communication of the

integration partners. Note, that compatibility checks for par-

ticular properties by analyzing the PUBP may be replaced by

checking the properties for the CHOR and then proving that

the transformation of CHOR into PUBP is preserving these

properties.

CR 7: Standards used by partner A (STD A) ↔ Standards
used by partner B (STD B). CR 7 takes into account that the

partners of B2Bis frequently are independent from each other

and thus may have heterogeneous IT systems. In order to

provide for the correct implementation of QoS attributes like

Reliable Messaging or Security the integration partners then

either have to use the same integration frameworks with the

same configurations or they have to agree on the application of

QoS interoperability standards like [14] or WS-Security [15].

The former approach leads to tight coupling between IT sys-

tems and is more and more unacceptable nowadays.

CR 8: Transactional data concerned by partner A (TX A)
↔ Transactional data concerned by partner B (TX B). CR 8

596

alludes to the common state of a business collaboration

that has to be synchronized among the integration partners,

e.g.,whether an order has been accepted or not or if a bill has

been delivered or not. Standards like [3] and [4] have been

developed to meet this requirement. In order to decide if an

information item is to be synchronized using these standards

it has to be decided if it belongs to the common business state.

CR 9: Public Processes (PUBP) ↔ Private Processes (PRIP).
Frequently PRIP are just a refinement of PUBP that couple

the observable communication of an integration partner to its

backend systems. CR 9 claims that these refinements may not

change the observable communication as otherwise the inter-

action protocol of the collaborating partners would be broken.

The analysis of conformance of PRIP to PUBP is especially

useful in bottom-up approaches where preexisting private pro-

cesses may be wrapped to conform to predefined public pro-

cesses.

CR 10: Private Processes (PRIP) ↔ Runtime Systems
(RUNT). CR 10 claims that a process instance of an integra-

tion partner in execution must conform to its specification.

This CR is usually met by installing monitoring systems for

RUNT that furnish sufficient information. Note, that if an ex-

ecuted process conforms to its private process specification

and CR 9 is sufficiently accounted for, then CR 11 is met as

well.

CR 11: Public Processes (PUBP) ↔ Runtime Systems
(RUNT). Although CR 11 may be substituted by CR 9 and

CR 10, CR 11 is stipulated because it may be far easier to

check because of the possibly reduced state space of pub-

lic processes compared to private processes. From the B2Bi

point of view both options ensure that a process in execution

does not break the interaction protocol of the integration part-

ners so just addressing CR 11 and ignoring CR 10 may be

admissible as well.

The core contribution of this taxonomy is the identification of

high level CRs that emerge during B2Bi projects. During such

a project, a particular CR has to be further investigated with

respect to an adequate definition of consistency, evaluation of

suitable modeling methods and analysis tools as well as or-

ganizational implications. Finally, we claim that the choice

of B2Bi frameworks should consider the support of the CRs

identified.

4. Related Work

Clearly, consistency always played an important role in soft-

ware development [2, 27, 28, 29] but we put our focus par-

ticularly on the B2Bi domain. In that domain, there is a lot

of literature that discusses methods for checking some kind

of consistency which frequently apply concepts like process
inheritance or process compatibility. But work about CRs in

the B2Bi domain is very scarce. Greenfield et al. [30] discuss

Consistency for Web Services Applications. Their work is dif-

ferent from ours in so far as they discuss in detail for Web Ser-

vices what we identified as CR 6 (PUBP A ↔ PUBP B) and

CR 8 (TX A ↔ TX B). Decker et al. [31] describe compatibil-

ity and consistency notions in the B2Bi domain. They define

consistency between public and private processes (CR 9) with

respect to compatibility between public processes of interact-

ing parties (CR 6, CR 5). In so far they also focus on parts

of our taxonomy. To our knowledge we are the first to derive

a detailed CRs taxonomy for the B2Bi domain regarding sev-

eral abstraction levels.

Apart from that, there are several papers that discuss the com-

parison between various business process reference models or

business process modeling methodologies like [32] or [33].

Our taxonomy is not suitable for performing such compar-

isons but we claim that consistency should be an important

criterion in these comparisons and that our taxonomy is use-

ful for classifying and comparing business process reference

models and business process modeling methodologies with

respect to support for CRs.

Finally, there is extensive work on (in)consistency manage-
ment [27, 29] that describes how and when to enforce consis-

tency and how to react to inconsistencies. Spanoudakis and

Zisman [27] propose a process that consists of detecting over-
laps in models, detecting, diagnosing, handling and tracking
inconsistencies, as well as specifiying and applying a manage-
ment policy for inconsistencies. Although consistency man-

agement is different from the work presented here the CRs

identified can help in deciding where to apply processes like

the one described by [27].

5. Conclusions and Future Work

In this paper we systematically derived a taxonomy of CRs

using a B2B schema. The various areas that call for consis-

tency checking methods underpin the importance of consis-

tency in the B2Bi domain and especially necessitate the con-

sideration of consistency in comparison frameworks for B2Bi

methodologies. Our taxonomy is also useful for classifying

approaches targeting at consistency checking and the survey

we undertook not only proves empirical evidence for the ex-

istence of our CRs but also gives a starting point for finding

relevant consistency checking methods.

In the future, each CR should be analyzed in more detail in or-

der to develop differentiated criteria for evaluating support for

a particular CR by a particular consistency checking method.

Looking at the diversity of CRs identified, the need for in-

tegrated consistency support throughout the whole life cycle

of B2Bis, i.e. the application of methods like (in)consistency

management [27, 29], is striking. In particular, integrating

consistency management practices into SWEs targeting at

B2Bi is an interesting area of research. In this respect, the

seamless application of existing consistency checking meth-

ods throughout several abstraction levels as well as enhancing

the usability of rather scientific approaches is also an interest-

ing area of research. Finally, special attention from the point

of view of consistency is to be payed to the question whether

BPMs should be directly mapped to public processes or indi-

rectly via choreography specifications.

597

References

[1] E. M. Clarke Jr., O. Grumberg, and D. A. Peled, Model
checking. Cambridge, MA, USA: MIT Press, 1999.

[2] C. Canal, E. Pimentel, and J. M. Troya, “Compatibility

and inheritance in software architectures,” Sci. Comput.
Program., vol. 41, no. 2, pp. 105–138, 2001.

[3] OASIS Open, “Web Services Atomic Transaction (WS-

AtomicTransaction) version 1.1,” July 2007.

[4] ——, “Web Services Business Activity (WS-

BusinessActivity) version 1.1,” July 2007.

[5] IEEE, IEEE Standard Glossary of Software Engineering
Terminology, 1990.

[6] ISO/IEC, Information technology - Open-edi reference
model, 2nd ed., ISO/IEC, May 2004.

[7] Dorn et al., “A survey of B2B methodologies and tech-

nologies: From business models towards deployment ar-

tifacts,” HICSS, vol. 00, p. 143a, 2007.

[8] W3C, Web Services Choreography Description Lan-
guage, 1st ed., W3C, November 2005.

[9] OASIS Open, ebXML Business Process Specification
Schema, 2nd ed., OASIS Open, December 2006.

[10] ——, Web Services Business Process Execution Lan-
guage, 2nd ed., April 2007.

[11] A. Schönberger and G. Wirtz, “Using Webservice

Choreography and Orchestration Perspectives to Model

and Evaluate B2B Interactions,” in SERP 2006, June 26-

29 2006.

[12] ——, “Realising RosettaNet PIP Compositions as Web

Service Orchestrations - A Case Study,” in EEE 2006,

June 26-29 2006.

[13] A. Schönberger, “Modelling and Validating Business

Collaborations: A Case Study on RosettaNet,” Univer-

sity of Bamberg, Contributions to Applied and Business

Informatics of University of Bamberg 65, Mar. 2006.

[14] OASIS Open, “WS-Reliability v1.1,” November 2004.

[15] ——, “Web Services Security v1.1,” February 2006.

[16] OMG, Semantics of Business Vocabulary and Business
Rules (SBVR), v1.0, OMG, January 2008.

[17] Koliadis et al., “Combining i* and BPMN for business

process model lifecycle management,” in Business Pro-
cess Management Workshops, 2006, pp. 416–427.

[18] L. Baresi and S. Guinea, “Towards dynamic monitor-

ing of WS-BPEL processes,” in ICSOC, ser. LNCS, vol.

3826. Springer, 2005, pp. 269–282.

[19] M. Ilger and M. Zapletal, “An implementation to trans-

form business collaboration models to executable pro-

cess specifications,” in Service Oriented Electronic
Commerce, 2006, pp. 9–23.

[20] Zhao et al., “Towards the formal model and verification

of web service choreography description language,” in

WS-FM, ser. LNCS, vol. 4184, 2006, pp. 273–287.

[21] W. Yeung, “Mapping WS-CDL and BPEL into CSP for

behavioural specification and verification of web ser-

vices,” ecows, vol. 0, pp. 297–305, 2006.

[22] Weidlich et al., “Efficient analysis of BPEL 2.0 pro-

cesses using p-calculus,” Asia-Pacific Service Comput-
ing Conference, pp. 266–274, 11-14 Dec. 2007.

[23] Nezhad et al., “Web services interoperability specifica-

tions,” Computer, vol. 39, no. 5, pp. 24–32, May 2006.

[24] A. Martens, “Consistency between executable and ab-

stract processes,” e-Technology, e-Commerce and e-
Service, 2005, pp. 60–67, April 2005.

[25] W. van der Aalst, “Business alignment: using process

mining as a tool for delta analysis and conformance test-

ing,” Requirements Engineering Journal, vol. 10, pp.

198–211, August 2005.

[26] Engels et al., “Towards consistency-preserving model

evolution,” in IWPSE ’02. ACM, 2002, pp. 129–132.

[27] G. Spanoudakis and A. Zisman, Handbook of Software
Engineering and Knowledge Engineering. World sci-

entific, 2001, ch. Inconsistency management in software

engineering, pp. 329–380.

[28] N. Medvidovic and R. N. Taylor, “A classification and

comparison framework for software architecture de-

scription languages,” IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[29] R. Van Der Straeten, “Inconsistency management in

model-driven engineering,” Ph.D. dissertation, Vrije

Universiteit Brussel, Belgium, September 2005.

[30] Greenfield et al., “Consistency for web services applica-

tions,” pp. 1199–1203, 2005.

[31] G. Decker and M. Weske, “Behavioral consistency for

B2B process integration,” in CAiSE, ser. LNCS, vol.

4495. Springer, 2007, pp. 81–95.

[32] Fettke et al., “Business process reference models: Sur-

vey and classification,” in Business Process Manage-
ment Workshops, vol. 3812, 2005, pp. 469–483.

[33] Kaschek et al., Technologies for Business Information
Systems. Springer, 2007, ch. Characterization and

Tool Supported Selection of Business Process Modeling

Methodologies, pp. 25–37.

598

Developing Enterprise Applications with Support to

Dynamic Unanticipated Evolution
Hyggo O. de Almeida, Marcos F. Pereira, Márcio de M. Ribeiro, Angelo Perkusich, Emerson Loureiro and

Evandro Costa

Abstract— This paper presents a component based frame-
work for developing enterprise applications with support to
dynamic unanticipated evolution. The framework is based on
the COMPOR Component Model Specification, which provides
mechanisms to manage unpredicted evolution even at runtime.
We describe the framework design that is based on design
patterns and aspect-oriented concepts. Finally, we present a
example application of the framework in the context of electronic
commerce.

Index Terms— Unanticipated Software Evolution, Enterprise
Applications, Component-Based Development

I. INTRODUCTION

Enterprise information systems are applications for handling

company-wide information and delivering services to a wide

range of users. Such systems must be: secure, to protect users

and the enterprise; scalable, to ensure that users simultaneously

take advantage of various services; and reliable, to ensure the

consistency of the transactions processing.

Besides these features, enterprise applications change fre-

quently. Considering the complexity of these applications,

requirement changes cause a great impact on the system

architecture, design and code. This impact is even more

relevant when such changes are not predicted at design time.

Unanticipated changes have been pointed out as the main

reason of problems related to software evolution activities [1].

In the case of enterprise applications that cannot be interrupted

for financial or safety reasons, it becomes even more difficult

to manage unanticipated evolution at runtime.

J2EE [2] and .NET [3] are well known platforms for

developing and deploying enterprise applications. Developers

using such platforms save time by not looking at a diverse

range of products and services, since they are already provided

by those platforms. Such services include security, persistence,

distribution, load balancing, and transaction management,

among others. Nevertheless, J2EE and .NET do not support

adequately dynamic unanticipated software evolution. This

occurs due to the high coupling among components, which

makes difficult to implement unpredicted changes on the fly.

To deal with this problem, in [4] is proposed a component

model to develop software supporting dynamic unanticipated

The authors are with the Embedded System and Pervasive Computing Labo-

ratory, Department of Electrical Engineering, Federal University of Campina

Grande, C.P. 10105 - 58109-970 - Campina Grande - PB - Brazil, emails:

hyggo@dsc.ufcg.edu.br, marcos@embedded.ufcg.edu.br, mmr3@cin.ufpe.br,

perkusic@dee.ufcg.edu.br, evandro@ic.ufal.br

evolution named COMPOR Component Model Specification

(CMS). Such a model allows changing any part of the soft-

ware, by removing and/or adding components, even at runtime.

It is also proposed a Java implementation of CMS called Java

Component Framework (JCF), which is used to develop Java

applications supporting dynamic unanticipated evolution.

However, the JCF framework do not provide support for

developing enterprise applications. When developing software

with JCF, developers have to implement all features related

to enterprise applications, such as security, distribution and

transactions management from scratch. In this paper we intro-

duce an extension of JCF framework for developing enterprise

applications with support to dynamic unanticipated evolution.

More specifically, we describe how to extend JCF design to

implement distribution, security and transaction management

by using design patterns and aspect-oriented programming.

The remainder of this paper is organized as follows. In

Section II, we present the extension for enterprise applications.

Section III describes a example application of the framework.

Section IV discusses some related works. Finally, in Section V,

we present the final remarks.

II. SUPPORT FOR ENTERPRISE APPLICATION

In this section we present the extension of JCF to develop

enterprise applications. More specifically, we describe how

to extend JCF to provide support for security, transaction

management and distribution features.

A. Security

According to CMS, an alias is used to uniquely identify ser-

vices and events with the same name for different components.

However, such a strategy introduces a security problem into

the model. For example, it is possible to interpose a provider X
between another provider Y and its clients in order to intercept

the client requests towards Y. This may represent an intrusive

way to make something undesirable in the system, since the

interposed provider X may be seen as an intruder.

As this security issue is not tackled by the component

model, the JCF must provide means for dealing with security

policies for the interaction and deployment models. Such

policies must then be satisfied when some service is requested

or an event is announced as well as a component is inserted

into or removed from a container. This security infrastructure,

shown in Figure 1, was developed using aspect oriented

599

programming, with AspectJ [5]. Aspects have allowed to hide

the complexity of the security mechanism from the developer

as well as to simplify the development of systems without

security requirements. The security mechanism illustrated in

Figure 1 is explained as follows.

Crosscutted aspect

securityActive = true;

SecurityManager.activeSecurity();

Encrypted
Password FileLoad

System
Password

script.start();

Container 1

Container 2

X Y

Container 3

K

ExecutionScript

receiveRequest(...)
doIt(SecurityRequest)SecurityAspect

SecurityManager

System
Developer

2

4

5

6

7

C
h
e
c
k
p
a
s
s
w
o
rd

3

Password
File

“password”

1

Cryptography
API

Fig. 1. Aspect oriented security architecture.

1) The application developer creates a “.security” file con-

taining the password for accessing the system as well

as the service access policies. Then, uses the Java

cryptography API to encrypt the file.

2) When developing the application, the security

mechanism should be activated calling the

activeSecurity() method of the SecurityManager

singleton class. This operation defines that all service

invocations, event announcements and component

additions must be verified.

3) The SecurityManager retrieves the password and the

policy information and stores them in memory.

4) After starting the root container, all of its components

are also started and the application runs by means of

a sequence of service invocations and event announce-

ments.

5) A component invokes a service. With the security ac-

tivated, the service requester component must forward

a SecurityServiceRequest instance as parameter,

containing the system password.

6) The component receives the request via the receive

Request method, then the SecurityAspect aspect

intercepts the method invocation and asks the Security

Manager to verify the request password.

7) SecurityManager verifies the request password

and allows the service execution. Otherwise, a

ComporSecurity Exception is thrown.

B. Transaction

Figure 2 illustrates the component K requiring the execution

of two services. The first (withdraw) is implemented by the

component X, whereas the second (deposit) is implemented by

the component Y. Because it represents a money transferring,

such operation must be atomic (or indivisible), which means

that the money either moves between the two accounts or it

stays in the first account.

Container 1

X Y K

Service Component

Transfer K

Container 2 Container 3

Service Component

Withdraw X

Deposit Y

Transfer Container 3

Service Component

Withdraw Container 2

Deposit Container 2

doIt(...“withdraw”...); doIt(...“deposit”...);

Fig. 2. Necessity of atomic operations.

In order to handle with atomic situations, a transaction

mechanism is available. Such mechanism implements the two-

phase commit protocol, a popular protocol used to guarantee

consensus between the participating members of a transac-

tion [6].

In the same way of the security mechanism, the Aspect-

Oriented approach was used, allowing us to separate the

transaction concern as well as to develop systems without it

by simply removing the aspect responsible for implementing

the mechanism. Therefore, the simplicity of the CMS model

was maintained, since it does not depend on the transaction

mechanism.

The two-phase commit protocol defines a coordinator that

is responsible for governing the outcome of the transaction.

In the first phase of the protocol, the participants (in our case,

components) must invoke their init service. According to the

all participants answers, in the second phase the coordinator

decides whether it will commit or rollback the transaction by

sending a message with its decision to all participants.

According to the CMS model, when clients invoke services,

they must use instances of the ServiceRequest class. However,

if clients have to execute transactional services, they must

use instances of the TransactionServiceRequest class instead.

Notice that a such class extends ServiceRequest.
Each CMS component must extend the FunctionalCom-

ponent class, which has an important method named re-
ceiveRequest [4]. Since receiveRequest is called by the frame-

work before the execution of services, the aspect responsible

for the transaction mechanism verifies the instance of the

service request. If the request is an instance of the Ser-
viceRequest class, the service is executed normally. Otherwise,

a transaction is started.

Notice that the verification about which service (init, com-

mit, or rollback) will be executed is weaved by the aspect

in the receiveRequest method. Hence, the implementation of

the protocol is guaranteed by this verification. In addition,

the consistence of information through atomic operations is

guaranteed as well.

Aiming at completing the ACID properties, the mechanism

also provide isolation of transactions through synchronization

600

of threads. Besides, in order to guarantee the consistence

of data in case of hardware crashes, each transaction is

logged. When the system comes back, the aspect crosscuts

its initialization and recovers the transactions automatically

through the log file reading.

C. Distribution

Distribution is a desirable feature for enterprise applications,

since it might provide performance increasing, economies of

scale, reliability (if carefully designed), and resource sharing

(through the use of a computer network).

When considering distributed software, each module of the

software might reside in different computers in the network.

The communication among those modules is based on sending

messages to each other. In the component based development

context, these modules consist of components of software.

Similarly to the J2EE and CORBA, JCF containers play a

fundamental role in the distribution implementation as well. In

this context, each JCF container extension is responsible for

sending requests and event announcements to their distributed

components children. Figure 3 illustrates the distribution

mechanism, which relies on the Decorator [7] and Proxy [7]

design patterns. Notice that it is an extension of the CMS

model. This way, the simplicity of the model remains, since

it does not depend on the referred mechanism.

<<AbstractComponent>>

+ doIt(ServiceRequest):ServiceResponse
+ receiveRequest(ServiceRequest):ServiceResponse

Container

+ doIt(ServiceRequest):ServiceResponse
+ receiveRequest(ServiceRequest):ServiceResponse

FunctionalComponent

+ doIt(ServiceRequest):ServiceResponse
+ receiveRequest(ServiceRequest):ServiceResponse

ProxyFunctionalComponentProxyContainer

RpcServer RpcClient

Registry

+ getComponent(String, String):AbstractComponent

CMS

Distribution

N*

NN

Remote Procedure Call

Fig. 3. Distribution architecture.

The architecture of the distribution mechanism is explained

as follows. Containers have children which consist of rep-

resentative entities (relying in Proxy [7] implementation).

Notice that such entities point out to the remote functional

component and the parent of the remote components is also a

representative entity. Nevertheless, it points out to the remote

container instead.

In order to get started with a distributed application, as

illustrated in Figure 4, the application developer must deploy

the desired part of the hierarchy into each participant host. For

each host, such a developer must execute the following steps

to configure the distribution:

1) In the host 192.168.10.6, he must add an instance of

ProxyFunctionalComponent retrieved from the host

192.168.10.1 (by a remote procedure call), such instance

is a proxy to the real component which resides in the

host 192.168.10.1. Notice that the real component is

child of the container localized in the host 192.168.10.6.

2) In the host 192.168.10.6 the real component is

added as a child of the ProxyCont1, which is a

ProxyContainer instance retrieved from the host

192.168.10.6 (also a remote procedure call).

Cont1

192.168.10.6

192.168.10.1

Proxy A

Remote Procedure
Call Communication

System Developer

Deploys “A”

Deploys “Cont1”

A

Proxy Cont 1

Fig. 4. Deploy and interaction of distribution mechanism.

Each instance of ProxyFunctionalComponent and also

of the ProxyContainer class automatically register itself into

an instance of the Register class. Such operation is necessary

because the Register class is used to find proxy instances

from other hosts.

In the distributed hierarchy, the component model exchanges

service requests and event announcements between two com-

puters in a transparent way. In order to implement the network

communication, the JCF distribution mechanism relies on the

Apache [8] implementation of the XML-RPC specification [9].

III. EXAMPLE APPLICATION

The e-commerce application is a proof concept of our

enterprise mechanisms. Such application provides a list of

products to be purchased. In order to buy items, the user might

select them. After confirming the operation, the system shows

the total price of the selected items to be bought (Figure 5).

When the user decides to buy something, the system invokes

the buy service implemented in an CMS based hierarchy. This

service withdraws the needed money from the user’s account

of a bank and deposits it into the system’s account of another

bank. By the presence of the transaction mechanism (described

in Section II-B), the application executes the withdraw
and deposit services atomically. In addition, our mechanism

guarantees hardware crashes by logging the operations done

by the system.

601

Fig. 5. Purchasing a list of items.

As illustrated in Figure 6, for security reasons, each bank

is responsible for developing and maintaining both withdraw
and deposit operations. The communication between the banks

and the e-commerce application occurs through the distribution

described in Section II-C.

This way, the application must trust in each bank compo-

nents. Beyond the components, each bank must maintain a en-

crypted password file as illustrated in Figure 6. This password

is used by the security mechanism, which is demonstrated in

Section II-A.

B2C-Container

Proxy-Banks-CT Proxy-Banks-CT

Banks-CTSupply-FC

withdraw

Services

deposit

Services

buy

Services

192.168.10.2 192.168.10.3

192.168.10.1

Proxy-Bank-1 Proxy-Bank-2

Bank-1 Bank-2

Encrypted
Password

File

Encrypted
Password

File

Policies Policies

Fig. 6. E-Commerce component hierarchy.

IV. RELATED WORKS

There are two main component models used for developing

enterprise applications currently, Enterprise JavaBeans (EJB)

in the J2EE platform and Microsoft’s .NET. The main reason

is the support to the following required services in software

development for enterprise applications: security, distribution,

transaction, web server, etc. These features are essential and

must be present into almost all applications, mainly enterprise

ones.

Moreover, enterprises demand on-the-fly changes of running

applications, because the downtime of their software directly

causes big looses. This demand includes a new feature: The

dynamic unanticipated software evolution. However neither,

EJB nor .NET provide native support for this feature. This

feature might be implemented in these component models, but

it is a difficult task because the design of them has a high

coupling among components.

There are some works which could be used to add dynamic

unanticipated evolution support to these models. One of them

have created a new class loader type for use in J2EE platform.

This class loader might minimize the barrier between two or

more class loaders [10]. Another work [11] proposes a new

way to load DLL libraries in .NET.

V. FINAL REMARKS

In this paper we presented a component based framework

for developing enterprise applications supporting dynamic

unanticipated evolution. Such a framework is an extension of

the COMPOR Java Component Framework, which implements

a component model called CMS that promotes software evo-

lution even at runtime.

We described the framework design that is based on design

patterns and aspect-oriented programming. The framework

includes support to security, distribution and transaction man-

agement, but still maintaining the CMS simplicity. We describe

also an e-commerce case study of the application of our

approach.

As future work, we plan to develop other features of

enterprise applications as extensions of JCF, such as load bal-

ancing, persistence, logging, and integration to legacy systems.

Also, we are working on applying the proposed framework to

develop a web-based e-commerce application.

REFERENCES

[1] G. Kniesel, J. Noppen, T. Mens, and J. Buckley, “1st Int. Workshop on

Unanticipated Software Evolution,” in ECOOP Workshop Reader, ser.

LNCS, vol. 2548. Springer Verlag, 2002.

[2] SUN, “Sun developer network (sdn),” July 2007,

http://java.sun.com/javaee/.

[3] Microsoft, “.net framework developer center,” August 2007,

http://msdn.microsoft.com/netframework/.

[4] H. Almeida, G. Ferreira, E. Loureiro, A. Perkusich, and E. Costa,

“A Component Model to Support Dynamic Unanticipated Software

Evolution,” in Proceedings of International Conference on Software
Engineering and Knowledge Engineering, vol. 18, San Francisco, USA,

2006, pp. 262–267.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-

wold, “An Overview of AspectJ,” in ECOOP ’01: Proceedings of the
15th European Conference on Object-Oriented Programming. London,

UK: Springer-Verlag, 2001, pp. 327–353.

[6] M. Little, J. Maron, and G. Pavlik, Java Transaction Processing, 1st ed.

Prentice Hall PTR, 2004.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley, 1995.

[8] Apache, “Apache software foundation,” August 2007,

http://www.apache.org/.

[9] XML-RPC, “Xml-rpc home page,” August 2007,

http://www.xmlrpc.com/.

[10] Y. Sato and S. Chiba, “Negligent class loaders for software evolution.”

in RAM-SE, 2004, pp. 53–58.

[11] S. Eisenbach, V. Jurisic, and C. Sadler, “Managing the evolution of

.net programs.” [Online]. Available: citeseer.ist.psu.edu/728246.html

602

Privacy-Preserving Classification of Data Streams

Ching-Ming Chao
Department of Computer and Information Science

Soochow University, Taipei, Taiwan

Abstract
Data mining is the extraction of valuable knowledge from large

amounts of data. Due to the emergence of data streams, data
streams mining has recently become an important research issue.
On the other hand, data mining can cause a great threat to data
privacy. Privacy-preserving data mining hence has also been
widely studied. However, to the best of our knowledge, there is no
research that studies the privacy preservation issue of data streams
mining. In this paper, therefore, we propose a method for pri-
vacy-preserving classification of data streams, called the PCDS
method, which extends the process of data streams classification
to achieve privacy preservation. The PCDS method is divided into
two stages. The first stage uses the data splitting and perturbation
algorithm to perturb data streams. The second stage uses the
weighted average sliding window algorithm to mine perturbed
data streams. Experimental results show our method not only can
preserve data privacy but also can mine data streams accurately.

1. Introduction
Data mining is the extraction of valuable knowledge

from large amounts of data. Recently, data streams have
emerged as a new type of data, which have the following
characteristics [1]: (1) Data has timing preference; (2) Data
distribution changes constantly with time; (3) The amount
of data is enormous;(4) Data flows in and out with fast
speed; (5) Immediate response is required. These charac-
teristics create a great challenge to data mining. Traditional
data mining algorithms are not suitable for data streams.
Hence, there have been many studies proposing efficient
data streams mining algorithms. For instance, Domingos
and Hulten [2] proposed the VFDT algorithm to build deci-
sion trees for data streams.

Data mining can cause a great threat to data privacy. To
preserve data privacy, privacy-preserving data mining has
been studied and many techniques have been proposed.
Verykios et al. [3] classified privacy-preserving data mining
techniques based on five dimensions, which are data dis-
tribution, data modification, data mining algorithms, data or
rule hiding, and privacy preservation, respectively. Existing
privacy-preserving data mining techniques are designed for
traditional databases and are not suitable for data streams.

Privacy-preserving data streams mining is a very impor-
tant issue. However, to the best of our knowledge, this issue
has not been studied in the literature. In this paper, there-
fore, we propose a method for privacy-preserving classifi-
cation of data streams, called the PCDS method, which
extends the process of data streams classification to achieve
privacy preservation. The PCDS method is divided into two
stages. In the first stage, the data streams preprocessing

system uses the data splitting and perturbation algorithm to
perturb data streams. In the second stage, the online data
mining system uses the weighted average sliding window
algorithm to mine perturbed data streams. Experimental
results show that the PCDS method not only can preserve
data privacy but also can mine data streams accurately.

The remainder of this paper is organized as follows. In
Section 2 we present the PCDS method. In Section 3 we
evaluate by experiment and comparison the performance of
the PCDS method. Section 4 concludes this paper.

2. The PCDS Method
2.1 The Overall Process

The overall process of the PCDS method is divided into
two stages, which are data streams preprocessing and data
streams mining, respectively. The primary objective of the
first stage, which is handled by the data streams preproc-
essing system (DSPS), is to perturb data streams to pre-
serve data privacy. The primary objective of the second
stage, which is handled by the online data mining system
(ODMS), is to mine perturbed data streams to construct an
accurate classification model.

Data streams continuously flow in DSPS and the arriving
time of data is unpredictable. If DSPS processes data
streams immediately upon arrival of the data, this will con-
sume a lot of system resources. Therefore, DSPS adopts the
batch processing mode to process incoming data streams.
Not only system resources can be more effectively utilized,
but also data mining can be more efficiently performed.
Whenever accumulating a sufficient amount of data, DSPS
uses the data splitting and perturbation algorithm to perturb
confidential data as well as computes the error rate resulted
from data perturbation. Then DSPS passes perturbed data
and the error rate to ODMS.

ODMS uses the weighted average sliding window algo-
rithm to mine perturbed data streams to construct a classi-
fication model. Because only partial data are available for
data mining, ODMS utilizes the Hoeffding bounds sam-
pling method to construct the classification model. In addi-
tion, ODMS adopts the sliding window mode to store and
process received data streams. There are two reasons for
adopting the sliding window model. First, the amount of
data streams is enormous and hence it is impossible to store
all data. Second, users are usually more interested in more
recent data. When data distribution results in a significant
change, ODMS reconstructs the classification model to
keep it accurate.

603

2.2 Data Streams Preprocessing
The primary objective of the stage of data streams pre-

processing is to perturb data streams to preserve data pri-
vacy. Because data streams continuously flow in DSPS and
the arriving time of data is unpredictable, DSPS is unable
to collect the complete data and hence cannot use tradi-
tional perturbation techniques to perturb data streams. In
addition, the data distribution of data streams can be dif-
ferent in different time. Using traditional perturbation tech-
niques on data streams will increase the data error and
hence will produce inaccurate mining results. As a result,
whenever accumulating a sufficient amount of data, DSPS
uses the data splitting and perturbation (DSP) algorithm to
perturb confidential data. The DSP algorithm selects
non-confidential attributes as the splitting attributes to par-
tition the dataset. After the partition is completed, each
value of each confidential attribute to be perturbed is re-
placed by the average value of those attribute values in its
partition. When there are more non-confidential attributes
used as the splitting attributes, the dataset will be parti-
tioned into smaller subsets and the distribution of data in
the same partition will be more similar. Therefore, com-
pared to existing data perturbation techniques, the DSP
algorithm has higher security and less data error. Finally,
DSPS passes perturbed data to ODMS.

Figure 1 shows the steps of the DSP algorithm, which are
described as follows:
step 1 Input the original dataset S . The algorithm will

first partition S by building a tree.
Non-confidential attributes in S will be used as
the splitting attributes. Initially, the tree starts as a
single node containing all records in S .

step 2 This step is to select a non-confidential attribute as
the splitting attribute of the current node. Compute
the variance of each non-confidential attribute
based on the records contained in the current node.
Select the attribute, say *j , which has the maxi-
mum variance as the splitting attribute.

step 3 This step is to determine the splitting criterion and
then partition the records contained in the current
node into two disjoint subsets of records. The
splitting criterion is determined by finding the me-
dian (or mid-range) of the splitting attribute. Two
child nodes are generated from the current node.
Each child node contains a partition of the records
in the current node.

step 4 This step is to complete the partition of S . Repeat
steps 2 and 3 for each node generated in step 3 un-
til a terminating condition is reached.

step 5 This step is to perturb the confidential data in S .
For each confidential attribute to be perturbed,
values in each partition are replaced by their aver-
age value.

step 6 Return the perturbed dataset and pass it to ODMS.

Algorithm: Data Splitting and Perturbation
Input: an original dataset S
Output: a perturbed dataset S’
Steps:

1. Let NA be the set of non-confidential attributes in
S. The tree starts as a single node containing all
records in S.

2. Compute the variance of each attribute in NA. Let
j* be the attribute with the maximum variance.

3. Find the median (or mid-range) of attribute j*.
Partition the dataset in the current node into two
subsets (child nodes) based on the median (or
mid-range).

4. Repeat steps 2 and 3 for each of the two child
nodes. Stop partitioning a node when the node
contains less than a pre-specified number of re-
cords or no splitting attributes are available.

5. For each confidential attribute to be perturbed, do
the following.

For a leaf t with nt records, let be the

values of the confidential attribute. Perturb the

data by replacing these values with their aver-

age

ttnt xx ,....,1

�

 tn

k tktt xnx
1

)/1(. Repeat for each leaf

in the tree.
6. Return the perturbed dataset S’.

Figure 1. DSP algorithm

2.3 Data Streams Mining
The primary objective of the stage of data streams min-

ing is to mine perturbed data streams to construct an accu-
rate classification model. ODMS uses the weighted average
sliding window (WASW) algorithm, which is an extension
of the VFDT algorithm, to mine perturbed data streams.
Figure 2 shows the steps of the WASW algorithm. Input to
the algorithm is a sequence of perturbed datasets. The algo-
rithm adopts the sliding window mode to store received
datasets and assigns different weights to different datasets
according to the order of arrival. Because the value of
newer data is higher than that of older data, assigning larger
weights to newer data can better reflect current data distri-
bution. Because only partial data are available for data
mining, the algorithm utilizes the Hoeffding bounds sam-
pling method to efficiently construct the classification
model. Each received dataset is input to the classification
model to calculate its classification error rate. A threshold
value of the error rate is predetermined. The algorithm cal-
culates the weighted average error rate of the datasets in the
sliding window. When the weighted average error rate ex-
ceeds the predetermined threshold value, the algorithm will
reconstruct the classification model to keep the classifica-

604

tion model accurate.

Figure 2. WASW algorithm

3. Performance Evaluation
In this section, we evaluate by experiment the perform-

ance of the PCDS method. For data streams preprocessing,
we compare the security and data error between the DSP
algorithm and four existing data perturbation algorithms
SAN, MN, UMA, and MMA. For data streams mining, we
compare the accuracy between the WASW algorithm and
the VFDT algorithm. Experimental data consist of five
datasets, four of which are real world datasets and one of
which is a virtual dataset generated by the synthetic data
generator developed by the IBM Almaden Research Center.

3.1 Security Measurement
We use the average squared distance (ASD) and the dis-

tance-based record linkage (DBRL) between the original
data and the perturbed data to measure the security of the
DSP algorithm.

�

�

N

i
ii xy

N
ASD

1

2)(1 (1)

�

�
�

�

n

i i

i

i

i

y
yy

x
xxDBRL

1

2)
)()(

(
//

 (2)

i ’s are the original confidential values; i ’s are the
perturbed values; is the number of data records;

x y
N x is

the mean of i ’s; x y is the mean of i ’s; iy)(x/ is the
standard deviation of ’s; ix)(iy/ is the standard devia-

tion of i ’s. ASD uses the space distance formula to meas-
ure the difference between the original data and the per-
turbed data. In addition to calculating the distance between
two collections of data, DBRL also takes the standard de-
viation into account. Therefore, it can measure the variance
level between the original data and the perturbed data.

y

Algorithm: Weighted Average Sliding Window
Input: a sequence of perturbed datasets
Output: a classification model DT
Steps:
1. Let W be a sliding window of size w. Let Hb() be a

split evaluation function. Let be a threshold of
the error rate.

2. Use Hb() to construct a classification model DT.
3. Store next dataset in W and calculate the error rate

 of applying DT on this dataset.
4. Repeat step 3 until W is full.
5. Calculate the weighted average error rate � in W

 i
w

i iw I�� �

1
)/1(

 where i ’s are time weights of datasets.
6. If J� , , reconstruct a classification model DT.
7. Remove the oldest dataset from W. Store next data-

set in W and calculate the error rate . Goto step 5.
8. Return the classification model DT.

Figure 3 shows the comparison of ASD measurement
among the DSP algorithm and four other data perturbation
algorithms using five different datasets. In all five datasets,
the DSP algorithm has higher ASD values than other algo-
rithms; therefore, it has higher security. Notice that the
ASD values in the fifth dataset are lower than their corre-
sponding ASD values in other four datasets. It is because
there are less numeric attributes that can be used to perturb
data in the fifth dataset. From this we can see that, in the
process of perturbation, the number of numeric attributes is
an important criterion to determine the risk level of data
leakage. When there are more numeric attributes, data will
be perturbed more seriously; therefore, the risk of data
leakage will be lower.

Figure 3. Comparison of ASD measurement

Figure 4 shows the comparison of DBRL measurement
among the DSP algorithm and four other data perturbation
algorithms using five different datasets. In all five datasets,
the DSP algorithm has lower DBRL values than other algo-
rithms, which means that the correlation between the origi-
nal data and the perturbed data is lower for the DSP algo-
rithm. Therefore, it has a lower chance to infer the original
data from the data perturbed by the DSP algorithm and so
the DSP algorithm has higher security.

Figure 4. Comparison of DBRL measurement

605

3.2 Data Error Measurement 3.3 Accuracy Measurement
In addition to security, we also consider the data error of

the mining results between the perturbed data and the origi-
nal data. We use the bias in mean (BIM) and the bias in
standard deviation (BISD) between the original data and
the perturbed data to measure the data error of the DSP
algorithm.

We compare the error rate of mining perturbed data be-
tween the WASW algorithm and the VFDT algorithm. The
threshold value of the error rate in the WASW algorithm is
set to 15%. Figure 7 shows experimental results on various
data volumes. The initial error rate of the VFDT algorithm
is 10%. Along with continuous arrival of the data stream,
the error rate will increase constantly. On the other hand,
although the initial error rate is 12%, the WASW algorithm
will reconstruct the classification model to reduce the error
rate when the error rate exceeds the predetermined thresh-
old value. Therefore, the WASW algorithm can adjust to
current data distribution to maintain the accuracy of the
classification model.

)(
X

XYBIM �

 (3)

)(
X

XY

S
SSBISD �

 (4)

X is the mean of the original data; Y is the mean of
the perturbed data; X is the standard deviation of the
original data; Y is the standard deviation of the per-
turbed data. BIM calculates the difference of mean between
the original data and the perturbed data to measure the data
error. BISD calculates the difference of variance to meas-
ure the data error. Figure 5 and Figure 6 show the com-
parison of BIM measurement and BISD measurement, re-
spectively. The DSP algorithm has lower BIM and BISD
values than other algorithms in most cases. Therefore, the
DSP algorithm has less data error.

S
S

Figure 7. Comparison of the error rate

4. Conclusion
This paper proposes a method for privacy-preserving

classification of data streams, which consists of two stages.
The first stage uses the DSP algorithm to perturb data
streams. Experimental results show that the DSP algorithm
has higher security and less data error. The second stage
uses the WASW algorithm to mine perturbed data streams.
Experiment results show that the WASW algorithm has
higher accuracy. Therefore, our method can not only pre-
serve data privacy but also mine data streams accurately.

Acknowledgment Figure 5. Comparison of BIM measurement
The author would like to express his appreciation for the finan-

cial support from the National Science Council of Republic of
China under Project No. NSC 96-2221-E-031-001-MY2.

References
[1] L. Golab and M. T. Ozsu, “Issues in Data Stream Management,”

ACM SIGMOD Record, Vol. 32, No. 2, pp. 5-14, June 2003.
[2] P. Domingos and G. Hulten, “Mining High-Speed Data Streams,” in

Proceedings of the 6th ACM International Conference on Knowl-
edge Discovery and Data Mining, Boston, MA, pp. 71-80, 2000.

[3] V. S. Verykios, K. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin,
and Y. Theodoridis, “State-of-the-art in Privacy Preserving Data
Mining,” ACM SIGMOD Record, Vol. 33, No. 1, pp. 50-57, March
2004. Figure 6. Comparison of BISD measurement

606

Comparing the Use of Traditional and Associative Classifiers towards Personalized
Recommendations

Joel Pinho Lucas, Saddys Segrera, María N. Moreno
Department of Computer Science and Automatics, University of Salamanca

Plaza de la Merced s/n, 37008, Salamanca, Spain
{ joelpl,saddys,mmg}@usal.es

Abstract

Nowadays, there is a diversity of methods, including data
mining techniques, available to be used in recommender
systems. However, such systems still present numerous
limitations. An alternative data mining technique is the
classification based on association, which combines
concepts from classification and association. In this way,
association rules perform a predictive role. These
techniques, not very extended, have not been applied in the
recommender systems area. In order to provide
recommendations more effectively, in this work we suggest
that associative classifiers can be also used in these type of
systems. Therefore, a revision about the recommender
systems and the methods of associative classification is
presented. In addition, a case study is described, in which
traditional and associative classifiers are evaluated and
compared using data from recommender systems. The
results showed that both type of classifiers can be applied
effectively in such systems, nevertheless punctual
characteristics on data determine which is most effective in
each scenario.

1. Introduction

It has been estimated that the amount of information in the
world doubles every 20 months [8]. Additionally, nowadays
it is technologically feasible to store huge volumes of data
with, more and more, lower costs. However, it results in an
“information explosion” where there is a lot of useless data
in which it is very difficult to find valuable information.

In e-commerce systems such “information explosion” is
reflected by loads of products available for sale. In this
way, users would probably have difficulty in choosing the
products they prefer and, consequently, have difficulty
purchasing them. Due to such facts and to a more and more
competitive industry, these systems need to personalize the
presentation of their products to the consumers.

A way to reach such personalization is by means of the
“recommender systems”, which are being used by an ever-

increasing number of E-commerce sites in order to help
consumers to find products to purchase [17]. There are two
types of errors that these systems can present: false negative
and false positive. The first one consists of products that
were not recommended, though the consumer would like
them. The second one consists of recommended products,
though the consumer does not like them. According to
Sarwar et al. [16], false positives are more critical because
they will lead to angry consumers.

Taking into account that data mining techniques are applied
for identifying patterns within data sets, according to
Cheung et al. [4] these techniques can be successfully
applied for recommender systems, however they need to be
extended to deal with common issues for such systems. The
induction of association rules is a data mining technique
widely applied in decision making processes, which was
first introduced by Agrawal et al. [1] in the context of
market basket analysis.

Despite being a non-supervised learning method,
association rules induction can also be applied to perform
classification tasks. In this work we suggest the
development of recommendation models using association
rules in a prediction perspective, which are usually referred
as associative classifiers. In order to analyse the behavior of
such classifiers on a recommender systems’ data, we
accomplished a case study using two recommender systems
databases.

The key novelty of this work is the use of association rules,
for classification tasks in recommender systems. Moreover,
in order to identify in which situations each algorithm may
be used more effectively, we depict some features and
issues of particular algorithms that are intrinsically related
to data characteristics.

In the next section we describe general features of
recommender systems, where the main drawbacks they
present are highlighted. The use of association rules for
classification problems are described in section 2. In section
3 we highlight some concepts related to recommender
systems. In section 4, we describe the case study
accomplished on two databases. Finally, in section 5, we
describe an evaluation analysis about the case study.

607

2. Recommended Systems

According to Cheung et al. [4] and Lee et al. [10], the
methods implemented in recommender systems can be
divided into two main classes: collaborative filtering and
content-based methods. Content-based methods compare
text documents to user profiles, where web objects are
recommended to a user based on those he has been
interested in the past [10]. Hence, recommender systems
that use such type of methods do not take into account
information acquired by other users. On the other hand, in
collaborative filtering methods the recommendation process
is based on products’ opinions collected from other users
[5]. According to Sarwar et al. [15], the collaborative
filtering approach was originally based on nearest neighbor
algorithms, which recommends products to a target user
according to the opinions of users who have similar
purchase historical. Thus, the recommended products will
be the ones which users with similar interests have been
liked.

Breese et al. [2] classified collaborative filtering methods
into two groups: memory-based methods, which are also
referred as user-based methods, and model-based methods,
which are also referred as item-based methods. In memory-
based methods the nearest neighbors of a target user is
found by matching the opinions of such user to the opinions
of all system’s users. On the other hand, model-based
methods build a predictive model by means of a training set
which comprises opinions acquired from a small portion of
the system’s users. Such methods have been developed
more recently in order to avoid the sparsity problem, which
usually arises when memory-based methods are employed,
because e-commerce systems generally offer millions of
products for sale, so that it is not feasible to obtain opinions
about all of them [16]. As a result, current recommender
systems typically do not employ merely memory-based
methods.

Likewise, content-based recommendation methods usually
are not employed solely, because they are not effective due
to the lack of mechanisms to extract Web objects features.
However, such methods are commonly employed in
conjunction with collaborative filtering methods.

Taking into account model-based collaborative filtering,
machine learning techniques are the most employed
methods. Several machine learning techniques that are
employed to solve data mining problems are also employed
in recommender systems. Furthermore, nowadays
numerous systems employ the agents’ technology
combined to those techniques [3]. The use of agents in
these systems is basically due to their autonomy, learning
capability and the possibility of working in cooperation
[14]. In the next sub-section we will state some of the most
critical drawbacks presented by methods employed in
recommender systems.

2.1 Drawbacks

The most critical drawback such methods presents is
probably associated to data sparsity, due to the large
number of items that current recommender systems usually
present. According to Sarwar et. al. [15], users of e-
commerce systems are able to purchase, in general, only
1% of the products available by the system. This constraint
is more problematic for memory-based collaborative
methods, because it may not be feasible to obtain enough
ratings from users of a system. Model-based collaborative
filtering methods can minimize drawbacks originated due to
sparsity.

Another drawback originated from the large number of
items available in recommender systems is scalability. Such
drawback may turn into the major concern to the system
performance, because the process of searching the nearest
neighborhood, for example, may be unfeasible for systems
that encompass huge data bases. The performance is a key
feature in recommender systems, because these systems
need to provide their users fast feedback. Generally,
scalability is not a drawback for model-based methods,
because in such methods, differently from others, main data
processing, the induction of the predictive model, usually is
not performed at run time.

Despite of the drawbacks mentioned above been able to be
brightened up by means of model-based collaborative
filtering methods, there are some drawbacks that these
methods can not solve. The early rater problem [5] [7] is an
example of drawback that may occur in all type of
collaborative filtering methods. Such problem is related to
the restraint of having few opinions on which to base the
predictions.

Conversely, there are drawbacks, such as the grey sheep
problem [5], that occur only in collaborative filtering
methods. The grey sheep problem refers to the users who
have opinions that do not consistently agree or disagree
with any group of users. As a consequence, such users
would not receive recommendations. However, such
problem does not occur in content-based methods, because
such methods do not consider opinions acquired from other
system’s users in order to make recommendations.
According to Condliff et. al. [7], since a content-based
system does not consider the social background of its users,
the system is limited to recommend just items that are
similar to those that a user has liked in the past.

3. Classification Based on Association

As stated before, association rules induction algorithms can
be employed to build recommendation models such as the
one in [10]. Association rules were first introduced by
Agrawal et al. [1] aiming at discovering consuming patterns
in retail databases. Thus, the task of discovering association

608

rules in retail data was termed as “market basket analysis”.
The representation of an association rule may be declared
as A B, where A and B are item sets. Such
representation states that, in a transaction, the occurrence of
all items from “A” (antecedent side of the rule) results in
the occurrence of items belonging to “B” (consequent side
of the rule), such as A � I and B � I, where “I” is an item
set. An association rule describes an association relation
between item sets that occurs together on transactions of a
data set. Thus, association is not considered as a prediction
task, because it aims at describing data.

On the other hand, a classification method is seen as a
prediction task, because it aims at predicting the value of an
attribute (label) in a data set. The joining of concepts from
classification and association [12] is an alternative approach
for performing classification tasks, where association rules
are employed as a classification method. Seeing that
association models are commonly more effective than
classification models, a crucial matter that encourages the
use of association rules in classification is the high
computational cost that current classification methods
present. Several works [11] [12] [18] [21] verified that
classification based on association methods presents higher
accuracy than traditional classification methods. Differing
from association rules, the decision trees, for example, do
not consider simultaneous correspondences occurring on
different attribute values. Moreover, human beings can
easier comprehend an output provided by association rule
algorithms than an output provided by usual classification
techniques, such as artificial neural networks [16].

According to Thabtah et al. [18], a few accurate and
effective classifiers based on associative classification have
been presented recently, such as CBA (Classification Based
in Association) [12], CPAR (Classification based on
Predictive Association Rules) [21], MCAR (Multi-class
Classification based on Association Rule) [18], CMAR
(Classification based on Multiple class-Association Rules)
[11] and TFPC (Total from Partial Classification) [6].
Taking into account that for classification rule mining there
is one and only one predetermined target, while for
association rule mining the target of discovery is not pre-
determined [12], it is necessary to constrain the rules’
consequent terms to encompass only one attribute. This
way, the consequent term of an association rule will
represents the target, or class, attribute. Therefore, such rule
can play a prediction role in a given system: in order to
classify an item, the rule’s properties are matched to every
rule’s antecedents and the attribute value of the consequent
term (from one or more selected rules) will be the predicted
class. Generally, the classification model is presented as an
ordered list of rules, based on a rule ordering scheme [19].

In the CBA algorithm, for example, the rules are ordered by
means of the confidence measure and it uses only one rule
for performing classification. However, in this case some

scenario in which could exist multiples rules with similar
confidence measures may occur and, at the same time, with
greatly different support measures. Hence, a rule A with
much higher confidence than a rule B could be the one
chosen for classification even if B had a much higher
support [11]. The MCAR algorithm solves such drawback
by means of an approach that considers, in addition to the
confidence, the rules’ support. The CMAR algorithm has a
fine approach for selecting association rules for
classification, instead of using just one rule it makes use of
all rules that match the case to be classified. If the
consequent term of all selected rules is the same, the
predicted class will obviously be the value of the rules’
consequent term. Though, in a different scenario, rules are
divided in groups according to the consequent terms’
values. The value chosen for classification is acquired
through the group in which its elements hold the highest
correlation value according to the weighted K2 measure.
Similarly to CMAR, the CPAR algorithm also divides rules
in groups, though, instead of using all rules that match to
the object to be predicted, it uses the “k” best rules that
represent each class. Afterwards, the algorithm chooses a
group, by means of the Laplace Accuracy measure, that will
be the one used for classification.

The drawbacks presented by association rules induction
algorithms are, in general, the same ones of classification
based on association algorithms. A critical drawback of
these algorithms is due to those rules that have few
attributes. Seeing that such rules expresses narrow
information, an object which has few attributes would be
ineffectively classified. Another critical drawback is due to
the large number of rules that algorithms commonly
produce [16], as a consequence, much of them do not
supply relevant information or are contradictory. Such
drawback is a critical issue related to associative classifiers,
because the performance of the algorithm may be affected
when retrieving, storing, pruning and sorting a large
number of rules [11]. The CMAR algorithm presents tries
to solve such drawback by implementing a FP-Tree data
structure to store the association rules’ frequent itemsets.

4. Case Study

In this section we describe a case study accomplished on
two databases: MovieLens and Book Crossing. The first
consists of ratings of movies made by MovieLens
users in 2000, which is a recommender system based on the
GroupLens technology. Such database is freely available
for research purposes on the GroupLens Web page [9]. The
second consists of book ratings gathered by Ziegler et. al
[22] from the Book-Crossing community, whose users
exchange books and their experiences all around the world.

For both databases the WEKA [20] tool was used to
perform data transformation and pre-processing. The next
subsections detail both databases and how they were used.

609

4.1 MovieLens Data

Initially, the MovieLens dataset contained approximately
100,000 ratings for 1,682 movies made by 943 users, where
we integrated the data related to users and movies into one
file, which was the input provided for the algorithms
analyzed in this case study.

However, before supplying such input we changed the
rating attribute in order to have only two values: “Not
recommended” (score 1 or 2) and “Recommended” (score
3, 4 or 5). The first one refers to an item the user may like
and the second refers to the opposite case. Such changes
were performed to simplify classification, because the main
aim in a recommendation task is to determine if an item
should be offered to the user. Taking into account users’
data, we used the following attributes: gender, age and
occupation. The age attribute was discretized in five age
ranges. The user’s occupation attribute is a nominal
variable with 21 distinct values.

Taking into account movies’ data, the file provided by
MovieLens originally contained 19 binary attributes related
to movie genres. An instance with value 1 expressed that
the movie belongs to a specific gender and 0 otherwise. The
association model’s consistency would be compromised if
19, among the 23 attributes on the dataset, were binaries.
Thus, these 19 binary attributes were reduced to just one
attribute representing the movie genre’s name. However,
since some movies may belong to different film genres, we
only used the records containing ratings about movies with
just one genre. Afterwards, 7 film genres were not
considered in this study. Hence, association rules generated
by the model could express relationships between user
profiles’ characteristics and film genre features.

After data pre-processing and transformation, 14,587
records were remained in the input file for the algorithms
used in this study. For experiments made on classification
based on association algorithms we defined support and
confidence threshold values of 20% and 75% respectively.

4.2 BookCrossing Data

Initially, the Book Crossing data contained 1,149,780
ratings about 271,379 books provided by 278,858 users.
However, such ratings include explicit (an assigned mark
from 1 to 10) and implicit (written reviews) ratings. Thus,
the implicit ratings were not considered for this study and
the dataset remained with 433,671 records.

In order to simplify classification, the rating attribute was
modified in the same way of MovieLens was: “Not
recommended” (score from 1 or 6) and “Recommended”
(score from 7 to 10). For books’ data, we used two
attributes from the dataset: publication Year and Author.
The first was discretized in five ranges. The Author

attribute was also modified, because at first it encompassed
48,234 distinct values. Thus, the dataset was reduced in
order to this attribute encompasses only 40 distinct values
(the ones that appear on more records).

Taking into account users’ data, we also used two
attributes: Age and Place where the user inhabits. The first
was discretized in nine age ranges. The Place attribute
originally contained the name of the city, the state or
province, and the name of the country. However, this way
such attribute presented 12,952 distinct values. Therefore,
we changed this attribute in order to encompass only 40
distinct values. For that reason and seeing that 75% of the
places were from USA, we divided the dataset, based on
this attribute, in two: places grouped by states of USA and
places grouped by countries excepting USA. Afterwards,
the first dataset (states of USA) remained with 25,523
records and the second one (countries) remained with 8,926
records.

In order to try the algorithms’ accuracy facing a smaller
range of distinct values we also used more two datasets
derived from those ones mentioned before. Thus, we copied
both datasets and kept only 10 distinct values (the most
frequent) for author and Country/State attributes. This way,
we obtained two more datasets that contain 6,270 records
(on the dataset of states of USA) and 3,238 records (on the
dataset of countries).

To perform the experiments on the classification based on
association algorithms we defined support and confidence
threshold values of 20% and 80%. However, for the
datasets containing 10 distinct values, we reduced the
support to 10% due to its reduced number of records.

4.3 Results

The classifiers analyzed in this case study were the
following ones: C4.5, BayesNet, CBA, CPAR and CMAR.
The first two were run through WEKA and the other three
were obtained from the LUKS-KDD repository [13]. In all
experiments we used 50% of the dataset as a training set
and 50% as a test set.

The main objective was to compare the algorithms accuracy
using data gathered from recommender systems. For CBA,
CPAR and CMAR we also analysed the number of rules
generated for building the classification models. In total,
five datasets were analyzed: one obtained from MovieLens
database and four through Book Crossing database (the
dataset of states of USA, of world countries excepting USA
and the same two but with 10 distinct values for author and
Country/State attributes). On table 1 we show the results
obtained after running the algorithms mentioned above.
Each line depicts the accuracy obtained on each dataset
and, for the associative classifiers, it is also depicted the
number of rules available on classification models.

610

Table 1. Comparison of Classifiers.

Data C4.5 BayesNet CBA CPAR CMAR
MovieLens 83.45% 81.16% 78.35% – 13R 74.07% – 65R 85.16% – 11R
BCrossing World 80.30% 78.33% 78.96% – 2R 73.25% – 127R 0.0% – 0R
BCrossing World 10 80.23% 81.09% 82.58 – 4R 79.86% – 28R 9.29% – 1R
BCrossing USA 80.33% 80.23% 80.49% – 4R 78.15% – 264R 9.68% – 1R
BCrossing USA 10 80.89% 80.82% 73.11% – 10R 76.71% – 42R 24.66% – 3R

Results revealed that associative classifiers reached similar
accuracy, excepting CMAR on Book Crossing data, to
traditional classifiers (surpervised learning). Actually, in
some cases associative classifiers reached higher accuracy.
Despite of being the first method of classification based on
association, the CBA algorithm reached the highest
accuraccy on two of the four datasets of Book Crossing. On
MovieLens data, the CMAR reached the highest accuracy,
which was the best result obtained over all experiments.

Since rules provided by the associative classifiers hold a
high confidence value (at least 80%), the rules used for
building the classification models are reliable. The ninth
rule generated by CMAR on MovieLens data is an example
of this kind of rule: “age=[25-34] & genre='drama' =>
rating='yes'”. Such rule states that, if a user is older than 25
years and younger than 34 years old, he will probably rate
positively a drama movie.

5. Empirical Analyses

Despite of presenting the highest accuracy over all
experiments (85.16% on MovieLens data), CMAR did not
present satisfactory results on Book Crossing data.
MovieLens and Book Crossing data basically differ on the
number of distinct values of their attributes. MovieLens has
only two distinct values on the Genre attribute, for example,
and the other attributes have, in general, less distinct values
than MovieLens datasets when the ratio of records/number
of distinct values is taken into consideration. In addition, on
the datasets with ten distinct values CMAR presented a
slight improvement on the classification accuracy. This
may be justified by the data structure it employs, which is a
FP-Tree (Frequent Pattern Tree). This structure stores
frequent itemsets in a compact way in which common
relations between itemsets are explored. This way, for Book
Crossing data, items stored in the FP-Tree were not
frequent enough to form rules. Due to such outcomes, we
argue that CMAR is more effective on datasets that
encompass attributes with less distinct values.

On the other hand, the CBA algorithm presented good
results on Book Crossing data. CBA uses the same data
structure and foundations of the trivial Apriori algorithm,
which does not encompass a compact structure for storing
items. Under these circumstances CBA provided enough

rules to build effective classifiers. However, there was a
loss of accuracy in two cases: for the dataset of world
countries (excepting USA) and for the dataset of states of
USA with 10 distinct values. Such losses are reasonable
due to the diversification of characteristics that readers
from different world countries (from four continents) may
have, which probably are much more substantial than
people from just one country. Such diversification is even
more crucial to the CBA association rule induction, because
before classifing it has to obtain association rules based on
relationships over attributes. For the dataset composed by
states of USA with ten distinct values, it is even more
difficult to identify relationships, because readers from the
remained ten states probably present quite similar
characters. On the other hand, for the dataset of world
countries with ten distinct values, readers’ characters are
more dissimilar and then the CBA accuracy was improved.

At last, the CPAR algorithm also presented acceptable
results, even though its accuracy was slightly lower than
ones of other classifiers. Such algorithm is more effective
for scenarios of very large datasets where processing time
may be a critical issue, because the classifier construction
and the rules induction are made in just one processing step.
Moreover, results showed that the algorithm provides much
more rules than CBA and CMAR. It may be useful for
scenarios where data description is also an analyses’ aim.

6. Conclusions

In this work we have shown, by means of the case study
described in section 4, associative classifiers can be used in
recommender systems effectively and can also improve
recommendations consistency. Actually, both traditional
and associative classifiers can be applied effectively,
nevertheless punctual characteristics on data determine
which is most effective in each scenario. Through this work
we intend to decrease errors on recommender systems,
because such systems still encompass several shortcomings.

According to the conclusions of some works, including this
one, the accuracy of classification methods has a straight
correlation to data’s attributes characteristics. Thus, before
applying a classifier it is essential to analyse data attribute.
Seeing that, none of the works that proposed classification
based on association methods had investigated what and

611

how datasets’ features affect classification accuracy, on the
previous session we described circumstances that each
algorithm would be more effective and likely to be used.

Associative classifiers provide fast and comprehensible
learning models, differing from the majority of traditional
classifiers. Another major achievement of associative
classifiers in this work was the few false positives that
would be presented in recommendations. Since we
established a high threshold value for confidence (80%),
rules provided for the learning model would not be likely to
classify an item as “Recommended” if it was interesting to
a user whose characteristics (attributes) did not match the
items on rules’ antecedent terms. On the other hand, false
negatives might occur easier, because certainly all rules do
not encompass information about all datasets’ relations.
However, if an item of interest to a user was classified as
“Not Recommended”, it would not be a critical error.

In order to classification based on association methods be
applied (as well as general data mining techniques) even
more effectively in recommender systems, in future works
we will try to bring up more personalization for some
associative classifiers for recommender systems data.

Acknowledgments

This paper is part of the research project SA064A07,
supported by the Spanish Junta de Castilla y Leon.

7. References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large databases.
In the ACM SIGMOD International Conference on
Management of Data, pp207–216, Washington, USA, 1993.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.
pages 43–52, 1998.

[3] M. Chau, D. Zeng, H. Chen, M. Huang, and D.
Hendriawan. Design and evaluation of a multi-agent
collaborative web mining system. Decision Support Syst.,
35(1):167–183, 2003.

[4] K.-W. Cheung, J. T. Kwok, M. H. Law, and K.-C. Tsui.
Mining customer product ratings for personalized
marketing. Decision Support Syst.,35(2):231–243, 2003.

[5] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D.
Netes, and M. Sartin. Combining content-based and
collaborative filters in an online newspaper, 1999.

[6] F. Coenen, P. H. Leng, and L. Zhang. Threshold tuning
for improved classification association rule mining. In
PAKDD, pages 216–225, 2005.

[7] M. Condliff. Bayesian mixed-effects models for
recommender systems, 1999.

[8] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus.
Knowledge discovery in databases – an overview. Ai
Magazine, 13:57–70, 1992.

[9] GroupLens. GroupLens Research Group. University of
Minnesota. http://www.grouplens.org/.

[10] C.-H. Lee, Y.-H. Kim, and P.-K. Rhee. Web
personalization expert with combining collaborative
filtering and association rule mining technique. Expert
Systems and Applications., 21(3):131–137, 2001.

[11] W. Li, J. Han, and J. Pei. CMAR: Accurate and
efficient classification based on multiple class-association
rules. In ICDM, pages 369–376, 2001.

[12] B. Liu, W. Hsu, and Y. Ma. Integrating classification
and association rule mining. In Knowledge Discovery and
Data Mining, pages 80–86, 1998.

[13] LUKS-KDD. The Lucs-KDD Software Library.
University of Liverpool. http://www.csc.liv.ac.uk/
frans/KDD/Software/.

[14] M. N. Moreno, F. J. García, M. J. Polo, and V. F.
Lopez. Using Association Analysis of Web Data in
Recommender Systems, volume 3182/2004, chapter E-
Commerce and Web Technologies, p11–20. Springer, 2004.

[15] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In World Wide Web, pages 285–295, 2001.

[16] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.
Analysis of recommendation algorithms for e-commerce. In
ACM Conference on Electronic Commerce, 2000.

[17] J. Schafer and J. Konstan. E-commerce
recommendation applications. Data Mining and Knowledge
Discovery, 2001.

[18] F. Thabtah, P. Cowling, and Y. Peng. MCAR: multi-
class classification based on association rule. In
Proceedings of the International Conference on Computer
Systems and Applications, Washington, USA, 2005. IEEE.

[19] Y. Wang, Q. Xin, and F. Coenen. A novel rule
ordering approach in classification association rule mining.
In 5th International Conference on Machine Learning and
Data Ming, pages 339–348. Springer LNAI 4571, 2007.

[20] WEKA. Waikato Environment for Knowledge
Analisys: Machine Learning Software in Java. University
of Waikato. http://www.cs.waikato.ac.nz/ml/weka.

[21] X. Yin and J. Han. Cpar: Classification based on
predictive association rules. In SIAM International
Conference on Data Mining 2003, pages 331–335, 2003.

[22] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G.
Lausen. Improving recommendation lists through topic
diversification. In 14th International World Wide Web
Conference, 2005.

612

Discovering Meaningful Clusters from Mining Software Engineering Literature

Yan Wu, Harvey Siy, Li Fan

College of Information Science and Technology,
University of Nebraska at Omaha,

Omaha, Nebraska 68182, USA,
{ywu, hsiy, lfan}@mail.unomaha.edu

Abstract
Document clustering is becoming an increasingly popular
technique for identifying relationships in unstructured text. In
this paper, we attempt to make sense of the output of a
clustering algorithm applied to software engineering research
papers. We introduce a notion of cluster “stability” as a
measure of the meaningfulness of a cluster. We assess its
usefulness and limitations in identifying meaningful clusters. In
the process, we track how important research topics may have
changed from year to year.

1. Introduction

In many fast-moving fields, such as software engineering,
a large number of research papers are being published in
journals and conferences every year. Due to the
increasing volume of papers, it is hard to effectively and
efficiently search for papers relevant for a given topic of
interest. And as research areas become increasingly
interdisciplinary, it is much more difficult to differentiate
research topics of published research papers. Important
academic digital libraries such as ACM Digital Library
have constructed the hierarchical categories for research
areas but many research papers do not have a good fit
within the available categories.

The goal of document clustering is to automatically
categorize unlabelled documents into cohesive clusters to
facilitate the search for relevant information. But due to
the unsupervised nature of clustering algorithms, it is
hard to decide the number, k, of clusters we need when
applying clustering. In [1] the authors mentioned that by
inspecting the output of the clustering algorithm, various
values of k can be tried. However, this assumes that
inspecting the output of the clustering is feasible.
Especially in fields such as software engineering, it is
hard to ascertain the number of research streams to be
differentiated. So, we are in need of a procedure to
empirically determine the number of clusters for a given
set of documents and to validate the meaningfulness of
the resulting clusters. Such a procedure can be used to
guide future attempts to cluster research papers in this

area. In this paper we attempt to make sense of the output
of a clustering algorithm applied to two bodies of text,
one from a set of journal articles and another from a set
of conference papers. The texts were partitioned by year
of publication in order to identify any presence of trends.

2. Related Work

Hierarchical clustering algorithms are described in [13].
The advantage of hierarchical clustering solutions is that
they provide different views of the data at different
granularities. We chose hierarchical clustering as it
enables us to track the clustering process and helps to
identify a suitable level of granularity that yields many
meaningful clusters.

[4] tried to achieve more balanced and stable clustering
by exploiting the characteristics of data objects before
clustering to eliminate the effect of data ordering on
clustering number. This research is focused on the
elimination of the effect of data ordering to improve the
quality of clustering. Authors of [5] worked on evaluating
quality of a certain clustering algorithm --- Adaptive
Resonance Theory (ART) neural networks by certain
formulas concern the numbers of true positive, false
positive and false negative in clustering results. That is a
work with prior knowledge of the objects for clustering as
a validation work, but we are working on an exploring
work in which almost no existing information provides us
clues about “correct answer”.

We also found several papers related to labeled
classification, which we employ to validate the resulting
clusters. The work in [10] is focused on identifying
descriptive, sensible clustering labels for each cluster by
an approach named as Description Comes First (DCF)
cluster labels, in which the processes of candidate cluster
label discovery and document clustering are separated. In
[12] authors employed frequently appeared phrases as
final cluster description, which employed a similar
approach as what we used. A follow-up work [2] showed
how to avoid certain suffix tree clustering (STC)
limitations from [12] and use non-contiguous phrases. A

613

“label-driven” clustering appeared in clustering with
committees algorithm, where the semantic relationships
from WordNet are used to evaluate the unambiguous
concepts to which strongly associated terms are related.

Several lines of investigation also deal with detecting
temporal trends. [9] performs trend analysis in order to
find hot topics through controlled vocabulary terms rather
than phrases based on the nature of news that smaller
units could be used to identify breaking news topics
within short period such as one day. Temporal Text
Mining (TTM) described in [6] is used to discover and
summarize the evolutionary patterns of themes in a text
stream over time. Based on the discoveries in
characteristic path, authors of [3] collected the paper titles
from DBLP XML files to track the most popular terms
used throughout time. Then they listed the emerging
popular terms for each year by deleting terms that
appeared in the previous two years and by this way they
explained the previous discoveries.

3. Methodology

The bodies of text consists of papers from three software
engineering journals, IEEE Transactions on Software
Engineering, ACM Transactions on Software
Engineering and Methodology, and Empirical Software
Engineering, and the proceedings of two software
engineering conferences, International Conference on
Software Engineering (ICSE) and ACM SIGSOFT
Foundations on Software Engineering (FSE). We
collected a total of 1157 journal articles from 1996-2007
and 675 conference papers from 1999-2007.

We partitioned the papers according to year of
publication and clustered each year individually. We also
clustered each set of text as a whole. We kept the analysis
of journal articles and conference papers separate as the
two sets are likely to show different trends owing to
different timescales for publication turnaround times.

3.1 Converting Documents into Word Vectors

Before clustering, we need to convert the text into lists of
word vectors for input to the clustering tool. For this, we
used RapidMiner [11], an open source data mining
environment which supports most frequent data mining
tasks. The modular operator concept of RapidMiner
allows the design of complex nested operator chains to
solve a wide variety of learning problems effectively and
efficiently. Rapidminer is a common text mining too and
it is easy to use, its extensibility and flexibility provide us
the ability to expand our work in the future. Data

handling in RapidMiner is transparent to users. To
vectorize text, the text plug-in for RapidMiner is
recommended [11], which can be used to create word
vectors from input texts in different formats (plain text,
URLs and so on). To create word vectors from input texts,
a list of operators are chosen and put in order. First, the
texts need to be read from certain document directory so
that further treatment could be executed on them
(TextInput Operator). As one of the parameters, tf-idf is
chosen as the term weighting model, in which each
document can be represented as

tf1log(n/df1), tf2log(n/df2), … , tfmlog(n/dfm)
where tfi is the frequency of the ith term in the document,
dfi is the number of documents that contain the ith term
and n is the total number of documents. With tf-idf, those
words that appear frequently but in fewer documents
receive higher weight. Second, the plain text is tokenized
(StringTokenizer Operator). Third, stop words such as
“a” and “is” are deleted (EnglishStopwordFilter
Operator). The last step is stemming, which truncates
words into their roots and combines words with the same
root together (PorterStemmer Operator).

After the execution of the operators, an example set is
produced as the result. The Metadata View of the result
stores the type, name, value type, statistics and range of
attributes (stemmed words), the Data View stores the
data – the vector-space model representing documents.

Processing the full text of documents would result in
very large word vectors that are too unwieldy to analyze.
Furthermore, analyzing the full text increases the
likelihood of the clustering algorithm making false
associations between documents. Therefore, to facilitate
the processing and reduce the scale of attribute
dimensions, only the title, abstract and keywords are
extracted from those papers. Although they do not
contain the full contents, the title, abstract and keywords
generally capture the key information in a document.

3.2 Hierarchically Clustering Documents

We applied the hierarchical clustering tool from SPSS to
cluster the documents. This is an agglomerative
hierarchical clustering tool which clusters from the
bottom up, treating each single text as one cluster, and
then merging similar texts together until it has merged all
documents into one cluster.

To reduce the number of single-document clusters, we
began collecting data on the merging process when there
were 20 clusters left. We recorded the list of documents
in each cluster and also which clusters were merged in

614

each subsequent step until there were only two clusters
left to be merged. The SPSS output was saved as a
spreadsheet for further processing.

3.3 Identifying Stable Clusters

To quantify the meaningfulness of the resulting clusters,
we computed the stability of each cluster. Taking the
SPSS output, we determined, for each cluster, at which
merge step a cluster was formed, and at which step it got
merged into another cluster. The difference between the
two steps is the measure of a cluster’s stability. For
example, if a cluster was formed at the 1st merge step,
and was merged at the 5th step, it stayed intact for 4 runs.
We consider clusters that stayed intact for more than 10
runs as stable, because we have tried to consider smaller
number of runs as stable clusters but it was hard to find
out overall themes for those clusters.

We also calculated the overall stability of a merge step as
the sum of the runs for all the clusters available at that
step. In this way, we have a way to determine k, the
number of clusters with the highest overall stability.

3.4 Constructing Tagclouds for Clusters

To validate the meaningfulness of the resulting clusters,
we inspected the dominant words in each cluster using
tagclouds [8]. Tagclouds provide visual presentations of
a set of words in which the size and color of a word are
used to represent some attribute of the word, such as its
frequency or how recently it was used. We use tagclouds
to visualize the dominant words in each cluster. The
accumulated weight of a word w in a cluster is calculated
by totaling the weights of w in each of the documents in
the cluster. In the tagcloud visualization, the fonts used to
display the words are proportional to their accumulated
weight. An example is given in Figure 3. In this example,
the words are sorted according to their accumulated
weights.

Once stable clusters are identified, we inspected the
tagclouds of these clusters to identify the topics within
each cluster. This was then verified by examining the
paper’s original title and abstract.

3.5 Classification by Labels from Stable Clusters

With the hypothesis that the stable clusters are distinct
clusters which have relatively farther distances from
other clusters, a validation is performed by attempting to
classify all documents in the text body into the identified
stable clusters. As the starting point, papers in each

year’s stable clusters are collected and separately
grouped and labeled together, and one comparison group
is created as part of the training set. Using RapidMiner,
the LibSVMLearner and ModelWriter operators are
applied to train the classification model. This process
takes as input the labeled groups of papers and the
outputs include a wordlist and a model in which the
classification criteria are stored. Then, to verify the
hypothesis that the stable clusters are distinct clusters
that keep relatively longer distance from other clusters
and belongs to special topics, the classification model
trained on one year’s documents is applied onto the
documents in the other years. In this way, some
originally undiscovered papers are located and further
evaluation is needed to prove they really belong to the
special stable clusters.

4. Results

4.1 Hierarchical Clustering Results

The results from agglomerative clustering of documents
per year indicate several clustering patterns. Large
clusters attract additional clusters and tend to get merged
first. This is not surprising since large clusters have many
important words that increase the likelihood of being
related to other clusters. We see this pattern appearing
more in journals than in conferences. Conference clusters
are more likely to consist of small clusters, without one
cluster dominating all the others. We can also see this
trend by examining the hierarchy trees which are derived
by following the agglomeration process that successively
merges a pair of clusters at each step. Journal clusters
tend to produce unbalanced hierarchy trees, while
conference clusters tend to produce relatively more
balanced trees. These trends are illustrated by Figure 1
and Figure 2, which depict the hierarchy trees when
clustering all journal and conference papers, respectively.

In these figures, the merging process is illustrated by two
clusters pointing into one (merged) cluster. In the
clustering based on journal articles (Figure 1), most of
the initial clusters (those without any clusters pointing
into them) are successively merged into a bigger cluster
(starting from the one in the top left corner), resulting in
an unbalanced tree. On the other hand, the clustering
based on conference papers (Figure 2) did not have such
a dominant cluster at the start, and the merging process
appears to be more balanced. Examining the clustering
hierarchy trees for individual years also produce
consistent results for both journal and conference papers.

615

aspectmodular interfac orient

design classpect modul advis librari bpel languag

permiss program weav reason aspectj client safe point composit

hide option presenc specific crosscut adapt join complet unifi eo level

sequenc concern domain featur full behavior rest layer mechan cut decomposit anti

Figure 1: Clustering hierarchy tree for journal
articles

Figure 2: Clustering hierarchy tree for conference
papers

4.2 Stable Clusters

For each year’s clustering process, we also detected a
subset of clusters which tend to be preserved for several
runs of the agglomerative clustering algorithm, indicating
that their contents are quite distinct from the others. We
consider that a cluster is stable if it survives without
getting merged through more than 10 runs. For such
clusters, it is generally easier to find overarching themes
based on their dominating keywords.

For example, Figure 3 is a tagcloud of the dominant
keywords for a stable cluster from 2005 conference
papers.

By examining the dominant keywords we manually
recognize this cluster as related to aspect-oriented
software development.

Figure 3: Tagcloud of a stable cluster from conference
papers for 2005

Table 1 and Table 2 list some of the identifiable topics in
each year’s stable clusters for journal articles and
conference papers, respectively.

Year Distinct Cluster Topics
1996 HCI, lightweight source analysis, reliability
1997 real-time systems, OO, SCM
1998 inspection, protocol analysis,
1999 client-server, hypermedia, empirical, mobile systems
2000 exception handling, reliability, HCI
2001 embedded system, code decay, traceability, empirical
2002 codesign, attribute grammar, client-server, SCM, petri

net, state machines
2003 agents, OO
2004 web services, exception handling, agile, OO metrics
2005 empirical, grammarware, automated reasoning, slicing
2006 Web, agile, requirements, OO metrics, empirical,

middleware
2007 global software eng, metalock, ACSL, education,

vulnerability, usability
Table 1: Identifiable topics for journal articles

Year Distinct Cluster Topics
1999 aspects, agents, hypermedia, environments, smartcard,

testing
2000 taxonomy, education, message sequence charts
2001 inspection, reliability, XML, product lines
2002 components, requirements, slicing, reliability
2003 OO, mixins, components, aspects, documentation
2004 architecture, MSR, FLAVERS1, traits
2005 aspects, metrics, DOM, temporal logic
2006 spreadsheets, pointer analysis, distributed systems,

SQL injection
2007 OPIUM2, malware, agile, semantic query
Table 2: Identifiable topics for conference papers

1 FLAVERS is a finite state verification tool and
2 OPIUM is a package installer tool.

616

5 10 15

0
20

40
60

80

RUNS

4.3 Label Classification Results

To validate the distinctiveness of the detected stable
clusters, we checked to see if there are additional papers
from other years that would have been classified within
each of the stable clusters by training a labeled
classification model using RapidMiner. Table 3 shows
the results for the conference clusters.

99 00 01 02 03 04 05 06 07
99 0 +9 +4 +3 +8 +6 +9 +8 +11
00 0 0 0 0 0 0 0 0 0
01 +1 +2 0 +2 +1 +2 +1 +2 0
02 0 0 +1 0 0 0 +1 0 0
03 0 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0 0
05 0 0 0 0 +1 0 0 0 0
06 0 0 0 0 0 0 0 0 0
07 0 0 +1 0 +2 0 +1 +2 0

C
LU

S
TE

R
 S

IZ
E

Table 3: Additional documents added to stable
clusters from conference papers

The results indicate that, for most years, no additional
papers could be found which closely match the papers in
the stable clusters. This indicates that, not only are the
document clusters distinct, their contents are very
specialized. The one exceptional case in 1999 was due to
the broad topic of testing which matched many papers in
subsequent years.

A similar analysis was conducted on the stable clusters of
journal articles. In this case, there were a lot more
matches across different years, but mainly because of the
presence of the empirical studies topic, which tends to
crosscut many techniques.

4.4 Effect of cluster size on stability

While we are able to identify many topics, it is evident
from examining the original set of papers that more
topics are missed. One observation is that stable clusters
also tend to be small. This is borne out by closer
examination of cluster sizes.

Figure 4 shows, for each cluster of conference papers, its

less than 5 documents. This indicates that the

mployed has a tendency to
ick up specialized topics. The data for journal articles

ics for a given year. This
plies the need for other classification algorithms to

ake additional identification.

)

ssible that the
conference papers would end up in more specialized

e.

ermine the
sefulness of our stability measure to find meaningful

size versus the number of runs between when it was
formed to when it was merged.

As we can observe from this figure, stable clusters
(clusters with runs > 10) are also small in size, averaging

agglomerative clustering e
p
follows a similar pattern.

The preceding results indicate that the stable clusters do
not capture all the important top
im
m

Figure 4: Runs versus cluster size (conference papers

4.5 Relationships between conferences and journals

Based on the observation from Table 1 and Table 2, we
do not see a pattern where conference paper topics serve
as “advance notice” of journal papers. One of the reason
should be that the stable clusters are mostly small sized
clusters which cannot represent the main theme of certain
year. And at the same time, it is po

journals other than the ones listed her

5. Summary and Future Work

In this paper, we applied agglomerative hierarchical
clustering over research papers from software
engineering journals and conferences. We analyze the
resulting clusters for meaningfulness by using a measure
of stability. While the stable clusters found are indeed
meaningful, they only identify a subset of the papers.
Several other hierarchical clustering algorithms such as
partitional and constrained agglomerative algorithms
have been shown to provide improved results. [13] We
plan to apply these other algorithms and det
u
clusters from the results of these algorithms.

617

Work in this study is focused on empirical data for
“meaningful” clustering in certain research
area—software engineering, and interesting keywords
analysis is executed from the perspective of software
engineering experts but not data mining experts, so there

hen calculate the quality of each level of

[7] from software
engineering literatures to predict research designs,

ch areas, so the name of authors
ould be a potential source of information for searching

certain research topics.

r
Zhengxin Chen and Nian Yan for their valuable

ining knowledge and techniques.

Computer Science, Virginia Tech, Oct.

is still a lot work to do on certain data mining
perspectives.
� Evaluate quality of agglomerative hierarchical

clustering based on distance to centroid of each data
point, t
hierarchical clustering based on the methods from
[13].

� Expand the analysis to cover a larger range of papers
from earlier years.

� Mining association rules

activities and possible results.

And [3] provides us another dimension to explore, the
co-authorship among active researchers, which is still an
interesting topic. For example, it is generally assumed
that certain researchers just work on several limited
research areas and possibly interdisciplinary areas
concerning those resear
c

6. Acknowledgement

The authors here would like to express our gratitude and
thanks to Professor Parvathi Chundi, Professo

assistance on text m

7. References

[1] N. O. Andrews, E. A. Fox. Recent developments in
document clustering. Technical Report TR-07-35,
Department of
2007. http://eprints.cs.vt.edu/archive/00001000, accessed
Mar. 10, 2008.
[2] P. Ferragina, A. Gulli. The anatomy of snaket: A
hierarchical clustering engine for web-page snippets. In
Boulicaut, J.-F., Esposito, F., Giannotti, F., and Pedreschi,

ftware

).

y. On the quality of ART1 text clustering,

s from text – an exploration of temporal text

. Nagano Text Analysis and

s of tagclouds. Proc. of the SIGCHI

rehensible and

D., editors, PKDD, volume 3202 of Lecture Notes in
Computer Science, pages 506–508. Springer.
[3] A. E. Hassan, R. C. Holt. The small world of so
reverse engineering, Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE’04
[4] G. Lee, X. Wu, J. Chon. Rearranging Data Objects for
Efficient and Stable Clustering, SAC’05, USA,
pp.519-523, March 13–17, 2005, Santa Fe, New Mexico.

[5] L. Masse
Neural Networks, Volume 16, Number 5, June 2003 , pp.
771-778(8).
[6] Q. Mei, C. Zhai. Discovering evolutionary theme
pattern
mining, KDD’05, August 21-24, 2005, Chicago, Illinois,
USA.
[7] T. Nasukawa and T
Knowledge Mining System IBM Systems Journal 40,
No. 4, 967–984 (2001).
[8] A. W. Rivadeneira, D. M. Gruen, M. J. Muller and D.
R. Millen. Getting our head in the clouds: toward
evaluation studie
conference on Human Factors in Computing Systems
(CHI '07), 2007.
[9] M. Shewhart, M. Wasson. Monitoring a newsfeed for
hot topics, KDD-99 San Diego CA USA.
[10] J. Stefanowski, D. Weiss. Comp
accurate cluster labels in text clustering, RIAO'2007
Conference, Pittsburgh, PA, USA, 2007.
[11] M. Wurst. The word vector tool and the RapidMiner
text plug-in. http://wvtool.sf.net, accessed July 31, 2007.
[12] O. Zamir, O. Etzioni. Grouper: a dynamic clustering
interface to Web search results. Computer Networks
(Amsterdam, Netherlands: 1999), 31(11–16):1361–1374.
[13] Y. Zhao, G. Karypis. Hierarchical clustering
lgorithms for document datasets, Data Mining and

Knowledge Discovery, Vol. 10, pp.141-168, 2005.
a

618

A Model-Driven Approach for the Semi-Automated Generation of
Web-based Applications from Requirements

Ali Fatolahi, Stéphane S. Somé, and Timothy C. Lethbridge

School of Information Technology and Engineering, University of Ottawa

This paper presents a semi-automated method for the generation of web-based applications from high-level requirements in

accordance with model-driven architecture (MDA). MDA is a relatively new paradigm, which aims at providing a standard baseline
for model-driven development. The ultimate goal of MDA is to (semi)automate the process of software development from
requirements to code using an interoperable set of standards. In this paper, we present a method to generate web-based applications
from requirements expressed as use cases using MDA-based tools, techniques and methods. The use case model is used as a baseline to
generate other models including a state machine and a user interface model, which are eventually transformed into a platform-specific
model used for code generation.

Index Terms— Requirements, MDA, Use Case, State Machine, User Interface, Mapping

I. INTRODUCTION
DA [1] is the OMG’s [2] solution to increase model
reusability and design time interoperability. A very

important feature of MDA is a facility to transform models.
MDA provides a collection of popular standards beneath a
common philosophy to alleviate the process of quality
software design and implementation.

According to [3], there has been a growing interest in MDA
within the software community in the recent years; even the
US government has held some workshops on employing
MDA [4]. As another instance, IBM has developed its latest
software engineering suite: Rational Software Architect [5]
based on MDA. This is also true about many other tools such
as MagicDraw [6], ArgoUML [7], Enterprise Architect [8]
and System Architect [9].

The MDA process starts with capturing requirements at a
computation-independent layer [3]. In our approach use case
descriptions are used for requirements capture. Use cases are a
popular technique for systems analysis and design. They are
mainly used in textual form.

However, since writing textual descriptions is not as formal
a task as drawing UML [10] models and writing programming
code, various guidelines have been proposed to ease the
process of writing use case descriptions and benefiting from
these documents (e.g. [11] and [12]). The fact that several
approaches have examined semiautomatic use case based tools
and techniques (e.g. [13], [14] and [15]), evidences that
employing use cases for analysis would be more useful if we
found more systematic ways to connect them to lower level
design models or even the code.

In this paper, we present a method for the semi-automated
generation of web-based applications from requirements.
Requirements are expressed as use case descriptions along
with a domain model supporting the use cases. The whole
model is used to produce a state machine. A default user
interface model created based on the state machine is refined
by the developer to form the desired user interface of the
application. Based on these models, the method generates a

platform-specific model which is used to generate the code.
The ‘user’ of our method is the developer.

In order to perform the transformation, a set of mapping
rules are defined. This set plays a critical role in the method as
it guarantees the completeness of the information required for
code generation.

In order to assess the feasibility of the approach we have
implemented the method using UCEd [16] and AndroMDA
[17]. UCEd is used for use case modeling and AndroMDA is
employed for code generation. In addition, we have developed
an application to generate the platform-specific model.
However, the method and supporting tools and techniques are
supposed to be extensible to higher level requirements and
adaptable with other tools.

The rest of this paper is organized as follows. In Section 2,
technical background terms of this research are explained.
Section 3 addresses related research and practice in past and
how they are related to this research. Section 4 carries the
elaboration of our method and the applied tools and
techniques along with a case study. In Section 5, we, briefly
provide a conclusion; discuss some research issues and
present our plan for future work.

II. BACKGROUND
According to [18] a use case is a ‘description of the

sequence of behaviorally related transactions that user
performs in order to have a dialogue with the system’. Use
cases are expressed through use case models and use case
descriptions. Use case description contains a natural language
specification of the use case. In this research we continue
working with the format used in [13]. According to this
format, a use case description is composed of different
sections including:
� Title
� Precondition that should be true before the use case

starts
� Steps describing the behavior; each step could be

described with an operation, an optional extension point

M

619

and a set of alternatives after the step
� Use Case Alternatives, describing the alternatives that

are addressed within the steps
� Post-condition, which must hold after the use case

completes.
A state machine is a ‘behavior that specifies the sequences of
states an object goes through during its lifetime in response to
events, together with its responses to those events’ [19]. State
machines could be visualized using state/activity diagrams. As
is asserted in [19], ‘one may use state machines to model the
behavior of any modeling element, most commonly, a class, a
use case, or an entire system’.

A state machine is basically composed of states and
transitions. A state is ‘a condition or situation during the life
of an object during which it satisfies some condition, performs
some activity, or waits for events’. A transition is ‘a
relationship between two states indicating that an object in the
first state will perform certain actions and enter the second
state when a specified event occurs and specified conditions
are satisfied’ [19].

The state machines as we deal with, in this paper, are
behavioral state machines, which are used to define the
behavior of modeling elements, according to [20].

MDA is an effort by OMG, in order to standardize model
driven software development [21]. It can be seen as a
framework composed of four different layers of modeling.
The topmost layer is the layer of Computation-Independent
Models (CIM). CIM represents models that are valid in spite
of the computational options. Then we have the layer of
Platform-Independent Models (PIM). PIMs represent systems
and software design and architecture; however, they do not
contain any information about specific platforms. The third
layer, Platform-specific Models (PSM) deal with the
technological details of platforms. Here, logical design models
are expressed in terms of certain platforms. At the lowest
level, there are Implementation-Specific Models. These are
real-world objects and components, acting as a running
version of the system.

The Meta-Object Facility (MOF) [22] is the heart of MDA
[23]. MOF provides a means of building new modeling
languages or transforming different languages each to the
other. The MOF is composed of very simple but strong-
enough elements to describe any other modeling language.
Although MOF does not provide any specific notation, it is
possible (and convenient) to use basic UML Class modeling
notations (with few considerations) to depict MOF models.

MDA admits two levels of MOF-based languages [24]. The
first level addresses languages rooted in the MOF itself. The
second level deals with the UML profiles. This level involves
different UML extensions. In order to facilitate model
exchange amongst different tools and standards, an XML
Metadata Interchange [25] format has also been defined as a
part of MDA.

MDA could also be understood by its meta-modeling
mechanism, which is reflected in Table 1.

III. RELATED WORK
Nguyen and Chun [26] describe a method to make UML

models more dynamic. They present a restricted use case
specification language that is related to domain objects using
some key words. They also use the notion of aspects [27] in
order to describe how their method generates sequence
diagrams. They build design diagrams that are connected to
MDA-based metadata through hyperlinks and exchange
languages. They also bridge UML sequence diagrams with
current legacy code in order to raise the level of code reuse.
Sequence diagrams are generated automatically but with the
cost of making the use case specification language more
complex by the inclusion of some design issues.

The main objective of Nguyen and Chun’s work differs
from ours in several ways. The focus of Nguyen and Chun’s
work is on building interactive UML design diagrams and
code reuse. Our method is, however, focused on the whole
MDA-based process from requirements to code. Nguyen and
Chun use sequence diagrams as the core model, mainly
because sequence diagrams could be easily connected to code
for further reuse. We use state machines instead, which could
be used in different levels of abstraction. Finally, In Nguyen
and Chun’s work, MDA standards are not used for
interoperability purposes amongst different tools but as an
internal way to model storage and exchange.

The closest work to ours is that of Wu et al [28]. Wu’s
work describes a method to generate a user interface code
following MDA transformation and the Model View
Controller (MVC) pattern. The method spans the gap from
requirements to code for a user interface model by
transforming boundary objects resulting from a robustness
analysis [29] to JSP pages [30]. In order to do this, Wu et al
provide a framework that starts with use case modeling and
activity diagrams. Then they perform a robustness analysis to
categorize the participating objects. Finally, JSP pages are
built according to the transformation rules and UML models.

Unlike the work of Wu et al [28], our study covers the
generation of code for the whole software system, not only the
user interface part. Although, we select certain platforms to
implement our method, the method itself is theoretically
platform-independent. Finally, we have developed not only a
method but also a practice to show the feasibility of the
method, which is not present in [28].

TABLE I
MDA META-MODELING MECHANISM

M3 (MOF) Metametamodeling layer, including the most
abstract materials required to build new
languages and interoperability standards

M2 (UML, CWM, ...) Metamodeling layer, providing the notation
and formalism that can be used to model
speci�c domains and systems. This layer is fed
by M3. Examples are UML pro�les.

M1 (User Model) Projections of M2 in terms of certain user
requirements. This includes di erent
extensions of M2 to model the speci�cations of
a certain subject.

M0 (Runtime Model) Runtime objects. Running versions of M1.

620

We may also mention the work of Pastor and Molina [37],
which is a conceptual framework for MDA-based software
development environments. The approach presented in their
book is neither rendered in practice nor formal, however since
an ultimate goal of our method could be the generation of an
MDA-based environment, Pastor and Molina’s work provides
a useful point of reference.

In our research, we use the method presented in [13], which
is performed with the help of the UCEd. This method
elaborates the necessity to support use-case-based
requirements engineering. This support is given throughout
domain objects, operation pre- and post-conditions, and semi-
natural language use case steps. For each of the latter, UCEd
provides some automatic and semiautomatic means. The
output is a state machine that belongs to the category of
platform-independent models, since it sketches an overview of
how the system works without any design-related details.

UCEd provides a set of tools for defining use case
descriptions, inclusion and extension. It also provides a semi-
automated wizard for domain extraction. The resultant domain
model may be refined by editing the information related to
domain objects and their operations and attributes. UCEd can
generate the corresponding state machine and simulate its
execution.

In order to work with UCEd, one needs to first enter use
case descriptions. Having this description validated, one
proceeds through a wizard in which UCEd provides one with
a series of different choices for domain objects. The result is a
validated domain model. This domain may be optionally
supplied with operations’ conditions that are used to build
operation contracts [33]. State machine can be generated now.

We also use AndroMDA. AndroMDA is an MDA-based
code-generation framework. It provides a set of profiles for
different platforms along with some mapping functions to
transform models to each other or to the programming code.
The process starts with user creating a starter application; this
includes identifying the platforms to work with (e.g. J2EE,

Struts, etc.). As a result an empty UML model is built, which
includes required references to UML profiles of technology
and platforms. The developer then imports this model into a
UML tool and adds design elements needed by the
AndroMDA framework. The resulting model is processed by
AndroMDA leading to executable code, which may be refined
by the developer.

IV. THE METHOD
The solution we provide in here is a method, which is both

model-driven and requirements-based. The input is provided
through use cases and the output is the executable code
generated in accordance with MDA. Different steps of the
method are either automatic or semi-automatic. The whole
process is actually a collection of mappings in accordance
with XMI format necessities, MOF-based meta-models and
MDA transformation rules.

As Figure 1 shows, the main task of this process is to
transform a PIM to a PSM. This process is done through three
main steps. First, a default UI model is created according to
the state machine found in the PIM. The developer is then
asked to refine this model to build the desired UI model.
Finally the UI model, along with other parts of the PIM, is
used to generate a PSM.

A working example taken from [17] is used in this section
to elaborate the method using more details. The whole
application is called ‘Time Tracker’ but we only cover one use
case, named ‘Search Timecards’.

A. First Step: CIM to PIM
Use case descriptions and default domain objects are

considered as the CIM of our method. The objective of this
step is to transform the CIM to the PIM. The PIM includes the
state machine, the user interface model and the refined domain
model.

Table 2 includes the information regarding the CIM for
‘Time Tracker’. This CIM is transformed to the PIM

Fig. 1. Transforming a PIM to a PSM

621

afterwards. Figure 2, shows a part of the PIM, which is a state
machine. As this figure shows, transitions are named after the
operations and their conditions. Other parts of the domain
models are not shown for the sake of simplicity.

The role of this state machine is critical, since it provides
the mechanism to integrate different use cases. This is
especially true about use cases that are related to each other by
inclusion or extension mechanisms and use cases that act as a
pre-condition to other ones. The state machine is also used as
the origin of the default UI model described in next section.

UCEd provides two different ways of creating a state
machine. The simpler is to generate the state machine based
on the use case flow. However, the use case flow does not
always reflect the exact flow of events. It is also possible to
define operation conditions and the effect they have on
domain objects in terms of changing their state. UCEd can use
this information to generate another type of state machine
based on the operation effects.

B. Second Step: PIM to PSM
A PIM-to-PSM is a mapping from a platform-independent

model of domain objects, state machines and user interface
models to a platform-specific model. The PIM generated in
last step provides the information regarding the domain
objects and their operations, the flow of events and the
conditions that apply to every phase.

The true mapping should be done according to a selected
profile. However, due to implementation constraints, we have
to pick up some profiles that are already created to be used
with a specific code generation framework, AndroMDA. The

chosen profile contains various definitions about Java as the
programming language, AndroMDA as the code generation
framework, ArgoUML as the modeling tool, Struts [31] as the
user interface framework and MySQL [32] as the database
server.

Prior to the description of the method, it is necessary to
define some terms regarding this platform:
� A controller class is the class responsible for controlling

general activities within a use case. A controller can act
as an entry point to dispatch messages and operation
requests to the right target. This is in accordance with a
design pattern with the same name. For more information
regarding the controller pattern, see [33].

� An action event is an event to be called when submitting
a form from within a web page. Action events usually
include parameters which are the input fields on the
forms.

� A deferrable event is an event calling a controller
operation. Deferrable events are used to assign states with
operations.

� A page parameter is any output that is either shown or
used for other output fields on the web page.

� A value object is an object to carry the required
information between domain objects and the presentation
or data access layer.

� FrontEndView is a state stereotype implying that the
stereotyped state represents a web page.

For more information, one may refer to [34]
The approach is not fully automatic; we need to interact

with the developer to see what is expected as a value for user
parameters. In order to do this, we create a default UI model
according to the provided PIM state machine. This default UI
model will be the base model to generate the PSM thereafter.

The method is adjusted to work with the OpenDocument
format [35]. OpenDocument is an XML-based format to
define documents containing text or graphics. This means that
the user interface model should be created in accordance with
this format. Currently, we use OpenDraw [36] to draw the UI
model. The developer is required to create the UI model
following some rules:
� Every nonempty slide is considered a presentation state

(e.g. a web page)
� Drawing items could be grouped to represent a group of

related outputs on a page or more importantly an input
action and its related items (e.g. a submit button)

� A frame is a symbol of an action
� A triangle represents a dropdown input
� A rectangle represents a plane text input
� A cloud could be grouped with any input item to identify

its data type
� A ring can be grouped with an action denoting the called

operation associated with the action
� A cylinder could be grouped with any input item

declaring its data source containing the name of table
and/or column

TABLE 2
CIM OF TIMETRACKER

Use Case Name Search Timecards
Use Case Precondition Timetracker is Up
Steps 1. User browses Search Timecards page

2. Tmetracker populates Search Timecards
page
3. User enters search parameters
4. User presses search button
5. Goto step 1

PostCondition Search Timecards page is browsed

s0_0 s1_0

s2_0

browse Search Timecards Page/

populate Search Timecards Page

enter search parameters/

press search button/

populate Search Timecards Page

Fig. 2. The state machine generated by UCEd for the use case Search
Timecards

622

� If a group of outputs was combined with a cross, this
would mean a table view output

States are recognized as either presentation (front-end) or
logic states. For each presentation state, si:
� si�1 is the state preceding si
� si+1 is the state following si
� ti�1,i is the transition from si�1 to si
� ti,i�1 is the transition from si to si�1
� ti,i+1 is the transition from si to si+1
� ti+1,i is the transition from si+1 to si

Neither si�1 nor si+1 could be a presentation state. Currently
we accept no multiple transitions out of a state, which means
there would be just one form per web page.

In the ‘Time Tracker’ example, state s1_0 is a presentation
state that is prototyped using the model of Figure 3. The
default user interface model includes four empty slides per

four steps of the state machine in Figure 2. The rest of the UI
model has to be defined by the developer. The developer has
then generated the user interface model for this state machine
assigning the model in Figure 3 to the step s1_0. According to
this figure, Timetracker has a webpage containing two parts.
First section is an action form submitting following values to
the operation, populateSearchScreen:
� submitter from a dropdown input supplied by the

database table USERS
� approver from a dropdown input supplied by the database

table USERS

� status from a dropdown input supplied by the database
table USERS

� startDateMinimum from a date input supplied by the User
� startDateMaximum from a date input supplied by the

User
The second section shows the output that is a table

containing the search results. Table columns are id,
submittername, approvername, status and startDate all
coming from the database table USERS.

Suppose A as the set of actions submitted from si. Each
action is defined as the tuple {a, Fi, operation}. Fi is the set of
input fields and is defined as {{F,r}|f,r} +} in which
� F is a set of fields
� f is a single field
� r is the value object providing the input
� operation is the name of the operation this action calls.

Also, assume O as the set of outputs shown by si. Each
output is simply a set of output fields, Fo.

Back to the ‘Time Tracker’ sample, we can see that for
s1_0, A includes one action that is defined as {Search,
{{submitter, USERS}, {approver, USERS}, {status, USERS},
{startDateMinimum, null}, {startDateMaximum, null}}, pop-
ulateSeacrhScreen}, where
� ‘Search’ is the action
� The set of input fields (Fi), includes

o submitter, approver, and status coming from
database table USERS

o startDateMinimum, startDateMaximum entered
by the User

� And populateSearchScreen, the controller operation to be
called

There are some mapping rules that apply regardless of the UI
model:

� There must be one controller class per use case
� There must be a service class per operation
� Controller classes must be dependent on their objects’

service classes
In order to transform this UI model to a PSM model, we

abide by some further rules.
� Every presentation state becomes a state stereotyped as

FrontEndView
� For each member of A

o a becomes an action event on ti,i�1 or ti,i+1
whichever exists

� a becomes a deferrable event on si+1 calling operation
� operation becomes an operation of the controller class
� Fi becomes the set of input parameters on both a and

operation
� For every database table referred to by members of Fi, an

entity domain object and a value object are created
o There would be a dependency from every entity

domain object to the relevant value object
o Add an operation to the service class to retrieve

the data from database
o Make a dependency from the service class

Fig. 3. The user interface model for Timetracker drawn by OpenDraw

623

� For each member of O, Fo becomes the set of parameters
on a signal event belonging to ti�1,i or ti+1,i whichever
exists

In case of ‘Time Tracker’, the generated PSM will include a
state machine containing three states. State s1_0 of Figure 3
will be stereotyped as FrontEndView. The transition out of
this state has an action event called, search with the user
parameters, submitter, approver, status, startDateMinimum,
and startDateMaximum. The state preceding s1_0 calls a
deferrable event named, populateSearchScreen(submitter,
approver, status, startDateMinimum, startDateMaximum).
The transition to the state, s1_0 carries a tabular page variable
of (id, submitterName, approverName, status, startDate).

C. Third Step: PSM to Code
This last step is done by the code generation tool. Currently,

we generate a PSM that could be edited by ArgoUML and
read by AndroMDA.

V. CONCLUSION
This paper reflects the present state of research and

development of our method, so our main purpose has been to
present the concepts of the current tool and method. Our
method is a semi-automated approach for the generation of
web-based applications from requirements. This is done using
several transformations over use cases, user interface models,
state machines, design models and code.

A java application has been implemented to run the method.
This tool has so far been tried on several examples taken from
actual case studies including the ones found in [17].

As future work, we intend to cover more complicated cases.
We are especially interested in mixed problem classes,
applications with database transactions and multiple use cases
and state machines within the same application. We also
intend to evaluate the effectiveness of the method by having
group of developers evaluate it in practice.

We plan to improve the method itself by including tool and
platform profiles. These profiles would guarantee that the
method remains tool and platform independent. Profiles will
be provided as a component of a general family of platform-
independent mapping patterns.

REFERENCES
[1] ModelDriven Architecture, www.omg.org/mda, [Accessed 25 February

2008].
[2] Object Management Group, www.omg.org, [Accessed 25 February

2008].
[3] T. O. Meservy, K. D. Fenstermacher, “Transforming software

development: an MDA road map.” IEEE Computer, Vol. 38 (9), pp. 52–
58 (2005)

[4] OMG, “Proceedings of the MDA in the US Government Workshop,
Washington DC”, 15 November 2005 [online], Available:
(www.omg.org/docs/gov/051101.pdf). [Accessed 28 Feb. 2008]

[5] “IBM Rational Software Architect”, www-
306.ibm.com/software/awdtools/architect/swarchitect, 25 February 2008.

[6] “MagicDraw”, www.magicdraw.com, [Accessed 28 Feb. 2008]
[7] “ArgoUML”, argouml.tigris.org, [Accessed 28 Feb. 2008]
[8] “Enterprise Architect”, www.sparxsystems.com.au/products/ea.html,

[Accessed 28 Feb. 2008]

[9] “Telelogic System Architect”,
www.telelogic.com/Products/systemarchitect, [Accessed 28 Feb. 2008]

[10] “Object Management Group UML”, www.uml.org, [Accessed 28 Feb.
2008]

[11] A. Cockburn, Writing Effective Use Cases. AddisonWesley, Harlow,
2001.

[12] Y. Chen, I. Y. Song, “Guidelines for Developing Quality Use Case
Descriptions.” Proceedings of 2007 IRMA International Conference, pp
564–567 (May 2007)

[13] S. S. Som´e, “Supporting use case based requirements engineering”
Information and
Software Technology, Vol. 48 (1), pp. 43–58 (2006)

[14] H. Behrens, “Requirements Analysis Using Statecharts and Generated
Scenarios” In Doctoral Symposium at IEEE Joint Conference on
Requirements Engineering (2002)

[15] A. G. Sutcliffe, N. Maiden, A. M. Minocha, D. S. Manuel “Supporting
ScenarioBased Requirements Engineering” IEEE Transactions on
Software Engineering, Vol. 24 (12), pp. 1072–1088 (1998)

[16] “Use Case Editor”, www.site.uottawa.ca/˜ssome/Use Case Editor
UCEd.html, [Accessed 25 February 2008]

[17] “AndroMDA”, www.andromda.org, [Accessed 25 February 2008]
[18] I. Jacobson, Objectoriented software engineering : a use case driven

approach, AddisonWesley, 1993.
[19] G. Booch, R. Rumbaugh, I. Jacobson, The unified modeling language

user guide. AddisonWesley, Upper Saddle River, 2005.
[20] “UML, Unified Modeling Language: Superstructure version 2.1.1”,

2007 02 05, [online]. (Available: www.omg.org/cgibin/doc?formal/07-
0205), [Accessed 25 Feb. 2008]

[21] T. Stahl, M, Volter, J. Bettin, A. Haase, and S. Helsen, Modeldriven soft-
ware development : technology, engineering, management /translated by
Bettina von Stockfleth. John Wiley, Chichester, England ; Hoboken, NJ.
2006.

[22] “Meta Object Facility (MOF) Core Specification OMG”, [online].
(Available: www.omg.org/technology/documents/modeling spec
catalog.htm#MOF). [Accessed 25 Feb 2008]

[23] “OMG’s MetaObject Facility (MOF) Home Page”, www.omg.org/mof,
[Accessed 25 Feb 2008]

[24] D. S. Frankel, P. Harmon, J. Mukerji, J. Odell, M. Owen, P. Rivitt, M.
Rosen, R. M. Soley, “The Zachman Framework and the OMG’s Model
Driven Architecture, a BP Trends Whitepaper”, September 2003.
[online] (Available: www.omg.org/mda/mda files/0903WP Mapping
MDA to Zachman Framework1.pdf), [Accessed 25 Feb 2008]

[25] “XML Metadata Interchange”,
www.omg.org/technology/documents/formal/xmi.htm, [Accessed 25 Feb
2008]

[26] P. Nguyen, and R. Chun, “Model driven development with interactive
use cases and UML models”. Proceedings of The International
Conference on Software Engineering Research & Practice and
Conference on Programming Languages & Compilers, pp 534–540
(2006)

[27] I. Jacobson, Ng. PanWei, Aspect oriented software development with use
cases. AddisonWesley, Upper Saddle River, NJ (2005)

[28] J. H. Wu, S. S. Shin, J. L. Chien, W. S. Chao, and M. C.L Hsieh, “An
Extended MDA Method for User Interface Modeling and
Transformation”. Proceedings of The 15th European Conference on
Information Systems. pp 1632–1641 (2007)

[29] D. Rosenberg, and M. Stephens, Use case driven object modeling with
UML : theory and practice, Apress Publishers (2007)

[30] “Java Server Pages Technology”, java.sun.com/products/jsp, [Accessed
25 Feb 2008]

[31] “Struts”, struts.apache.org, [Accessed 25 Feb 2008]
[32] “MySQL AB”, dev.mysql.com, [Accessed 25 Feb 2008]
[33] C. Larman, Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development. Prentice Hall
PTR (2005)

[34] “AndroMDA BPM4Struts”, galaxy.andromda.org/docs/andromda-
bpm4strutscartridge/index.html, [Accessed 25 Feb 2008]

[35] “OASIS”, www.oasisopen.org, [Accessed 25 Feb 2008]
[36] “Draw”, /www.openoffice.org/product/draw.html, [Accessed 25 Feb

2008]
[37] O. Pastor and J. C. Molina, Model-Driven Architecture in Practice: A

Software Production Environment Based on Conceptual Modeling,
Springer (2007)

624

A model-driven toolset to support an approach for analyzing integration of
business process aspect of enterprise application integration

Souvik Barat
Tata Research Development & Design Centre,

Pune, India
souvik.barat @tcs.com

Vinay Kulkarni
Tata Research Development & Design Centre,

Pune, India
vinay.vkulkarni@tcs.com

Abstract
The demand for integrating enterprise applications is
growing as a consequence of the need to support
dynamic cross-functional inter-organizational business
processes. Semantic underpinnings of the high level
notations used by Industry practice to specify
enterprise applications, and tools and techniques
prevalent in industry are not rich enough so as to be
able to capture and verify the required properties of
interest with rigor. As a result, ensuring semantic
correctness of integration of existing applications is a
manual effort intensive process. By combining the
usability of high level notations prevalent in industry
practice and the analytical rigor of formal techniques,
and visualizing the integration problem as a view-
integration problem over data, service and process
models, the problem can be addressed more
pragmatically. We present such an approach for view-
integration of process models wherein the principal
objective is to analyze the process views in the context
of reusability, adaptation and integration, and a
model-driven toolset to automate the approach.

Keywords: Business Process Integration, Model-
driven Integration, Model-driven Framework.

1. Introduction

Enterprises are witnessing an increased thrust on
collaboration and integration of existing applications to
fulfill the upcoming business demands. In this
integrated environment, the enterprises are no longer
limited to a specific organization or department but
span across the entire value chain to provide value
added services [14, 16, 25]. Typically, enterprises are
organized into a set of departments each catering to a
cohesive functional need with IT systems providing

automation support to the extent possible. As a result,
over a period of time, an enterprise ends up with a set
of isolated applications providing point solutions each
constructed for a specific purpose. Integration of such
disparate applications to realize the desired
requirements with maximal reuse is a critical challenge
for modern enterprises.

We model enterprise application as a 3-tuple
comprising of its data, service and process models [15].
The application integration problem can now be
visualized as a view-integration problem over data,
service and process models. Present Enterprise
Application Integration (EAI) [16] solutions only
provide ‘plumbing support’ for data adaptation and for
correct invocation of services in the light of the
integrated data models. Very little work of practical
significance is seen with regard to process level
integration [14]. Industry practice uses a set of
modeling notations such as BPEL [13], UML profile
for business process [12] etc. to specify business
processes. Semantic underpinnings of these notations
not being rich enough, they cannot be used for
verifying correctness of process integration. As a result,
industry practice has to depend only on testing – an
effort and time intensive activity. On the other hand, a
variety of formal techniques [3, 8, 9, 19, 26] using a
variety of formalisms [1, 17, 10] have been proposed to
address process integration problem. However, these
approaches have not seen wide industrial acceptance as
practitioners find them too involved to use and too
detailed to specify as compared to the high level
notations they are used to. Therefore, there is a need
for a pragmatic approach that combines the rigor due to
formal techniques and the usability and high level of
abstraction due to prevalent industry practice to
address the integration problem in a comprehensive
manner.

625

This paper proposes a pragmatic approach for
analyzing business processes for integration properties
of interest, and a model-driven framework for
automating the approach. We present, process
automata [4] as an abstraction to formally represent a
process view, a set of integration properties of interest,
and a set of mediation operators to be used for
adaptation of a process view in conflict for a class of
mismatches. The rest of this paper is organized as
follows: Section 2 presents the approach. Section 3
provides an overview of the formal foundations of the
approach. Overview of a model-driven framework is
presented in Section 4 and section 5 concludes
outlining future work.

2. Approach

Enterprise application integration is about realizing the
desired integrated application through maximal reuse
of existing applications. Consider Adesired is the desired
application that needs to be realized through maximal
reuse of existing applications A1, A2,…An. For safe
integration, it needs to be established whether an
existing application Ai fits into the context of Adesired or
not. In case of a mismatch, one would like to know if
the existing application could be made to fit with some
adaptation. The fitting applications, with or without
adaptation, can be considered for integration in order to
realize the desired application with assurances of
completeness of the integration.

We visualize an enterprise application being
specified in terms of its data, service and process
models that we term as views. Since an application is
designed to operate in a specific, and typically, isolated
context, built-in assumptions may sneak in the
definition of these views. We argue that these
assumptions lead to conflicts or mismatches while
integrating these applications. The fundamental issue in
enterprise application integration lies in identification
and mitigation of these conflicts. The conflict or
mismatches can be identified by verifying a set of
properties of each of these views. We term these
properties as integration properties. The identified
conflict/mismatch can be mitigated by transforming the
view in conflict. We term this transformation as
mediation. Since modeling notations used by industry
practice to specify these views are not amenable for
rigorous analysis, we introduce a set of formal models
for each of these views to enable formal analyses. We
term these formal models as analysis specific models.
Figure 1 depicts this separation of concerns. We use
model-2-model transformation specifications [24] as a
means to provide bi-directional transformation between

these models. Decomposition of an application into
views and transforming these views into a set of
analyzable models provide an opportunity to use
specialized tools and techniques in the respective
domains. We consider only the behavioral aspect of the
enterprise application in this paper.

The behavioral aspect of an enterprise application
is typically a control flow over a set of process steps. A
process step could either be a manual task or automated
through a service offered by an application. We
propose two integration properties, compatibility
property and completeness property, for process view
integration. Compatibility property verifies whether a
process view of an existing application Ai fits into the
context of the process view of the desired application
Adesired or not. Essentially, this property analyzes the
control flows over a set of process activities of two
process views in the context of reusability. The
completeness property ascertains the behavioral
completeness of a set of fitting process views of
existing applications with respect to the process view
of the desired application. This ensures the required
process activities of the desired process view are
present in any of the participating process views and
they do not violate any flow assumptions, and also
determines the gaps.

To enable rigorous analysis, we use process
automata as a formal representation of a process view
and use a set of mediation operators to adapt a process
view in conflict. The process automaton is based on
finite state automata [11] model. The concept of
simulation relation [17] and language containment [11]
are adopted appropriately with the notion of refinement
[2] for ascertaining the proposed integration properties.
The mediation operators are based on the concept of
refinement, abstraction and hiding. We use a popular

Application
Specific Model

Data View

Service
View

FSA Model

CSP

…
Application

Model

Process
View

Concern
Specific Model

Analysis
Specific Model

Structural Analysis Formal Analysis

Fig 1. Model decomposition & transformation

626

formal toolset [7, 18] for automating the analyses. We
have developed a model-driven framework that
combines the rigor due to formal techniques and the
usability and high level of abstractions due to prevalent
industry practice to address the process integration
problem in a pragmatic manner.

3. Formal foundation

Fundamentally, the identified integration properties are
kinds of checking refinement [2] using system
equivalence [17] and their pre-order relations. The
relations can be verified if the involved systems can be
visualized as a label transition system. By modeling the
behavioral aspect of enterprise application, process
view, as deterministic finite state automata, termed as
process automata [4], the verification of integration
properties can be visualized as the automata synthesis
problem. Due to the lack of space, we describe only the
important definitions and concepts in this paper. The
detail formal interpretation can be found in [4] and [5]

3.1 Process automata

Formally, we represent a process view as a
deterministic finite state automaton wherein process
states are the states of automaton, process activities are
the alphabets or the events, and activity flows are the
state transition relations. Parallelism and
synchronization between activities is addressed by
flattening out the possible interleaving of activities.
The conditional expressions are also considered as the
events and transitions of the transition system. A
process automaton P is a 5-tuple: P (S, E, T, s, F)
where
S is a finite non empty set of process states.
E is a finite set of events, which represent the
vocabulary of process activities and conditional
expressions. The process activities and conditional
expressions are suitably mapped onto the events, i.e.
services, manual task and conditional expression over
process data can be visualizes as event of a process
automata.
T is a non empty set of transitions. A transition t ∈ T

is defined as, 'ss e
⎯→⎯ , where s is the source state, 's

is the target state and e is an event. The structural
constructs between process activities and conditional
expressions are mapped into the transitions relations.
s is the start state (s ∈ S).
F is the set of final states (F ∈ S).
We assume there is no incoming transition to the start
state and final states have no outgoing transitions.

3.2 Analysis technique

In this section, we present the important definitions to
establish proposed integration properties.

Mapping (M: E1� E2)
In a real life integration scenario, different applications
may use different terminologies that reflect in different
vocabularies being used to describe their process
views. Mapping M describes a correspondence
between a set of events E1 of process P1 to a set of
events E2 of process P2.

e1:P1 � e2:P2 � Event e1 of process P1 and
event e2 of process P2 are semantically equivalent
events. We define a mapping function (fmap (event)),
which returns either the corresponding event e2 of E2
for a given event e1 of E1 from the provided M if event
exists in M or the event itself.

Restriction (P1, P2, M)
Given a mapping M, the Restriction of a process P1 by
a process P2 results in a process PR that contains only
those transitions of P1 whose corresponding events are
present in process P2, i.e. PR = Restriction (P1, P2,M),
where
 Restriction (P1, P2, M) = Ignore (P1, (E1 – M(E2)))
Restriction operator ignores the transitions of P1 having
events from the set (E1 – M(E2)). Given a process P
and a set of events I, Ignore operator computes the
transitive closure graph by considering the set of
transitions triggered by e ∈ I as epsilon moves and
constructs an equivalent deterministic finite automaton
using subset construction algorithm.

Composition setting
Formally, a composition setting can be described as a
3-tuples (PD, PC, M), where PD is process automaton of
the process view of desired application Adesired, PC is a
set of process automata {P1, P2…Pn} of process views
of all participating applications A1, A2,…An, and M is
set mappings {M1, M2, …,Mn} respectively, where Mi
denotes the mapping between participating process
automata and desired process automata

Event Completeness
The event completeness criterion holds for a
composition setting CS = (PD, PC, M) iff it satisfies the
following condition

))(e'f e (such that E e' ,E mapD =∈∃∈∀ Ce

Simulation relation
Given a mapping M, two processes P1 = (S1, E1, T1, s1

0,
F1) and P2 = (S2, E2, T2, s2

0, F2), a relation R ∈ S1× S2

627

is called a simulation relation iff it satisfies the
following condition:

 R)'2s , '1(s '2s
(e)f

2s s.t. S '2s

 then '
1s

e
1s R,)2s ,1(s if

2S 2s and 1S '1s ,1S 1s

map
2 ∈∧⎯⎯⎯⎯ →⎯∈∃

⎯→⎯∈

∈∈∈∀

A process P2 simulates process P1, denoted by P1 ≤M P2,
if there exists a simulation relation R ∈S1× S2 such that
(s1

0, s2
0) ∈ R.

Collective simulation relation
Let (PD, PC, M) is a composition setting where PD =
(SD, ED, TD, sD

0, FD) is desired process automaton, PC =
(SC, EC, TC, sC

0, FC) is collective process automaton of
process automata P1,P2,…,Pk and M is set of event
mapping. A relation R ∈ SD× SC is called a collective
simulation iff it obeys the following conditions:

k][1, i where, 's s , s.t.

 i aleast at exists there,s' s

 follows as is automata process ingparticipat
 of state ofset over then transitio Where

R)s' , '(s' such that

 's then s R, s) ,(s if

}s ..., ,,{s s and ' ,

i
)(

i

)(

d
)(

'e
dd

k21DD

∈⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

∈∧⎯⎯⎯ →⎯

∈∃⎯→⎯∈

∈=∈∈∀

ef

ef

ef
Cd

Cdd

map

map

map ss

Ss

SsSsSs

A given a set of mapping M, product of participating
processes PC simulates the desired process PD, denoted
by PD ≤M

C PC, if there exists a simulation relation R
∈SD × SC such that there exists an s0

∈ sc
0 that satisfies

(sD
0, s0) ∈ R.

Compatibility property

A compatibility property is proposed to determine the
extent of reusability of a process in the context of the
desired process and the adaptation required in case of a
mismatch. A process automaton P1 is compatible with
respect to process automaton P2 iff following condition
is satisfied:

 Restriction (P2, P1,M)≤M P1

Completeness Property

Completeness property ascertains that the desired
process can be realized by integrating the participating
processes. A given composition setting (PD, PC, M) is
complete iff the following conditions are satisfied:

− Composition setting is safe i.e.
∀i ∈[1,k] , where k = | PC |, the compatibility
criteria holds for process Pi with respect to
desired process PD i.e. Restriction(PD,Pi,Mi)≤M Pi

− Composition setting satisfies the event
completeness relation.

3.3. Process mediation operators

The proposed formal foundation provides a set of
techniques for analyzing the compatibility property and
completeness property. It also generates a counter-
example in case of mismatches in execution orders of
the involved activities between the existing and the
desired processes. A certain class of conflicts can be
resolved by transforming the process model in conflict
into the desired process model using abstraction,
refinement, hiding technique. For instance, a process
activity of a specific process model can be realized as a
sequence of process activities in desired process model
(refinement), a sequence of process activities of a
process model can be considered as a single process
activity in desired process (abstraction), or an
unintended process activity (like notification of a
confirmation messages) is present in a process model,
which is not required in desired process. We term such
mismatch as resolvable mismatch. The other class of
mismatch can not be resolved by transformation
techniques, we term this class of mismatch as
irresolvable mismatch. For instance, if the process
activities violate the execution order, i.e. process
activity a2 is executing after the execution of process
activity a1 in a process model, and desired process
model expects a2 should be executed prior to the
execution of a1.

3.4. Toolset

In order to automate the proposed formal techniques,
we have implemented a toolset, process automata
verification environment (PAVE), using Esterel [6],
fc2tools [7] and MONA package [18]. The toolset
implements proposed operators and the relations by
adopting various existing algorithms and formal
techniques. The implemented toolset uses an extended
FC2 [7] format as the input specification language.

4. Model-driven framework

We have automated the proposed approach through a
model-driven framework that supports i) creation of the
different kinds of models and bi-directional
transformations between them, ii) specification of
integration properties using a domain-specific
language, and iii) analysis toolkit. Among the various
models supported, Application model is high-level
specification of the entire application, Concern-specific

628

model captures a specific concern of interest of an
application model, and Analysis-specific model
facilitates use formal verification techniques. All these
models are MOF-describable and hence can be
transformed from one to the other [24]. Analysis
specific model contains two parts: structural part and
behavioral part. The structural part conforms to a
specific metamodel with a place-holder for behavioral
part which is a textual specification conforming to a
specific formalism. For want of space, we do not
discuss details here which can be found in [5]. The core
functional units of the proposed framework are as
follows:

MDA Modeler: Provides support for defining various
MOF-describable meta models and models. We use
process view metamodel and process automata specific
metamodel proposed in [5]. Process view metamodel is
a concern-specific metamodel that is aligned with
BPEL constructs for specifying business processes.
Process automata metamodel is an analysis-specific
metamodel whose behavioral part conforms to the input
language of process automata verification language, i.e.
FC2 format.

Property Specification Language: A domain specific
language is proposed for specifying integration
properties at a higher-level of abstraction [5]. These
specifications are independent of the specific
formalism being used for analysis. The expression
language of the proposed language is based on Object
Constraint Language (OCL) [23] and property
specification constructs are based on first-order logic
and predicate logic.

Model Transformation Environment: This unit deals
with the basic requirement of the model transformation
mechanism (conforming to QVT transformation). This
provides an environment to specify the transformation
rules, at the meta model level, to automate the
transformation process. In order to establish the
interoperability between the supported models, we
define a set of transformation rules. The rules are:
1. Transformation between application model and

process view model (Application2ProcessView):
the process view metamodel is aligned with BPEL
constructs. The transformation from UML Profile
for business process to BPEL is defined in [12]. We
use the same strategy for this transformation.

2. Transformation between process view model and
process automata specific model: We define a
bidirectional mapping strategy, Process2Analysis
transformation, between process view metamodel

and structural part of the process automata specific
metamodel. The proposed schema is conforming to
QVT model-to-model transformation strategy [24].
The translation of process view model to process
automata specification (Process2Fc2) is a two steps
process. First we translate the process view into
Esterel program [6] using QVT model-to-text
transformation language (SpeclL) [21], and then we
use Esterel compiler and FC2Tools [7] to compile
the Esterel program into FC2 format.

Model Based Verification Engine (MBVE): This is
an environment for analyzing the MOF-describable
model elements. Typically, it verifies the invariants
over a set of model elements with or without
transformation. We use OCL and their corresponding
toolset to realize model based verification environment.
Analysis Engine: Analysis Engine is set of formal
tools. We use PAVE as the formal toolset for reasoning
proposed integration properties.

Analysis process

UML Profile for business process [12], conforming to
BPEL constructs, is a visual language for specifying
business processes. We use this as a modeling language
for application model in our framework. The process
view model, conforming to process view metamodel, is
extracted from the application model using
Application2ProcessView schema. The process view
model is translated into process automata specific
model using Process2Analysis and Process2Fc2
transformation rules. The desired integration property
is typically a composition of formal relations and
invariants over model elements. Framework uses
analysis engine for reasoning the formal verification
and MBVE for model manipulation and structural
verification. Verification tool generates counter-
example in case of any mismatch. Framework converts
that feedback into a process automata specific model.
The bidirectional Process2Analysis rules translate this
to process view model to show the mismatch to the
end-user.

5. Conclusion

We argued that enterprise application integration (EAI)
is not just an interoperability issue that can be
adequately addressed using plumbing techniques only,
and the challenge lies in coming up with a pragmatic
approach for ensuring semantically correct integration.
We argued that though several formalisms, namely,
Petri-nets, finite state automata, CSP etc provide the
necessary rigor for analyzing properties of interest,

629

they however do not easily scale up and are a bit
cumbersome to use for an average IT professional. We
presented a model-driven bi-directional bridge between
easy-to-use modeling notations and rigorous formal
abstractions to analyze properties of interest such as
compatibility and correctness (of business process
integration) which, we believe, will help an average IT
professional. We described a model-driven framework
that combines the convenience of high level notations
used by the industry practice and the rigor of formal
verification techniques to automate the proposed
approach. A holistic approach to EAI that combines
integration of data, service and process models is our
objective. Although the formal analysis described here
is restricted to process view integration, the core
concepts of our approach are designed to address EAI
problem as a whole. We think the work described in
this paper has helped us get an insight which will help
in addressing the EAI problem comprehensively in
future.

6. References

[1] Aalst W., The Application of Petri Nets to Workflow
Management, The Journal of Circuits, Systems and
Computers, 8(1), pp. 21–66, 1998.
[2] Abadi M. and Lamport L., The existence of refinement
mappings. Theoretical Computer Science Vol: 82, pp 253-
284, May, 1991.
[3] Ankolekar A., et al. DAML-S: Web Service Description
for the Semantic Web, Proceedings of the International
Semantic Web Conference (ISWC), pp. 348–363, 2002.
[4] Barat S., Kulkarni V. and Janakiram D., A safety criterion
for reusing a business process in the desired integrated
process, IEEE International Conference on Services
Computing (SCC'06), pp. 381-389, 2006
[5] Barat S., Kulkarni V. and Janakiram D., A framework for
business process integration, Technical Report (IITM-CSE-
DOS-2007-03) Indian Institute of Technology, Madras,
http://dos.cs.iitm.ernet.in /publications/techrep/2007.html,
2007.
[6] Berry G., The Esterel v5 Language Primer Version v5 91,
http://www.esterel-technologies.com, 2000.
[7] Bouali A., Ressouche A., Roy V., and Simone R., The
fc2tools Set, 8th International Conference on Computer
Aided Verification, LNCS: Vol 1102, 1996.
[8] Foster H., Uchitel S., Magee J. and Kramer J.,
Compatibility Verification for Web Service Choreography,
Proceedings of the ICWS IEEE, pp. 738-741, 2004.
[9] Hamadi R. and Benatallah B., A Petri Net-based Model
for Web Service Composition, Conferences in Research and
Practice in Information Technology Series, Proceedings of
the Fourteenth Australasian database conference on Database
technologies, Volume 17, 2003.
[10] Hoare C. A. R. and Roscoe A. W., A Theory of
Communicating Sequential Processes, J. ACM 31 (3), pp.
560-599, 1984.

[11] Hopcroft J.E., Motwani, R., and Ullman, J.D.,
Introduction to automata theory, languages, and computation,
Addison-Wesley, 2001
[12] IBM, Draft UML 1.4 profile for automated business
process with a mapping to BPEL1.0, http://www-
128.ibm.com/developerworks/rational/library/4593.html,
2003.
[13] IBM, Specification: Business Process Execution
Language for Web Services Version 1.1, http://www
128.ibm.com/developerworks/library/specification/ws-bpel,
2002.
[14] Johannesson P., Wangler B, and Jayaweera P,
Application and Process Integration –Concepts, Issues, and
Research Directions, Information Systems Engineering
Symposium CAiSE, Springer Verlag, 2000.
[15] Kulkarni V. and Reddy S, Integrating Aspects with
Model Driven Software Development, Software Engineering
Research and Practice, pp 186-197, 2003.
[16] Linthicum D., Enterprise Application Integration,
Addison-Wesley, 2000.
[17] Milner R., Communication and mobile systems: the Pi-
calculus, Cambridge University Press, 1999.
[18] Moller A. and Klarlund N., MONA Version 1.4 User
Manual, Basic Research in Computer Science, Information
and computation 121(2), 1995.
[19] Muller, S, Xu, K., and Liu, Y., A static compliance-
checking framework for business process models. IBM
System. Journal, 46, 2, pp. 335-361, 2007.
[20] OMG, Model Driven Architecture,
http://www.omg.org/mda.
[21] OMG, MOF Model to Text Transformation
Language, QVT RFP, http://www.omg.org/docs/ad/06-
04-03.pdf, 2006.
[22] OMG, Meta Object Facility (MOF) Specification, OMG
Document, 1997.
[23] OMG, UML 2.0 OCL Specification, OMG Document,
2003.
[24] QVT Merge Group, MOF 2.0
Query/View/Transformation, 2005.
[25] Ring K. and Neil Ward-Dutton, White paper: Enterprise
Application Integration: Making the Right Connections,
Ovum consulting group, May, 1999.
[26] Wombacher A., Fankhauser P., Mahleko B. and
Neuhold E., Matchmaking for Business Processes Based on
Choreographies, International Journal of Web Services,
1(4):14-32, 2004.

630

Model-Based Test Complexity Analysis
For Software Installation Testing

Jerry Gao, Karen Kwok
San Jose State University

Todd Fitch, Intuit Corp.
Intuit Corp.

ABSTRACT
Software testing is the last critical phase in software quality
control. Software installation testing is one of the most
important and complex tasks in system testing. However, in past
years, researchers have not paid much attention to the related
issues and challenges in software installation testing. One of
them is test complexity analysis and planning. The paper uses a
test model, known as a semantic tree, to assist engineers in
modeling test complexity of software installation in terms of
diverse system environments and configurations, various
running conditions, and system functional features. The paper
presents one systematic method based on the model to compute
and analyze test complexity of software installation testing in
three perspectives: system configurations, system running
conditions, and system installation functions. The related
application examples and experimental results are reported.
KEYWORDS
Software modeling and analysis for testing, software installation
testing, and model-based testing complexity analysis.

1. INTRODUCTION
Software testing is the last critical phase in software quality
assurance. Software installation testing is one of the important
types of system testing. However, in past years, researchers
have not made enough effort to tackle the related issues and
challenges in software installation testing. Until now test and
QA engineers lack well-defined installation test models,
methods, and automation tools. In the real world, QA and test
engineers always encounter three challenge issues in software
installation validation.
1. A software product usually can be installed on a diverse

system environment with many different configurations.
Where is the solution, which helps them analyze diverse
system configurations for installation testing?

2. A software product is required to be installed successfully
under various system running conditions. Where is the
solution, which helps them analyze various system running
conditions for installation testing?

3. What is software installation test complexity for a given
software product?

4. How can engineers use a systematic approach to identify a
cost-effective test strategy (or test sequences) during test
they planning?

This paper focuses on the first three issues and presents model-
based approaches to addressing them. This paper uses a test
model, known as a semantic tree [19], to demonstrate how to
perform test complexity analysis of software installation testing
in three aspects: a) system configurations, b) system running
conditions, and c) system installation functions. The major
contribution of this paper is its model-based test complexity
analysis method and algorithms. Moreover, its application
examples and case study results indicate that the proposed

approach provides a systematic way to test modeling and test
complexity analysis for software installation testing.
This paper is structured as follows. The next section discusses
the background and related work in software installation testing
and model-based testing. Section 3 reviews the semantic tree
model, and its semantic spanning tree concepts and the related
algorithms. Section 4 demonstrates how to use this model to
compute the test complexity of software installation validation.
The detailed computation formulas and algorithms are given for
test complexity analysis. Moreover, application examples and
statistic results of analyzing software installation test
complexity for Turbo Tax. Finally, the concluding remarks and
future work are mentioned in Section 5.

2. BACKGROUND AND RELATED WORK
What is software installation testing? According to [19], its
major purpose is to validate the given software product to see if
it can be correctly installed in a specified system environment
with proper system configurations and running conditions. The
major focus of software installation validation is to find the
answers to the following questions:
� Can the software be properly installed on all specified

system configurations?
� On the specified system configuration environment, can the

software be successfully installed under each of the
validated running conditions?

� Does the software demonstrate that its installation
functions and behaviors behave correctly?

A detailed software installation test process has been given in
[19]. As pointed in [19], the problem space of software
installation testing can be presented as a 3-dimensional space,
in which the X-axis presents all specified system configurations,
the Y-axis presents all of system running conditions, and the Z-
axis presents system installation functions. Clearly, well-defined
test models and systematic methods are needed to model and
present the issues in this space. This paper is written to address
the mentioned software installation issues using a model-based
approach.

Based on our recent literature survey, we found some related
work that has contributed to software installation testing. For
example, Edward Kit in his book [1] discussed the current status
and existing problems in installation testing in the real world. In
[3], Mark Pawson introduced the Install Shield Test Matrix,
which can be useful for testers to identify, document, and select
the major focuses in software installation validation. Using this
matrix, a tester can select test items and design test cases.
However, there are two issues with this matrix. First, there is a
lack of detailed engineering guidelines and systematic solutions
to help engineers identify and create this matrix. Second, if
software with complex configurations can be executed under
diverse running conditions to support different installation

631

functions, generating this matrix manually becomes very
complex and too tedious. In addition, testers also need a rational
approach and strategy to make cost-effective testing trade-off,
measure test complexity, and analyze test cost and coverage for
software installation. Furthermore, there are some challenges
and methods in the development of software patches. The
proposed solutions in [4] are useful to identify the problems,
develop a patch, and create a deployable package. However,
systematic methods are needed in software installation and
patch testing in the industry to help engineers to identify and
control the test coverage and selections of reusable test cases for
installation testing in software evolution.
In 1999, Edward Kit in his book [1] reported the current practice
status and the existing problems in software installation testing
in the industry. Later, Chris Agruss [2] points out the test
automation needs in software installation. Mark Pawson
presents his approach – a test matrix to track test focuses and a
series of test cases for software installation testing.
Recently, the model-based software testing is becoming a hot
research topic in software engineering. There are numerous
published papers addressing different model-based software test
topics. For example, the basic concepts, motivations and issues
of model-based software testing are discussed in [5][6][7][8].
Different models have used in model-based software testing,
including state-based models [9][10], UML-based models
[11][12], syntax grammar models[13],and the statistical models
[14]. In [25], we introduce a semantic tree model for software
installation testing, and discuss its model-based test criteria for
system configurations, running conditions, and installation
functions.

Until now, the model-based approach has been used in different
areas of software testing. One area is model-based test
generation. For example, Offutt et al. in [10][15] discuss how to
generate tests from state-based model and UML-based model.
Fujiwara et al, in [16] presents the test selection methods based
on finite state models. Farchi et al in [17] share their thoughts on
how to generate tests for standard conformance using a model-
based approach.

In addition, there are a number of papers focusing on model-
based test coverage analysis. Gao et al. in [19] discuss
component-based test coverage analysis using component API-
based function access models. D. Williams in [18] presents his
approach to analyze test coverage based on functional faults and
Failure Mode Effect Analysis (FMEA), which is useful for IC
testing. FMEA approach performs a risk analysis on each
component of a system.

Some researchers have used model-based approach to conduct
regression testing. For example, Bogdan Korel et al [21]
presented their technique to use an extended finite state machine
(EFSM) as a model to support software regression testing. They
used an automatic approach to identify model changes and
impacts as well as related test changes and impacts.

Moreover, some recent publications use a model-based approach
to validate non-functional requirements of software, such as
reliability and performance. For example, Kirk Sayre and Jesse
Poore [21] evaluated the system reliability using a model-based
approach and metrics. Mahnaz Shamms et al. [22] presented a
model-based approach for testing the performance of web

applications. In this approach, they used EFSMs and data
dependence models to measure system user response times and
performance.
This paper focuses on test complexity measurement for software
installation testing. We use a model-based approach to
analyzing software installation test complexity in three aspects:
system configurations, running conditions, installation
functions. A model-based algorithm is provided to allow
engineers to analyze installation test complexity in a systematic
way.

3. A TEST MODEL FOR INSTALLATION TESTING
This section reviews the test model, known as the semantic tree
model in [19] for software installation. Test engineers can use
this model to analyze, model, and present diverse system
configurations, complex running conditions, and various system
installation functions during installation test planning.
In [19], we have proposed a model, known as a semantic tree
model, which is formally defined as 3-tuple = (N, E, R), where

� N is a set of tree nodes. Three types of nodes exist: a) a
single root node, b) intermediate nodes, and c) leaf nodes.

� E is a set of links in a tree. Each link connects a parent
node and child node in a tree.

� R is a set of relations, and each item in R has a semantic
label that presents one semantic relation between a parent
node and its child nodes. Five types of semantic labels
exist: OR, AND, NOT, NAND, and Select-1.

Figure 1 A Semantic Tree Model

Figure 1 shows an example of the generic semantic tree model,
and Figure 2 shows the notation of the five different semantic
labels in a model. Table 1 lists the semantics of a semantic tree
model. As shown in Figure 3, this model can be useful to model
and present diverse system environment configurations, various
running conditions, and installation functions respectively [19].
In the rest of this section, some examples are given to
demonstrate its applications.

IM-Node #J

Root Node

I-Node #1

Intermediate Node

Leaf Node

L-Node #1 L-Node #N

I-Node #M

R

R

R
IM-Node #1

L-IM-Node #1

R

L-IM-Node #P

P-Node

C-Node #1 C-Node #M
EOR

P-Node

C-Node #1 C-Node

AND

P-Node

C-Node C-Node

Select-1

Child Node Parent Node

P-Node

C-Node C-Node

NAND

P-Node

C-Node

NOT

632

Figure 2 The Notations of the Five Semantic Labels

Figure 3 Semantic Tree Models for Software Installation

Table 1 The Semantics of A Semantic Tree Model

Relation The semantics of different relations

EOR It represents an Exclusive-OR relation between a
parent node and its two child nodes. This indicates
that only one of its child nodes can be selected to
associate with its parent node.

AND It represents an AND relation between a parent node
and its child nodes. This indicates that all of its child
nodes associate with its parent node at the same time.

SELECT-1 It represents a SELECT-1 relation with a parent node
and its child nodes. This indicates that only one of its
child nodes can be selected to associate with this
parent node at any time.

NAND It represents a NAND relation between a parent node
and its child nodes. This indicates that all of its child
nodes are not selected to associate with this parent
node.

NOT It represents a NOT relation between a parent node
and its only child node. This indicates that the only
child node is not selected to associate with this parent
node.

A semantic spanning tree GSPT is a sub-tree of a given semantic
tree model GST, where it holds the following properties:
- GSPT must include all parent nodes in GST.
- For each parent node Npi with the AND (or NAND)

relation, GSPT must include all of its child nodes and their
corresponding links.

- For each parent node Npi with the EOR relation, GSPT must
include only one of its child nodes and its corresponding
link.

- For each parent node Npi with the Select-1 relation, GSPT
must include only one of its child nodes and its
corresponding link.

- For each parent node Npi with the NOT relation, GSPT must
include the only child node and its corresponding link.

Figure 4 shows a sample semantic tree model and two of its
semantic spanning trees. The derivation procedure for
generating a semantic spanning tree for the semantic tree GST is
given in [25]. The detailed algorithm to generate all semantic
spanning trees for a given semantic tree model is given in [24].

4. MODEL-BASED TEST COMPLEXITY ANALYSIS
As discussed in Section 2, the software installation testing
problem space can be viewed in a 3-dimentional problem space.
We can use the semantic tree model to model the test problem
space and analyze its test complexity from three perspectives: a)
system environment configurations, b) running conditions, and

c) installation functions. In this section, we use three derived
test models based on the semantic tree model to analyze the test
complexity in each dimension.

Figure 4 A Semantic Tree Model and Its Spanning Tree

Figure 5 A SEC Model and Its Test Complexity for Turbo Tax

4.1 Test Complexity Analysis for System Configurations
As discussed in [25], a semantic tree model can be used to
present diverse system environments and configurations using a
hierarchical way. Let’s use GSEC = (NSEC, ESEC, RSEC) to present
a such model, where NSEC is a set of nodes, ESEC stands for a set
of links between nodes, and RSEC stands for a set of semantic
relations between parent nodes and its child nodes. It is known
as the System Environment Configuration (SEC) model, in
which each leaf node presents one part (or component) of a
configured software system or one type of its configurations. As
shown in Figure 2, there may be five types of relations between
a parent node and its child nodes in each SEC model. A parent
node with an EOR relation suggests that only one of its two
child nodes can be picked as its configuration. A parent node
with a Select-1 relation indicates that any of its child nodes can
be selected as one of its configuration. A parent node with an
AND relation indicates that all its child nodes are required as a

a) A Semantic Tree

A1 A2
EOR

A
C AND

B
C4

Select-1

B1
B2

AND

C1 C2 C3

c) Spanning Tree II

A2

Root
A C AND

B C3

B1 B2 AND

EOR Select-1

Select-1
A1

Root
A CAND

Root

B C4

B1 B2
AND

EOR

b) Spanning Tree I

633

part of its configuration. A parent node with a NOT relation
suggest that its child node is not included in its configuration. A
parent node with a NAND relation indicates that all its child
nodes are not included in its configuration. Table 2 shows the
detailed semantics of the five relations in a SEC model. Figure 5
shows an example of a SEC model, which presents all operating
system configurations for Turbo Tax.

Clearly, a SEC model presents all the possible configurations
for installation software because each of its spanning trees
represents one of system configurations. Hence, as pointed out
in [25], we must check the test coverage for each system
environment configuration. In other words, we must test
installation software under each system configuration.

Table 2 Semantic Relations in a SEC Model
Relations Semantics in a System Environment Configuration Model

EOR P-Node must be provided and set up with only one of its exclusive
parts, which are denoted as two child nodes. In other words, the
two parts can’t be set up at same time.

AND P-Node must be provided only when all of its child nodes are set
up.

NOT P-Node must be provided without setting up its specific part,
denoted as the only child node.

NAND P-Node must be provided without the support of some parts,
denoted as its child nodes.

Select-1 P-Node can be set up with any of one of its child nodes.

Therefore, the test complexity of system environment
configurations, denoted as SECComplexity, can be measured as
follows.
 SECComplexity = No. of semantic spanning trees in GSEC

The algorithm of generating a semantic spanning tree is given in
[25]. The detailed algorithm of generating all spanning trees in a
semantic tree is given in [24].
Here we present a model-based method and its algorithm to
compute the test complexity of a SEC model in a hierarchical
way when we consider the test complexity of each leaf node in
GSEC is 1. This suggests that one test script is needed to set up
this configuration. To compute the test complexity of a SEC
model GSEC, we can work from leaf nodes to its parent nodes,
until the root node in a hierarchical approach using the formula
defined below.
For any parent node Npi of a semantic tree model G (say GSEC)
its test complexity can be computed based on its relation with its
child nodes and the test complexity of its child nodes. Let Cj
stands for a child node of Npi.

� If its semantic relation with its child nodes is SELECT-1,
then its complexity can be computed as follows.

Npi’s TComplexity = � (Cj’s TComplexity) (1)
Where j = 1, …, n, n is the number of its child nodes,
and Cj is a child node of Npi.

� If its semantic relation with its child nodes is EOR, then its
complexity can be computed as follows.

Npi’s TComplexity = � (Cj’s TComplexity) (2)
Where j = 1 or 2, and Cj is a child node of Npi.

� If its semantic relation with its child nodes is AND, then its
complexity can be computed as follows.

Npi’s TComplexity= � (Cj’s TComplexity) (3)

Where j = 1, …, m, m is the number of its child nodes,
and Cj is a child node of Npi.

� If its semantic relation with its child nodes is NAND, then
its complexity can be computed as follows.

Npi’s TComplexity = 0 (4)
Where j = 1, …, m, m is the number of its child nodes,
and Cj is a child node of Npi.

According to the semantics of the NAND relation, all child
nodes of Npi which are not supported in this release of
software.

� If its semantic relation with its child node is NOT, then its
test complexity should be 0. (5)

According to the semantics of the NOT relation, the child node
refers to a configuration which is not required for a product
release, hence the test complexity concerning this child node is
0. Figure 5 shows the configuration test complexity of the given
SEC model for Turbo Tax. For the Windox XP node, it has
three child nodes with SELECT-1 relation, its test complexity
equals to 3, which is the summation of its child nodes’ test
complexity. According to Figure 5, the total configuration test
complexity of the given SEC model is 10.

4.2 Test Complexity Analysis for System Running
Conditions
Similarly, we can use a semantic tree model to present the
diverse system installation conditions, which is known as the
System Installation Condition (SIC) model. For a given SIC
model, GSIC = (NSIC, ESIC, RSIC), where NSIC is a set of nodes,
ESIC stands for a set of links between nodes, and RSIC stands for
a set of semantic relations between parent nodes and its child
nodes. In this model, the root node presents the overall
condition under the system installation, and it depends on a
number of conditions. Each condition, as a parent node, may
depend on a number of sub-condition factors as its child nodes.
Each leaf node presents a special condition of its parent node (as
a condition factor). The same five semantic relations (AND,
NAND, EOR, SELECT-1, and NOT) can be used to present five
different types of relationships between a parent node and its
child nodes in a SIC model. Table 3 provides the detailed
semantics of the five relations in a SIC model. Figure 6 displays
an example, which presents various running conditions of Turbo
Tax. This model presents various system installation conditions
in a hierarchical tree model.

Figure 6 A SIC Model and Test Complexity for Turbo Tax

634

Clearly, a SIC model presents all the possible system
installation conditions of a software product since each of its
spanning trees represents one combinational installation
condition.

Table 3 Semantic Relations in SIC Model
Relations Semantics in an Installation Condition Model

EOR P condition holds only when one of its two exclusive sub-
conditions (denoted as child conditions) holds.

AND P condition holds only when all of its child conditions hold.

NOT P condition holds only when its child condition is not hold.

NAND P condition holds only when all of its child conditions are not
hold.

Select-1 P condition holds when any one of its child conditions holds.

int TestComplexity(node N)
{ // This function computes the test complexity of a given semantic tree
 // (or a sub-tree), which is a SEC model or a SIC model.
 // The node N is the root node of a given semantic tree (or a sub-tree).
 // The final return result of this function is the computed total
 // test complexity of the given semantic tree model.

int testComplexity = 0;
// this initialization only applies the first time this code is executed.

if node == leaf node then {
 node.testComplexity = 1;
 return node.testComplexity; }
else { // else node is a parent node, including a root node
 switch (node N’s semantic relation) {

case ‘AND’:
 for all child nodes, do
 node.testComplexity =
 node.testComplexity * TestComplexity(child node);
 break;

case ‘EOR’ or ‘SELECT-1’:
 for each child node, do
 node.testComplexity =
 node.testComplexity + TestComplexity(child node);
 break;

case ‘NAND’:
 node.testComplexity = 0;
 break;

default ‘NOT’:
 node.testComplexity = 0;
 break; }

return testComplexity;
 }
}

Figure 7 The Algorithm for Test Complexity Analysis
for a SEC/SIC model

As discussed in [19], under any system configuration SECi,
engineers must perform software installation testing for each
combinational system running condition. As we know that it is a
common practice to use one test script to set up one
combinational running condition for a system. Hence, the test
complexity (SICComplexity) of system installation conditions can
be computed as follows:
 SICComplexity = No. of semantic spanning trees in GSIC

Similar to SECComplexity, we can use the formulas (1)-(5) to
compute SICComplexity of a SIC model (GSIC) in a hierarchical way
from its leaf nodes to the root node. Figure 7 shows the

proposed algorithm based on a given semantic model (a SEC
model or a SIC model).

As shown in Figure 7, the node Installed has an EOR relation
with its two child nodes: Installed Once, and Installed More
Than Once. Its test complexity is equal to 2, which is the
summation of the test complexity of its two child nodes. The
root node of the SIC model has an AND relation with its three
nodes. Its test complexity is equal to 36 based on the formula
(3).

4.3 Test Complexity Analysis for System Installation
Functions
The semantic tree model can also be used to present the system
installation functions. We define it as the System Installation
Function (SIF) model. Let’s use GSIF = (NSIF, ESIF, RSIF) to
present a SIF model, where NSIF is a set of nodes, ESIF stands for
a set of edges between nodes, and RSIF stands for a set of
semantic relations between parent nodes and its child nodes.
This model presents all system installation functions in a
hierarchical format. A parent node in a SIF model presents a
high-level function and its child nodes present its low-level
functions (or sub-functions). A similar set of five semantic
relations is used to represent the relations between a parent and
its child nodes. Table 4 shows the detailed semantics of the five
relations in a SIF model.

It should be noted that NAND and NOT relations only useful
when some functions (or components) of the system are not
required (supported) in a product release. Figure 9 displays a
sample SIF model for a product (Turbo Tax). It presents its
related system installation functions. Each lead node represents
a low-level system installation function. Each parent node
stands a high-level installation function. The SIF model can be
used to present system functions in two different views. One is a
hierarchical function view like Figure 9. And the other is a
functional feature view, which presents a system functional
feature in terms of its required system components (or sub-
systems).

Table 4 Semantic Relations in a SIF Model

In [25], we have defined a system installation function test
coverage criteria for a given software product P, executed under
a system installation condition SICj in a configured system
environment SECi below.

Leaf Node Function Test Criterion:
For any leaf node Ni in GSIF, this criterion is achieved
when the given TIS includes at least one test case, which
exercise the corresponding function of Ni.

Relations Semantics in a System Installation Function Model

EOR The P function is supported only when any of its two exclusive
sub-functions (denoted as child nodes) is provided.

AND The P function is supported only when all of its sub-functions (as
denoted child nodes) are provided.

NOT The P function is supported without its specific sub-function,
denoted as the only child node.

NAND The P function is supported without the support of some of its
sub-functions, denoted as its child nodes.

Select-1 P function is provided when anyone of its sub-functions (denoted
as child nodes) is provided.

635

Adequate Leaf Node Function Test Criterion:
For any leaf node Ni in GSIF, this criterion is achieved
when the given TIS includes an adequate test set, which
exercise the corresponding function of Ni.
Adequate Parent Node Function Test Criterion:
For any parent node Npi in GSIF, including the root node
and intermediate nodes, this criterion is achieved only
when the given TIS includes an adequate test set for each
child node. In other words, all of its child nodes have
achieved its adequate test criterion.

To achieve these test criteria, we need to analyze the test
complexity for testing installation functions. Since a spanning
tree of a SIF model has no meaning in testing of software
installation, engineers need a systematic way to measure and
predicate the test complexity of software installation functions.
In this paper, we provide a well-defined model-based approach,
which computes the test complexity of installation function
testing based on a SIF model.
In a SIF model GSIF, any leaf node Ni presents a bottom-level
software installation function. Hence, it must have an adequate
functional test set. Let’s use the number of test cases (or scripts)
of its test set as its test complexity. We can compute the test
complexity of a SIF model from leaf nodes to a root node in a
hierarchical way.
For any parent node Npi of GSIF, its function test complexity can
be computed based on its relation with its child nodes and their
test complexity. Let Cj stands for a child node of Npi.

� If its semantic relation with its child nodes is SELECT-1,
then its complexity can be computed as follows.

Npi’s FTComplexity = � (Cj’s FTComplexity) (6)
Where j = 1, …, n, n is the number of its child nodes,
and Cj is a child node of Npi.

� If its semantic relation with its child nodes is EOR, then its
complexity can be computed as follows.

Npi’s FTComplexity = � (Cj’s FTComplexity) (7)
Where j = 1 or 2, and Cj is a child node of Npi.

� If its semantic relation with its child nodes is AND, then its
complexity can be computed as follows.

Npi’s FTComplexity = � (Cj’s FTComplexity) (8)
Where j = 1, …, m, m is the number of its child nodes,
and Cj is a child node of Npi.

� If its semantic relation with its child nodes is NAND, then
its complexity can be computed as follows.

Npi’s FTComplexity = 0 (9)
Where j = 1, …, m, m is the number of its child nodes,
and Cj is a child node of Npi.

According to the semantics of the NAND relation, all child
nodes of Npi are its sub-functions which are not required
for this released product for installation function testing.

� If its semantic relation with its child node is NOT, then its
test complexity should be 0. According to the semantics of
the NOT relation, the child node is not included as a part of
the supporting functions, hence the test complexity
concerning this child node is 0. (10)

It is clear that these formulas are similar to the previous
formulas except formula (8). Since the installation functions for

a product usually are independent, that is why the complexity of
a parent with an AND relation can be computed using the
formula in (8). Figure 8 displays the test complexity for each
leaf node with the number of function test cases. Its function test
complexity is 39.

Figure 8 A SIF Model and Its Test Complexity for Turbo Tax

We have used the proposed model-based method in test
complexity analysis for Turbo Tax. We create three semantic
tree models for Turbo Tax:
o A SEC model for Turbo Tax, which presents its diverse

system configurations.
o A SIC model for Turbo Tax, which presents its various

system running conditions.
o A SIF model for Turbo Tax, which presents its installation

functions.

Table 5 shows the statistic analysis results of three models
(SEC. SIC, and SIF) for Turbo Tax. It displays the detailed
information about these models, including its test complexity
and height, the number of spanning trees, the number of leaf
nodes, and the number of tree nodes. Clearly, the test
complexity of the SEC model is the same as the number of its
different semantic spanning trees. Similarly, the test complexity
of the SIC model equals to the number of its semantic spanning
trees. Since the semantic spanning trees of software installation
testing of Turbo Tax, hence, we just compute its functional test
complexity using the given algorithm listed in Figure 9. Its
function test complexity is 36 for Turbo Tax considering the
fact that these function features are independent.

Table 5 The Statistics of Three Models for Turbo Tax
Mode

l
No. of

Spanning
Trees

No. of
Nodes

No. of Leaf
Nodes

Height of
Semantic

Tree Model

Test
Complexity

SEC 10 14 10 4 10
SIC 36 16 10 4 36
SIF --- 21 15 3 39

5. CONCLUSION AND FUTURE WORK
This paper focuses on two problems in software installation
testing. The first issue is how to measure and analyze the test
complexity of software installation testing. This paper uses a
semantic tree model proposed in [19] to demonstrate how to

636

measure software installation test complexity in three
perspectives: system configurations, running conditions, and
installation functions. The proposed approach has been used in a
project at a local software company to help test engineers in
software installation testing, and has received very positive
feedbacks in modeling software installation test complexity and
analysis. The reported case study results indicates that the
proposed model-based approach has the distinct advantage on
systematic test complexity analysis and measurement for
software installation testing. The future work of this research
work is to develop a model-based test complexity analysis and
planning tool for software installation testing. It can be useful in
software installation testing based on the proposed models to
support test modeling and analysis, test generation and
sequences, and test coverage analysis.

Figure 9 Statistic Results of three Models for Turbo Tax

6. REFERENCES
[1] Kit, E. (1999). Software Testing in the Real World:
Improving the process (5th). England: ACM Press.
[2] Agruss, C. Software Installation Testing: How to automate
tests for smooth system installation. Testing & Quality
Magazine, Vol. 2, Issue 4. July/August 2000.
[3] Mark Pawson, “The Test Matrix: How one company kept a
complex test on track?” (2001). Retrieved at URL:
http://www.stickyminds.com/ March 3, 2006.
[4] Ruest, Nelson, A Practical Guide For patch testing, from
http://www.wise.com/Library/Patch_Whitepaper.pdf
[5] Ibrahim K. EI-Far and James A. Whittaker, Model-based
Software Testing, Encyclopedia on Software Engineering
(edited by J.J. Marciniak), Wiley, 2001.
[6] Pretschner and Bruno Legeard, “A Taxionomy of Model-
Based Testing by Mark Utting”, Technical Report, 2006.
[7] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, and C. M.
Lott. Model-based testing of a highly programmable system. In
Proceedings of the International Symposium on Software
Reliability Engineering, pages 174-179, 1998.
[8] S. R. Dalal, A. Jain, N. Karunanithi, “Model-Based Testing
in Practice”, Proceedings of International Conference on
Software Engineering (ICSE’99), 1999.
[9] Avik Sinha and Carol Smidts, “HOTTest: A Model-Based
Test Design Technique for Enhanced Testing of Domain-

Specific Applications”, ACM Transaction on Software
Engineering and Methodology, Vol. 15, No. 3, July 2006,
Pages: 242-278.
[10] J. Offutt, S. Liu, and A. Abdurazik. Generating test data
from state-based specifications. Journal of Software Testing,
Verification & Reliability. 13(1): 25-53, April 2003.
[11] Harry Robinson, “Graph Theory Techniques in Model-
Based Testing”, the proceedings of 1999 International
Conference on Testing Computer Software, 1999.
[12] Mike Barnett, et al. “Scenario-oriented Modeling in AsmL
and its Instrumentation for Testing”, 2nd International
Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools , May 2003.
[13] Mikhail Auguston, James Bret Michael, and Man-Tak
Shing, “Environment Behavior Models for Scenario Generation
and Testing Automation”,
[14] J. A. Whittaker and M. G. Thomason, “A Markov Chain
Model for Statistical Software Testing”, IEEE Transactions on
Software Engineering, V. 20, No. 10, pp. 812-824, October
1994.
[15] J. Offutt and A. Abdurazik, “Generating Tests from UML
Specifications”. Second International Conference on the Unified
Modeling Language (UML99). Fort Collins, CO, October 1999.
[16] E. Farchi, A. Hartman, and S. S. Pinter, “Using a Model-
Based Test Generator to Test for Standard Conformance”, IBM
Systems Journal. V. 41, No. 1, pp. 89-110, 2002.
[17] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test Selection Based on Finite State Models”.
IEEE Transactions on Software Engineering. V. 17, No. 6, pp.
591-603, June 1991.
[18] D. Williams, “Test Coverage Models for System Test?”
Proceedings of International Test Conference, Oct. 2002.
[19] J. Gao, R. Espinoza, and Jingsha He, “Testing Coverage
Analysis for Software Component Validation”, Proceedings of
29 Annual International Conference on Computer Software
and Applications,

th

Volume 1, PP. 463-470, July 2005.
[20] Bogdan Korel, et al., “Model Based Regression Test
Reduction Using Dependence Analysis”, Proceedings of the
International Conference on Software Maintenance (ICSM’02),
2002.
[21] Mahnaz Sharms, Diwakar Krishnamurthy, “A Model-Based
Approach for Testing the Performance of Web Applications”,
Proceedings of the Third International Workshop on Software
Quality Assurance (SOQUA’06), 2006.
[22] Kirk Sayre and Jesse Poore, “A Reliability Estimator for
Model Based Software Testing”, Proceedings of the 13th
International Symposium Software Reliability Engineering
(ISSRE’02), 2002.
[23] Pretschner, et al., “One Evaluation of Model-Based Testing
and Its Automation”, Proceedings of 27th International
Conferences on Software Engineering (ICSE2005), St. Louis,
MO, USA, 2005.
[24] Karen Kwok, “A Model-Based and Test Analysis
Methodology for Software Installation Testing”, Master Thesis,
San Jose State University, August 2007.
[25] Jerry Gao, et al, “Toward Test Modeling and Analysis for
Installation Testing”, Proceedings of SEKE2007, Boston, USA,
July, 2007.

637

A Similarity Analysis Model for Semantic Web Information Filtering Applications

Lucas Drumond, Rosario Girardi, and Fabio Silva
UFMA – Federal University of Maranhão

Av. dos Portugueses, s/n
São Luís, Brazil

Abstract

This work proposes a similarity analysis model for
content-based filtering based on the technology of the
Semantic Web. Ontologies are the standard Semantic Web
knowledge representation formalism. Thus, the proposed
structure for representing user models and information
items is based on ontologies. The similarity between such
structures is calculated based on the similarity between
concepts of an ontology. A similarity measure is presented
and formalized according to a description logic. An
experiment conducted for its preliminary evaluation is also
introduced.

1. Introduction
Through the Web, a large amount of services and

information is available to users. Usually, Web users have
information needs that can be satisfied by a restricted set of
Web documents. Identifying such documents manually in
the huge amount of currently available documents is a
human impossible task. This phenomenon, in which the
user has access to an amount of information larger than that
it is able to deal with, is known as information overload.

This scenario has created a demand for effective
methods for accessing information. One approach to the
information overload problem is information filtering [3], a
research line that study how to satisfy the information
needs of heterogenous users through dynamic and
unstructured information sources.

The first generation of the Web was developed focusing
on how the information is displayed and not on how it is
structured. The lack of semantic structure of the
information available on the Web affects the filtering
effectiveness. Differently, in the Semantic Web [17], data
are structured in a way that can be “understood” by
software applications such as intelligent agents. This
semantic structure can be used to increase the effectiveness
of information retrieval and filtering systems.

Similarity is a very important concept in this context. An
item is recommended to a user if it is similar to its interests.
On way of taking advantage of the Semantic Web
technologies in information filtering and retrieval
applications is using measures to compute the similarity
considering ontologies, one of the formalisms used to
represent Semantic Web resources.

This paper introduces a measure to compute the
similarity between the concepts of an ontology hierarchy,
and a semantic case based similarity model which uses
such a measure.

The paper is organized as follows. Section 2 introduces
the semantic case based similarity model. Section 3

describes an experiment carried out to its preliminary
evaluation. Section 4 analyses related work on similarity
measures. Finally, Section 5 concludes this paper with a
discussion of the results obtained in this work and some
remarks on further work.

2. The Proposed Similarity Analysis Model
The similarity model proposed in this paper is an

adaptation from similarity between semantic cases
proposed on [10] and [11], adapted to the information
filtering context and using ontologies.

The first step in order to apply this model is to identify
the semantic cases of an application domain. Semantic
cases are user groups of interests, in which information
items can be classified. For instance, a group of interest
may be sports whose values can be football, tennis,
swimming, etc.

After the identification of semantic cases, a hierarchy of
categories associated to each semantic case is built. The
categories of each hierarchy are the terms or values that
each semantic case may assume. Each semantic case is
represented as the root of its own hierarchy that can be
constructed with the aid of a domain specialist or borrowed
from an available ontology.

User models are composed by a set of semantic cases,
representing the categories of user interests and a set of
concepts for each semantic case, representing the specific
interests of a user in each category. An information item
model is organized in a similar way.

Finally, the similarity between a user model and an
information item is calculated as follows: for each semantic
case that appears in both the models, the similarity among
the values of the semantic cases associated to the user and
the ones associated to the information item is calculated.

2.1. Semantic Cases
A semantic case represents a characteristic of an

information item through which user´s interests can be
specified. A hierarchy of terms is associated with each
semantic case. These terms are the possible values that a
user model or information item model can have for each
semantic case. For instance, in the context of the Infonorma
system [7][8][9], a legal recommender system, semantics
cases would represent a legal branch and the type of a
normative instrument, main groups of interest of legal
users.

Consider, in another example, a system of a hypothetical
supermarket with the goal of recommending products for
its customers. Such products can be divided in meats,
vegetables, or masses. Meats, for instance, can be classified
according to the hierarchy shown in Figure 1. Thus, the

638

semantics cases of interests are meat, vegetables and
masses, and the types of each one are the terms of each
case.

Formally, we can represent a semantic case as a concept
C in a T-Box . The terms of semantic case C are all the
concepts of that are subsumed by C, that is, a concept D
is a term of semantic case C if, and only if, . In the
example of the supermarket, the concept Meat represents a
semantic case and its subclasses are the values that the
semantic case Meat can assume.

Figure 1 - Example of a semantic case hierarchy

2.2. User and Information Items Models
It was said that semantic cases represent categories of

interests of the users and that such categories can be used to
describe an information item. In this way, user and
information item models must reference the values of the
semantic cases.

Both users and information item models are represented
by a set of values for each considered semantic case. These
values are terms or concepts in the ontology hierarchy
associated with the semantic case. Each semantic case in a
user or information item model has a weight that represents
its relevance in the application domain.

In the similarity analysis model considered in this work,
a user model, denoted by , can be defined as follows:

A weight is assigned to each semantic case, denoted by
 meaning how interested the user is in the group of

interest (). For each semantic case there is
, the set of the values of in which the user has

interest.

The representation of the information items must be

coherent with the representation of the user models. Here, a
representation of an information item is denoted by :

Similarly, each semantic case describing an information

item is associated with a set of terms:

2.3. Similarity between Semantic Cases
2.3.1. Properties of similarity measures

The concept of similarity is very intuitive and widely

used. Some intuitive notions of this concept are discussed
in [13]. Two items are considered similar regarding the
amount of commonalities they share. The more
characteristics they have in common, the higher similarity
between them. On the other hand, the more differences they
have, the less similar they will be. The higher similarity
between two items is achieved when they are identical.

Besides the empirical criteria, many formal models have
been proposed to express the similarity. Some of the
premises assumed by formal models of a similarity
relationship are listed in [18]:

 Reflexivity: An object is similar to itself;
 Symmetry: If the A object is similar to the B object

then B is also similar to A.
The proposed similarity measure was developed in such

a way that it holds the symmetry and reflexivity properties
having value range between 0 and 1.

Be and two semantic case based models and
a function that denotes the similarity

between these two sets, then must hold
the following properties. First, the similarity between a
semantic case based model and itself should be maximum
and equal to 1. This property is related to reflexivity.
Formally:

 (1)

The similarity between two models that share no

commonalities, i.e. two models which elements have no
similarity between them, should be minimal and equal to 0.
As property 1 states that the maximum similarity is 1, the
similarity between two arbitrary models should be:

 (2)

Also, the similarity function should be symmetric.

Intuitively it can be stated that if A is similar to B, then B is
similar to A in the same extent. Therefore,

 (3)

2.3.2. The proposed similarity measures

As stated before, the similarity between two semantic
case based models is given as a function of the values of
the semantic cases in each model. Such similarity is
computed adding, for each semantic case i appearing both
in and in , the higher value of the similarity between
the elements of and times the weight of i. This weight
can be the one in or in or a combination of both. Other
criteria could be used to the similarity between the set of
semantic cases as, for instance, the mean of the similarities

Meat

White Meat

Poultry

...

Fish

Freshwater
Fish Sea Fish

...

Red Meat

Beef ...

639

between and . However, the higher value approach
was the one that fit best in properties 1, 2 and 3.

The is given by:

(4)

where:

a) is the term “j” associated to the semantic
case in the user model ;

b) is the term “k” associated to the semantic
case in the information item model ;

c) is the weight of the semantic case ;
In order for the function to follow

properties 1, 2 and 3, the function must also
follow these properties and the following condition must be
true:

 (5)

In order to prove that the function

follows the properties 1, 2 and 3 it is assumed now that
) also follows those properties. This

assumption will be proved further. Thus, the reflexivity
property is granted because in the computation of

, equal terms are compared and, as it was
assumed that follows properties 1 and 2,
then, the similarities between these equal terms will be 1.
Hence, will allways be 1 and:

Once assumed that follows property 2, the

higher value that can assume is 1 and
the lower, 0. As it has been shown that the function

 assumes the value 1 when to
guarantee it follows property 2, all that it should be
demonstrated is that this function has 0 as lowest value. For
two sets e that do not share any commonality,

 for every (. Then,

The similarity function follows property 3 since

.

Before introducing the calculation of the closeness

between two terms, it is worth to remember that a term is a
concept of an ontology. Thus, a function for computing the
closeness between ontology concepts can be used to
compute the similarity between terms.

The closeness between two concepts e is computed
considering the hierarchy of the respective semantic case.
The set denotes the set of all concepts that subsume C
(). For instance, considering Figure 1, it is true that:

It is important to stress that, when comparing two

objects, one is interested in determining how much
commonality they share. Within an ontology, if and

 then the concepts and share all characteristics
of the concept . This way, the set of all concepts which
characteristics are present both in concepts and is
given by . Intuitively, one can realize that the
higher the value of (number of elements of set

), the higher the similarity between and .
However, unless the two concepts being compared are

equivalent, the characteristics shared by both of them
describe only a part of each one. It is also needed to take
into account the characteristics that the concepts do not
share. An approach for that is to define the similarity
between two concepts as the proportion of the amount of
characteristics they have in common and all the
characteristics of each one. As mentioned before,
is an approximation for the amount of characteristics both
concepts have in common. Similarly, an approximation for
the amount of characteristics in the concepts and may
be defined, respectively, as and . The similarity
between two concepts is a function defined by:

 (6)

Considering the hierarchy of Figure 1, it is possible to

compute the similarity between the concepts Sea Fish
(represented as SF) and Freshwater Fish (represented as
FF), given by:

The similarity between the concepts Freshwater Fish

(FF) and Poultry (P) is:

640

Earlier it was assumed that the function

follows the three properties identified in Section 2.3.1.
Now it will be demonstrated that the assumption is true. In
first place, reaches its higher value (which is 1)
when , because in this case:

, and then:

The function reaches its lower value when

and have no superclasses in common, i.e. :

Finally, it is true that , since

, as demonstrated:

3. A preliminary evaluation
Once the goal of the similarity measures presented here

is to help human users with the information access, one
reasonable way to evaluate such measures is through their
correlation with human judgement.

An experiment by Miller and Charles [15] provided
some data useful for evaluating similarity measures. In this
experiment, 38 students asked to rate the similarity of the
meaning of 30 pairs of nouns. The similarity between the
same pairs of nouns used by Miller and Charles was
computed using the WordNet thesaurus [14] and the
similarity measure between concepts of Equation 6 and the
ones proposed by Leacock and Chodorow [12], Lin [13],
Resnick [16] and Wu and Palmer [19]. The results as well
as their correlation to the results in [15] are shown in Table
1.

The value of the similarities were normalized such that
they are all in a scale ranging from 0 (no similarity) to 1
(synonyms).

Table 1 shows that the correlation of our measure with
the experiment from Miller and Charles is very similar to
the other approaches. It also shows that the results of our
measure are very similar to the ones by Wu and Palmer.

4. Related Work
Most of the methods for determining the semantic

similarity between entities within a single ontology use one
of these approaches [6]: path distance and information
content.

Pairs of Words

Miller &
Charles

Resnick Wu &
Palmer

Lin Leacock &
Chodorow

 Drumond

car, automobile 0,98 0,38 1,00 1,00 0,90 1,00
gem, jewel 0,96 0,66 1,00 1,00 0,90 1,00

journey, voyage 0,96 0,36 0,93 0,69 0,72 0,93
boy, lad 0,94 0,47 0,92 0,82 0,72 0,95

coast, shore 0,93 0,56 0,92 0,97 0,72 0,92
asylum, madhouse 0,90 0,72 0,95 0,98 0,72 0,95
magician, wizard 0,88 0,74 1,00 1,00 0,90 1,00

midday, noon 0,86 0,65 1,00 1,00 0,90 1,00
furnace, stove 0,78 0,16 0,53 0,22 0,38 0,59

food, fruit 0,77 0,05 0,36 0,13 0,38 0,33
bird, cock 0,76 0,48 0,95 0,80 0,72 0,95
bird, crane 0,74 0,48 0,86 0 0,55 0,86

tool, implement 0,74 0,44 0,92 0,92 0,72 0,93
brother, monk 0,71 0,69 0,93 0,25 0,72 0,95

crane, implement 0,42 0,23 0,71 0 0,49 0,75
lad, brother 0,42 0,16 0,67 0,29 0,49 0,78
journey, car 0,29 0,00 0,13 0 0,24 0,12
monk, oracle 0,28 0,16 0,53 0,23 0,38 0,67

cemetery, woodland 0,24 0,05 0,31 0,08 0,32 0,25
food, rooster 0,22 0,05 0,24 0,10 0,24 0,24

coast, hill 0,22 0,41 0,71 0,71 0,49 0,71
forest, graveyard 0,21 0,05 0,31 0,08 0,32 0,25
shore, woodland 0,16 0,09 0,55 0,14 0,45 0,43

monk, slave 0,14 0,16 0,67 0,25 0,49 0,78
coast, forest 0,11 0,09 0,50 0,13 0,41 0,40
lad, wizard 0,11 0,16 0,67 0,27 0,49 0,78

chord, smile 0,03 0,18 0,50 0,27 0,30 0,50
glass, magician 0,03 0,16 0,46 0,13 0,38 0,35

noon, string 0,02 0,00 0,15 0 0,28 0,15
rooster, voyage 0,02 0,00 0,10 0 0,15 0,10
Correlation with
Miller & Charles

1,00 0,77 0,77 0,74 0,82 0,75

Table 1 - Correlation of Drumond´s similarity
measures with the Miller and Charles

In the first approach the semantic similarity is assessed
as a function of the distance between the terms in the
hierarchical structure underlying the ontology [4]. The
higher the distance between them, the less similar they are.
The measure proposed by Leacock and Chodorow [12] uses
this approach. The similarity between two concepts C and
D is given as a function of the shortest path between C and
D and the maximum depth of the hierarchy.

The measure defined in [19] also uses a path distance
approach but it also considers the least common subsumer
(LCS) operator [1] that computes the most specific
generalization of the input concepts. The measure of Wu
and Palmer [19] considers the depth of the LCS of the input
concepts C and D and the depths of the input concepts.

The information content approach is founded on the
Information Theory. According to the Information Theory
[5], the information content of a sentence C is measured by
the negative logarithm of the probability that sentence C is
true, P(C).

According to Resnick [16] the amount of information
shared by two concepts is indicated in a taxonomy by the
LCS of these concepts. Resnick also states that if the
sentence C is a concept, P(C), is the probability that a
randomly chosen individual be an instance of C. Thus,
Resnick defines the similarity between two concepts as the
amount of information in the LCS of these two concepts.

The measure proposed by Lin [13] correlates the
measures of Resnick and the one of Wu and Palmer [19].
This measure is a ratio between information content in the
LCS of the input concepts and the information content in
both concepts.

Some of the cited approaches are based on path distance
which, according to Resnick [16], do not correlate well
with human judgement. Other approaches use the LCS
operator, whose computation is, in the worst case,
exponential in the size of input descriptions [2].

641

The approach proposed here uses some of the ideas
discussed but use neither a path distance approach nor the
LCS operator.

5. Conclusions and Further Work
This work introduced a similarity analysis model for

content based filtering based on the Semantic Web
technologies. Such model is based on the similarity
between concepts within a single ontology.

Two measures are proposed here: one for assessing the
similarity between the semantic cases based models and
another one for calculating the similarity between concepts.

The similarity between semantic case based models was
not evaluated yet. Work on its evaluation is needed to
determine is effectiveness.

The similarity between concepts was compared with
other existing approaches. Results show that its correlation
with the Miller and Charles experiment [15] is similar to
the correlation of other approaches with the same
experiment. Its correlation with the results from Miller and
Charles is 0.75, while the correlation of the other
considered approaches have ranged from 0.74 to 0.82.
However, our approach does not make use of the LCS
operator [1] nor needs a probabilistic model of the domain
of application, which makes its complexity simpler. Further
work on the evaluation of measures for computing the
similarity between semantic case based model is still
needed.

Experiments are currently being conducted to evaluate
the benefits of the similarity analysis model by applying it
in content based and collaborative filtering applications.

Acknowledgments
This work is supported by CNPq, an institution of the

Brazilian Government for scientific and technologic
development.

References

[1] BAADER, F., CALVANESE, D., MCGUINNESS, D.,
NARDI, D., & PATEL-SCHNEIDER, P. (2003). The
Description Logic Handbook. Cambridge University
Press.

[2] BAADER, F., KÜSTERS, R., MOLITOR, R., (1999).
Computing least common subsumers in description
logics with existential restrictions. In: Proc. of the
16th Int. Joint Conf. on Artificial Intelligence
(IJCAI'99), 1999, pp. 96–101.

[3] BELKIN, N. J., & CROFT, W. B. (1992, Dezembro).
Information filtering and information retrieval: two
sides of the same coin? Communications of ACM , 35
(12), pp. 29-38.

[4] BRIGHT, M. W., HURSON, A. R., & PAKZAD, S.
(1994). Automated resolution of semantic
heterogeneity in multidatabases. ACM Transactions
on Database Systems , 19, pp. 212-253.

[5] COVER, T. M., & THOMAS, J. A. (1991). Elements
of Information Theory. New York: Wiley.

[6] D'AMATO, C., FANIZZI, N., & ESPOSITO, F.
(2005). A semantic similarity measure for expressive
Description Logics. CILC 2005, Convegno Italiano di
Logica Computazionale. Rome, Italy.

[7] DRUMOND, L., GIRARDI, R., & LEITE, A. (2007).
A Case Study on the Application of the MAAEM
Methodology for the Specification Modeling of
Recommender Systems in the Legal Domain.
Proceedings of the 9th International Conference on
Enterprise Information Systems ICEIS 2007 (pp. 155-
160). Funchal: INSTICC.

[8] DRUMOND, L., GIRARDI, R., & LEITE, A. (2007).
Architectural Design of a Multi-Agent Recommender
System for the Legal Domain. Proceedings of the
Eleventh International Conference on ARTIFICIAL
INTELLIGENCE and LAW (ICAIL 2007) (pp. 183-
188). Palo Alto, EUA: ACM Press.

[9] DRUMOND, L., GIRARDI, R. (2008). A Multi-agent
Legal Recommender System. Journal of Artificial In-
telligence and Law (to appear).

[10] GIRARDI, R. (1995). Classification and Retrieval of
Software through their Descriptions in Natural
Language. Genebra, Suíça: Imprimerie de l´Université
de Geneve.

[11] GIRARDI, R., & IBRAHIM, B. (1995). Using
English to Retrieve Software. The Journal of Systems
and Software, Special Issue on Software Reusability ,
pp. 249-270.

[12] LEACOCK, C., & CHODOROW, M. (1998).
Combining Local Context and WordNet Similarity for
Word Sense Identification. In C. Fellbaum (Ed.),
WordNet: A Lexical Reference System and its
Application (pp. 265–283). Cambridge, MA: MIT
Press.

[13] LIN, D. (1998). An Information-Theoretic Definition
of Similarity. Proceedings of the International
Conference on Machine Learning (ICML) (pp. 296-
304). Morgan Kaufman, San Francisco, CA.

[14] MILLER, G. A. (1995). WordNet: a lexical database
for English. In: Communications of the ACM, 38 (11),
pp. 39 - 41.

[15] MILLER, G. A., & CHARLES, W. G. (1991).
Contextual correlates of semantic similarity.
Language and Cognitive Processes , 6 (1), pp. 1-28.

[16] RESNICK, P. (1999). Semantic similarity in a
taxonomy: An information-based measure and its
application to problems of ambiguity in natural
language. Journal of Artificial Intelligence Research ,
pp. 95-130.

[17] SHADBOLT, N., HALL, W.; BERNERS-LEE, T. The
Semantic Web revisited. Intelligent Systems, v. 21, p.
96-101, 2006.

[18] WANGENHEIM, G., & WANGENHEIM, A. (2003).
Raciocínio Baseado em Casos (Vol. I). Curitiba:
Manole.

[19] WU, Z., & PALMER, M. (1994). Verb semantics and
lexical selection. 32nd Annual Meeting of the
Association for Computational Linguistics, (pp. 133–
138).

642

Fuzziness in the Semantic Web: Survey and Future Directions

Seyed Koosha Golmohammadi, Marek Reformat, and Witold Pedrycz
Department of Electrical and Computer Engineering, University of Alberta, Canada

{koosha, reform, pedrycz}@ece.ualberta.ca

Abstract

The current Web includes billions of web pages and
is rapidly growing. Therefore extraction of relevant
information from the web is not trivial. Providing web
services and improving man/machine interoperability
are important issues that should be satisfied even in
the presence of incomplete and inconsistent
information. This paper reviews current research
works on representing uncertainty and approximate
reasoning in the web environment. We also examine
methodologies that can address situations that involve
uncertainty. We focus on fuzzy methods.

1. Introduction
World Wide Web Consortium (W3C), founded in
1994, is an international consortium working on
development of Web standards and guidelines that
address many critical aspects of the Web. For example,
information exchange among web applications, better
utilization of web technologies, as well as interaction
between humans and computers. In a nutshell, W3C’s
mission is to make the Web as useful as possible to as
many users as possible.

In 2001, the inventor of the Web and director of
W3C Tim Berners-Lee introduced a new vision of the
World Wide Web that is called the Semantic Web. He
envisioned an environment where software agents are
capable of analyzing the web contents and performing
many tasks on user behalf at different levels of
difficulty. The most important novelty of the Semantic
Web is application of ontology as a means for effective
integration and sharing of information - “people can’t
share knowledge if they do not speak a common
language” [9].

Ontologies are widely discussed in Artificial
Intelligence and have a long history in philosophy.
They support knowledge sharing through well defined
and partially ordered descriptions of concepts.
Ontology is an “explicit specification of
conceptualization” [15]. In other words, ontology is a
formal description of categories (concepts), their

properties (known as slots) representing various
features and attributes, and restrictions imposed on the
slots. The combination of ontology and a set of
individuals (instances of categories) constitute a
knowledge base.

The expression of concepts and their relationship in
ontology relies on the assumption that all the existing
knowledge components in the web are accurate.
However in the real world, the contents of the web are
commonly imprecise or even contradicting. The
dilemma of utilizing traditional approaches in
development of ontologies becomes more challenging
due to the exponential growth of web contents with
various degrees of uncertainty.

In this paper we review the current state of
utilization of concepts of uncertainty and approximate
reasoning in the Web environment. This includes
methods designed for representing and reasoning with
knowledge when Boolean yes/no values are
inapplicable. There are different approaches applied to
situations that involve uncertainty such as fuzzy sets,
probability theory, belief functions, rough sets and
random sets. The most commonly used approaches to
deal with uncertainty in the Web are Bayesian models
[11, 19] and fuzzy logic. In this paper we focus on
fuzzy approaches. The objectives of this paper are:
1. to represent web utilization situations that would

benefit from the application of uncertainty and
approximate reasoning;

2. to review methodologies that can be applied to
these situations focusing on fuzzy approaches.

An extensive study of related works has been
performed to address the above objectives. We hope
the result of this research will bring better
understanding of the concept of uncertainty in the web
environment and the need for its inclusion in
development of new web technologies. We also stress
that there is a need for a standard representation of
uncertainty in the web environment. Currently, there
are no web standards addressing the issues of
representing uncertainty and reasoning with
uncertainty.

643

The rest of this paper is structured as follows.
Section 2 discusses the issue of uncertainty in the
context of the Web. Section 3 reviews the technologies
and definitions employed in this paper: uncertainty
representation, principles of fuzzy theory, and a brief
description of the Semantic Web. Section 4 examines
approaches used for representing knowledge based on
the concept of fuzziness. Section 5 discusses different
applications of fuzzy methods to handle uncertainty in
the semantic web framework, and finally Section 6
concludes the paper with a discussion.

2. Uncertainty and Web Utilization
2.1 Sources and Nature of Uncertainty
The Web is consisted of immense amount of data.
Information retrieval from this extremely huge source
is not immune to inconsistencies or uncertainties.
Uncertainty or imprecision on the web can be related
to two main factors: first, even in extremely accurate
measurements we are uncertain about the implications;
and second, the human perception [42] is
fundamentally unable to conduct completely accurate
measurements.

The Uncertainty Reasoning for the World Wide
Web Incubator Group (URW3 XG) created under the
W3C is dedicated to define reasoning and
representation of uncertainty on the web and related
technologies more appropriately. URW3 considers two
facets of uncertainty:
1. aleatory: uncertainty is an inherent property of the

world;
2. epistemic: uncertainty is due to someone’s lack of

knowledge.
In the first case we can assign degrees of truth and in
the second we might assign different possibility
degrees to possible alternatives. Furthermore, we can
consider five types of uncertainties that may occur on
the web: inconsistency, ambiguity, vagueness,
randomness, and incompleteness. Examples of the
above uncertainty types on the web scale are discussed
in the next section.
2.2 Example Scenarios
Multiple aspects of the Web can be associated with
uncertainty. The following example scenarios are just a
few that represent the most intuitive illustration of
needs that uncertainty can address.
� Information correctness and availability – it is the

essence of the Web, and such issues as partially
correct or even incorrect information or lack of
information have to be addressed. Representation
and reasoning with uncertainty provide ways for

drawing conclusions and making decision in such
circumstances.

� Information precision – information acquired by a
user can be inherently imprecise. For example,
weather forecast. Standards for representing and
reasoning with uncertainty enable utilization of
such information.

� Concept mapping between ontologies – the
Semantic Web vision is based on ontologies and
interaction among them. The issue of expressing
degrees of similarity between concepts is related
to vagueness and ambiguity.

� Identification and Composition of Web Services –
any activities related to identification of services
requested by a user and building a complex
services based on a simple ones have to be
equipped with methods and techniques that
address the problem of imperfect match between
user’s request and available services.

3. Preliminaries
3.1 Uncertainty Representation

3.1.1 General Approach
A number of different approaches for representing
uncertainty can be found in [22]. Below we shortly
review descriptions of the most intuitive ones:
� Probability theory: Uncertainty means assigning a

number between 0 and 1 to subsets of alternatives.
This number – probability – represents the
likelihood that the desired alternative is in a
subset.

� Fuzzy set and fuzzy measure theories: Fuzzy sets
are capable of expressing imprecision and
vagueness. In fuzzy sets, our focus is not on a
matter of affirmation or denial, but rather on a
matter of degree. A number of special classes of
measures are used: plausibility and belief
measures, as well as the classical probability
measures. Fuzzy measures can indicate levels of
information sufficiency to determine if an element
belongs to a specific set.

� Rough set theory: Uncertainty about an element
belonging to a set is expressed in terms of two
subsets, a lower approximation and an upper
approximation.

Among these three approaches we are going to focus
on fuzzy-based approach [8, 12, 23, 37]. There is a
fundamental difference in the semantics of fuzzy logic
and probabilistic logic. In fuzzy logic, a statement can
be true to a certain extent or an entity belongs to a
class to a certain degree. This degree is assumed to be
known with certainty. In probabilistic reasoning, there

644

is a probability that a statement is true or false. In this
case the statement itself is either true or false, but
neither both nor something in between. Hence fuzzy
logic sees the world as continuous instead of binary,
while probabilistic logics make a claim about the
randomness of the world or the observer’s state of
certainty [35].
3.1.2 Principles of Fuzziness
Real situations are very often not crisp and
deterministic therefore they cannot be described
precisely. They are very often uncertain or vague in a
number of ways. One aspect of uncertainty is related to
lack of information about the future state of the
system. This type of uncertainty is handled
appropriately by probability theory and statistics. It is
assumed that the events are well defined. This is in
contrast to the vagueness concerning the description of
the semantic meaning of the event, phenomena or
statements, which is called fuzziness [28, 39, 43].

Fuzziness can be found in many areas of daily life.
It is particularly frequent, however, in all areas in
which human judgment, evaluation, and decisions are
important. One of the most important reasons for that
is that human daily communication uses natural
languages and a good part of human thinking is done
with it. In these natural languages the meaning of the
words is very often vague. The meaning of a word
might even be well defined, but when using the word
as a label for a set, the boundaries within which objects
belong to the set or not, become fuzzy or vague.
Examples are words such as “birds” (how about
penguins, bats, etc.?), “red flowers”, but also terms
such as “tall men”, “creditworthy customer”. In this
context, two kinds of fuzziness with respect to their
origins can be distinguished: intrinsic fuzziness and
informational fuzziness. The former is illustrated by
“tall men”. This term is fuzzy because the meaning of
tall is fuzzy and dependent on the context. An example
of the latter is the term “creditworthy customer”: a
creditworthy customer can possibly be described
completely and crisply if a large number of descriptors
are used. However, this is more than a human being
could handle simultaneously. Therefore the term,
which in psychology is called a “subjective category”
becomes fuzzy.

The idea of fuzzy theory was first introduced by
Lotfi Zadeh at the University of California at Berkeley
in the 1960s [40]. Zadeh was working on the problem
of computer understanding of natural language.
Natural language is not easily translated into the
absolute terms of “true” and “false”. Fuzzy logic
includes “true” and “false” as extreme cases of truth
about phenomena or statement. Fuzzy logic also

includes the various states of truth in between. For
example, the result of a comparison between two
things could be not “tall” or “short” but “0.38 of
tallness”.
3.2 Semantic Web and Ontology
The concept of the Semantic Web was introduced in
May 2001 in Scientific American by Tim Berners-Lee,
James Hendler, and Ora Lassila [5]. Over the last years
the Semantic Web has been described in many ways:
an extension of the current web in which information
is given well-defined meaning, a place where machines
can analyze all the data on the Web [5]. A common
element of all of these definitions is a reference to a
new method of representing data. The formation of the
Semantic Web has been led by advances in the area of
data and knowledge representation.

In a nutshell, the Semantic Web can be seen as a
new representation of resources on the World Wide
Web. It is virtually a hub of linked information that
can be accessible and operable by programs. These
programs can be in a form of software agents or any
other applications which are capable of handing the
semantics of the information.

The new representation of resources on the web is
based on usage of ontology. Ontology is a formal,
explicit specification of a shared conceptualization
[16]. It is a set of well-defined classes to describe data
models in the specific domain. Ontology has ability to
present interrelated resources. Together with their
instances, ontologies work as knowledge characters to
express the individual facts [30].

In the Semantic Web environment ontology is
specified using Resource Description Framework
(RDF). RDF is a foundation for processing metadata
[31]. RDF is a standard for describing resources and
information on the web. It provides interoperability
between applications that exchange machine-
understandable information on the Web. Resource
Description Framework Schema (RDFS) is used as an
ontology language supporting exchange of knowledge
over the web. RDF and RDFS serve as the basic
methodology of expressing web resources in the form
of triples: a subject, a predicate (i.e. verb), and an
object (consider them as start, label and end of the
edge respectively in a labeled, directed graph).
Another ontology specification language is a
combination of DARPA Agent Markup Language
(DAML) and Ontology Inference Layer (OIL) called
DAML+OIL. It enables the creation of ontologies for
any domain and the instantiation of these ontologies in
the description of specific web sites. DAML+OIL
enhances and extends RDFS with richer modeling

645

primitives [36] to represent the semantics of resources
and information.

The latest web resource ontology language is Web
Ontology Language (OWL), which has been proposed
as the recommendation by W3C. OWL has many
correspondences with Description Logic (DL). DLs [3]
are considered the most important formalism to
represent knowledge of an application domain. They
combine traditions of Frame-based systems, Semantic
Networks and KL-ONE-like languages, Object-
Oriented representations, Semantic data models, and
Type systems. OWL is not only for representing
information on the web, but it also improves the
capability to process the information and increases the
interoperability among software agents [24]. OWL
defines a family of three languages: OWL Lite, OWL
Full, and OWL-DL.

4. Fuzziness and Ontology Languages

The developments related to Semantic Web, and
especially the application of ontology to knowledge
representation, have created a suitable setting for
representing uncertainty.

Fuzzy OWL, developed in the National Technical
University of Athens [32], has been proposed in 2006.
In this approach, a class is defined by a membership
function that returns the membership value between
[0,1] representing a degree of belonging of a given
object to the class. Fuzzy OWL uses crisp OWL’s
syntax for class, property axioms and definitions.
Reasoning is done using a reasoning platform – Fuzzy
Reasoning Engine (FiRE), and FiRE uses RACER DL1
engine syntax. Fuzzy of OWL (FOWL) [29] is another
extention to the OWL by fuzzy logic to capture
uncertain and imprecise knowledge with modifying
operators.

DL in the web ontology language (OWL-DL)
corresponds to SHOIN(D)2 description logic. In other
words OWL-DL is using SHOIN description logic to
represent knowledge and reason about it. Straccia
presented a fuzzy extension of SHOIN(D) showing
that its representation and reasoning capabilities go
beyond classical SHOIN(D) [33]. A main feature of
fuzzy SHOIN(D) is that the subsumption relation
between classes and the entailment relation is no more
a crisp yes/no problem, but it becomes now fuzzy, i.e.
is established to some degree. Since many languages
such as OWL-DL are based on DLs therefore a better

1 www.sts.tu-harburg.de/~r.f.moeller/racer
2 SHOIN(D) forms the core of OWL-DL (OWL-DL is a syntactic
variant of SHOIN(D))

understanding of DLs is indispensable for Semantic
Web researchers [20].

In addition, research is being conducted in the area
of introducing rules to OWL. Semantic Web Rule
Language (SWRL) is a proposal that combines OWL
(DL and Lite) with the Rule Markup Language
(RuleML). Fuzzy-SWRL (f-SWRL) is a fuzzy
extension of Semantic Web Rule Language [26]. In
both the antecedent and consequent of f-SWRL rules
atoms can have weights between [0,1]. f-SWRL
provides a powerful and flexible knowledge
representation and very convenient for multimedia
domain.

The results of work on fuzzy ontologies are
reported in [34]. A framework called Fuzzy Ontology
Generation frAmefork (FOGA) has been developed. It
combines fuzzy logic and Formal Concept Analysis
(FCA) [13] to represent the uncertainty information by
a value in the range from 0 to 1 (linguistic variables
are no longer needed). FOGA automatically generates
fuzzy ontologies based on data with uncertainty.

5. Fuzziness in the Semantic Web Systems
First steps in introduction of fuzziness to knowledge
representation are associated with first applications of
fuzziness to building web applications.

A collaborative filtering multi-agent model was
introduced in [17]. It relies on fuzzy linguistic
approach [41]. The retrieval capabilities of this model
do not utilize a user’s profile what is seen as a
drawback. This limitation is addressed in the further
work [18] through modifying the model by
incorporating a user profile to improve information
retrieval. The new model combines semantic web
technologies with a dynamic user’s profile relying on
fuzzy linguistic techniques.

Haibin and Yan proposed a framework called soft
Semantic Web Services agent (soft SWS agent) [38]
providing high quality semantic web services using
fuzzy neural networks and genetic algorithms. The
core of soft SWS agent is the Intelligent Inference
Engine (IIE) that uses a four-layer fuzzy neural
network. Linguistic variables entered to the network
are transformed into output variables after undergoing
fuzzy processing.

A concept-matching information retrieval system –
a system that retrieves web pages that are conceptually
related to the implicit concepts of the query – is
introduced in [14]. The system uses fuzzy synonymy
and fuzzy generality interrelations as a means of
representing word interrelations. It applies Synonymy-
Based Concept Representation Model (FIS-CRM) to
extract the concepts from web pages and user’s

646

queries. The vectors used in FIS-CRM are fuzzy
values representing occurrences of concepts instead of
terms.

Acampora and Loia describe a multilayer
architecture to design Ambient Intelligent (AmI) [4]
systems providing efficient and uniform utilization of
control activities [1]. This multiplayer architecture
employs markup-based technologies to transform
rough information on sensors, actuators and services
towards “smart data”. In particular they are using
Fuzzy Markup Language (FML) [2] to provide fuzzy
web services. FML language is a novel computer
language used to model control systems based on
fuzzy logic theories. The main feature of FML is the
transparency property: the FML programs can be
executed on different hardware without additional
efforts. This property is fundamental in ubiquitous
computing environment where computers are available
throughout the physical environment and appear
invisible and transparent to the user.

Nikravesh introduces a new architecture for
semantic web search engines based on Fuzzy
Conceptual Model (FCM) to handle the ambiguity and
imprecision of the concept on the Internet [25]. In the
FCM approach, the concept is defined by a series of
keywords with different weights depending on the
importance of each keyword. Ambiguity of concepts is
defined by a set of imprecise concepts described using
fuzzy concepts. The fuzzy concepts are related to a set
of imprecise words identified by context. Imprecise
words can be translated into precise words using
ontology and ambiguity resolution through
clarification dialog.

A popular statement about the Web – “anyone can
say anything about anything” means that information
can be of different trustworthiness. The agents in the
semantic web framework have to be able to make
judgments to choose a single, most reliable source
from alternative sources of information. Trust is an
essential component of the semantic web vision [5-7].

In [10], the authors treat trust as a degree that a
source can be trusted. They introduce a model that
takes into account partial trust, distrust and ignorance
simultaneously. This model is particularly useful when
the trustworthiness of many sources of information is
unknown for a user at the beginning. This does not
mean the user distrust all sources but eventually further
evidence reveals their credibility.

6. Discussion
6.1 Knowledge Representation
Currently, typical ontology formalisms have very
limited or no capabilities to represent different aspects

of uncertainty. Uncertainty is inherently present in
many application domains. This has initiated research
activities leading to additions of elements of
probabilistic and fuzzy theories to existing knowledge
representation formats. As we presented above,
fuzziness has already been introduced to ontologies.
Some of the items that sill need attention are:
� inclusion of fuzziness to DL and OWL-DL and

development of reasoning systems taking full
advantaged of introduced fuzziness; this would
also include fuzzy rules;

� construction of fuzzy ontologies where
relationships (is-a, as well as relationships defined
by object properties) among concepts are
expressed by a number in the range from 0 to 1
[34], development of methods for automatic
construction of such ontolgies and their interaction
with normal (crisp) ontologies;

� development of fuzzy-based methods and
algorithms for matching and comparison of
ontologies.

It should be also stated, that fuzzy logic cannot
address all faces of imperfect knowledge. For example,
rough sets theory [27] has been proposed to deal with
indiscernibility of objects. Therefore, fuzzy methods
used to represent ontologies can be combined with
rough sets to handle uncertainty in DLs [21].
6.2 Web Services
The Semantic Web promises a change in a way a
human will use the Internet. According to its motto
web agents should be able to act on behalf of users and
like users. It seems that fulfillment of that promise
means existence of agents that have capabilities to deal
with uncertainty. It is essential to develop agents that
can use imprecise information and reason about it. In
particular, the following issues should be addressed:
� selection of most suitable services in the presence

of partial information;
� integration of atomic services when they are not

fully compatible;
� supporting user in human-centric (like) multi-

criteria decision making when multiple
alternatives and service providers are available.

With the assumption that information uncertainty can
be expressed by ontology, there is a need for methods
and techniques able to automatically identify levels of
information uncertainty, store that information, and
reason about it. Utilization of all those things depends
on existence of open-source and commercial reasoning
engines capable of handling uncertainty.

647

References
[1] G. Acampora, V. Loia, Enhancing the FML vision for the design
of open ambient intelligence environment. Systems, Man and
Cybernetics, 2005 IEEE International Conference, vol. 3, pp. 2578 -
83, 2005.
[2] G Acampora, V. Loia, Fuzzy Control Interoperability and
Scalability for Adaptive Domotic Framework, IEEE Transactions on
Industrial Informatics, vol. 1, pp. 97-111, 2005.
[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors, The Description Logic Handbook, Cambridge
University Press, 2002.
[4] T. Basten, M. Geilen, H. de Groot, Ambient Intelligence: Impact
on Embedded System Design, Kluwer Academic Publishers, 2003.
[5] T. Berners-Lee, J. Hendler, and O. Lassila, The Semantic Web.
Scientific American, vol. 284, pp. 34-43, 2001.
[6] T. Berners-Lee, Weaving the Web, Harper, 1999.
[7] T. Berners-Lee, W. Hall, J. Hendler,K. O’Hara, N. Shadbolt,
D.Weitzner, A framework for web science, Foundations and Trends
in Web Science, pp. 1-130, vol. 1, 2006.
[8] C. V. Damasio, L. M. Pereira, Antitonic logic programs, 6th
International Conference on Logic Programming and Nonmonotonic
Reasoning, pp. 748-59, 2001.
[9] T. H. Davenport and L. Prusak, Working Knowledge: How
Organizations Manage What They Know, Cambridge, MA: Harvard
Business School Press, 1998.
[10] M. De Cock and P. P. da Silva, A Many Valued Representation
and Propagation of Trust and Distrus. Lecture Notes in Computer
Science, vol. 3849. pp. 114-20, 2006.
[11] Z. Ding et al. BayesOWL: Uncertainty modeling in Semantic
Web ontologies. Z. Ma, editor, Soft Computing in Ontologies and
Semantic Web, Studies in Fuzziness and Soft Computing, vol. 204,
pp. 3-29, 2006.
[12] R. Ebrahim, Fuzzy logic programming. Fuzzy Sets and Systems,
vol. 117, pp. 215-30, 2001.
[13] B. Ganter and R. Wille, Formal Concept Analysis:
Mathematical Foundations. Springer, 1999.
[14] P. J Garces, J A Olivas, and F. P. Romero, Concept-Matching
IR System Versus Word-Matching Information Retrieval Systems:
Considering Fuzzy Interrelations for Indexing Web Pages, Journal of
the American Society for Information Science and Technology, vol.
57, pp. 564-76, 2006
[15] T. R. Gruber, Toward Principles for the design of Ontologies
Used for Knowledge Sharing, International Journal of Human and
Computer Studies, pp. 907-28, 1995.
[16] T. R. Gruber, A translation approach to portable ontology
specifications, Knowledge Acquisition, vol. 5, pp. 199-220, 1993.
[17] E. Herrera-Viedma, C. Porcel, A. G. Lopez, M. D. Olvera and
K. Anaya, A Fuzzy Linguistic Multi-agent Model for Information
Gathering on the Web Based on Collaborative Filtering Techniques.
Lecture Notes in Computer Science, pp. 3-12, 2004.
[18] E. Herrera-Viedma, E. Peis, J. M. Morales-del-Castillo and K.
Anaya, Web-based Service Information Systems based on Fuzzy
Linguistic Techniques and Semantic Web Technologies, Studies in
Computational Intelligence (SCI), vol. 37, pp. 647–66, 2007.
[19] M. Holi and E. Hyvonen, Modeling Uncertainty in Semantic
Web Taxonomies, Studies in Fuzziness, vol. 204, pp 31-46, 2006.
[20] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ
and RDF to OWL: the making of a Web Ontology Language,
Journal of Web Semantics, vol. 1, pp. 7-26, 2003.
[21] P. Klinov, L. J. Mazlack, Fuzzy Rough Approach To Handling
Imprecision in Semantic Web Ontologies, Fuzzy Information
Processing Society (NAFIPS 2006) Annual Meeting of the North
American, pp. 142-7, 2006.
[22] G. J. Klir, The Many Faces of Uncertainty, In: B.M Ayubb and
M.M. Gupta, editors, Uncertainty Modeling and Analysis: Theory
and Applications, Elsevier Science, pp. 3-19, 1994.

[23] C. Mateis, Extending disjunctive logic programming by t-norms.
In LPNMR '99: Proceedings of the 5th International Conference on
Logic Programming and Nonmonotonic Reasoning, pp. 290-304,
1999.
[24] D.L. McGuinness, F. van Harmelen (eds.), OWL Web Ontology
Language Overview. W3C Recommendation. 10 February 2004,
Available at http://www.w3.org/TR/2004/REC-owl-features-
20040210/. Accessed 03/12/2008.
[25] M. Nikravesh. Beyond the Semantic Web: Fuzzy Logic-Based
Web Intelligence, Zongmin M (ed) Soft Computing in Ontologies
and Semantic Web, Studies in Fuzzyness and Soft Computing, vol.
204, pp. 149-242, 2006.
[26] J. Z. Pan, G. Stamou, V. Tzouvaras, and I. Horrocks, f- SWRL:
A Fuzzy Extension of SWRL, Journal on Data Semantics VI, pp. 28-
46, 2006.
[27] Z. Pawlak, Rough sets, International Journal of Computer and
Information Sciences, vol. 11, pp. 341-56, 1982.
[28] W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets: Analysis
and Design, MIT Press, 1998.
[29] Y. Quing, W. Jinlin, Extending Ontology Language for
Semantic Web, Computational Intelligence and Security Workshops
(CISW 2007), pp. 116-119, 2007.
[30] F. Scott, W. D. Lewis, D. T. Langendoen, An Ontology for
Linguistic Annotation 1-2. Fourteenth Innovative Applications of AI
Conference, pp. 11-9, 2002.
[31] S. Staab, M. Erdmann, A. Maedche, S. Decker, An Extensible
Approach for Modeling Ontologies in RDF(S) ECDL 200 Workshop
on the Semantic Web, pp 11-22, 2000.
[32] G. Stoilos, N. Simou, G. Stamou, S. Kollias, Uncertainty and the
Semantic Web, IEEE Intelligent Systems,vol. 21, pp. 84-7, 2006.
[33] U. Straccia. Towards a Fuzzy Description Logic for the
Semantic Web, 2nd European Semantic Web Conference (ESWC-
05), pp. 167-81, 2005.
[34] Q. T. Tho, S. C. Hui, A.C.M. Fong and T. H. Cao. Automatic
fuzzy ontology generation for semantic Web, IEEE Transactions on
Knowledge and Data Engineering, vol. 18, pp. 842-56, 2006.
[35] C. J. Thomas and A. Sheth, On the Expressiveness of the
Languages for the Semantic Web – Making a Case for ‘A Little
More’, in E. Sanchez (Editor), "Fuzzy Logic and the Semantic Web",
Elsevier, 2006.
[36] F. van Harmelen, P. F. Patel-Schneider I. Horrocks, Reference
description of the DAML+OIL ontology markup language, 2001
http://www.daml.org/2001/03/reference.
[37] P. Vojtas, Fuzzy logic programming. Fuzzy Sets and Systems,
vol. 124, pp. 361-70, 2001.
[38] H. Wang, Y-Q Zhang, R. Sunderraman, Soft Semantic Web
Services Agent, Fuzzy Information, 2004. Processing NAFIPS '04.
IEEE Annual Meeting of the North American, vol. 1, pp. 126-9,
2004.
[39] L. A. Zadeh, A Fuzzy-Set Theoretic Interpretation of Linguistic
Hedges. Journal of Cybernetic, vol. 2, pp. 2-34, 1972.
[40] L. A. Zadeh, Fuzzy Sets. Information and Control, vol. 8, pp.
338-53, 1965.
[41] L. A. Zadeh, The concept of a linguistic variable and its
applications to approximate reasoning. Part I, In Information
Sciences vol. 8, pp. 199-249, 1975. Part II, Information Sciences vol.
8, pp. 301-357, 1975. Part III, Information Sciences vol. 9, pp. 43-80,
1975.
[42] L. A. Zadeh, Toward a perception-based theory of probabilistic
reasoning with imprecise probabilities, Journal of Statistical
Planning and Inference, vol. 105, pp. 233-64, 2002.
[43] H. J. Zimmermann, Fuzzy Set Theory - and Inference
Mechanism. Mathematical Models for Decision Support, pp. 727-
741, 1988.

648

A Language-based Approach to Addressing Reliability in Composite Web
Services

Onyeka Ezenwoye
Electrical Engineering and

Computer Science Department
South Dakota State University

Brookings, SD 57007
Email: onyeka.ezenwoye@sdstate.edu

S. Masoud Sadjadi
School of Computing and

Information Sciences
Florida International University

11200 SW 8th Street, Miami, FL 33199
Email: sadjadi@cs.fiu.edu

Abstract

With Web services, distributed applications can be en-
capsulated as self-contained, discoverable software com-
ponents that can be integrated to create other applications.
BPEL allows for the composition of existing Web services
to create new higher-function Web services. We identified
that the techniques currently applied at development time
are not sufficient for ensuring the reliability of composite
Web services In this paper, we present a language-based
approach to transparently adapting BPEL processes to im-
prove reliability. This approach addresses reliability at the
Business process layer (i.e the language layer) using a code
generator, which weaves fault-tolerant code to the original
code and an external proxy. The generated code uses stan-
dard BPEL constructs, and therefore, does not require any
changes to the BPEL engine.

Keywords: Web service composition, Reliability, Adapt-
ability, Business Process.

1 Introduction

Web services are gaining acceptance as the predominant
standards-based approach to building open distributed sys-
tems. With Web services, distributed applications can be
encapsulated as self-contained, discoverable and Internet-
accessible software components that can be integrated to
create other applications. The fundamental aspects of Web
services can be summarized as follows: (1) strict separation
of service interface description, implementation, and bind-
ing; (2) declarative policies and Service Level Agreements
(SLAs) to govern service interactions; and (3) loosely cou-
pled, standards-based and message-centric interactions be-
tween autonomous and replaceable service components [1].

To facilitate flexibility and interoperability, Web services
are described using a standard, machine-readable, XML-
based language called Web Service Description Language.
This service description provides the details necessary to in-
teract with the service, including message formats that de-
tail the operations, transport protocols, and location. Fi-
nally, interaction with Web services is achieved through
SOAP messaging.

The family of specifications that make up the Web ser-
vice standards includes a specification for service com-
position known as Business Process Execution Language
(BPEL). BPEL allows for the composition of existing Web
services to create new higher-function Web services [2].
BPEL is used to define workflows that represent composite
services. The composite services, also known as business
processes, contain activities that coordinate the interaction
between the partner services in the composition. Figure 1(a)
illustrates a business process that is a composition of two
service: (1) a service that retrieves the addresses of nearby
businesses; and (2) a service that gets the driving directions
to a given address. Figure 1(b) depicts a basic set of work-
flow patterns that are supported by BPEL. In the sequence
pattern (Figure 1(b)(i)), an activity in a process is enabled
after the completion of another activity in the same process.
Parallelism (Figure 1(b)(ii)), allows activities to be executed
simultaneously. Loops (Figure 1(b)(iii)), allow for one or
more activities to be executed repeatedly. In the choice pat-
tern (Figure 1(b)(iv)), a number of branches are chosen and
executed as parallel threads. Based on these basic patterns,
more sophisticated constructs can be built [3].

As the use of Web services continues to grow, so has
the need to deliver reliable service compositions with pre-
cise Quality of Service (QoS) attributes covering functional
correctness, performance and dependability [1]. This is be-
cause current Web services standards provide limited con-
structs for specifying exceptional behavior and recovery

649

Driving Direction
Service

Business Location
Service

Map Generation
Service

Client
Program

Composed
Web Service

Partner
Web Services

1

2

Service interface Service dependency1Web service (WS) Sequence of events

Legend:Legend:

(a) A Business Process that integrates remote components to create a
new composite component for providing driving directions.

A

B

(i)

A B

(ii)

A

(iii)

A B

(iv)

(b) Selected workflow patterns supported by BPEL: (i) Sequence, (ii)
Parallelism, (iii) Loop, (iv) Choice.

Figure 1.

actions. Currently, BPEL is a composition language that
mainly concentrates on modeling the business process in
terms of interacting Web services but does not consider the
behavior of such models at runtime.

While it is relatively easy to make an individual service
fault-tolerant, addressing reliability and availability of Web
services collaborating in multiple application scenarios is a
challenging task. This is because the integration of mul-
tiple services, which are potentially developed and main-
tained on autonomous heterogeneous environments, intro-
duces new levels of complexity in management. Thus the
composed service has no influence over the factors affect-
ing QoS provision and partner services can spontaneously
appear and disappear over on the Internet. Moreover, ser-
vices may fail because of problems in their execution such
as network faults, overload and lack of resources [1].

Given the unreliability of communication channels, the
unbounded communication delays, and the autonomy of the
interacting services, it is difficult for developers of compos-
ite services to anticipate and account for all the dynamics
of such interactions. There is therefore a need for adapt-
ability in composed services to make them more robust and
dependable. The need for adaptability is particularly ev-
ident in complex long-running applications as is found in
scientific Grid computing. In Grid computing, computa-
tional and storage resources are exposed as an extensible
set of networked services that can be aggregated to create

higher-function applications [4]. These highly available ap-
plications need to remain operational and rapidly responsive
even when failures disrupt some of the nodes in the system.

In this paper, we present a systematic approach to mak-
ing existing aggregate Web services more tolerant to the
failure. We demonstrate how a composite Web service, de-
fined as a BPEL process, can be instrumented automatically
to monitor its partner Web services at runtime. To achieve
this, events such as faults and timeouts are monitored from
within the adapted process. We show how our adapted pro-
cess is augmented with a proxy that dynamically replaces
failed services. In doing this, we improve the fault tolerance
and performance of BPEL processes by transparently adapt-
ing their behavior. By transparent, we mean the following;
first, the adaptation preserves the original behavior of the
business process and does not tangle the code that provides
self-healing and self-optimization behavior with that of the
business process; and second, the fault-tolerant approach
does not need any modification of the BPEL engine1. This
transparency is achieved by using a dynamic proxy that en-
capsulates the autonomic behavior (adaptive code).

The rest of this paper is is structured as follows. Sec-
tion 2 provides a background in addressing reliability in
composite components. Section 3 overviews our approach
and gives a brief introduction to the RobustBPEL frame-
work, we also describes the dynamic proxy. Section 4 con-
tains some related work. Finally, some concluding remarks
are provided in Section 5.

2 Addressing Reliability in Composite Com-
ponents

The goal of fault-tolerance is to improve dependability
in a system by enabling it to perform its intended functions
in the presence of a given number of faults [5]. There ex-
ists several definitions of dependability. These definitions
often depend on the attributes (e.g., availability, reliability
and safety) of the system that are being defined as a criterion
to decide whether or not a system is dependable at a given
time. The attribute defined may depend on the intended use
of the system [6].

In general, dependability is based on the notion of re-
liance in the context of interacting components. It asso-
ciates to the relation depends upon, where a component A
depends upon a component B if the correctness of B’s ser-
vice delivery is necessary for the correctness of A’s service
delivery [6]. This relationship is typical of composite ser-
vices since they are entirely dependent on interaction with
partner services. An error may propagate from a partner to
the composite thereby creating new errors.

1A BPEL engine is a virtual machine that executes BPEL grammar

650

Our work focuses on the reliability attribute of depend-
ability with a specialization on robustness as a secondary
attribute. Avizienis [6] defines reliability as the continu-
ity of correct service, it defines robustness as dependabil-
ity with respect to external faults. Techniques for achiev-
ing dependability that are applied at development time are
not sufficient enough for ensuring the reliability of compos-
ite Web services that are expected to dynamically discover
and assemble components, configure themselves, and oper-
ate securely and reliably in a completely automated man-
ner. This calls for the development of new reliability tech-
niques that introduce autonomic functionality to address
these challenges.

New reliability techniques for service compositions can
be developed at four layers. Figure 2 shows the different
layers at which reliability techniques can be applied.

Business Process
Layer

Program component Message flow

NetworkNetwork
Transport Layer

SOAP Messaging
Layer

SOAP Messaging
Layer

Service Provider
Layer

ConsumerConsumer

ProviderProvider

Figure 2. Layers to apply reliability tech-
niques

Service provider layer: At this level, reliability focuses
on the service hosting environment. Here, reliability can be
achieved by techniques that provide redundancy of compu-
tation and data, load sharing to improve performance and
fault tolerance, and clustering which interconnects multiple
servers to avoid single point of failure [1].

Transport layer: At this level, the focus is on imple-
menting reliable messaging for Web services at the transport
layer. Since the reliability of SOAP messaging is dependent
on the underlying transport layer, techniques in this layer
center on using message-oriented middleware (MOM) [7]
to ensure reliability and robustness of message traffic.

SOAP messaging layer: Addressing reliability at this
layer focuses on extending SOAP messages to include relia-
bility properties that allow messages to be delivered reliably
between services in the presence of component, system, or
network failures.

Business process layer: Reliability at this layer aims to
provide dependable composition of Web services through
advanced failure handling and compensation-based trans-
action protocols [1]. Efforts in this layer can be categorized
into two groups; language-based and non language-based
approaches. Language-based techniques provide advanced
failure handling and adaptability by augmenting the pro-
cess logic with additional language constructs while non-
language based approaches focus specifically on the pro-
cess supporting infrastructure such as the execution engine.

Our work fits into this category by enabling adaptability
in BPEL process to address the concerns raised above. One
might argue that BPEL should be extended with constructs
to handle those concerns. However, this would increase the
complexity of the language and it is also against the prin-
ciple of separation of concerns. Constructs for specifying
exceptional behavior and recovery actions should be modu-
larized and externalized and not scattered and tangled with
the service implementation. Entangling the logic for ex-
ceptional behavior and recovery actions with the business
logic of the application negatively impacts maintainability
and adaptability.

3 Overview of Our Approach

We developed RobustBPEL [8] as part of the transparent
shaping programming model. Using RobustBPEL, we can
automatically generate an adapt-ready version of an exist-
ing BPEL process. In a typical composed Web service (see
Figure 1(a)), a request is first sent by the client program,
then the composite Web service interacts with its partner
Web services and responds to the client. If one of the part-
ner services fails, then the whole process is subject to fail-
ure. To avoid such situations, adapt-ready version of the
original composed service monitors the behavior of it part-
ners and tries to tolerate their failure. As monitoring all
the partner Web services might not be necessary, the de-
veloper can select only a subset of Web service partners to
be monitored. The adapt-ready process monitors selected
Web services and in the presence of faults it will forward
the corresponding request to a proxy. The proxy is gener-
ated specifically for this adapt-ready process and provides
the same interface as those of the monitored Web services.
The proxy in its turn forwards the request to a substitute
Web service.

In this work, we make the following assumptions: (1)
two services are substitute, if they implement the same in-
terface; (2) Web service partners are stateless and idempo-
tent. It is possible for two applications to be functionally
equivalent without necessarily having the exact same inter-
face. When this occurs, a wrapper interface/service can be
used to harmonize the differences in their interfaces.

Given the rapid uptake of the service oriented program-

651

ming model, we expect the emergence of numerous services
that are functionally equivalent and thus can be substituted.
For instance, in our driving-direction example (Figure 1(a)),
if the default map generation service provided by Google
fails, it should be possible to substitute this service with
that of MSN, Yahoo! or Mapquest. Also, in Grid program-
ming environments where scientific applications are run on
computational Grids, a failed (or slow) Grid service can be
replaced by another service on the Grid. Thus, in our ap-
proach, we associate an adapt-ready composed service with
a dynamic proxy (which is also a Web service) and its job is
to discover and bind to substitute Web services.

3.1 High-Level Architecture

Figure 3 illustrates the architectural diagram of an ap-
plication using an adapt-ready BPEL process augmented
with its corresponding dynamic proxy. This figure shows
the steps of interactions among the components of a typical
adapt-ready BPEL process. Similar to a static proxy, the in-
terface for the generated dynamic proxy is exactly the same
as that of the monitored Web service. Thus, the operations
and input/output variables of the proxy are the same as that
of the monitored invocation. When more than one service
is monitored within a BPEL process, the interface for the
specific proxy is an aggregation of all the interfaces of the
monitored Web services. For example, the dynamic proxy
in Figure 3 has ��� and ��� , which are the port types of the
two monitored Web services (namely, ��� and ���). At
runtime, if a monitored service fails (or an invocation time-
out occurs), the input message for that service is used as
input message for the proxy. The proxy invokes the equiva-
lent service with that same input message. A reply from the
substitute service is sent back to the adapted BPEL process
via the proxy.

Although the adapt-ready BPEL process remains a func-
tional Web service and the proxy is an autonomic Web ser-
vice (encapsulates autonomic attributes), functional Web
services can behave in an autonomic manner by virtue of
their interaction with autonomic Web services. By replac-
ing failed and delayed services with substitutes, the proxy
service provides self-healing and self-optimization behav-
ior to the BPEL process, thereby making the BPEL process
autonomic.

3.2 Incorporating Generic Hooks inside the
Adapt-Ready BPEL Processes

Following the Transparent Shaping programming
model [9], we first need to incorporate some generic hooks
at sensitive joinpoints in the original BPEL process. These
joinpoints are certain points in the execution path of the
program at which adaptive code can be introduced at run

Client Program

1

2
WS1

pt1

WSn

ptn

...
...

Dynamic

Proxy

4

UDDI

~WSi

ptj

~WSj

ptj

UDDI registry

services

Dynamically

identified equivalent
Web services for

WSi and WSj

n partner

Web services

5

Service interface (pt)

Service dependency (static binding)

1Web service (WS) Sequence of events

Legend:Legend:

Service dependency (dynamic binding)

ptjpti

3 Absence of Faults

Presence of Faults

Adapt-Ready
Composed

Web Service

generated to

handle the faults

by two selected

partner Web

services

(WSi and WSj)

Figure 3. Architectural diagram showing the
sequence of interactions among the compo-
nents in an adapt-ready BPEL process aug-
mented with its corresponding dynamic proxy.

time. Key to identifying joinpoints is knowing where
in the BPEL process sensing and actuating are required
and inserting appropriate code (hooks) to do so. Because
a BPEL process is an aggregation of services, the most
appropriate place to insert interception hooks is at the
interaction joinpoints (i.e., the invocation instructions). The
monitoring code we insert is in the form of standard BPEL
constructs to ensure the portability of the modified process.

We adapt the BPEL process by identifying points in the
process at which external Web services are invoked and then
wrapping each of those invocations with a BPEL scope
that contains the desired fault and event handlers. A fault
can be a programmatic error generated by a Web service
partner of the BPEL process or unexpected errors from the
Web service infrastructure. The unmonitored invocation is
first wrapped in a scope container which contains fault and
event handlers. The fault handlers detect any faults gener-
ated as a result of the invocation of the partner Web ser-
vice. A fault-handling activity is defined, which basically
forwards the request to the dynamic proxy. When a fault
is generated by the partner service invocation, this fault is
caught and the proxy service is invoked to substitute for the
unavailable or failed service.

For the event handler, an alarm clause is used to specify
a timeout. A timeout can be used, for instance, to limit the
amount of time that a process can wait for a reply from an
invoked Web service. If the partner service fails to reply
within the time stipulated in the timeout event, a generated
fault forces the monitored invocation to terminate and the
proxy service is invoked as a substitute.

652

4 Related Work
Since Web services technology is still emerging, most

of the work that aim to address the requirements for reliable
and fault tolerant Web services execution are still in their in-
fancy. These efforts can be distinguished by their focus on
different layers (see Figure 2) of the Web services infras-
tructure . We note that our work is focused on the business
process layer and as a result the work in the other layers are
complementary to ours.

4.1 SOAP Messaging Layer
Some works aim to address the reliability of Web

services from the SOAP messaging layer by addressing
the issues concerning reliable transport-independent mes-
saging. To this end, SOAP-based protocols like WS-
ReliableMessaging [10] and WS-Reliability [11] strive to
standardize message delivery by specifying rules for ac-
knowledgment, message correlation, ordered delivery and
so on. Such a protocol does however contribute to ineffi-
ciency if the underlying transport layer does use protocols
that address reliable message delivery [1].

4.2 Transport Layer
Other approaches and technologies focus on implement-

ing reliable massaging for Web services at the transport
layer. The reliability of SOAP messaging largely depends
on the underlying transport chosen. Since SOAP-over-
HTTP is not reliable, attempts are being made to build mes-
saging middleware that accept messages from sending pro-
cesses and delivers them reliably to receiving processes.
Reliable messaging implementations communicate across a
network on behalf of senders and receivers, and have built-
in transactional support to manage message conversations
in the context of a larger business process [1]. Examples of
message-oriented middleware are IBM WebsphereMQ [12]
and Microsoft Message Queuing (MSMQ) [13]. These
implementations support their own proprietary messaging
APIs and protocols, as well as the standard Java Message
Service (JMS) API [14]. These approaches however do not
guarantee reliability for multi-hop messaging over different
protocols as they assume that reliable transport protocols
will be available for the entire path of the message [1, 15].

4.3 Service Provider Layer
At this layer, approaches focus on the service hosting

container. Here, approaches aim to achieve reliability by us-
ing techniques that provide redundancy of computation and
data, load sharing to improve performance and fault toler-
ance, and clustering to avoid single point of failure [1].

Dialani et al. [16] provide an approach to enabling fault
tolerance in stateful Web services by requiring the devel-
oper to implement an interface for rollback and checkpoint.

Birman et al. [17] propose extensions to the Web services
architecture to support mission-critical applications. They
propose some extensions to track the health of individual
Web service.

4.4 Business Process Layer

We further categorize works that focus on the business
process layer into two groups: language-based and non
language-based.

Non-language based approaches focus specifically on
the process supporting infrastructure such as the execution
engine. They include wsBus [18], which is a lightweight
service-oriented middleware for transparently enacting re-
covery action in service-based processes. This approach
is modular and separates the business logic of the process
from the QoS requirements; however, this approach re-
quires the installation of additional middleware.

Charfi et al. [19] use an aspect-based container to provide
middleware support for BPEL. The process container is the
runtime environment for the BPEL process. All interactions
go through the container which plugs in support for non-
functional requirements. This framework is different from
ours because it requires a purpose built BPEL engine.

Language-based techniques provide advanced failure
handling and adaptability by augmenting the process logic
with additional language constructs. These approaches in-
clude BPEL for Java (BPELJ), which combines the capa-
bilities of BPEL and the Java programming language. This
combination is achieved by extending the BPEL to allow
for sections of Java code to be included in BPEL process
definitions. BPELJ, however, requires an extended BPEL
engine that understands the additional constructs. Also, ex-
ception handling logic in BPELJ often gets tangled with the
process logic, thus hampering maintainability.

Other language-based techniques include the work done
by Baresi et al. [20]. In their approach, BPEL processes
are monitored at run-time to check whether individual ser-
vices comply with their contracts. Monitors are automati-
cally defined as additional services and linked to the service
composition via annotations in the composition. This ap-
proach achieves the desired separation of concern, however,
it requires manually modifying the original BPEL process
and the monitoring code is entangled with the process logic.
The manual modification of BPEL code is not only difficult
and error prone, but also hinders maintainability.

5 Conclusion

Techniques that are applied at development time are not
sufficient enough for ensuring the reliability of compos-
ite Web services that are expected to dynamically discover
and assemble components, configure themselves, and oper-

653

ate securely and reliably in a completely automated man-
ner. This calls for the development of new reliability tech-
niques that introduce autonomic functionality to address
these challenges. New reliability techniques for service
compositions can be developed at four layers, namely; (1)
Service provider, (2) SOAP messaging, (3) Transport and
(4) Business process layers. We presented a language-based
approach to transparently adapting BPEL processes to im-
prove reliability. This approach addresses reliability at the
Business process layer.

References

[1] A. Erradi, P. Maheshwari, and V. Tosic, “A policy-
based middleware for enhancing web services relia-
bility using recovery policies,” in Proceedings of the
2006 IEEE International Conference on Web Services,
Chicago, USA, September 2006.

[2] O. Ezenwoye and S. M. Sadjadi, “Composing aggre-
gate web services in BPEL,” in Proceedings of The
44th ACM Southeast Conference, Melbourne, Florida,
March 2006.

[3] D. Cybok, “A grid workflow infrastructure: Research
articles,” Concurrency and Computation: Practice
and Experience, vol. 18, no. 10, pp. 1243–1254, 2006.

[4] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke,
“Grid services for distributed system integration,”
Computer, vol. 35, no. 6, pp. 37–46, 2002.

[5] V. P. Nelson, “Fault-tolerant computing: Fundamental
concepts.” IEEE Computer, vol. 23, no. 7, pp. 19–25,
1990.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 01,
no. 1, pp. 11–33, 2004.

[7] S. Goel, H. Sharda, and D. Taniar, “Message-oriented-
middleware in a distributed environment.” in Third In-
ternational Workshop on Innovative Internet Commu-
nity Systems, June 2003, pp. 93–103.

[8] O. Ezenwoye and S. Sadjadi, “RobustBPEL2: trans-
parent autonomization in business processes through
dynamic proxies,” in Proceedings of the 8th Interna-
tional Symposium on Autonomous Decentralized Sys-
tems, Sedona, Arizona, March 2007.

[9] S. M. Sadjadi, P. K. McKinley, and B. H. Cheng,
“Transparent shaping of existing software to support
pervasive and autonomic computing,” in Proceedings

of the first Workshop on the Design and Evolution of
Autonomic Application Software 2005, St. Louis, Mis-
souri, May 2005.

[10] “Web services reliable messaging,” http://www.ibm.
com/developerworks/library/specification/ws-rm/.

[11] “WS-Reliability 1.1,” November 2004,
http://docs.oasis-open.org/wsrm/ws-reliability/
v1.1/wsrm-ws reliability%-1.1-spec-os.pdf.

[12] L. Gilman and R. Schreiber, Distributed Computing
with IBM MQSeries. Wiley, 1996.

[13] “Microsoft. microsoft message queuing MSMQ,”
http://www.microsoft.com/windowsserver2003/
technologies/msmq/default.ms%px.

[14] M. Hapner, R. Burridge, and R. Sharma, “Java mes-
sage service specification,” Sun Microsystems, Tech.
Rep., Nov. 1999.

[15] S. Tai, T. Mikalsen, and I. Rouvellou, “Using
message-oriented middleware for reliable web ser-
vices messaging.” in Second International Workshop
of Web Services, E-Business, and the Semantic Web,
2003, pp. 89–104.

[16] V. Dialani, S. Miles, L. Moreau, D. D. Roure, and
M. Luck, “Transparent fault tolerance for web services
based architectures,” in Eighth International Europar
Conference. Padeborn, Germany: Springer-Verlag,
aug 2002.

[17] K. P. Birman, R. van Renesse, and W. Vogels, “Adding
high availability and autonomic behavior to web ser-
vices.” in Proceedings of the 26th International Con-
ference on Software Engineering. Edinburgh, United
Kingdom: IEEE Computer Society, May 2004, pp.
17–26.

[18] A. Erradi and P. Maheshwari, “wsBus: QoS-aware
middleware for relaible web services interaction,” in
Proceedings of the IEEE International Conference
on e-Technology, e-Commerce and e-Service, Hong
Kong, China, 2005.

[19] A. Charfi and M. Mezini, “An aspect based process
container for BPEL,” in Proceedings of The First
Workshop on Aspect-Oriented Middleware Develope-
ment, Genoble, France, November 2005.

[20] L. Baresi, C. Ghezzi, and S. Guinea, “Smart monitors
for composed services,” in Proceedings of the 2nd in-
ternational conference on Service oriented computing.
ACM Press, 2004, pp. 193–202.

654

A Systematic Process for Domain Engineering

Eduardo Santana de Almeida1, Alexandre Alvaro1, Vinicius Cardoso Garcia1, Daniel Lucredio2,
Renata Pontin de Mattos Fortes2, Silvio Romero de Lemos Meira1

1Federal University of Pernambuco, C.E.S.A.R. - Recife Center for Advanced Studies and Systems,
Pernambuco, Recife, Brazil

{esa2, aa2, vcg, srlm}@cin.ufpe.br
2University of São Paulo

{lucredio,renata}@icmc.usp.br

Abstract: Software reuse is a key aspect for improving quality and productivity. However, this process is more effective
when systematically planned and managed in the context of a specific domain, where application families share some
functionality. In this scenario, Domain Engineering (DE) has been seen as a facilitator to obtain the desired benefits.
Nevertheless, the existing domain engineering processes present crucial problems, such as lacking of details in the three
basic steps of domain engineering and not being systematic. Thus, this paper aims at defining a systematic process to
perform domain engineering based on the-state-of-the-art in the area, which includes the steps of domain analysis,
domain design, and domain implementation. An experimental study evaluates the viability of the use of the process and
the impact of applying it to a domain engineering project.

1 Introduction

In the context of software reuse, important research
including company reports [1], [2], [3], [4], informal
research [5], [6] and empirical studies [7], [8], [9] have
highlighted the relevance of a reuse process, once the most
common way of software reuse involves developing
applications reusing pre-defined assets.

However, the existing reuse processes present crucial
problems [10], such as: they do not cover the three steps of
domain engineering: domain analysis, design and
implementation; besides, they do not define activities, sub-
activities, roles, inputs, outputs of each step in a systematic
way.

Thus, this paper presents a systematic software reuse
process to perform domain engineering, which includes the
steps of domain analysis, domain design, and domain
implementation, based on a set of activities, sub-activities,
inputs, outputs, principles, guidelines, and roles.

2 The Domain Engineering Process

Domain engineering is the activity of collecting,
organizing, and storing past experience in building systems
or parts of systems in a particular domain in the form of
reusable assets (i.e. reusable work products), as well as
providing an adequate means for reusing these assets (e.g.
retrieval, qualification, dissemination, adaptation, assembly)
when building new systems [11].

A domain engineering process should define three
important steps: Domain Analysis (DA), Domain Design

(DD), and Domain Implementation (DI). In general, the
main goal of Domain Analysis is domain scoping and
defining a set of reusable, configurable requirements for the
systems in the domain. Next, Domain Design develops a
common architecture for the system in the domain and
devising a product plan. Finally, Domain Implementation
implements the reusable assets, for example, reusable
components, domain-specific languages, generators, and a
production process [11].

The next sections presents each step in details.

2.1 The Domain Analysis Step

The term domain analysis was first introduced by
Neighbors [12] as “the activity of identifying the objects
and operations of a class of similar systems in a particular
problem domain.” However, neither Neighbors’ nor many
other works [13], [14] address the issue of “how to
perform” domain analysis. These works focus on the
outcome, not on the process, and success stories are more
the exception than the rule.

Typically, knowledge of a domain evolves over time
until enough experience has been accumulated and several
systems have been implemented, so generic abstractions can
be isolated and reused. In this context, our goal, in
concordance with Prieto-Diaz [14], (pg. 48) is: “to find
ways to extract, organize, represent, manipulate and
understand reusable information, to formalize the domain
analysis process, and to develop technologies and tools to
support it.”

655

The approach for domain analysis has three activities:
Plan Domain, Model Domain and Validate Domain.

2.1.1 Plan Domain

The first activity in the approach corresponds to a
preparation phase, to determine whether it makes good
sense to invest in building a reuse infrastructure. The
domain analyst collects the initial information for the
subsequent steps, including: identification of the
stakeholders, definition of the objectives and constraints,
and market analysis. The domain analyst also collects all
knowledge regarding the domain, including available
documentation and existing applications.

Next, the applications to be supported by the domain are
identified, including their exact scope, which features these
applications support individually, and the determination of
candidates for domain features. The domain analyst,
together with the domain experts, develops a list of the
applications of the domain, including: existing applications
(i.e., applications that have been developed prior to the start
of the domain analysis process), future applications (i.e.,
applications where the requirements are rather clear, but
development has not yet started) and potential applications
(i.e., applications for which no clear requirements exist yet,
but that are seen as relevant). The list of applications also
includes a list of features [15] for those applications,
identified through the analysis of the applications, their
documentation, and the knowledge from the domain expert.

2.1.2 Model Domain

This activity shifts attention from scoping issues to
structural issues and conceptual elements within the
domain. Thus, a model is developed, describing the
commonality and variability within the domain. Rather than
building a model for a single application in the domain, or a
generic model that may be applicable at a high level to a
number of applications, the domain modeling task attempts
to formalize the space of variations for individual
applications in the domain.

In this approach, the domain model is represented
through feature models [15]. The domain analyst groups the
features that were identified in the previous step in a
features model, using some useful guidelines [16].

2.1.3 Validate Domain

Domain validation is achieved in five sub-activities:
A1. Document features. Our approach uses the template

defined by Czarnecki & Eisenecker [11]. In this template
each feature consists of: Semantic description; Rationale;
Stakeholders and client programs; Example applications;
Constraints; Priorities; and Open/closed points in the
domain;

A2. Check for synonyms. Involves the analysis of each
feature, in order to find and eliminate synonyms, i.e.,
different terms that appear to have the same domain-
relevant meaning;

A3. Check for homonyms. As a complementary sub-
activity to the search for synonyms, it is necessary to search
for homonyms, i.e., the same literal term used with different
meanings in different contexts;

A4. Model Validation. This sub-activity corresponds to
the matching of the requirements that were expressed by
stakeholders and the domain model, in order to validate its
completeness and accuracy; and

A5. Document the domain. In order to document the
domain, the meta-model defined in [17] is used, consisting
of the following information: Domain description; Domain
defining rules; Exemplar system selection; Documentation;
Domain Context Relationship; Domain genealogy; and
Feature.

2.2 The Domain Design Step

The design step consists of seven activities, presented in
the next sections. The approach is influenced by several
works from the literature, such as ADD [18], UML
Components [19], and the weak and strong points from
reuse processes [10].

2.2.1 Module decomposition

The first step in the approach corresponds to an
abstraction and decomposition phase. Initially, the domain
architect chooses which domain architecture modules to
decompose, usually starting with complete domain
applications, which are further decomposed into subsystems
and submodules.

In our approach, we still do not have a set of criteria to
be used in module decomposition, as in Parnas’ work [20],
nor a set of rule of thumbs. However, we consider that the
following issues should be balanced: availability, coupling,
extensibility, flexibility, functionality, information hiding,
maintainability, modifiability, performance, separation of
concerns, scalability, security, and usability.

2.2.2 Module refinement

The module refinement is an iterative process that can be
divided into three activities:

Choose the architectural drivers. According to Bass et
al. [18], architectural drivers are the combination of
functional and quality requirements that “shape” the
architecture or the particular module under consideration.
The drivers are found among the top-priority requirements
for the module. We base the module decomposition on the
architectural drivers, to reduce the problem of satisfying the
most important ones. In our approach, the drivers are the
requirements expressed by feature model, the quality
attributes and the scenarios.

Choose the architectural patterns. Here, the domain
architect selects the architectural patterns that can be
applied. The patterns satisfy the architectural drivers and
are constructed by composing selected tactics. Two factors
guide tactic selection. The first are the drivers themselves,
and the second are the side effects that a pattern

656

implementing a tactic has on others. Our vision of a tactic
agrees with Bass et al.’s, who define it as a design decision
that influences the control of a quality attribute response.

Allocate functionality using views. In this activity, the
goal is to define how modules can be instantiated. The
criteria are similar to those used in functionality-based
design methods, such as most object-oriented design
methods, but with a variation to treat features. Two
approaches are proposed: i) to allocate functionality based
on use cases, and ii) to allocate functionality based on
features.

2.2.3 Variability representation

Variability is the ability to change or customize a system
[21]. However, even with several approaches available in
the literature, software architects do not have effective ways
to do it [22]. In our approach, we propose the use of Design
Patterns [23] to solve this problem, as already used by other
works [24], [25]. Differently from these works, however,
we provide guidelines for how and why each pattern should
be used in each situation.

In order to design the variability of each module, we
consider that it should be traceable from domain analysis
assets (features) to the architecture, according to
alternative, or and optional features [25]. Depending on the
kind of association between features, different design
patterns can be used. Each design pattern provides a
different option for the designer, which makes the decision
on which patterns to use according to some guidelines. For
example, for alternative features, when a feature can be
directly mapped into a single class, we suggest the
Prototype [23], because it is simpler and allows to
instantiate a specific object, depending on the feature that is
used in the product, through simple inheritance. Another
suggestion is to use the Singleton [24] pattern to keep and
manage a unique instance of this class. More guidelines, for
other possible situations, may be seen in [26].

2.2.4 Component grouping

This step is composed of four activities:
Measure functional dependency. The domain analyst

determines the relationships between the use cases, using
different metrics [26];

Cluster use cases. The domain architect defines
candidate components by clustering related use cases. The
clustering algorithm used for this task uses a row and
column shifting method.

Allocate classes to components. Here, the domain
architect locates sequence diagrams for use cases included
in each component identified in the previous activity. Next,
the classes participating in these sequence diagrams are
assigned to the corresponding component.

Select candidate components. The domain architect, in
conjunction with the project manager, identifies candidate
components. The value of t used in the process defines the
number of components and their granularity. Thus, it is

recommended to apply different values of t to generate
different clustering results and to let architects and project
managers choose an optimal clustering result using the
criteria. Additionally, costs and complexity can be used to
select the candidate components.

2.2.5 Component identification and specification

In this step, the goal is to refine the components,
including their system and business interfaces, and the core
classes. For each use case, the domain analyst considers
whether or not there are system responsibilities that must be
modeled. If so, they are represented as one or more
operations of the interfaces (just signatures). This gives an
initial set of interfaces and operations.

The business interfaces are abstractions of the
information that must be managed by components. Our
process for identifying them is the following: to analyze the
feature model to identify classes (for each module and
component); to represent the classes based on features with
attributes and multiplicity; and to refine the business rules
using formal language.

After identifying the interfaces, the domain architect
decides which classes from each module are in the core
[19]. A core class is a business type that has independent
existence within the business. The purpose of identifying
core classes is to start defining which information is
dependent on others, and which information can stand
alone. The general rule is that we create one business
interface for each core class, to manage the information
represented by the core class.

2.2.6 Domain architecture representation

Once the component specification is performed, the
domain architect represents the initial domain architecture
based on components. Architectural views and component
diagrams are used to show the components, their
interconnection, and the provided and required interfaces.
During this step, the domain architect can discover and
refine other components, using, for example, collaboration
diagrams.

2.3 The Domain Implementation Step

In our approach, we decided to use OSGi [27] to
implement the components and manage their interaction and
lifecycle, due to its applicability in many different
scenarios, and the possibility of being used together with
other technologies. This step consists of two activities:
component implementation and component documentation.

2.3.1 Component implementation

In this step, the software engineer, based on
requirements, implements the software components through
two sets of activities, each one with a different purpose.
Activities 1 to 4 deal with the provided services, and
activities 5 to 7 deal with required services.

657

Activity 1. The first activity is to describe the
component, providing general-purpose information, such as
the vendor, version, package, among others.

Activity 2. In this second activity, the software engineer
should specify the provided services. Artifacts developed in
domain analysis and design may be reused in this activity.

Activity 3. In the third activity, the goal is to implement
the provided services, as well as the code to register these
services to be used by other components.

Activity 4. In this activity, which concludes the
provided side of the component, the goal is to build and
install the component. This involves compiling and
packaging the component in a form that is suitable to be
deployed.

Activity 5. In order to reuse some component, the
software engineer needs to describe the component that will
reuse other services. This is similar to Activity 1, but with
the focus on the services that are required.

Activity 6. In this activity, the software engineer should
implement the connection between the required services
with the rest of the code. Here, different techniques can be
employed, such as the use of adapters and wrappers, for
example.

Activity 7. the last activity corresponds to building and
installing the component that reuses the services, which is
similar to Activity 4.

2.3.2 Component documentation

Most work related to component documentation [28, 29,
30, 31] are pattern-based approaches. Our step for
component documentation has two important differences: i.
it is based on previous works (pattern-based approaches
including weak and strong points) and real world
experience; ii. it follows some Principles for component
documentation: use of hypertext; embed content in source
code; automation; leverage programming languages
semantics; use of diagrams and figures.

Thus, in order to document the components, a template
composed of five sections is used: Basic Information,
Detailed Information, Quality Information, Deploy
Information, and Support Information. More information
about the domain implementation phase can be seen in a
previous work [32].

3 The Experimental Study

In order to determine whether the process meets its
proposed goals, an experimental study was performed. The
plan of the experiment to be presented follows the model
proposed in [33], and uses the future tense, symbolizing the
precedence of the plan in relation to its execution.

3.1 The Definition

Goal. To analyze the domain engineering process for the
purpose of evaluating it with respect to the efficiency and
difficulties of its use from the point of view of researcher in
the context of domain engineering projects.

3.2 The Planning

Context. The domain engineering project will be
conducted in a university laboratory with the requirements
defined by the experimental staff based on real-world
projects. The study will be conducted as single object study
which is characterized as being a study which examines an
object on a single team and a single project. All the subjects
will be trained to use the process and will receive two
questionnaires to provide their information (QT1) and their
impression on the process (QT2).

Criteria. The benefits obtained will be evaluated
quantitatively through the domain architecture and
components, using the instability (I) [34], maintainability
(MI) [35], and complexity (CC) [36] metrics. We decided to
use classic Object Orientation metrics to evaluate the
process because they are more well-established after years
of experience with case studies and experiments. Reuse-
specific metrics, although more suited to this context, still
needs more experimentation and use [37]. Besides, issues
such maintainability, stability and complexity have a large
influence on the architecture. For example, if a component
has low maintainability, it will be probably harder to reuse.
So, by measuring these aspects, we are, to some extent,
measuring reuse. Moreover, the difficulties will also be
evaluated using qualitative data from the questionnaires.

Null Hypothesis. This is the hypothesis that the
experimenter wants to reject. In this study, it determines
that the use of the process does not produce benefits that
justify its use and that the subjects have difficulties to apply
it:

H0: μthe process generates the architecture with I >= 0.5, MI < 85, CC >= 21,

The values for I, MI and CC were obtained from the
literature [34, 35, 36].

Alternative Hypothesis. This is the hypothesis in favor
of which the null hypothesis is rejected. In this study, the
alternative hypothesis determines that the use of the process
produces benefits that justify its use. Thus, the following
hypothesis can be defined:

H1: μthe process generates the architecture with I < 0.5, MI >= 85, CC < 21

Quantitative analysis. In this study, descriptive
statistics will be used to analyze the data set [33].

Qualitative Analysis. The qualitative analysis aims to
evaluate the difficulty of the application of the proposed
process and the quality of the material used in the study.
This analysis will be performed through questionnaire QT2.

Internal Validity. The internal validity of the study is
dependent of the number of subjects. This study is supposed
to have at least between seven and eight subjects to
guarantee a good internal validity.

External Validity. A possible problem related to the
external validity is the subjects’ motivation, since some
subjects can perform the study without responsibility or
without a real interest in performing the project with a good
quality as it could happen in an industrial project. This will
be assessed through questionnaire QT2

658

Construct Validity. In this study, a relatively well
known and easily understandable problem domain was
chosen to prevent the experienced users in a certain domain
to make use of it.

Conclusion Validity. This validity is concerned with the
relationship between the treatment and the outcome, and
determines the capability of the study to generate
conclusions [33]. This conclusion will be drawn by the use
of descriptive statistic.

3.3 The Project used in the Study

The project used in the experimental study was the
domain engineering of the starship game domain. Three
games in this domain were presented to the subjects, who
had just the executables without any documentation. After
performing the domain engineering, the subjects were asked
to implement one application reusing the developed assets.

3.4 The Operation

Experimental Environment. The experimental study
was conducted during part of a M.Sc. and Ph.D. Course in
Software Reuse, during April-September 2006, at Federal
University of Pernambuco. The experiment was composed
of seven subjects and all the project was developed in 355
hours, 23 minutes and 57 seconds. In this project, 44
features, 33 packages, and 79 classes were created.
Additionally, 5 components and 1 example application were
also developed, totalizing 3638 lines of code.

Training. The subjects who used the proposed process
were trained before the study began. The training took 28
hours, divided into 14 lectures with two hours each, during
the course.

Subjects. The subjects were 7 MS.c. students selected
by convenience sampling [33]. All the subjects had
industrial experience in software development (more than
one year). Three subjects had participated in industrial
projects involving some kind of reuse activity, for instance,
component development, framework development, or web
services development. All the subjects known at least one
domain analysis process (FODA); three subjects had
training in conferences on some issues related to software
reuse, such as design patterns and component-based
development; and finally, two subjects had co-authored
papers involving some aspects of software reuse.

3.5 The Analysis

Quantitative Analysis. The quantitative analysis was
divided in four analyses: instability and maintainability for
the architecture, complexity for the components, and the
difficulties found in the analysis, design, and
implementation steps. The analyses were performed using
descriptive statistics. Table 1 shows the summary of the
analysis.

Table 1. Results for the quantitative analysis.
Metric Instability Complexity Maintainability
Mean value 0.4442 1.499 126.4058377
Max. value 0.8 1.625 150.2795238
Min. value 0.233 1.205 101.9545455
Null
hypothesis

>= 0.5 >= 21 <= 85

Alternative
hypothesis

< 0.5 < 21 > 85

As it can be seen, the mean values for all metrics reject

the null hipothesis. Also, except for the instability metric,
the maximum and minimum values still reject the null
hipothesis. Thus, the results indicate that the alternative
hipothesis may be true, i.e. the method helps in producing
components with low complexity and high maintainability.
The high instability value (0.8) was observed in only one of
the components, responsible for screen management, while
the other four had values below 0.5. This is expected, since
in the game domain, screen management is the most
intensive task that is performed, and thus this component
had to be highly coupled with the others, resulting in high
instability. However, if we consider the mean value, the null
hipothesis is rejected, which means that the method can
help to increase stability for most components.

Qualitative Analysis. After concluding the quantitative
analysis, the qualitative analysis was performed. This
analysis is based on the answers defined for the QT2.

Usefulness of the Process. All the subjects reported
that the process was useful to perform the domain
engineering project. However, four subjects indicated some
improvements in domain analysis; for five subjects, some
aspects in design should be reviewed; and, finally, six
subjects discussed some improvements in domain
implementation.

More details about the experimental evaluation may be
seen in a previous work [38].

4 Related Works

In a previous work [10], eleven software reuse processes
based on domain engineering (DRACO, ROSE, ODM,
RSEB, FeatuRSEB, FORM) and software product lines
(PuLSE, KobrA, CoPAM, PECOS, FORM’s extension) are
discussed, corresponding to the state-of-the-art in the area.
This study shows that the processes present crucial
problems such as: they do not cover the steps of domain
engineering: domain analysis, design and implementation;
besides, they do not define activities, sub-activities, roles,
inputs, outputs of each step in a systematic way.

5 Conclusion and Future Works

Domain Engineering is a key requirement in a reuse
process. However, the available reuse processes do not
cover the three basic steps of domain engineering - domain
analysis, domain design, and domain implementation - and
neither define activities, sub-activities, roles, inputs, outputs
of each step in a systematic way.

659

In this sense, in order to solve the problems identified in
the available reuse process, this paper presented a
systematic process for domain engineering, which defines a
systematic way to perform it based on a set of principles,
guidelines, inputs, outputs, and roles. The process is based
on an extensive review of the software reuse processes,
involving their weak and strong points. Additionally, an
experimental study evaluated the viability of the use of the
process and the impact of applying it to a domain
engineering project. As future work, we are planning to
improve the process with the results obtained in the
experimental study and replicate it in different contexts.

More information about the domain analysis, design and
implementations steps can be found in [39],[26],[40][41].

Acknowledgments

This work was developed with the financial support
from CAPES and CNPq (process number: 475743/2007-5).
The authors would also like to thank the people who
contributed with insights to this work with discussions in
worldofreuse.blogspot.com.

References

[1] D. Bauer, A Reusable Parts Center, IBM Systems Journal, Vol. 32,
No. 04, September, 1993, pp. 620-624.

[2] A. Endres, Lessons Learned in an Industrial Software Lab, IEEE
Software, Vol. 10, No. 05, September, 1993, pp. 58-61.

[3] M. L. Griss, Software Reuse Experience at Hewlett-Packard, 16th
ICSE, Sorrento, Italy, May, 1994, pp. 270.

[4] R. Joos, Software Reuse at Motorola, IEEE Software, 1994.
[5] W. B. Frakes, S. Isoda, Success Factors of Systematic Software Reuse,

IEEE Software, Vol. 12, No. 01, September, 1994, pp. 15-19.
[6] W. B. Frakes, K. C. Kang, Software Reuse Research: Status and

Future, IEEE Transactions on Software Engineering, 2005.
[7] D. C. Rine, Success Factors for software reuse that are applicable

across Domains and businesses, ACM Symposium on Applied
Computing (SAC), 1997, pp. 182-186.

[8] M. Morisio, M. Ezran, C. Tully, Success and Failure Factors in
Software Reuse, IEEE Transactions on Software Engineering, 2002.

[9] M. A. Rothenberger, K. J. Dooley, U. R. Kulkarni, N. Nada, Strategies
for Software Reuse: A Principal Component Analysis of Reuse
Practices, IEEE Transactions on Software Engineering, 2003.

[10] E. S. Almeida, A. Alvaro, D. Lucrédio, V. C. Garcia, S. R. L. Meira,
A Survey on Software Reuse Processes, IEEE IRI, 2005.

[11] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, Addison-Wesley, 2000, pp. 832.

[12] J. M. Neighbors, Software Construction Using Components, Ph.D.
Thesis, University of California, 1980.

[13] G. Arango, Domain analysis: from art form to engineering discipline,
5th International Workshop on Software specification and design,
Pittsburgh, Pennsylvania, USA, May, 1989, pp. 152-159.

[14] R. Prieto-Diaz, Domain Analysis: An Introduction, ACM SIGSOFT
Software Engineering Notes, 1990.

[15] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
Feature-Oriented Domain Analysis (FODA) Feasibility Study, SEI,
Technical Report, November, 1990, pp. 161.

[16] K. Lee, K. C. Kang, J. Lee, Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering, 7th International
Conference on Software Reuse (ICSR), 2002.

[17] K. Schmid, S. Thiel, J. Bosch, S. Johnsson, M. Jaring, B. Thomé,
Scoping, Eureka �! 2023 Programme, ITEA project, 2001.

[18] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
2nd Edition, Addison-Wesley, 2003, pp. 560.

[19] J. Cheesman, J. Daniels, UML Component A Simple Process for
Specifying Component-Based Software, Addison-Wesley, 2000.

[20] D. L. Parnas, On the Criteria to be Used in Decomposing Systems
into Modules, Communications of the ACM, 1972.

[21] M. Svahnberg, J. van Gurp, J. Bosch, On the Notion of Variabilities
in Software Product Lines, IEEE/IFIP WICSA, Amsterdam,
Netherlands, August, 2001, pp. 45-54.

[22] J. Coplin, D. Hoffman, D. Weiss, Commonality and Variability in
Software Engineering, IEEE Software, 1998.

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1995.

[24] B. Keepence, M. Mannion, Using Patterns to Model Variability in
Product Families, IEEE Software, 1999, pp. 102-108.

[25] K. Lee, K. C. Kang, Feature Dependency Analysis for Product Line
Component Design, 8th ICSR, 2004, pp. 69-85.

[26] E. S. Almeida, A. Alvaro, V. C. Garcia, L. M. Nascimento, D.
Lucrédio, S. R. L. Meira, Designing Domain-Specific Software
Architecture: Towards a New Approach, 6th IEEE/IFIP Conference
on Software Architecture (WICSA), Mumbai, India, January, 2007.

[27] OSGi Service Platform Core Specification, Core Specification,
Release 4, August, 2005, pp. 276.

[28] M. F. Silva, C. M. L. Werner, Packaging Reusable Components using
Patterns and Hypermedia, 4th International Conference on Software
Reuse, 1996.

[29] J. Kotula, Using Patterns To Create Component Documentation,
IEEE Software, 1998.

[30] A. Taulavuori, E. Niemela, P. Kallio, Component documentation—a
key issue in software product lines, Journal Information and
Software Technology, 2004.

[31] V. R. Basili, S. K. Abd-El-Hafiz, A Method for Documenting Code
Components, Journal of Systems and Software (JSS), 1996.

[32] E. S. Almeida, E. C. R. Santos, A. Alvaro, V. C. Garcia, D.
Lucrédio, R. P. M. Fortes, S. R. L. Meira. Domain Implementation
in Software Product Lines Using OSGi, In the 7th International
Conference on Composition-Based Software Systems (ICCBSS),
Madrid, Spain, 2008.

[33] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A.
Wesslén, Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers, 2000, pp. 204.

[34] R. Martin, OO Design Quality Metrics: An Analysis of
Dependencies, Consulted in June 05, 2006, Available in
http://www.objectmentor.com/resources/articles/oodmetrc.pdf,
October, 1994, pp.08.

[35] E. VanDoren, Maintainability Index Technique for Measuring
Program Maintainability, Software Engineering Institute (SEI),
Available in http://www.sei.cmu.edu/str/descriptions/mitmpm.html,
Consulted in September 21, 2006.

[36] T. J. McCabe, A Complexity Measure, IEEE Transactions on
Software Engineering, Vol. 02, No. 04, December, 1976, pp. 308-
320.

[37] J. C. C. P. Mascena, E. S. Almeida, S. R. L. Meira, A Comparative
Study on Software Reuse Metrics and Economic Models from a
Traceability Perspective, IEEE IRI, 2005.

[38] E. S. Almeida, A. Alvaro, V. C. Garcia, D. Lucrédio, R. P. M. Fortes,
S. R. L. Meira. An Experimental Study in Domain Engineering, In
the 33rd IEEE EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), Component-Based Software
Engineering Track, Lübeck, Germany, 2007.

[39] E. S. Almeida, J. C. C. P. Mascena, A. P. C. Cavalcanti, A. Alvaro,
V. C. Garcia, D. Lucrédio, S. R. L. Meira, The Domain Analysis
Concept Revisited: A Practical Approach, 9th ICSR, 2006.

[40] E. S. Almeida, E. C. R. Santos, A. Alvaro, V. C. Garcia, D. Lucrédio,
R. P. M. Fortes, S. R. L. Meira, A Method for Domain
Implementation in Software Product Lines, TOOLS Conference,
Switzerland, 2007, in evaluation.

[41] E. S. Almeida, A. Alvaro, V. C. Garcia, L. M. Nascimento, D.
Lucrédio, S. R. L. Meira. A Systematic Approach to Design
Domain-Specific Software Architectures , Journal of Software,
Academy Publisher, Vol. 02, No. 02, August, 2007, pp 38-51.

660

Diagnosing Runtime Violations of Security & Dependability Properties

Theocharis Tsigritis and George Spanoudakis
Department of Computing, City University London, UK

{t7t, G.Spanoudakis}@soi.city.ac.uk

Abstract
Monitoring the preservation of security and dependability
(S&D) properties of complex software systems is widely
accepted as a necessity. Basic monitoring can detect
violations but does not always provide sufficient
information for deciding what the appropriate response
to a violation is. Such decisions often require additional
diagnostic information that explains why a violation has
occurred and can, therefore, indicate what would be an
appropriate response action to it. In this paper, we
describe a diagnostic procedure for generating
explanations of violations of S&D properties developed
as part of a runtime monitoring toolkit, called EVEREST.
The procedure is based on a combination of abductive
and evidential reasoning about violations of S&D
properties which are expressed in Event Calculus.

1. Introduction
Monitoring security and dependability (S&D)

properties of software systems at runtime is widely
accepted as a measure of increased resilience to
dependability failures and security attacks, and several
approaches have been developed to support it (see [5] for
a survey). Whilst basic monitoring provides the core
functionality for detecting violations of such properties, it
cannot always provide the information that is necessary in
order to understand the reasons that underpin the
violation of a property and decide what would be an
appropriate reaction to it.

To appreciate the problem, consider the case of an Air
Traffic Management System (ATMS), which uses radars
to monitor trajectories of airplanes in different air spaces.
The operations of ATMS may be monitored at runtime to
ensure the availability and integrity of its components
(e.g. radars), and the information generated by and
exchanged between them. An example of a property that
can be monitored in ATMS is a property requiring that in
cases where there are more than one radars covering a
particular airspace and one of these radars sends a signal
indicating that an airplane is in the relevant airspace,
every other radar that covers the same space should also
send a signal indicating the presence of the plane in the
particular airspace within a certain time period after the
receipt of the initial signal.

In cases where this property is violated, detecting the
occurrence of the violation is not sufficient for
establishing the reasons why some radar has sent a signal
but another other has not. Getting diagnostic information

about these reasons is necessary for taking appropriate
action as the violation may have been due to different
reasons, some of which are listed below:
(i) The radar that did not send the expected signal was

malfunctioning.
(ii) The communication link between the radar that did

not send the expected signal and the monitor was
malfunctioning or an intruder captured the signal
and prevented it from reaching the monitor.

(iii) The radar that sent the expected signal was
malfunctioning or its identity was faked by an
intruder who sent a fake signal to the monitor.

Thus, identifying the reason for the violation is
important for taking one or more actions that could
restore the integrity of the operation of ATMS.

In this paper, we present a diagnosis system that we
have developed as part of a monitoring framework [13],
called EVEREST (EVEnt REaSoning Toolkit). This
framework has been developed within the European
integrated research project SERENITY to support the
monitoring of S&D properties in distributed and
dynamically evolving systems. EVEREST supports the
specification and monitoring of properties expressed in
Event Calculus (EC) [12] as rules.

In this paper, we present an extension of this
framework supporting the generation of diagnostic
information for violations of S&D properties. The
provision of diagnostic information is based on the
generation of alternative explanations for the events
which are involved in the violations of rules, and the
assessment of the plausibility of these explanations based
on whether their effects correspond to events recorded
during the operation of the monitored system. The key
characteristic of our approach is the use of abductive
reasoning [1][9] for the generation of explanations and
belief based reasoning [11] for the assessment of
explanation plausibility.

The rest of this paper is structured as follows. In
Section 2, we provide a brief overview of EVEREST. In
Section 3, we describe the different stages of the
diagnostic process. In Section 4, we overview related
work and, finally, in Section 5, we present conclusions
and directions for future work.

2. Monitoring framework

EVEREST is a monitoring toolkit which consists of a
generic engine for checking violations of properties
expressed as EC rules of the form body @ head. The

661

semantics of a rule is that when its body evaluates to
True, its head must also evaluate to True. EC is a first-
order metric temporal logic language which can be used
for representing and reasoning about events and their
effects on the state of a system over time. EVEREST
rules are defined in terms of the standard EC predicates.
These include the predicates (i) Happens(e,t,H(lb,ub))
which denotes that an instantaneous event e occurs at
some time t within the time range H(lb,ub), (ii)
HoldsAt(f,t) which denotes that a state (a.k.a fluent) f
holds at time t, (iii) Initiates(e,f,t) and Terminates(e,f,t)
which denote the initiation and termination of a fluent f
by an event e at time t respectively, and (iv) Initially(f)
which denotes that a fluent holds at the start of the
operation of a system.

An example of an EVEREST rule is:
Rule 1: Happens(signal(_r1, _a, _s),t1,R(t1,t1) �
HoldsAt(covers(_r1,_s),t1) � (9_r2) HoldsAt(covers(_r2,_s),
t1) @ Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5))

This rule expresses the condition about the radars of
ATMS that we discussed in the introduction. More
specifically, Rule-1 will be violated if the monitor
receives a signal event by one of the radars of ATMS that
cover a specific airspace but not the other.

3. Diagnostic process

As shown in Figure 1, the overall process of
diagnosing the causes of rule violations includes four
stages. These stages are:
(1) The explanation generation stage in which all the

possible explanations for the individual events that
have caused the violation (referred to as “violation
observations” henceforth) are generated.

(2) The explanation effect identification stage in which
the possible consequences (effects) of the
explanations of violation observations are derived.

(3) The plausibility assessment stage in which the effects
of explanations are checked against the event log of
the monitor to see if there are events that match and,
therefore, provide supportive evidence for them.

(4) The diagnosis generation stage in which an overall
diagnosis for a violation is generated based on the
derived explanations
The generation of explanations and their effects in

stages (1) and (2) above is based on a model of the
behaviour of the monitored system that is expressed in
Event Calculus by formulas called assumptions. In the
following, we discuss each of the above stages in detail.

3.1 Explanation generation

The generation of explanations for violation
observations is based on abductive reasoning. More
specifically, given a set L of events and fluents that are
involved in the violation of a monitoring rule, this stage

of the diagnostic process tries to find a set of explanation
formulas M which, in conjunction with the set of the
assumptions about the system that is being monitored and
the events reported to the monitor by the time at which
the explanation is required (collectively referred to as TH
theory in the following), entail L. Formally, this is a
search for a set of atomic formulas M that satisfy the
conditions:

(Cnd 1): TH < M |- L, and
(Cnd 2): � f in M: predicate (f) � A-Preds

where predicate(f) is the predicate of formula f and A-
Preds is a set of abducible predicates whose truth value
can be established only by abductive reasoning.

Figure 1. Diagnostic process

The search for explanations is based on a newly
developed algorithm (see [13]) which starts from a
violation observation P that needs to be explained and
tries to find all assumptions of the form a: B1 � … � Bn @
H in TH whose head H can be unified with P. When such
an assumption is found, the algorithm checks if: (i) the
unification of P with H provides concrete values for all
the non time variables of the predicates B1, …, Bn in its
body, and (ii) it is possible to derive concrete time ranges
for the time ranges of all these predicates. If these
conditions are satisfied, the algorithm instantiates the
predicates B1, …, Bn and identifies which of these
predicates are observable predicates (O-preds), deducible
predicates (D-preds) or abducible predicates (A-preds),
assuming that these are disjoint categories of predicates.

Then, the algorithm checks if each of the O-Preds and
D-preds in the body of a can be matched with some
recorded event or derived from the events in the
monitor’s log and the known system assumptions,
respectively. If there are O-preds and D-preds that cannot
be verified via this check, the algorithm tries to find an
abduced explanation for them recursively. If such
explanations are found for all the non verified O-preds
and D-preds, these explanations along with the A-preds
that were determined in the current step of the
explanation process are reported as the possible

event log

observations of rule
violation

explanations

Effects of
explanations

Explanation Generation
Explanation

Effect Identification

Plausibility
Assessment

Diagnosis
Generation

final
diagnosis

system assumptions

explanation
beliefs

662

explanation of the initial violation observation P. In cases,
however, where there are O-Preds or D-preds in the body
of a that can neither be verified nor explained by
abduction, the explanation generation path using a will
fail.

As an example of explanation generation, consider
again Rule 1. This rule would be violated by the event
(E7) in the log of Figure 2
(Happens(signal(R1,A1,S1),7,R(7,7))) and the predicates
¬Happens(signal(R2,A1,S1),t,R(7,12)),
HoldsAt(covers(R1,S1),7) and HoldsAt(covers(R2,S1),7)
which can be derived from this log. More specifically, the
predicate ¬Happens(signal(R2,A1,S1),t,R(7,12)), which
denotes the absence of a signal from radar R2 from T=7
to T=12 is deduced by the principle of negation as failure
(NF) from the events (E4) and (E8) that the monitor
receives from the radar R2 at T=1 and T=13. This
deduction is possible as soon as the monitor receives (E8)
since this event indicates that the time of R2 when it was
sent was T=13 and the monitor had received no other
event from R2 since receiving the event (E4) at T=1. Also
the predicates HoldsAt(covers(R1,S1), 7) and
HoldsAt(covers(R2,S1), 7) can be deduced from events
(E1) and (E2) in Figure 2, which denote that the radars
R1 and R2 cover the airspace S1 initially, and the absence
of any event signifying the repositioning of any of these
two radars until T=7 when the monitor receives the signal
for the presence of the aircraft A1 in S1 from R1 (this
deduction is based on the axioms of EC [12]).

(E1) Initially(covers(R1,S1),0) [captor-0]
(E2) Initially(covers(R2,S1),0) [captor-0]
(E3) Happens(changeOfLandingApproach(AR-a,S2),0,R(0,0))

[captor-AR-a]
(E4) Happens(signal(R2,A2,S2),1, R(1,1)), [captor-R2]
(E5) Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2))

[captor-AR-a]
(E6) Happens(permissionRequest(A1,S1),3,R(3,3)) [captor-0]
(E7) Happens(signal(R1,A1,S1),7,R(7,7)) [captor-R1]
(E8) Happens(signal(R2,A5,S1),13,R(13,13)) [captor-R2]
Figure 2. Event log

To explain the violation of Rule-1 in our example, the
predicates Happens(signal(R1,A1,S1),7,R(7,7)) and
¬Happens(signal(R2,A1,S1),t,R(7,12)) which are
involved in the violation need to be explained
individually. Assuming the following assumptions about
ATMS,
(A0) Initiates(_e1,_f),t1,R(t1,t1)) � �9_e2,t2:

Terminates(_e2,_f),t2,R(t1,t2)) @ HoldsAt(_f,t2)
(A1) Happens(inspace(_a,_s),t1,R(t1,t1)) �

HoldsAt(covers(_r,_s),t1) @ Happens(signal(_r,_a,_s),t2,
R(t1,t1+5))

(A2) Happens(inspace(_a,_s),t1, R(t1,t1)) @
Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1))

the search for an explanation of
Happens(signal(R1,A1,S1),7,R(7,7)) detects that this
predicate can be unified with the predicate

Happens(signal(_r,_a,_s), t2, R(t1,t1+5)) in the head of
assumption (A1). The unification of these two predicates
will be {_r/R1, _a/A1, _s/S1} and the linear constraint
system generated for the time variable t1 in (A1) will
include the constraints t1 . 7 and 7 . t1 + 5. Thus, as the
non time variables in the body of (A1) are covered by the
unification and the constraints t1 . 7 and 7 . t1 + 5
determine a feasible time range for t1 (i.e., [2,7]), the
conditions of the explanation generation process are
satisfied and the predicate
Happens(inspace(A1,S1),t1,R(2,7)) will be generated as a
possible explanation of
Happens(signal(R1,A1,S1),7,R(7,7)). Also, assuming that
Happens(inspace(_a,_s),t1,R(t1,t1)) belongs to the set of
the abducible predicates A-preds, there will be no need
for seeking for more refined explanations of it.

Note, however, that as
Happens(inspace(A1,S1),t1,R(2,7)) has been generated
from assumption (A1), it can be returned as an
explanation only if the other instantiated predicate of the
body of (A1), namely HoldsAt(covers(R1,S1),t1), is True
when t1 takes values in the range R(2,7). The latter
predicate, however, can be deduced from the log of
Figure 2 and assumption (A0). Thus,
Happens(inspace(A1,S1),t1,R(2,7)) becomes a possible
explanation of Happens(signal(R1,A1,S1),7,R(7,7)).

3.2 Explanation effect identification

Following the generation of explanations, the second
stage of the diagnosis process is the identification of their
expected effects. These effects are needed in order to
assess the plausibility of explanations.

The assessment of explanation plausibility is based on
the hypothesis that if the expected effects of an
explanation match with events which have occurred and
recorded during the operation of the system that is being
monitored, then there is supportive evidence for the
explanation. This is because the events that match the
expected effects of an explanation might also have been
caused by it.

The identification of the expected effects of
explanations is based on deductive reasoning. More
specifically, given an explanation Exp=P1 �…� Pn that is
expressed as a conjunction of abduced atomic predicates,
the diagnosis process iterates over its constituent
predicates Pi and, for each of them, it finds the system
assumptions B1 � … � Bn @ H that have a predicate Bj in
their body which can be unified with Pi and the rest of the
predicates Bu (u=1,…,n and u'j) True. For such
assumptions, if the predicate H in the head of the
assumption is fully instantiated and its time range is
determined, H is derived as a possible consequence of Pi.
Then, if H is an observable predicate, i.e., a predicate that
can be matched with recorded events, H is added to the

663

expected effects of Exp. If H, however, is not an
observable predicate, the effect identification process tries
to generate the consequences of H recursively and, if it
finds any such consequences that correspond to
observable events, it adds them to the set of the expected
effects of Exp. In this way, the diagnosis process
computes the transitive closure of the effects of Exp.

To clarify this stage of the diagnosis process, consider
again the ATMS system and suppose that, in addition to
assumptions (A1) and (A2), three more assumptions are
known for ATMS, namely:
(A3) Happens(inspace(_a,_s),t1,R(t1,t1)) @

Initiates(inspace(_a,_s), inairspace(_a,_s),t1)
(A4) Initiates(inspace(_a,_s), inairspace(_a,_s),t1) �

HoldsAt(landing_airspace_for(_s,_arpX),t1) @
Happens(landingRequest(_a, _arpX), t2, R(t1-10,t1))

(A5) Happens(changeOfLandingApproach(_arpX,_s),t1,R(t1,t1))
@ Initiates(changeOfLandingApproach(_arpX,_s),
landing_airspace_for(_s,_arpX),t1)

The first of these assumptions (A3) states that when an
event that signifies the entrance of an aircraft _a in an
airspace _s becomes known a fluent called
inairspace(_a,_s) should be initiated to signify the
presence of _a in _s unless this fluent already holds. The
second assumption (A4) states that when an aircraft _a
enters an airspace _s which is used as the landing route
for approaching an airport _arpX, then the aircraft _a
must have made a landing request for the particular
airport within the last 10 time units before entering _s.

Using (A3) and (A4), it is possible to determine the
expected effects of the predicate
Happens(inspace(A1,S1),t1,R(2,7))) that was generated
as a possible explanation of
Happens(signal(R1,A1,S1),7,R(7,7)). Specifically,
assuming that the airspace S1 is the landing airspace of an
airport AR-a then the entrance of the aircraft A1 into S1
should have been preceded by some request from A1 to
land in AR-a or, equivalently, that an event
Happens(landingRequest(A1,AR-a), t2, R(0,6)) should
have occurred. Thus, the latter runtime event is an
expected effect of the explanation
Happens(inspace(A1,S1),t1,R(2,7)).

Formally, from Happens(inspace(A1,S1),t1,R(2,7)))
and the assumption (A3) the predicate
Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can be
derived for t1 in [2,7]. As the latter predicate, however, is
not an observable predicate, the diagnosis process will try
to identify whether it has any observable consequences of
its own. Whilst searching for such consequences,
Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can be
unified with the first predicate in the body of (A4).
Furthermore, the other predicate in the body of this
assumption, namely the predicate
HoldsAt(landing_airspace_for(S2,AR-a), t) can also be
deduced to be True for the time range [2,7] (i.e., for t in
[2,7]) from the event (E5) in Figure 2 and the

assumptions (A5) and (A0). Thus, both predicates in the
body of (A4) are True and, therefore, the predicate
Happens(landingRequest(A1,AR-a), t2, R(0,6)) in its head
can be derived from it. Assuming that landingRequest(_a,
_arpX) is an observable event,
Happens(landingRequest(A1,AR-a), t2, R(0,6)) will be
established as an expected effect of the explanation
Happens(inspace(A1,S1),t1,R(2,7))).
3.3 Assessment of explanation plausibility

After deriving the expected effects MC={C1,…,CL} of
an explanation M, the diagnosis process searches the
event log to find events that can match these effects. In
this search, a match between an event e in the log, which
has been produced by an event captor Captor(e) and has a
timestamp te, and an effect Ck (k=1,…,L) is detected only
if: (i) e has been produced by the same event captor as the
captor that Ck is expected to be produced from, (ii) e can
be unified with Ck , and (iii) the timestamp of e falls
within the time range of Ck.

Whilst the presence of a matching event for an
expected effect of an explanation confirms that the effect
has indeed occurred and casts some positive evidence in
the validity of the explanation, the absence of a matching
event for an effect at the time of the search does not
necessarily mean that such an event has not occurred.
This is because, although an event that satisfies the
conditions (i)�(iii) above may have occurred, this event
might not have arrived yet at the event log of the
monitoring framework due to communication delays in
the “channel” between the event captor that captured it
and the framework. To cope with this problem, the search
for events that match an explanation effect Ck establishes
that no such events have occurred if at the time of the
search there is no event e satisfying the conditions (i)-(iii)
above, and the last known value of the clock of
Captor(Ck) (i.e., the timestamp of the last event in the log
that has arrived at the monitor from this captor) is greater
than the upper boundary of the time variable of Ck.

Note, however, that even with the above search
condition, there is a possibility of having effects Ck for
which, although no matching event satisfying (i)-(iii) can
be found at the time of the search, the last received event
from the relevant captor has a timestamp that is less than
or equal to the upper time boundary of Ck. Such effects
cannot be confirmed or disconfirmed and, therefore, cast
positive or negative evidence for M. To cope with this
uncertainty, we use the Dempster Shafer (DS) theory of
evidence [11] for the assessment of the plausibility of an
explanation, and define the function that gives the basic
probability assignment to the validity of explanations as
follows:

Definition 1: The basic probability of an explanation
validity is computed by the function:

mE(Valid(M)) = |MC+| / |MC|

664

mE(�Valid(M)) = |MC�| / |MC|
mE(Valid(M)��Valid(M))=|MC�(MC+<MC�)|/|MC|

where
� MC+ is the set of confirmed effects of M, defined as

MC+ = {Ck N Ck�MC and 9e. (e�Log and Captor(e) =
Captor(Ck) and tk

LB.te and te. tk
UB and unifier(e,Ck)

' 3)}
� MC- is the set of a set of disconfirmed effects of M,

defined as MC� = {Ck N Ck� MCand �9e. (e � Log
and Captor(e)=Captor(Ck) and tk

LB.te and te. tk
UB

and unifier(e,Ck)'3) and lastTime(Captor(Ck))>
tk

UB}
� tk

LB, tk
UB are the lower and upper boundaries of the

time range of Ck, te is the timestamp of the event e,
and lastTime(Captor(Ck)) is the timestamp of the last
event arrived from Captor(Ck) to the monitor.

According to this definition, the probability of the validity
of an explanation M is measured as the ratio of its effects
that have been confirmed by events in the monitor’s log to
all its effects. Also the probability of an explanation M not
being valid is measured as the ratio of the effects of M
that have been disconfirmed by events in the log to all its
effects. Note that, in general it will beMC+ < MC� � MC,
and therefore mE(Valid(M)) + mE(�Valid(M)). 1. Thus,
mE is not a classic probability function. As we prove in
[13], however, mE satisfies the axioms of basic
probability assignments in the DS theory of evidence.

As an example of applying mE, consider the estimation
of the basic probability of the explanation
Happens(inspace(A1,S1),t1,R(2,7)) of the violation
observation Happens(signal(R1,A1,S1),7,R(7,7)) of Rule-
1. As we discussed in Section 3.2, an expected effect of
this explanation is Happens(landingRequest(A1,AR-
a),t2,R(0,6)). Another expected effect of it is the predicate
Happens(permissionRequest(A1,S1),t2,R(0,7)). The latter
effect can be derived from assumption (A2). According to
this assumption, an aircraft that enters a particular
airspace at some time point, should have requested
permission to do so within 20 time units prior to its
entrance.

Thus, assuming that the request for diagnosing the
violation of Rule-1 is made at T=15, a search in the event
log of Figure 2 will identify that the event
Happens(permissionRequest(A1,S1),3,R(3,3)) provides
confirmatory evidence for
Happens(permissionRequest(A1,S1),t2,R(0,7)) but there is
no matching event for Happens(landingRequest(A1,AR-
a),t2,R(0,6)).

Furthermore, if Happens(landingRequest(A1,AR-a),
t2, R(0,6)) refers to events which are captured and
transmitted by the event captor captor-AR-a then at the
time of the search (T=15), it will not be possible to
establish whether an event matching
Happens(landingRequest(A1,AR-a),t2,R(0,6)) has

occurred. This will be so because, as shown in Figure 2,
the last event received from captor-AR-a until T=15 is
Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2))
and, therefore, the latest known time for this captor
(lastTime(captor-AR-a))) is 2. Thus, the basic probability
in the validity of the explanation
M=Happens(inspace(A1,S1),t1,R(2,7)) will be:
mE(Valid(M)) = 1/2 = 0.5, mE(�Valid(M)) = 0/2 = 0 and
mE(Valid(M) � �Valid(M)) = 1/2 = 0.5.

3.4 Diagnosis generation
Having obtained the basic probabilities in the validity

or not of individual explanations, the fourth stage in the
diagnosis process is to construct an aggregate explanation
of the S&D rule violation. The construction of such
aggregate explanations is based on assessing the overall
belief in the genuineness of the events which are involved
in the violation. This assessment is based on the
hypothesis that an event E, which is involved in a
violation of an S&D rule, is genuine if and only if at least
one of the explanations that have been generated for it is
valid.

Based on this hypothesis, as we show in [13], the
belief in the genuineness or not of E (Gen(E) and
�Gen(E), respectively) can be measured by the functions:
� Bel(Gen(E)) = Bel(�i=1,…,n Valid(Mi)) =
 OI�{1,…,n}and I'3(�1)|I|+1{P i�I mE(Valid(Mi))} (F2)
� Bel(�Gen(E)) = Bel(�i=1,…,n �Valid((Mi)) =
 P i=1,…,n mE(�Valid(Mi)) (F3)
where Mi (i=1,…,n) are the alternative explanations of E.

The beliefs computed by the above formulas are used
to decide if a violation observation E is confirmed by its
available explanations. More specifically, a violation E is
confirmed only if Bel(Gen(E)) > Bel(�Gen(E)). In cases,
however, where no explanation can be generated for a
violation observation, the diagnosis process attempts to
find an explanation of its negation and, if this is possible,
the beliefs in the genuineness of the event are calculated
by the formulas:
� Bel(Gen(E)) = 1�Bel(Gen(�E)) (F4)
� Bel(�Gen(E)) = Bel(Gen(�E))) (F5)

Table 1. Beliefs in violation observations of Rule -1
Event (e) Bel(

Gen(e))
Bel(�
Gen(e))

Confir
med

P1=Happens(signal(R1,A1,S1,
7, R(7,7)))

0.5 0 YES

P2=HoldsAt(covers(R1,S1),7) � � YES
P3= HoldsAt(covers(R2,S1),7) � � YES
P4=¬Happens(signal(R2,A1,S
1), t, R(7,12))

0.5 0.5 NO

Using (F2)-(F5), the beliefs in the genuineness of the
predicates involved in the violation of Rule-1 above are
as shown in Table 1. The beliefs in this table are
calculated from the alternative explanations of the

665

relevant violation observations. More specifically, for the
predicate P1=Happens(signal(R1,A1,S1),7,R(7,7))) there
is a single explanation
P11=Happens(inspace(A1,S1),t1,R(2,7)) with basic
probabilities mE(Valid(P11))}=0.5 and
mE(�Valid(P11))}=0, as we discussed earlier. Thus,
Bel(Gen(P1))=mE(Valid(P11))}=0.5 and
Bel(�Gen(P1))=mE(�Valid(P11))}=0. The predicates
P2=HoldsAt(covers(R1,S1),7) and
P3=HoldsAt(covers(R2,S1),7) are also confirmed without
using beliefs measures, as they are both derived from the
runtime events (E1) and (E2) in Figure 2. Finally, P4 is a
negated predicate and, since no explanation of it can be
generated from the assumptions of ATMS, the diagnosis
process generates explanations of its non-negated form
Happens(signal(R2,A1,S1),t,R(7,12)). Following the same
reasoning process as in the case of P1,
P41=Happens(inspace(A1,S1,t,R(7,17)) will be derived
as an explanation of �P4 with basic probabilities
mE(Valid(P41))} = 0.5 and mE(�Valid(P41))} = 0. Thus,
Bel(Gen(�P4))=0.5 and Bel(�Gen(�P4))= 0 and, from
(F4) and (F5), Bel(�Gen(P4))=0.5 and Bel(Gen(P4))=
0.5. Thus, P4 is reported as an unconfirmed predicate.
4. Related work

In the context of software system monitoring,
diagnosis focuses on the detection of the reasons for
system failures and typically involves the identification of
trajectories of system events that have led to a failure
(problematic event) using automata that recognize faulty
behaviour [4][6][10]. In [4], diagnosis is carried through
the synchronization of automata modelling the expected
behaviour of a monitored system and the events captured
from it. In [6] a similar but incremental approach is taken
where synchronization is performed for individual system
components and then aggregated for the global system.

Our approach is different from the above, as our focus
is not the detection of the cause of faulty behaviours (this
is the subject of earlier work described in [13]) but the
explanation of such causes in the presence of incomplete
and/or not trusted event traces. Our approach draws upon
work on temporal abductive reasoning [1][3][8][12] and
its applications to diagnosis [2][7], but is based on a
newly developed algorithm for abductive search with EC
that generates all the possible explanations of a formula
(unlike [3][12]) and computes beliefs in explanations
using the DS theory.

5. Conclusions
In this paper, we have presented the extension of a

framework supporting the runtime monitoring of software
systems. The extension has been introduced to provide
diagnostic information when violations of monitored
properties occur. The provision of diagnostic information
is based on alternative explanations of events involved in
violations of properties generated by abductive reasoning

using a model of the behaviour of the monitored system
expressed in Event Calculus. Our approach supports also
the computation of beliefs in the plausibility of
explanations based on evidence about their expected
effects that is gathered from the event log of the
monitored system. A more detailed account of our
approach and its implementation is given in [14].

Currently, we are conducting an experimental
evaluation of it in the context of industrial case studies of
the SERENITY project.
6. Acknowledgements

This work has been partially funded by the European
integrated research project SERENITY (FP6-IST-2006-
27587).

7. References
[1] Console L. et al. “Local Reasoning and Knowledge

Compilation for Efficient Temporal Abduction”.
IEEE Trans. on Knowledge & Data Engineering
14(6): 1230-1248, 2002

[2] De Kleer J., Williams B.C. “Diagnosing Multiple
Faults”, Artif. Intell. 32(1): 97-130, 1987

[3] Denecker M. et al. “Temporal reasoning with
abductive event calculus”, 10th ECAI, 1992.

[4] Grastien A., Cordier M., Largouët C., “Incremental
Diagnosis of Discrete-Event Systems”, 15th Int.
Work. On Principles of Diagnosis (DX05), 2005

[5] Lazarevic A., Kumar V., Srivastava J. “Intrusion
detection: a survey”, In Managing cyber-threats:
issues approaches & challenges, Springer. 2005

[6] Pencolé Y., Cordier M. “A formal framework for the
decentralised diagnosis of large scale discrete event
systems & its application to telecommunication
networks”, Artif. Intell. 164: 121-180, 2005

[7] Poole D. “Explanation and prediction: an architecture
for default and abductive reasoning”, Comp. Intell.
5(2): 97-110, 1989

[8] Ray O., Kakas A. “ProLogICA: a practical system
for Abductive Logic Programming”. 11th Int. Works.
on Non-monotonic Reasoning, 304-312, 2006

[9] Reiter R. “A theory of diagnosis from first
principles”, Artif. Intell. 32(1): 57-96, 1987.

[10]Sampath M. et al. “Failure diagnosis using discrete-
event models”, IEEE Trans. on Control Systems
Technology, 4(2):105-124, 1996.

[11]Shafer G. “A Mathematical Theory of Evidence”,
Princeton University Press, 1975.

[12]Shanahan M. “Abductive Event Calculus Planner”, J.
Logic Programming 44: 207-239, 2000.

[13]Spanoudakis G., Mahbub K., “Non intrusive
monitoring of service based systems”. Int. J. of
Cooperative Inform. Systems, 15(3):325–358, 2006.

[14]Spanoudakis G., Tsigritis T. “v1 of diagnosis
prototype”. Deliverable A4.D5.1, SERENITY
Project, http://www.serenity-forum.org/ 2008.

666

Translating Workflow Diagrams into Web Designs

Antonio Navarro1, Jorge Merino2, Alfredo Fernández-Valmayor1, Jesús Cristobal2

1DISIA, C/ Profesor José García Santesmases s/n, 28040, Madrid
2UATD, Edificio Jardín Botánico, Avda. Complutense s/n, 28040, Madrid

anavarro@sip.ucm.es, jmerino@pas.ucm.es, alfredo@sip.ucm.es, jcristobal@pas.ucm.es

Abstract

This paper introduces a design method that permits
the translation of workflow diagrams into detailed web
design diagrams. This detailed design, defined in terms
of UML WAE class and sequence diagrams, describes
the architectural design of the presentation tier and its
interaction with the business tier of the web
application. The main benefit of this approach is an
improvement in the comprehensibility and
maintainability of web applications, because part of
the detailed architectural design is obtained from
workflow diagrams. In addition, a model-driven
architecture approach is enabled.

1. Introduction

Design is one of the biggest concerns in web
engineering [18]. Thus, at present, there is a wide array
of design notations that can be used in order to
characterize the design of web applications [6, 7, 10,
11, 12, 16, 25]. Although most of these notations were
originally intended to characterize websites with
marginal presence of business logic [4], at present,
these design notations are also able to specify the
business processes of web applications [2, 4, 6, 7, 15,
16, 24]. These notations use different types of
modeling diagrams to characterize different aspects of
web applications: (i) structural diagrams to
characterize the data tier; (ii) navigational diagrams to
characterize the navigational maps; (iii) user interface
diagrams to characterize the layout of the user
interface; and (iv) dynamic diagrams, to characterize
the business processes. Regarding dynamic diagrams,
several design notations use workflow diagrams [2, 4,
15], or other types of flow-based notations [3, 24, 28]
as high level artefacts that describe the business
processes of web applications. In most cases, these
workflow diagrams (and the rest of diagrams of the
design notation) are high-level modeling artefacts that,

using CASE tools specifically designed for concrete
design notations, can be semi-automatically translated
into running applications [4, 9, 14, 15]. In other cases,
where no CASE tools are provided, the transition from
high-level design to architectural design is not
described.

Therefore, in our opinion, the presence of
workflows as high-level modeling artefacts can
introduce some complications in the life cycle of a web
application, because: (i) if a proprietary CASE is used
to semi-automatically produce the web application, the
detailed architectural design of the application may be
left out. Thus, the maintenance and adaptation of this
application to users’ demands may be compromised,
because the whole developing effort is tied to a
specific CASE tool and its design notation and
features; (ii) if no CASE tool is provided, the transition
from a high-level design to a detailed architectural
design is far from straightforward and may be poorly
documented. This, in turn, could compromise the life
cycle of the application: its development, maintenance
and adaptation to user demands.

In this paper we propose to overcome these
difficulties by introducing a simple interpretation for
workflow diagrams based on the UML Web
Application Extension (UML WAE) class and
sequence diagrams [7]. By including some stereotypes
in the workflow actions, and selecting a concrete web
architecture (i.e. Model 1, Model 2 or multitier [1, 5]),
the architectural design of the presentation tier and its
interaction with the business tier of the web application
[1] can be obtained. The approach presented in this
paper is the result of the modeling effort made during
the development, maintenance and adaptation to users’
demands at the Universidad Complutense de Madrid
Virtual Campus (UCM Virtual Campus) [26]. This
web application provides students, teachers and
researchers with all the support that modern
information and communications technologies can
provide to improve the quality of learning and research
activity at the university [17]. Thus, the application

667

allows the creation of on-line e-learning courses, their
combination, the creation of virtual spaces for research
seminars, and many other virtual workspaces
demanded by its users.

2. Translation from Workflow Diagrams to
UML Diagrams

At present, UML activity diagrams [23] and
Business Processes Modeling Notation (BPMN) [19]
are some of the most successful workflow-based
notations used to specify the business processes of web
applications [2, 4, 15]. Although both notations are
very similar [27], in this paper we use UML activity
diagrams because they are the modeling diagrams
integrated in most UML CASE tools and because they
are used in several web engineering design notations
[2, 15]. UML 2 activity diagrams can include a great
number of components [23]. Therefore, a translation of
every component of UML 2 activity diagrams into
UML WAE diagrams is outside the scope of this
paper. Instead, a translation for the main elements of
this type of diagram, in terms of Model 2 architecture,
is provided.

UML WAE notation considers the principle of
separation of concerns [7]. According to this principle:
(i) web pages executed in the server are UML classes
stereotyped with the server page stereotype; (ii)
web pages presented to the client are UML classes
stereotyped with the client page stereotype; (iii)
forms are UML classes stereotyped with the form
stereotype; and (iv) the navigational relationships
among pages is mainly represented using navigated
associations stereotyped with the link, forward, or
submit stereotype.

The key underlying idea in our approach is to
provide input, output and process stereotypes to the
action nodes of activity diagrams. Thus, these nodes
can be translated into input, output and processing
UML WAE classes. In addition, the control flow of
activity diagrams is translated into forward/submit
messages of sequence diagrams. Finally, decision
nodes are translated into alt combined fragments
where every operand forwards the control to the
corresponding page. The concrete translation depends
on the target architecture selected. Table 1 provides the
translation from activity diagrams into UML WAE
diagrams considering a Model 2 architecture.

Table 1. Translation from activity diagrams into
UML WAE diagrams. Model 2 architecture

activity diagram
element

UML WAE class
diagram element

UML WAE sequence diagram
element

input action client page + form instances of both classes

process action operation in facade +
command + dependence
from command to facade

instances of command and facade
classes

output action server page + built
client page

instances of both classes

decision node - alt combined fragment in the
controller instance

flow from input
to process

submit relation from
form to controller +
transfer with
dependences

message submit from instance of
form to controller + message
execute from controller to
command + execute operation
from command to facade

flow from
process to
process

forward relation from
controller to itself +
transfer with
dependences

message forward from controller
to itself + message execute
from controller to command +
execute operation from command
to facade

flow from
process to output

forward relation from
controller to output
server page +
transfer with
dependences

message forward from controller
to instance of output server
page + message build from
output server page to built
client page

flow from
process|output to
input

forward relation from
controller to input
client page

message forward from controller
to input client page that
contains form

flow from action
to decision node

- interaction begins inside
combined fragment

flow from
decision to input

forward relation from
controller to input
server page that
contains form

guard condition + message
forward from controller to input
server page that contains
form

flow from
decision to
process

forward relation from
controller to itself

guard condition + message
forward from controller to itself
+ message execute from
controller to command + execute
operation from command to
facade

flow from
decision to
output

forward relation from
controller to output
server page

guard condition + message
forward from controller to
output server page + message
build from output server
page to built client page

initial/final node - interaction starts/ends

The translation depicted in Table 1 supposes the
presence of an application controller [1] plus a
command [8], a facade [8] (of application services [1])
and transfers [1] patterns. Of course, the inner
structure of transfer classes should be derived while
taking into account the data tier of the application.
Note that this translation is focused on the presentation

668

tier and its interaction with the business logic tier.
Thus, a detailed description of the business tier is not
provided, and almost no information is provided about
integration and persistence tiers. The detailed design of
all these tiers should be derived from the domain and
use case models of the application. The lack of detailed
design of the business tier is consistent with activity
diagrams that do not include specification of
computational behaviours. That is the reason our
approach chooses actions instead of call actions, and
specifically, call operation actions [23]. According to
this interpretation:

- Input actions are translated into input forms
attached to client pages.

- Process actions are translated into commands
invoked by the controller [8]. In turn, these
commands invoke the computational behaviour
of the application, hidden behind a facade [8].

- Output actions are translated into output server
pages that generate their corresponding client
pages.

- Data flow is represented by transfer objects.
These transfers flow from input forms to
commands, and from commands to output
server pages.

- Decision nodes are translated into alternative
combined fragments of sequence diagrams.
These fragments represent the control flow
encoded in the table that guides the controller.

- Control flow is translated into navigational
relationships in the class diagrams, and into
messages in the interaction diagram.

A translation for Model 1 architecture is simpler
than this translation. Regarding multi-tier architecture,
because almost no information is provided about
business logic or the persistence tier, its translation
does not differ much from the Model 2 translation
presented in this paper.

3. Example

As was previously mentioned, our research group

was entrusted with the deployment of the UCM Virtual
Campus [17]. The UCM Virtual Campus provides
several services related to teaching, learning and
research activities. One of these services is the use case
change password, which allows the changing of any
user’s password. Figure 1 provides an activity diagram
describing the workflow performed during the change
of a password. This workflow is enriched with
information about the type of action node: input,
output and process node.

Figure 1. Enriched activity diagram for the change
password use case.

Figure 2 depicts a Model 2 architecture class
diagram derived from the activity diagram of Figure 1
according to the translation depicted in Table 1. Figure
3 depicts the sequence diagram derived from the
activity diagram of Figure 1 according to the
translation depicted in Table 1. Although it is unusual
to see sequence diagrams involving instances of UML
WAE classes, they can be valuable tools for describing
traces of browsing. For the sake of brevity, in both
diagrams, transfer objects have been omitted.

Note how according to the translation described in
Table 1:

- The input action get user id in Figure 1 has
been translated: (i) into the client page
getUserId and the form getUserIdForm in
Figure 2; and (ii) into the instances of these
classes in Figure 3.

Figure 2. Class diagram for the change password use case. Model 2 architecture

669

Figure 3. Sequence diagram for use case change password. Model 2 architecture

670

- The process action check user in Figure 1
has been translated: (i) into the command
CheckUser and the operation checkUser
belonging to the facade VirtualCampus in
Figure 2; and (ii) into the instances of these
classes in Figure 3.

- The output action notify change in Figure 1
has been translated: (i) into the server page
NotifyChange and the client page
notifyChangeOutput in Figure 2; and (ii)
into the instances of these classes in Figure 3.

- The data flow represented by transfer objects
has been left out in the diagrams depicted in
Figure 2 and Figure 3 for the sake of clarity.

- The decision node that checks whether the user
is registered or not in Figure 1 has been
translated into the first alternative combined
fragment in Figure 3.

- The flows among these actions have been
translated into the relations depicted in Figure
2, and the messages invoked in Figure 3.

The diagrams in figures 1, 2 and 3 were developed
using a general purpose UML CASE tool (i.e. IBM
Rational Software Architect [13]). Thus, the modeling
and development effort is not tied to a specific CASE
tool. In addition, if Query/View/Transformations
(QVT) [21] transformations are defined between a
profile [22] that characterizes the stereotypes defined
in this paper and a UML WAE profile, a model-driven
approach [20] is enabled for the generation of the
platform-independent models of the application (like
the one depicted in figures 2 and 3). Furthermore,
these platform-independent models subsequently can
be transformed into platform specific models, and
finally into code.

We are aware that not every workflow diagram can
fit in this approach, but this is not the aim of our work.
Therefore, although workflow diagrams could be
focussed only in the business process specification,
which in principle could be completely detached from
the concrete web application, our work promotes the
provision of high-level descriptions of the use cases of
a web application by means of workflow diagrams. If
the activities considered in these workflow diagrams
are tagged according to the stereotypes presented in
this paper, then it is possible to obtain a detailed
architectural design of the web application. Thus, the
translation from high-level to low-level design is
facilitated.

4. Conclusions and future work

Nowadays, a great number of design notations use
workflow-oriented diagrams to describe the business
processes in web applications. These diagrams are
used as high-level design diagrams that, interleaved
with design diagrams of each notation, describe the
high-level design of the web application. As was
previously mentioned, these approaches, although very
valuable in describing business processes, leave out the
detailed architectural design of the application.
Therefore, the maintenance and evolution of the
application according to users’ demands might be
compromised.

This paper provides a UML WAE-based
interpretation for activity diagrams. This interpretation
helps to understand the architectural meaning of
activity diagrams and other types of workflow-based
notations (e.g. BPMN). In addition, it provides part of
the detailed architectural design of the application in
terms of UML WAE diagrams, once a concrete
architecture is selected. Thus, the understanding and
maintainability of the web application is improved, and
the use of standard UML CASE tools is enabled. In
addition, because workflow diagrams are nearer to the
user than class and sequence diagrams, our approach
permits a smooth evolution and adaptation to users’
demands. Moreover, a model-driven architecture
approach is enabled. This approach is used during the
design, development and maintenance of the UCM
Virtual Campus.

Regarding future work, activity diagrams are
complex artefacts. To provide a complete
interpretation to this standard is a goal in our future
work. Our aim is to include a translation for call
operation actions, extending our translation to the
business tier. In addition, our aim is to define QVT
transformations between a profile that characterizes the
stereotypes defined in this paper and a UML WAE
profile. Finally, studying the transition from well-
known workflow-based design notations (i.e. UWE
and WebML) to UML WAE is part of our ongoing
work.

5. Acknowledgements

El Ministerio de Educación y Ciencia (TIN2004-
08367-C02-02 and TIN2005-08788-C04-01), La
Comunidad Autónoma de Madrid (4155/2005) and La
Universidad Complutense de Madrid (Group 921340)
have supported this work.

671

6. References

[1] Alur, D., Malks, D., Crupi, J. Core J2EE Patterns: Best
Practices and Design Strategies, 2nd edition, Prentice-Hall
PTR, 2003.

[2] Barna, P., Frasincar, F., and Houben, G.-J. A Workflow-
driven Design of Web Information Systems. International
Conference on Web Engineering 2006 ACM Press, New
York, NY, 2006, 321-328.

[3] Book, M., Gruhn, V. Modeling Web-Based Dialog Flows
for Automatic Dialog Control. 19th IEEE International
Conference on Automated Software Engineering, 2004,
IEEE, 100-109.

[4] Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I.
Process Modeling in Web Applications. ACM Trans. on Soft.
Engineering and Methodology 15, 4 (2006) 360-409.

[5] Brown, S. et al., Professional JSP, 2nd edition, Wrox
Press, 2001.

[6] Ceri, S., Fraternali, P., and Bongio, A. Web Modeling
Language (WebML): a modeling language for designing
Web sites. Computer Networks 33, 1-6, (2000) 137-157.

[7] Conallen, J. Modeling Web Application Architectures
with UML. Comm. of the ACM 42, 10, (1999) 63-70.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[9] Gómez, J., Bia, A., Párraga, A. Tool Support for Model-
Driven Development of Web Applications 6th Int. Conf. on
Web Information Systems Engineering, 2005, 721-730.

[10] Gómez, J., Cachero, C., Pastor, O. Conceptual Modeling
of Device-Independent Web Applications. IEEE MultiMedia
8, 2, (2001) 26-39.

[11] Hennicker, R. and Koch, N. Systematic Design of Web
Applications with UML. In K. Siau, T. Halpin (Eds.):
Unified Modeling Language: Systems Analysis, Design and
Development Issues. IDEA Group Publishing, 2001, 1-20.

[12] Houben, G.-J., Frasincar, F., Barna, P., and Vodvjak, R.
Modeling User Input and Hypermedia Dynamics in Hera.
International Conference on Web Engineering 2004.
Springer-Verlag, Berlin, 2004, 60-73.

[13] IBM. Rational Software Architect,
http://www-306.ibm.com/software/awdtools/architect/swarchitect/

[14] Knapp, A., Koch, N., Zhang, N., G. Modeling the
Behaviour of Web Applications with ArgoUWE.
International Conference on Web Engineering 2005
Springer-Verlag, Berlin, 2005, 624-626.

[15] Koch, N., Kraus, A., Cachero, C., and Meliá, S.
Integration of Business Processes in Web Application
Models. Journal of Web Engineering 3, 1, (2004) 22-49.

[16] Meliá, S., Gómez, J. The WebSA Approach: Applying
Model Driven Engineering to Web Applications. Journal of
Web Engineering 5, 2, (2006) 121-149.

[17] Navarro, A., Fernández-Valmayor, A.
Conceptualization of Hybrid Websites, Internet Research
17,2, (2007) 207-228.

[18] Navarro, A., Fernández-Valmayor, A., Fernández-
Manjón, B., Sierra, J.L. Characterizing Navigation Maps for
Web Applications with the NMM Approach. Science of
Computer Programming, 71, 1, (2008) 1-16.

[19] OMG, Business Process Modeling Notation,
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20B
PMN%201-0%20Spec%2006-02-01.pdf (2006).

[20] OMG, MDA Guide. Version 1.0.1,
http://www.omg.org/docs/omg/03-06-01.pdf (2003).

[21] OMG, Meta Object Facility (MOF) 2.0
Query/View/Transformations Specification,
http://www.omg.org/docs/ptc/05-11-01.pdf (2005).

[22] OMG, Unified Modeling Language: Infrastructure.
Version 2.1, http://www.omg.org/docs/ptc/06-04-03.pdf
(2006).

[23] OMG, Unified Modeling Language: Superstructure.
Version 2.1, http://www.omg.org/docs/ptc/06-04-02.pdf
(2006).

[24] Rossi, G., Schmid, H.A., and Lyardet, F. Customizing
Business Processes in Web Applications. E-Commerce and
Web Technologies, 4th Int. Conference, 2003, 359-368.

[25] Schwabe, D., Esmeraldo, L., Rossi, G., and Lyardet, F.
Engineering Web Applications for Reuse, IEEE MultiMedia
8, 1, (2001), 20-31.

[26] UCM Virtual Campus,
http://www.ucm.es/campusvirtual

[27] White, S. Process modeling notations and workflow
patterns, IBM Corporation BPTrends,
http://www.bptrends.com/publicationfiles/03-
04%20WP%20Notations%20and%20Workflow%20Patterns%20-
%20White.pdf (2004).

[28] Winckler, M. and Palanque, P.A. StateWebCharts: A
Formal Description Technique Dedicated to Navigation
Modeling of Web Applications. Interactive Systems. Design,
Specification, and Verification, 10th International Workshop,
2003, 61-76.

672

A Security Domain Model for Static Analysis and Verification of Software Programs

Alan B. Shaffer
Naval Postgraduate School

Computer Science Dept
Monterey, CA, USA

abshaffe@nps.edu

Abstract- Unauthorized information flows can result from

malicious software exploiting covert channels and overt flaws
in access control design. To address this problem, we present
a precise, formal definition for information flow that relies on
control flow dependency tracing through program execution,
and extends Dennings’ and follow-on classic work in secure
information flow [7][19][27]. We describe a formal security
Domain Model (DM) for conducting static analysis of
programs to identify illicit information flows, access control
flaws and covert channel vulnerabilities. The DM is
comprised of an Invariant Model, which defines the generic
concepts of program state, information flow, and security
policy rules; and an Implementation Model, which specifies
the behavior of a target program. The DM is compiled from
a representation of the program, written in a domain-specific
Implementation Modeling Language (IML), and a
specification of the security policy written in Alloy. The Alloy
Analyzer tool is used to perform static analysis of the DM to
automatically detect potential covert channel vulnerabilities
and security policy violations in the target program.

I. INTRODUCTION
Identification of exploitable covert channel vulnerabilities

is vital in the development of systems intended to enforce
mandatory access control policies, and in fact is required for
the successful evaluation of such systems at the highest levels
of assurance [3][18]. This paper presents a precise, formal
definition for various types of covert channels, which
depends upon a representation of control flow dependencies,
thus extending classic work in this area [7][19][27]. A
security domain model is described for formally representing
different types of covert channels, and for conducting static
analysis1 of certain program implementations. This model
employs dynamic slicing techniques to analyze programs for
the existence of access control flaws, where appropriate.

Widely accepted evaluation standards [3][4][18] require
that high assurance secure systems be designed, developed,
verified and tested using rigorous processes and formal
methods. This evaluation process must include
demonstration of correct correspondence between system
representations at various levels of abstraction, e.g., security

1 In this context, static analysis refers to analysis of program code without
actual program execution.

policy objectives, security specifications, and program
implementation. The Common Criteria for Information
Technology Security Evaluation requires that systems at
EAL-5 or higher2 undergo covert channel analysis to ensure
that the system is capable of enforcing its security policy in
terms of covert as well as overt interactions [3].

Formal security models are often based on concepts of
program secure state and state transitions. High assurance
evaluation standards [3][4] require a formal verification that
the state transitions resulting from program execution
preserve the security properties defined by a policy. Our
approach analyzes programs for preservation of security
properties through state transitions, and advances the
concepts of secure information flow in classic work by
Denning and others [7][27], by describing automated
techniques for information flow static analysis. Previous
work in developing our approach has demonstrated the ability
to detect illicit information flow security violations [22], and
covert channel and overt flaw vulnerabilities based on control
flow dependency analysis [23].

The Implementation Modeling Language (IML), the first
novel element in this approach, is a language that supports
basic information processing via assignment statements,
conditional and loop statements, read/write statements, file
random access, and access to a system clock. Program
implementations represented in IML are called base
programs, and they provide a standardized notation for
conducting static analysis of target programs for adherence to
a security policy.

The second novel element in this work is the definition of a
security Domain Model (DM), represented as an Alloy
[1][11] specification. The DM provides a framework for
specifying program state and state transitions, as well as
security-related concepts such as security policy, information
flow, access control, and covert channel vulnerabilities. The
DM is comprised of an Invariant Model, which defines the
generic concepts of program state, information flow, and
security policy; and an Implementation Model, which
specifies the behavior of the base program. A specialized
DM-Compiler was developed to translate a base program in
IML into an Implementation Model, and to integrate it with
the Invariant Model to form a complete DM specification.
The DM is verified using the Alloy Analyzer, which

2 EAL-7 is the highest Common Criteria evaluation assurance level.

673

identifies execution paths where the security policy rules are
violated.

Whereas many previous security models capture
information flow between objects and subjects, the DM does
not explicitly define an object, but implements this concept
through variables. An access table records sensitivity labels
for program variables as a means of tracking information
flow across state transitions. These labels indicate the
sensitivity of data stored within a variable, and may change
over time as data flows through the system.

The DM captures the concept of information flows with
respect to a system subject for input to and output from an
external device or random access file. The subject is
essentially the executor of the statement, and has a defined
access label. The policy rules define legal information flows
based on the relationship between the subject label, and that
of the I/O source/destination variable, e.g., in a Write_dev
operation, a subject label must dominate a source variable
label, in order for the variable to be successfully accessed for
writing. This requirement might seem counter to the BLP *-
property, however in our approach a Write_dev is modeled as
a flow from a source variable to a target device, with the latter
specified at the level of the subject label.

Section 2 of this paper provides background discussion on
covert channels, control flow dependencies, and dynamic
program slicing. Section 3 presents an overview of the DM
methodology for modeling programs and security policies.
Section 4 summarizes our test results with several program
examples. Sections 5 and 6 discuss related work, and planned
future work in this research.

II. BACKGROUND
We discuss several computer security concepts relevant to

this research.

A. Covert Channels
Covert channels use entities other than data objects as a

way to transfer information between system subjects,
specifically entities not intended for information transfer
[12][14]. Such channels allow processes to transfer
information in a manner that violates a security policy [8].

An operating system may virtualize a shared physical
resource so that each subject, or equivalence class of subjects,
perceives that it has exclusive access to the resource. A
covert channel can result from the incomplete virtualization
of a resource such that some attribute of the resource remains
shared, indirectly.

A common taxonomy of covert channels defines them as
being either storage or timing channels [20]. For both storage
and timing channels the sender and receiver (typically
subjects) must have [12]:

1. Indirect access to an attribute of a shared resource,
which the sender can modify, and the receiver can
view.

2. A means to initiate and synchronize their actions.

In our analysis, we consider that the primary distinction
between a covert storage channel and a covert timing channel

is the means by which the receiver observes the change in the
attribute:

3. Storage – the receiver views an error message, or other
information placed in its address space by the system.

4. Timing – the receiver views changes to the relative
timing of “legal” events.

The attribute in question forms a point of interference [9]
between the subjects. To be the basis for an exploitable
covert channel, the interference must also be contrary to the
computer security policy – i.e., with a mandatory access
control (MAC) policy, the sender’s security level must be
higher than the receiver’s level (with respect to
confidentiality) [26].

B. Control Flow Dependency Flaws
Covert storage channels based on control flow

dependencies often involve the indirect use of internal
resources, such as buffers or non-exported files in a program
control decision, to pass information from High to Low
[12][14][15]. In addition to this, our approach is capable of
detecting overt flaws based on control flow dependencies.

The approach here for discovering flaws based on control
dependencies employs a dynamic slicing analysis. To
determine the existence of such a dependency within the
program, the chain of statements preceding a value
assignment is examined with respect to the access labels of
the variables in these statements. If the context of a previous
statement includes variables that are higher than the
destination, then there is an overt flaw.

The code snippet below would not be classified as having a
covert channel since internal attributes are not referenced,
however it provides an illustration of a control flow
dependency that constitutes an overt flaw. In the example, a
constant value is written out to a Low external device (s3),
depending on the High value read into variable v1 (s1).

(s1) Read_dev (High, v1);
(s2) if v1 > 0 then
(s3) Write_dev (Low, 1);

The Low value assignment depends on a High source (v1)
in the if block (s2), therefore an implicit flow from v1 to the
Low device exists [19].

C. Dynamic Slicing
Slicing algorithms are used as a means of tracing data or

control dependencies between variables and statements
processed during program execution, traditionally for
program debugging purposes [13]. Slicing algorithms
generate an executable subset of a program, creating a
subprogram whose behavior is the same as the original with
respect to some variable. They allow one to isolate the
dependencies acting upon that variable.

Slicing algorithms are categorized as either dynamic or
static, depending on whether they take into account
dependencies derived during one particular program
execution path (dynamic), or for all possible execution paths
(static).

674

Since slicing techniques have been shown to be useful in
tracking data and control dependencies, they can also provide
a means of detecting potential overt flaws based on
dependencies. The access labels of variables can be used to
determine potential security violations, based on the
dependencies between these variables. As an example,
consider the following code snippet:

(s1) if v3 > 17 then
(s2) v1 := 0;
(s3) else if v4 = 5 then
(s4) v1 := 1;
(s5) else v1 := -1;
(s6) v2 := v1;

It is clear that v2 depends on v1 (s6). Static slicing can
show that v2 has a dependency on both v3 (s1) and v4 (s3),
since there is a dependency from each of these to v1. With
dynamic slicing, however, not all execution paths will result
in the same control dependencies, e.g., when the conditional
expression in (s1) evaluates to true, the final value of v2
depends on v3 but not on v4, since (s3) is never executed.

III. SECURITY DOMAIN MODEL METHODOLOGY
An overview of the Domain Model (DM) approach to

program security verification is depicted in Fig. 1. The DM
includes the definition of program state and transitions
between states, as well as security rules, specified as Alloy
assertions, representing the generic policy a program must
abide by. The DM is composed of an invariant and a variable
section, derived from the security rules and a target
implementation, respectively.

While there are numerous model checker tools currently
available, we chose to use the Alloy specification language
primarily because of its ability to represent program language
abstractions simply and completely. As Jackson [11] points
out, referring to his approach as “lightweight formal
methods,” Alloy models can be easily created and initially
tested early in the development process, and then
incrementally expanded. He states that the goal of Alloy was
to “obtain the benefits of traditional formal methods at lower
cost, without requiring a big initial investment,” presumably
in time and effort [11].

As with traditional model checkers, Alloy deals with finite
models, though it handles them very differently. Model
checkers typically build Kripke structures to represent the
states and transitions of a program execution. Such finite
model structures have limits not easily adjusted by the user
during analysis. The Alloy Analyzer tool, however, affords
the ability to easily increase the depth of analysis for models
as they are developed and expanded. For our approach, Alloy
and its Analyzer provide a unique, ideally suited tool for
creating and analyzing target program abstractions.

In our approach, a base program is an abstraction of a
target program implementation, and is written using
Implementation Modeling Language (IML) notation [23].
The IML defines a simple domain-specific language that
captures the basic capabilities and constructs, with respect to

security, of high-level programming languages. Our intent is
that IML enables the specification of relatively simple
programs written in some common programming language,
such as Ada, Java, or C++. While future iterations of IML
might handle other more advanced language features, e.g.,
concurrency, inheritance, etc., this initial language description
was motivated by a requirement to represent the most
essential security information flow properties in target
program implementations. This was our goal in describing
IML syntax and constructs.

By analyzing a model of the program, rather than actual
program code, security verification can focus on elements of
information flow analysis, e.g., I/O, access labels, direct file
access, and timing (system clock), while ignoring other
program details not pertinent to such analysis.

In the current prototype, translation of the base program
from an implementation is a manual step. Developing a
separate compiler to translate a high-level language program
to IML is a difficult task, beyond the scope of this work. The
possibility must be considered that overt and covert flow
violations existing in the original program implementation
may be lost in the IML representation, and for now we
depend on the knowledge of the manual translator to avoid
this problem.

The Invariant Model includes the definition of security
rules, written as Alloy assertions, which must be enforced by
the DM security policy. Such policies are typically written in

Manually
Extract

Manually
Extract

Page 1

Implementation
(Ada, Java, C++, …)

Security Policy
(natural language)

Base Program
(IML)

Invariant Model
(Alloy)

DM-Compiler
(IML -> Alloy)

Alloy Analyzer

Execution paths
that violate security

properties

Domain Model
(Alloy)

 - Implementation Model
 - Invariant Section

Fig. 1. Domain model approach to system security verification.

675

natural language, and extraction of security rules is a manual
step in our approach. As currently implemented, the DM
defines security rules associated with the Bell & LaPadula
security model [2], i.e., flows from High to Low secrecy
levels are not allowed.

After the base program and Invariant Model with security
rules are defined, the DM-Compiler compiles the base
program from IML into state transition predicates, written in
Alloy notation, creating the DM Implementation Model. The
DM-Compiler combines this with the Invariant Model to
complete the DM. The approach uses the Alloy Analyzer tool
[1] for automated verification of the security rules, defined in
the DM as Alloy assertions, to find execution paths within the
DM that might violate the security policy or create covert
channels. In essence, it creates an interpreter for the specific
base program, modeled by the DM. A detailed description of
the DM structure can be found at [23].

When analyzing a base program, the Alloy Analyzer
performs an exhaustive search of all paths to a defined length
(the scope, specifying the size of the models considered). In
fact, it performs symbolic execution of all base program paths
with length up to the given scope limit. In our generated DM,
the scope is generated heuristically, based on the total number
of statements in the base program. This ensures that all
execution paths of that length will be scrutinized. It is
assumed that the Alloy small scope hypothesis, which states
that most flaws in models can be revealed on small instances
[11], holds for information flow tracing in our approach.

The Implementation Model of the DM is automatically
generated by the DM-Compiler from a base program, and
specifies the base program’s semantics in terms of statement
signatures and state transitions. From the base program, the
DM-Compiler generates Value and Variable signatures,
representing the number and value of unique constants
explicitly present in the base program, and the variables used
in the base program, respectively. The DM-Compiler defines
an Alloy signature that establishes a less-than relationship
between the constant values, enabling comparison of values
for equality and inequality in the base program.

The DM-Compiler compiles each base program statement
into a separate Alloy signature, based on the type of statement
and associated variables and constants used. From these
statement signatures, it generates a predicate representing the
state transition trace for the base program execution. This
predicate captures the semantics of the base program by
specifying all possible sequences of statement executions for
the program. It also implements dependency tracking within
the execution path. A detailed example of this refinement
from base program to Alloy signatures and transition
predicate is provided at [23].

IV. TESTING AND ANALYSIS OF THE DM
We tested the DM approach using base program examples

with illicit information flows, and overt flaw and covert
channel vulnerabilities. In each case, a rule for discovering
the illicit flow or covert channel is defined as an Alloy
assertion, and an example base program is presented to

illustrate the error or violation. Each example represents the
transmission of one bit of information; more complex
examples would involve such concepts as looping,
synchronization, etc., to provide the covert channels with a
stream of bits.

Our base program examples were evaluated using Alloy
Analyzer 4.0. In test runs, the Alloy Analyzer successfully
found valid counterexamples for violations of each security
rule assertion, i.e., an existing overt flaw or covert channel
was detected in each case. The complete Alloy models for
these examples can be found at [21].

The “IllicitFlow” example [21] demonstrates an illicit
information flow based on violation of the BLP simple
security policy, i.e., a flow from a High object to a Low
device. The Alloy assertion below defines a security rule for
such a policy that examines each execution state, and
evaluates to true whenever the state (s) is the result of a
Write_dev operation to a Low device, from a variable whose
access label is Low. The DM searches for execution paths for
which this assertion is not true, i.e., those with a flow that
violates the security rule.

assert correct_access1{
 all s: State | Property1[s] }

pred Property1 [s: State]{
 let stm = s.stmt | {
 (stm.type = Write_dev and
 stm.subject_label = Low and
 stm.source in Variable)
 => s.access[stm.source] = Low }
}

The base program below is an example of a violation of
this security assertion. The program first reads a value into
variable x1 at a High access level, and then checks the
variable’s value against a constant. Based on the result of this
conditional check, the value in x1 is either written to a High
or a Low external device.

(s1) Read_dev (High, x1);
(s2) if (x1 > 3) then
(s3) Write_dev (High, x1);
(s4) else Write_dev (Low, x1);
(s5) Stop;

The violation occurs when the conditional (s2) evaluates to
false, thus the value of x1 is written to the Low device (s4),
creating a flow from High to Low. The Alloy Analyzer
detects this situation, and reports a violation of the security
assertion through statements (s1)(s2)(s4).

Further examples include “OvertFlaw” [21], which
illustrates an overt flaw based on a control flow dependency.
This example shows an exploitation scenario that culminates
with an IML Write_dev operation, where the variables written
to the external device have been influenced by values at a
higher level than that of the device itself. The approach uses
dynamic slicing techniques to discover these flow violations.

The “StorageChannel” example [21] describes a classic
covert storage channel [16] resulting from access to the direct

676

file by a Low subject (who uses a PutDirectFile operation),
after a High subject has caused it to be full. The Alloy
security assertion defines logic to capture this vulnerability by
checking for states where the label of the direct file key slot
(keyLabel) is higher than that of the subject (subject_label).
The nexus of this covert channel is that High can write to the
internal resource full (indirectly), and Low can observe it.

Our “TimingChannel” example [21] describes a covert
timing channel that occurs when a Low subject twice checks
the system clock, between which a High subject prevents the
Low subject from executing through execution of a
Read_dev/Write_dev or direct file operation. Thus, when the
Low subject next runs, it can examine the clock to detect this
interference with its access to the CPU; these channels are
thus often called CPU channels. The crux of this covert
channel is that a Low subject, the covert channel receiver, has
been allowed to observe (by examining the clock) a change in
some internal resource (the CPU busy state), which was
indirectly affected by the actions of a High subject, the covert
channel sender.

V. RELATED WORK
Previous research in modeling secure information flow and

access control, and in covert channel analysis is described
below. We have extended previous work by integrating a
language for formally specifying an implementation with a
framework for expressing security policies, particularly with
respect to covert channel rules and control dependency flaws.

Classic work on secure information flow [6][7] provides a
foundation for this research, including the notion of partial
ordering of security classes based on the dominance
relationship, the idea of labeling state variables to track such
flows, as a way to certify a program.

Other approaches have viewed no difference between
classes of covert channels, or between covert and overt flows
for that matter. These approaches rely on the concept of
noninterference, which states that the actions of one subject
can have no effect on the output of a lower subject in a
system. Goguen & Meseguer [9] described that security
policies can be defined in terms of only noninterference
assertions, rather than by the combination of access control
and covert channel restrictions. Their ideas were further
expanded in [10].

Volpano et al [27] furthered the language-based flow
analysis work by defining a linguistic type system for secure
flow, and rigorously proving the soundness of the core
language with respect to noninterference. Well-typed
programs are then guaranteed to be noninterfering – and thus
secure by this definition – which was the basis for much
related research, summarized by Sabelfeld & Myers in their
survey on language-based information flow systems [19].

Other work in using sound type systems for secure
information flow has focused on type inference, in which the
flow of information is automatically determined based on
semantic analysis [5][24]. Eventually, Smith & Thober [25]
enhanced the linguistic model of secure information flow
such that sensitivity labels need be assigned only at I/O

boundaries, while the labels of variables and constants, as
well as data information flow through a program’s execution,
are automatically derived relative to the I/O (device) labels.

Our DM-Compiler similarly tracks the flow of data based
on the input device label with no requirement to annotate the
code in any other way. Our work differs from the linguistic
type system approach in that, rather than constructing a type-
safe language with which to write secure programs, we apply
abstract interpretation to the analysis of programs in order to
detect potential problems and otherwise demonstrate their
security with respect to select security properties. Our
approach is based on exhaustive information flow tracing of
all execution paths in a program, to a certain length
(determined by the model scope of Alloy). This tracing is
applied for both overt and covert channel static analysis,
using dynamic slicing techniques where appropriate such that
read-up, as well as violations of noninterference, are detected
[28]. Additionally, we provide a compiler to generate a
formal specification of a program. Although it yet lacks a
formal soundness proof, the DM-Compiler enables generation
of formal logic that can be automatically analyzed (using the
DM) for secure information flows.

VI. DISCUSSION AND FUTURE WORK
This paper has provided a survey of ongoing research to

develop a formal security domain model for analyzing
programs for information flow vulnerabilities, including
exploitable covert channels and overt access control flaws.
The approach defines a formal security Domain Model (DM)
that facilitates specification of security vulnerabilities,
independent of program implementation.

Although encoding and checking program semantics and
properties is not in itself revolutionary, we feel that this work
is evolutionary in extending previous work in the area of
information flow tracking based on a precise, formal
definition for overt information flaws and covert channels.
Our model provides a means of conducting automated static
analysis of a program implementation within a finite scope of
execution paths. Flow control dependencies and related overt
flaws are analyzed using dynamic slicing techniques. This
paper has shown the feasibility of this approach on a specific
set of examples, within a finite scope.

The Alloy Analyzer guarantees, by the small scope
hypothesis [11], that most program errors should be revealed
in relatively small counterexamples. Using the Analyzer to
perform static analysis of the DM provides assurance that,
within a specified search scope, a counterexample will be
found when one exists. This means that false negatives and
false positives are eliminated within the defined scope.

Future work will focus on formally proving the DM, and on
extending its capabilities. In the former case, formal semantic
analysis of the IML and DM-Compiler is needed to ensure
that the artifacts of each (e.g., the base program and DM
Implementation Model) are accurate refinements of the
original target implementation. As pointed out in [19],
information flow analysis should take place “as close to the
executed code as possible.” Analysis of a compiled

677

abstraction of the execution code creates a requirement for
trustworthiness in the compiler, as well as the code itself. In
addition to semantic analysis of these DM components, the
results of the Alloy Analyzer acting on a compiled DM must
be formally proven to be both sound and complete, i.e., that
they produce neither false positives nor false negatives,
respectively.

Work has begun to implement the notion of a trusted
subject into the DM. This class of subject is trusted to
circumvent certain access control policy rules, to allow such
actions as regrading of objects, e.g., downgrading a High
labeled object to a Low level. This requires defining a
separate trusted subject policy within the DM, and the ability
for the model to administer multiple policies, i.e., for regular
and trusted subjects.

Other planned work includes expansion of the DM to
enable support for dynamic security policies [16]. This
concept would allow the DM to support multiple polices in
existence during program execution, with the ability of a
system to adapt different policies based on a dynamically
changing security environment [17].

REFERENCES
[1] The Alloy Analyzer. (2000). Retrieved March 3, 2008, from the

Alloy Analyzer website: http://alloy.mit.edu/.
[2] Bell, D., & LaPadula, L. (1973). Secure Computer Systems:

Mathematical Foundations and Model, MITRE Report. The
MITRE Corp.

[3] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and General Model, version
3.1. Document number CCMB-2006-09-001. September 2006.

[4] Department of Defense Trusted Computer Security Evaluation
Criteria, DOD 5200.28-STD, National Computer Security
Center, December 1985.

[5] Deng, Z., & Smith, G. (2006). Type inference and informative
error reporting for secure information flow. Proceedings of the
44th ACM Southeast Conference (pp. 543-548). Melbourne,
Florida.

[6] Denning, D. (1976). A lattice model of secure information
flow. Communications of the ACM, 19(5), 236-242. ACM
Press.

[7] Denning, D. E., & Denning, P. J. (1977). Certification of
programs for secure information flow. Communications of the
ACM, 20(7), 504-512. ACM Press.

[8] Gligor, V. (1993). A guide to understanding covert channel
analysis of trusted systems. Technical Rep. NCSC-TG-030,
National Computer Security Center, Ft. Meade, MD, USA.

[9] Goguen, J., & Meseguer, J. (1982). Security policies and
security models. Proceedings of the IEEE Symposium on
Security and Privacy (pp. 11-20). IEEE Computer Society
Press.

[10] Haigh, J.T., & Young, W.D. (1987). Extending the
noninterference version of MLS for SAT. IEEE Transactions
on Software Engineering, SE-13(2), 141-150.

[11] Jackson, D. (2006). Software Abstractions: Logic, Language,
and Analysis. Cambridge, MA, USA, and London, England:
MIT Press.

[12] Kemmerer, R. (1983). Shared resource matrix methodology: An
approach to identifying storage and timing channels. ACM
Transactions on Computer Systems, 1(3), August 1983. ACM
Press.

[13] Korel, B., & Rilling, J. (1997). Dynamic program slicing in
understanding of program execution. Proceedings of the 5th
International Workshop on Program Comprehension (pp. 80-
90). Dearborn, MI, USA: IEEE Computer Society.

[14] Lampson, B. W. (1973). A note on the confinement problem.
Communications of the ACM 16(10), 613-615. ACM Press.

[15] Levin, T., & Clark, P. (2004). A note regarding covert
channels. Proceedings of the 6th Workshop on Education in
Computer Security (pp. 11-15). Monterey, CA, USA.

[16] Levin, T., Irvine, C., & Spyropoulou, E. (2006). Quality of
security service: Adaptive security. Handbook of Information
Security (H. Bidgoli, ed.), vol. 3, pp. 1016–1025, Hoboken, NJ:
John Wiley and Sons.

[17] National Security Agency IA Directorate. (2004). Global
Information Grid Information Assurance Reference
Capability/Technology Roadmap, Version 1.0.

[18] National Security Agency. (2007). U.S. Government Protection
Profile for Separation Kernels in Environments Requiring High
Robustness, Version 1.03.

[19] Sabelfeld, A., & Myers. A. (2003). Language-based
information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1), 5-19. IEEE Press.

[20] Schaefer, M., Gold, B., Linde, R., & Scheid, J. (1977). Program
confinement in KVM/370. Proceedings of the 1977 Annual
ACM Conference (pp. 404-410). ACM Press.

[21] Security Domain Model Project. (2008). Retrieved March 5,
2008, from Naval Postgraduate School (NPS) Center for
Information Systems Security Studies and Research (CISR)
Projects website: http://cisr.nps.edu/projects/sdm.html.

[22] Shaffer, A., Auguston, M., Irvine, C. and Levin, T. (2007).
Toward a security domain model for static analysis and
verification of information systems. Proceedings of the 7th
OOPSLA Workshop on Domain-Specific Modeling (pp. 160-
171). Montreal, Canada.

[23] Shaffer, A., Auguston, M., Irvine, C., and Levin, T. (2008). A
security domain model to assess software for exploitable covert
channels. Manuscript submitted for publication.

[24] Simonet, V. (2003). Type inference with structural subtyping:
A faithful formalization of an efficient constraint solver.
Proceedings of the Asian Symposium on Programming
Languages and Systems (APLAS'03), vol 2895 (pp. 283-302).
Beijing, China: Springer-Verlag.

[25] Smith, S., & Thober, M. (2007). Improving usability of
information flow security in java. Proceedings of the 2007
Workshop on Programming Languages and Analysis for
Security (pp. 11-20). ACM Press, New York, NY.

[26] Tsai, C., Gligor, V., & Chandersekaran, C. (1990). On the
identification of covert storage channels in secure systems.
IEEE Transactions on Software Engineering, 16(6), 569-580.
IEEE Press.

[27] Volpano, D., Smith, G., & Irvine, C. (1996). A sound type
system for secure flow analysis. Journal of Computer Security,
4(3), 167-187.

[28] von Oheimb, D. (2004). Information flow control revisited:
Noninfluence = noninterference + nonleakage. Proceedings of
the 9th European Symposium on Research Computer Security
(pp. 225-243). Sophia Antipolis, France.

678

Component based architectures for eXtreme Transaction Processing

Luca Vetti Tagliati
LucaVT@gmail.com

Senior Architect at Lehman Brothers
PhD student at Computer Science and Information Systems

Birkbeck University of London

Abstract

This paper presents a methodology aimed at
allowing architects to systematically design
component-based architecture particularly suitable for
extreme transaction processing (XTP). XTP, as defined
in [1], is an emerging approach that is becoming
indispensable to enabling mission-critical systems to
cope with exceptionally demanding performance
dictated by the corresponding business growth. In
particular, XTP aims at allowing large-scale mission
critical, transactional and distributing systems to
effectively satisfy the extremely demanding non-
functional requirements, especially in terms of low
latency and high throughput. In extremely competitive
environments, such as investment banking -where this
methodology has been tested- high-performance IT
systems can enable the organisation to obtain and to
maintain a predominant position in the market, which
in turn results in a greater ROI. Although a large body
of knowledge related to the strictly-technological
domain is available, there is a glaring deficiency in the
corresponding methodology space.

1. Introduction
The term XTP has been defined by Gartner ([1]) to
indicate a new generation of applications designed to
cope with extreme non-functional requirements in
terms of low latency and high-throughput originated by
genuine business needs. In a number of environments,
such as equity front office, the ability of responding to
a Request For Quote in sub-seconds determine the
possibility of making a deal: empirical studies show
that 95% of the time, institutional clients select an offer
from among the first three returned. Another example
is given by the possibility of exploiting market
arbitrages (zero risk trades). Often such possibilities
appear for a fraction of a second. Therefore, only
systems able to determine these scenarios and react in
sub-second are able to allow the company to enhance
its income with virtually no risk.

XTP brings to mind the early TP (Transaction
Process). However, the one-letter difference of these

two terms hides a deep divergence, non only in terms
of the NFRs but also in terms of the corresponding
architecture. In particular, traditional TP were based on
proprietary and expensive hardware, often paired with
equally expensive and proprietary software. XTP
systems, on the other hand, must be designed to scale
horizontally on commodity hardware and software
based on industry standards in order to increase the
ROI. Although the vast majority of XTP initiatives
([1]) are in their infancy, the market already offers a
number of enabling technologies, such us performing
ESB, clusters and distributing cache. Regrettably, this
rich offering in the technology space does not seem to
have been paired with a corresponding methodology
evolution and, in fact, the gap in this area is noticeable.
The methodology presented in this paper expands on
the one introduced by J. Cheesman and J. Daniels ([2])
in order to enhance its suitability for new generation
multi-layered architecture and to systematically satisfy
XTP requirements.

2. Reference architecture
This paper considers the architecture definition in sync
with the one proposed in the Rational Unified Process,
where it is defined as the set of significant decisions
about the organisation of a software system, the
selection of the structural elements and their interfaces
of which the system is composed, together with their
behaviour as specified in the collaborations among
those elements, the composition of these structural and
behavioural elements into progressively larger
subsystems, and the architectural style that guides this
organization, these elements and their interfaces, their
collaborations and their composition”. [4]. Although
at the moment in the IT industry there is not a general
agreement about the definition of architecture, the
entire IT community agrees with the fact that modern
architecture should be layered. The architecture
selected in this paper envisages the following layers:
Presentation, Business Service, Business Object and
Integration (see figure 1). The outermost architectural
layer is the Presentation Layer, which encapsulates
the interfaces with external actors and
provides/enforces a number of common services like

679

internal security, data validation and transformation,
etc. This layer is typically further specialised in two
sub-layers: the User Interface Layer and the Systems
Interface Layer, in order to provide a convenient mean
to accommodate different actor specific needs,
preserving the same business layer.

Figure 1. Multi-Layered architecture
The Business Logic is the core of the system and this
is where the “business rules” are encapsulated.
Typically, this layer is split up into two sub-layers:
business service and object business layers. It is
common to expose the services through a Business
Service Layer (BSL). This layer provides the only
means of access to the business services of the sub-
system. Operations provided by this layer should be
derived directly from the steps in the use cases. Each
operation that is provided by this layer is a self-
contained unit of work. Once a service has been
requested it is typically delivered by executing specific
sub-services of a number of well-defined objects. The
representation of these objects, including their services,
is implemented in the Business Object Layer (BOL),
which is still part of the business logic. Typical
components present in this layer are session EJB for
J2EE architecture or traditional bean (often called
POJOs) for other frameworks. The BOL consists of
core business information, rules, and transformations
encapsulated by the sub-system. The BOL
components provide core services related to the
business domain of the system. Therefore, business
services perform their tasks by enhancing services
provided by the BOL. Both of these layers are
populated by session beans, normally stateless session
EJB for J2EE architecture, or POJOs for other
architectures. Typical methods that will be present in
this BO beans are CRUD services. The Integration
layer is the final layer is the one used to interact with
external data sources and external systems. These can
be external databases, other messaging systems,
specific gateways, etc. The structure of this layer is

equivalent to the one used for the presentation layer:
there are a number of standard services that can be
extended, via proper plug-ins, in order to enable the
integration of specific underlying technologies. In
particular, this layer is typically split into the following
two sub-layers. Data Sources: aimed at integrating
databases management systems. The vast majority of
existing systems are based on relational databases
because these present a higher level of maturity, their
capacity and performance are more predictable and
reliable. In this case, this layer includes frameworks
like TopLink, Kodo, and Hibernate, necessary for
mapping classes into tables and vice versa, in other
words, adapting the OO paradigm to the relational one.
External Systems: aimed at integrating with external
systems using messages or other specific protocols. In
case a MOM is employed, then this layer will include a
set of Message Driven Beans. A fundamental rule of
this architecture is that the dependencies between
components are strictly downwards: a given
component can only interact with components in the
same layer or with those located in the lower layer.

3. Componentisation
Having defined the reference architecture, including its
layers, it is necessary to populate them with well-
designed components. However, before proceeding it
is important to address the first issue: components
located in the different layers of the architecture have
to communicate with each other via well-defined
interfaces. Considering a simple service like “int =
sum(int a, int b)”, in this case, the corresponding
interface would include three parameters: the two int
values in input and the corresponding sum in output.
However, the proposed architecture envisages
components that implement coarser-grain services (as
per SOA guidelines). Therefore, the basic parameter
types are replaced by more complex object graphs,
typically called Value Objects (VO) or Data Transfer
Objects (DTO), as per the corresponding patterns.
These are simple objects whose only goal is to
transport data through the different architecture layers:
they only expose a collection of getXX/setXX
methods. E.g., considering a flight booking service, it
would include services like “list<FlightVO> =
checkAvailability(AirportVO start, AirportVO dest,
ScheduleVO time)”, where FlightVO, AirportVO and
ScheduleVO are well-defined object graphs. An
effective strategy to design these objects consists of
starting from the requirements, particularly from the
domain object model (DOM), and then clustering this
into self-contained and homogeneous graphs to the
extent possible. The main criteria for dividing the
DOM into sub-domain models consists of applying the
O.O. principles, starting from a core business entity

680

(identified by the stereotype <<core>> in [2]). These
elements, the core part of the corresponding object
graph, have an independent life in the business and are
referred by other dependent entities. Therefore, each
graph has to include only highly-cohesive business
entities (i.e. classes) which present a low degree of
interaction (low level of coupling) with the remaining
parts of the system. E.g., in the case of the DOM of an
investment bank, it is possible to cluster classes related
to market quotes, trade, legal entities, and so on. In an
airline ticketing system, it is possible to characterise
airport-related information, customer data, aircraft
information, itinerary related data and tickets. Once
the clustering activity has been carried out, the quality
of the division should be verified. A valuable test is to
allocate each requested service - use case or steps of
use cases, depending on the use case granularity - to
the group of data that it requires. This procedure
consists of balancing the domain object model with the
use case model ([3]). This exercise makes it possible
to verify basic software engineering laws such as:
highly cohesive domains (and therefore conceptual
components), low level of coupling between
components, minimisation of components
communication and logical grouping of services.
When the initial clustering is done, it is typical to have
a number of cases where a class belonging to a cluster
is associated with another belonging to a different
cluster, compromising the low-coupling level and,
more importantly, the possibility of implementing self-
contained components. These scenarios are quite
normal; DOM is a representation of a given business
area and therefore it is normal to expect that the
different entities that compose it are part of a complex
web of links. E.g. although a Trade is a VO, it is quite
normal that it is linked to a counterparty, it deals with a
well-defined instrument, etc. For this reason, the next
step consists of breaking these extra-component
relationships: each single object graph must be self
contained. A technique used to achieve this is to adopt
the referential strategy used by relational databases, i.e.
the key export, and to enhance it with some O.O.
principle as described in fig. 3. In particular, a
relationship between classes can be made implicit by
exporting the object id of the referenced object to a
simple class called RefXXVO. This can be achieved
via a reference class. This offers the advantage of
allowing a transparent export of unique codes
(TradeVO via its relationship with
RefCounterPartyVO imports the sole counterparty
code) and the possibility of disassembling and
reassembling of complex graphs into/from smaller
object graphs. For example, trade data can be split into
its parts like: CounterParty, OwnEntity, Instrument,
etc.

Figure 2. Domain Object Model clustered
Considering a scenario of a user requiring a specific
trade, one would expect that he/she would want to
view all information. To achieve this, the
corresponding BS has to retrieve the different VOs
from the various BO component and then to
reassemble them to present to the presentation layer a
complete and consistent view. The opposite process
happens when the BS has to book a new trade. In this
case, the initial set of information has to be split into its
sub-graphs. The DOM clustering and, consequently,
the design of the VOs is a fundamental step used to
derive business object components, internal and
external interfaces, etc. In fact, once the clustering is
concluded, it is possible to assign each cluster/VO
graph to a corresponding component at the BO layer.
There is a 1 to 1 relation: one value object graph maps
to one component. The main role of the BO is to
provide a transparent integration to the underlying
devices. For example, the most common interface
implemented is a CRUD (Create, Read, Update,
Delete) aimed at integrating a database, LDAP, etc.
Other typical integrations are related to messaging
middleware (see fig. 1). The CRUD interface is
sufficiently standard: what changes is the referenced
VO. They are stateless services that need the required
data. For example, the portion of the model depicted
in figure 2 would generate two components: TradeBO
and CounterPartyBO. Each of these components would
expose services like:
- TradeVO = insert(TradeVO newTrade)
- TradeVO = update(TradeVO aTrade)
- TradeVO = findById(String tradeCode)
- List TradeVO= findByExample(TradeVO aTade)
- publish(TradeVO aTrade)

Due to space constraints, the necessary exceptions
have not been included in the method signatures.
The rationale behind the BO tier is to provide a layer of
indirection from the underlying devices. In this way
the business logic (encapsulated in the BS
components) does not need to be aware of the number
of data sources, their typology, the vendor, etc. Having
also designed the BO layer, the architecture now
includes a number of basic blocks able to handle
CRUD operations, publishing services, etc., for the

681

main business entities via a set of precise interfaces
based on well-defined VO graphs. At this point it is
important to focus the attention on the BS layer
components. For this purpose, it is necessary to
consider the functional requirements and specifically
the use cases. In particular, from the analysis of use
case steps, is possible to derive services that, acting on
the business objects, allow the component to deliver
the required services. For example, considering the
Trade, it is possible to identify services like: book a
trade, settle a trade, cancel a trade, etc. Therefore, the
use case model is the main input artefact used to design
the BS layer components, while the DOM is the main
one used to design the BO layer (see fig. 3).

Figure 3. From use cases and DOM to components
Nevertheless, also the BS components have to expose
services that act on coarse-grain object graphs and
therefore they require VOs as well. Architects often
decide to shield the internal business object
representation (internal VO graphs) from the exposed
one. Therefore, they design a corresponding set of
object graphs that the system exposes to its actors.
These, as expected, must be able to be transformed into
the internal ones, but they do not need to be the same.
This allows the reduction of the ripple effect on the
internal layers due to change to the external
interfaces.During the process of designing the BS
components, it is quite common for the architect to
review some decisions made during the design of the
VOs and BO components. This is necessary in order
to increase the level of isolation between components,
to improve the performances of some specific services,
and so on. This is not a problem since at this stage the
architecture is still under design. A completely
different scenario would have been generated if
changes would have been identified at implementation
time. Once the design of the BS and BO components
is completed, the architecting of the component of the
other layers is straightforward. In particular, the
integration layer components are given by the
technological decisions (e.g. Hibernate, TopLink, etc),
while the presentation layer components are given by
the interfaces designed for the UI, to integrate other
systems, etc. These are elements of the requirement

models that are encapsulated in the same domain
object model used to derive all other components.

4. XTP
Once that architecture has been defined and all
different components have found their place, including
the corresponding interfaces based on VO graphs, it is
time to decide which solution to adopt to enable the
systems to satisfy extreme non-functional
requirements. One of the basic and indispensable
principle is to design and implement stateless services
(as per SOA guidelines [5]). This is easily achieved in
the reference architecture given that all interfaces are
based on VOs, which encapsulate the corresponding
status. This design enables services that are statefull
by requirements to be implemented via a set of
stateless services, where the status can be maintained
adopting a number of techniques. For example, it is
possible to assign this responsibility to the presentation
layer (e.g. maintaining the status in the servlet session,
or sending it back and forward between clients and
services), to the BO layer which resorts to storing the
status in the database. Designing stateless services is
the necessary but not sufficient condition for allowing
the system to scale to the extent that the underlying
infrastructure can sustain this, where the infrastructure
includes network, messaging systems, database, etc.
Currently, vendors offer solutions capable of providing
a high level of scalability especially thanks to the
combination of modern ESB and cluster deployments
based on commodity hardware. This vertical
scalability, however, tend to focus mainly on
maximizing the throughput which alone is not always
sufficient to satisfy most extreme low latency
requirements present in specific mission-critical
systems. Therefore it is necessary to consider more
advanced and sophisticated solutions. Probably the
most recurrent one is based on an aggressive adoption
of distributed caches in order to implement “all-in-
memory” architectures which are supported by the vast
availability of non prohibitive memory and, more
importantly, 64-bit hardware. One particularly
sophisticated strategy envisages the adoption of the
cache as “primary data storage”. In this scenario, the
data is initially stored in memory and only
subsequently and asynchronously persisted into the db.
The traditional transaction is therefore split in two
asynchronous ones: an initial one necessary for
updating the cache and a subsequent completely
independent one, to safely store the data into the
database. In reality there are several possible
subsequent transactions: the initial one can generate the
need to update a number of caches (e.g. one for the
trade, one for the counter-party, etc.) hence the
subsequent database synchronisation can require more

682

than one independent and asynchronous transaction.
For example, the counterparty might not be updated at
all, the own-entity can be updated after a few seconds,
the trade itself can be persisted after a few minutes, the
trade event (e.g. book a trade, settle leg, etc.) can be
persisted after a few minutes, and so on. Given the
reference architecture, the addition of a distributed
cache is straightforward: it is sufficient to plug-in ad-
hoc DAO classes (Data Access Object, [6]) whose
main responsibility is to handle the integration with
distributed caches (see fig. 5). Although in this paper
we consider the DAO pattern, this is a simple
architectural decisions. The same concept holds true in
cases where architects would prefer to adopt other
strategies, like EJB entity beans, JDO, etc. All these
strategies would generate a completely transparent
cache incorporation (except for the performance
improvement).

Figure 4. DAOs for the postponed persistence
These new classes are used only by the BO
components, hence, the cache incorporation becomes
completely transparent to the higher layers of the
architecture. In particular, given that each BO
component provides for a single VO graph with mainly
CRUS services, it follows that each VO graph is
encapsulated in a well-defined and separated cache
domain. The inclusion of the cache forces BO
components to deal with (at least) two kinds of DAOs:
the ones designed to integrate the cache and the
traditional ones used manage database integration.
Therefore, the same service exposed by a BO
component (e.g. persist(TradeVO aTrade)) has two
implementations: persist in cache (TradeCacheDAO)
and persist on the datasource (TradeDBDAO). Hence,
the BS components, as expected, continue to use the
same interface. The selection of which DAO to use for
a given service can be managed explicitly via a
corresponding parameter or implicitly via a
configurable DAO Factory. Once the distributed cache

has been plugged in, the typical service execution
includes two main steps:
TX1: the data is persisted into the corresponding
caches. Therefore the specific distributed cache
domain takes part in the transaction as a transactional
resource. For example, if the data is obtained by a
message, then the transaction has to include the
messaging middleware (message consumption) and the
necessary cache domains (VO graph persisted in cache,
see fig. 5). This transaction is triggered by a genuine
business event, such as a user request, a message
delivery, etc.
TX2..n: each not VO graph persisted in the sole cache
is read from and then persisted in the database. This
transaction is triggered by an internal process (i.e. a
scheduler).

Figure 5. Transactions for the cache and for the db.
As depicted in fig.5, database updates occur in their
own transactions that are different from the cache
transaction. This architecture based on cache with
asynchronous and postponed persistence offers the
following advantages: performance improvement
especially in terms of low latency -the transactions
originated by business events act exclusively in
memory and the data persistence is delayed-; enhanced
scalability -systems handle more concurrent requests
and higher workload can be satisfied by adding nodes
in the cluster-; drastic reduction of the database
connections – the amount of reading operations is
radically reduced and multiple updates often result in a
single database transaction -. These advantages, as
usual, are coupled with some inevitable disadvantages,
like: more sophisticated error handling strategy –
database transaction occurs later on and therefore
database exceptions must be handled locally without
the possibility of rolling back the entire initial
transaction -; more complex database integration
processes – since the processes to persist data are
independent and completely asynchronous, it can
happen that the system tries to insert a record in the

683

table before a referred one is persisted, resulting in an
attempt to break integrity referencial constraints-; high-
availability requires a number of redundant nodes –
since data tends to stay in memory for some time
before being persisted in the database, it is necessary to
enhance the redundancy in order to avoid data lost -;
scalability is not always linear – adding more nodes to
the cluster generates an increment on the network
communications between cluster nodes to synchronise
their status and to generate the requested data
redundancy.

5. Case study
This approach has been successfully tested in a large
financial organisation with excellent results. In
particular, the system proved to be able to handle tens
of millions of heavy transactions per day with a very
low latency (a second or slightly more during the peak
time, 12 GMT when European markets are functioning
and the NY market is starting). Furthermore, it proves
a more than acceptable approximation of a linear
capability to scale on commodity hardware. The
following simplified models show some elements of
the methodology application.

Figure 6. Simplified version of the DOM.
Figure 6 depicts a simplified version of an equity
financing DOM. Its analysis might (wrongly) suggests
that the right level of granularity for a VO and
therefore a BO component is a single class. This is
rarely the case. In this example, this is due to the fact
that a number of classes have been removed due to
space limitations. E.g a CounterParty is linked to its
addresses, to a main country of incorporation, the
country of residence, etc. It is important to notice that
a number of concepts, like counter-party, own entity,
security, etc. have only a CacheDAO. This is because

the architecture envisages another system whose main
responsibility is to manage reference data (or static
data) which are transparently distributed to the system
client, like the one depicted in figure 7.

Figure 7. Simplified conceptual architecture view.

6. Conclusion
Although the XTP paradigm is in its infancy status, the
vendor market has been proactive in offering a number
of enabling technologies. Regrettably, the
methodology domain does not seem to have accepted
the challenge, and indeed, the gap is obvious. This
paper presented a methodology that, starting from the
one introduced J. Cheesman and J. Daniels, offers an
important enhancement necessary to systematically
address multi-layered architectures and more
importantly to provide architects with a systematic
approach to implement XTP systems able to effectively
scale on commodity hardware and standard-based
software to increase the ROI. This can be achieved by
basing the architecture on the capability to scale of the
underlying infrastructure, or, in extreme case,
including a high-performing distributed cache.
Although this is the main mean of providing very low
latency solutions, it also introduces a high degree of
sophistication and complexity. Therefore, its usage
should be considered only where the business
requirements present extreme NFRs.

7. References
[1] M. Pezzini, Milind Govekar, Yefim V. Natis, Donna Scott –

“Extreme Transaction Processing: Technologies to Watch” –
13 February 2007

[2] “UML components – A simple process for specifying
component-based software” – John Cheesman & John Daniels,
Addison-Wesley

[3] [Kruchten: The Rational Unified Process. Booch, Rumbaugh,
and Jacobson: The Unified Modelling Language User Guide,
Addison-Wesley, 1999]

[4] Frank Armour, Granville Miller – “Advanced Use Case
Modelling. Software Systems”, Addison Wesley

[5] Yan Qin; Yong Xiang; Meilin Shi – “Core-stateless Fair
Bandwidth Allocation for Guaranteed Services, Part I: End-to-
end Precise Basic Bandwidth Guarantees” - Computational
Engineering in Systems Applications, IMACS Multiconference
on Volume , Issue , 4-6 Oct. 2006 Page(s):1444 – 1448

[6] Sean Sullivan – “Advanced DAO Programming” – IBM –
October 2003

684

An Ontology for Controlled Experiments on Software Engineering

Rogério Eduardo Garcia
Departamento de Matemática, Estatı́stica e Computação

Faculdade de Ciências e Tecnologia – Universidade Estadual Paulista “Júlio de Mesquita Filho”
Rua Roberto Simonsen, 305 – CEP 19060-900 Presidente Prudente – SP, Brazil

rogerio@fct.unesp.br

Erika Nina Höhn, Ellen Francine Barbosa, José Carlos Maldonado
Instituto de Ciências Matemáticas e de Computação – Universidade de São Paulo

Av. Trabalhador São-Carlense, 400, C.P. 668
CEP 13560-970 São Carlos – SP, Brazil
{hohn,francine,jcmaldon}@icmc.usp.br

Abstract

Running multiples experiments in Software Engineering
introduces the need of recording data as well as transferring
knowledge across them, specially considering that several
researchers are involved on replicating experiments. In this
work we explore ontologies to support knowledge transfer,
helping to elucidate the associated concepts of controlled
experiments and their relationships. Based on our expertise
on conducting controlled experiments, we have proposed an
ontology to experimental studies, named EXPEROntology.
The ontology proposed is intended to be used as a tool
for knowledge transfer, assisting researchers, reviewers,
and meta-analysts in designing, conducting, and evaluating
controlled experiments. In order to validate our ontology
we have instantiated it in to a controlled experiment.

Keywords: Ontology, Controlled Experiments, Experi-

mental Software Engineering, Knowledge Transfer.

1 Introduction

Experimental Software Engineering (ESE) attempts to

evaluate and measure the performance of models and tech-

niques in practical contexts, in order to establish a body of

knowledge base to support decision-making. Results from

a single experiment cannot establish definitive facts about a

phenomenon due to variations introduced by different sys-

tem domains, personal background and experience and cul-

tural environments [5, 9, 10, 12]. Gaining insight into such

The authors would like to thank the Brazilian funding agencies

(FAPESP, CAPES, CNPq) and to the QualiPSo Project for their support.

variations requires running multiple independent studies on

a topic, what introduces the need both for recording data

and transferring knowledge across multiple studies.

Linkman and Rombach [8] pointed out that experimen-

tation can be used as a tool to support technology trans-

fer. In this sense, lab packages can be viewed as a packing

of knowledge about controlled studies. In addition, a lab

package must be able to cope with the experiment evolution

across multiple studies. A lab package describes an exper-

iment providing materials for its replication, highlights op-

portunities for variation, and builds a context for combining

results of different types of experimental treatments. How-

ever, Shull et al. [11] argue that researchers face difficulty

understanding and reviewing lab packages. The main diffi-

culties are concerned to the understanding of the concepts

underlying the techniques under study, and to mastering of

the knowledge involved in running the experiment.

In this scenario, ontologies can be used to enable several

researchers to have access to heterogeneous sources of in-

formation that are expressed by using diverse vocabularies

or inaccessible formats [6]. Based on this, Biolchin et al. [6]

have proposed an ontology for ESE in a macro-perspective,

showing the concepts of Primary and Secondary Studies on

Software Engineering at a high level, aiming at supporting

systematic reviews.

In another perspective, we have investigated the estab-

lishment of an ontology for ESE, now focusing on con-

trolled experiments – EXPEROntology. Such ontology

aims to formally describe the concepts that compose a lab

package. The idea is that the ontology can be used as a tool

to harmonize concepts and to facilitate lab packages reuse

and sharing.

Moreover, since the body of knowledge on testing keeps

685

evolving, mainly due to the experimental studies conducted,

we intend to merge EXPEROntology to OntoTest [3, 2] –

an ontology of software testing we have also defined. At

the very end, both ontologies should be used to establish a

reference architecture that supports the development of en-

vironments/tools to automate software testing activities and

related experimental studies. Here we focus on describing

EXPEROntology.

The remainder of this paper is organized as follows.

In Section 2 we provide a brief overview of controlled

experimental studies. In Section 3 we describe the

EXPEROntology and provide an example of its instanti-

ation. Finally, in Section 4 we summarize our contributions

and perspectives for further works.

2 Experiments in Software Engineering:
Main Concepts

Any experimentation field comprises two types of in-

vestigation: Primary and Secondary Studies [6]. Primary

studies use specific designs addressed to evaluate the hy-

pothesis formulated by the researcher, to be tested under

well-established conditions. Secondary studies intend to

produce comparisons between individual investigations se-

lected from a set of primary studies in order to allow gener-

alizing of results. Wohlin et al. [13] have pointed out differ-

ent sorts of primary studies: Survey, Case Study and Con-

trolled Experiment (see Figure 1). Our ontology focuses on

Controlled Experiment. Its main concepts are highlighted

throughout Experimentation Process, described next.

<<concept>>

Experimental study

<<concept>>

Secondary study

<<concept>>

Primary study

<<concept>>

Systematic Review

<<concept>>

Case study

<<concept>>

Survey

<<concept>>

Controlled Experiment

Figure 1. Ontology for Experimental Studies

The Experimentation Process follows a sequence of

phases [13]: Definition, Planning, Operation, Analysis and

Packaging. In the Definition phase, hypotheses are clearly

stated and the experiment goals are established. Based on

the definition, in the Planning phase, an execution plan
must be detailed, defining the execution environment, the

subjects involved and their profile, the dependent and in-
dependent variables and their scales. At this stage it is im-

portant to discuss the validity of the expected results. These

two initial phases are iterative, since it is possible to return

to a previous phase or redo the current one.

The Operation phase is divided into three steps: Prepa-
ration, Execution and Data Validation. Preparation con-

cerns to preparing the required material to run the experi-

ment, such as data collection forms and training materi-
als. The Execution must ensure that the experiment is con-

ducted as planned. Finally, during Data Validation, replica-

tors try to check the data collected for correctness. These

three steps are also iterative. After Operation, the data col-

lected is analyzed (Analysis). The Packaging phase is con-

cerned to documentation, including experimental artifacts,

procedures and results into a so-called lab package for fu-

ture replications. Amaral et al. [1] suggest that such phase

should be conducted in parallel throughout the experimen-

tation process. These concepts highlighted in this section

are mapped on the EXPEROntology, presented next.

3 The EXPEROntology

Ontology is a formal explicit specification of a shared

conceptualization, that is, an abstract way of perceiving a

piece of reality conceived as a set of relevant terms and

their relationships, whose structure is constrained by some

rules [7]. In short, ontologies are intended for knowledge

being used in representation, sharing and management of

several different domains.

Based on our expertise on controlled experiments, we

have defined EXPEROntology. The idea is to address the

main concepts of controlled experiments, from definition to

analysis of the results. It is important to notice that we have

also considered the experiment evolution, which is stored

into the lab package. A researcher runs an experiment to

validate some technique, method or tool. In the first run-

ning of the experiment a lab package is created, describing

the original experiment and providing materials for replica-

tion. By analyzing the instantiated concepts from the orig-

inal lab package, further researches can identify opportuni-

ties for variation and build a context for combining results

of different types of experimental treatments.

Here, we present the EXPEROntology in two levels of

refinement. The first one refers to the main concepts of a

controlled experiment. The second one deals with the re-

finement of the concepts of validity and lab packages. We

have used UML notation to represent the ontology.

3.1 An Ontology for Experiments

From conducting an original experiment a lab package
is generated. A replication uses a lab package from previ-

ous experiments as the basis for its motivation as well as for

generating a new lab package, as depicted in Figure 2. Both

686

the original experiment and the replication have to be eval-

uated regarding to their validity. An original experiment is

created by a designer, who has his/her profile related to the

experiment as a parameter to define a possible threat to va-

lidity. In the same sense, a replicator has also his/her profile

associated with the replication.

It is important to highlight that both designer and repli-

cator profiles might influence, negatively or positively, the

conduction of the experiment/replication. The lack of ex-

perience, for instance, is a negative influence since it can

be difficult to isolate the factors of risk when defining an

experiment. Regarding the replication, the lack of experi-

ence can also influence the execution fidelity of the original

experiment. On the other hand, the high experience is a

positive influence since it minimizes the effort for defining

the experiment and helps to analyze the lab package both to

identify opportunities and combine results of different expe-

rimental treatments. So, the designer and replicator profiles

must be taken into account during the analysis of the results

as an influence on the experiment validity.

<<concept>>

Designer

<<concept>>

Experimenter Profile

<<concept>>

Replicator

1 1..*

has

1 0..*

is basis for<<concept>>

Lab package

<<concept>>

Validity

<<concept>>

Replication

1

1is recorded

1 1
generates

1

1

generates

1
1..*

has

1..*

1

conducts
1..*

1..*

designs

0..*

0..1

influences

1

1

has

<<concept>>

Original experiment

1

1
has

Figure 2. Ontology for Controlled Experi-
ments

The validity evaluation is an issue to be addressed

through all phases of the experimentation process. Wohlin

et al. [13] pointed out that there are four types of threat to

validity: (1) conclusion validity – refers to the relationship

between the treatment and outcome; (2) internal validity –

refers to the points that assure there is a causal relationship

between the factors and the outcome; (3) construct valid-

ity – concerns with the relation between theory and obser-

vation; and (4) external validity – concerns with general-

ization. Each type of validity is constrained by threats, as

illustrated in Figure 3.

A threat to validity constrains the validity of an origi-

nal experiment or a replication. However, when there are

threats, they are identified in the lab package. The influ-

<<concept>>

Conclusion validity

<<concept>>

Construct validity

<<concept>>

External validity

<<concept>>

Internal validity

constrains

<<concept>>

Threat to validity

Figure 3. Types of Validity

ences to any element that integrate a lab package (or the

combination of them) cause a threat to validity. Following,

the lab package is defined in terms of concepts.

3.2 An Ontology for Lab Packages

The concepts defined in the ontology for Lab Packages,

depicted in Figure 4, are presented throughout the experi-

mentation process, highlighted in the following. At first, the

initial hypothesis of a controlled experiment is established.

It is composed by the object of study, in agreement with a

purpose, under a quality focus, and in a specific context.
The Definition phase is the basis for the Planning phase

and the initial hypothesis generates the hypotheses for-
malized. These hypotheses have null hypothesis and the

alternative hypothesis, as attributes. From the hypothesis
formalized, the experimenter defines the experiment vari-

ables – dependent and independent variables. During the

planning phase s/he also defines the experiment objects:

technologies to be studied (techniques, methods or tools)

and artifacts (documents, tools or forms) to be used.

Each subject has his/her profile recorded to character-

ize his/her background. Capturing the subject background

aims at identifying possible influence on results. For in-

stance, previous knowledge about experiment objects or do-

main application might influence the results obtained. The

subjects’ profile must be considered to create the experi-
mental design, which is built combining experiment ob-

jects, independent variables and subjects, in agreement with

the hypothesis under investigation. In addition, the subjects’

profile must be considered in analysis.

Based on the experimental design, an execution plan
must be elaborated in order to describe the entire controlled

environment to conduct the experiment. Such plan must

consider the training activity, which comprises both theoret-

ical and practical approaches for teaching the involved tech-

nology. The plan is obtained by establishing the tasks to be

executed, their sequence and their period. During the execu-

tion, each task must have its initial and final time recorded,

and differences between task planned and task performed
must be considered as a threat to validity.

The main objective of Definition and Planning phases

687

<<concept>>

Context

<<concept>>

Initial hypothesis

- Alternative hypothesis : char

- Null hypothesis : char

<<concept>>

Hypothesis formalised

<<concept>>

Experiment object

<<concept>>

Experimental design

<<concept>>

Result

<<concept>>

Technology

<<concept>>

Form

<<concept>>

Profile

<<concept>>

Subject

<<concept>>

Execution Plan

<<concept>>

Artifact

<<concept>>

Dependent variable

<<concept>>

Independent variable

1..*

1generates

1..*
1..*

is basis for

1

1..*

is basis for

1..*

1

is defined from

1

1can be a value of1..*

1..*is defined from

1..*

1..*

is basis for

1

1..*

uses as factor

11..*

uses as treatment

1

1..*
1

1..*

1

1..*

1

1

follows

1

1..*

follows

1

1

has

1

1..*

is obtained by

1..*

1..*

can use

<<concept>>

Training

1

0..* can be

1
1..*describes

1

1..*

is basis for

<<concept>>

Confirmatory analysis

<<concept>>

Exploratory analysis

- Period : int

<<concept>>

Task

<<concept>>

Task performed

<<concept>>

Task planned

0..*

1..*is obtained during a

1..*
1..* Is obtained using in a

1..*

1..*

is applied in
1..*

1
is obtained applying a

11 teaches in

1..*
1..*

is defined from

<<concept>>

Object of study

<<concept>>

Purpose

<<concept>>

Quality focus

<<concept>>

Technique

<<concept>>

Tool

<<concept>>

Method

<<concept>>

Questionnaire

<<concept>>

Document

<<concept>>

Analysis

1..*

1..* uses

1..*

- Technique : String

Statistical analysis 1..*

Figure 4. Ontology for Lab Packages

is to establish the experimental design, which must satisfy

the requirements to the Analysis phase. Such phases culmi-

nate in the experimental design and in the execution plan,

defining an environment as controlled as possible to test the

hypothesis and minimize the threats to validity. Both of

them are the core to guide the operation phase. The next

axiom formally defines the experimental design – the pred-

icate Design associates treatments for each subject:

Design(s, SetOfTreat)

where s represents subjects and SetOfTreat are values for

factors (set of treatment). Factors are defined as:

Factor(f1, . . . , fn)
∀f ∈ Factor,∃ Treatment(f) = {v1, . . . , vn}, n ≥ 2

dom(Treatment) = Artifact ∪ Technology
SetOfTreat = {(vf1, . . . , vfn)}|∀f, vfn ∈

Treatment(fn)

where f defines the factor to deal with, and vfn are values

for each f . From the predicate Design it is established the

plan for conducting the experiment, which is detailed on a

set of tasks:

688

(∀s, SetOfTreat)(Execution(s, SetOfTreat) →
Task(ta1) ∧ . . . ∧ Task(tan))

where tan defines the tasks. Each task is defined as

Task(tan) →
(Training(s, tr, a, p) ∨ Applying(s, te, a, p))

where the Training predicate indicates that a subject can

be trained on a technology (indicated by tr) using an arti-

fact a, during a period p. In the same sense, the Applying
predicate indicates that a subject s applies a technology te
to an artifact a, during a period p generating data to support

testing the hypothesis.

The data set gathered during the execution represents the

concept results on ontology. The analysis of these results

is based on hypotheses formalized and on experimental de-

sign focusing on dependent variables. Confirmatory anal-
ysis aims to test the hypotheses formalized and exploratory
analysis aims to investigate unanticipated relationships.

3.3 Instantiating the EXPEROntology for a
V&V Lab Package

To illustrate the concepts previously discussed, a con-

trolled experiment, originally conducted by Basili and

Selby [4], involving V&V (Verification and Validation)

techniques is presented. We have chosen such study and

used the description found on paper aimed to instantiate

the EXPEROntology using an original experiment created

by other researchers, as a validation. The experiment com-

pared the application of three V&V techniques. In order to

identify the strengths and weaknesses of each of them. The

subjects were selected to be representative of three different

levels of computer science expertise: advanced, intermedi-

ate, and junior. The experiment had a total of 32 subjects.

The V&V techniques were: (1) code reading; (2) func-

tional testing; and (3) structural testing. The subjects were

asked to apply code reading (by stepwise abstraction) to de-

tect discrepancies between the program’s abstracted func-

tions and their specifications. The functional testing was

performed by applying equivalence partitioning and bound-

ary value analysis to select a set of test case for the program.

Then they executed the program on this collection of test

cases, and inconsistencies between what the program actu-

ally performed and what they thought the specification said

were noted. During the structural testing were given the

source code for the program, instructions to execute it, and

a description of the input format for the program. The sub-

jects were asked to examine the source and generate a set of

test cases that cumulatively execute 100% of the program’s

statements. When the subjects were applying a technique,

they generated and executed their own test cases [4].

The experimental design enables the distinction of the

V&V techniques while allowing for the effects of the differ-

ent programs being tested. Three programs were chosen to

be representative of several different types of software and

provided to the subjects. The three programs selected were

a text processor (P1), a numeric abstract data type (P2), and

a database maintainer (P3). Table 1 summarizes the Basili

and Selby experimental design. Notice that each subject ap-

plied the techniques in a pre-defined sequence.

The execution plan was divided into five distinct steps:

training, three V&V sessions, and a follow-up session. El-

ementary exercises followed by a pre-test covering all tech-

niques were administered to all subjects after the training

and before the V&V sessions.

Table 1. Experimental Design of the Study
Conducted by Basili and Selby[4]

Exper- Code Functional Structural

tise Subjects Reading Testing Testing

Adv. S1 P3 P2 P1

Adv. S2 P2 P1 P3

. . .
Interm. S9 P2 P1 P3

Interm. S10 P3 P2 P1

. . .
Junior S32 P3 P2 P1

According to the description of Basili and Selby exper-

iment [4] and based on the EXPEROntology, we have in-

stantiated the experimental design concept as following.

Design(S1, Advanced, Code Reading, P3)
Design(S1, Advanced, Functional Testing, P2)
Design(S1, Advanced, Structural Testing, P1)
. . .
Design(S9, Intermediate, Code Reading, P2)
Design(S9, Intermediate, Functional Testing, P1)
Design(S9, Intermediate, Structural Testing, P3)
. . .
Design(S32, Junior, Code Reading, P3)
Design(S32, Junior, Functional Testing, P2)
Design(S32, Junior, Structural Testing, P1)

From these instances of Design, it is possible to iden-

tify the treatments: Advanced, Intermediate or Junior; code

reading, functional testing or structural testing; and P1, P2,

P3. Such treatments represent values to the Factors: Ex-

pertise, Technique and Programs. These treatments and fac-

tors are instantiated next.

Factor = (Expertise, Technique, Program)
for Expertise, T reatment =
{Advanced, Intermediate, Junior}
for Technique, Treatment =
{Code Reading, Functional Testing, Structural Testing}
for Program, Treatment = {P1, P2, P3}
SetOfTreatment = {(Advanced, Code Reading, P3)}

689

Also according to the description, the execution plan

concept has been instantiated as:

Execution() → Training(S1, Code Reading,−−)∧
. . .
T raining(S32, Code Reading,−−)∧
Training(S1, Functional Testing,−−,−−)∧
. . .
T raining(S32, Functional Testing,−−,−−)∧
Training(S1, Structural Testing,−−,−−)∧
. . .
T raining(S32, Structural Testing,−−,−−)∧
Applying(S1, Code Reading, P3,−−)∧
. . .
Applying(S32, Structural Testing, P1,−−)

From these predicates we can notice that there are miss-

ing values (indicated by −−). Indeed, the paper describing

the experiment do not bring them. Observe that the ontol-

ogy can also be used as a mechanism to improve the ob-

tained data set from the Lab Package. On the Training
predicate there are two missing values: the first one refers

to the artifact used in the training activity and the second

one refers to the period for the training. On the Applying
predicate there is only one missing value, which refers to

the period for the application of a technique to a given pro-

gram.

4 Conclusions and Further Works

In this paper we proposed EXPEROntology, an ontol-

ogy for Experimental Software Engineering, focusing on

controlled experiments. EXPEROntology has been built

based on our knowledge and expertise on conducting con-

trolled experiments, mainly on evaluating V&V techniques.

The importance of keeping all the data about controlled ex-

periments on lab packages motivated us to focus on map-

ping the concepts involved. The idea is that a lab pack-

age based on the EXPEROntology can be used to improve

the knowledge sharing among researchers when conducting

replications and systematic reviews or meta-analysis.

We have also conducted a preliminary validation of

EXPEROntology in the context of the Basili and Selby

[4] experiment. However, it is important to highlight the

need of validating and evolving the proposed ontology for

other controlled experiments in different domains. Also,

we intend to include some established guidelines for ex-

perimental software engineering to ensure the validity of

the ontology. Further investigation has been planned in this

sense. Moreover, we intend to explore how to integrate the

EXPEROntology to OntoTest. Such ontology has speci-

fied several concepts presented here, as technique and tool,

focusing on testing activities. At the very end, both on-

tologies should be used to establish a reference architecture

that supports the development of environments/tools to au-

tomate software testing activities and related experimental

studies.

References

[1] E. A. G. G. Amaral, W. A. Chapetta, and G. H. Travas-

sos. A process for experiment packaging. VII Workshop

on NSF-CNPq Readers Project, April 2003.
[2] E. Barbosa, E. Y. Nakagawa, A. C. Riekstin, and J. Maldon-

ado. Ontology-based development of testing related tools. In

20th Int. Conference on Software Engineering and Knowl-
edge Engineering (SEKE 2008), San Francisco, CA, July

2008. Accepted (to appear).
[3] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado. To-

wards the establishment of an ontology of software testing.

In 18th International Conference on Software Engineering
and Knowledge Engineering (SEKE 2006), pages 522–525,

San Francisco, CA, July 2006. Short Paper.
[4] V. R. Basili and R. W. Selby. Comparing the effectiveness of

software testing strategies. IEEE Transactions on Software
Engineering, 13(12):1278–1296, 1987.

[5] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge

through families of experiments. IEEE Transaction on Soft-
ware Engineering, 25(4):456–473, 1999.

[6] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali, T. U.

Conte, and G. H. Travassos. Scientific research ontology

to support systematic review in software engineering. Adv.
Eng. Inform., 21(2):133–151, 2007.

[7] T. R. Gruber. Toward principles for the design of ontologies

used for knowledge sharing? Int. J. Hum.-Comput. Stud.,
43(5-6):907–928, 1995.

[8] S. Linkman and H. D. Rombach. Experimentation as a Ve-

hicle for Software Technology Transfer - A Family of Soft-

ware Reading Techniques. Information and Software Tech-
nology, 39:777–780, 1997.

[9] J. Miller. Can results from software engineering experi-

ments be safely combined? In 6th IEEE International Soft-
ware Metrics Symposium (IEEE METRICS), pages 152–158,

Boca Raton, FL, USA, November 1999.
[10] J. Miller. Replicating software engineering experiments: a

poisoned chalice or the holy grail. Information & Software
Technology, 47(4):233–244, 2005.

[11] F. Shull, V. R. Basili, J. Carver, J. C. Maldonado, G. H.

Travassos, M. Mendonça, and S. Fabbri. Replicating soft-

ware engineering experiments: Addressing the tacit knowl-

edge problem. In IEEE Computer Society, editor, 2002 In-
ternational Symposium on Empirical Software Engineering,

pages 7–16, Nara, Japan, October 2002.
[12] F. Shull, J. Carver, G. H. Travassos, J. C. Maldonado,

R. Conradi, and V. R. Basili. Replicated studies: building a
body of knowledge about software reading techniques, pages

39–84. World Scientific Publishing Co., Inc., River Edge,

NJ, USA, 2003.
[13] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,

and A. Wesslén. Experimentation in Software Engineer-
ing: An Introduction. Kluwer Academic Publishers, Boston

(USA), December 1999.

690

Improving Automatic Model Creation using
Ontologies

Sven J. Körner
Institute for Programming and Data Structures

University of Karlsruhe

76131 Karlsruhe, Germany

Email: koerner@ipd.uka.de

Tom Gelhausen
Institute for Programming and Data Structures

University of Karlsruhe

76131 Karlsruhe, Germany

Email: gelhausen@ipd.uka.de

Abstract—Automatic model creation from textual specifications
is a complex task. We show how ontologies can be used to improve
the quality of automatically created UML models. An evaluation
of a model transformation from a textual specification of the
World Chess Federation to UML is used as an example. The
resulting UML models are substantially improved.

I. INTRODUCTION

Dealing with natural language textual specifications is a

sophisticated task. When developing new software, user re-

quirements are usually written down in textual form. Natural

language is used to align the user’s understanding of the

requirements with the analyst’s own viewpoint. Models are

being created in later steps. The most popular are UML

models.

Finding out what the requirements originator really meant

when stating “facts” is complex [1]. Rupp and Goetz show

that focusing on the requirements in the first stages of the

software development process prevents numerous mistakes [2]

and therefore saves effort. We offer an approach and a col-

lection of tools to automatically create models from textual

specifications [3].

Today, it is still a manual task to provide enough informa-

tion for the model creation system so that it is capable of

automatically creating a model of the input text. It is common

sense that helps humans to extract semantic information when

preparing textual paragraphs for machine processing. Douglas

Lenat said in 1998 [4]: “If you pluck an isolated sentence [...]

it will likely lose some or all of its meaning – i. e., if you

show it out of context to someone else, they will likely miss

some or all of its intended significance.” Computers lack this

kind of knowledge.

Applying implicit semantics by using ontologies, we want

to overcome this problem and contribute to the solution with

outlook to a completely covered process from textual specifi-

cations to ready-to-go and ontology-improved UML models.

II. MODEL CREATION

The basis for our research is the SENSE (Software Engi-

neers’ Natural language Semantics Encoding) system [3]. It

provides the annotation language SALE (SENSE Annotation

Language for English) that requires minimal reorganization of

the original document.

Fig. 1. The Model Creation Process

A. Encoding Semantics

The key concept of SENSE is the encoding of semantics

via thematic relations and graph contiguity in omnigraphs, a

formal extension of hypergraphs [5]. Thematic relations denote

which role a constituent plays in an n-ary relation: The ones

used in SALE comprise AG for agens, an acting person, ACT

for actus, the action itself, and PAT for patiens, the person or

thing being acted on etc. (for a complete list cf. [3]). A short

description can be found in Table I.

B. Using Graphs for Representation

The annotation of natural language serves to encode the

semantics of a text. The annotated text can be processed

via an ordinary ANTLR [6] generated parser thus avoiding

error-prone Natural Language Processing (NLP). The SALE
compiler creates a script that builds a graph instance in

the graph rewrite system GRGEN.NET [7]. In this graph,

quested semantics are represented via types and contiguity.

The advantages of graph representations are their abstraction

from any oddities of the underlying natural language, the

direct representation of cyclic content, and that the very same

representation can serve for multiple natural languages.

C. Model Creation Process

Creating the UML model takes several steps as can be seen

in Figure 1. The process is described in the following.

691

1) Text: First there is the text of the specification. An

example would be:
� �
The game of chess is played between two opponents.
The player with the white pieces commences the game.

� �

2) Annotation: An editor then annotates the text with

semantic information so that the natural language specification

is machine-processable. This would look as follows:
� �
[#The game_of_chess|PAT #is played|ACT #between

*two opponents|AG].
[[#The ^player|POSS #with #the $white

pieces|HAB]|AG commences|ACT #the game|PAT].
� �

In SALE-syntax the hash “#” denotes a comment, the bar

“|” delimits the thematic relation, the asterisk “*” shows

the multiplicity of attributes and the square brackets “[]”

delineate clauses. For more details see [3].

3) Graph Script: The graph (rewrite) script includes the

commands to build the graph.

4) Graph: The actual graph is being created from the graph

(rewrite) script (.grs).

5) Rules: After creating the initial graph, rules rewrite the

graph. We provide a special set of rules which allows us to

gather information for later ontology processing.

6) Ontology: After extracting a number of useful thematic

relations from the graph, we query the ontology. The idea

is to gain as much implicit information as possible from the

individual concepts. This information can then be used to

improve model creation.

7) UML: We also use graph-rules to transform the already

existing graph into UML. The back-end of the SENSE/SALE
system is meanwhile capable of exporting truly UML com-

pliant XMI documents [8]. This can then be visualized in any

UML application, such as Altova UModel 2008.

III. ONTOLOGY-BASED MODEL IMPROVEMENT

UML diagrams not only consist of class diagrams, but also

state-charts, sequence-diagrams and so forth. Every thematic

relation can be matched to several UML model types (see Ta-

ble I). This chapter shows that the correct UML representations

can be chosen by using ontologies.

As for processing natural language during the UML model

creation process, there are two possibilities where ontology-

reasoning takes place: during the initial annotation phase

(pre-processing), and after having created the model (post-

processing). In this paper we focus on the latter one. The

model is already created and loaded into the graph as shown in

section II-C. In the next phase we extract the concepts we want

to process in the ontology directly from the graph. This is done

via graph-rules as depicted in Figure 1. Once the necessary

ontology knowledge from the UML concepts has been gained,

we send the newly gathered information back into the graph.

A consolidated UML model is created.

A. Introducing RCyc

We chose the ResearchCyc (RCyc) ontology since it offers

a very extensive coverage of real life concepts [9]. WordNet in

TABLE I
SEMANTIC ROLES MATCHED TO UML (EXAMPLE)

Thematic Explanation UML
Relation model element

AG The acting person or Class, Role,

thing executing the or Instance

action.

ACT The action, executed by Method, State (-Transition)

person or thing or Relation

PAT Person or thing affected Class, Role,

by the action or on which or Instance

action is being performed

HAB Possession or belonging; Class, Role,

person or thing being or Instance

received or passed on by

person or thing

... empty ...

comparison is optimized for lexical categorization [10] while

MIT’s ConceptNet [11] differs from the popular concepts

mentioned [12].

The most important RCyc-predicates for our task are

#$isa and #$genls. The first one describes that one item

is an instance of some collection, the second one that one

collection is a sub collection of another one. (RCyc-)Facts

about concepts are asserted using certain CycL sentences [9].

B. Support Model Creation

We extract lists of thematic relations within interconnected

sentences from the graph. The graph contains the text with

its phrases, words and thematic relations. It is processed one

paragraph at a time. The ontology processes each thematic

relation individually (see chess example in III-E).

We start with the AG (Agens) and ACT (actus) thematic

relations as shown in Table I. Depending on context and

meaning of each word, only certain UML concepts of these

n-ary relations are suitable and sensible. Having the phrase

“user A uses an interface B in the application” implies a

relation between the two. It is not appropriate to model the

verb “use” as method in a UML class diagram. It is vital to

realize what is reasonable to model and how. Feeding back

the gathered information into the graph generation system is

part of the approach (see Figure 1). The rewritten graph can

then emit a XMI file which is transformed into the improved

UML model.

C. Thematic Relation AG (Agens)

Looking at the AG thematic relation of a given phrase,

there is a chance that some of these roles are interrelated

(e. g. “car” and “vehicle”), conceptually related (e. g. “car”

and “highway”) or maybe even mean the same (e. g. “car” and

“automobile”). Words are often replaced with their synonyms

leading to ambiguities. One could say that a good specification

should have as few as possible of these, unfortunately, reality

proves us wrong [1]. Today’s available disambiguation features

692

cannot repel all problems which might arise when the system

cannot recognize all or important polysemy.

Depending on the number of AGs in play, there might be a

set of AGs which could be combined. For example we have

the AG “User” and another AG “Operator” who work on

a “system” described in a specification. Realizing that there

is a certain similarity in the two terms should lead to the

conclusion that there also is a certain connection between the

two. If there are two AGs which happen to have the same

generalization, or one of them is an instance of the other, it

might also be modeled as instance of a certain class and not

as an additional class in the UML model.

Let’s assume the graph contains three different AGs A, B,

and C. To make sure these items are not equal or at least

related in any kind, we compare them pairwise and check their

similarity. That means checking if one object is an instance

of another (in CycL: #$isA) or belongs to the same subset

(in CycL: #$genls) by querying the ontology. Take the

words “player” and “opponents” for example. Players who

play against each other are opponents. Thus every player is

an opponent. A relation #$isA between the “player” and

“opponent” class in the UML model is inserted. The methods

and attributes of both UML classes are combined.

Querying RCyc about “player” and “opponents” leads to

hundreds of facts and connections. A excerpt is listed below.
� �
predicate opponents:
isa: IrreflexiveBinaryPredicate

SymmetricBinaryPredicate
CoexistingObjectsPredicate

(argIsa opponents 1 Agent-Generic)
(argIsa opponents 2 Agent-Generic)
(opponents AGENT1 AGENT2)

Collection Player:
isa: Agent-Generic

� �

The above listing shows that “opponents” is a predicate.

The syntax (opponents AGENT1 AGENT2) means that

AGENT1 and AGENT2 are opponents of each other. Also the

arguments are of type Agent-Generic as can be seen in

(argIsa opponents 1/2 Agent-Generic). Query-

ing not only for “opponent”, but also for “player” leads to

the RCyc output that a “player” is also an Agent-Generic
type, just as opponents are. The conclusion is that both words

have a relation. This is represented in a UML class-relation

and inserted into the graph.

D. Thematic Relation ACT (actus)

The ACT thematic relation is usually denoted by a verb.

A verb indicates an occurrence (sparkle, blink), a state of

being (exist, is there), or an action (run, cook). Therefore ACT

is translated into a state (-transition), relation or a method

in UML (see Figure 2). State (-transitions) are instantaneous,

relations do not have a fixed duration and are wholly present at

time whereas methods are extended in time but are not wholly

present.

1) ACT as State (-Transition): When a word such as “win”

or “checkmate” is being looked at, it is quite obvious for

Fig. 2. Classification of Thematic Relation ACT (actus)

humans, that it is more likely to be a state (-transition) than a

relation (shown in Figure 2 as “TransACT”). Winning a game

takes place after all the premises for a victory have been

fulfilled. Let’s assume State A is the state depicting that the

game is still on and one has not won yet. State B shall be the

state that marks the end of winning the game. As soon as the

game is won, this type of ACT “jumps” from State A to B.

It is not a process which takes a discrete period of time to

happen. This sort of ACT is represented as state (-transition).

Querying RCyc about “win” gives the output below.
� �
Collection: Winning
isa: ConflictEventStatus

AtemporalNecessarilyEssential
CollectionType

AtemporalThing
genls: AtemporalThing

� �

In RCyc the verb “win” is recognized as the collection

Winning. The digest of the RCyc-facts shows that it is

atemporal (RCyc: AtemporalThing). It is also generalized

by AtemporalThing. This means it is a specialization of

the collection of all things that are “timeless” in the sense

of having no “location” in time. It makes no sense to ask

of an atemporal thing, e. g. “When did it begin (or cease) to

exist?” Examples of atemporal things include sets, collections,

numbers, vectors, and certain “abstract structures” (such as the

structure of a partial ordering).

2) ACT as Relation: What if the ACT is instead a stative

verb? Than it should not be translated into a state (-transition)

in UML, but rather a relation between two classes or their

corresponding instances (shown in Figure 2 as “RelACT”). An

example would be the word “use” which describes that some-

thing uses something else. This denotes a relation. Querying

RCyc about “use” leads to the output below.
� �
Predicate: usesIn
isa: TernaryPredicate
arg1Isa:Agent-PartiallyTangible
arg2Isa:PartiallyTangible
arg3Isa:Action
(argIsa usesIn 1 Agent-PartiallyTangible)
(argIsa usesIn 2 PartiallyTangible)
(argIsa usesIn 3 Action)

� �

693

RCyc understands “use” as the predicate usesIn. Predi-

cates are represented as UML relations. We further learn that

usesIn is a TernaryPredicate and what kind of input

types it takes. The RCyc output explains that the agent
ARG1 uses the object ARG2 to perform the action
ARG3.

3) ACT as Method: If ACT represents an action that has

a duration or is temporally extended it can be considered

as action which leads to a UML representation as method

(in a class). Examples would be words like “move”, “run”,

“calculate”, etc.
� �
Collection: CausingAnotherObjects

TranslationalMotion
isa: EventOrRoleConcept

FirstOrderCollection
genls:ActionOnObject

Movement-TranslationEvent
TemporalThing
TemporallyExistingThing
TemporallyExtendedThing

Collection: Movement-TranslationEvent
isa: EventOrRoleConcept

FirstOrderCollection
genls:TemporalThing

TemporallyExistingThing
TemporallyExtendedThing

� �

In RCyc those types of ACT can be deduced to

TemporallyExtendedThing. The output above is from

the word “move” which RCyc translates into the collection

CausingAnotherObjectsTranslationalMotion
and also Movement-TranslationEvent. Both are

being generalized (RCyc: genls) by Temporally-
ExtendedThing. This is the collection of all things that

are “extended in time”, as opposed to being “wholly present

at a time”. For example, an event is a temporally-extended

thing, as it is extended in time; it is not wholly present at any

interval that is properly subsumed by its temporal extent. This

is similar for a time-interval, such as a particular calendar year

where e. g. 1999 is not present in 2001 anymore. Conversely,

a person is not a temporally-extended thing, as she or he

exists at different times and is wholly present at each such

time. TemporallyExtendedThing is marked as UML

method.

E. Chess Example

We chose article 1 from the section “Basic rules of play” of

the FIDE laws of chess [13]. An excerpt reads the following:
� �
The game of chess is played between two opponents
who move their pieces alternately on a square
board called a ’chessboard’.
The player with the white pieces commences the game.

� �

When annotating the first sentence we get AG “opponents”

with a multiplicity of two and the ACTs “play”, “move”

and “called”. Querying RCyc, “play” is denoted as relation,

“move” as method and “called” as another relation. The ACT

“called” belongs to “square board” with its thematic relation

PAT (patiens) and is therefore not considered in this example.

The initial UML model is illustrated in Figure 3.

Fig. 3. UML after 1st sentence

Fig. 4. UML after 2nd sentence

The second sentence introduces AG “player” and ACT

“commences”. “White” is an attribute of the “pieces”. It is

also a “color” (isa) and therefore modeled as the attribute

“color”. Querying RCyc about the “player” shows that it is

of type Agent-Generic and that it is used as an argument

for the (opponents AGENT1 AGENT2) relation. Thus the

AG “player” is similar to “opponents”. The user needs to

decide which concept should be replaced by the other. We

decided for “player”. Therefore the UML class “opponent” is

not created and “player” receives the attribute “isOpponent”

and the methods of “opponent” as well (see Figure 4). The

ACT “commences” returns the RCyc result of being a genls
of TemporallyExistingThing and therefore modeled as

method.

As can be seen, it is easy for humans to spot that “The

player” in the second sentence is also a part of the “two

opponents”. The computer cannot make that distinction with-

out ontology knowledge. Thus when using the ontology, the

models tend to be far more human readable and less complex

since the correct type of model is created.

This is true for model creation as far as the ontology has

the necessary knowledge. There are some drawbacks which

are enumerated in the following.

IV. EVALUATION

Having the machine translate the specification without en-

riched ontology knowledge, UML diagrams grow unneces-

sarily large. Already small specifications appear far more

complex than they actually are. For example, all AG concepts

could be treated independently instead of potentially grouped.

Additional to that, they would be modeled as class, role and

instance at the same time. Also modeling all ACT thematic

relations as method, state(-transition), and relation while not

694

being able to decide which UML type to choose, makes the

UML grow large. The automatically created models become

mazy and hard to read. The model creation might end up

with thousands of classes when hundreds of classes – each

including the right modeling – would do. The usability and

complexity are not acceptable. Therefore automatic model

creation is much more applicable when ontology knowledge

is integrated.

Making sure that only one UML interpretation of a certain

AG and ACT is created, the complexity of the automatic

models is decreased by 2 out of 3 each for AG and ACT.

That is 66% less unnecessary and useless concepts.

The hit rate of AGs and ACTs queried in RCyc is accept-

able. However, when working with the FIDE chess specifica-

tions, the coverage and reasoning of the ontology knowledge

was not always adequate. For example the ACT “occupied”

is discovered as a TemporallyExtendedThing in RCyc

which makes it a UML method in our approach. It would

fit much better into the category of state(-transitions) since

a chess square is either (instantaneously) occupied or not. It

could also be modeled as relation between a piece and a square

to model which piece occupies which square.

Liu et al. also show that common sense can be regarded

as a myriad of simple facts [14]. The overall obstacle when

working with ontologies is the sparse coverage of special sub-

jects and the resulting unreliable inferences. As any ontology,

RCyc does have its blind and weak spots though it is still the

most extensive collection of reasonalbe knowledge we have

discovered so far.

We did not make any contribution to the ontology to provide

a feeling of what would be possible by just employing the

ontology rather then entering domain knowledge beforehand.

In contrast to Liu et al. we did not enhance the underlying

ontology [14]. We therefore experience problems when the

necessary ontology knowledge does not exist. Further research

has to be put into this problem in the future (see VI).

Another question that came up when working with the ACT

thematic relations is that we were not able to distinguish

between phrases like “I am eating fish” and “I eat fish”.

The former would be a UML method as it describes an

action. “I eat fish” instead explains determination and should

therefore be created as UML relation or -attribute. MIT’s

ConceptNet [11] is said to deliver a solution to that problem

by working with parts of phrases and not only single words.

Also some of the words processed from RCyc needed

to be changed to CycL-related collections. These were

for example the word “called” which was transformed

to ThingsDescribableAsFn or “commences” which is

changed to BeginningAnActivity in RCyc. This could

not always be automated since the number of options is huge.

V. RELATED WORK

According to Marvin Minsky [15], [4] common sense is

the most powerful tool to overcome the problem of losing

information when not being able to grasp the semantics and

meaning of concepts we humans deal with daily. As mentioned

in [11], Marvin Minsky thinks that common sense “is knowing

maybe 30 or 60 million things about the world and having

them represented so that when something happens, you can

make analogies with others”.

There is an extensive number of parsers and NLP programs

that have acceptable detection rates, but fail when semantics

are indispensable for understanding, for example:

• Fred saw the aeroplane flying over Karlsruhe.

• Fred saw the mountains flying over Karlsruhe.

Both times the structure of the sentences is identical. Still

the action “flying”, that is thematic relation ACT, should be

assigned to “the aeroplane” in the former and to “Fred” in the

latter.

In previous work we generated GRGEN.NET-graphs made

of the corresponding thematic relations of the natural language

text [3]. We were able to match thematic relations and their

meaning to specific concepts in UML models. We would

like to support this effort by empowering the machine to use

“common sense”.

Bethard et al. use timely dependencies when running the

classification of possible UML concepts found in natural

language text [16]. Liu suggests using extraction of events and

their sub-event structure to understand natural language and

the connection of phrase concepts better. [14]. Liebermann and

Liu argue that there is a high coherence between the English

natural language and programming languages [17]. Therefore a

direct mapping might be feasible. Natural language processing

(NL-processing) is good enough to support natural language

programming (NL-programming) since programming still re-

lies on formal languages [18].

Settimi shows that realizing there is no semantical difference

between the sentences “the user shall view” and “the system

shall display” cannot be corrected with only a thesaurus since

it will not be able to distinguish between opposite viewpoints

of the same action [19].

Looking at the natural language understanding (NLU) side,

Meystre and Haug show that focusing on small domains using

highly specified ontologies leads to satisfying results [20],

[21], [22].

Using non-specified ontologies on non-limited natural lan-

guage texts has not been done so far.

VI. CONCLUSION

This work has examined the post-processing of semantic

information already loaded into a graph model and shown

that it improves the automatic model creation process. Even

organizations with mature software development processes end

up with disconnected artifacts in documentation and imple-

mentation [23], [24]. Many mistakes stem from faulty designs

which tend to lose information during the design phase. We try

to avoid this by starting off with the specification itself. We try

to make sure the first step into coding is correct by matching

the model created from the specification to the code. One

could argue that this approach also fails if the requirements

documented in the natural language textual specification are

incomplete or faulty [1], [2].

695

Pre-processing specifications before they are represented in

a graph and automatic text annotation is another big challenge.

We are working on detecting non-functional aspects. It seems

that this part of the specification is not necessary for the

UML model creation. We also research the detection of

“Why?”-clauses/sentences. These are merely to explain why

something is done and not how. They are not beneficial for

automatic model creation and serve for human motivation and

understanding only. Therefore, they can be erased in the pre-

processing.

We consider using RCyc’s Microtheories and therefore

narrowing the search-space within the ontology. This improves

detection rates as well as processing speed. Implying RCyc’s

backward chaining might improve results even more. So far

using ontologies to improve model creation has only been

realized with the thematic relations AG and ACT. We will

extend this functionality to other thematic relations.

As shown in the chess example, there is a need to consider

“common sense” when automatically creating models from

textual specifications. Though our approach just marks the

beginning of using ontologies in combination with natural

language processing, it shows that improvements are possible.

Considering the fact that it still takes days, weeks or months to

completely understand and model a vast textual specification

of any system, we assume this approach to be of great

help. The area of application is not restricted to software

development only as the boundary-setting aspect is the domain

knowledge of the ontology.

ACKNOWLEDGMENT

The authors would like to thank CyCorp Inc. for providing

ReasearchCyc and supporting the research by answering our

questions.

REFERENCES

[1] C. Rupp and R. Goetz, “Psychotherapy for system requirements,”
Proceedings of the Second IEEE International Conference on Cognitive
Informatics (ICCI ’03), 2003.

[2] C. Rupp, “Requirements and psychology,” IEEE, May/June 2002, 2002.
[3] T. Gelhausen and W. F. Tichy, “Thematic Role Based Generation of

UML Models from Real World Requirements,” in Proc. International
Conference on Semantic Computing ICSC 2007, 2007, pp. 282–289.

[4] M. L. Minsky, The emotion machine. Simon and Schuster, 2006.
[5] O. Denninger, T. Gelhausen, and R. Geiß, “Applications and Rewriting

of Omnigraphs – Exemplified in the Domain of MDD,” in Proc. 3rd Intl.
Workshop on Applications of Graph Transformation with Industrial Rel-
evance (AGTIVE ’07), ser. LNCS, A. Schürr, M. Nagl, and A. Zündorf,
Eds., vol. NN. Springer, 2008.

[6] T. Parr, “Antlr.” [Online]. Available: http://www.antlr.org/
[7] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. M. Szalkowski, “GrGen:

A Fast SPO-Based Graph Rewriting Tool,” in Graph Transformations
- ICGT 2006, ser. Lecture Notes in Computer Science, A. Corradini,
H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, Eds. Springer,
2006, pp. 383 – 397, natal, Brasil.

[8] T. Gelhausen, B. Derre, and R. Geiß, “Customizing grgen.net for model
transformation,” in GraMoT 2008, 2008.

[9] CyCorp, “Researchcyc.” [Online]. Available: http://research.cyc.com/
[10] G. A. Miller, “Wordnet.” [Online]. Available: wordnet.princeton.edu
[11] H. Liu and P. Singh, “Conceptnet - a practical commonsense reasoning

tool-kit,” BT Technology Journal, vol. Vol 22, 2004. [Online]. Available:
http://larifari.org/writing/BTTJ2004-ConceptNet.pdf

[12] D. Lenat, Cyc 101 Tutorial, Cyc.com. [Online]. Available: www.cyc.com

[13] FIDE, Laws of chess. FIDE - World Chess Federation,
July 2005, no. E.I.01A. Laws of Chess. [Online]. Available:
http://www.fide.com/official/handbook.asp?level=EE101

[14] H. Liu, H. Lieberman, P. Singh, and B. Barry, “Beating common
sense into interactive applications,” 2004. [Online]. Available:
http://larifari.org/writing/AIMag2004-BeatingCommonSense.pdf

[15] M. L. Minsky, The society of mind. Simon and Schuster, 1986.
[16] S. Bethard, S. Bethard, J. H. Martin, and S. Klingenstein, “Timelines

from text: Identification of syntactic temporal relations,” in Proc. Inter-
national Conference on Semantic Computing ICSC 2007, J. H. Martin,
Ed., 2007, pp. 11–18.

[17] H. Liu and H. Liebermann, “Toward a programmatic semantics of natural
language,” p. 2, 2004.

[18] H. Liu, H. Lieberman, and R. Mihalcea, “Nlp (natural language
processing) for nlp (natural language programming),” A. Gelbukh
(Ed.) (c)Springer-Verlag Berlin Heidelberg 2006, vol. CICLing
2006, LNCS 3878, pp. pp. 319–330, 2006. [Online]. Available:
http://larifari.org/writing/CICLING2006-NLP4NLP.pdf

[19] R. Settimi, O. Cleland-Huang, J.and Ben Khadra, J. Mody, W. Lukasik,
and C. DePalma, “Supporting software evolution through dynamically
retrieving traces to uml artifacts,” Software Evolution, 2004. Proceed-
ings. 7th International Workshop on Principles of, pp. 49–54, 2004.

[20] S. Meystre and P. J. Haug, “Medical problem and
document model for natural language understanding,” AMIA
Annu Symp Proc, pp. 455–459, 2003. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1479970

[21] ——, “Automation of a problem list using natural language processing.”
BMC Med Inform Decis Mak, vol. 5, no. 30, August 2005. [Online].
Available: http://dx.doi.org/10.1186/1472-6947-5-30

[22] Meystre and Haug, “Natural language processing to extract medical
problems from electronic clinical documents: Performance evaluation,”
J. of Biomedical Informatics, vol. 39, no. 6, pp. 589–599, 2006.

[23] P. Arkley, P. Mason, and S. Riddle, “Position paper: Enabling trace-
ability,” Proceedings of the 1st International Workshop on Traceability
in Emerging Forms of Software Engineering, vol. Edinburgh, Scotland
(September 2002), pp. 61–65, 2002.

[24] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia, “Information
retrieval models for recovering traceability links between code and
documentation,” in In Proceedings of IEEE International Conference
on Software Maintenance, San Jose, CA, 2000, 2000.

696

Ontology-based Development of Testing Related Tools

Ellen F. Barbosa, Elisa Y. Nakagawa, Ana C. Riekstin, José C. Maldonado
University of São Paulo – ICMC/USP
Av. do Trabalhador São-Carlense, 400

P.O. Box 668, 13560-970 – São Carlos (SP), Brazil
{francine, elisa, claudiar, jcmaldon}@icmc.usp.br

Abstract

Testing constitutes one of the most relevant software en-
gineering activities in order to guarantee the quality of the
software under development. Besides that, the automation
of testing activity is an important issue to be addressed – the
availability of testing tools makes the testing a more system-
atic activity and minimizes the errors caused by human in-
tervention. In spite of their advantages, most of testing tools
are still built in an ad hoc way and considerable rework is
necessary if it is desired to configure or adapt them to differ-
ent testing techniques and criteria. In this paper we discuss
the using of an ontology of software testing (OntoTest) in
the development of testing related tools. Two perspectives
have been investigated: (i) the development of an OntoTest-
based application to share and harmonize testing concepts;
and (ii) the specification of a common set of functional mod-
ules that testing tools should provide, aiming at establishing
an OntoTest-based testing architecture.

Keywords: Ontology, Software Testing, Testing Tool.

1. Introduction

Producing reliable, robust and high quality software sys-
tems is one of the most important software development
concerns. Testing, which intends to reveal the existence of
faults in the software, constitutes one of the most relevant
software engineering activities, being crucial to guarantee
the quality of the software under development. Besides that,
the data collected during testing phases is also important for
debugging, maintenance, and reliability assessment [11].

The software testing domain involves integration of three
basic types of knowledge – theoretical, empirical and tool
specific. In fact, a significant amount of information should
be mastered to perform an effective testing activity (e.g.,
testing techniques and criteria, testing phases, testing steps,
testing artifacts, testing tools). Such diversity of concepts

The authors would like to thank the Brazilian funding agencies
(FAPESP, CAPES, CNPq) and to the QualiPSo Project for their support.

and their inter-relations make the establishment of a con-
sensual shared understanding on software testing a funda-
mental issue to be addressed.

Ontologies play an important role in this perspective. An
ontology is a formal and declarative representation which
includes [6, 13]: (i) the vocabulary required for referring to
the concepts in the subject area; and (ii) the logical state-
ments which describe what the concepts are and how they
are related to each other. Hence, it provides a vocabulary
for representing and communicating knowledge about some
topic as well as a set of relationships which hold among the
concepts in that vocabulary.

Currently we are establishing OntoTest [2], an ontology
of software testing, which aims to support acquisition, or-
ganization, reuse and sharing of knowledge on the testing
domain. Based on ISO/IEC 12207 [9] and on the Falbo and
Bertollo’s work [4], OntoTest intends to explore different
perspectives involved in the testing activity, such as tech-
niques and criteria, human and organizational resources,
and automated tools.

Also regarding the quality and productivity of the soft-
ware development process, the automation of testing activ-
ity is another important issue to be addressed. Indeed, ap-
plying a testing criterion without the support of a testing
tool is an error-prone activity.

In order to automate software testing, commercial and
academic testing tools have been developed in the last years.
Despite their advantages, most of testing tools are still built
in an ad hoc way. As a consequence, is difficult to identify a
well-defined architecture for them. Besides, since a testing
tool typically supports a unique testing criterion, consider-
able rework is necessary if it is desired to configure or adapt
it to another criterion or technique.

In this paper we discuss the using of OntoTest in the de-
velopment of testing related tools. Two scenarios are con-
sidered: (i) to developing an OntoTest-based application for
organizing and searching testing concepts, aiming at dis-
seminating testing information; and (ii) to defining a com-
mon set of functional modules that different testing tools

697

should provide, aiming at establishing an OntoTest-based
architecture for testing tools.

The remainder of this paper is organized as follows. In
Section 2 the related work is presented. Section 3 describes
OntoTest and its general structure. In Section 4 we discuss
how testing related tools can be built based on OntoTest. In
Section 5 we summarize our contributions and discuss the
perspectives for further work.

2. Related Work

An ontology is a formal explicit specification of a shared
conceptualization [6]. That is, a simplified way of perceiv-
ing a piece of reality, often conceived as a set of relevant
terms and their relationships, whose structure is constrained
by some rules. Basically, it consists of concepts and rela-
tions, as well as their definitions, properties and constraints
expressed by means of axioms [13].

Ontologies have been applied to describe a variety of do-
mains, such as medicine, engineering and law. In software
engineering, several ontologies have already been identified
– software engineering ontology [15, 16], software qual-
ity ontology [1], software process ontology [4], enterprise
ontology [14], software testing ontology [7, 17], software
maintenance ontology [10], among others.

Falbo and Bertollo [4], for instance, developed an ontol-
ogy of software process to support the acquisition, organi-
zation, reuse and sharing of software process knowledge.
The ontology is designed to support software process def-
inition and automatization in a meta-SEE (Software Engi-
neering Environment), which is able to generate, by means
of instantiation, SEEs adequate to the particularities of spe-
cific software processes, application domains and projects.
Every knowledge based tool linked to the software process
ontology shares a common vocabulary, facilitating the com-
munication between developers and, also, allowing the shar-
ing and reuse of knowledge bases in the meta-environment
as much as in the instantiated SEEs.

Regarding software testing, Huo et al. [7, 17] investi-
gated the development of an ontology of testing as a sup-
port for a multi-agent software environment for testing web-
based applications. The idea is to use the ontology to enable
flexible integration and to mediate communication between
multiple agents. In short, a taxonomy of testing concepts
(basic and compound concepts) is established. The ontol-
ogy is represented in UML, at a high level of abstraction,
and in XML to codify the knowledge of software testing for
agents’ processing of messages.

3. OntoTest: an Ontology of Software Testing

Most of the testing concepts considered in Huo’s
work [7, 17] are in agreement with the concepts established

in OntoTest [2]. The software process ontology, defined by
Falbo and Bertollo [4], and the ISO/IEC 12207 standard [9]
were also considered, focusing on the idea of a testing pro-
cess. Additionally, we have explored concepts from: (i) def-
inition and evaluation of testing criteria; and (ii) knowledge
and experience in testing tools development.

Due to the complexity of the testing domain, we have
adopted a layered approach to the development of OntoTest.
On the ontology level, the Main Software Testing Ontology
addresses the main concepts and relations associated with
testing. On the sub-ontology level, specific concepts from
the Main Software Testing Ontology – testing process, test-
ing artifacts, testing steps, testing strategies and procedures,
and testing resources – are refined and treated into details.
Figure 1 shows the graphical representation of the main on-
tology. We adopted UML notation for representing it.

Figure 1. Main Software Testing Ontology

To develop the Main Software Testing Ontology, we es-
tablished an analogy between software process and soft-
ware testing process [9, 4]. Similar to the software process,
which is a sequence of steps required to develop and main-
tain software, a testing process can be seen as a sequence
of testing steps required to develop and maintain the testing
activity. A testing step can consume and/or produce sev-
eral testing artifacts∗ and can use different testing resources.
Moreover, when defining a testing process, it is important to
determine how the testing steps shall be performed. To do
so, we must establish the testing strategies and procedures,
adopted in the accomplishment of the testing steps.

For each basic concept represented in the Main Software
Testing Ontology, there may be a number of subconcepts
which are refined and treated in the sub-ontologies [2]:
Testing Process: Testing processes are defined based on
the development paradigm as well as on the application do-

∗A testing step can also consume some artifacts produced by other ac-
tivities of the software development process (e.g., a requirement specifica-
tion document, a quality plan, and so on).

698

main. Testing life cycle models are also used as a reference
in the definition of a testing process, establishing its main
testing steps and the dependency relations among them.
Testing Step: When performing a test, a set of essential
steps should be considered [11]. Each testing step is com-
posed of testing activities. Based on the ISO/IEC 12207
standard [9], we have classified a testing activity as pri-
mary, organizational or supporting one, depending on the
role it plays in the testing process. As primary activities of
software testing we have identified: (1) test case design; (2)
artifact under testing handling; (3) test requirement estab-
lishment; (4) test execution; and (5) test analysis and mea-
surement. Similarly, organizational and supporting testing
activities have also been established.
Testing Artifact: Each testing step may consume and/or
produce different testing artifacts (test documents, test cases
and test requirements). In terms of test documentation,
eight different documents, established on the basis of the
IEEE 829 standard [8], are represented in the sub-ontology.
Test cases consist in the input data against which the soft-
ware is executed, in conjunction with the output data ob-
served [11]. Test requirements correspond to the required
elements to be exercised during the testing activity [11].
Testing Strategy Procedure: Different testing strategies
and procedures can be established according to the artifact
under testing (system requirement, specification, design,
source code), and depending on how testing phases (unit, in-
tegration, system or regression testing), testing approaches
(requirement-based, specification-based, design-based or
implementation-based) and testing techniques (functional,
structural, error-based, state-based, random or ad-hoc) are
combined. Testing techniques are responsible for establish-
ing the testing criteria to be adopted. Control-Flow (e.g.,
All-Nodes, All-Edges, All-Paths) [11], Data-Flow (e.g.,
All-Definitions, All-Uses) [12], and Mutation Analysis [3]
are some of the representative criteria that can be found in
the literature. Also, testing techniques support testing meth-
ods, which are based on testing guidances (standards and
guidelines).
Testing Resource: Testing resources are required to the ac-
complishment of a testing step. The Testing Resource Sub-
Ontology is presented in details in Section 4.

OntoTest has been described in OWL † (Web Ontology
Language), using the Protégé ‡ ontology development tool.

4. OntoTest and Testing Related Tools

We have explored OntoTest in two scenarios: (i) to de-
veloping a tool to disseminate and harmonize testing con-
cepts; and (ii) to structuring an ontology-based architecture
for testing tools.

†http://www.w3.org/TR/owl-ref/
‡http://protege.stanford.edu

4.1. An OntoTest-Based Application

Figure 2 illustrates OntoTestSearchingTool – a web ap-
plication, based on OntoTest. It allows searching for testing
concepts, showing concept’s details such as: (i) description,
(ii) direct superclasses and subclasses (concept hierarchy);
(iii) has part and is part of relations (concept composi-
tion); (iv) images; (v) facts (additional information related
to the concept); (vi) references; and (vii) examples. Figure 2
shows the results of a query on the concept TestingTool.

Figure 2. OntoTestSearchingTool

As a short-term goal, we intend to explore OntoTest-
SearchingTool for teaching/learning software testing. In
this sense, the OntoTest-based application would be ex-
plored as part of a testing tool, in particular as an organi-
zational module for training activities.

4.2. An OntoTest-Based Set of Testing Modules

According to the sub-ontologies of OntoTest, a testing
step can be seen a transformational primitive where step in-
puts and outputs correspond to testing artifacts. Neverthe-
less, other elements are necessary to the accomplishment of
a testing step. These elements are called testing resources

699

Figure 3. Testing Resource Sub-Ontology

and are considered in the Testing Resource Sub-Ontology
(Figure 3).

A testing resource can be a human, a hardware or a soft-
ware resource. Hardware and software resources are char-
acterized in terms of a testing environment, which can be
used to automate the testing strategies and procedures. Test-
ing tools, which provide automated support for performing
the tests, are a special kind of software resources. Consid-
ering the ISO/IEC 12207 standard, three types of functional
modules can be considered as part of a testing tool: (i) pri-
mary, (ii) organizational, and (iii) supporting modules.

Based on our experience in testing tools development
and on the primary activities of software testing established
in the Testing Step Sub-Ontology, we have identified and
represented in OntoTest a set of primary functional modules
that a testing tool should provide:
Test Case Module: Comprises the basic operations involv-
ing the test case set (create, view, update, store, remove,
import/export, enable/disable and minimize). For instance,
test cases can be manually or automatically created, or can
be imported from text documents or other testing tools.
They can be enabled/disabled in a test session without to
be physically removed from the test case database. Also,
the test case set can be minimized in order to keep only the
most effective test cases.
Artifact Under Test Module: Comprises the basic op-
erations involving the artifact under testing (acquire, ana-
lyze, instrument, and store). Depending on the testing ap-
proach, an artifact under testing can be a source code, a
system requirement, a specification or a design document.

In particular, instrumentation is a technique frequently used
in software testing for different purposes, (e.g., program
and/or specification execution trace, and testing criteria cov-
erage analysis). Instrumenting the artifact to be tested can
be divided into two main tasks: (i) deriving the artifact
structure; and (ii) inserting statements for collecting run-
time/simulation information.
Test Requirement Module: Comprises the basic opera-
tions involving the test requirements (establish/generate, ex-
ecute, enable/disable, mark/unmark requirements as infea-
sible, and store). Test requirements are the required ele-
ments to be exercised during the tests to satisfy a given test-
ing criterion. A requirement is said infeasible if it cannot be
exercised by any input data and should be discarded.
Test Execution Module: Responsible for executing the test
cases against the artifact under test.
Test Analysis and Measurement Module: Responsible for
determining the percentage of satisfaction of the test re-
quirements for a specific criterion by a test case set. It also
generates statistical reports (e.g., number of test require-
ments exercised/not exercised, the most effective test cases,
and so on) about the performed tests.

Supporting and organizational modules have been spec-
ified similarly. In short, the automated support they provide
is in agreement with the processes established by ISO/IEC
12207, adapted to the scope of software testing. As support-
ing modules, a testing tool should provide mechanisms for
automating test documentation and test configuration man-
agement, among others. In terms of organizational mod-
ules, it should include mechanisms for automating the test

700

training activities, for instance. It is important to highlight
that ontology-based tools, such as OntoTestSearchingTool,
can also be integrated to testing tools as organizational mod-
ules for training.

Aiming at a basis to develop testing tools as well as to
systematize its construction in a testing architecture, we
have refined the Testing Resource Sub-Ontology, discussing
how testing tools to support data-flow [12] and mutation
testing [3] can be built based on this sub-ontology. More-
over, this refinement helped us: (i) to validate the concepts
and relationships of the Testing Resource Sub-Ontology;
and (ii) to investigate how difficult is the establishment of
more specific testing ontologies from OntoTest.

Basically, we noticed that Test Case and Source Code
Under Test modules remain the same for all testing sub-
domains. The Test Requirement Module corresponds to the
Association Module for data-flow, and to the Mutant Mod-
ule for mutation:
Association Module: The data-flow test requirements cor-
respond to the associations, i.e., interactions between each
variable definition and its subsequent uses (or references)
through the program. To derive the associations it is nec-
essary to construct the def-use graph, which represents the
definitions and uses of all variables of the program.
Mutant Module: The mutation test requirements corre-
sponds to the mutants, i.e., different versions of the origi-
nal program, each of which containing a simple syntactic
change (fault). The simple faults are modeled by a set of
mutant operators applied to a program under testing. A
mutant can also be enabled/disabled through a given test
session. So, this module is responsible for generating and
handling the set of mutants.

Regarding the Test Execution Module, it corresponds to
the Instrumented Source Code Execution Module for data-
flow, and to the Test Execution Module for mutation:
Instrumented Source Code Execution Module: Executes
the test cases against the instrumented program generated
by the Source Code Under Test Module.
Test Execution Module: For mutation testing, it is neces-
sary to execute the test cases not only against the original
program but also against the set of generated mutants. The
quality of the test set is measured by its ability to distin-
guish the behavior of the mutants from the behavior of the
original program. The goal is to find a test case that causes
a mutant to generate a different output from that of the orig-
inal program. This kind of mutant is said to be dead. In this
sense, the Test Execution Module is composed by two other
sub-modules: (1) the Mutant Execution, responsible for ex-
ecuting the mutants; and (2) the Source Code Under Test
Execution, responsible for executing the original program.

Finally, the Test Analysis and Measurement Module
corresponds to the Data-Flow Analysis and Measurement

Module for data-flow, and to the Mutation Analysis and
Measurement Module for mutation:
Data-Flow Analysis and Measurement Module: Respon-
sible for providing mechanisms for: (1) determining the
infeasible associations (associations which cannot be exer-
cised by any test case); (2) coverage analysis (determining
the percentage of satisfaction of the associations for a given
data-flow criterion by the test case set); and (3) generating
statistical reports about the performed tests.
Mutation Analysis and Measurement Module: Respon-
sible for providing mechanisms for: (1) determining the
equivalent mutants – mutants that always generate the same
output from that of the original program; (2) calculating the
mutation score – the ratio of the number of dead mutants to
the number of non-equivalent mutants; and (3) generating
statistical reports about the performed tests.

It is also important to notice that the training organiza-
tional modules to be considered in data-flow and mutation
testing tools can be obtained by instantiating OntoTest for
each specific knowledge domain. OntoTest-based applica-
tions, similar to OntoTestSearchingTool, can be generated
and integrated as training modules into the testing tools.

For the sake of illustration, Figure 4 shows part of the
Mutation Testing Resource Sub-Ontology.

Although supporting different testing techniques and cri-
teria, both data-flow and mutation testing tools presented a
very similar set of functionalities. This result reassures our
expectation on using the Testing Resource Sub-Ontology as
a supporting mechanism to define the basic functionalities
a testing tool should provide. Actually, from the functional
modules defined in the sub-ontology, specifying the core for
a testing tool seems to be straightforward. The common set
of functional modules for testing tools we have identified
should be further investigated as a basis for the establish-
ment of an ontology-based testing architecture.

5. Conclusions and Further Work

In this paper we discussed the using of an ontology of
software testing in the development of testing related tools.
Two perspectives were explored: (i) the development of
an OntoTest-based application for sharing and harmonizing
testing concepts; and (ii) the refinement of OntoTest aiming
at investigating how testing tools can be built based on this
ontology.

Currently, we are investigating the establishment of an
ontology-based architecture to support the development of
tools to automate the testing activities. The testing archi-
tecture is being built upon the OntoTest concepts and re-
lationships and can be refined to different testing domains,
supporting the development of specific testing tools. Also,
we observed that current testing tools do not present con-
siderable degree of integration, including data integration.

701

Figure 4. Part of the Mutation Testing Resource Sub-Ontology

On the other hand, intelligent agents have recently been in-
vestigated as a mechanism to test software. OntoTest should
be further explored to enable integration of testing tools and
of multiple agents by sharing knowledge, transferring infor-
mation and negotiating the agent’s actions.

Finally, since the body of knowledge on testing keeps
evolving, mainly due to the experimental studies conducted,
we are also developing an ontology for experiments on soft-
ware engineering (EXPEROntology [5]), which should be
integrated to OntoTest. Both ontologies should be explored
in the context of testing reference architectures. At the very
end, the idea is to compose, in an incremental and evo-
lutionary way, a software testing environment, integrating
tools, processes, artifacts and experimental studies, being
useful in promoting reuse of testing expertise and in achiev-
ing well-recognized understanding in testing areas. Our
experience on using ontologies in the establishment of an
architecture-based software testing environment should be
presented in a forthcoming paper.

References

[1] T. H. Al Balushi, P. R. F. Sampaio, D. Dabhi, and P. Loucopoulos.
Performing requirements elicitation activities supported by quality
ontologies. In 18th Int. Conference on Software Engineering and
Knowledge Engineering (SEKE 2006), pages 343–348, San Fran-
cisco, CA, July 2006.

[2] E.F. Barbosa, E. Y. Nakagawa, and J.C. Maldonado. Towards the es-
tablishment of an ontology of software testing. In 18th Int. Confer-
ence on Software Engineering and Knowledge Engineering (SEKE
2006), pages 522–525, San Francisco, CA, July 2006. Short Paper.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. IEEE Computer,
11(4):34–43, April 1978.

[4] R. A. Falbo and G. Bertollo. Establishing a common vocabulary for
software organizations understand software processes. In EDOC Int.
Workshop on Vocabularies, Ontologies and Rules for The Enterprise
(VORTE 2005), Enschede, The Netherlands, September 2005.

[5] R. E. Garcia, E. N. Höhn, E.F. Barbosa, and J.C. Maldonado. An on-
tology for experiments on software engineering. In 20th Int. Confer-
ence on Software Engineering and Knowledge Engineering (SEKE
2008), San Francisco, CA, July 2008. To appear.

[6] T. R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. Int. Journal Human-Computer Studies, 43(5/6),
1995.

[7] Q. Huo, H. Zhu, and S. Greenwood. A multi-agent software environ-
ment for testing web-based applications. In 27th Annual Int. Com-
puter Software and Applications Conference (COMPSAC03), 2003.

[8] IEEE Software Engineering Technical Committee. Standard for Soft-
ware Test Documentation, September 1998.

[9] International Organization for Standardization. ISO/IEC 12207. In-
formation technology – software life-cycle processes, 1995.

[10] B. Kitchenham, G. H. Travassos, and A. Maryhauser. Towards an
ontology of software maintenance. Journal of Sofware Maintenance:
Research and Practice, 11(6):365–389, 1999.

[11] G. J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The
Art of Software Testing. John Wiley & Sons, 2nd. edition, 2004.

[12] S. Rapps and E. J. Weyuker. Selecting software test data using data
flow information. IEEE Transactions on Software Engineering, SE-
11(4):367–375, April 1985.

[13] M. Uschold and M. Grüninger. Ontologies: Principles, methods and
applications. Knowledge Engineering Review, 11(2), June 1996.

[14] K. Villela, G. Santos, L. Schnaider, A. R. Rocha, and G. H. Travas-
sos. The use of an enterprise ontology to support knowledge man-
agement in software development environments. Journal of Brazilian
Computer Society, 11(2):45–59, November 2005. Special Issue on
Ontologies Issues and Applications.

[15] P. Wongthongtham, E. Chang, T. S. Dillon, and I. Sommerville. Soft-
ware engineering ontology – the instance knowledge (part i). Interna-
tional Journal of Computer Science and Network Security, 7(2):16–
26, February 2007.

[16] P. Wongthongtham, E. Chang, T. S. Dillon, and I. Sommerville.
Software engineering ontology – the instance knowledge (part ii).
International Journal of Computer Science and Network Security,
7(2):27–36, February 2007.

[17] H. Zhu and Q. Huo. Developing a software testing ontology in UML
for a software growth environment of web-based applications. In
Software Evolution with UML and XML. Idea Group, 2004. Hongji
Yang (eds.).

702

Test Order Generation for Efficient Object-Oriented Class Integration Testing

Rattikorn Hewett & Phongphun Kijsanayothin
Dept. of Computer Science, Texas Tech University
rattikorn.hewett@ttu.edu, kphongph@gmail.com

Darunee Smavatkul
Dept. of Computer Science, Chiangmai University

darunee@chiangmai.ac.th

Abstract

Testing object-oriented software is complex and costly. A
strategy to incrementally testing and integrating compo-
nents (classes or methods) in object-oriented software while
minimizing the number of test stubs has been proposed.
This reduces testing efforts and thereby reduces testing cost
and enhances testing efficiency. However, an important
issue of how to select an appropriate component test order
remains. This paper presents a new approach to test order
generation that requires (near) optimal number of test stubs
by exploiting heuristics based on a dependency graph con-
structed from a given object-oriented model. Our approach
offers several benefits. First, it is simpler and more efficient
than most other graph-based approaches with an improved
complexity of quadratic polynomial time in the number of
components. Second, it is deterministic and thus, the result-
ing test order is not biased by randomness. Finally, it is
flexible in that it can be applied to object-oriented models
at different levels of detail. The paper describes the pro-
posed approach and gives two illustrations, one of which is
a case study of an application system in telecommunication.

1. Introduction
Software testing is primarily concerned with software be-
haviors. Testing object-oriented software is a challenging
task. Unlike conventional software that is functionally de-
composed into separate procedures, typical object-oriented
software does not offer a clearly defined behavioral compo-
sition structure (despite the enforcement of polymorphisms
for component reuse). Furthermore, there is no implication
of execution order from sequence of object-oriented codes.
A large number of possible interactions, from message
passing between class instances or objects depend on their
dynamically changing states. This makes it impossible or
extremely costly to test all possible interactions.

Much research has developed many techniques and
strategies for testing object-oriented software at various
levels (e.g., unit, integration or cluster, and system levels)
[1, 4, 6, 8]. Incremental strategies to testing and integrating
components (class or methods) in object-oriented software
have been proposed to minimize the number of stubs [2, 7,
10, 11] as well as to execute complete end-user functionali-
ties [1, 6, 8]. This paper concentrates on the former. When
testing a component that depends on other components that
have not yet been developed or tested, a tester has to de-
velop stubs to emulate these other components that the

component under testing depends on. Stubs are often rec-
ognized as a major cost of software testing, therefore mini-
mizing the needs for stubs can reduce testing cost and en-
hance testing efficiency. However, an important issue of
how to select an appropriate component test order remains.

Several graph-based algorithms for deriving a class in-
tegration test order to minimize stubbing from dependen-
cies in various forms of object-oriented models have been
proposed [2, 4, 7, 10, 11]. Kung et al. [7] and Traon et al.
[11] use a test dependency graph constructed from a UML
(The Unified Modeling Language) class diagram [9],
whereas Tai and Daniels [10] and Briand et al. [2] employ
an object relational diagram with dependency of three
types: aggregation, inheritance and associations [9].

All of the above techniques share the same basic idea
to obtain a class integration test order by applying a topo-
logical sorting to a given dependency graph. Unfortunately,
the application of the depth first search (DFS, specifically
the Tarjan algorithm) to topological sorting is only applica-
ble to an acyclic directed graph [3]. Thus, these techniques
use a top-down approach to first decompose a given de-
pendency graph into a tree-like decomposition, where each
node is a cluster of components that may contain cycles.
Next is to remove appropriate dependencies to “break” the
cycles in these clusters. Repeat these steps until there is no
cycle in the clusters so that a topological sorting can be
applied in order to obtain a partial solution of a class test
order. By tracing along the tree-like decomposition in an
upward manner from each partial list, a complete class inte-
gration test order can be obtained. In [2, 7, 11], the clusters
are identified with strongly connected components (SCCs)
in the dependency graph. In [10], the clusters are classes in
the same hierarchical levels of inheritance and aggregation
relationships (referred to as major levels in [10]). Because
cycles are likely to occur in a class diagram when software
development evolves to later stages, resolving the cycles
(so that a topological sorting can be applied) becomes a
central issue.

This paper presents a new approach to select the order
of classes in object-oriented software to be tested and inte-
grated incrementally in such a way that the required number
of stubs is (near) minimal. Our approach is fundamentally
different from previous graph-based approach in that in-
stead of decomposing the dependency graph into clusters
and concentrating on removing dependencies to “break”
cycles in each cluster, we use a bottom up approach to se-
lect good candidates to be tested and filter out undesirable

703

ones by employing appropriate heuristics based on the de-
pendency graph and the objective of the strategy. The algo-
rithm gains efficiency by directly generating a class test
order based on the merit of each component toward the goal
to minimize the number of stubs instead of worrying about
its abstraction or decomposition level.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 discusses how to con-
struct a test dependency graph from an object-oriented
model, specifically a UML class diagram. Section 4 de-
scribes the proposed algorithm, our main contribution. Sec-
tion 5 illustrates our approach with some comparisons with
previous approach using two examples, one of which is a
case study of a real-world application in telecommunica-
tion. The paper concludes in Section 6.

2. Related Work
There are various incremental strategies for testing and in-
tegrating object-oriented software components with differ-
ent objectives. Some focus on behavioral testing that aims
to execute complete end-user functionalities by tracing
method/message paths using state-based, event-based ap-
proaches or use cases [1, 6, 8]. Some focus on class inter-
action testing that aims to minimize the number of stubs [2,
7, 10, 11]. This paper addresses the class test order prob-
lem of the latter type.

A variety of existing graph-based solutions to the class
test order problem can be characterized by different tech-
niques proposed to “break” the dependency cycles. Kung et
al.[7] introduced an initial basic solution by applying a
topological sorting to a given (acyclic) dependency graph
and simply selecting a random dependency to break cycles
in each cluster (or SCC). Tai and Daniels’ approach [10]
makes use of two dependency types (aggregation and in-
heritance) to group components into clusters (or major lev-
els). It then breaks cycles in each cluster by removing an
association dependency (say, from class A to class B) with
the highest sum of n, the number of incoming dependencies
of A and m, the number of outgoing dependencies of B.
The rationale is to break an association that will likely
break a larger number of cycles. The approach presented
by Traon et al. [11] uses the DFS algorithm to identify clus-
ters in terms of SCCs. As a result, it identifies back edges
[3] in each SCC. To break cycles, remove all the incoming
back edges to the (root) component that has the highest sum
of incoming and outgoing back edges. The algorithm is
called recursively for each nontrivial SCC. Briand et al.’s
strategy [2] combines the two techniques of [10, 11] by
recursively identifying SCCs (like [11]) and removing an
association dependency with the highest product (not the
sum in [10]) of n and m as defined above.

The study by Briand et al.[2] shows that Tai and Dan-
iel’s technique can result in unnecessary stubbing, while
Traon et al.’s approach may lead to breaking cycles by re-
moving aggregation or inheritance dependencies which
would require stubbing of all parent classes which are not
economically viable. Traon et al.’s technique appears to

give optimal solution for non-specific stubs, while Briand et
al.’s approach performs well on specific stubs (see defini-
tions in Section 4.3). The computation for identifying
SCCs recursively takes O(n3) time (see Section 4.2), where
n is the number of components in the dependency graph.
Unlike these techniques, our approach requires neither the
identification of SCCs (i.e., clusters) nor topological sort-
ing. Therefore, it reduces computational cost and elimi-
nates non-determinisms that could occur in these steps.

3. From UML to Test Dependency Graph
This section describes how to map from a given object-
oriented (OO) structural model (class diagram) into a corre-
sponding test dependency graph. We use UML [9], a
common standardization of semi-formal OO modeling lan-
guage for representing the structural models of OO soft-
ware. Our technique is based on that of Traon et al. [11]
but our mappings are more direct and more generic to pro-
vide easy extensibility to other types of OO models. Since
the test dependency graph construction technique is not our
main focus, we briefly describe the technique and basic
mechanisms for completeness. For more details, see [11].

Let G = (V, E) be a test dependency graph, where each
node in V represents a software component (class or
method) and each directed edge (u, v) in E represents a test
dependency of component u on component v (u depends on
v for testing). E can be constructed by syntactically map-
ping each relationship (including a dependency that can be
inferred) among components in the UML model to a corres-

UML Relationship Meaning Dependency

Bi-direction:
 A is associated with B and
 B is associated with A

Aggregation:
 B is a part of A and is not
 destroyed if A is

Composition:
 B is a part of A and is
 destroyed if A is

Association Class:
 C is an association
 between A and B

Qualified association:
 B uses a qualifier (e.g., A’s
 index) from A to identify its
 relationship with A

Inheritance:
 B inherits A’s properties
 (A generalizes B)

Realization (implementation):
 B relies on A to implement
 the specification it provides

Uni-direction (navigability):
 B is associated with A (or B
 needs A’s reference to
 navigate to A) - permanent
Dependency:
 B uses (or has knowledge)
 of A - non-permanent

Fig 1 Mappings in class level.

704

ponding test dependency between nodes in G. Different
types of mappings are categorized in three levels of applica-
tion, namely high-level design, low-level design, and code
level depending on the levels of detail in the UML model.

In the high-level design, each class in the UML class
diagram does not provide any information about the class
method. The class mainly contains class name, attributes
and relationships to other classes. Thus, the high-level de-
sign model contains class-to-class relationships that can be
mapped directly to class-to-class test dependencies among
class components in G. Figure 1 shows a variety of map-
pings in this level. Here the top three UML relationships:
bi-directional associations, aggregations and compositions
can be mapped to a two-way test dependency between
classes. The association class relationship corresponds to a
two-way test dependency with an additional class in be-
tween. The rest of the UML are directional, namely quali-
fied association, generalization, realization (implementa-
tion), dependency, and uni-directional (navigational) asso-
ciation. Thus, they can be mapped into one-way test
dependencies between classes.

UML Dependency Meaning Dep. Graph

Parameter Dependency:
 method C of A has a
 parameter of type B

Call Dependency:
 method C of A calls
 method D of B.
 C is private (to A) but
 D is public.

Fig 2 Mappings in more refined levels.

In the next two levels of mapping applications, the
UML model is specified in more details. Classes include
more information about methods and specific different
types of dependency relationships (e.g., parameter, call,
send, import, instantiate, bind) [9] can be specified. These
details can be exploited to infer more test dependencies. In
the low-level design, a class contains method signatures
(e.g., method names, parameters and types). Thus, the in-
ferred dependency relationships between classes and meth-
ods in the UML model can be mapped to class-to-method
test dependencies. The top part of Figure 2 shows one ex-
ample of such mappings. Here class A contains a signature
of method C whose parameter b has a data type of class B.
Thus, the dependency relationship is annotated by «pa-
rameter» as a specific dependency relationship. We can
infer that testing A depends on C and C on B giving a test
dependency graph on the top right of Figure 2.

It is possible that we may want to integrate a new com-
ponent into a legacy system. In such a case, the OO model
can be viewed at the code level. In this level, a class also
includes method implementations in addition to signatures.
Methods can be declared for different levels of visibility.
For a public method m (denoted by +m), any component
can call m. However, if m is a private method (denoted by
 �m) then m can only be called within its class, whereas a

protected method can be called by any subclass within its
class. The bottom part of Figure 2 gives an example of the
mapping in this level. Here class A contains a method C
whose implementation calls a method D of class B (as
specified between the curly brackets after the signature of
method C). This implies that testing A depends on C whose
testing depends on D, a component which B depends on as
shown as a dependency graph on the right of the figure.
Note that the mappings in this level can involve method-to-
method test dependencies. It is also possible to have a class
containing a method that calls itself.

The three types of the above mappings should be ap-
plied to the UML model at the lowest level possible. This
is to prevent redundant test dependencies that can impact
stub development and testing cost. For example, in the
example at the bottom of Figure 2, if we applied a low-level
design mapping from a signature of method C, which has a
parameter of class B, we would have added a test depend-
ency link from C to B. Therefore, testing C depends on not
only D but also B as well. While this is true, the additional
test dependency requires unnecessary efforts. Since class B
contains a method D, building stub to simulate D requires
less work than developing stub for B. The latter is not nec-
essary since C depends on only parts of B (namely D),
which is already included for the integration testing.

4. Generating Integration Test Order
4.1 Proposed algorithm
This section describes our algorithm for generating a com-
ponent (class or method) test order from a given test de-
pendency graph described in Section 3. The goal of our test
strategy is to order the components to be tested and inte-
grated incrementally so that a total number of stubs re-
quired for overall testing is (near) minimal.

For a given software component n in the dependency
graph, let out(n) be a set of target nodes of all outgoing
edges from n (i.e., components that n depends on) and in(n)
be a set of source nodes of all incoming edges to n (i.e.,
components that depend on n). The cardinality of out and
in is commonly known as an out-degree and in-degree,
respectively [3]. To generate a component test order that
satisfies the strategy goal, our proposed algorithm employs
two heuristic functions: h(n) and f(n). The former estimates
a set of stubs required for testing a component n and the
latter estimates a current set of components that need n for
testing. While h(n) directly impacts the goal, f(n) indicates
a degree of usage of a stub that simulates n. Figure 3 shows
basic steps in our algorithm.

Let S and T be a set of stubs and a sequence of compo-
nents tested so far, respectively. To test component n, we
need a stub for each node that n depends on and that has
neither been developed nor tested. Therefore, h(n) contains
nodes that are in out(n) but not in S or T. The algorithm
first selects a component that requires no stubbing or re-
quires the smallest number of stubs (i.e., |h(n)| > 0). If there
is more than one such component in the latter case (i.e., those

705

Fig 3 Algorithm for generating a component test order.

in M of Figure 3), if the minimum number of the required
stubs is zero, select the first component found in M to be a
candidate for integration testing. On the other hand, if the
minimum number of the required stubs is non-zero then the
algorithm uses two additional rules to select, from M, an
appropriate component to be tested. The first rule uses a
dependency constraint to filter out less desirable compo-
nents while the second rule selects a component that has a
maximum degree of usage as quantified by |f(n)|.

To explain the dependency constraint, suppose compo-
nent A depends on component B. Testing A before B would
require the development of one stub to simulate B in order
to test A while testing B before A would not require any
stub. Therefore, B is preferred to A as a candidate for the
next component to be tested. Thus, we can eliminate A
from the candidate list. As shown in Figure 3, the algo-
rithm uses this constraint to examine each pair of nodes u
and v in a set of candidates M. If u depends on v but v does
not depend on u then eliminate u since testing u before v
would require more stubs than testing v before u. P collects
all the nodes that are eliminated and so the algorithm only
has to select the next component to be tested from the re-
maining nodes in M (except when the dependency con-
straint is not able to discriminate any node in M and collect
all eliminated nodes in P). Next if there is more than one
remaining nodes in M, the algorithm selects the first node
found with a maximum degree of usage to be the next com-
ponent in the test order. The degree of usage of a tested
unit n can be estimated by all current components that need
n for testing, i.e., f(n), which is reflected by all components
that depend on n but have not been tested yet. Thus, as

shown in Figure 3, f(n) contains nodes that are in in(n) but
not T and the cardinality of f(n) gives an estimated measure
of the degree of usage of n.

As shown in the procedure Select at the bottom of Fig-
ure 3, each time a candidate component is selected for inte-
gration testing, the algorithm appends the candidate to a test
order T, maintains a set of required stubs S, and updates a
set of components that remain to be considered for integra-
tion testing. The algorithm repeats until the sequence of test
order covers all components in an integrated system. Note
that removal of components, from a set of all components
to be tested, does not require a new calculation of in and out
in each iteration we compute h(n) and f(n) since the changes
are already accounted for by using current S and T in the
calculation.

4.2 Complexity Analysis

Finding test order to minimize the number of stub is NP-
Complete [11]. The dependency constraint checking (for-
loop in Figure 3) is the most time consuming step of the
algorithm. However, in the worst case, for a graph with n
components, it takes O(n2) time in the first (while-loop)
iteration and no execution time in the rest because of the
effect from our filtering mechanism. For example, consider
a fully connected (complete) graph where there is a de-
pendency between every pair of nodes. Initially, |h(n)| =
|f(n)| = n for every node. After the first iteration, a node is
selected for testing in T and the rest of n-1 nodes are mem-
bers of S. Therefore, in the next iteration |h(n)| = 0 for each
of the rest of the nodes to be considered for integration test-
ing. Thus, the first node found can be selected without re-
quiring the dependency constraint checking. Therefore, our
algorithm takes O(n2) time in the worst case. Comparing to
other techniques that require identification of nested SCCs,
each recursion takes O(n2) time and this gives an overall of
O(n3) time in the worst case. However, our approach trades
the time and complexity saved from checking if a node un-
der consideration is a part of a cycle with the possibility of
generating a solution for a class test order problem that may
not be optimal. Our illustrations show that nevertheless,
our algorithm performs competitively with other graph-
based techniques while it is a lot simpler.

4.3 Specific vs. generic stubs
There are two types of stubs: specific and generic. A spe-
cific stub is developed for testing a specific dependent
component, whereas a generic stub is for testing all depend-
ent components. For example, class C contains methods p
and q, where A calls p and B calls q. Therefore, A and B are
dependent components of C. Testing them requires either
one generic stub to simulate C or two specific stubs, one to
simulate p (part of C relevant to test A) and the other to
simulate q (part of C relevant to test B). Generic stubs are
also called realistic stubs [11]. We adopt a new term to
avoid further misperception of the implication that realistic
stubs are the same as real implementations [2]. In fact, they

 Input: A test dependency graph G = (V, E)
Outputs: T, a sequence of class order for integration testing
 S, a set of stubs

T � < >, S � �
While T does not contain all nodes in V do

For each n in V do ; find nodes with minimum required stubs
h(n) � {m � out(n) | m does not appear in T and m � S}

if there is a node k such that |h(k)| = 0 or a unique node k such
that |h(k)| = mini � V |h(i)| > 0
then Select(k)
else ; eliminate dependent nodes

M � {n | |h(n)| = mini � V |h(i)|}
P � �;
For each u, v � M

if u � out(v) but v � out(u) then P � P � {v}
; if v depends on u and not viz., eliminate v

if P � M then M � M – P
For each n in M do ; find nodes with maximum usage

f(n) � {m � in(n) | m is not in T}
k � the first node found such that |f(n)| = maxi � M |f(i)|

 Select(k)
Return(T, S)

Select(n)

Append n to T
S � S � (out(n) – T) ; add nodes that n depends on but have

 ; not been tested yet
V � V – {n} ; update set of nodes that remain to be tested

706

Iteration: 1 2 3 4 5 6

S Ø Ø D D D DL DL
T null E EC ECB ECBD ECBDK ECBDKH

V out in |h | |h | | f | |h | |h | |h | | f | |h |
A BF 2 2 2 1 1 1
B CE AD 2
C DE BD 2
D BC C 2 2 S 1
E Ø BCH
F GI AG 2 2 2 2 2 2
G FH F 2 2 2 2 2 2
H EK GIJ 2 1 1
I HJ F 2 2 2 2 2 2
J H I 1 1 1 1
K L HL 1 2 1 1
L K K 1 1 1 1 S 0

are not necessarily the same; for example, a generic stub
can simply emulate I/O behaviors of a component.

Our algorithm as described in Section 4.1 deals with
generic stubs. This is because once a stub is created for a
certain component; any other dependent components of the
same component can use the same stub. This exhibits ge-
neric stubs. To obtain specific stubs, our algorithm can be
modified to obtain the test order and estimate the number of
specific stubs by assuming that different classes that depend
on the same class require different parts of this latter class.
For example, classes A and B depend on different parts of
class C and therefore testing them need two specific stubs
of C. Other researchers [11] also apply this assumption to
address the same issue. Consequently, our algorithm can
deal with specific stubs by simply labeling each stub devel-
oped with its specific dependent class. Thus, our algorithm
can be applied to both types of stubs in any level of details
of the given OO model.

5. Illustrations

5.1 An example
For comparison purpose, we base our example on a rela-
tively small example of the test dependency graph used in
[11] but add a corresponding class diagram to give a com-
prehensive illustration of the proposed approach.

Fig 4 UML class diagram.

Figure 4 shows a class diagram of a given object-
oriented software. Using our terminology on levels of OO
models in Section 3, we apply appropriate mappings ac-
cording to the levels of details in the models to construct a
test dependency graph G in figure 5. For example, since
class A has method B that has parameters of classes C and
E, by applying a parameter dependency mapping in Fig-
ure 2, we obtain a corresponding test dependency that A
depends on B, which depends on C and E.

Fig 5 A test dependency graph example.

Now we apply the test order generation algorithm as
described in Section 4.1. Table 1 shows the results of the
first six iterations obtained by our algorithm using an input
test dependency graph of Figure 5. The first three columns
represent components, sets of in and out of each component
in the given graph. The shaded area of Table 1 shows a set
of stubs, S and a test order sequence generated so far, T.
For simplicity, we omit commas and curly brackets in a set
notation (e.g., S, in, and out). Similarly, we omit commas
and angle brackets in a sequence notation for T.

Table 1 Application of the proposed algorithm.

Recall that h(n) is a set of nodes that are in out(n) but
not in S or appears in T. Thus, in the first iteration, | h | is
the same as |out|. As shown in Table 1, select E, a compo-
nent with minimal | h | of zero value (indicated by a circled
value) to be tested (as indicated by T in the first iteration).
To compute stubs required for testing T, since out(E) is
empty (i.e., E does not depend on any component), no stub
is required (as indicated by S in the first iteration). In the
second iteration, first re-compute | h |, since E is in the out
of B, C, and H, therefore | h | of each of these nodes are re-
duced by one. The rest remains the same. There is more
than one component with minimal | h | (indicated by boxed
values), namely B, C, H, J, K and L. The algorithm then
uses a dependency constraint to eliminate nodes from these
six candidates. Since B depends on C (i.e., C � out(B)) but
C does not depend on B, therefore by the dependency con-
straint, B is eliminated. Similarly, we eliminate H and J (as
indicated by a cross on each of these candidate boxes). For
the remaining candidates C, K and L, the algorithm selects
the first component found with a maximal degree of usage
measured by | f |. Recall that f(n) is a set of nodes that are in
in(n) but not in T. Thus, we compute | f | for C, K, L and
obtain their values as 2, 2, and 1, respectively. As shown in
Table 1, C is selected in the second iteration to be the next
component in T. Since C depends on D and E, where E is
in T, therefore C only requires a stub that simulates D (indi-
cated by a symbol S on a corresponding component row).
The algorithm repeats until T contains all components in the

707

graph. It terminates after 11 iterations with final results of
T = <E, C, B, D, K, L, H, J, I, F, G, A> and S = {D, L, G}.
The number of (generic) stubs obtained by our algorithm is
the same as the minimal number of stubs obtained by Traon
et al. [11] while the class test order and a set of stubs are
slightly different.

5.2 Comparisons on a case study
This section applies our approach to a case study of a server
design and implementation of a switched multimegabit data
service (SMDS) in telecommunication. Due to limited
space, we omit the details of the design descriptions and a
corresponding UML model, which can be found in [5].
Figure 6 shows a test dependency graph of the UML model
of the SMDS system as given in [11].

Fig 6 A test dependency graph of the SMDS OO model.

As shown in Figure 6, there are 38 components in the

(cyclic) graph. Our algorithm terminates with a recom-
mended test order set T and a set of generic stubs S as
shown in the bottom part of Table 2.

Table 2 Comparisons with Traon et al.’s approach.

The top part of Table 2 shows the results obtained by

Traon et al. [11]. Although the test orders obtained by both
approaches are different, both require the same number of
nine generic stubs, all of which simulate the same stub
components except one. We also apply our algorithm for
specific stubs and obtain the same number of required spe-
cific stubs as that of Traon et al. In this case, our approach
appears to perform as well as Traon et al’s technique, which
claims to produce near optimal solution.

To compare our results with other graph-based tech-
niques, we apply our approach to an example given in [2].

Table 3 Comparions with other graph-based approaches.

Summary of results are shown in Table 3. In the case of
generic stub, our approach and Traon el al.’s [11] outper-
formed the rest, whereas in case of specific stubs, Brian et
al.’s and Traon et al.’s approaches outperform others al-
though the latter has some advantages from non-
determinisms during identification of SCCs and selecting
root vertices for cycle breaking. Our approach only pro-
duces a near optimal solution for specific stubs. This is the
subject of our future research.

6. Conclusion
We present an approach to a cost-effective testing strategy
for incrementally integrating and testing object-oriented
software that aims to minimize the number of stubs. Unlike
existing approaches that focus on identifying ways to break
cycles in a given test dependency graph, our approach di-
rectly choose components based on three simple heuristics.

Future work includes an extension to specifically ad-
dress test order generation that minimizes specific stubs and
further refinement by using different types of relationships
in UML models and different types of stub development to
guide test order generation.

References

[1] Binder, R., 1996. Testing object-oriented software: A survey,
J. Software Testing, Verification, Reliability, 6: 125-252.

[2] Briand, L., Y. Labiche and Y. Wang, 2003. An investigation
of Graph-based Class Integration Test Order Strategies, IEEE
Transactions on Software Engineering, 29(7): 594-607.

[3] Cormen, T., C. Leiserson, R. Riviest and C. Stein, 2001.
Introduction to Algorithms, McGraw Hill.

[4] Harrold, M., J. McGregor and K. Fitzpatrick, 1992. Incre-
mental testing of object-oriented class structures, in Proc. of
Int’l Conf. of Software Engineering, pp. 68-80.

[5] Jézéquel, J., 1996. Object Oriented Software Engineering
with Eiffel, Addison-Wesley.

[6] Jorgensen, P. and C. Erikson, 1994. Object-oriented integra-
tion testing, Communications ACM, 37: 30-38.

[7] Kung, D., J. Gao and C. Chen, 1996. On regression testing of
object-oriented programs, J. Sys. and Software, 32(1): 21-40.

[8] McGregor, J. and D. Sykes, 2001. A Practical Guide to Test-
ing Object-Oriented Software, Addison-Wesley.

[9] Rumbaugh, J., J. Jacobson and G. Booch, 1998. The Unified
Modeling Language Reference Guide: Addison-Wesley.

[10] Tai, K. and F. Daniels, 1999. Interclass test order for object-
oriented software, J. Object-Oriented Prog, 12(4):18-25.

[11] Traon, Y. L., T. Jéron, J. Jézéquel and P. Morel, 2000. Effi-
cient Object-Oriented Integration Testing and Regression
Testing, IEEE Transaction on Reliability, 49(1): 12-25.

Test order, T’ < 2, 29, 37, 34, 17, 12, 16, 18, 15, 27, 25, 24,
19, 21, 20, 13, 14, 7, 1, 6, 33, 22, 10, 31, 32,
3, 28, 30, 26, 8, 9, 36, 23, 11, 4, 5, 35, 0 >

Set of stubs, S’ {10, 13, 15, 22, 24, 26, 28, 30, 32} (generic)

Tr
ao

n
et

 a
l.

Stubs 9 (generic), and 20 (specific)
Test order, T < 37, 2, 29, 34, 18, 16, 23, 20, 14, 7, 8, 9, 19,

21, 1, 6, 4, 5, 11, 3, 10, 33, 22, 15, 17, 12, 13,
28, 26, 32, 30, 36, 35, 0, 25, 27, 24, 31>

Set of stubs, S {10, 13, 15, 22, 24, 26, 28, 30, 31} (generic)

H
ew

et
t e

t a
l.

Stubs 9 (generic), and 20 (specific)

 Traon el al.
 Start with H

Tai and
Daniels Choose

vertex A
Choose
vertex E

Choose
vertex F

Start
with G

Briand
el al.

Hewett
et al.

#stubs 5 3 3 3 3 4 3
spec. stubs 5 7 6 6 4 4 5

708

Using Observer Automata to Select Test Cases for Test Purposes

Gordon Fraser Martin Weiglhofer Franz Wotawa∗

Institute for Software Technology – Graz University of Technology
{fraser,weiglhofer,wotawa}@ist.tugraz.at

Abstract

The use of formally specified test objectives, commonly
known as test purposes, has lead to efficient test genera-
tion tools based on a well-defined theory in the domain of
labeled transition systems. While a good test purpose can
reduce the size of the state space that has to be considered to
a manageable fragment, it can still result in an infinite num-
ber of test cases, out of which a single test case is selected in
practice. Because writing test purposes is a difficult manual
task, a single test case per test purpose might result in weak
test suites. In this paper we present a technique that uses
observer automata representing coverage criteria to select
finite test suites for test purposes. The method is applied
to an industrial application, and the effects on performance
and the fault detection ability are measured.

1. Introduction

Software testing is an important but complex task. To

aid the tester, model-based testing techniques use formal

test models to automatically derive test cases and determine

the outcome of the test execution. Assuming the existence

of such a suitable model, the dreaded state explosion prob-

lem remains as one of the main issues in model-based test-

ing. Formally specified test purposes have been success-

fully used to cut down the size of a model to manageable

chunks [4, 5, 8]. There is a well-defined theory on test case

generation in the domain of labeled transition systems [9],

and efficient tools such as TGV [8] based on test purposes

have been made available.

For a given test purpose, tools like TGV can derive ei-

ther a single test case satisfying the test purpose, or a graph

that subsumes all possible test cases. To create good test

suites with the first approach, a set of suitable test purposes

is required. Creating test purposes, however, is a non-trivial

task. For example, du Bousquet et al. [2] report that even

after ten hours of manual test purpose design they failed to

∗Authors are listed in alphabetical order.

find a set of test purposes that lead to detection of all mu-

tants of a given implementation.

Creating several test cases for each test purpose therefore

seems to be a feasible alternative. However, the generation

of a graph that subsumes all test cases as provided by TGV

can not be seen as a final step in the test case generation. Po-

tentially, such a graph might represent an infinite number of

test cases. Unfortunately, not every linear trace of the graph

is a valid test case according to the theory of conformance

testing (ioco) [9].

There is a whole spectrum of different possibilities for

test case selection ranging from a single test case up to all

possible test cases for a given test purpose. Surprisingly,

the issue of whether and how to select several test cases for

a test purpose has hardly been considered before. This pa-

per aims to fill this gap. For this we use established test

selection strategies for models based on coverage criteria.

We extend observer automata based techniques [1, 6] to test

case selection to Tretmans’s input/output conformance test-

ing theory [9], and show how this can be applied to select

several test cases from a single test purpose.

The technique is evaluated using an industrial applica-

tion. The corresponding specification is derived from in-

formal standards, and TGV is used to create complete test

graphs that represent the superset of all possible test cases

for a test purpose. Observer automata for different coverage

criteria are then used to extract finite sets of test cases from

the test graphs, and resulting test suites are evaluated with

regard to their coverage and fault detection ability.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the necessary preliminaries of conformance

testing for labeled transition systems. Then, Section 3 de-

scribes how observer automata can be applied to select test

cases according to coverage criteria from a given test graph.

Section 4 presents the results of an empirical evaluation, and

Section 5 concludes the paper.

2. Preliminaries

The results presented in this paper are based on Tret-

mans’s theory [9] of conformance testing for input-output

709

?1 !1

?1 !tea

τ!2

!coffee

τ

Figure 1. A labeled transition system.

ACCEPTREFUSE

?1

*

!tea?1
pass

inconc.

fail

!1

?1 ?tea
?coffee

?2

!1

Figure 2. A test purpose and a test case.

labeled transition systems. Labeled transition systems are

used to define the semantics of many common specification

languages, e.g., LOTOS [7]. This section briefly summarizes

the necessary concepts and preliminaries.

Definition 1 (Labeled Transition System) A labeled
transition system (LTS) is a tuple M = (QM , AM ∪
{τ},→M , qM

0), where QM a finite set of states, AM a fi-
nite alphabet and τ �∈ AM is an unobservable action,
→M⊆ QM × AM × QM is the transition relation, and
qM
0 ∈ QM is the initial state.

An LTS is deterministic if for any sequence of actions

from the initial state there is at most one successor state.

An LTS is complete if it allows all actions in every state. In

order to properly test a system using an LTS it is necessary

to distinguish the system’s inputs and outputs:

Definition 2 (Input Output Labeled Transition System)
An input output labeled transition system (IOLTS) is an LTS
M = (QM , AM ∪{τ},→M , qM

0) where AM is partitioned
into two disjoint sets AM = AM

I ∪ AM
O , where AM

I and
AM

O are input and output alphabets, respectively.

Figure 1 shows an example IOLTS representing a drink

vending machine. The labels of input actions have the prefix

”?”, and output actions have the prefix ”!”. After receiving

a coin from the user, the system can return tea, reject the

coin, or receive another coin, in which case coin rejection

or coffee as output are possible.

Because the state explosion problem often makes test

case generation using simple coverage criteria on the whole

model impossible or difficult, the idea of test purposes is

to represent a test objective in a way that significantly cuts

down the size of the state space that needs to be considered.

A test purpose is a formal definition of a test objective, and

used by tools like TGV for automated test case generation.

TGV defines a test purposes as follows [8]:

Definition 3 (Test Purpose) A test purpose is a complete,
deterministic IOLTS TP = (QTP , ATP ,→TP , qTP

0),
equipped with two sets of trap states AcceptTP and
RefuseTP , with the same alphabet as the specification S,
i.e. ATP = AS . A trap state q has a self-loop for each
action, i.e. ∀a ∈ ATP : q

a−→TP q.

An example test purpose is shown on the left hand side

of Figure 2. This test purpose aims to select such test cases

where the output is tea. Any behavior after inserting two

coins successively is refused, which means that this behav-

ior is not subject of this test purpose. The ∗-labeled edge

selects any edge, except those labeled with either ?1 or !tea.

Given a test purpose and a formal specification, TGV

generates either a single test case or a complete test graph,

which contains all test cases corresponding to the test pur-

pose. The reduction of the state space depends on the use of

reject states in the test purpose. Except for controllability a

test graph already satisfies the properties of a test case.

Definition 4 (Test Case) A test case is a deterministic
IOLTS TC =

(
QTC , ATC ,→TC , qTC

0

)
equipped with

three sets of trap states Pass ⊂ QTC , Fail ⊂ QTC , and
Inconclusive ⊂ QTC characterizing verdicts. A test case
has to satisfy the following properties: (1) TC mirrors im-
age of actions and considers all possible outputs of the IUT;
(2) From each state a verdict must be reachable; (3) States
in Fail and Inconclusive are only directly reachable by
inputs; (4) A test case is input complete in all states where
an input is possible; and (5) TC is controllable, i.e., no
choice between two outputs or between inputs and outputs.

The right hand side of Figure 2 shows a test case cor-

responding to the test purpose to its left. As can be seen,

outputs of the specification are inputs for the test case and

vice versa. The test case gives a pass verdict if the output of

tea is observed after a coin is inserted. The test case ends in

an inconclusive state if the first inserted coin is rejected.

In the succeeding section observer automata for coverage

criteria are introduced as a compromise between a single

test case per test purpose and the complete test graph. Be-

cause observer automata add conditions to transitions, we

also need to define symbolic transition systems (STS) [3]:

Definition 5 (Symbolic transition system) A symbolic
transition system is a tuple S = (L, l0,V, I, Λ,→), where
L is a set of locations and l0 ∈ L is the initial location. V
is a set of location variables and I is a set of interaction

710

v := 0 coin [v ≤ 2] v := v + 1

refund i:N [i ≤ v ∧ v �= 0] v := v − i

coffee [v = 2] v := 0tea [v = 1] v := 0

τ τ

Figure 3. A symbolic transition system.

variables with V ∩ I = ∅. Λ is the set of actions, and
τ �∈ Λ denotes an unobservable action. → denotes the
transition relation, where each element (l, λ, φ, ρ, l′) ∈→,
has a source location l, a target location l′, a possibly
parameterized action λ, a guard φ and a update function ρ.

Figure 3 shows an example STS, again representing a

drink vending machine. Transitions are labeled with an

action (refund, tea, coin, coffee), guard conditions are in-

cluded in brackets [] and followed by the update function.

The variable v stores the number of inserted coins. The

action refund uses an additional parameter i, which is a nat-

ural number. Due to the guard this parameter is less than or

equal to the number of inserted coins, i.e., i ≤ v. Thus, this

action allows the rejection of the inserted money.

Although symbolic transition systems extend LTSs by

incorporating data and data-dependent control flow, the se-

mantics of STS is given by an corresponding LTS. For a

detailed discussion of STSs we refer to [3].

3. Observer-based Test Case Selection

The use of observer automata for generating test cases

with respect to specific coverage criteria has been proposed

by Blom et al. [1]. Observer automata can be created for

many different coverage criteria. They are used during state

space exploration in order to detect when coverage items

have been reached and return corresponding test cases. In-

formally, the superposition of an observer automaton and

the model is calculated and traversed. Whenever an ob-

server enters an accepting state the linear trace that lead to

this state is a test case that covers the coverage item repre-

sented by the observer.

Figure 4 depicts an observer automaton as an STS. The

observer stays in its initial state as long as the desired cov-

erage item is not reached. We denote the coverage item as

”cov.item”, and it can represent any entity of the LTS that

should be covered, for example states, labels, or transitions.

Note, that symbolic transition systems do not provide ac-

cepting states as required by observer automata. Formally,

we use trap states, i.e., states with self-loops for each action,

to implement accepting states.

In our formal setting, an observer automaton is a sym-

bolic transition system that is parametrized by a particular

[cov.item]

[¬cov.item]

Figure 4. Coverage observer automaton.

coverage item. In addition, the ioco-theory requires addi-

tional properties for test cases (Definition 4) that cannot al-

ways be fulfilled by linear traces. Consequently, a test case

is an IOLTS which has to be input complete in states where

inputs are possible and controllable. In addition, the defi-

nition of a test case requires that only responses from the

system under test lead to the verdicts fail and inconclusive,

and that from each state a verdict must be reachable. Fi-

nally, outputs of the system under test have to be inputs for

the test case and vice versa.

Except for controllability, a test graph generated by TGV

fulfills all the required properties. Thus, any approach that

extracts test cases from such a test graph needs to preserve

these properties, while it must additionally ensure control-

lability. Below we show how to extend the approach based

on observer automata in order to generate ioco-correct test

cases.

3.1. Extending Observer Automata

In its original definition [1], an observer automaton gen-

erates a linear test case that ends as soon as the coverage

item has been covered. Such test cases do not satisfy the

requirements of ioco test cases.

Thus, observer automata have to ensure that every trace

of a generated test case ends in a verdict state. Because test

cases have to be input complete (Definition 4) they might in-

clude traces that do not cover the observer’s coverage item.

Such traces result from inputs that have to be selected in

order to satisfy input completeness. An additional variable

allows is used to take care of traces leading to verdict states

but not covering the coverage item of the observer. Such

traces are only allowed to be in the test case if the cover-

age item has been covered by another trace selected by the

observer.

This extension is illustrated in Figure 5. Any observer

automaton for a particular coverage item (cov.item) can

be extended in this way. Let V = Pass ∪ Fail ∪
Inconclusive, then for an edge (s, a, s′) of the superposi-

tion of the observer automaton and the model this extension

distinguishes three different cases:

1. The edge leads to a verdict state and the coverage item

is met by that edge: s′ ∈ V ∧ ¬cov.item

2. The edge meets the coverage item but it does not lead

to a verdict state: s′ �∈ V ∧ cov.item

711

allow := false

[s′ �∈ V ∧ cov.item]

allow := true

[s′ ∈ V ∧
¬cov.item]

[s′ �∈ V]

[s′ ∈ V] [allow]

[s′ ∈ V ∧ cov.item]

allow := true

Figure 5. Extended Observer for the genera-
tion of ioco-correct test cases.

3. The edge leads to an verdict state, but the edge is not

related to the coverage item: s′ ∈ V ∧ ¬cov.item

3.2. Ioco Based Test Case Extraction

Figure 6 depicts the proposed algorithm that deals with

the discussed issues. Similar to [6], we use two data struc-

tures wait and pass for maintaining states waiting to be ex-

amined and states already examined. The set wait consists

of triples P and the test case ω associated with these triples.

Each triple comprises the state of the test graph s, the states

of the observers C and the corresponding state of the gen-

erated test case t.
As long as there are elements in wait (Line 2), the al-

gorithm takes pairs (P, ω) from wait. Then it iterates

over all triples in P (Line 5) and considers the successor

states 〈s, C〉 given by the transition relation →C of the ob-

server/test graph superposition (Line 6 and 20). If a suc-

cessor state is reached by an output action (Line 6) and if

this state has not been processed previously (Line 7) then

the current set of triples P is copied to P ′. Note, that “ ”

in Line 7 and in Line 25 matches any test case state. The

selected triple 〈s, C, t〉 is replaced within P ′ by a new triple

built from the successor 〈s′, C ′〉 of 〈s, C〉 and a new state

tnew within the partially built test case ω. The test case ω is

updated by adding the considered transition to ω. Note, that

due to the use of a new unused state of ω we implicitly un-

roll loops of the test graph. If all triples correspond to final

states in the observer (Line 10), then the test case is added

to the test suite, otherwise the new P ′ is added to wait.
If a successor is connected via an input edge (Line 20),

then the successor triple is added to a temporary data-

structure P ′ that will hold all successor triples reachable via

inputs. After iterating over all successors (Line 20) the test

case is either added to the test suite (Line 27) or the newly

generated state is added to the waiting states.

Optimization Note, that the algorithm illustrated in Fig-

ure 6 allows to optimize the number of generated test cases.

1: passed ← ∅; wait ← {(〈s0, C0, t0〉, ε)}
2: while wait �= ∅ do
3: select (P, ω) from wait
4: add (P, ω) to pass
5: for all 〈s, C, t〉 ∈ P do
6: for all output edges e : 〈s, C〉 a

=⇒C 〈s‘, C‘〉 do
7: if 〈s‘, C‘, 〉 �∈ (pass ∪ wait) then
8: tnew ← new (unused) state in ω
9: ω′ ← ω′ ∪ (t, b, tnew)

10: if new covered observer in C′ then
11: add ω to test suite

12: else
13: P ′ ← P\〈s, C, t〉 ∪ 〈s‘, C‘, tnew〉
14: add (P ′, ω′) to wait
15: end if
16: end if
17: end for
18: if there are input edges then
19: (P ′, ω′) ← (P, ω)

20: for all input edges 〈s, C〉 b
=⇒C 〈s‘, C‘〉 do

21: tnew ← new (unused) state in ω
22: P ′ ← P ′\〈s, C, t〉 ∪ 〈s‘, C‘, tnew〉
23: ω′ ← ω′ ∪ (t, b, tnew)
24: end for
25: if 〈s‘, C‘, 〉 �∈ (pass ∪ wait) then
26: if new covered observer in C′ then
27: add ω′ to test suite

28: else
29: add (P ′, ω′) to wait
30: end if
31: end if
32: end if
33: end for
34: end while

Figure 6. Extended observer automata based
test case extraction algorithm.

We can skip test cases that do not cover new observers. Ba-

sically, we are interested in a set of test cases such that every

observer is covered. Similar to [6] we approximate this set

by adding a test case (Lines 11 and 27) only to the test suite

if it covers a currently uncovered observer.

4. Empirical Evaluation

In order to show the improvements gained from extract-

ing multiple test cases for a single test purpose we applied

the presented techniques to the Session Initiation Protocol

(SIP). This section presents the results in terms of mutation

score and source code coverage in comparison to the results

of the single test case selection strategy. Note that it is not

feasible to select all test cases in a complete test graph in

general, as the number of test cases can be infinite.

712

4.1. Coverage Criteria for Labeled Transi-
tion Systems

Observer automata can represent various coverage cri-

teria. For our evaluation we used three different coverage

criteria on the complete test graph: state coverage, label

coverage, and transition coverage.

Definition 6 (State Coverage) A state q ∈ QM of a la-
beled transition system M = (QM , AM ∪{τ},→M , qM

0) is
covered by test case t = (Qt, At ∪ {τ},→t, q

t
0), if q ∈ Qt.

The state coverage value is calculated as the ratio of covered

states to states in total in the LTS.

Definition 7 (Label Coverage) A label l ∈ AM of a la-
beled transition system M = (QM , AM ∪ {τ},→M , qM

0)
is covered by test case t = (Qt, At ∪{τ},→t, q

t
0), if l ∈ At

and there exists a transition (q1, l, q2) ∈→t.

A label l of labeled transition system is covered by a test

case if there is at least one transition of the test case labeled

with l. The label coverage represents the percentage of la-

bels of the LTS that are covered.

Definition 8 (Transition Coverage) A transition
(q, l, q′) ∈→M of a labeled transition system M =
(QM , AM ∪ {τ},→M , qM

0) is covered by test case t =
(Qt, At ∪ {τ},→t, q

t
0), if (q, l, q′) ∈→t.

The transition coverage represents the percentage of transi-

tions of the LTS that are covered.

Note, that in the case of a complete test graph, transition

coverage subsumes label coverage and state coverage. This

is because there are no states unreachable from the initial

state. Furthermore, there are no labels that are never used

on any transition. Note further, that label coverage does not

subsume state coverage, since the same label my be used on

different transitions.

4.2. The SIP Registrar Application

The Session Initiation Protocol (SIP) handles communi-

cation sessions between two end points. SIP defines various

entities that are used within a SIP network. One of these en-

tities is the Registrar, which is responsible for maintaining

location information of users.

In cooperation with our industry partner’s domain ex-

perts we developed a formal specification covering the full

functionality of a SIP Registrar. This obtained LOTOS spec-

ification comprises approx. 3KLOC (net.), 20 data types

(contributing to net. 2.5KLOC), and 10 processes. Details

about our SIP Registrar specification can be found in [10].

4.3. Experimental Results

Table 1 shows the results in terms of the numbers of

test cases generated with the discussed methods: A single

test case per test purpose, state coverage (S), label cover-

age (L), and transition coverage (T). Five manually speci-

fied test purposes were used for this experiment. Table 2 il-

lustrates the performance of our prototype implementation

of the presented algorithm on a PC with Intel(R) Dual Core

Processor 1.83GHz and 2GB RAM.

In particular, Table 2 shows for each manually gener-

ated test purpose the time needed to derive the number of

test cases stated in Table 1. The left part of these tables

shows the results using all test cases generated by the ob-

server based approach, i.e., in that case we do not check for

already covered observers. In contrast, the right part shows

the results when only using test cases that cover new ob-

servers as described in Section 3.

Minimizing the generated test suite with respect to the

covered observers allows to reduce the number of test cases

in the state coverage based test suite by 44%. For label and

transition coverage we get a reduction of approximately 4%

and 12%, respectively. However, the minimization slows

down the test case extraction.

Using multiple test cases per test purpose, the complete

test graphs generated by TGV are split into single test cases

within reasonable time. Note, that the time needed by TGV

for generating a complete test graph is higher than the time

needed to generate a single test case. That is, TGV needs

approximately 3’48”, 5”, 19”, 5”, and 6”, respectively, for

the five test purposes. These times are not included in the

figures listed in Table 2.

To assess the quality of the generated test cases Table 3

shows the mutation scores on mutated versions of the LO-

TOS specification. For this, we generated 633 mutants ex-

hibiting observable faults, i.e. faults that can be detected

using test cases derived with respect to input-output confor-

mance. In addition, this table illustrates the function cover-

age and condition/decision coverage on the OpenSER im-

plementation1 of the SIP Registrar. Finally, Table 3 depicts

the number of actual faults detected in OpenSER by the dif-

ferent test suites. The results listed in this table apply to the

full test suites as well as to the minimized test suites; i.e,

there was no observable degradation of the fault sensitivity

through the minimization.

The mutation score, which is the percentage of mutants

detected by the test cases, shows the improvement gained

from using multiple test cases per test purpose. Using of a

single test case per test purpose kills 45% of the 633 mu-

tants, which is better than we expected.

The increase of source code coverage in terms of func-

tion coverage and condition/decision coverage is not as sig-

1http://www.openser.org

713

Table 1. Number of test cases.
TP Sin- Regular Minimized

gle S L T S L T

1 1 33 324 2174 18 302 2098

2 1 12 1132 1145 11 1116 1116

3 1 507 1752 2764 280 1593 1943

4 1 2 662 662 1 660 660

5 1 4 999 1002 3 996 996

Σ 5 558 4869 7747 313 4667 6813

Table 2. Creation times.
TP Sin- Regular Minimized

gle S L T S L T

1 24” 8” 19” 16’13” 8” 23” 19’41”

2 5” <1” 1’20” 1’20” <1” 2’01” 2’00”

3 3” 56” 5’20” 1’27” 54” 6’15” 11’29”

4 6” <1” 28” 27” <1” 41” 41”

5 5” <1” 1’00” 1’00” <1” 1’33” 1’33”

Σ 43” 1’07” 8’27” 20’27” 1’05” 10’53” 35’24”

nificant as the mutation score. This is because the OpenSER

Registrar is implemented highly modularly and reuses large

pieces of the registration message handling code.

5. Conclusions

While formally defined test purposes can be used to effi-

ciently cut down the size of the state space that needs to be

considered for testing, it is common practice to select single

test cases per test purpose. As writing test purpose is a non-

trivial task, we presented a method that increases the num-

ber of test cases created for a test purpose while keeping

the number of test cases within realistic bounds. The selec-

tion strategy is based on coverage criteria, which are imple-

mented as observer automata. We extend observer automata

to ioco theory, and show how such observers are used in the

context of complete test graphs. The results of an empirical

evaluation on an industrial application demonstrate that the

fault sensitivity of resulting test suites is improved. Future

research will include performance improvements and more

complex coverage criteria suitable for STS like, for exam-

ple, data flow coverage criteria.

Although our approach improves the fault detection abil-

ity of a single test purpose, it does not remove the difficulty

of writing good test purposes. This is because one may

write test purposes where TGV runs out of memory and thus

does not generate complete test graph. Obviously, for such

test purposes it is not possible to generate test cases.

Acknowledgments The research herein is partially conducted

within the competence network Softnet Austria (www.soft-net.at)

and funded by the Austrian Federal Ministry of Economics

Table 3. Test suite evaluation.
Single State Label Transition

Mutation Score 45% 76% 80% 81%

Function Cov. 64% 70% 73% 73%

C/D Coverage 26% 31% 34% 34%

Detected Faults 2 5 5 6

(bm:wa), the province of Styria, the Steirische Wirtschaftsförder-

ungsgesellschaft mbH. (SFG), and the city of Vienna in terms of

the center for innovation and technology (ZIT).

References

[1] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Specify-

ing and generating test cases using observer automata. In 4th
International Workshop on Formal Approaches to Software
Testing, volume 3395 of LNCS, pages 125–139, 2004.

[2] L. du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Be-

linfante, and R. G. de Vries. Formal test automation: The

conference protocol with TGV/TORX. In Proceedings of
13th International Conference on Testing Communicating
Systems, pages 221–228, Dordrecht, August 2000.

[3] L. Frantzen, J. Tretmans, and T. A. C. Willemse. Test gener-

ation based on symbolic specifications. In 4th International
Workshop on Formal Approaches to Software Testing, vol-

ume 3395 of LNCS, pages 1–15. Springer, 2004.
[4] J. Grabowski, D. Hogrefe, and R. Nahm. Test case genera-

tion with test purpose specification by MSC’s. In Proceed-
ings of the 6th SDL Forum, pages 253–266. Elsevier, 1993.

[5] W. Grieskamp, N. Tillmann, C. Campbell, W. Schulte, and

M. Veanes. Action machines — towards a framework for

model composition, exploration and conformance testing

based on symbolic computation. In Proceedings of the Int.
Conference on Software Quality, pages 72–79, 2005.

[6] A. Hessel and P. Pettersson. A global algorithm for model-

based test suite generation. Electronic Notes in Theoretical
Computer Science, 190(2):47–59, August 2007.

[7] ISO 8807: Information processing systems – open systems

interconnection – LOTOS – a formal description technique

based on the temporal ordering of observational behaviour,

1989.
[8] C. Jard and T. Jéron. TGV: theory, principles and algo-

rithms. Int. Journal on Software Tools for Technology Trans-
fer, 7(4):297–315, August 2005.

[9] J. Tretmans. Test generation with inputs, outputs and repeti-

tive quiescence. Software - Concepts and Tools, 17(3):103–

120, 1996.
[10] M. Weiglhofer. A LOTOS formalization of SIP. Techni-

cal Report SNA-TR-2006-1P1, Competence Network Soft-

net Austria, Graz, Austria, December 2006.

714

Building Testable Components
– A Systematic Approach and its Experimental Study

Jerry Gao, Wrihang Roberto Liang, Radhika Chhabra, and Ramyashree Swamyo Ma Xiang
San Jose State University, Email: jerrygao@email.sjsu.edu Huawei Technologies Co. Ltd.

Abstract
Component-based software engineering is becoming a popular
approach to build software application systems due to its reduction
in project development cost and time. One of major challenges is
how to increase component testability to facilitate component
validation by users and application engineers. Although there are a
number of papers addressing this problem, engineers still lack
systematic methods to create testable components using a
systematic solution. In addition, there is a need of a reusable test
bed to support testable components. This paper presents a
systematic solution to generate testable components, and a reusable
test platform to support testing of testable components. The
solution includes: a component model and interface for testing, and
approach to form testable components. In addition, a component
test framework and a reusable test platform are reported to support
testable components. Moreover, some experimental results are
discussed to show its strong potential usefulness.

Keywords: Component-based software engineering, component
testability, design for software testability, component testing, and
software testing.

1. Introduction
Today component engineering is gaining substantial interest in the
software-engineering community due to its advantage in cost
reduction. To assure the quality of component-based system, how
to create reliable components and perform component testing is
very important [1][4].In the practice of component engineering, we
have encountered some new problems and challenges in testing of
software components and component-based software[1][2][3][4].
One of them is how to increase component testability [2][3][4].

Since 1990, there have been a number of papers discussing
component testability and design for component testability from
different perspectives. The first paper about component testability
is written by R. S. Freendman in [6]. He defines his domain
testability for software components as a combination of component
observability and controllability. In his definition, "observability is
the ease of determining if specific inputs affect the outputs -
related to the undeclared variables that must be avoided". And
"controllability is the ease of producing specific output from
specific inputs - related to the effective coverage of the declared
outputs domain from the input domain". Later, R. V. Binder in [5]
discusses software testability for object-oriented programs
concerning object-oriented features. According to [4], component
testability is two-fold. First, it refers to the degree to which a
component is constructed to facilitate the establishment of
component test criteria and the performance of tests to determine
whether those criteria have been met. Second, it refers to the
degree to which testable and measurable component requirements
are clearly given to allow the establishment of test criteria and
performance of tests. Hence, it is important to study component
development methods, guidelines and standards that construct
testable and measurable software components.

As pointed in [4], it is essential for component developers to
construct deployable, executable, testable and manageable
software components to reduce the test costs and efforts of diverse
software components. In recent years, a number of published
papers have focused on how to increase component testability by
building testable or self-testable components [3][7] [8] [9][10] [11]
[12] [13]. Most of them only focus on self-contained components.
Moreover, we lack published papers addressing the reusable test
platforms (or beds) for testable components. Furthermore, no
published papers report case study and experimental results as well
as experience and lessons on constructing and testing testable
components in terms of development and testing costs.

This paper focuses on building testable software components and
their reusable test platform for test automation, and it discusses a
component architecture reference model and a consistent test
interface for testable components as well as a supporting test
platform. The major contribution of the paper is its systematic
approach to generate testable components and a reusable test bed
to support component test execution by reducing the costs and
efforts in constructing component test harness (such as test driver
and stub generation test execution). Furthermore, the paper reports
our experimental results on building and validating testable
components in the developed test bed. The comparison result
suggests that the proposed approach has a strong potential to
achieve black-box component test automation in a plug-in-and-test
approach.
The paper is structured as follows. Section 2 reviews the basic
concepts of testable component, including basic requirements,
properties, and benefits. Section 3 discusses the related work on
design for testable components. Section 4 presents a systematic
approach to construct testable components and a supporting test
bed for component test automation. Section 5 reports our case
study results and test automation experience. Finally, the
conclusions and future remarks are discussed in Section 6.

2. Basic Concepts of Testable Components
What is a testable component?
A testable component refers to a software component which is
developed using a well-defined component test model, including
standard test interfaces, test information formats, and required
built-in solutions to support: a) regulated testing interactions
between the component and its supporting test tools, b) test
operations of a component’s users and testers. A testable
component must be deployable, executable, and testable in a given
component test bed (or a test platform) which is compliant with its
component test model. It should be constructed in a way to
facilitate component testing and automation to reduce the
validation cost of component testers and users. Unlike normal
components, testable components must be constructed using a
well-defined component architecture model and consistent test

715

interface. In addition, they have the following basic requirements
and features.
- Requirement #1: A testable component should be deployable

and executable.
- Requirement #2: A testable component must be traceable by

supporting a basic component tracking capability so that it
enables a user (or a tester) to monitor component black-box
test behaviors. As defined in [8], traceable components are
ones constructed with a built-in tracking mechanism for
monitoring various component behaviors in a systematic
manner.

- Requirement #3: A testable component must provide a
consistent, well-defined and built-in interface, called the test
interface, to support external interactions for software testing.
Although different components include diverse functional
interfaces, they must include a consistent test interface to
support software testing. This is very important to automate
component testing, and reduce test costs on environment
setting and test driver construction.

- Requirement #4: A testable component must include some
program code that facilitates component testing by interacting
with external testing facilities or tools to support test set-up,
test execution and test validation.

Software components in a component-based system can be
classified into two groups based on its dependency on other
components:
- Independent component (IC): An independent component (IC)
refers to a component which has no dependency to other
components. In other word, an IC component is a self-contained
component which can be deployed and executed independently in
a test environment or a user’s targeting environment.
- Non-independent component (NIC): A non-independent
component (NIC) refers to a component which depends on other
components by accessing their API. In other word, a NIC
component is not a self-contained component which cannot be
executed and deployed without the presence of its dependent
components. A NIC component has its component interaction
interfaces with one or more interaction ports to other components.

Why do we need testable components?
The major objective to introducing the concept of testable
components is to find a new way to develop software components
with good testability so that they are easy to be executed, traced,
observed, controlled, and tested. Using testable components
enables to component testability to be enhanced and achieve
component test automation in the following aspects:
� Convert components (including COTS components) to

testable components easily.
� Standardize the test interface for components so that various

test tools and facilities can be deployed and used easily. For
example, a standardized component test interface simplifies
diverse component interactions with a test management
system and a component test execution tool.

� Use a systematic approach to automate the generation of
component test drivers and stubs.

� Reduce the effort and cost of setting up component test beds
to enable component test automation is a plug-in-and-test
manner.

How to construct a testable component?

According to [4], there are three approaches to increase component
testability:
- Method #1: Framework-based testing facility – In this

approach, a well-defined framework (such as a class library)
is developed and used to allow engineers to add program test-
support code into components according to a provided
application interface of a component test framework.

- Method #2: Built-in tests – In this approach, test-support code
and built-in tests are added inside a software component as its
parts to make it testable and support self-tests.

- Method #3: Systematic component wrapping for testing – In
this approach, a systematic way is used to convert a software
component into a testable component (or generate testable
component) by wrapping it with a standard software
component test interface and its supporting program code to
support component unit testing.

A detailed high-level comparison is presented in [8].

3. Related Work
Recently, there are a number of papers addressing the design for
component testability. They can be classified into three
approaches. The first is known as built-in tests components. Dr.
Wang et al in [3][9] proposes an approach to constructing built-in
test (BIT) components for maintainable software. In this approach,
built-in tests for a component are built as the parts of software
components. Based on the built-in tests, a component operates in
two modes: a normal mode and a maintenance mode. In the normal
mode, a component operates its application functions. In the
maintenance mode, the built-in tests of this component can be
activated to validate component functions. Elaine Martins et al.
[14] also use a similar idea to construct self-test components by
adding BIT tests inside object-oriented software components
written in C++. They use a consistent approach to integrating
assertions and result checking codes into C++ classes as built-in-
tests. A specific test driver is provided to support the activations of
BIT components. Similarly, Le Treon et al. in [13] present a
pragmatic approach for linking design and test of classes, seen as
basic unit test components. Components are self-testable by
enhancing them with embedded test sequences and test oracles.
Self-testable components serve as building blocks for performing
systematic integration and non-regression testing. In addition, Ram
Chillarege [12] presents a way to insert probes into component
source codes to detect the expected faults inside components to
support self-tests.
The second approach is BIT wrappers for component testing
proposed by Stephen Edwards in [10][11]]. He utilizes a model-
based specification language called RESOLVE. His architecture
builds on current research in systematically detecting interface
violations in component-based software. He suggests each
component provide a simple “hook” interface (with no run-time
overhead) that can be used in adorning the component with BIT
capability like self-checking and self-testing.
The third approach is known as testable beans. In [8], Jerry Gao et
al. introduce a new concept of testable beans – testable
components, which are designed to facilitate component testing.
Unlike the previous approaches, they use a framework-based
approach to construct testable beans based on a well-defined
common test interface for support component testing. Each testable
bean consists of the following parts: a) a component test interface
supporting test operations, b) built-in test code supporting the
interactions between component APIs and the test interface, c)

716

component tracking interface for monitoring component operations
and behaviors, and d) built-in tracking code for component
tracking. In [7], Jerry Gao et al. also discuss a framework-based
method to construct traceable components to facilitate the
monitoring of component behaviors for component-based systems.
The research work reported in this paper is an extension of our
previous work in [7][8]. It is also influenced by Stephen Edward’s
BIT wrappers. Unlike the existing work, this paper uses a
systematic method to construct a testable component without
embedding component tests and probes inside components.
Instead, it uses a well-defined component architecture model with
a standard component test interface and a component test
framework to support component test automation.
Unlike the previous work, this paper uses a systematic wrapping
approach based on a common component test framework. In this
approach, each component is required to provide its well-defined
API and interaction descriptions in a component interface
description language (known as CIDL). Based on the given CIDL
descriptions, a component test wrapper can be automatically
generated to bridge a standard component test interface and its
application function interface. For any given component with
CIDL descriptions, it can be converted into a testable component
by combing its test wrapper, test interface and its original black-
box component. Unlike BIT-components, testable components in
this paper do not contain any component tests. All component tests
(or test scripts) can be stored in a test repository. They can be
activated using the provided component test bed to support their
execution. Unlike the existing unit test tool, this test bed can be
used to support various testable components with standard test
interfaces and CIDL descriptions. Furthermore, the proposed
approach can be used to deal with non-independent components by
providing automatic generated component test connectors to
support the interactions with its dependent components as a
consistent handle for component test stubs. Using this approach we
can convert given a COTS component to a testable component
using automatic generated component wrappers. Here component
wrappers played as pluggable component test harnesses for
components to support component test automation.

4. Constructing Testable Components
This section presents a systematic approach to constructing testable
components, or converting given components into testable
components. It consists of four parts: a) a proposed architecture
model for testable components with a standard test interface, b) a
component test framework, c) systematic component test adaptor
generation, and d) a consistent component test bed.

a) The Proposed Architecture Model for Testable Components
Figure 5 shows our proposed architecture for testable components.
The idea is an extension of the previous work [7][8] to make
testable component as a plug-in-and-test component bed. Here we
assume software components are reusable components with
specified deliverables in. Figure 1(b). In this architecture model, a
testable component consists of the following additional parts for a
given software component.
� A well-defined standard component test interface – This is an

external component test interface, which is used as a standard
test interface to interact with component test and management
tools, such as test execution tool, and test management tool.
This test interface is only useful for component unit testing.
The advantage of using this standard component test interface
is to cope with diverse component application interfaces. To

support this interface, an internal test adaptor is needed to
support the interactions between the built-in component test
interface and the component application interface. The
detailed description is given below.

� A component test wrapper, which is (or statically) generated
dynamically based on component API specifications. It plays
as an adaptor to facilitate the interactions between the
standard component test interface and its application interface
of each under test component.

Figure 4 Component Architecture Reference Model
Component API Test Interface
As shown in Figure 4, CF1,.., to CFi correspond to the functional
application interface of a given component. A standard component
test interface is defined to allow component public users (its users
and testers) to use it to exercise a given test case (or script) and
view its test results. The basic features of a standard component
test interface include the followings:
� It supports the common and standard test interface functions

and operations.
� It is a reusable abstract interface that can be derived,

instantiated or implemented with the support of actual
component API wrapper.

� It must be supported by a component API test wrapper to
bridge to its provided component application interface
functions.

� It should be independent from a component’s detailed
application functions.

Figure 5 A Sample of Component Test Interface

As shown in Figure 5, a sample component test interface includes
the following basic functions:
- Set mode (SetMode) – which sets the under-test component

into a test mode or a normal execution mode.
- Set up test (SetUpTest) – which sets up a given API-based

test case (including its inputs and expect outputs).
- Run test (RunTest) – which executes a component test case.

717

- Get Test Results (GetTestResult) – which collects the test
results from an executed test.

- Validate Test Result (ValidateTestResult) – which checks a
component’s execution result against the expected test result
in a given test case.

- GetComponentFunction(…) retrieves the component API-
based functions and their signatures from a component API
description

- GetInf(…) retrieves the test data for a given component test.

The major benefits using a standard component test interface is
listed below.
- Establish a standard component interface to support test

operations.
- Increase component testability by providing component test

controllability.
- Reduce the component test harness cost in creating

component test drivers and stubs.
- Provide a fundamental base for component test automation
- Standardize and simplify the component interactions and

interfaces with software test tools.

Component API Test Wrapper and Its Generation
What is a component API test wrapper? It is a reusable part
embedded in a test component to increase a component’s
controllability. It plays an adaptor of a component to interact with
a standard component test interface, and maps a specific
component API to the defined standard component test interface. It
can be generated systematically in our proposed solution. The
major function of a component API test wrapper is to set up the
required entities supporting to bridge a under test component to the
standard component API test interface.

Figure 6 the Structure of a Testable Independent Component
Figure 6 shows the relationships between a component API test
wrapper and a component test interface. In our approach, we use a
systematic way to create a component API test wrapper for each
component based on its consistent API specifications, written in
the Component Interface Description Language (CIDL). For
detailed specifications about CIDL and the detailed
implementations can be found in [18]. Due to the limited space, we
only explain the idea briefly. The CIDL includes three parts: a)
component profile specifications, b) component API specifications,
and c) component interaction specifications.
Component profile specifications provide a component’s name and
ID, version and release, properties (such as platform and

language), and configurations. The high-level syntax is shown
below.

Component-Profile: Comp-ID: comp-name, version-number
{ // Component Profile Specifications

Comp-Type: host-centered-comp | distributed-comp;
Platform-Property: <OS-Property>…;
Language-Property: <Lang-Property>,…;
[Conf-Property: <Conf-Property>,…<Conf-Property>;]

}
Component API specifications provide a component’s API
information, including function signatures, their input and output
data types and parameters, return data types and parameters. In
addition, some macro variables and values are included for C++/C-
based components only.

Component-API: comp-name, version-number // API Specifications
{[<Include-Files>….;] // Class Files and Data Files

 [Set-Macros: <Set-Macro>, … <Set-Macro>;] // for Macro Data Only
Provided-Functions: // Component API functions
<Function-Signature>; | <Condition-Function-Signature>;
……;}

The detailed syntax of <Function-Signature> is given below:
[return type] func-name (
[input-list: [data-type data-id, ….][class-type var-id,….]]
[output-list:[data-type data-id,…][class object-id,…]]
);

Component Interaction Specifications provide the details about the
interaction interfaces to dependent components, including each
port specification to its dependent components’ functions. The
syntax of a component interaction interface is given below.

Component-Interact-Interface: Comp-ID Version-No
{ <Port-Spec> , … ,<Port-Spec>; }

Port: Comp-Name, Version-No {
[<Include-Files>….;]
[Set-Macros:
<Set-Macro>, …, <Set-Macro>;] // for C++ or C only
Required-Functions:
<Function-Signature>,| <Condition-Function-Signature>,
….;}

The CIDL specifications for a component can be presented in
different formats, such as BNF and XML. Based on a component’s
API specifications, the component CIDL manager (a function
module in a component test bed) is used to parse the CIDL
specifications, and generate a component test wrapper in the
following steps: (The details can be found in [18])
o Parse the provide CIDL specifications to get the component

and its API information.
o Create a component test wrapper source code file (named as

XXWrapper.java for Java components) using a standard test
interface template.

o Instantiate each function of a standard test interface by adding
the generated source code based on its API signature.

o Insert the generated source codes into the created source code
file for each test interface function to realize its detailed
implementation.

Component Test Connectors
What is a component test connector? To perform unit tests for a
non-independent component (NIC), engineers need to set up a
standalone test environment. In component unit testing, test drivers
and test stubs are needed. Clearly, using a standard component test
interface and its supporting test wrapper is a good solution to
reduce the complexity of creating component test drivers.
However, the test harness costs for an NIC component depends on
the complexity of its dependencies of other components. To deal

718

with this issue, we have introduced a concept, known as
“component test connectors”, to reduce the test harness in building
component test stubs.
A connector component can be considered as a special type of
non-independent components which can not be independently
deployed and executed for application usage like domain-specific
application components. However, similar to functional
components, we must provide its users with a set of well-defined
encapsulated functions to support its role as a bridge between two
functional components. A typical example of connector
components in a real world is a modem in a network system. A
modem provides a bridge to link a specific network terminal
device to a given network.
The purpose of using component test connectors is to set up a
consistent interaction interfaces for a component test bed to
support diverse NIC components to perform unit tests and
component integrations. With well-defined component test
connectors, engineers can use a systematic way to control, monitor,
and simulate component interactions in its reuse contexts. A
component test connector for a NIC component includes the
following essential functions:
o It tracks and monitors its interactions with its dependent

components interactions.
o It provides a consistent manageable and controllable interface

to support the interactions between components in a
standalone test environment.

o It provides a standard reusable connector interface to other
components.

As shown in Figure 7, a component test connector consists of two
parts: a) a reusable connector, which tracks and monitors its
interactions with its dependent components, and b) a number of
connecting entities to different components, which plays as
adaptors to its dependent components. Each connecting entity
(such as Connector-To-A) supports one interaction port in a
component interaction interface. In our implemented component
test platform, the component test connector is generated based on a
component test library and the provided CIDL descriptions about a
given component’s interaction interfaces have given before.

Figure 7 The relationship between components and connectors
As shown in Figure 8, component ElevatorController has a test
connector, which connects to its two dependent components: Door
and Floor-Panel. This connector consists of one common
connector and one specific connector to each dependent
component. In the proposed approach, the component test
connector for each NIC component can be automatically generated
based on the provided component’s interaction interface

descriptions in the CIDL. The detailed syntax for specifying a
component’s interactions is given before.

ElevatorController
Component (NIC)

Figure 8 A Connector between ElevatorController and Others
The basic steps to generate a component test connector is listed
below: (The details can be found in [18])
o Parse the provide CIDL specifications to get the component

and its API information.
o Create a common test connector’s source code file (named as

XXConnector.java for Java components) using a standard test
connector template.

o Create a specific test connector’s source code file
(Connector_To_XX.java) for each interaction port given in
the CIDL.

o Instantiate a stub handler for each function of a given port
based on its specified function signature in the CIDL adding
the generated source code.

o Insert the generated stub handler into each specific connector.

C) A Component Test Framework
To support the standard component test interface and a component
test bed, a component test framework is developed. Figure 9 shows
the relationship among a testable component, component test
framework, and other component test and management tool. This
framework consists of five functional parts: a) component test
suite, b) component test case manager, c) component test driver, d)
component test controller, and e) component test result checker. It
is made of a number of classes, which forms the basic component
test library supporting the component test bed.

Figure 9 A Component Test Framework and Others Test Tools

D) A Component Test Tool for Component Test Automation
To support test automation of testable components, we need a
reusable component bed to deal with diverse components with
different APIs and technologies. Since 2005, we have developed a
component test bed as a part of a component test tool (known
COMPTEST) to support testable components. This prototype
system has been redeveloped as a component unit test tool for

Floor_Panel(IC)
Component

Connector
To Door

ConnectorTo
Floor Panel

Connector For
ElevatorController

Connector For ElevatorController

Door (IC)
Componen

Component Test
Framework

Under Test

Component Component Test
Controller

Component Test Suite

Component Test Case
Manager

Component Test
Driver

Component Profile Component
Repository
Management
System

Component Test
Management
System

Value-List

Collector

Component

Connector-To-A Connector-To-B

<<Uses>> <<Uses>>

<<Uses>>

<<Uses>>

<<Uses>>

Component A

<<Uses>> <<Uses>>

Connector

A Component Test library

Component B

Stub

StubValue

Connector

ParaData

Wrapper B

Component
Test Interface

Testable Component

Component Test
Result Checker

 Problem
Management
System

Component
Test Wrapper

719

some production lines in Huawei Technology Corp. LTD to
support unit testing of software components.
As shown in Figure 10, the generic component test bed for
independent components (IC) includes the following parts:
� Component test library, which is made of the class library in

the component test framework.
� Component test console, which is the user interface for

component testers to support test operations.
� Component test adaptors, which is used to support different

technologies and platforms.
� Component test executor, which supported with C-based

scripts to exercise component APIs based on the selected
components.

� Component test manager, which is a test directory that
manages, stores, and maintains component unit tests (API-
based test cases and test data).

� Component CIDL manager, which is a function module that
manages, parses, and processes given standard component
interface descriptions, written in the Component Interface
Description Language (CIDL). Different formats can be used
present component interface descriptions, such as BNF and
XML.

Unlike other unit test tools, this component test platform has the
following distinct features and advantages:
� Support different components with diverse APIs and standard

component API descriptions in CIDL.
� Provide dynamic and reusable generated component drivers to

exercise black-box component unit tests.
� Perform component unit tests in a plug-in-run-and-test

manner.
� Component API-based black-box unit tests are not stored as a

part of components, so component changes and test changes
are independent.

Figure 10 A Unit Test Platform (COMPTest) for Components
For a non-independent component, we need to set up a standalone
unit test environment, which supports the component interactions
with its dependent components. The component unit test platform
in Figure 10 also supports non-independent components. For each
under-test NIC component, a component test connector is created
systematically to support the interactions with other dependent
components. When a dependent component is not available, it can
be simulated using a generated component test wrapper or
manually generated component test stub. In the implemented

component unit test platform, a controller is developed to control
the component test connector to interact with other dependent
components, stubs or their test wrappers.

Figure 11 (a) Connecting a real dependent component B

 Figure 11 (b) Connecting with a dependent component’s wrapper

Figure 11 (c) Connecting with a component B’s wrapper

sager txt

Otrmn

Component
Tests/Scrip

Under Test
Component

In the second approach, we manually create component black-box
API-based test drivers without the fix test data, as shown in Figure
12(a). The purpose of this approach is to develop the test drivers to
accommodate similar component-based API-based tests based on
component API function signatures only. Since test data are not
coded inside test drivers, this approach reduces the dependency of
the developed test drivers from specific test data. As shown in
Table 4, 30 component API-based test drivers are developed in 280
minutes. Students spent about 34 minutes to execute the
component tests. A standard component test connector not only
interacts with dependent testable components, but also supports
component’s stubs, which simulate the functions of the dependent
components. There are three applications of component test
connectors. Figure 11 (a) shows the first scenario, in which a
testable component A’s connector interacts with its dependent
component B directly to supports and track their interactions. The
controller in the unit test platform controls the test connector for its

Component
pplication A

Interface

Component API Test Wrapper

Testable
Component

Standard Comp. Test Interface

Comp.
Test

Adaptor

Comp.
Test

Library

Component
Standalone
Test-bed

Comp.
Test

Console

Component CIDL
Manager

Test Controller

Test Stub

Component
Test Wrapper

Test Connector

720

functions. Figure 11(b) shows the second application scenario, in
which a component A’s test connector directly interacts with the
test wrapper of its dependent component B to track and support
their interactions. Notice that component B is a testable
component, its test wrapper can be generated based on component
B’s API descriptions in the CIDL. Figure 11(c) shows the third
application scenario, in which the test connector of component A
connects with the test wrapper of its dependent component B
without B’s existence. This scenario occurs when component B is
not ready to be used for testing. Hence, its test wrapper can be
generated and used to connect with some test tubs to support units
testing of component A.

5. Application Experimental Results
To validate the proposed approach and developed component test
platform, a group of mater students apply them onto a simple
component-based elevator system, which is made of five
components: a) an elevator, b) an elevator controller (ElevaContr),
c) an operation panel (OpPanel), d) floor panels (FloorPanel), and
e) Door component. Among of them, FloorPanel and door
components are independent components. The elevator controller
(ElevaContr) is a non-independent component, which is dependent
on FloorPanel and Door components.

Table 2: A Statistic Report on Test Design for the Elevator System
Component

Name
Function Name BV Analysis

Method
EQ

Method
No. of

test
cases

FloorPanel Floor_level 9 8 17
FloorPanel Move 9 11 24
FloorPanel Door_status 19 8 37
OpPanel Elevator_level 9 8 17
OpPanel Move 13 11 24
OpPanel Stop 6 3 9
OpPanel Move 6 3 9
OpPanel Start 5 3 8
OpPanel Dial 5 3 8
OpPanel Door 10 5 15

ElevaContr Floor_req 9 8 17
ElevaContr Targetfloor_req 9 8 17

Elevator Direction 10 8 18
Elevator Move 9 8 17

Door Door_status 19 18 37
Total 15 151 123 267

As shown in Figure 8, both Door component and Floor_Panel
components are independent components. Component
ElevatorController is a non-independent component with two
dependent components (Floor_Panel and Door). Figure 8 shows
the test connector of ElevatorController connects to its two
dependent components through connecting ports. In our
experimental case study, students use the two well-know black-box
test methods (Boundary Value Analysis and Equivalence Partition)
to design component API-based function test cases for the
components of the Elevator system. Table 2 shows a statistic report
about test case design for the five components of the Elevator
System. There are 151 test cases driven using the boundary value
analysis method, 123 test cases driven using the equivalent
partition method.

To validate the effectiveness of testable components and
COMPTest platform in reducing the costs of test harness. Students
used three approaches to set up component test harnesses (test
drivers and test stubs) to perform component API-based unit tests
for the sample elevator system. As shown in Figure 12(b), the first

approach uses the conventional approach to manually create
component black-box API-based test drivers based on the test
cases. All pre-defined test data are coded inside the component
API-based function test drivers. As shown in Table 3, 30
component API-based test drivers are developed in 272 minutes.
Students spent about 32 minutes to execute component tests.

Figure 12 Three Ways to Access Component Tests
Table 3: Total Test Harness Cost Using Manually Generated
Component Test Drivers with Test Data (in Mintues.)

Component
Name

Function Name Total No.
of Created

Test
Drivers

Time to
Run Tests

Develop
Time for

Test
Drivers

FloorPanel Floor_level 2 2 17
FloorPanel Move 2 2 17
FloorPanel Door_status 2 3 34
OpPanel Elevator_level 2 2 17
OpPanel Move 2 2 15
OpPanel Stop 2 2 14
OpPanel Move 2 2 14
OpPanel Start 2 2 14
OpPanel Dial 2 2 14
OpPanel Door 2 2 17

ElevaContr Floor_req 2 2 17
ElevaContr Targetfloor_req 2 2 17

Elevator Direction 2 2 15
Elevator Move 2 2 16

Door Door_status 2 3 34
Total 15 30 32 mins 272 mins

Table 4: Total Test Harness Cost Using Manually Generated
Component Test Drivers without Test Data

Component
Name

Function Name Total No.
of Test
Drivers

Time to
Run
Tests

Develop Time
of Test Drivers

FloorPanel Floor_level 2 2 24
FloorPanel Move 2 2 13
FloorPanel Door_status 2 4 32
OpPanel Elevator_level 2 2 25
OpPanel Move 2 2 13
OpPanel Stop 2 2 14
OpPanel Move 2 2 14
OpPanel Start 2 2 14
OpPanel Dial 2 2 14
OpPanel Door 2 2 27

ElevaContr Floor_req 2 2 17
ElevaContr Targetfloor_req 2 2 17

Elevator Direction 2 2 13
Elevator Move 2 2 11

Door Door_status 2 3 32
Total 15 30 34 mins 280 mins

Figure 12(c) shows the last approach, which uses the proposed
solution and COMPTest platform to execute the pre-defined

Fi’s Test Driver

Test Interface

Fi Component
Test

Repository
(a)

Fi
Component

Fi’sTest Driver
with Test Data

Test Interface

(b)

Fi

Component

Component
Test Wrapper

Test
Repository

(c)

Component
Test Interface

721

component API-based tests through a component test interface of
testable components. Table 5 displays the different test harness
costs. Students used the proposed solution to automatic generate 5
component API-based test drivers with the provided test data. They
spent 73 minutes to develop and set up test drivers and 27 seconds
to execute these component tests. As shown in Table 5, using the
component testability tool (COMPTest) has a clear advantage over
the other two conventional approaches in test driver development
and test execution. It only needs 5 dynamically generated
component test drivers with the minimum time (73 min.) in test
driver development. In fact, the most time is spent on preparing
API descriptions for all components using a given format.

Table 5: A Comparative View of the Case Study Results

6. Conclusions and Future Work
This presents a systematic way to construct testable software
components to increase component testability. The distinct
contribution of this paper is its proposed component architecture,
well-defined component test interfaces, as well as a systematic
wrapping solution to convert COTS (or in-house-built)
components into testable components. The proposed method has
several distinct features:
� Convert a given COTS (or in-house-built) component into a

testable component using a dynamically generated component
wrapper with a well-defined component architecture. This
component wrapper provides: (a) a well-defined component
test interface to the external world, and b) a dynamic created
internal test adapter to interact with the component APIs.

� Use a well-defined component test framework (which is a set
of class library) as a middleware between the testable
components and tools.

� Provide a reusable component test bed which interacts with
testable components based on their common test interfaces.

Its major advantages are summarized below:
� Giving a practice-oriented solution to enhance component

testability and a systematic approach to supporting component
test automation.

� Offering a systematic way to construct a common test bed to
deal with diverse COTS components.

� Providing a consistent component test interface between
components and test tools.

� Reducing component test harness and costs to support its
drivers in a component validation process.

Moreover, the paper reports our developed distributed component
testing environment which supports test automation for testable
components in component management, test management, test
execution control, and model-based API test coverage monitoring
and analysis. Unlike other existing test tools, our system has an

intention to offer component users a plug-in-and-test solution to
support component functional validation. In addition, the paper
also reports our case study and application example of the
proposed solution. The result indicates that this approach has a
very good potential to reduce component test harness from users
and allow them to validate COTS components using the same
component test environment in a plug-in-and-test manner.
To carry this research into the next step, we are working on
applying and extending this solution to other types of components,
including graphic user interface components and communication-
oriented components.

7. References
[1] Elaine J Weyuker, "Testing Component-Based Software: A
Cautionary Tale", IEEE Software, September/October 1998.
[2] Sami Beydeda, Volker Gruhn , “Merging components and
testing tools The Self-Testing COTS Components (STECC)
Strategy “, Leipzig, Germany.
[3] Wang, Y. and G. King (2002), “A European COTS
Architecture with Built-in Tests”, Proceedings of 8th International
Conference on Object-Oriented Information Systems (OOIS'02),
Montpellier, France, Sept., LNCS 2452, Springer, pp.336-347.
[4] Jerry Z. Gao, Jacob Tsao, and Ye Wu, Testing and Quality
Assurance for Component-Based Software, Artech House
Publishers, 2003.
[5] R. V. Binder, “Design for Testability in Object-Oriented
Systems”, Communications of the ACM, September 1994.
[6] Roy S. Freedman, “Testability of Software Components”, IEEE
Transactions on Software Engineering, Vol. 17, No. 6, June 1991.
[7] Jerry Z. Gao, et al, “Monitoring Software Components and
Component-Based Software”, The proceedings of The Twenty-
Fourth Annual International Computer Software & Applications
Conference (COMPSAC2000), Taipei, Taiwan, October 2000.
[8] Jerry Z. Gao, K. Gupta, S. Gupta, and Simon Shim, “On
Building Testable Software Components”, Proceedings of First
Internation Conference on Cost-Based Software System
(ICCBSS2002), pp.108-121, 2002, Orlando, FL, USA.
[9] Yingxu Wang, et al., “A Method for Built-in Tests in
Component-based Software Maintenance”, The proceding of Third
European Conference on Software Maintenance and
Reengineering, IEEE Computer Society Press 1999.
[10] Stephen H. Edward, “A Framework for Practical, Automated
Black-box Testing of Component-Based Software”, Journal of
Software Testing, Verification and Reliability, Vol.11, No.2, 2001.
[11] Stephen H. Edwards, "Black-Box Testing Using Flowgraphs:
An Experimental Assessment of Effectiveness and Automation
Potential", December 2000 Issue of Software Testing, Verification
and Reliability, Vol. 10, No. 4, pp. 249-262.
[12]Ram Chillarege, “Self-testing software probe system for
failure detection and diagnosis”, The Proceedings of the
conference of the Centre for Advanced Studies on Collaborative
research, Toronto, Ontario, Canada, 1994.
[13] Yves Le Traon, et al., “Self-testable components: From
pragmatic test to design-for-testability methodology”, The
Proceedings of TOOLS (1999), Nancy, France, 1999.
[14] Jerry Gao and Ming-Chih Shih, “A Component Testability
Test Model for Verification and Measurement”, The First
International Workshop on Testing and Quality Assurance for
Component-Based Systems (TQACBS05), 2005.
[15] R. Chhabra, R. Swamy, and W. Roberto Liang, “Case Study
of a Systematic Solution for Testable Software Components”,
Master Project Report, San Jose State University, May 2007.

Comparison Items vs.
three approaches

Test driver
with test data

Test driver w/o
test data

Component
testability tool

Total Number of Test
Drivers

30 30 5

Max. Number of
Source Code Lines

498 70 549

Min. Number of
Source Code Lines

168 61 51

Total Number of
Source Code Lines

4444 2986 5200

Total No. of Source
Code Files

16 21 68

Total Development
Time of Test Driver

286
(minutes)

272
minutes)

73
(minutes)

Component Test
Execution Time

34
(minutes)

32
(minutes)

27
(seconds)

722

SyncTest: A Tool to Synchronize Source Code, Model and Testing

Xiaoying Bai, Tao Liu
Department of Computer Science and Technology,

Tsinghua University, Beijing, China, 100084
baixy@tsinghua.edu.cn, tullyliu@gmail.com

Abstract
Model-based testing (MBT) is challenged by the
synchronization between the source code, model and test
scripts. When a change is made to the program, it is hard to
identify the affected parts in the model and selectively re-
run the affected test scripts. The research proposed a
framework to enhance the traceability at two abstraction
levels: the model level from program model to test model
and the code level from SUT (Software under Test) source
code to test scripts. The tool SyncTest was developed that
can be used in the maintenance of a legacy C++ system.
SyncTest derives the program model by program analysis
and reverse engineering on the legacy system. It can
automatically generate the U2TP (UML 2.0 Testing Profile)
compatible test model in a rule-based approach and map the
test model to test scripts. The test scripts written in C++ are
associated to the target source code so that they can be
compiled with and exercised on the SUT. The mapping
information are tracked and managed for selective testing.
Built on the Eclipse open source project, SyncTest provides
an open platform that can be integrated and extended with
other plug-in tools such as parsing, modeling and test
generation tools.
Keyword: Model-based testing, Legacy system, C++
testing tool

1 Introduction
Testing is expensive, requiring a large amount of effort and
resources. Automated testing is necessary to reduce the cost
and increase productivity. Traditional test automation
techniques are based on program analysis, such as control
flow and data flow analysis. In recent years, the model-
based testing (MBT) approach is evolving as a promising
technique to address the challenges of automatic test cases
generation [1][3][4][6][7][8][9][11] [12]. A model of the
intended system behavior is established to serve as the basis
for automatic test generation. In practice, the model can be
abstraction at different levels including requirement model
representing external observable software behavior, or
design model representing internal software structure and
communication. Various modeling techniques have been
proposed for depicting software behavior, such as Extended
Finite State Machine (EFSM), Specification Description
Language (SDL), ESTELLE, and UML.
The research is motivated by the problems we encountered
when applying MBT to testing large C++ legacy system

which has been maintained and evolved for many years in a
company. Due to the lack of formal specifications of the
software structure, the system with growing size and
complexity is very hard to understand, change and test. The
project aims to provide a platform to facilitate automatic
and systematic testing and evaluation for the maintenance
of the legacy system.
An observation of the project is that an issue with the MBT
approach is the synchronization between the code and the
test scripts. In general, the model in MBT is manually
developed and separated from the code which is expected
to be easier to understand, verify and maintain compared
with the SUT (Software under Test). There usually lacks of
the tracking between the modeling elements and the source
code. When software change, models and code are
manually changed respectively and testing is expected to
detect the inconsistent changes between the model and the
code. However, it is difficult to find the set of test cases
which can detect most change-related defects due to the
lack of tracking information. Sometimes, the test engineers
have to re-generate all of the test cases from the changed
model and re-run the entire set of test cases on the changed
SUT. The number of test cases is usually huge for large
legacy systems. Sometimes, it is almost impossible for the
re-generate-all and re-test-all approach.

Figure 1 SyncTest approach overview
To address this challenge, the tool SyncTest is developed
for C++ program testing to facilitate the MBT model
construction, test generation, and selective testing. A
framework is proposed to automatically capture the
relationships among source code, model and test scripts,
and track the mapping information for analysis. Figure 1
outlines the SyncTest approach which comprises the
following four parts:
1. The OO program model is constructed by reverse

engineering on the source code and program analysis
techniques.

723

2. The test model is generated by transforming the
structure and behavior specification of the OO program
model to the test artifacts.

3. Test scripts are derived from the test model and coded
in specific scripting languages such as C++
programming language.

4. Test scripts are associated with the source code so that
they can be compiled with and exercised on the SUT.
The associations are managed for related test case
identification and selective testing.

In SyncTest, both of program model and test model are
independent of platforms and programming languages. The
models are specified following the XMI (XML Metadata
Interchange) standard. The program models are constructed
from the AST (Abstract Syntax Tree) representation
generated by the program parser and are conform to the
MOF (Meta Object Facility) meta-model of UML class
diagram and sequence diagram. The test model specifies
the test organization and execution concepts including test
suite, test case, test objective, test data and test behavior,
and are conform to the MOF meta-model of U2TP (UML
2.0 Testing Profile) [16].
SyncTest enables the synchronization of changes at two
abstraction levels: the model level and the code level. At
the model level, the translation mechanism is defined from
the elements in the object oriented program model to the
test concepts. At the code level, each test suite/test case is
associated with an objective specification which traces to
related target SUT file, version, class, and method
definition. A rule-based approach is introduced to enable
the flexible and extensible definition and interpretation of
test strategies.
SyncTest is built as a plug-in project on the Eclipse open
platform. It is integrated with a group of Eclipse [15] and
SourceForge [17] open source tools including CDT (C/C++
Development Tooling) for source code parsing, program
compilation and building; EMF (Eclipse Modeling
Framework) for modeling; and CppUnit [13] for harnessing
and running the test scripts.
The rest of the paper is organized as follows. Section 2
introduces the SyncTest test framework. Section 3 presents
the implementation of the testing tool. And section 4
concludes the paper.

2 The SyncTest Test Framework

Figure 2 SyncTest framework overview

As shown in Figure 2, the SyncTest Framework is
composed of following three layers: model construction by
reverse engineering, model-based test generation, and
selective testing.
2.1 Model Construction by Reverse Engineering
It is the process of parsing and analyzing the C++
application source code, extracting the information and
relationship of software components, and constructing
model specifying software structure and behavior, for better
understanding and maintaining the software system. To
achieve the goal, following problems have to be solved: (1)
how to gather the necessary information; (2) how to model
and specify the model of the gathered information; and (3)
how to visualize the model.
SyncTest extracts the information of classes, methods,
dependencies and interactions based on the AST
representation generated by the C++ parser Eclipse CDT
[15]. The models can be (1) software static structures such
as class definition, class hierarchy, source file dependency,
and so on; and (2) software dynamic behavior such as
message passing and interactions. As a de facto industry
standard, UML is a good choice for model representation.
An objective of UML 2.0 is to support “an approach to
developing software that shifts the focus of development
from code to models and to automatically maintaining the
relationship between the two”. SyncTest translates the
structure and behavior information to the corresponding
UML class diagram and sequence diagram conforming to
the MOF meta-model encoded in the XMI format [16].
2.2 Rule-Based Testing
Model-based test generation is the process to generate test
data, test procedures and test cases. SyncTest incorporates
the rule-based mechanism to support definition and
interpretation of the test generation strategies. Different
categories of rules can be defined including the methods for
generating test data and test procedures, the mapping from
source code to test model, the naming conventions for
generated test files, and the criteria for selective test run.
Figure 3 shows an example XML specification of the rule
for naming convention definition.

Figure 3 Example rule specification
The externalization of rule definition and interpretation
enables flexible and dynamic editing and binding to the
rules through the rule editor and rule engine.
2.3 The Test Model
Test model is necessary to provide a standard definition and
description of test information such as the organization
structure of test suites and test cases, test data definition,
test plan and scheduling, etc. It is specified independent of

724

the platform and programming language of the SUT, and
thus can be easy to be maintained and reused.

Figure 4 SyncTest test model
SyncTest supplies a platform independent test model and
applies it for C++ test generation. As shown in Figure 4, the
model, conforming to MOF-based U2TP metamodel,
composes of following concepts:
� STTestCase is a definition of tests on the SUT with

conditions, inputs, expected outputs, and a set of
behaviors;

� STTestSuite is a group of test cases and it can control
the order of running the test cases such as sequence,
iteration, parallel, etc.;

� STTestComponent is a realization of a test case / test
suite for executing it behavior;

� STTestObjective defines the target of a test case;
� STBehavior describes the execution of a tests;
� STArbiter provides the evaluation of test results; and
� STSUT represents the interface to the SUT.
The model is encoded in XMI specification as shown in
Figure 5.

Figure 5 Example test model XMI specification
2.4 Selective Testing
For a large legacy system, the number of test cases is
usually huge. When a feature is changed and regression
testing is required, it is expensive to rerun all the test cases.

Sometimes, it is even impossible. Selective testing is
necessary to reduce the cost by allowing the user to select
and run a small subset of test cases according to certain
criteria. It is also helpful for analyzing the failures and
locating the defects with a smaller set of test results
compared with the run-all approach.
SyncTest tracks the dependencies between test elements
and SUT through the test model. At the model level
tracking, different generation and mapping rules may be
defined such as:
� To generate a test suite for each class and a test case

for each method in the class;
� To generate a test suite with multiple test cases for

each method; and
� To generate a group of test suites for each class.
At the code level, with the help of STTestObjective,
SyncTest provides the tracing information between the test
suite/test case and its target SUT files, file versions, classes,
and methods.

3 SyncTest Implementation

Figure 6 SyncTest implementation architecture
As shown in Figure 6, SyncTest is implemented as a plug-
in project on the Eclipse open source platform. It is
integrated with CDT and EMF plug-ins [15]. CDT plug-in
provides the IDE for editing, compiling and executing C++
applications. EMF plug-in supports the modeling and
representation of SyncTest program model and test model.
SyncTest also integrates with CppUnit unit test framework
for generating the test scripts and CppUnit Qt TestRunner
for executing the test scripts. Figure 7 is the screen of
SyncTest test generation, edit, compiling, execution,
navigation and management.
3.1 Interfacing to CDT
The syntax of C++ is much more complex than other object
oriented languages such as Java. For examples, the macro
mechanism in C++ requires additional pre-processor, and
the flexible combination of pointers and templates may
need special syntax analyzer. The capability of the parser is
critical for code analysis, information extraction and UML
model construction. CDT is an Eclipse open source project
and an industrial strength C/C++ IDE. It provides the parser,
known as the DOM (Document Object Model) parser, to
analyze the C++ source code and generate the AST as
CDT’s internal representation of the code. The parser can

725

process most of the GCC extension grammar, and
preprocess the include files, the macro definition and
expansion. CDT also provides the IDE environment for
search, code navigation, compilation, and build assist.
SyncTest integrates CDT from two aspects: the front end
AST generator and the build system to compile and link the
test scripts coded in C++ programs with the SUT to
generate executable applications. CDT parser does not
perform any semantic analysis or type-checking during the
parse. SyncTest translates the specifier declarations (such
as IASTClassSpecifier, IASTFunction, IASTMethod,
IASTTemplate, etc) recognized in the AST to the SyncTest
object oriented modeling elements. SyncTest also uses the
information of parser pre-processing, such as file
dependency analysis, to generate the include declarations
that bind the test scripts to the SUT.
3.2 Interfacing to EMF
SyncTest specifies and maintains the program models and
test models using the EMF mechanisms. EMF provides a
modeling framework and the code generation facilities. It
can facilitate the specification of the data model, the
transformation of the models into Java code, and the
serialization of the model to persistent data. It also
automatically maintains the dependencies between
modeling elements. Each element keeps a list of its
observers which can be notified whenever a state change
occurs.
3.3 Interfacing to CppUnit

// cppunit_cpp.vm
\#include "$filename"
CPPUNIT_TEST_SUITE_NAMED_REGISTRATION($classname,"$classname")
void $classname::setUp(){}
void $classname::tearDown(){}
#if($methods)
#foreach ($method in $methods)
${method.Ret}
$classname::${method.Name}(${method.Params}){}
#end
#end

// cppunit_h.vm
#ifndef ${filename.toUpperCase()}_H
#define ${filename.toUpperCase()}_H
\#include <cppunit/extensions/HelperMacros.h>
class ${classname}:public CppUnit::TestFixture{
CPPUNIT_TEST_SUITE(${classname}TestSuite);
#if($methods)
#foreach ($method in $methods)

CPPUNIT_TEST(${method.Name});
#end
#end

CPPUNIT_TEST_SUITE_END();
public:

void setUp();
void tearDown();

#if($methods)
#foreach ($method in $methods)
${method.Ret} ${method.Name}(${method.Params});
#end
#end
};
#endif // ${filename.toUpperCase()}_H

Figure 7 Test script template definitions
SyncTest uses the CppUnit [13] test framework as the
template for the generated test scripts. CppUnit is the C++
port of the JUnit framework for unit testing. It is motivated
by the Test-Driven Development (TDD) principle, which
emphasizes daily, even hourly, continuous build and testing.

In the framework, test cases are bound to the classes and
methods to be tested. The programmers develop test
together, or even earlier than, the program code. It can help
change impacts analysis during regression testing to
identify the affected the code and test cases.
SyncTest defines the scripting template for test suites and
test cases based on the test facilities in CppUnit. It uses the
Velocity template engine of Apache project to generate
instances of test suites and test cases according to the
scripting template. Figure 7 shows the .h and .cpp file of the
template definition.
SyncTest also integrates with CppUnit Qt TestRunner for
selective executing the test cases. The CDT compiler
accepts the source code and test files, incorporates the DLL
of CppUnit and Qt TestRunner, compiles all together and
generates the executable test program. SyncTest also
extends the TestRunner to output and save the execution
results in XML-encoded reports.
3.4 Test Navigation and Management
SyncTest provides a unified navigator for browsing the
source code, the test model and test scripts. Internally, the
test model traces the mapping information between the
source code, the model and the tests. With the build-in
dependency management mechanism supported by EMF,
SyncTest can support an effective way to organize and
manage the tests hierarchically with multiple views. Users
can brows, query, and locate all the related information
conveniently.

4 Experiments
Figure 8 illustrates the process from the source code files to
identified the class model, to the generated test model, and
finally to the coded test scripts in C++ programs.

Figure 8 Example SyncTest process
Experiments are exercised on many C++ projects. Table 1
shows the experiment results (including the number of
identified classes and methods, and that of generated test
suites and test cases) on the following four SourceForge
open source projects:
� CppUnit is a project of C++ unit testing framework

with 72 header files and 53 cpp files;
� Bouml is a UML modeling tool with 793 header files

and 766 cpp files;

726

� FileZilla client is a FTP client tool with 110 header
files and 113 cpp files; and

� eMule is a P2P resource sharing tool with 308 header
files and 246 cpp files.

Table 1 Experiments summary

SUT Cpp-
Unit Bouml FileZilla

Client eMule

Source
File

Header 72 793 110 308
CPP 53 766 113 246

Program
Model

Class 57 836 182 353
Method 429 4878 2113 6126

Test
Model

Test Suite 57 836 182 353
TestCase 361 4729 1967 5771

Test
File

Header 57 836 182 353
CPP 57 836 182 353

The strategy in the experiment is to generate a test suite for
each class and generate a test case for each method. The
result showed that the tool correctly indentified all the
classes, class inheritance relationships, methods and
methods signature for structure analysis. Test suites and test
cases are generated to cover the structure features at the
class interface level.

5 Related Works
5.1 Reverse Engineering
In general, different approaches exist for information
gathering including program analysis such as data flow and
control flow analysis, compiler technique such as AST-
based analysis, and source code instrumentation.
Many methods were proposed to reverse engineer the static
and dynamic information and represent the information
using UML diagrams such as class diagram and sequence
diagram [1][6][7][9][10][12]. For example, L.C. Briand et
al. [1] reported the research on reverse engineering of UML
sequence diagrams by instrumenting the source code to
capture the messages including method entry and exit,
conditions, and loops. On running a pre-defined scenario,
the instrumented code produced the tracing logs, which are
further mapped to the UML sequence diagram based on the
mapping rules defined by OCL (Object Constraint
Language). A. Rountev et al. [10] proposed an extension to
UML 2 control flow primitives and discussed the algorithm
to precisely map inter-procedural flow of control to UML
sequence diagram using the proposed extensions. B. A.
Malloy and J. F. Power [7] introduced the tool SPIDOR for
analyzing and modeling C++ program dynamic behavior
with UML sequence diagrams. SPIDOR used GNU
Compiler Collection, GCC, as its front end and took GCC
AST GENERIC for class hierarchy and call graph analysis.
It also used aspects to insert probes into the code for
profiling the interactions of objects and methods.
SyncTest aims to integrate the traditional reverse
engineering techniques with MBT and to improve the
maintainability of legacy systems.
5.2 Rule-Based Testing
The research of applying the rule-based approach to testing
can be traced back to Deason et al.’s work on automatic test
data generation in the early 1990s [2][5]. In the proposed
paradigm, the rule interpreter took the rules defined in the

rule base with the symbol table gathered by the program
parser, and generated the test cases to meet the test
adequacy criteria including condition coverage, decision
coverage, and multiple-condition coverage. The experiment
results showed that with properly defined rules, it can
significantly reduce test cost while improving test coverage
compared with the random and statistical testing
approaches.
SyncTest takes the rule mechanism as part of the
infrastructure to guide the generation and execution of test
cases. Rules can be defined at different levels and
granularities, and applied at different stages of the SyncTest
approach including the transforming from program model
to test model, the generation of test scripts, and the
selective run.
5.3 Test Modeling
U2TP [16] provides a standard definition of the basic
testing concepts. Test Architecture which specifies the
structure of a test context covering test components, SUT,
test configuration and scheduler. Test Behavior which
specifies the objectives, invocation, execution, oracle,
control, and coordination for exercising a test. Test Data
which specifies the data used in stimuli to and observations
from the SUT, and for coordination between test
component, including data pool, data partition, data selector,
and coding rule. Time specifies the time constraints, time
observations and/or timer within test behavior specification.
U2TP defines the test modeling language using the UML
meta-modeling approach. A MOF meta-model is defined
enabling the use of U2TP independent of UML.
EclipseTM Test and Performance Tools Platform’s (TPTP)
testing tool provide a reference implementation of the
U2TP based on EMF. The TPTP test model composes of
the core models of testing profile, behavior and execution.
However, the current TPTP test model is tightly bound to
Java implementation and integrated with JUnit testing
framework. To reuse the test model in the open test
platform, it is necessary to decouple it from Java binding
and extend it as a language independent model.
SyncTest defines a test model that is conform to U2TP
MOF meta-model, and provides an implementation
independent of programming languages using EMF.

6 Conclusion and Future Work
Due to the complexity of C++ language, it is hard to
understand, change and test a legacy C++ system. Tools are
very few for C++ program maintenance and automatic
testing compared with OO languages. The paper introduced
the SyncTest tool which is built as a plug-in project on
Eclipse open platform to streamline and automate the
process of source code analysis, program model
construction, test model generation and test script
generation. It tracks the transformation process from
program model to test model, and the correlations between
code and test scripts. In this way, it enables change impact
analysis at the model level as well as the code level and has
the potential to enhance the efficiency of regression testing
form legacy system maintenance.

727

The paper reported our first attempt of an on-going project
on the SyncTest framework and tool development. The
running prototype and some early experiment results show
the promise and potential benefits of the proposed approach.
However, a lot of works remain from both research and
practice perspectives including (1) behavior modeling and
model transformation mechanism from OO program model
to test model; (2) sophisticated rule definition and rule-
based test generation algorithms; and (3) experiments and
measurements for effectiveness comparison and evaluation.

7 Acknowledgement
This research is sponsored by Freescale Semiconductor Inc.
We are grateful to Dr. Kwok Wu, Dr. Avinash Naidu, and
Dr. Xinxin Yang for their discussion of the industry
problems and constructive comments on the research and
implementation.

Figure 6 The screenshot of SyncTest
References:
[1]. L. C. Briand , Y. Labiche ,and Y. Miao, "Towards the

reverse engineering of UML sequence diagrams",
Proceedings of the 10th Working Conference on Reverse
Engineering, 2003, pp.57-66.

[2]. K. H. Chang, W. H. Carlisle, J. H. Cross, and D. B. Brown,
“A heuristic approach for test case generation”,
Proceedings of the 19th ACM Annual Conference on
Computer Science, 1991, pp. 174-180.

[3]. I. Craggs and C. Beverland, “Model-based testing for
object-oriented programming interfaces”, Proceedings of
the Workshop on Model-based Testing and Object-
Oriented Systems, Technical Report MSR-TR-2006-148,
Microsoft Research, 2006, pp. 4-11.

[4]. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz, "Model-based
testing in practice", Proceedings of the International
Conference on Software Engineering, 1999, pp. 285-294.

[5]. W.H. Deason, D.B. Brown, K.-H. Chang, and J.H. Cross,
“A rule-based software test data generator”, IEEE
Transactions on Knowledge and Data Engineering, Vol 3,
No. 1, 1991, pp. 108-117.

[6]. F. Fraikin and T. Leonhardt, "SeDiTeC-testing based on
sequence diagrams", Proceedings of the 17th IEEE
International Conference on Automated Software
Engineering, 2002, pp.261-266.

[7]. B. A. Malloy and J. F. Power, "Exploiting UML dynamic
object modeling for the visualization of C++ programs",

Proceedings of the 2005 ACM symposium on Software
visualization, 2005, pp. 105-114.

[8]. A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M.
Baumgartner, B. Sostawa, R. Zölch, and T. Stauner, "One
evaluation of model-based testing and its automation",
Proceedings of the 27th international conference on
Software engineering, 2005, pp. 392-401.

[9]. M. Riebisch, I. Philippow, and M. G, "UML-based
statistical test case generation", Net.Object.Days 2002,
LNCS Vol. 2591, pp 394-411.

[10]. A. Rountev, O. Volgin, and M. Reddoch, "Static control-
flow analysis for reverse engineering of UML sequence
diagrams", The 6th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
(PASTE 2005), 2005, pp. 96-102.

[11]. M. Utting, A. Pretschner, and B. Legeard, A taxonomy of
model-based testing, Technical report, Department of
Computer Science, University of Waikato, New Zealand,
2006.

[12]. Y. Wu, M. H. Chen, and J. Offutt, "UML-based
integration testing for component-based software",
Proceedings of Second International Conference on
COTS-Based Software Systems, 2003, pp. 251-260.

[13]. CppUnit, 2008, http://cppunit.sourceforge.net/.
[14]. Apache Velocity Project, 2007, http://velocity.apache.org/.
[15]. Eclipse platform, 2008, http://www.eclipse.org/.
[16]. OMG standard, 2005, http://www.omg.org/.
[17]. Sourceforge, 2008, http://www.sourceforge.net/.

728

A Virtual Machine for Distributed Agent-Oriented Programming

Bin Zhou
School of Computer, National Univ. of Def. Tech.

Changsha, China, Email: binzhou@nudt.edu.cn

Hong Zhu
School of Technology, Oxford Brookes University

Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

Abstract. Agent-orientation has been considered as a
viable solution to the development of software systems in
dynamic environments such as the Internet. This paper
presents a high level language virtual machine CAVM
designed for distributed agent-oriented programming in the
Internet environment. The main features of the virtual
machine (VM) are two-fold. First, the communication
between agents is separated from computation so that
communication is network transparent of agent location.
Second, code deployment is separated from loading so that
multiple agents of the same caste can be dynamically
distributed to the network and dynamical integrated into the
systems by adding new agents. The paper first reviews the
key features of an agent-oriented programming language
called CAOPLE. It then presents the design of the virtual
machine to support the implementation of the language.
Experiments with the performance of the system in a network
environment are also reported.

1. Introduction
Agent-orientation has been long considered as a viable so-
lution to the development of software systems in dynamic
environments such as the Internet [1, 2]. A great amount of
research efforts has been reported in the literature; see, for
example, [3,4,5]. However, the IT industry has been slow to
adopt the approach. A key problem that hampers the wide
adoption of agent technology is the lack of efficiently im-
plemented agent-oriented programming languages. Among
the most promising approaches to the design and imple-
mentation of such a language is virtualization, which can
provide a high level abstraction of computation resources
associated to the internet and a unified framework for effi-
cient uses of the resources [6]. The most appealing feature of
virtualization is that it can provide software developers and
end-users a virtual computation environment that is con-
ceptually simple and easy to use through hiding the com-
plexity caused by the heterogeneity and spatial distribution
of hardware and the diversity of software platforms and
interaction protocols.

In this paper, we present the design and implementation
of a virtual machine called CAVM, which stands for
Caste-centric Agent-oriented Virtual Machine. It is a high
level language virtual machine (VM) for the implementation
of a high level agent-oriented programming language,
CAOPLE, for distributed programming on the Internet. The
caste centric model is a simple but powerful multi-agent
model of software systems proposed in [7]. Its expressive-
ness has been demonstrated by the specification and mod-
eling of various types of multi-agent systems, communica-
tion protocols, distributed algorithms and web services ar-
chitecture and applications [7, 8].

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the caste-centric model on which the

VM is based, where caste is the modular program unit and
the templates of agents. The key features of an
agent-oriented programming language CAOPLE will be
described. Section 3 presents the design of CAVM, the VM
in order to efficiently implement the semantic of CAOPLE.
Section 4 describes the implementation of the system and
reports the main results of preliminary evaluation. Section 5
concludes the paper with a discussion of related work and
future work.

2. Overview of The CAOPLE Language
This section briefly reviews the key concepts and features of
the caste centric model [9, 10] and the language CAOPLE
and discusses their requirements on the VM.

2.1. The Caste-Centric Model of Multi-Agent Systems
In this model, a software system consists of a number of
active autonomous computation entities called agents.
Agents are instances of Castes, and may be distributed over
a network and execute concurrently. Each agent encapsulates
four parts, which are defined in their corresponding Caste:
− State space defined by a set of variables;
− Actions that the agent can perform;
− Behaviour rules that the agent uses to determine when to

take an action and how to change its state; and
− Environment description that defines the entities in the

system the agent observes.
An action can be either observable by other agents or just

internal. When an agent takes an externally observable ac-
tion, it generates an event that the outside can perceive.
Similarly, a state variable can also be either observable by
the outside or just internal. The outside can obtain (but not
change) the value of an observable variable. Thus, agents
communicate and interact with each other through taking
observable actions and changing observable states and ob-
serving other agents’ actions and states. It is worth noting
that in this model, all entities in a multi-agent system are
agents. Object can be considered as a degenerate form of
agent [7, 9].

For example, the following simple CAOPLE program
given in Figure 1 defines a caste GreetingAgent, whose
agents are capable of taking two actions, to say Hello
World and to say Welcome. Each of them observes all
other agents of the caste. Their behaviour rules are: (1) to
say HelloWorld when it is created, and (2) whenever it
observes another agent says HelloWorld, it responds with
Welcome.

Figure 1. The HelloWorld program in CAOPLE

caste GreetingAgent;
observes all GreetingAgent;
action HelloWorld; Welcome;
init HelloWorld;
body
 when some A in GreetingAgent: HelloWorld()
 -> Welcome() End;

end GreetingAgent

729

As shown in the HelloWorld example, agents are de-
fined as instances of castes. A caste defines a template of
agents via encapsulating a collection of structural and be-
havioural characteristics in the form of a set of state vari-
ables, a set of actions, a set of behaviour rules and a de-
scription of a set of other agents as its designated environ-
ment. Here, caste plays a similar role as class in Ob-
ject-Oriented (OO) programming and data type in structured
programming. However, in OO paradigm an object is
bounded to its class statically. In contrast, in the caste model,
an agent is bounded to its castes dynamically, i.e. it may
change its caste membership at runtime by joining to or
quitting from a caste. An agent can also be a member of a
number of castes at the same time. The CAOPLE program
given in Figure 2 defines a caste Creator whose instances
will create a number of agents of caste GreetingAgent to
populate the world.

The location of the caste in a create statement can be
specified explicitly or implicitly. The general format of a
create statement is

create [AgentName in] CasteName(Para) [@URL],
where URL is a string that gives the location where the caste
object code is deployed. When URL is omitted, the location
of the caste must be resolved during the deployment of the
caste through a search strategy. However, agents of the same
caste can be created and execute on different machines. Thus,
the executable code of a caste must be loaded to these ma-
chines from where it is deployed. Such distributions of code
may happen at runtime. Agents can be created at runtime and
joins a caste at runtime through remote loading of the object
code from where the caste is deployed.

For example, suppose that two agents of caste Creator
declared in Figure 2 run on machine C1 and C2 and generate
N1 and N2 agents of GreetingAgent, respectively. The
system will then contain a total of N1+N2 agents of
GreetingAgent; N1 agents on C1 and N2 agents on C2.
They must be able to communicate with each other despite of
their distribution on the different computers. Moreover, the
system must also support the integration of new agent into
the system when a new agent is created. For example, if
another new agent of GreetingAgent is created on a
computer, say C3, all the N1+N2 existing agents should re-
spond to its HelloWorld action with their Welcome ac-
tions. This simple example shows that CAOPLE has the
features of network transparency of agents’ location because
the programmer does not need to know where the agents are
located at runtime.

The caste centric model not only supports dynamic inte-
gration of new agents into a system, but also adaptation of
behaviours through dynamic casteship changes. For example,
suppose that three sub-castes of caste GreetingAgent
are defined as in Figure 3. An agent of caste Smart can
determine its behaviour according to the weather of the day.
When the weather is fine, it will join the caste Golf-
Player and invite the new agent to play golf. If the day is
rainy, it will join the caste of CoffeeDrinker and
invite the new agent to drink coffee.

The support to the seamlessly dynamic integration of new
agents into the system must also enable new castes to be
added into the system without interfering with the existing

ones. For example, the caste Monitor given in Figure 4 can
be written and compiled after the agents of castes Greet-
ingAgent and Creator are created and running. When
an instance of the Monitor is created on a machine in the
network, it will start to count how many Welcome actions
are taken by the agents of caste GreetingAgent no mat-
ter whether the agents are created before or after its creation.

The overall structure of CAOPLE programs consist of a
number of type declarations and caste declarations.

A type declaration defines the formats of data that are
exchanged among agents, such as the parameters of ob-
servable actions and the values of observable variables. The
data are represented in XML. The type definition defines the
formats in Pascal-like syntax. It takes both advantages of the
flexibility and extendibility of data representation in XML
and the readability and high level of abstraction of type
definitions in Pascal-like programming languages and en-
ables static type checking during compilation. A type defi-
nition can be easily translated into XML for runtime proc-
essing. Details are omitted here as the focus of the paper is on
the VM.

2.2. Requirements on the Virtual Machine
In order to support distributed programming in a network
environment, the VM must support the following key fea-
tures of the CAOPLE language facilities.
Distributed deployment. Object code of a caste must be
deployed to a unique location in a distributed computer
system so that consistency of the code can be managed.
Object codes of different castes must be able to be deployed
to different computers so that load balance can be achieved.
Dynamic deployment must also be supported so that new
caste can be deployed without interfering with the execution
of an existing system.

Figure 2. An example of dynamic creation of agents.

caste Creator (population: Integer);
init
 Begin for i:=1 to population do
 create GreetingAgent; end;

end Creator

Figure 3. An example of adaptive behaviour

caste GolfPlayer is GreetingAgent;
action InvitePlayGolf();
body
 when some A in GreetingAgent: HelloWorld()
 -> InvitePlayGolf();
 End;

end GolfPlayer
caste CoffeeDrinker is GreetingAgent;

action InviteCoffee();
body
 when some A in GreetingAgent: HelloWorld()
 -> InviteCoffee();
 End;

end CoffeeDrinker
caste Smart is GreetingAgent;
 observes WeatherMan in WeatherForecaster

body
 when some A in GreetingAgent: HelloWorld()
 -> if WeatherMan.Today=’Fine’
 then join(GolfPlayer)
 elseif weatherman.Today=’Rainy’
 then join(CoffeeDrinker)end;
 End;

end Smart

Figure 4. An example of dynamic integration of castes

caste Monitor;
 observes all GreetingAgent;
 var counter: Integer;
 init counter :=0;

body
 when some A in GreetingAgent:
 SayWelcomeToTheWorld()
 -> counter:=counter+1 end;

end Monitor

730

Dynamic remote loading. An agent must be able to be
created or join a caste dynamically through create/join
statements. Consequently, the deployed caste object code
must be able to be loaded to any computer in the system at
runtime. When multiple agents of the same caste exist on the
same machine the code will be shared by these agents rather
than storing duplicated copies.
Autonomic management of object code. An agent can be
destroyed or quit from a caste using destroy/quit statements.
The loaded object code may be no longer needed thus can be
removed from the machine. However, the object code could
still be required as other agents may remain alive and run-
ning on the same machine. Such management of loaded
object code must be performed autonomically.
Transparent communication. In CAOPLE, agents commu-
nicate with each other through taking observable actions and
observing other agents’ states and actions in their environ-
ments. This communication facility is highly abstract and
transparent to the location where the agents are located. This
mechanism is essentially event driven. An agent’s observ-
able actions can be considered as publication of events. The
environment description can also be understood as sub-
scription to such publications. This publication/subscription
mechanism must also be supported by the VM.

3. The Virtual Machine CAVM
This section presents the design of the virtual machine.

3.1. Architecture
As illustrated in Figure 5, CAVM consists of two types of
components: Local Execution Engines (LEEs) and Commu-
nication Engines (CEs). The LEEs support the executions of
agents while the CEs support the communications between
agents, which may share the same computer with an LEE
(e.g. CE1 and LEE1 in Figure 5) or on different computers
over a network (e.g. CE2 and LEE2).

A program written in CAOPLE that consists of a number
of castes is compiled into CAVM’s object codes. Each
caste’s object code is deployed to one CE, but can be loaded
to a number of LEEs at runtime. When an agent of the caste
is created or an agent joins the caste on an LEE, the object
code is loaded if it is not already there. The object code could
be loaded locally or from a remote CE.

An object code file generated by compiler contains the
definition of a single caste in the object code of the CAVM.
It includes three main sections: constants, initialization code
and body code. The constant data section contains literal
constants and reference addresses in the code sections, such
as the offsets of state variables, offsets of action bodies,
offsets of environment variables, etc. The initialization code

section contains the instructions for the initialization of agent
when the agent is created or joins the caste. The body code
section contains the instructions fulfilling the main func-
tionalities of the agent. It is compiled from the source code in
the Body part of the caste. The object codes are represented
in XML format, which is transformed into a binary format
when the code is loaded to LEE.

Caste deployment is mandatory before any agent can be
instantiated from it. It binds the object code of a caste to a
communication engine CE. The process consists of two steps.
First, the CE stores and registers the caste’s object code file
and second the CE sets up and initializes the membership
management service and the communication services for the
caste.

If a caste is deployed successfully on a CE, we say that the
CE is the host CE of that caste. In general, a CE instance can
host many resident castes.

3.2. Local Execution Engines
As shown in Figure 6, a local execution engine (LEE) con-
sists of the following components. Program space (PS) stores
the object code of castes loaded on the LEE together with
LLC, a list of stored castes and their locations in the program
space. Loader finds and loads the object code of castes into
the program space when instructed by the Central Processing
Unit (CPU). A pre-defined search policy is applied by the
Loader to locate the object code deployed on CE. Memory
Space (MS) is the runtime memory that stores the states,
environment data of the agents running on the LEE, organ-
ized as agent context data (current program counter, operand
stack and local variables, etc). When an agent quits from a
caste, its context data is discarded. CPU interprets instruc-
tions stored in the PS and processes the data stored in the
memory space. For each instruction, the CPU changes the
state of the memory space and context register and updates
the Program Counter (PC) and then loads the next instruction
to the CPU. PC is a pointer to a location in the PS where the
next instruction will be loaded to the CPU to execute. It
therefore represents a thread of control. Upon send-
ing/receiving state/action update messages to/from a par-
ticular CE, environment data is updated autonomically and
asynchronously by the Communication Manager.

CAVM supports not only parallel computation by run-
ning a number of LEEs and CEs on a network of computers,
but also concurrent execution of multiple agents on one
computer through interleave. The multiple threads of exe-
cutions are achieved through a schedule policy (currently,
round robin) and switches between agents using the Context

Computer C1

Computer C2

Computer C3
LEE1

CE2
CE1

LEE2

Computer Cn

LEEk

CAOPLE
Source Code

Caste SC1 Caste SCn

CAVM Object Code
Caste OC1

Caste OCn

Compile

Deploy

Figure 5. The architecture of CAVM

Central
Processing
Unit (CPU)

Context
Registers

Loader Program Space

List of Loaded C
astes (LLC

)

Object code
 OC1

Object code
 OC2

Object code
 OCn

…

Memory Space

Environm
ent data

Agent A1
context

data

Agent Am
context

data

…

List of A
gents (LoA

)

Communication
Manager

Local Network Network

PC

Figure 6. Structure of Local Execution Engine (LEE)

731

Registers, which is a set of registers that store the context
information of the current agent. It includes two parts: the
offset of the agent’s local variables in memory and the
pointer to the agent’s operand stack. Within any one par-
ticular agent’s data in MS, it has its own local variables and
operand stack, which are two major runtime data structures
used by instructions to store/access runtime intermediate
states.

3.3. Communication Engines
The main functionalities of communication engines include
deployment management, membership management and
communication support of its resident castes. As shown in
Figure 7, a communication engine consists of the following
components. Receiver and Dispatcher are communication
units for receiving/dispatching messages from/to LEEs.
Communication Manager (CM) manages the state and action
lists of the active agents of the resident castes, according to
the environment descriptions, which serves as the definition
of the subscriptions, by means of Observe messages sent by
LEEs, to the events of observable actions and state changes.
Once an observable action or state change is received, the
Dispatcher sends the agent’s state/action change to the LEE
on which those agents who are observing it are running.
Membership Manager (MM) manages the activeness status
of all the agents of the resident castes, which can be distrib-
uted over the network. A data structure, Membership List, is
used to trace the activeness. Deployment Manager (DM)
manages the deployed castes’ object code and Publication
Space (PubS) is the memory space that stores the states and
actions published by its active agents.

3.4. Interactions between LEEs and CEs
One of the key features of the CAVM is its support to the
network transparent communications between the agents.
This is achieved by separating LEE and CE. The interactions
between LEEs and CEs are realized through the communi-
cation messages between LEEs and CEs, which can be
classified into the following categories.
Register/Deregister. When one agent is created as an in-
stance of a caste or joins a caste resident on a CE, it registers
to the caste through a Register message sent to the host CE.
Receiving such a message, the CE’s membership and
communication managers updates the caste’s information
and start to provide services to the agent. Similarly, when an
agent of a caste is destroyed or quits from the caste, a de-
register message is sent to the host CE. Consequently, the CE
updates its information and stops the services.
State/Action observe/update. At a high level caste-centric
agent-oriented programming language, agents communicate
with each other through taking observable actions and up-

dating observable state variables and perceiving other
agents’ actions and state variables. An agent A’s observable
actions and variable updating are compiled into instructions
that instruct the LEE to send Action or State Update mes-
sages to the caste’s host CE, which are forwarded to the LEE
on which agents that observes agent A execute according to
their environment descriptions. The environment descrip-
tions are also compiled into instructions that instruct the LEE
to send Action or State Observe messages to the corre-
sponding host CE. This is similar to the subscrip-
tion/publishing mechanism in many middleware, but repre-
sented at a higher level of abstraction and implemented with
more flexibility.
Membership book keeping. The host CE of a caste keeps the
track of the aliveness state of its agents, which can also be
queried by agents, for example, to obtain a list of live agents
of a caste. This is also realized through instructions that
results in a message sent to the caste’s host CE.

The messages are encoded in XML format. For example,
when an agent of caste GreetingAgent performs an
action HelloWorld, an update message is sent to the CE,
which in turn automatically propagates the change to the
Monitor agent that observes it. When the update message is
received by an LEE where a Monitor agent runs, the
Communication Manager will update the corresponding
environment data in its Memory Space.

3.5. Instruction Set
There are three types of CAVM instructions. The computa-
tion instructions perform computation and local control
functions. It includes arithmetic and logic operations as well
as control and stack operations. The interaction instructions
deal with the interactions between agents and castes. It in-
clude caste loading, agent’s joining and quitting a caste,
agent creation and deletion, state update, action event pub-
lishing, message sending and receiving, and event publishing
and subscription. The external invocation instructions are
those operations facilitating CAVM’s interaction with native
environment, such as invocation of third-party runtime li-
braries (e.g. DLL library) on the host machine, and those for
debugging purpose. Details of the instruction set are omitted
for the sake of space.

4. Implementation and Evaluation
A prototype system of CAVM is implemented with C/C++
using Visual Studio .NET. LEE and CE are realized as two
separate Common Language Runtime console servers. All
the functions described in section 3 have been implemented.
To facilitate experiments with and evaluation of the design
and implementation of the VM, a GUI interface is also de-
veloped for the deployment and execution of object code, the
measurement of system performance and the management of
the VMs running over a network.

Figure 8 is a screen snapshot of the interface. It shows the
object code of a caste on the left part of the window. On the
right hand side are the IP addresses of the CEs on which
object codes are (to be) deployed. The performances of CEs
and LEEs are monitored and information is displayed on the
tab CE monitor and LEE monitor, respectively. It also pro-
vides remote control over agents distributed over a network,
such as remote agent launching.

To test the system and evaluate its performance, several
preliminary experiments have been conducted. The experi-

Publication Space
Agent A1 s/a

data

Agent Ai s/a
data

Communication
Manager

Membership List
(of Active Agents)

Receiver Dispatcher

Object
Code

Deployment
Manager

LocalNetwork Network

…

Membership
Manager

Figure 7. Structure of Communication Engine (CE).

732

ments were performed in a network environment consists of
several computers (depending on different experiments). All
the computers have Intel Pentium 1.70GHz CPU, 512MB
RAM, interconnected by 100M Ethernet. The computation
performance is measured by the number of instructions per
milli-second (IPmS) and communication performance is
measured by the number of messages per milli-second
(MPmS).

Figure 9 shows the result of experiments in which the
performance of a system that consists of a number of agents
communicating to another agent running on the same com-
puter (Exp1) is compared with the performance when the
other agent is running on a different computer (Exp2). The
performance difference of Exp1 and Exp2 is largely be-
cause in the former the communication is via shared mem-
ory while the latter is through TCP.

Figure 10 shows the results of experiments in which
agents are distributed to a number of computers and each
computer hosts 100 agents. The performance of the system
only declines slightly due to communication overhead when
the number of computers increases.

From the results of the experiments, we can conclude
that the design and implementation of the prototype CAVM
is efficient in performance and scalable for running a large
number of agents over a network.

There are more experiments with the system. Due to the
limit on space, the data will be reported in another paper.

5. Related Works
There are two classes of related
works. One is the implementa-
tion of agent- oriented pro-
gramming languages and the
other is virtual machines.

A few programming lan-
guages have been proposed and
implemented to directly imple-
ment agent-oriented concepts in
the literature. In [11], Rafael H.
Bordini et al. classified these
agent- oriented languages into
three categories: purely de-
clarative (e.g. CLAIM [12]),
purely imperative (e.g. JACK
[13]), and hybrid languages that
combines declarative and im-
perative features (e.g. 3APL
[14], Jason [15], and IMPACT
[16]). They also surveyed those
platforms which realized the

semantic of those languages. The CAOPLE is an imperative
programming language with language facilities of high level
abstractions that directly support the caste-centric approach.

Such implementations have been focusing on the supports
to programming in mentalist models of agents such as belief,
desire, intension, reasoning, and planning through extending
existing programming languages and concepts based on
logic or object-oriented languages. However, their pro-
gramming platforms are either centralized or using a simple
distributed computing models (e.g. RMI) to support agent
communication in decentralized environment.

The JACK Agent Language (JAL) [13] is probably the
most similar to CAOPLE language. It is also an imperative
programming language, which extended Java by adding a
number of declaration types used to declare agents, belief-
sets, views, events, plans and capabilities, and statements to
manipulate events in an imperative manner. In addition to
the development environment and debugger, JACK’s plat-
form contains a light weight communication mechanism to
support the sending and receiving messages between agents.
The address of the agent on the computer in the form of
portal is required when an agent send a message to another,
while our VM supports network transparency at high level
programming language so that agents can communicate with
each other without explicitly specify network address of the
agents as shown in our examples. In comparison with JACK,
CAVM provides a much higher level communication facil-
ity and autonomic mechanism.

In our previous work of experiments with design and
implementations of agent oriented programming languages,
the SLABSp language [17] is also based on the caste centric
model. It extends Java with caste and scenario facilities. The
implementation of SLABSp uses components and middle-
ware in a similar way as JACK’s platform. It is observed that
the VM approach reported in this paper is more flexible and
more efficient.

VMs have long been used in hardware virtualization,
representing intermediate structures, and bytecode interpre-
tation [18]. They have drawn renewed attention in recent
years for their advantages in resource virtualization in the
network environments [6]. As a virtual machine of TinyOS,
Mate [19] can reprogram the sensor network by sending and
receiving messages that enable the deployment of ad-hoc
routing and data aggregation algorithm. This feature is
similar to CAVM’s dynamic loading of object code to LEEs.

Figure 8. Screen snapshot of the management tool.

Figure 9. One computer vs two computers
Figure 10. Performance as the numbers of computers

and agents increase

733

Comparing to Mate, CAVM is more powerful, flexible and
at a higher level of abstraction. Moreover, by decoupling
computation from communication, CAVM enables LEE to
be run on less powerful devices while leave communication
tasks to be handled by CE running on computers of high
network bandwidth and processing power. Of course, the
main difference between CAVM and Mate is that CAVM is
a high level language VM while Mate is a system VM ac-
cording to Smith and Nair’s classification. A well-known
high language level VM is the Java Virtual Machine JVM
[20], which provides platform independence to the object
oriented programming language Java. Similar to JVM and all
other high level language VMs, CAVM provides an abstract
layer of indirection for efficient implementation of a high
level programming language that is not directly supported by
the hardware architecture and instructions. However, unlike
JVM, CAVM supports distributed computing from the in-
struction level rather than using an add-on distributed object
model (e.g. RMI). Thus, distributed programs can be written
at a higher level of abstraction without being forced to
comply with a distributed computation model.

Finally, the publish/subscribe paradigm has the feature of
decoupling the communicating parties in time, space and
flow, and facilitating concurrent asynchronous computations,
which is essential for Internet-based computation. The
mechanism has been implemented in various middleware,
but few in VMs [21]. The communications between LEEs
and CEs in CAVM can be viewed as a publish/subscribe
model, but it is in the agent-oriented metaphor described at a
high level of abstraction in the form of environment de-
scription. In particular, it is unnecessary for an agent to hold
each other’s references to actively participate in interaction.
The built-in communication management mechanism in
CAVM enables an asynchronous updates of agents’
state/action changes.

6. Conclusion and Future Work
The main contribution of the paper is a virtual machine
CAVM designed for the implementation of caste-centric
agent-oriented programming language CAOPLE. Its archi-
tecture consists of local execution engines (LEEs) and
communications engines (CEs) distributed over a TCP/IP
network such as the Internet. It provides the mechanisms
and facilities to support inter-agent communications with
location transparency, dynamic code distribution for agents’
dynamic joining to and quitting from castes and creating
agents as instances of castes whose object codes are de-
ployed to computers on the network. Experiments with the
performance of the VM were reported, which demonstrated
the efficiency and scalability of the system.

Currently, we are completing a compiler that translates
CAOPLE source code to the CAVM object code. We are
also developing a library of graphic user interface agents for
dynamic construction and adaptation of graphic user inter-
faces. Finally, case studies with real applications are also on
our agenda.

Acknowledgments
The authors would like to thank the Applied Formal Method
research group at Oxford Brookes University for discussions
on related topics and comments on the earlier draft of the
paper. The work is partially supported by China Ministry of
Science and Technology in the National Basic Research
Program (973 program) under the grant 2005CB321800. The
work is carried out while the first author, Bin Zhou, was
visiting Oxford Brookes University.

References
[1] Jennings, N. R.: On agent-based software engineering. Artifi-

cial Intelligence 117, 277–296, 2000.
[2] Jennings, N.R., Wooldridge, M.J. (eds.): Agent Technology:

Foundations, Applications, and Markets. Springer, 1998.
[3] Zambonelli, F. and Omicini, A.: Challenges and Research

Directions in Agent-Oriented Software Engineering, AAMAS
9, 253-283, 2004.

[4] Henderson-Sellers, B. and Giorgini, P. (Eds.): Agent-oriented
Methodologies, Idea Group Publishing, June 28, 2005.

[5] Padgham, L., and Zambonelli, F.: Agent-Oriented Software
Engineering VII, LNCS 4405. Springer, 2007.

[6] Figueiredo, R., Dinda, P. A., Fortes, J.: Resource Virtualiza-
tion Renaissance, Computer 38(5), 28-31, 2005.

[7] Zhu, H.: SLABS: A formal specification language for agent
based systems. SEKE 11(5), 529–558, 2001.

[8] Zhu, H. and Shan, L., Caste-Centric Modelling of Multi-Agent
Systems: The CAMLE Modelling Language and Automated
Tools, in Model-driven Software Development, Beydeda, S.
and Gruhn, V. (eds), 57-89. Springer, 2005.

[9] Zhu, H.: Towards An Agent-Oriented Paradigm of Informa-
tion Systems. Handbook of Research on Nature Inspired
Computing for Economy and Management, Jean-Philippe
Rennard (Ed), Idea Group Inc. Chapter XLIV, 679–691, 2006.

[10] Mao, X., Shan, L., Zhu, H and Wang, J.: An Adaptive Cast-
eship Mechanism for Developing Multi-Agent Systems, Intl. J.
of Computer Application in Technology. (In press)

[11] Bordini, R. H., et al.: A survey of programming languages and
platforms for multi-agent systems. Informatica 30(1), 33-44,
2001.

[12] Seghrouchni A., Suna. A.: CLAIM: A computational language
for autonomous, intelligent and mobile agents. Programming
Multiagent Systems, LNCS 3067, Springer Verlag, 2004.

[13] Winikoff. M.: JACKTM intelligent agents: An industrial
strength platform. In Multi-Agent Programming: Languages,
Platforms, and Applications, Bordini, R. H., Dastani, M., Dix, J.,
Seghrouchni, A. (eds.), Springer, Chapter 7, (2005)

[14] Hindriks, K., de Boer, F., van der Hoek, W., Meyer. J.: Agent
programming in 3APL. AAMAS 2(4), 357–401, 1999.

[15] Rao. A. S.: AgentSpeak(L): BDI agents speak out in a logical
computable language. Proc. of Modelling Autonomous Agents
in a Multi-Agent World, LNAI 1038, 42–55. Springer, 1996.

[16] Subrahmanian, V., et al.: Heterogenous Active Agents.
MIT-Press 2000.

[17] Wang, J., Shen, R., Zhu, H.: Agent oriented programming
based on SLABS. Proc. of COMPSAC’05, 127–132, 2005.

[18] Smith, J. E. and Nair, R.: The Architecture of Virtual Ma-
chines, Computer 38(5), 32-38, 2005.

[19] Levis P., Culler. D.: Mate: A tiny virtual machine for sensor
networks. Proc. of Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2002.

[20] Lindholm, T., Yellin, F.: The Java Virtual Machine Specifi-
cation. Second Edition, Addison-Wesley, 1999.

[21] Deng, Y., Sadjadi, S. M., Clarke, P. J. Zhang, C., Hristidis, V.,
Rangaswami, R., and Prabakar, N.: A Communication Virtual
Machine, Proc. of COMPSAC'06, 521-531, 2006.

734

MAAEM: A Multi-agent Application Engineering Methodology

Adriana Leite, Rosario Girardi, and Uiratan Cavalcante
UFMA – Federal University of Maranhão

Av. dos Portugueses, s/n
São Luís, Brazil

{adri07lc@gmail.com, rgirardi@deinf.ufma.br, uiratan@gmail.com}

Abstract

Multi-agent Application Engineering is a process for the
construction of applications based on the reuse of agent-
oriented software artifacts. This paper introduces MAAEM
(“Multi-agent Application Engineering Methodology”), an
ontology-driven methodology for multi-agent system
development which promotes the reuse of software artifacts
previously produced in a Multi-agent Domain Engineering
process.

1. Introduction
Domain Engineering, also called development for reuse,

is a process for the creation of software abstractions
reusable on the development of an application family in
particular domain problem. Application Engineering or
development with reuse is a process for the construction of
a specific application through the reuse of available
abstractions from Domain Engineering.

MAAEM is a methodology for Multi-agent Application
Engineering approaching the analysis, design and
implementation of multi-agent applications through the
reuse of software artifacts previously developed with
MADEM [8], a methodology for Multi-agent Domain
Engineering. MAAEM approaches the selection, adaptation
and composition of these artifacts for the construction of a
specific application of the family.

ONTORMAS [10] is an ontology-based tool that
conceptualizes the MADEM and MAAEM methodologies
and specifies all the guidelines for Multi-agent Domain and
Application Engineering.

Infonorma [4] is a multi-agent legal recommender
system that recommends legal normative instruments to
users according to their particular interests. The system was
modeled under the guidelines of MAAEM and this
experience has contributed for its evaluation.

This paper introduces the MAAEM methodology,
illustrating its application through the development of the
Infonorma system.

The paper is organized as follows. Section 2 presents the
MAAEM methodology along with some examples of its
application on the development of the Infonorma multi-
agent system. Section 3 summarizes the ONTORMAS
support to the MAAEM methodology. Section 4 presents
related work on multi-agent development. Finally, section 5

concludes the paper with some considerations about
further work on MAAEM and ONTORMAS.

2. The MAAEM Methodology
For the specification of a problem to be solved,

MAAEM focuses on modeling concepts, goals, roles and
interactions of entities of an organization.

Entities have knowledge and use it to exhibit
autonomous behavior. An organization is composed of
entities with general and specific goals that establish what
the organization intends to reach. The achievement of
specific goals allows reaching the general goal of the
organization. For instance, an information system can have
the general goal of “satisfying the information needs of an
organization” and the specific goals of “satisfying dynamic
or long term information needs”. Specific goals are reached
through the performance of responsibilities in charge of
particular roles with a certain degree of autonomy.

Roles have skills on one or a set of techniques that
support the execution of responsibilities in an effective
way. Pre-conditions and post-conditions may need to be
satisfied for/after the execution of a responsibility.
Knowledge can be consumed and produced through the
execution of a responsibility. For instance, an entity can
play the role of “retriever” with the responsibility of
executing the responsibilitty of satisfying the dynamic
information needs of an organization. Another entity can
play the role of “filter”, in charge of the responsibility of
satisfying the long-term information needs of the
organization. Skills can be, for instance, the rules of the
organization to access and structure its information sources.
Sometimes, entities have to communicate with other
internal or external entities to cooperate in the execution of
a responsibility. For instance, the entity playing the role of
“filter” may need to interact with a user (external entity) to
observe his/her behavior in order to infer his/her profile of
information interests. For the specification of a design
solution, roles are assigned to agents structured and
organized into a particular multi-agent architectural
solution according to non-functional requirements.

The tasks performed, the resources required and the
products obtained at each phase of the MAAEM
methodology are described in the following sections an
summarized in Table 1.

735

Table 1 - Phases, Resources, Tasks and Products of the MAAEM methodology

2.1. The Application Analysis Requirements
Phase

The MAAEM requirements analysis phase is performed
through the following modeling tasks: concept modeling,
goal modeling, role modeling, role interaction modeling
and user interface prototyping. This phase intends to
identify and specify the requirements of a particular
application from domain models already created in the
respective phase of the MADEM methodology [8]. Thus,
the central task of a developer is to reuse a set of
requirements of an application family in a domain through

their selection among the common and variable
requirements in a domain model.

The modeling of domain application concepts task aims
at performing a brainstorming of domain concepts and their
relationships, representing them in a Concept Model. These
concepts are refined in the subsequent modeling tasks.

The purpose of the goal modeling task is to identify the
goals of the family of systems, the external entities with
which it cooperates and the responsibilities needed to
achieve them. Its product is a Goal Model, specifying the
general and specific goals of the system family along with
the external entities and responsibilities. Figure 1 illustrates
the Goal Model of Infonorma.

736

Figure 1 – Goal Model of Infonorma

The role modeling task associates the responsibilities
identified in the goal modeling task to the roles that will be
in charge of them. The pre and post-conditions that must be
satisfied before and after the execution of a responsibility
are also identified. Finally, the knowledge required from
other entities (roles or external entities) for the execution of
responsibility and the knowledge produced from their
execution is identified. This task produces a Role Model,
specifying roles, responsibilities, pre- and post-conditions,
knowledge and relationships between these concepts.

The role interaction modeling task aims at identifying
how external and internal entities should cooperate to
achieve a specific goal. For that, responsibilities of roles
are analyzed along with their required and produced
knowledge specified in a role model. A set of Role
Interaction Models, one for each specific goal in the Goal
Model, specifying the interactions between roles and
external entities needed to achieve a specific goal is
constructed as a product of this task.

Finally, is constructed a User Interface Prototype,
identify the interactions of the users with the system and
simulate them in a prototype.

2.2. Application Design Phase
In the Application Design Phase developers reuse design

solutions of a family of applications and adapt them to the
specific requirements of the application under
development. Otherwise, they design a multi-agent
architecture from scratch, providing a solution to the
requirements of the multi-agent application specified in
Analysis Requirements Phase.

This phase consists of two tasks: the Architectural
Design task aiming at constructing a multi-agent society
architectural model and the Agent Design task, which
defines the internal structure of each agent in the society.

The Architectural Design task consists of five sub-tasks:
Multi-agent Society Knowledge Modeling, Multi-Agent
Society Modeling, Agent Interaction Modeling, Activity
Modeling, and Coordination and Cooperation modeling.

The purpose of the multi-agent society knowledge
modeling subtask is to represent the meaning of concepts
that agents of the society need to understand in order to
communicate with each other. This is done through the
construction of a model of the multi-agent society
knowledge, represented in a semantic network. In the
Multi-Agent Society Modeling sub-task, the roles identified
in the application analysis phase are assigned to agents. An
agent can play one or more roles according to the affinity
between their responsibilities, number of interactions
between them or functional cohesion criteria. In the Agent
Interaction Modeling sub-task, the interactions between the
agents are specified. Messages are specified following the
FIPA-ACL guidelines. The Activity Modeling sub-task
aims at detailing the activities carried out to achieve the
specific goals. Its product is a set of activity models, one
for each specific goal of the application. The Coordination
and Cooperation modeling sub-task aims at either reusing
or creating appropriate mechanisms of coordination and
cooperation between agents to produce a coordination and
cooperation model satisfying non-functional requirements.
Figure 2 illustrates part of the Multi-agent Society Model
of Infonorma showing the specification of the Filter agent.

The Detailed Design task is constituted of two sub-tasks:
Agent Knowledge Modeling and Agent State Modeling.
The Agent Knowledge Modeling sub-task specifies the
knowledge of each agent. It is built based on the agent
knowledge previously specified on the agent activity
models and on the multi-agent society knowledge model.
The Agent State Modeling sub-task aims at representing the
states that the agent assumes during its lifecycle, as well as
the transitions that lead from one state to another. The
activities identified in the activity model are associated
with the states identified here. For each state it is specified
the activity that the agent performs when it assumes the
state, namely entry activity, the actions, which is a set of
activities that can be performed in the current state and the
exit activity, which is the one performed right before the
agent leave its current state.

737

Figure 2 - Multi-agent Society Model of Infonorma showing the Filter agent

2.3. Application Implementation Phase
In the Application Implementation Phase, agents are

identified from the Activity Models of the previous phase.
A behavior is associated to each responsibility in a
particular language/platform of agent’s development, such
as JADE [1], producing a Behaviors Model. Agent’s
interactions are identified in the Agent’s Interactions
Model, which are mapped to a specific language for
communication between agents, as FIPA_ACL [4],
resulting in a Communication Acts Model. In this phase,
the selection of agents for reuse occurs based on the
similarity of behaviors and agent communications. Figure 3
illustrates the Communication Acts Model of Infonorma,
showing the communication between the Filter and User
Modeler agents.

3. Multi-agent Application Engineering
Support

ONTORMAS [10] is an ontology-based tool developed
in Protégé environment [6] that provides support to the
modeling tasks of both MADEM and MAAEM
methodologies. Modeling products are generated through
the instantiation of the corresponding subclasses of the
Modeling Tasks, Modeling Products, and Modeling
Concepts classes of the ONTORMAS ontology. Once
instantiated, ONTORMAS becomes a knowledge base
where concepts in modeling products are semantically
related, and, therefore, queries and inferences through
logical reasoning can be done to facilitate the
understanding and reuse of modeling products.

Figure 3 - Communication Acts Model of Infonorma
738

Figure 4 illustrates some semantic relationships between
classes and instances in the ONTORMAS knowledge base.

Figure 4 – Some semantic relationships between
classes and instances int the ONTORMAS

knowledge base.

Since retrieval is based on semantics, results from
searching on modeling products and concepts in the
ONTOMADEM knowledge base are more effective than
the ones that could be obtained through simple keyword
retrieval on instance texts. After the selection of the artifact
that most closely matches their needs, a user should check
if the artifact can be integrally reused or if it needs adapta-
tion or integration with other artifacts.

Also, a graphical notation has been defined in
ONTORMAS for the representation of each modeling
product. This facilitates not only the instantiation process
but also contributes for reducing the complexity of the
modeling tasks, allowing the visualization, decomposition
and refinement of the modeling products.

4. Related Work
Some methodologies, like GAIA [11], PASSI [2] and

TROPOS [7], have been already developed to increase the
productivity of the software development process, the
reusability of generated products, and the effectiveness of
project management.

GAIA is a methodology based in human organization
concepts. It supports the analysis and design phases for
multiagent system development. Tropos is an agent-
oriented software development methodology supporting the
complete multi-agent development process. It is based on
the i* organizational modeling framework. PASSI is a
methodology for multi-agent development integrating
concepts from object-oriented software engineering and
artificial intelligence approaches. It allows the development
of multi-agents systems for special purposes as mobiles and
robotics agents and uses an UML-based notation. There

are available tools for PASSI and TROPOS modeling and
code generation. However, only PASSI allows code reuse.

Two main features distinguish MAAEM from other
existing approaches. First, it provides support for reuse on
multi-agent software development, through the integration
of the concepts of Domain Engineering and Application
Engineerings. Second, it is a knowledge-based technique
where models of agents and frameworks are represented as
instances of the ONTORMAS ontology. Thus, concepts are
semantically related allowing effective searches and
inferences thus facilitating the understanding and reuse of
the models during the development of specific applications
in a domain.

5. Conclusions and further work
This paper described MAAEM, an ontology-based

methodology for analysis, design and implementation of
multi-agent systems. The software artifacts produced by
MAAEM are represented as instances of the ONTORMAS
ontology, which serves as a repository for reusable software
artifacts and also as a tool supporting application
development.

MAAEM is a part of a project for the improvement of
multi-agent system development techniques, methodologies
and tools. With the knowledge base provided by
ONTORMAS, an expert system is being developed, aiming
at automating various tasks of both MADEM and
MAAEM, thus allowing fast application development and
partial code generation.

MAAEM currently supports compositional reuse, based
on the selection, adaptation and composition of artifacts. A
generative approach [3] for reuse has been explored with
the specification of the GENMADEM methodology and the
ONTOGENMADEM tool [9]. ONTOGENMADEM
provides support for the creation of Domain Specific
Languages to be used on the generation of a family of
applications in a domain. Further work will extend
ONTORMAS for supporting ONTOGENMADEM
allowing generative reuse in Multi-agent Applications
Engineering.

References
[1]BELLIFEMINE, F., CAIRE, G., POGGI, A.,

RIMASSA, G.. (2003). JADE A White Paper. Exp v. 3
n. 3, Sept 2003. http://jade.tilab.com/

[2]COSSENTINO, M., SABATUCCI, L., SORACE, S.
and CHELLA, A. (2003). Patterns reuse in the PASSI
methodology. In: Proceedings of the Fourth
International Workshop Engineering Societies in the
Agents World (ESAW'03), pp. 29-31. Imperial College
London, UK.

[3]CZARNECKI, K., EISENECKER, U. W. (2000).
Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing
Co., New York, NY.

[4]DRUMOND, L. and GIRARDI, R. (2008). A Multi-
agent Legal Recommender System. Journal of
Artificial Intelligence and Law, (to appear).

[5]FIPA. ACL Message Structure Specification. Available
at: 739

<http://www.fipa.org/specs/fipa00061/SC00061G.htm
l>. Accessed in: March 02 2008.

[6]GENNARI, J., MUSEN, M. A., FERGERSON, R. W. et
al. (2002). The Evolution of Protégé: An Environment
for Knowledge-Based Systems Development.
Technical Report SMI-2002-0943.

[7]GIORGINI, P., KOLP, M., MYLOPOULOS, J., &
Pistore, M. (2004). The Tropos methodology: An
overview. In Methodologies and software engineering
for agent systems. Boston: Kluwer Academic
Publishing, pp. 89-106.

[8]GIRARDI, R. and BALBY, L. (2007). A Domain Model
of Web Recommender Systems based on Usage
Mining and Collaborative Filtering. Requirements
Engineering , v. 12, n. 8, pp. 23-40.

[9]JANSEN, M., GIRARDI, R. (2006). GENMADEM: A
Methodology for Generative Multi-agent Domain

Engineering. In: The 9th International Conference on
Software Reuse, 2006, Torino. Proceedings of the 9th
International Conference on Software Reuse, Lecture
Notes in Computer Science (LNCS), v. 4039, p. 399-
402. Berlin: Springer-Verlag.

[10]LEITE, A. GIRARDI, R. (2008). ONTORMAS: An
Ontology-driven tool for Domain and Application
Engineering, The XI Iberoamerican Workshop on
Requirements Engineering and Software Environment.
(In Portuguese, to appear).

[11]ZAMBONELLI, F., JENNINGS, N., and
WOOLDRIDGE, M. (2003). Developing multiagent
systems: The Gaia methodology. ACM Transactions
on Software Engineering and Methodology, pp. 417-
470.

740

A Semantic Based Certification and Access Control
Approach Using Security Patterns on SEAGENT

Fatih Tekbacak
Department of Computer Engineering

Izmir Institute of Technology

Urla, Izmir, Turkey 35430

Email: fatihtekbacak@iyte.edu.tr

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology

Urla, Izmir, Turkey 35430

Email: tugkantuglular@iyte.edu.tr

Oguz Dikenelli
Department of Computer Engineering

Ege University

Bornova, Izmir, Turkey 35100

Email: oguz.dikenelli@ege.edu.tr

Abstract—In this paper, we propose a security infrastructure
for communication between agents adaptable to FIPA security
specifications by employing security patterns and semantic based
policy descriptions. Security patterns are used as a generalized
approach for generating security based services. This paper
analyzes the authentication and semantic based access control
among agents by using the security patterns.

I. INTRODUCTION

Multi-agent systems(MAS), which communicate in an open

environment like Internet, face safety and security problems.

Therefore, MAS should have some strategies, policies and

mechanisms for confidentiality, integrity, authentication, non-

repudiation [1], [2], [3]. This paper proposes a security in-

frastructure intended for a FIPA compliant multi-agent system

namely SEAGENT [4], and provides a solution by using secu-

rity patterns with semantic web for policy based approaches.

SEAGENT agents demanding for secure access will be utiliz-

ing Agent Authenticator, Agent Certification Authority(ACA)
and Access Controller patterns that have been explained in

Tropos methodology [5].

II. BACKGROUND

SEAGENT is a P2P Java framework for writing Semantic

Web enabled Multi-Agent applications [4]. The main objective

of SEAGENT project is to develop an agent framework for

constructing FIPA-compliant multi-agent platforms that work

on semantic web environment. It’s communication module

supports current web based communication protocols both for

intra-platform and inter-platform communication.

Agent oriented software engineering is one of the most

natural ways of characterizing security issues in information

systems. This approach allows developers first to model the

security requirements in high-level and then incrementally ap-

ply these requirements to security mechanisms as services(or

agents) in the multi-agent systems [6], [7].

This paper uses the approach that has been detailed in [7].

The authors of Tropos merged the advantages of the agent

oriented programming and security patterns paradigms by ap-

plying both of them in the Tropos methodology. Secure Tropos

extends the agent oriented software engineering methodology

by providing a set of security-related concepts and processes

to allow developers to consider security issues throughout the

development stages. By using this methodology, agent oriented

concepts could identify a set of security requirements needed

by the system and these requirements can be transformed to

a design with the use of security patterns.

Since SEAGENT is a FIPA-based multi-agent system, FIPA

specifications have been followed throughout this work. First,

all agents must register to Agent Management System(AMS).

AMS has the responsibility to monitor the lifecycle of agents

and agents must inform AMS about their platform related

actions(register, deregister and so on). Second, software agents

must also register their service descriptions to Directory Facil-

itator(DF). During this process, a masquerading agent should

be prevented from registering its services or service descrip-

tions and at the end damaging the platform. Third, there is also

a communication layer called Agent Communication Chan-

nel(ACC) which transmits agent communication messages.

Those messages should have confidentiality, integrity, authenti-

cation and non-repudiation properties according to FIPA secu-

rity specification. This specification introduces Agent Platform

Security Manager(APSM) which defines security issues of

AMS and requires a PKI for registering agents. The speci-

fication of FIPA for message-based communication security

uses Agent Communication Language(ACL) envelope added

properties.

III. SECURITY PATTERNS

Security is often an afterthought functionality in system design

and implementation. The enterprise context and requirements

that drive system security are often not addressed explicitly

and are not incorporated into system architectures. The desired

approach is to begin to address security together with the

system design rather than the repair-service approach [3].

The basic idea behind patterns is to capture expert knowl-

edge in the form of documentation with a specific structure

containing proven solutions for recurring problems in a given

domain. In particular, security patterns can be more useful

when people responsible for systems have little or no security

expertise.

In this paper, Agent Authenticator, Agent Certification Au-
thority and Access Controller patterns have been examined in

detail. The remaining patterns defined in [7], namely Agency
Guard and Sandbox patterns are out of scope of this paper.

741

A. Agent Authenticator

Agents must be authenticated in the platform before they

are allowed for intra- and inter-platform communication. The

Agent Authenticator pattern determines the authentication pro-

cess of agents in an agency. The authentication process is

implemented by using digital signatures generated with agent’s

or agency’s secret key.

The advantage of Agent Authenticator is to check the

agent’s identity before it involves in any communication within

the agency. Authentication of the requesting agent could be

verified by Agent Authenticator. This pattern also prevents

implementation of different authentication mechanisms for

different agents.

The disadvantage of this approach is that Agent Authen-
ticator becomes a central point. So that when the Agent
Authenticator crashes, the whole system would be under risk.

The design of the agent authentication model in SEAGENT

by using SEAGENT Plan Editor is shown in Figure 1. Sup-
plyPrivateInformation behaviour takes the owner policy and

key pair of the agent. Outcome of this behaviour is passed

to SupplyPrivateKey action. Private key of the agent is used

for creating its digital signature for authentication issues in

SupplyDigitalSignature action. AuthenticationManager action

is the connection point of AgentAuthenticator with AgentCer-
tificationAuthority to obtain the related request parameters by

the issued certificate of the agent. These parameters could be

subject, issuer of the certificate, validity time of the certificate

to validate the digital signature and apply the authentication

rules to decide agent’s authentication for the communication.

AgentAuthenticator lastly takes its external provision as Re-

questParameters from AgentCertificationAuthority and passes

these parameters to AuthenticationManager by provision in-

heritance. So the Agent Authentication mechanism halts by

the decision of this behaviour’s planning activities and the

outcome of AuthenticationManager causes the authentication

decision for the requestor agent.

Fig. 1. Agent Authenticator Plan in SEAGENT (General View)

B. Agent Certification Authority

In a trusted environment, every agent is required to possess

a certificate which includes a public key. The corresponding

private key is stored by the agent in a secure manner. These

agents verify their identities by generating digital signatures

using their own private keys.

The advantage of Agent Certification Authority is the ability

to verify a requestor agent. So that the indicated public key

is proven to be really used for the communication. This

pattern helps to design an appropriate signature verification

mechanism to satisfy identity and authentication requirements

for a specific domain or situation [3]. The disadvantage of this

pattern could be scalability problem when a lot of agents want

to request for certification.

C. Access Controller

This is a pattern that restricts agent access to resources.

Agents with various privileges can exist in an agency. Agents

requesting for a resource could be denied or accepted ac-

cording to the requested action. Agents in the agency could

access the resources(or other agents) according to the response

of Access Controller. These responses have been sent to the

agents with the indicated privileges. If there is an agent’s

resource requirement instead of access to an agent, Resource
Manager behaves as a helper service to the Access Controller
and accesses the related agents’ resources.

The advantage of Access Controller is the usage of different

policies for different actions. In Figure 2, the ACA gives

Agent2 to send-to privilege for communicating with Agent1.

These privilege types could be obtained from FIPA-ACL based

message envelope by different SecurityObjects. If the Agent2
tries to take send-to privilege, the SecurityObjects for different

agents could determine the acceptance or denial of the message

with inform or refuse communicative acts in FIPA. There is

a disadvantage of this pattern that the crash of the Access
Controller makes the access protocol unusable in agency.

Fig. 2. FIPA ACL Message Example with Security Access Information

IV. SOFTWARE AGENT CERTIFICATION

The proposed approach attempts to employ security patterns

for model driven design with reusable code and suggests

utilization of semantic data on certification and policy based

agent access models. It also defines a message extension for

a new element that describes a form of the message security.

742

Essential security services explained in [8] are presented in

layers.

ACA is a security wrapper for the system that dominates the

protocol steps and supplies them to the agents. During Agent

Certification Authority [5] process time, ACA enables both

sender and receiver agents to negotiate security parameters and

then on agents will communicate using the negotiated values.

This negotiation also helps to decouple the multi agent system

from selected security approach.

Creates key pair. Request

certificate.
security parameters and

communication.
the security level of
Send expected parameters for

Share public information, policy

according to ACA based
parameters.

information with certificate

Agent 1(Requestor)
ACA creates public/private
key pair and stores its

Save certification
and policy
information.

Agent1 and ACA.
steps between
Agent2 processes the same

Agent2(Supplier)Access Controller
ACA,

certification information.

registration.
Information about certificate

Requests Access Controller
to access an agent.

database.
policy data in
semantically presented
request according to
Accepts or denies

Fig. 3. Steps of Agent Certification Mechanism

The software agent certification steps have been illustrated

in Figure 3. First, ACA creates public/private key pair and

stores its certification information(issuer, subject, owner, va-

lidity, public key with key algorithm information, signature

information, default certificate policies and policy mappings).

The storage process is based on XML data for syntactic data

compatibility and used by all agents. By default, authentication

across agents will be accomplished by the same algorithm as

the intra-platform communication. This authentication mecha-

nism will be based on ACA as mandatory authentication and

access control approach between agents. Because the access

information and related certification information for supplier

agents have to be supplied to the requestor agents by ACA.

If ACA accepts the requests of the Agent1, it sends expected

parameters for the security level of communication. ACA

accepts the certificate and registration information with policy

data from Agent1 and ACA saves certification information in

XML and policy information in OWL(Web Ontology Lan-

guage) format to its database. Then it informs the requestor

agent. The semantic data for policy information aims to collect

the policies in a tractable way by the Access Controller.

ACA shall contractually require that the subscriber indicates

acceptance or rejection of the certificate following its issuance,

in accordance with procedures established by the ACA.

Agent1 creates its key pair and stores them as explained in

the first step of ACA. Then this agent requests security pa-

rameters and certificate from ACA. All private keys and other

security related data have to be available to their owner only.

Data may not be accessible to other agents (even the agent

platform). Every agent has to keep its private data secured but

the platform based public information with certificate could

be shared between agents according to ACA based parameters.

So ACA will send certification information to the agents if the

requesting side has the right to communicate in the platform.

The certificate policies for agents are initialized in ACA by

the security engineer of the system.

Agent1 prepares certificate and requests to register it with

semantic policy information. Then the communication of

Agent1 with ACA ends for the certification and semantic data

exchange.

The access information have been stored as semantic infor-

mation shown in Section V. This access information is sent

and received with a SecurityObject. The SecurityObject can

be included as user-defined slot into the envelope (e.g. X-

Security) as used in [8], or, if standardized by FIPA, as an

optional slot (e.g. Security). Furthermore, the slot containing

the SecurityObject can contain a set of SecurityObjects, for

different security attributes applied to a message. The approach

told in this paper as adding Security slot to the message

Envelope.

ACA accepts or denies this request according to semanti-

cally presented data in its database. Information message from

ACA to Agent2 with security slot for access information in a

FIPA-ACL message example similar to [9] is shown in Figure

2.

V. SEMANTIC BASED AGENT ACCESS CONTROL

MECHANISM

After defining agent certification process details of Access
Controller mechanism have been explained in this section.

First, access control policy includes a set of rules that associate

some credentials to use capability of a right. So that the issues

with the specified credentials could supply the capability.

Credential is any property associated with an entity. When the

entity is suitable to the policy rules in the system, the required

action for this entity could be populated [10].

All agents have to digitally sign all service requests for

AMS, DF and other agents. As there is a public/private key

pair for each of the agent, the agent can be thought as

accountable by the platform. So that when an agent wants

to register to the platform, its credentials have to be checked

by Access Controller of which decision is based on security

policies that have been defined in the platform. These policies

could be defined in two levels: platform level and agent level

[11]. Platform level policies control the requests for AMS

and DF of the platform. Agent level access policies specify

who can access the services of the specified agent. A simple

message that assigns a right to an agent is shown in Figure 2.

743

When the certification steps as explained in Section IV

have been constructed, AMS controls the validity of the

certificate by the default certificate authority in the platform.

For organization wide certification, certification path could

be chained and the verification step could be processed by

the help of Agent Certification Authority. If the certificate is

valid, AMS restores agent’s policies that have to be checked

during the communication with AMS. All of these policies are

in Access Controller’s database by default. AMS and Access
Controller always communicates with each other to inform the

changing policies in the autonomous environment. So when

Access Controller has been crashed for a short time, AMS

based policy rules could still be applied by AMS with its

internal policy engine. AMS and DF have a list of conditions

that an agent must satisfy in order to contact a particular

agent or use a particular service. While AMS and DF have to

know the access privileges of agents in [11], Access Controller
mechanism have to access and know their rights. So that the

protection from the threat could be applied in a central place.

Agents could register their services in open or private

ways. In open way, the only DF based policies have to be

applied for the agents’ access to the service. In private way,

Access Controller communicates with DF and access control

mechanism have been processed for the owner of the service.

For the verification of rights, a service agent expects all the

credentials from the requestor agent at the time of the request

in order to use its services. The service agent will check its

internal knowledge base and ask for Access Controller to give

permission to the requestor agent. According to the allowance

of the semantic policy information, request could be answered

in a positive way. Otherwise, request would be denied until the

requestor agent has the suitable credentials to call this service.

VI. CONCLUSION

In this paper, security patterns that have been used in multi-

agent systems have been considered. Also policy based access

control has been determined that each entity is able to specify

and process policy by help of Access Controller or by itself for

security and privacy. In future, the specifications of policies

are planned to be fully constructed in declarative manner

and the ACL based messages to be considered in a semantic

manner. With the help of policy based semantic language, the

distributed policy management could be supplied better by

inter-platform communication by the platforms that use same

ontologies.

Future work will be based on the new version of

SEAGENT’s role based agent mechanisms. Role based agents

would have their own role based access policies for Access
Controller. Then these agents could have been prioritized

according to their goals in the platform [12].

REFERENCES

[1] Tomás Vlcek and Jan Zach, “Secure fipa compliant agent architecture
draft,” in HoloMAS, 2003, pp. 167–178.

[2] William Stallings, Cryptography and Network Security Principles and
Practices, Fourth Edition, Prentice Hall, 2005.

[3] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson,
Frank Buschmann, and Peter Sommerlad, Security Patterns: Integrating
Security and Systems Engineering, John Wiley and Sons Ltd, 2006.

[4] Oguz Dikenelli, Riza Cenk Erdur, Ozgur Gumus, Erdem Eser Ekinci,
Onder Gurcan, Geylani Kardas, Inanc Seylan, and Ali Murat Tiryaki,
“Seagent: A platform for developing semantic web based multi agent
systems. autonomous agents and multi-agent systems,” in AAMAS, 2005,
pp. 1271–1272.

[5] Haralambos Mouratidis, Michael Weiss, and Paolo Giorgini, “Modeling
secure systems using an agent-oriented approach and security patterns,”
International Journal of Software Engineering and Knowledge Engi-
neering, vol. 16, no. 3, pp. 471, 2006.

[6] Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson, “When
security meets software engineering: a case of modelling secure infor-
mation systems,” Inf. Syst., vol. 30, no. 8, pp. 609–629, 2005.

[7] Haralambos Mouratidis, Michael Weiss, and Paolo Giorgini, “Security
patterns meet agent oriented software engineering: A complementary
solution for developing secure information systems,” in ER, 2005, pp.
225–240.

[8] Petr Novák, Milan Rollo, Jirı́ Hodı́k, and Tomás Vlcek, “Communication
security in multi-agent systems,” in CEEMAS, 2003, pp. 454–463.

[9] Stefan Poslad and Monique Calisti, “Towards improved trust and
security in fipa agent platforms,” in 3rd Workshop on Deception, Fraud
and Trust In Agent Societies, 2000.

[10] Lalana Kagal, Tim Finin, and Anupam Joshi, “A policy-based approach
to security for the semantic web,” in Proc. 2nd Int’l Semantic Web Conf.
(ISWC 2003). 2003, p. 402418, Springer-Verlag.

[11] Lalana Kagal, Tim Finin, and Anupam Joshi, “Developing secure agent
systems using delegation based trust management,” in In Security of
Mobile MultiAgent Systems (SEMAS 02) held at Autonomous Agents
and MultiAgent Systems (AAMAS 02), 2002.

[12] Salvatore Vitabile, Giovanni Milici, S. Scolaro, Filippo Sorbello, and
Giovanni Pilato, “A mas security framework implementing reputation
based policies and owners access control,” Los Alamitos, CA, USA,
2006, vol. 2, pp. 746–752, IEEE Computer Society.

744

Documenting and Modeling Multi-agent Systems Product Lines

Ingrid Nunes1 Uirá Kulesza2,3 Camila Nunes1 Carlos J. P. de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
{ioliveira,camilan,lucena}@inf.puc-rio.br

2 Recife Center for Advanced Studies and Systems - Recife - Brazil
uira@cesar.org.br

3 New University of Lisbon - Lisboa - Portugal

Abstract

In this paper, we explore the use of existing software pro-
duct line (SPL) approaches to document and model a multi-
agent system product line (MAS-PL). Our analysis focuses
specifically in the domain analysis and design stages of SPL
development. The main aim of our study is to investigate
the benefits, limitations and challenges of current SPL and
MAS-PL approaches/methodologies to document and model
MAS-PL features. Our investigation is illustrated and val-
idated through the use of a web-based conference manage-
ment system. As a result of our study, we propose the adap-
tation and extension of existing approaches to address the
modeling of MAS-PL features.

1. Introduction

Nowadays, a common scenario in organizations is to de-

velop similar products and to provide different customiza-

tions of these products to individual customers. This is

typically addressed in an empirical way. Software pro-

duct lines (SPLs) [18, 3] represent a new trend of soft-

ware reuse that investigates methods and techniques to build

and customize families of applications through a systematic

method. Clements & Northrop [3] define a software pro-

duct line (SPL) as “a set of software intensive systems that

share a common, managed set of features satisfying the spe-

cific needs of a particular market segment or mission and

that are developed from a common set of core assets in a

prescribed way ”. According to [4], a feature is a system

property that is relevant to some stakeholder and is used to

capture commonalities or discriminate among products in a

product line. The main aim of SPL engineering is to ana-

lyze the common and variable features of applications from

a specific domain, and to develop a reusable infrastructure

that supports the software development. This set of appli-

cations is called a family of products.

Over the past few years, several methods have been pu-

blished to address the problems and challenges of SPL en-

gineering [12, 18, 8]. Some of them only propose methodo-

logical guidelines, not specifying how to design or imple-

ment the SPL, meaning developers have to create their own

way to develop the product line. Some of these methodolo-

gies propose a complete SPL development process based on

existing paradigms, such as component-based [1] or object-

oriented [8] software development. However, there are

new trends, such as multi-agent systems (MASs) [10, 19],

which are not considered by the current SPL methodolo-

gies. MASs have emerged as a new software paradigm

to help in the development of complex software systems,

which contain properties such as autonomy, reactivity, pro-

activeness and social ability. Recently, new approaches

[16, 6] were proposed designed to explore the benefits of

integrating SPL and Agent-Oriented Software Engineering

(AOSE) techniques. Nevertheless, there are still many chal-

lenges to overcome in the development of multi-agent sys-

tems product lines (MAS-PLs) [17].

In this context, this paper investigates the adoption of

proposed SPL and MAS-PL methodologies in the docu-

mentation and modeling of MAS-PL. During this process,

we had to deal with challenges, such as how the features

can be documented, modeled and modularized throughout

the entire domain engineering process. A product line of

conference management systems that includes the imple-

mentation of several optional agency features is used to il-

lustrate and validate our study. Some adaptations and exten-

sions of current SPL approaches are also proposed in order

to address their identified deficiencies in the modeling and

documentation of more complex agency features.

The remainder of this paper is organized as follows. Sec-

tion 2 presents some existing SPL methodologies. In Sec-

tion 3, an overview of the ExpertCommittee case study is

745

presented, giving some details about its development. In

Section 4, we show how we have modeled and documented

our product line at the domain analysis and domain design

phases. We present some discussions in the Section 5. Fi-

nally, the conclusions and directions for future works are

discussed in Section 6.

2. Background

We have studied and compared some existing SPL me-

thodologies. Almost all methods focus on the description of

SPL properties at a very high level of abstraction and give

no guidance on how the required flexibility should be real-

ized at the implementation level. In our initial comparative

study [14], we used the same evaluation framework of [13]

to compare the SPL and MAS-PL methodologies. The goal

of this evaluation was to obtain an overview of the metho-

dologies and not necessarily to rate them. Subsequently, we

analyzed how the investigated approaches could deal with

the documentation and modeling of agency features. Ta-

ble 1 presents partial results of this analysis. Due to space

restrictions in this paper, we only reported the results of this

second part of our study. For additional details of our study,

please refer to [14].

Table 1. Methodologies Comparison.
Methodology Domain Analysis Domain Design
FORM Feature diagram with

composition rules
Subsystem, Process Model and
Module Models

Framework
[18]

Reusable, textual and
model-based require-
ments, variability model

Reference architecture, refined
variability model, mapping
from design artifacts to
requirements artifacts

PLUS Requirements model con-
sisting of a use case
model and feature model

Static and dynamic models,
feature/class dependencies, de-
sign of component-based soft-
ware architecture

MacMAS
extension [16]

Feature Model (features
are goals)

Acquaintance Organization,
Traceability and Role Models

Approach [6] Role Schema, Role Varia-
tion Point

-

Commonly the SPL approaches adopt feature models as

the typical notations to specify the SPL features. FORM

[12] provides a feature modeling method for analyzing and

capturing the common and variable features of SPLs and

their respective interdependencies. The features are orga-

nized into a coherent model referred to as a feature model,

which models the features of a product line as a tree, in-

dicating mandatory, optional and alternative features. Fea-

tures are essential abstractions that both customers and de-

velopers understand. Pena et. al. [16] also proposes the

use of feature models, but the features are the goals of the

agents. Goals are not a detail of the system that is visi-

ble to the end user; therefore, they should not appear in a

feature model. [18] document variabilities through a vari-

ability model, which models what varies from one product

to another with the explicit indication of the variation points

and variants. Furthermore, it also motivates the definition of

explicit tracing links between the variations points/variants

from the variability model and other analysis and design

models (e.g., use cases and class diagrams). PLUS [8] pro-

poses a feature model based on UML notation, but contains

the same information of traditional feature models. Almost

all the approaches do not address explicitly the modeling

of the SPL requirements. The PLUS approach defines a

customization of the use case model to specify and docu-

ment the SPL requirements. Dehlinger & Lutz [6] adopt

a product-line-like view of an agent-based software sys-

tem and proposes a requirements specification template to

capture and reuse dynamically changing configurations of

agents for future similar systems.

In the domain design, most of the SPL approaches inves-

tigated only provide support to document and detail the SPL

architectures in a very high-level manner. FORM proposes

the modeling of an SPL architecture using three models: (i)

subsystem model - presents the overall system structure; (ii)

process model - details the dynamic behavior of the system;

and (iii) module model - specifies each reusable component

of the architecture. PLUS adopts traditional UML models

marked with additional stereotypes to classify the system

classes. It mentions the use of agents in the design of an

SPL architecture, but it does not define a way to document

it. Table 1 shows that the other investigated approaches

[18, 6] do not provide explicit support to specify and model

the SPL architecture and its respective components.

3. ExpertCommittee Case Study Overview

Our approach was developed based on our experience

with the ExpertCommittee (EC) [15] case study, a multi-

agent system product line for the web domain.

The EC is a conference management system, developed

as a typical web-based application whose aim is to manage

the paper submission and reviewing processes from confe-

rences and workshops. The EC system provides functiona-

lities to support the complete process of conference mana-

gement. Each of these functionalities can be executed by

an appropriate user type of the system, such as conference

chair, program committee members, authors and reviewers.

This MAS-PL was developed in an evolutionary way.

We present details about the MAS-PL development (Sec-

tion 3.1). After that, we discuss some MAS particular vari-

ability types that we have identified in our case study (Sec-

tion 3.2).

3.1. The EC MAS-PL

We developed our case study considering that an evol-

ving system can be seen as an SPL, because the features

746

that are common to all versions of the system comprise the

core architecture of the product line. Thus, each version

of the system, which has new features, characterizes a new

product.

Our MAS-PL was developed in an evolutionary way.

There were three versions of the EC. The first version of

the EC is a typical web-based application composed of the

mandatory features that support the process of conference

management. It was structured according to the Layer ar-

chitectural pattern [7]. The second version of the EC sys-

tem contains features that are related to autonomous beha-

vior, such as deadline and pending tasks monitoring, and it

has also some new features that add new functionalities to

the system as well. The software agent abstraction was used

to model and implement the autonomous behavior added to

the original EC system.

The third and last version of the EC system was imple-

mented by applying a series of refactorings in version 2.

The system was restructured to make the (un) plugging of

optional features possible. Each optional feature was modu-

larized by using a combination of OO design patterns and

techniques with Spring1 configuration files that allows the

injecting of dependencies inside the variable points of the

EC SPL architecture, which can be seen in Figure 1.

Figure 1. EC MAS-PL Architecture.

3.2. Dealing with Variability

Different kinds of variability were identified in the EC

MAS-PL. In our case study, we mainly explored the vari-

abilities related to autonomous behavior and their respective

implementation using software agents. Throughout this pa-

per, these kinds of features are called agency feature. Next

we briefly describe them:

1http://www.springframework.org/

New Autonomous Behavior. We had to introduce agents

into the architecture when we added autonomous beha-

vior to the system. The Task Management feature im-

plied the addition of a new agent in the system, which

can be present or not, depending on the product being

derived;

New Behavior for an Agent or Role. Some features have

an impact inside the agent or the role. They allow

defining agent internal variabilities by defining specific

new behaviors of agents. The Conference Suggestion
Feature is an autonomous feature; thus, the user agent,

or more specifically the author role, performs it. When

a paper is registered in a conference, the author role

perceives it and sends suggestions of related conferen-

ces for the author who has registered his/her paper;

New Role for an Agent. Each role of the EC has a cor-

responding role in the user agent when a product has

some autonomous behavior. However, not all roles are

mandatory, such as the role Reviewer. Thus, roles must

be modeled in a way that they can be (un) plugged.

Almost all the autonomous behavior features are accom-

plished by the collaboration of different agents. In our

study, we have identified that many of these features are

typically addressed by a different set of components and

agents from the SPL architecture. In this way, a particu-

lar challenge of our study was to document and model the

structure and behavior of these crosscutting features in do-

main analysis and design.

4. Modeling and Documenting Agency Fea-
tures

In this section, we discuss the modeling and documen-

tation of the agency features from the EC MAS-PL, pre-

sented in Section 3. We focus specifically on the domain

analysis and design stages. We have initially analyzed how

existing SPL and MAS-PL approaches can deal with the

specification and modeling of agency features. Based on

the deficiencies and lack of expressivity of these existing

approaches, we propose new extensions to document the

agency features of the EC MAS-PL. The main aim of our

work is to define a set of guidelines to model and document

agency features along all SPL development stages.

4.1. Domain Analysis

The domain analysis stage defines activities for eliciting

and documenting the common and variable requirements of

an SPL. It is concerned with the definition of the domain

and scope of the SPL, and specifies the common and vari-

able features of the SPL to be developed. In our study, we

747

have analyzed how the modeling and documentation nota-

tions of current SPL approaches can deal with agency fea-

tures. Table 1 shows the results obtained considering the

SPL methodologies investigated in our study.

The EC MAS-PL features modeling and documentation

was supported by the feature model proposed in [5]. It is an

evolution of the original feature model proposed in [11] and

also adopted by FORM. Figure 2 shows a partial view of

this feature model. The features that were in all the versions

are the mandatory ones. Features that made part of only

some versions or varied from one version to another one are

the optional features.

Figure 2. Feature Model.

The way proposed in the PLUS method was quite ade-

quate to model our use cases. Use cases are grouped in pac-

kages according to the feature to which it was related. In

this approach, stereotypes are used to indicate if a use case

is mandatory (kernel), alternative or optional. The method

also proposes a feature dependency table to map use cases to

each feature. We adopted these tables instead of the graph-

ical notation of [18]. Figure 3 shows a partial view of the

EC MAS-PL use case model. It contains three kernel use

cases, one optional use case related to the reviewer role and

two agency features: task management and conference sug-

gestion. The following adaptations were applied to the use

case notation proposed in [8] to better specify the agency

features: (i) agents were represented with the same symbol

as actors and are associated to the use cases with which they

are involved; (ii) the <<agency feature>> stereotype was

adopted to indicate that the use cases of a specific package

is related to an agency feature.

The detailed description of the EC MAS-PL use cases

Figure 3. Use Case Diagram.

was carried out in the following way: (i) the kernel use cases

were described using the common documentation provided

by existing UML methods; and (ii) the agency features were

documented using the template depicted in Table 2. This

new template details important information to understand

the interactions between the agency feature and other ones,

such as: the event that starts the use case, the agents and

roles that are involved and if the feature is mandatory, op-

tional or alternative. We did not used the template proposed

in [6] because it is a too low-level specification and it ad-

dresses the internal variability of the agents.

Table 2. Agency Feature Description.
Agency Feature: Conference Suggestion

Reuse Category: Optional

Dependency: Extends Register Paper Use Case

Description: When a paper is registered to a conference

Event: paper was registered to a conference

Agent/Roles: user agent / author role, notifier agent

Main Flow:
1. User registers a paper to a conference.
2. User Agent perceives the change in the environment.
3. Author role detects the conferences that have areas of interest similar to the
ones of the registered paper and creates a message to be sent to the user.
4. Author role sends a message to the Notifier Agent requesting to send the
message to the user.
5. Notifier Agent sends the message.

4.2. Domain Design

The domain design aims at defining an architecture that

addresses both the common and variable features of an SPL.

A set of components and core assets can be specified as

part of the SPL architecture. The modularization of fea-

tures must also be taken into account during the design of

the architecture core assets to allow the (un) plugging of

features.

The EC MAS-PL architecture was documented in our

case study in two different levels: (i) a component view -

that illustrates the main components (or subsystems) of the

748

SPL architecture; and (ii) a logical view - that details the dif-

ferent components defined for the SPL architecture in terms

of UML class diagrams. Figures 1 and 4 show, respectively,

the component and logical view of the EC architecture. The

component view details the web system layers and the de-

ployed agents that execute inside this system. The compo-

nent view gives not only an overall overview of the SPL ar-

chitecture components and agents, but also expresses their

organization in runtime.

The logical view details the architecture components and

agents in terms of UML class diagrams. Similar to PLUS,

we used stereotypes to classify the classes, but our classifi-

cation was mandatory (kernel), optional or alternative. The

classes of different components can be organized in packa-

ges, or they also can be colored to characterize a specific

component. Figure 1 shows the main components of the

EC MAS-PL (GUI, Business and Data Layers), and the dif-

ferent agents responsible for implementing the autonomous

behavior of the system. Each different agency feature of

the MAS-PL can be detailed using: (i) a separate class di-

agram that only contains the classes responsible for imple-

menting that feature and alternatively the classes that are

related with it; (ii) a colored indication in the main class dia-

gram that shows the elements (classes, interfaces, methods)

related to the implementation of that feature. It is exem-

plified in Figure 4; and (iii) a specific design template that

details the components and agents involved in the realiza-

tion of an agency feature, and their respective interactions.

Table 3 shows the design template of the Conference

Suggestion agency feature. It details the goals, entities,

events and execution plan related to the conference sugges-

tion feature provided by a set of agents. It complements

the agency feature description provided in domain analysis

(Figure 2) by detailing the communication of the different

system agents and the environment. While the class dia-

grams of an agency feature describe the elements that mo-

dularize it, our template design details the dynamics of the

agents involved in its realization.

5. Discussions

In this section, we discuss some lessons learned and

challenges that we have found when documenting the

agency features of EC MAS-PL. These lessons learned of-

fer directions for a methodology for developing MAS-PL

that we are currently defining.

Agency Feature Documentation using SPL methodolo-
gies. During the modeling and documentation of the EC

MAS-PL, we have identified that most of the SPL metho-

dologies provide useful notations to model the agency fea-

tures. However, none of them completely covers their spe-

cification. Agent technology provides particular character-

istics that need to be considered in order to take advantage

Table 3. Agency Feature Design Description.
Agency Feature: Conference Suggestion

Goal: Send conference suggestions to users

Entities: EnvironmentAgent, UserAgent, NotifierAgent, AuthorRole and Con-
ferenceService.

Events Generated: SendMessage
Events Perceived: RegisterPaper

Plan:
Environment
Agent

Action: send message to User Agents
Message Content: paper registered

User Agent Action: creates Author Role and adds it to the agent
Condition: user is the first author of the paper

Author Role Action: send message to Conference Service
Message Content: conferences related to the conference the
author has registered

Conference
Service

Action: send message to Author Role
Message Content: related conferences

Author Role Action: creates user message with conferences returned
Action: send message to Notifier Agent
Message Content: user message to be sent to the user

Notifier Agent Action: send user message

of this paradigm. In our case study, we adopted a different

strategy to model the SPL agency features. We started mo-

deling the agency features using only the notations provided

by SPL methodologies to investigate their expressivity. Af-

ter that, we adapted and complemented the selected nota-

tions to improve the documentation of the agency features.

The domain analysis and design templates were created in

this context.

MAS-PL methodologies. The investigated MAS-PL me-

thodologies do not address development scenarios of tradi-

tional SPL architectures using agent technology. Instead,

they adopt an existing MAS methodology as a base and ex-

tend it with SPL techniques for a particular purpose. Pena

et. al. [16] adapt the Methodology for analyzing Complex

MultiAgent Systems (MaCMAS) to deal with evolving sys-

tems. Dehlinger & Lutz [6] have proposed an extensible

agent-oriented requirements specification template for dis-

tributed systems that supports safe reuse. Their proposal

adopts a product line to promote reuse in MASs, which was

developed using the MaCMAS and the Gaia methodolo-

gies. The main problems that we have observed when using

these MAS-PL methodologies to model and document the

EC MAS-PL were: (i) they do not offer a complete solution

to address the modeling of agency features in both domain

analysis and design; and (ii) they suggest the introduction of

complex and heavyweight notations that are difficult to un-

derstand when adopted in combination with existing nota-

tions (e.g. UML) and do not capture explicitly the separated

modeling of agency features.

Crosscutting agency features. Many of the agency fea-

tures are implemented by a set of different system com-

ponents, agents and classes. They are characterized as

crosscutting features, because their design and implementa-

tion are typically spread and tangled along different system

modules. In our study, we observed that the current SPL

methodologies do not provide clear support to deal with the

749

Figure 4. Class Diagram of the EC product line.

documentation of these crosscutting features. In domain de-

sign, we have proposed a template design to help the docu-

mentation of the agency features. It allows specifying how

the different design elements interact to address a specific

agency feature. We are currently investigating how existing

aspect-oriented approaches [9, 2] can help the visual docu-

mentation of the agency features in combination with our

templates.

6. Conclusions and Future Work

In this paper, we presented an exploratory study that ana-

lyzed and discussed how existing SPL approaches can help

the documenting and modeling of multi-agent system pro-

duct lines (MAS-PLs). Different agency features were pre-

sented, which were added to an existing web-based confe-

rence management system as optional features. Three types

of agency variabilities were addressed in our paper: ad-

dition of agents; addition of plans; and addition of roles.

Most of the MAS-PL documentation was supported by the

PLUS approach, showing the effectiveness of current SPL

approaches to document MAS-PL. However, the documen-

tation of the agency features required the creation of addi-

tional templates to specify: (i) the interdependencies and

relationships between core functionalities (mandatory use

cases) and optional agency features (optional use cases) in

domain analysis; and (ii) the elements and dynamics res-

ponsible to address a given agency feature in domain de-

sign.

We are currently working on the development of a

methodology that allows an explicit documentation and

tracing of agency features throughout the SPL development

process. The proposed methodology aims to be simple and

systematic. We believe that due to the high complexity of

many SPL methodologies, many of them are not used in

practice. Different and new abstractions have been pro-

posed in these methodologies, making the understanding

and adoption of them difficult. Our methodology is being

organized as a process framework composed of: (i) a core -

that defines a set of mandatory activities and artifacts; and

(ii) specific customizations - that specify additional activi-

ties and artifacts to the core according to specific scenarios

that need to be addressed. Our approach aims to be syste-

matic in the sense of providing clear and detailed guidelines

about how developers should use it.

References

[1] C. Atkinson, J. Bayer, and D. Muthig. Component-based

product line development: The KobrA approach. In P. Dono-

hoe, editor, SPLC, pages 289–309, 2000.

[2] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and
Design: The Theme Approach (The Addison-Wesley Object
Technology Series). Addison-Wesley Professional, March

2005.

[3] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, Boston, MA, USA,

2002.

[4] K. Czarnecki and S. Helsen. Feature-based survey of

model transformation approaches. IBM Systems Journal,
45(3):621–645, 2006.

750

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged con-

figuration using feature models. In SPLC, pages 266–283,

2004.
[6] J. Dehlinger and R. R. Lutz. A Product-Line Requirements

Approach to Safe Reuse in Multi-Agent Systems. In SEL-
MAS, pages 1–7, New York, NY, USA, 2005. ACM Press.

[7] M. Fowler. Patterns of Enterprise Application Architecture.

Addison-Wesley Professional, November 2002.
[8] H. Gomaa. Designing Software Product Lines with UML:

From Use Cases to Pattern-Based Software Architectures.

Addison Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA, 2004.
[9] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Devel-

opment with Use Cases (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2004.

[10] N. R. Jennings. An agent-based approach for building com-

plex software systems. Commun. ACM, 44(4):35–41, 2001.
[11] K. Kang, S. Cohen, J. Hess, W. Novak, and Peterson.

Feature-oriented domain analysis (foda) feasibility study.

Technical Report CMU/SEI-90-TR-021, Software Engi-

neering Institute, Carnegie-Mellon University, November

1990.
[12] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and

M. Huh. Form: A feature-oriented reuse method with

domain-specific reference architectures. Ann. Softw. Eng.,
5:143–168, 1998.

[13] M. Matinlassi. Comparison of software product line archi-

tecture design methods: Copa, fast, form, kobra and qada. In

ICSE, pages 127–136, Washington, DC, USA, 2004. IEEE

Computer Society.
[14] I. Nunes. Towards a multi-agent product line develop-

ment methodology, 2008. http://www.inf.puc-rio.br/ io-

liveira/maspl/.
[15] I. Nunes, C. Nunes, U. Kulesza, and C. Lucena. Develop-

ing and evolving a multi-agent system product line: An ex-

ploratory study. In AOSE (to appear), 2008.
[16] J. Pena, M. G. Hinchey, M. Resinas, R. Sterritt, and J. L.

Rash. Designing and managing evolving systems using a

MAS product line approach. Science of Computer Program-
ming, 66(1):71–86, 2007.

[17] J. Pena, M. G. Hinchey, and A. Ruiz-Cortés. Multi-agent

system product lines: challenges and benefits. Commun.
ACM, 49(12):82–84, 2006.

[18] K. Pohl, G. Bckle, and F. J. van der Linden. Software Pro-
duct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag, New York,USA, 2005.

[19] M. Wooldridge and P. Ciancarini. Agent-Oriented Software

Engineering: The State of the Art. In P. Ciancarini and

M. Wooldridge, editors, AOSE, volume 1957, pages 1–28.

Springer-Verlag, Berlin, 2000.

751

A Study of the Model Explosion Problem
in CTL Model Update

Yulin Ding
School of Computer Science

The University of Adelaide

Adelaide, SA 5005 Australia

Email: yulin@cs.adelaide.edu.au

Yan Zhang
School of Computing & Mathematics

University of Western Sydney

Penrith South DC, NSW 1797 Australia

Email: yan@scm.uws.edu.au

Abstract— Computation Tree Logic (CTL) model update is
an approach for software verification and modification, where
minimal change is employed to generate admissible models that
represent the corrected software design. In this paper, we first
apply CTL model update to a model based on the well known
Andrew File System protocol, and demonstrate the process of
discovering an admissible model explosion problem. We then
propose a new update principle named minimal change with
maximal reachable states to solve this problem. Our experimental
results show that in the case of updating the Andrew File System
protocol model, the new CTL update approach significantly
narrows down the admissible models to fewer committed models.
We provide a thorough study on the semantics and complexity
properties on optimizing CTL model update.

I. INTRODUCTION

As a promising formal method, automated verification has

played an important role in computer science development.

The SMV model checker [2] was first successfully applied to

software protocols, the Andrew File Systems in 1995 by [9],

which was a milestone showing that the SMV model checker

applied to not only hardware verification but also to software

verification. After the first successful SMV compiler, the

enhanced model checking compilers, NuSMV [3] and Cadence

SMV [7], were developed. During the model checking, there

was a state explosion problem, which significantly increased

the SMV model checking search space. The introduction of

OBDD in SMV model checker eventually handles the state

explosion problem in a significant way [2], [6].

Along with the development of model checking, error

repairing has also developed using a formal methods approach.

For example, Buccafurri and his colleagues [1] applied AI

techniques to model checking and error repairing. We have

recently developed a formal approach for CTL model update to

attempt a new method of software error repairing [4]. We have

implemented a prototype of CTL model update and applied

this system to 3 well known model checking examples [5].

In this paper, we provide an investigation, both on experi-

mental and theoretical aspects, on a model explosion problem

associated with the CTL model update to optimize the previous

update results. In section II, we first present an overview of

CTL model update. In section III, we address the problem of

admissible model explosion through the update process of the

Andrew File System 1 model. In section IV, we propose a

new CTL model update principle called minimal change with

maximal reachable states to deal with the model explosion

problem. In section V, we provide some semantic characteri-

zations for the new CTL model update process. In section VI,

the associated complexity results of the characterizations in

the previous section are derived. Finally in section VII , we

conclude the paper with some discussions and future work.

II. CTL MODEL UPDATE: AN OVERVIEW

A. CTL Syntax and Semantics
Definition 1: [2] Let AP be a set of atomic propositions.

A Kripke model M over AP is a three tuple M = (S, R, L)
where 1. S is a finite set of states, 2. R ⊆ S×S is a transition

relation, 3. L : S → 2AP is a function that assigns each state

with a set of atomic propositions.
Definition 2: [6] Computation tree logic (CTL) has the

following syntax given in Backus naur form:
φ ::= �| ⊥ |p|(¬φ)|(φ1 ∧ φ2)|(φ1 ∨ φ2)|φ1 → φ2|AXφ

|EXφ|AGφ|EGφ|AFφ|EFφ|A[φ1 ∪ φ2]|E[φ1 ∪ φ2]
where p is any propositional atom.

A CTL formula φ is evaluated on a Kripke model M and

satisfiable. A path in M from a state s is an infinite sequence

of states π
def
= [s0, s1, · · · , si−1, si, si+1, · · · , sj , · · ·] such that

s0 = s, (si, si+1) ∈ R holds for all i ≥ 0, (si, si+1) ⊆ π and

si ∈ π. si is a state earlier than sj in π as si < sj . A state s
is called true state for φ if s |= φ and called false state for φ
if s �|= φ.

Definition 3: [6] Let M = (S,R, L) be a Kripke model

for CTL. Given any s in S, we define whether a CTL formula

φ holds in state s. We denote this by (M, s) |= φ. The

satisfaction relation |= is defined by structural induction on

CTL formulas:

1) (M, s) |= � and (M, s) �|=⊥ for all s ∈ S.

2) (M, s) |= p iff p ∈ L(s).
3) (M, s) |= ¬φ iff (M, s) �|= φ.

4) (M, s) |= φ1 ∧ φ2 iff (M, s) |= φ1 and (M, s) |= φ2.

5) (M, s) |= φ1 ∨ φ2 iff (M, s) |= φ1 or (M, s) |= φ2.

6) (M, s) |= φ1 → φ2 iff (M, s) �|= φ1, or (M, s) |= φ2.

7) (M, s) |= AXφ iff for all s1 such that (s, s1) ∈ R,

(M, s1) |= φ.

8) (M, s) |= EXφ iff for some s1 such that (s, s1) ∈ R,

(M, s1) |= φ.

752

9) (M, s) |= AGφ holds iff for all paths [s0, s1, s2, · · ·],
where s0 = s, and all si along the path, (M, si) |= φ.

10) (M, s) |= EGφ holds iff there is a path [s0, s1, s2, · · ·],
where s0 = s, and for all si along the path, (M, si) |= φ.

11) (M, s) |= AFφ holds iff for all paths [s0, s1, s2, · · ·],
where s0 = s, there is some si in the path such that

(M, si) |= φ.

12) (M, s) |= EFφ holds iff there is a path [s0, s1, s2, · · ·],
where s0 = s, and for some si along the path, (M, si) |=
φ.

B. Minimal Change for CTL Model Update

Definition 4: [4], [5] (CTL Model Update) Given a CTL

Kripke model M = (S, R,L) and a CTL formula φ such

that M= (M, s0) and M�|= φ, where s0 ∈ S, an updated

model derived from M to satisfy φ, is a new CTL Kripke

model M ′ = (S′, R′, L′) such that M′ = (M ′, s′0) |= φ where

s′0 ∈ S′. We use Update(M, φ) to denote the result M′.
Update is achieved by applying a combination of primitive

update operations PU1, PU2, PU3, PU4 and PU5 [4], [5].

These primitive updates are defined as follows:

PU1: Adding a relation
Given M = (S,R, L), its updated model M ′ = (S′, R′, L′) is

the result of M having only added one new relation. That

is S′ = S, L′ = L, and R′ = R ∪ {(sar, sar2)} where

(sar, sar2) �∈ R for one pair of sar, sar2 ∈ S.

PU2: Removing a relation
Given M = (S, R,L), its updated model M ′ = (S′, R′, L′)
is the result of M having only removed one existing relation.

That is, S′ = S; L′ = L, and R′ = R − {(srr, srr2)} where

(srr, srr2) ∈ R for one pair of srr, srr2 ∈ S.

PU3: Substituting a state and its associated relation(s)
Given M = (S, R,L), its updated model M ′ = (S′, R′, L′)
is the result of M having only substituted one existing state

and its associated relation(s). That is, S′ = S[s/sss] (i.e. S′

are the set of states where one state s in S is substituted by

sss), R′ = R ∪ {(si, sss), (sss, sj) | (si, s), (s, sj) ∈ R} −
{(si, s), (s, sj) | (si, s), (s, sj) ∈ R}, and for all s ∈ S ∩ S′,
L′(s) = L(s), and L′(sss) is a set of true variables assigned

in sss.

PU4: Adding a state and its associated relation(s)
Given M = (S, R,L), its updated model M ′ = (S′, R′, L′)
is the result of M having only added one new state and its

associated relation(s). That is, S′ = S ∪ {sas}, R′ = R ∪
{(si, sas), (sas, sj) | for some si, sj ∈ S′}, and for all s ∈
S ∩ S′, L′(s) = L(s), and L′(sas) is a set of true variables

assigned in sas.

PU5: Removing a state and its associated relation(s)
Given M = (S, R,L), its updated model M ′ = (S′, R′, L′)
is the result of M having only removed one existing state and

its associated relation(s). That is, S′ = S − {srs | srs ∈ S},

R′ = R − {(si, srs), (srs, sj) | for some si, sj ∈ S}, and

L′(s) = L(s) for all s ∈ S ∩ S′.
Based on these primitive update operations, we can define

a minimal principle for CTL model update. Given any two

sets X and Y , the symmetric difference between X and Y is

denoted as Diff(X, Y) = (X − Y) ∪ (Y − X). Given two

CTL models M = (S,R, L) and M ′ = (S′, R′, L′), for each

primitive operation PUi (i = 1, · · · , 5), DiffPUi(M,M ′)
denotes the differences between two CTL models where M ′ is

a resulting model from M , which infers that several operations

of this type may occur. Since PU1 and PU2 only change

relations, we define DiffPUi(M, M ′) = Diff(R,R′)
(i = 1, 2). For operations PU3, PU4 and PU5, on the

other hand, we define DiffPUi(M, M ′) = Diff(S, S′)
(i = 3, 4, 5). Then we specify

Diff(M, M ′)= (DiffPU1(M, M ′), · · · ,DiffPU5(M, M ′)).
Let M , M1 and M2 be three CTL models. We denote

Diff(M, M1) � Diff(M, M2) iff (1) for each i
(i = 1, · · · , 5), DiffPUi(M,M1) ⊆ DiffPUi(M, M2); or

(2) DiffPUi(M,M1) ⊆ DiffPUi(M, M2) for i = 1, 2, 4, 5,

and |DiffPU3(M, M1)| = |DiffPU3(M, M2)| implies

Diff(s, s1) ⊆ Diff(s, s2), if any state s in M is substituted

by s1 in M1 or s2 in M2 respectively.

Definition 5: [4], [5] (Closeness Ordering) Given three

CTL Kripke models M , M1 and M2, where M1 and M2 are

obtained from M by applying PU1-PU5 operations, we say

that M1 is closer or as close to M as M2, denoted as M1 ≤M

M2, iff Diff(M,M1) � Diff(M,M2). We denote M1 <M

M2 if M1 ≤M M2 and M2 �≤M M1.

Definition 6: [4], [5] (Admissible Update) Given a CTL

Kripke model M = (S,R, L), M = (M, s0) where s0 ∈ S,

and a CTL formula φ, Update(M, φ) is called admissi-
ble if the following conditions hold: (1) Update(M, φ) =
(M ′, s′0) |= φ where M ′ = (S′, R′, L′) and s′0 ∈ S′;
and (2) there does not exist another resulting model M ′′ =
(S′′, R′′, L′′) and s′′0 ∈ S′′ such that (M ′′, s′′0) |= φ and

M ′′ <M M ′.
Theorem 1: [4], [5] Let M = (S, R, L) be a Kripke model

and M = (M, s0) and M �|= AGφ, where s0 ∈ S and φ is

a propositional formula. Then an admissible updated model

M′ = U pdate(M, AGφ) can be obtained by the following:

for each path starting from s0: π = [s0, · · · , si, · · ·]:
1) if for all s < si in π, s |= φ but si �|= φ, PU2 is applied

to si to remove relation (si−1, si), or PU5 is applied to

si to remove si and its associated relations, or

2) PU3 is applied to all states s in π not satisfying φ to

substitute s with s∗ |= φ and Diff(s, s∗) to be minimal.

III. A MODEL EXPLOSION PROBLEM

A. The Scenario of AFS1

AFS1 is abbreviation of the Andrew File System 1 [9]. It

is a cache coherence protocol for a distributed file system.

A client has two initial states: either it has no files or it has

one or more files but no beliefs about their validity. If the

protocol starts with the client having suspect files, then the

client may request a validation for a file from the server. If the

file is invalid then the client requests a new copy and the run

terminates. If the file is valid, the protocol simply terminates.

AFS1 is abstracted as a model with one client, one server and

one file. Fig. 1 shows the state transition diagrams with single

client and server modules. The nodes are labelled with the

753

val

nofile

suspect

valid

none

invalid

valid

invalid

inval
val

fetch

validate & valid-file

validate
& !valid-file

fetch

Client

Server

val

Fig. 1. State Transition Diagrams for AFS1

initials of values of variables are shown in states.

11 12

18

19 20

17

25
26

13 14

6
5

3 4

1 2

21

23

22

24

7

9

8

10

16

15

#3:
#4:
#5:

Server.out={0,val,inval}
Server.belief={none,valid,invalid}
Server.valid-file={true,false}

Client.belief={valid,invalid,suspect,nofile}#2:
#1: Client.out={0,fetch,validate}

#1,#2,

#5
#3,#4,

n,0,
0, n,

t f

0, n,
0,n,

f,n,
0,n,
t

f,n,
0,n,
f

f,n,
v,v,

t

f,n,
v,v,

f

0,s,
0,n,

t
0,s,
0,n,
f

v,s,
0,n,
f

v,s,
0,n,

tv,s,
i, i,
t

v,s,
i, i,f

v,i,
0,i,
t

v,i,
0,i,
f

f,i,
0,i,f

f,i,
0,i,
t

v,s,
v,v,

t

v,s,v,v,
f

v,v,0,v,
t

v,v,
0,v

f

f,i,
v,v,

t

f,i,
v,v,

f

f,v,
0,v,

t
f,v,0,v

f

0,v,
0,v,
t

0,v,
0,v,

f

,

,

;
;

;
;

;

shows order of variables in a state;

Fig. 2. The CTL Kripke structure of AFS1

value for the state variable, belief ; the arcs, by the name of

the message received that causes the state transition. A run

of the protocol begins at an initial state (one of the leftmost

nodes) and ends in a final state (one of the rightmost nodes).

The client’s belief about a file has 4 possible values

{nofile, valid, invalid, suspect}, where nofile means that the

client cache is empty; valid, if the client believes its cached

file is valid; invalid if it believes its caches file is not valid;

suspect, if it has no belief about the validity of the file (it

could be valid or invalid). The server’s belief about the

file cached by the client ranges over {valid, invalid, none},

where valid, if the server believes that the file cached at the

client is valid; invalid, if the server believes it is not valid;

none, if the server has no belief about the existence of the file

in the client’s cache or its validity.

The set of messages that the client may send to the server is

{fetch, validate}. The message fetch stands for a request for

a file. The validate message is used by the client to determine

the validity of the file in its cache. The set of messages that

the server may send to the client is {val, inval}. The server

sends the val(inval) message to indicate to the client that its

cached file is valid (invalid).

The specification property for AFS1 (formula (1)) is:

AG((Server.belief = valid) → (Client.belief = valid)).
Our model updater will update the AFS1 model to derive ad-

missible models which satisfy the above specification property.

Library
ModelChecking

Model
Update

Updated
Models

level
1

 level 2
level 3

Model

Properties

Parser

Reachable
State
Algorithm

Functions

Fig. 3. The flow diagram of the Model Update System

The paper [9] provides SMV model definitions (e.g.

AFS1.smv) as input to the SMV model checker. However, the

paper does not contain an accurate Kripke model for AFS1.

We have used NuSMV [3] to derive the Kripke structure

for the loaded model (AFS1) as in [5]. In the AFS1 Kripke

model (Fig. 2), there are 26 reachable states out of a total

216 states, and 52 transitions in between the reachable states.

The model contains 5 variables and each individual variable

has 2 to 4 possible values. The variables are “Client.out”,

which ranges over {0, fetch, validate}, “Client.belief”

over {valid, invalid, suspect, nofile}, “Server.out” over

{0, val, inval}, “Server.belief” over {none, valid, invalid}
and “Server.valid-file” over {true, false}.

B. Model Updating AFS1

We have developed a prototype of the CTL model updater

in Linux C as the implementation of our algorithms. The

CTL model updater includes library functions, predefined

model definition functions, a specification string parser, model

checking functions and model update functions. The diagram

of the code structure is shown in Fig. 3. The model updater

has been successfully applied to the AFS1 model.

We identify the false states which do not satisfy

the specification property for AFS1 (formula (1)) as

{19, 20, 23, 24, 7, 8}.

In AFS1, because each false state is on a different path,

PU2, PU3 or PU5 is applied to each false state (i.e. each

false path as well) one time to update the model according to

Theorem 1. Thus, the combination of total admissible models

are (C3
1)6 = 729. One of the admissible models which cannot

retain maximal unchanged reachable states is shown in Fig. 4.

C. Classifying Different Admissible Models by Reachable
State Characteristics

There are many more admissible models than we expect.

This phenomena is called admissible model explosion. We

should classify the admissible models and minimize the num-

ber of admissible models. We should preserve the maximal

unchanged reachable states in an admissible model because

this will retain the maximum amount of the original model

structure. The unchanged reachable states mean that the

reachable states in an admissible model are also in the original

model.

754

26

13 14

6
5

3 4

1 2

21
22

9

16

15

#3:
#4:
#5:

Server.out={0,val,inval}
Server.belief={none,valid,invalid}
Server.valid−file={true,false}

Client.belief={valid,invalid,suspect,nofile}#2:
#1: Client.out={0,fetch,validate}

#1,#2,

#5
#3,#4,

0,s,
0,n,

t
0,s,
0,n,
f

v,s,
0,n,
f

v,s,
0,n,

tv,s,
i, i,
t

v,s,
i, i,f

v,i,
0,i,
t

v,i,
0,i,
f

f,i,
0,i,f

f,i,
0,i,
t

v,v,0,v,
t

v,v,
0,v

f

f,v,
0,v,

t
f,v,0,v

f

0,v,
0,v,
t

0,v,
0,v,

f

,

,

;
;

;
;

;

shows order of variables in a state;

0,n,
0,n,
t

0,n,
0,n,

f

f,n,
0,n,

t

f,n,
0,n,

f

11 12

17 18

25

 Initials of values of variables are shown in states.

10

Fig. 4. One of the admissible models from AFS1

To simplify our analysis, we divide the model AFS1

into two self contained sub models. One is the sub model

AFS1-1 on the left side of the Kripke model in Fig. 2,

which contains states {11, 12, 17, 18, 19, 20, 25, 26, 15, 16},

where 11 and 12 are initial states. The other sub

model is AFS1-2 on the right side and contains states

{13, 14, 6, 5, 3, 4, 1, 2, 22, 21, 23, 24, 25, 26, 7, 8, 9, 10, 15, 16},

where 13 and 14 are initial states.

There are (C3
1)2 = 9 admissible models of AFS1-1, where

2 × (C1
1 × C3

1) − (C1
1)2 = 2 × 3 − 1 = 5 preserve maximum

unchanged reachable states. These admissible models are

derived from the method where PU3 is applied to at least

one of states 19 and 20. (C2
1)2 = 4 admissible models, which

are derived from either PU2 or PU5 applied to states 19 and

20, do not preserve maximum unchanged reachable states. The

different sets of reachable states in admissible models are:

updated1 (AFS1-1)= {11(or12), 17, 18},

updated2(AFS1-1)= {11(or12), 17, 18, 19′, 25, 26, 15, 16},

updated3(AFS1-1)= {11(or12), 17, 18, 20′, 25, 26, 15, 16},

updated4(AFS1-1)= {11(or12), 17, 18, 19′, 20′, 25, 26, 15, 16}.

Admissible models with updated1(AFS1-1) are the results

from PU2 or PU5 applied to states 19 and 20. Admissible

models with updated2(AFS1-1) are the results from 2
combinations of updates: state 19 updated using PU3 to

derive a new state 19′ and state 20 updated using PU2 or

PU5. Admissible models with updated3(AFS1-1) are results

by applying PU3 to state 20 and PU2 or PU5 to state 19.

The admissible model with updated4(AFS1-1) is a result by

applying PU3 to states 19 and 20. We have minimal and

maximal sets of unchanged reachable states in the admissible

models updated from the original sub model AFS1-1 as

follows:

Setmin =updated1 (AFS1-1)= {11(or12), 17, 18};

Setmax=updated2(AFS1-1)-{19’}
=updated3(AFS1-1)−{20′}
=updated4(AFS1-1)−{19′, 20′}
={11(or12), 17, 18, 25, 26, 15, 16},

where 19′ and 20′ are the updated states using PU3. The

admissible models with setmax preserve maximum unchanged

reachable states in AFS1-1.

In AFS1-2, the outcome is more complex than that of AFS1-

1 but has a similar principle. The 4 false states are scattered

on 4 different paths. There are (C3
1)4 = 81 admissible models

after update. (C3
1)2×(2×(C1

1×C3
1)−(C1

1)2) = 45 admissible

models preserve the maximal unchanged reachable states,

where 2× (C1
1 ×C3

1)− (C1
1)2 is the number of combinations

of different update results if PU3 is applied to at least one of

states 7 or 8, then PU2, PU3 or PU5 are applied to the other

state; (C3
1)2 is the combinations of different updates, PU2,

PU3 and PU5, on states 23 and 24. (C3
1)2×(C2

1)2 = 36 admis-

sible models do not preserve the maximal unchanged reachable

states, which is from either PU2 or PU5 applied to states 7
and 8. The maximal unchanged reachable states for AFS1-2

are: {13(or14), 6, 5, 3, 4, 1, 2, 22, 21, 25, 26, 9, 10, 15, 16}.

For AFS1, the number of admissible models which

preserve the maximal unchanged reachable states is

(2×(C1
1×C3

1)−(C1
1)2)2×(C3

1)2=52×9=225.

The number of admissible models which do not preserve

the maximal unchanged reachable states is 2 × ((C2
1)2 ×

((C3
1)2)2)−((C2

1)2)2×(C3
1)2= 2 × (4 × 92) − 42 × 9 = 504.

Observation 1 Any admissible model obtained by applying

PU2 or PU5 may not retain maximal unchanged reachable

states.

IV. MINIMAL CHANGE WITH MAXIMAL REACHABLE

STATES

Given a Kripke model M = (S, R, L) and s0 ∈ S, and let

M = (M, s0). We say that s′ is a reachable state of M, if

there is a path in M = (S, R,L) of the form π = [s0, s1, · · ·]
where s′ �= s0 and s′ ∈ π. We use RS(M) = RS(M, s0) to

denote the set of all reachable states of M. Now we propose

a refined CTL model update principle which can significantly

narrow down the expected resulting models.

Definition 7: (Minimal change with maximal reachable
states) Given a CTL Kripke model M = (S, R, L), M =
(M, s0) where s0 ∈ S, and a CTL formula φ, Update(M, φ)
is called committed if the following conditions hold: (1)

Update(M, φ) = M′ = (M ′, s′0) is admissible; and (2) there

does not exist another resulting model M′′ = (M ′′, s′′0) such

that M′′ is admissible and RS(M) ∩ RS(M′) ⊂ RS(M) ∩
RS(M′′).

The committed update preserves all unchanged reachable

states in an original model after an update. The committed

model results from committed update. The total set of com-

mitted models are a subset of the total set of admissible

models updated from an original model. Thus, to derive

committed models, we should constrain admissible update,

i.e., a constraint should be added to Theorem 1 to result in

Theorem 2.

A key issue of implementing the new CTL model update

approach is to avoid eliminating unchanged reachable states.

For this purpose, we have implemented a reachable state

algorithm in code to embed the algorithm into the model

updater as shown in Fig. 3.

One of the committed models of AFS1 is shown in Fig. 5,

which is the result by applying PU2 to transitions before states

755

26

13 14

6
5

3 4

1 2

21

23

22

24

7

9

8

10

16

15

#3:
#4:
#5:

Server.out={0,val,inval}
Server.belief={none,valid,invalid}
Server.valid−file={true,false}

Client.belief={valid,invalid,suspect,nofile}#2:
#1: Client.out={0,fetch,validate}

#1,#2,

#5
#3,#4,

0,s,
0,n,

t
0,s,
0,n,
f

v,s,
0,n,
f

v,s,
0,n,

tv,s,
i, i,
t

v,s,
i, i,f

v,i,
0,i,
t

v,i,
0,i,
f

f,i,
0,i,f

f,i,
0,i,
t

v,s,
v,v,

t

v,s,

f

v,v,0,v,
t

v,v,
0,v

f

f,i,
v,v,

t

f,i,
v,v,

f

f,v,
0,v,

t
f,v,0,v

f

0,v,
0,v,
t

0,v,
0,v,

f

,

,

;
;

;
;

;

shows order of variables in a state;

0,n,
0,n,
t

0,n,
0,n,

f

f,n,
0,n,

t

f,n,
0,n,

f

t

f,n,
v,v, v,v,

f

11 12

17

19

18

20

25

 Initials of values of variables are shown in states.

f,v,

v,n,

Fig. 5. One of the Committed Models of AFS1

19, 23, 24, 7 and PU3 to states 20 and 8.

V. SEMANTIC CHARACTERIZATIONS

According to observation 1, in order to obtain committed

resulting models, any update involved in PU2 or PU5 should

be carefully constrained by the reachable state principle. The

characterizations for AGφ, AXφ, AFφ and EGφ contain

primitive updates PU2 and PU5 before the constraint of

Definition 7 as shown in [5]. We will further refine on some of

these characterizations constrained by Definition 7 to generate

more straight and simple characterizations for resulting in

committed models as follows.

Theorem 2: Let M = (S, R, L) be a Kripke model and

M = (M, s0) and M �|= AGφ, where s0 ∈ S and

φ is a propositional formula. Then an admissible updated

model M′ = U pdate(M, AGφ) can be obtained by that the

following:

1) for each path starting from s0, π = [s0, · · · , si, · · ·]: if

for all s < si in π where s |= φ but si �|= φ, PU2 is

applied to remove relation (si−1, si), or PU5 is applied

to remove si and its associated relations, iff each si+1

is shared by at least another path starting from the same

initial state as π, else,

2) PU3 is applied to all states si in π not satisfying φ to

substitute s with s∗ |= φ and Diff(s, s∗) is minimal.

Theorem 3: Let M = (S, R,L) be a Kripke model, M =
(M, s0) and M �|= AFφ, where s0 ∈ S and φ is a propositional

formula. π = [s0, · · ·] in M is a valid path of AFφ if there

exists some state s ∈ π and s > s0 such that L(s) |= φ;

otherwise, π is called a false path of AFφ. A committed model

M′ = Update(M, AFφ) can be obtained by the following

operations: for each false path π = [s0, s1, · · ·]:
1) if there is no other false path π′ sharing any common

state with π, then PU3 is applied to any state s ∈ π (s >
s0) to change s’s truth assignment such that L′(s) |=
φ and Diff(L(s), L′(s)) is minimal; otherwise, this

operation is only applied to a shared state sj (j > 0) in

maximum number of false paths;

2) PU2 is applied to remove relation element (s0, s1), if

s1 also occurs in another valid path π′, where π′ =
[s0, s

′
1, · · · , s′k, s1, s

′
k+1

, . . .] and there exists some s′i
(1 ≤ i ≤ k) such that L(s′i) |= φ.

Theorem 4: Let M = (S,R, L) be a Kripke model,

M = (M, s0) �|= EGφ, where s0 ∈ S and φ is a propo-

sitional formula. Then an admissible updated model M′ =
U pdate(M, EGφ) can be obtained by the following: Select a

path π = [s0, s1, · · · , si, · · · , sj , · · ·] from M which contains

minimal number of states not satisfying φ, and then

1) if for all s′ ∈ π such that s′ �|= φ, there exist si, sj ∈ π
satisfying si < s′ < sj and ∀s ≤ si or ∀s ≥ sj , s |= φ,

then PU1 is applied to add a relation (si, sj), or PU4 is

applied to add a state s∗ |= φ and new relations (si, s
∗)

and (s∗, sj);
2) ∃si ∈ π, such that ∀s ≤ si, s |= φ; ∃sk ∈ π′′, where

π′′ = [s0, · · · , sk, · · ·], such that ∀s ≥ sk, s |= φ, then

PU1 is applied to connect si and sk;

3) if ∃si ∈ π (i > 1) such that for all s′ < si, s′ |= φ,

si �|= φ, then,

PU1 is applied to connect si−1 and one of such s′ to

form a new transition (si−1, s
′);

4) if ∃ s′ ∈ π, such that s′ �|= φ, then PU3 is applied to

substitute all s′ with new state s∗ |= φ and Diff(s, s∗)
to be minimal.

Proof: In case 1, without loss of generality, we assume

for the selected path π, there exist states s′ that do not

satisfy φ, and all other states in π satisfy φ. We also assume

that such s′ are in the middle of path π. Therefore, there

are two other states si, sj in π such that si < s′ < sj .

That is, π = [s0, · · · , si−1, si, · · · , s′, · · · , sj , sj+1, · · ·]. We

first consider applying PU1. It is clear that by applying

PU1 to add a new relation (si, sj), a new path is formed:

π′ = [s0, · · · , si−1, si, sj , sj+1, · · ·]. Note that each state in

π′ is also in path π and s′ �∈ π′. Accordingly, we know

EGφ holds in the new model M ′ = (S, R ∪ {(si, sj}, L)
at state s0. On the other hand, we consider Diff(M,M′).
Clearly, Diff(M,M′) = ({(si, sj)}, ∅, ∅, ∅, ∅), which im-

plies M′ must be a minimally changed model with respect

to ≤M that satisfies EGφ. Now we consider applying PU4.

In this case, we will have a new model M′ = (S ∪
{s∗}, R ∪ {(si, s

∗), (s∗, sj)}, L′) where L′ is an extension

of L on new state s∗ that satisfies φ. We can see that

π′ = [s0, · · · , si, s
∗, sj , · · ·] is a path in M ′ which shares

all states with path π except the state s∗ in π′ and those

states between si+1 and sj−1 including s′ in π. So we

also have (M ′, s0) |= EGφ. On the other hand, we have

Diff(M,M′) = (∅, ∅, ∅, {s∗}, ∅). Obviously, M′ is a mini-

mally changed model with respect to ≤M that satisfies EGφ.

In case 2, if all states on the first part of a path satisfy φ, and

all states on the last part of another path satisfy φ, then, PU1

is applied to connect a new transition (si, sk) which connects

the first part of one path and the last part of the other path.

Now, all states on the new path [s0, · · · , si, sk · · ·] satisfy φ.

Thus, M′ |= EGφ. After PU1 is applied, Diff(M,M′) =
({(si, sk)}, ∅, ∅, ∅, ∅) is minimum and M′ is a minimally

756

changed model with respect to ≤M that satisfies EGφ.

In case 3, if PU1 is applied to form a

new transition (si−1, s
′), then, the new path

[s0, · · · , s′, · · · , si−1, s
′, · · · , si−1, s

′, · · ·] contains a Strongly

Connected Component (SCC) [2], [6] where all states satisfy

φ and Diff(M,M′) = ({(si−1, s
′)}, ∅, ∅, ∅, ∅) is minimum.

Thus, M′ is a minimally changed model with respect to ≤M

that satisfies EGφ.

In case 4, suppose there are n states on a path that

do not atisfy φ, after PU3 is applied to all these states,

Diff(M,M′) = (∅, ∅, {s′1, s′2, · · · , s′n, s∗1, s
∗
2, · · · , s∗n}, ∅, ∅).

Diff(M,M′) in this case is not compatible with case 1,

case 2 or case 3. Thus, M ′ is a minimally changed model

with respect to ≤M that satisfies EGφ.

VI. COMPLEXITIES

Lemma 1: Given a CTL Kripke model M = (S, R, L),
M = (M, s0), where s0 ∈ S, a CTL formula φ, and two

admissible results M′ = (M ′, s′0) and M′′ = (M ′′, s′′0) from

the update of M = (M, s0) to satisfy φ, checking whether

RS(M) ∩ RS(M′) ⊂ RS(M) ∩ RS(M′′) can be achieved

in polynomial time.

Proof: For a given M = (S,R, L), we can view M
as a directed graph G(M) = (S,R), where S is the set of

vertices and R represents all edges in the graph. Obviously,

the problem of finding all reachable states from s0 in M is

the same as that of finding all reachable vertices from vertex

s0 in graph G(M), which can be obtained by computing a

spanning tree with root s0 in G(M). It is well known that

a spanning tree can be computed in polynomial time [8].

Therefore, all sets RS(M), RS(M′), and RS(M′′) can be

obtained in polynomial time. Also, RS(M) ∩ RS(M′) ⊂
RS(M) ∩ RS(M′′) can be checked in polynomial time.

Theorem 5: Given two CTL Kripke models M =
(S, R, L) and M ′ = (S′, R′, L′), where s0 ∈ S and s′0 ∈
S′, and a CTL formula φ. Deciding whether (M ′, s′0) is a

committed result from the update of (M, s0) to satisfy φ is

co-NP-complete.

Proof: Since every committed result is also an admissible

one, from Theorem 5, the hardness holds. For the membership,

we need to check (1) whether (M ′, s′0) is admissible; and, (2)

a resulting model M ′′ does not exist such that (M ′′, s′′0) |= φ
and RS(M) ∩ RS(M′) ⊂ RS(M) ∩ RS(M′′). checking

whether (M ′, s′0) is in co-NP [5]. For (2), we consider

its complement: a resulting model (M ′′, s0) exits such that

(M ′′, s′′0) |= φ and RS(M)∩RS(M′) ⊂ RS(M)∩RS(M′′).
From Lemma 1, we can conclude that the problem is in NP.

Consequently, the original problem of checking (2) is in co-

NP.

Theorem 6: Let M = (S, R, L) be a CTL Kripke model

and φ a CTL formula. The following results hold.

1) If a committed result Update((M, s0), φ) (s0 ∈ S)

can be obtained by only applying PU1, PU2, PU4

and PU5, then Update((M, s0), φ) can be computed in

polynomial time;

2) If φ is of the form AGψ and there are two states s, s′ ∈
S such that s �|= ψ, s′ |= ψ, and any path from s0

to s′ contains s, then a committed result can only be

obtained by applying PU3. In this case, deciding whether

an update result Update((M, s0), φ) is committed is co-

NP-complete.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated the discovery of the ad-

missible model explosion problem for CTL model update

through a running case study on the Andrew File System

1 model. We then refined our minimal change principle by

retaining maximal reachable states during an update process

to optimize our previous CTL model update method. We

presented the implementation, semantics characterizations and

computational complexity results on this improved CTL model

update approach. Our work also confirmed that although in

general CTL model update may generate much more resulting

models than we expect, many unwanted models can actually

be filtered out if we take reachable states into account.

We are considering an improvement of the reachable state

algorithm as our future work. If two states are preserved in

an update and there was a path between them in the original

model, then there is still a path between them in the updated

model. For instance, in Fig. 2, there is a path from state 21
to 26. Because these two states are preserved, there must be

a path between them in all committed models. This would

reduce the number of admissible models even more and would

rule out the model in Fig. 5. This improved reachable state

algorithm in fact provides the reachability condition from all

states in a model rather than from initial states only. The

reachable state algorithm could be further analyzed with graph

theory.
VIII. ACKNOWLEDGEMENTS

The assistance of Senior Software Engineer Neville Coburn

for the implementation of the model updater, and the support

of ARC grant No. DP0664479 are acknowledged.

REFERENCES

[1] Buccafurri, F., Eiter, T., Gottlob, G. and Leone, N. (1999). Enhancing
model checking in verification by AI techniques. Artificial Intelligence
112(1999) 57-104.

[2] Clarke, E. Jr. et al. (1999). Model Checking, The MIT press.
[3] Cimatti, A. et al. (1999). NUSMV: a new symbolic model verifier. In

Proceedings of the 11th International Conference on Computer Aided
Verification.

[4] Ding, Y. and Zhang, Y. (2006). CTL model update: Semantics, computa-
tions and implementation. In Proceedings of the 17th European Conference
on Artificial Intelligence(ECAI2006).

[5] Ding, Y. (2006). Model Update for System Modifications. Ph.D Thesis.
School of Computing and Mathematics, University of Western Sydney.

[6] Huth, M. and Ryan, M. (2000). Logic in Computer Science: Modelling
and Reasoning about Systems. University Press, Canbridge.

[7] McMillan,K. and Amla,N. (2002). Automatic abstraction without coun-
terexamples. Cadence Berkeley Labs, Cadence Design Systems.

[8] Pettie, S. and Ramachandran, V. (2002). An optimal minimum spanning
tree algorithm. Journal of ACM, 49 (2002) 16-34.

[9] Wing, J. and Vaziri-Farahani, M. (Oct.1995). A case study in model
checking software. In proceedings of 3rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering.

757

��������	
�������
���
�������������
���������
����������
�

���������	�	
��������
�����	�������	��
��������
����������	���
	� ���!	�����"���	���

�#��$����
��%�$��	����	���������%&�������	�����
�'#'�(���)*+,,���!	�����"���	����!"�-,./+�.01�(��2	��

3&�����	4�������������%����56��
'��7'4��
�

�
���������

�
#����� �8�� 	�
�����	�	�	�
� ���������&���
�������&�������
�	��� 	
� �8�� ������� ����
	
'� 98	
� ���	�	� � &������
� ��
������� %����� ��� ��&��
���� ��%%����	�	�
� ����
���	�4	�	�	�
��%����&������
�����&��������	��'���������
������ �&&�	���	��
� �
�� �������� 	���%��	��� ��� &���	���

���	��
��������������	���%��	�������8�	���
��
'�#�����
�8�� �8�������
� ��� 4�	����� �������������� &������� �	��� 	
�
8��������&��
������������	���%��	���	�����������%����'�
98	
� &�&��� &��&�
�
� �� %����	��� �����	���� �������
�4	�$:�� ��� ��&��
���	��� �������� 	���%��	��� ����
��	�	��������������&�	�������
�	�����������%����'�
�
�
��� ;���
����
��
�
��	����������� �������� ���� ����� ��� �� �
�� ��	��� ���

�������� ���	� ��<������ ������	�� =��>�� �����
�������� ���� ��	����� 	�������	� ��� ���!
�� ����!�	��
���!�����	
�	�������	���������������"	�
�����	����	�����
������	��� ������ ���� �������
�����	��
���� �	
� �������

�����	��������������	���������	������ 	���	�������	���
������� ���!��� ��� �� 	��� ������ �	
� ��������� �� ������
������� ��
�� ��������	� 	� ��� ��������	��� ��� ��������
������������	
�
���������������
��	�����������	�����	
�
������	��
��������� ���
���� �	�� ����
��� =�?>� ���������

�����	������ �	
� !��������� 	� �� ���� ��� ��������	��
���� �� �������
���	� ��	�� ��� 	�����	�� ���
���!���
�	
�<�������"���

�!������	�� �������������
��	� �����
���� ������� ���
�����������
������
	��	�����������	����������������
������� �	
� ���
	�� ���� ������� �������!�����������������
��������
����������!�
�����������	������	���������
����
����!���	�������	��
��=#>��

$��������� ����� ����������� ��!�� ������
� �	� ����

�!������	�����������������	�����
����
�������	�������
������� ���� !�����	� ��	��� =%>�� $��� !�����	�� ����
	���	����
� ������� �� ���
���� ��
��!���
� ��� �����������
@�	���� ������ ����������� ���!
��
�!������	�� ����
�
������	� 	� �����
�����	�� !����	�� ��� ��������	�

��!�����	���	�����
������
	����������������	
���	����
�	!��	��	������������������������
���� ��������� �������� ��������	� ����� ��� �� �������

��
�� �� 	��	
�
� ��� �������� 	� �� !������ ��� ������

�!���� �	
� ������&�
� ���
�����	�� ����� �������	�����
 �������
�!������	�������
������	������
������	������
��� !����	������ 	������� ����	�	�������'�����
�!����
��!�� ����
��������� �������� �	
� �������	��� �	
� �� ��
	������������������������
���������������������	���������
�����	�	������������	������	��������

 ��� ������ ������ �� 	��� �
�<����� ���
���� ���� ����

�	����� ��� ��	����������� ��������	�� �������� �����
	��
� �� ��	���� �
������	� 	������ ��������	�� �
����
����� ����!��� �����
	�� ��� ��	����� ���	����� ��	�����
������ ��������	�
�!������	�� �����
� ��	���� ����� ����
������������
�����	����	�����	���������������������	
�
��	�����������@���!������	���
�����	���������	�������
������������
�����	���	�	���	��=�(>��

)	�� ��� ���� ����� ���!���� ���
�!����� �� ���������
���
���� �	�� �� ���� �������� �	������� ��� ���!���

�	����������	�����!�������������������������
�����	�
�� ���
���� �	�� �	
� ����	&��� ����� 	��� ����
��� �����
�
����������
���=��>��$������������������������������������
����!�	�� ��� ����� ���A����
��� �	
� �� ���
� ��� ��������
�����	������ �	
� !��������� ���	�� ���
����� 	� ��
���
�����	���
����������
��	�����������������
������������	��	
�

!������� ���������� ��� ���
�����	���������� �����������
�����������������
�����	���	�	���	��������������
�����
���
� �	��� ������ ������� ����
��
	�� ����� ���������
�����
������������
���������
�����	���	
�����������
�
	��� �	��� ���
����
��!���	�� ���������� ���� �� ��	�����
������ ���
���� �	�� �� �� ������	�� ��� �������	�� ��	�����
	�������	�	�������
����������������������	����	����
��	�	������������A	������� ���� 	�������	� ������� 	�
�������������������	������	��������	����
���������������
�������������A	��	�����������
���	�����	��=*>=�>�
��	���

�������������������	��	�������!�������	
����������	���
��	���	�
� ���� �������	�� ���� ��	����� ���� �� �������
�	
�����	
	���������A	
�������������

 �������������������	�����	��	��������������	�����	�
��� �������	�� ��	����� 	�������	� ��������� 	� �� ��������
��
����'����!��������	���&�� ���� 	����	������ ����A	
�

758

��� 	�������	� 	� ���
���� !�������� �	
� �
���!��

����	��� ���� ���� ��������� ���
��	�� 	��� ������ ���
��������� ���� �������	�	�� ��	����� 	�������	� 	� ����
��
���� ��� �����
��	�� 	��� ������ ��� �������	�� ����
������	����������	�����������	
���	�������

 ��� ����	
��� ��� ���� ������ ��
!
�
� 	��� ������
�����	�� 	� �

��	� ��� ���� 	���
����	�� �����	� +�
��!����������������	������������
����������������
����
�	��
�!������	�� �	
� ��	����������� ��������� �	
�
������&��� ����� ������
� ���A��� �����	� ?� �����	���
,��-.�� �� �������� 	�����	� ����	��	� ���� ��
��	��
��	��������������
�����	�����	�����������	�*���	���
���
�����������	
�
���������������
�����	���
�
���/��0��
����
�
����� �
���������
����������
�

$����
	�� ������������-	�	���	�� "	������� B�-"C����
��������� ���
���� �	�� �� �� ���� ��� ���������	��	�!��
������������	���������	����	���
����������������������
������� �������	��
��������������������A����������	��
�	
����������
�!�����
�������������	��������������������
	�����������
�����=�?>��������������������������	��������
���
�����	���	
��������	����	��������������	������
����
���
�
��!�
���������	���

D��	�� ���� ���
���� �	��
�!������	�� ���������
���������� �������� ��� ���
����� ��	� ��� ��������
�� ���
!�������� ��	����� ������� ��� ��	��� 	� ���� ����� �������
������ �� �� 	��������� ���
�����	����� 	
!
����
�������������� ��� ���
������ ��	�� �������	��
� ���� ��
�������� ��
���� "	� ��
��� ��� ��
��� !��������� �� ��
	��������� ��� �������	�� ����
���	� ��	������ �	
� �����
������	����������������

$� �������� ��
��� �������	��� ��
���	� �	
� ���� ���
��A��������	����� ������	���������	�� �����������	���
	!��!�
� 	� ���� ��������� ����� ��� �������
���	�
������������	
�
�!���������"���������	���������������������
������������������������	�������	
�!�����������	
�
���� ������	��������	�� ������ "	��

��	�� ������������
��!���������������	��	
������
�����������	����	����������
���������������	����	������
�����	���	����	��

$	� ������	�� ������	���� 	� �� ����������
��� �� ����

���	
�	��� ���	�� ��������� �����
��	��� ���	� �����
��������� �����
� ��� 	���
�
� 	�
�� ���
����
��� ��� ����
�����	����������������������)	�������������	
�������������

��	�����	������ ��������������
���� ����!�
� ����� ����
���
����
���������������	����������������������

 ���A	
������
������������������	����	�����E�B�C�
!�����	� ��	��� ��������� ���� 	�������� ���
����	�
��A	�� ������
� ��� �	�� �������� �����
	������� !���	���
���� ��� ���
F� B+C� !���	��� ���� �!������� ������� ���� ��
!�����	� ��	�F� B?C� 	!���	������	� ���
� �����	��� �����
����	�����	���������	�����
���	���
���� ��������� ��	�
��	�� ���� ������ ������� ��
��

���	����� ��	���!�� �� ��	���	��� �������� G��������H��

@���!���� ����� ��	� ��� �������	��
� 	� ����� ���	� �	��
������ ����� ��� �	� �������� �� ?�D������ "	� ���� ���������
��!�� ��!�����	���	������ ����!���	��� B�����������C��
@���!���������	��������!������������G����������H����������
���� ����� ����!��� ���� ���� ���
�����
��!�
� ����� ����
���
���� �	��� "	� ���� ������ ���� G���� ������H� �������� ��
��	�
���
��	�	!���	���

�
����� �
��������������������
�
��	����������� �������� ���� ����� ��� �
���� �����

�������	�� ��� �� ������� ��	����� ������� ������� �����
	���!�	��	�� ���� ���� ��	����� 	�������	� ��� ���!
��
����!�	�����!�����	
�	�������	��

'�	��
��	��	�������	����������!�	�	����������������
D��� �	
�$���
� =1>�
��	�� ��	����� ��� �	�� 	�������	�
�������	�������
�������������&������������	�����	��	����
����� �� ��	�
���
� ����!�	�� ��� ���� 	�������	� ������	� ��
����� �	
� �	� ��������	�� 	���
	�� ���� ����� �	
� ����
��������	���������!�����

$����� �����
	�� ��� ������ ������������	�
���	������
��	������ �������	�������	����
��	�����
E�������� B������
������� ���
	���� ����C�� ������� B������ 	
!
����� �	
�
������C�� �	
� ��	��� B������ �������� ��2������ ���������
�����	�	��������C��

"	� ���� ���������� =�>�� ����� ���������� ����
�����	�� ��
�	���� ��	����� ��	� ��� ���	
E� �������� � &�� ������� ��� ����
��������� ��� ��	����F� �������� ���������	�� ���� ����
����
�������
� ��� �� ��	���F� �	%��
��%&� ��	��	�� ��
���I����
!�����
�����	�� ���	� ���� ��	����� ���� ��	��
F�
������

�������� ���� ���� 	�������	� ���� �������
F� �	
�
���	������
�������������	�����	������������	�����������

�
��3��4�������5
�0�

�
 �����������	������������� �������������	�����������

���������
�!������	�� =�+>=(>�� @���!��������� ��� �����
����	�����	���	�
��������������������������������� ����
��	� ������ �� ��� ���!�� ������� ��������� ���� �������

���	���

 ��� ����������� ����
� �	� ��������� ���
���� �	��
�������� �������� �� ���������� ���������
�!������	��
����
�	������
������������������	���	���������	�����
������ ���������
�!������	�� 	� ��������� �����������	
�
��	�����������

6��� �	
� J�	�� =�7>� �������
� �� �����������	��
�
��������� ���
�!�����
�	�������� ����	��������� �����
������� ���� ���
���� �	���� ��������� ��	� ��� �������
� �	
�
��	�����
� ��� ��	����� $����� �������� �	������� ��������
��
��� �� ���	�
� �������� �������� �	
	�� �	������ �����
��	����� ��� ���� ������E� �������� �	
	�� �	��

�	������	�� �	
� �������� �	
	�� ����
�����	���	��
$����� ��
�	���� �	
	�� ������	� �� �		�����
� ����
�����	
��	��� ������������	
	�����������	�����
�������
�����	����������!
����	�	���!���	
�!�����
�������	�
���
�	�������� ���	�	�� ���
���� ��	�������	��

759

@���!���� �����	���� ��� �������� ����
��	��	� ���
����!�	�� ��	����� 	�������	� ���
� ���
�������
�����	
��	������	���
�	���
��	
���	����� 	�������	�
��	����������	��
�	���������������
����

K�	�
��� @��A� =�%>������	��� ������	���������	������
!��������� ����� 	!��!��� ���� ������ ��� �� ���������
�����������!�����������!�������	����	��	����������������
$����
	�� ��� �������������� ������	� ��� �������� ����A	
�
��� ��������� ���� ��� ���!
�� �������	� ��	���	�����E� ��
�������	����	� ��� �������� ������� !��������F� �� ����� ���
������� ������!��������F��� ����� ��� �����!��!��������F�
�	
� ������ ��� ������ ���� ������� ��� ���� ��������	�� 	�

�����	��������������	���� ������A�
����	��������������
���� ���� ���� ��	����� 	�������	� ��
�	���
��
��������������	� ����!���������������� �������	����	��
������ ���� 	��� �����	��� �����
�	���� ���� ����
	�������	�	����	���������������
�	������	�������	��

 �������������������
� 	� �������������� ������!
��
������	�� ��� ���� ���A� ��	��� ���	
� 	� ������ ���A���
�����	�� �	� ������� �������	����	� ��� ���� ����!�	��
��	����� 	�������	� ��� ����
���	� 	� ���� ����������
���
�	
�
�	���	�� ���� ���� 	�������	� 	����	���� �	� ����
�������
�	������	�������	��

�
3�� ��� !�
�

,��-.� �� �������
� ��� ��� �� �������� 	�����	� �����
���!
��� ��	����� 	�������	� �������	����	��	
���	�����
������ ���������	�� ,��-.� ����	
��)
������
�	!��	��	��=�1>���������	�����	�������
�)
�������-.���

 ��� �����	� ��
!
�
� 	� ����� ��������	��� �����	�
?��� �����	��� ���� ��	� �������������� ���)
�������-.�
	�����	�� ���
� ��� ����� ���� ���� �������
� ����	��	��
�����	� ?�+�
�������� ���� ��������� ����������
��	�
� ���
������ ��	����� �������	����	�� �����	� ?�?� �	
� ?�*��
�������!����� �����	�� ��������	�� �	
� ������ ���
� ���
�������	�� ���� ��	����� 	����	��� 	� ����
�	���� ���
����
��	�������	���	�����������	� ?�1� 	���
����� ���� 	����

����������
�����	������������	�	��������������

�
3����"�������� !�
�

 ���)
������ �	!��	��	�� ���!
��� �������� ���
�����������������������
���	��	�	���	������
�����	���
�	
������	�	������
�
�!������	������	<�����

)
�������-.�=�*>�����
�!�����
������������������	�
!�������� �������	����	�
������
� 	� ������ ��������
	�����	�� ����� ����
� ���
� ��� �	� 	����������
��	����� ��
������� ������� ����� ��� ������ ����� ���� ���� ���A� ��� �	�
������� �������	����	� ��� !�����	� ��	��� �	
� �	�
	������	�� �������	����	� ���
���	
�	��� �	
� �������
������!�	����������	�������	������������

"	� ���� 	�����	�� ��������� ����� ��� �������	��
�
�����
	�� ��� ������
��	��	�E�����������!����������	
�
����	������ ����������!�������������������	�	����������
�����E�
���	� B��	���	��� �	
� ��	�������C�� �	�����

�������	��� �	!��	��	���
���	� ����	������� �	
�
������	����	�����	<�����

D���	� ��������� ���� ������
� ��� ���� �����
���	�
��	���	������ �	
� ��	������� -	���� ��������� ���� ����
��
�����������)������	����	!��	��	������������������	��
���������� ��� �	� �	!��	��	�� ����� ��
���	� ��������	�
��	� ���� �	
� ��������� D���	� ����	������ ���������
�������	�� ����	������� ���
� ��� ��
��� ��� ������	�� ��
�������
���	� ��<�����	��� �	������ ������	����	�
����	<���� ��������� �������	�� ����	������� ���
� ���
������	������������������

$����
	�����!������������������	�������������	����
!�����	� ��	���� !���	��� ��� 	!���	���� ����� ��	������
��������!�����������	��
�	������	�+����

"	� �������� �������	�������� ����������	������	
������
��� ����	���� ��� ����������	� 	
������ �������� ��
�������� �����
� ��� �����	�� 	� ���� ���
����� ��� 	���� ���
����	�������������������������
���	���"	�)
�������-.�
	�����	������	��� ��������� ���� �������	��
� 	� ������
���
���� ��
����
� ������� "�� �� ������	�� ��� 	����� ����� �	�
����	��� �������� ���� ������� ��	
������ ���	� ������
��������������������
�� ���������	�����������
����������
�����	��������������	����������	������������������
��������	� ������
��	�� ��������	�� ������	�

����������)
�������-.�
��	������������������������	�
�����E� 	����!�� �	
� ������!��� "	����!�� ������ �������	��
��������
���	
�	��������������������	������	����
�	����
�������
� ���� ��	��<��	�� ���� ����� ��� ��� �������
��
-�����!�� ������ �������	�� ��������� ������!�� ��������
������	�����"	��������������	������	����
�	�����������
�
���� ��	��<��	�� ����� 	��� ��� �������
� ���� ���� �����
���
����� ����� ������ ��	� ��� ����	�
� ���� ������	�
��������	��� ����� ��������	�� ��	� ��� �������
� ���
����� ���	� ���� ���������� ����	�� �	� ��������	�
����	���	������������������	����
�	���	
���	��<��	���

�

�
�������	
����������������������������������
�
�

760

)
�������-.� ������� ������	���� ����	��� 	� ��
�������� ��
���� �����	�� �� ����	���� �������� ���
�������	����	� �	
� ��������	�� ��������� ���� ������
� ���
�������������	��,'6�������	����������������������	��
��	����&���	���	
���������	��"	��

��	������	�����	�
�	A�� �� !�����	� ��	�� ��� ����� !���	��� ��������
�����	��!�� ������	������ ��� ������	���� ����������
!��������	���������������
����
������������������������������������
��������������

���������
��
���	�=?>��������	��)
�������-.��
)
������ �	!��	��	�� ����� ��������� ������ ��������

��
���	�����	���	���
	�������	����������
����L�����
=�>� �	
� �&��	��A� =*>�� ���
��
�� ��� ����	
�)
������
�-.�
���������������!�������������!�	����	������������
����������	�����	���

�
3���� M����������������
����
�

,��-.����������
�����������	����	�����	�������	�
	� �	� ������� ������ ���� ����� ������������
��	�
� ����
�������� ���������� 	� �

��	� ��� ������
������
� 	� ����
���!���������	E���	������	�����	
���	�����	�������	��
��	����� �	���� �������� ���� ������
� ��� �������	��

����!�	����	������	�������������
���	�� �������!�	�����
����
� �	� ���� 	����	��� ��� ���� �	���� �	� ���� �������
����!�������� ��������� ���������� ���������
�� �������
���� �	����� ����� ��� ������ ������
�!���� ��� �� �������
�	!��	��	��� �������������
��	�
� ��� �� ��	����� �	����
�����������E�	�����	
�
�������	��
��	����� �	����� ��	� ��� ���������&�
� ��� ��	�����

	�������	����	����� 	�������	� �������� �������	��� ����

��������������
������������
����
�����������	������	�����
�������������!�	�����
���	���������	���
������	��
#���
��	� ���� ����������
������
� 	������	�+�+�����

��	�
�������������������� ��� ���� ���������������E�	�����

�������	�������B��������������
�	���C������������B������
���	��� 	�����������C�� 	����!����� B���	����������C���	
�
��	���������
������ �������	��������
� 	�
��	�� ����
���	��	���������
����������	�������������������	����
��!���	���������	��
�����
	�����������
�����
����	��

"�� ��	����� ��������� ���� ��
���
� ��������� ���� ������
��������������������	���!����������
�����������������
�
����
�����	����	���	�����������	���	
�����	
�������
���� ���� �����	����� �������	
� ���� ���� ��� �� ��������
�
��
��� ���� ��	����� �������� ��
��	��� "	� ���� ������
������	����� ������	� ���� ��
���� ���� �������	��
� ���
��	����� �������)
������ �	!��	��	�� ������� �����	��
���������	�
�����	�����������
������������
	����������
�����������"	�������������������!��
�����	��!���������
�	��������������
����
������ +� ������ �� ������ ��	����� ��
��� ��� ������

������� ��
��
���	�� �������	�	�� ���� �	����� �	
�
��	�����	�������	��

�
��������
�����������������������
�

�
3�3�� �
������8����
�� �$����
���
�

$�������
��	�� ��	����� �	����� �	
� 	�������	�� ����
	���� ����� �� ����
��	��	� ��� ���� ��	������ ����� ����
	��������� ���������� ������	����� ���������	�����
��	��	�
���������
������	�����	
��	���������	��

�

� �
�

��������
�� �����������������������
�
�

$� ��	����� ��	� ���
��	�
� �����
	�� ��� ���� #9��
	�����	�B����������?C��$	���������	���	���������
����
�� ��	����� 	�������	� �������� BN�"�OC�� ���!������

������
�	���������������
������������	��������������	
�
�� !������ $����� �	� ��������	� ��	� ��� �� ��������	� ���
��������	����	������������������
������*�������������	����������������	�����
��	��	�

��������	������������������������
��
���	��
�

�
�

�������!
��������������������������������������
�
�

B%�	����'������O�(*C��M8��
B)������	����������P�G�����	HC�

N��	�����
��	��	O�EEP�N��������	O�
�
N��������	O�EEP�N�"�ON������	�����������O�N!����O�
�������������Q�N��������	O�N�������������O�N��������	O�
�������������Q�9) �N��������	O�
�
N������	�����������O�EEP��O�Q�N�Q�OP�Q�NP�Q�P�Q�NO�
�
N�������������O�EEP��$9D�Q�)%�Q�.)%��
�
N!����O�EEP�N���	������O�Q�N	������O�Q�N����������O��
�������������Q�N������	�����O�

761

"	� ������������ ��	�
��	�� �� ��	�����	���
�-	�����
'��������������
����������������������	��$���	�������
���!�����	������!������	���������������	���������

�
3�&�� �
������4�����
�
��	���������������������������������	��������������	�

��������	���	�������	�	�����
���	��
�����		�������
��������� ����
����	� ������ !���	�� �������	� 	� ��
!�����	���	���

 ��� ��	�������	� ��� �� ��	����� ����� �� ������ ��� ��
��������	� ������ ��� ����� �� �����
���� �	� �	����
�	���
�������������	%&�	�
���	
�����	��<��	��� ����	����
�	����
�	� ��������	� ����� ��	� ��	��	� ��	������� ���������� �	
�
����� ����������� ��� ��������� 	%&�	�
����	�� ����� �� ����
�	����
�	�� �� ������ ���	� ���� ��	��<��	�� �� �������
�� ���
��	��<��	�����	���������	��������	���	��	�����������	
�
������������������������
���	����
�	������������������
1��������	����������������	������������

 ����������	�������
� �������&����	���	�����������
������������	� ���� ���������	��� ���!����&�������������
������������	��	��������������!����	�������	
��������	
�
������������������!���	�����������	������	������

�

�
�

�������"
������������������������
�
�

 ��� ��	����� �������� ��
��� ���� ��	�����
��	��	��
�	
���	����� ��������	�����������
� ����	�.'6� ����� ���
���� ��	� ��� ���
� ��� 	���� ��� ��	������� ���� ��������� ��
�

������� ��	�������	� ����� ����� ������ ���� �����
�������	��
�	���������������
������������������������������
���� ��	��<��	�� 	� ����� ����� �������A�
����� ���� �����

�	������ "	� ���� ����� �� �� ������ ���
�	���� �����
�����������!�����	�	����	��
������	������
�
3�'�� �
������������
��
�
�����	�� ����� ������ �������
� ����	��	��� ��� ����

���A	�� �	� �� ����� ��� �������� !�����	�� 	� ����
��	�
�
��	������ ��� �	���&�� ���� ����!��� ��� ���� ���
���� �	��
������������� ���)
������ �	!��	��	��
���	�
�	�	���	�� �������� ���A�� ���� �����	�	������
�
������������� �	
� �� �� �������� ��� ���� ��������� ���
��������	������	�	�����

"	� ������������ ��	�
�	���� 	��	����	����������	�
��������	� ������ �	
� ��	����� ������� ��� �
!�	����� ��
����� �� ��	� ���
�	�� ���
�!������	�� ����� ��
��	�� ����
������������ ������ �� 	�� �������� ���
���� ��	�������	�
�	
�������������	�������������������
���������������	�
����������!������	��	�
�������

������� ��
��
���	�� ��� �������	� �������� ����
������	�� ������� ������ ��� ��!�� ��� ������� �	� 	����
��	�������	� ���� ���� ���
����� ������	�� ���� 	����
���������� $����� ������ ��� ��	� �������� !�����	�� 	� ����

��	����� 	�������	� ��������� !������� ����� ��� %�	����
'��������	
�
�����	���������	�������������!������
�
�	� ��	�����
��	��	� ��������	��� ��� 	���� ����� �� ����
��	������������	��������������A���������������
�����	��
�	��������
������	�������	��"����
�����	���������	
��
��	��� ������� ��������� �� �������
� �	
� ������	����	������
��������	�������������A�
������������������������	��
������ ��������!�� ������ �������
� ���������	�����	�����
�
��	�������	��

 ��� �������	� ��	� ��	� �	��	��� ���
������
	����	�� 	��	����	����� ��� 	� ������ ��
��� �	���	��

��	������	������	
���	����	����������������������	��
	��	����	�����

�
&�� �
�����
��������������5
�0�
�

 ��� ������ �����	��
� �� �������� ��
��� 	�����	� ���
��	����������� ���
���� �	��� �����
� ,��-.�� �����
����	��	�������������
� ����	�����	�� ����������
��	��
	�����	��	���
�)
�������-.��������������������	����	�
��� ��	����� 	�������	� �	
�
�	�������
����
��!���	��
"	� ���������,��-.� ��������� �� ������	� ���� �������A�
��	��� ���	
� 	� ���� ������
� ���A� �����
	�� ��	�����
�������	����	�� ���!
	�� �� ������� �	
�����	
	�� �	
�
�������	����	� ��� ���� ����!�	�� ��	����� �	����� �	
�
	�������	� 	� �� ��	�����������
���	�� ��	�� ���� �����
����������
�������������	������������������������

 ���� ������� �������	����	������	����� ������	���� ���
��
��	����	�������������������	�����	������	����	���

������� ��������!������ ��������������	��� ���������� ��
�� ������	�� ���
�	���� ������	��� ���� ��������
���� �	��

�!������	�����!�����

,��-.� ����� ��������� �� ����� ����� ��� ��
�	����
��	�������	� ��� ���
����� ����
� �	� ��	����� �������
'����!���� �� ������� �	�������!�������	���� �������
����
�������	�����������	������������	��
��	�����	�������	�����A��������	��������
���������

�
���!�� ��������	�� 	� ��<������ ������	�� =+>�� ����
���������	�������������	���	����������������
���	������
���� ����� ��� 	�������	� 	� ���� ��������� ���
���� �	��

�!������	���@���!���������������������	��������	�������
���
� ��	����������� ���
���� �	���� ��	���
��� ��� ����

�	�����
������	��������������������������������	���

$�� ������� ���A�� ��� ���� ���			�� ��� �!������� ����
�������
� ��������	�����	� 	��� ��������	�������
��	����
�������������	����	�������������������	������������

�!����� ��	����� ��	� �	���&�� �� ����!�	�� ��	������ �	
�
�
���!�� ������ ��	� ��� �������	��
� 	� �	� ������!�������
�	���)
�������	!��	��	���������������������������
���
	�����	������ 	��	
� ����������� ����������� �������	
� ����
�������
�������������������	�����	���

'����!���� ��� ����� 	��	
� ��� ���� �������� ��
���� ���

�	���� ���
����
��!���	��
�!����	�� �	� ��������
�
���
���� !���	�� �������	� ����
� �	� ��������� �	
� ������
�������
�	�������������
�

-	�����'�������$���������?D�'���

762

'�� ��0�
�����������
�
 ��� ������������
� �A�� ��� ���	A��$�-���	
��9�<� ����
�����	�	�������������
�
(�� 4����������
�
=�>� #��
�����'���	
�D�
���������+77*��$����!����	���	�����

������ ��������� �����%������ ,K���*��+77*�+*�� �����
,	!�����K�		���

�
=+>� #��
����� :�� -�� +771�� ��� :�!�� ��	����� $����	����

��������A� R�$����!��� "	������������� �	
���������	��
��������A� ���� ��	�����$����� $�������	��� ��
�
"	���	���	��� ��	����	���� ���!��!�+771�� '�	����
L����	���#����1��

�
=?>� #����� :������!������ J��� �	
� J�������� +771��$� ���!��� ���

��������
� ������ ��
���� '�������
� ������ ���!���� ��
 ��������'����
����	
�"������	����	����#%�+�(��

�
=*>� �&��	��A�� J��� @����	�� ���� �	
� -��	��A���� ,�� +77*��

�����
���	�������	�,�	����������'�
����� "	����������
������������
����6	����	����	���B��6��+77*C��6�������
9�����	�������������	�������	����K�������+((�+�?��

�
=1>� D���� $�� +77��� ,	
�����	
	�� �	
� ,�	�� ��	������

���
������4	;�	���
���%&��'�1����B:�	��+77�C��*�%��
�
=(>� L����	�� D���������A�� D�����������$��� �	
�����	A�����

���+77+�����2����$���E� ����
�D�������	���������!��!��
������	���)$$$������
	�����%&��	������+�B$����+77+C��
++�?���

�
=%>� L������ @�� �	
� @����	�� '�� +77?�� D�	���� ���������

%���	�������	�	�������������
������������"	����������
���� 1��� "	��� ���A����� �	� ���
���� ������ -	�	���	��
B��-C�� 6������� 9����� 	� ��������� ���	���� ���	����
K�������*?1�***��

�
=�>� L������@��+77*��D���		��������������
����6	�������

,'6E� ����� ,��� ������ ��� ������	�#���
� ���������
$�������������$

��	����������������	����

�

=#>� @������	��	���������!��-������������$����	
��������:��+77(��
,�	�� ���
���� 6	�� ���	<���� ��� #��
� $
���!��
��������� "	� �������	��
� �� �8�� ,1�8� 	�������	����� ���
�������� �������� ����� �����	��
�� B������ ��� �� ����
����C�� �	���	���	��� ��	����	��� �	� ��������� ��������
6	����������� ����������!�����"	��	��D��������#���

�
=��>�6���� $�� �	�� J�	�� J�� ��� ������ �� %�������&��	����

� ����"� ��� D�'��� 	� D!	������!� (���	����)���
��������� 	���������6	���		���	���	��	�
������
����
�8�� ,1�8� ����	��������� ��� ������	�� �	���
�� �����
�����	��
�� B������ ��� �� ���� ����C�� �	���	���	���
��	����	��� �	� ��������� �������� 6	��� ����� ��� �����
�����!�����"	��	��D����?�������

�
=��>�6����$���	��*��"��D��������%����������	����'���)��!�

��	����	�� 	� ������� �	���		���	����%%��'�*���
�������BD��	��

�C������	�

�
=��>�*�J������� �	� J	�� ��������� �	� *	�� J������� �	� �	�� ����

������� �	� @	� �

�	� ��� ������ !�� ��"�� ��#�$�%�	�
��%&&��	�?'��'�B(��	��

�C������	�

�
=�?>�)�%��%� �� *	� *	� �

�	� ��+S�� ��#�$�%�� �%������ *����

,�����	�)$$$������'�������B(��	��

�C��?��
	�
�
=��>�-��"��%��� .	� �

�	� /�%����0������ ���� ������������

����A���� ��� K�%��1�������� *�������	� *����%� ,�����	�
/���%��� 2��"�%����� �#� .��� ��� (����%��� .��� ��� (����%���
�%�0���B�����%�������C	�

�
=��>���#�$�%�� .����� ,���	� �

3	� -������� �%�����	�

��� EII%����	���	�#%�	1%I�������	�
�
=��>�������%���� K	�� ��%A�� �	�� ���� J����� J	� �	� �

�	��

+��%��������� R� ��#�$�%�� %������ ����� �������%���	�
��%%&�'�*����������BD��	��

�C���3?�	�

�
=�'>�"��� ��%� @��A�� !	� �

�	� D���������� %������ �����

�%��������%��� #�%� �������� "�%��1�����	� �
�'� ��%&&�'�
�	��	�%'��?��?�BD��	��

�C���3�?
�	�

�
=�3>������%�� *	� ����	� ,��� ��� ���%� #�%� ���� ����� �����%�	�

�)4�#()�$� ��4'� ��%&&�'� ��%%&�'� !��'� ?�� ?� B(��	�
����C��?��	�

�

763

MEtaGile: A Pragmatic
Domain-Specific Modeling Environment

Olivier Buchwalder, Claude Petitpierre

Networking Laboratory
Swiss Federal Institute of Technology in Lausanne

CH-1015 Lausanne EPFL, Switzerland

E-mail: {olivier.buchwalder, claude.petitpierre}@epfl.ch

Abstract

Domain-specific modeling (DSM) is a software develop-
ment methodology that promises greater gains in produc-
tivity by systematizing the use of domain-specific languages
(DSL). This paper first addresses the notions of abstrac-
tion and specificity by comparing some existing languages,
and proposes an original representation that highlights the
global advantages of using DSLs. This document presents
then MEtaGile, our DSM environment that provides facili-
ties for creating and supporting evolved DSLs. This envi-
ronment is mainly designed for supporting pragmatic mod-
eling concepts, and implements practical features for sup-
porting the code-generation phase. The development of
DSLs is facilitated by the use of a simple but efficient meta-
language that allows the domain-specific developers to fo-
cus on the final model-to-text transformation; they are nei-
ther expected to be expert in modeling nor to master com-
plex transformation languages.

1. Introduction
The software industry is under high pressure to reduce

the cost and the development time of the applications, but

the global complexity of modern applications increases. In

comparison with other engineering branches, such as the

automotive industry, the software industry lacks automa-

tion, which requires precise models that abstract the system

structure and behavior by hiding non-relevant details. The

development methods that integrate the models are quali-

fied as Model Driven Development (MDD [1]). The domain

field of a general modeling language such as UML is too

large for defining precisely the domain-specific concepts

needed for the generation, and is mainly used in practice

for documentation or discussion [3, 15, 17]. The extension

facilities that have appeared with UML 2.0, for supporting

MDA [9], make it possible to define specific concepts [5],

but UML is already a complex language and many devel-

opers have difficulty to use it efficiently [18]. The domain-

specific modeling (DSM [16]) approach, which follows the

MDD principles, attempts to reduce the gap between the

model and the concrete system by using domain-specific

languages (DSL [12]). A DSL provides a specialized se-

mantic, which increases the model precision. In order to be

used in practice, a DSL needs a compiler and an adapted

CASE tool for helping and guiding the developers during

the designing process of the system instances. A DSM en-

vironment (Meta-CASE tool or DSL tool) is also needed to

simplify the creation of the DSL compiler and of the as-

sociated tool. This paper presents MEtaGile, a DSM envi-

ronment integrated in Eclipse, which provides the required

support for defining a DSL and an adapted tool, such as

facilities for editing, visualizing and validating the domain-

specific models and for automating the generation of end-

user systems.

This paper is organized as follows: Section 2 addresses

the DSM approach and proposes an original representation

of the language properties. Section 3 presents the main fea-

tures of the MEtaGile environment, and Section 4 addresses

the DSL development and presents a simple example.

2. Domain-Specific Modeling

DSM is a MDD approach that represents a viable solu-

tion for increasing the productivity of application develop-

ment [4, 6, 16]. This approach proposes the use of DSLs

for modeling systems in a specific domain instead of us-

ing general-purpose language (GPL); the DSL model repre-

sents at the same time the design, the implementation and

the documentation of the system.

An important benefit of DSM results from the splitting

of the development process in two successive phases, which

can be addressed by different groups of developers. The first

phase, the DSL definition must be realized by experts of the

domain, and the second phase, the system design can be

handled by most developers; the tool is intended to support

764

the human designing work, and to automate the transforma-

tion to concrete code. This approach avoids the stiffness of

the traditional development environments; a company can

manage its own DSL adapted to its specific needs, and be

free to rapidly evolve its definition without external con-

straints.

2.1. Analysis of the Domain-Specificity

The current section presents an original 2D graph that

highlights the benefits of DSLs, and shows how the pro-

ductivity of a given development is relative to the nature of

the language (meta-model) used to develop the system. The

global development productivity is positively influenced by

the abstraction level (axis x) and by the specificity (axis −y)

of the language (Figure 1). The abstraction level represents

the capacity of a language to hide the concrete details of

a system in providing high-level concepts. The specificity

level is directly linked to the domain range that a language

is able to address. Both notions are not precisely quantifi-

able, because a language can include different aspects more

or less abstract, or specific. However, the global properties

of languages can be approached by using 2D areas.

General

Specific

AbstractConcrete

UMLJava

WebLang

C

Business DSL

ASM

binary
program

MOF

English...

design

model instance

compilation

Meta-Engine

x

y

Figure 1. Classification of languages

The presented graph highlights the needed phases for de-

veloping an executable system by using different languages.

The design phase, represented by the vertical transforma-

tion to the bottom axis, is mainly dedicated to the develop-

ers, which use the language to create a specific model that

implements the system specific requirements. This phase

is not automatable along the development of different sys-

tems in the same domain. Figure 1 shows that the use of

a DSL, close to the business domain of the system, highly

reduces the developers intellectual work for creating a spe-

cific model instance.

The compilation phase is represented by the horizontal

transformation from the specific model instance to the con-

crete executable code; this process is usually automated by

a compiler tool. When a language is highly general and

abstract, as is the case of UML, both transformation phases

are difficult, and the development of a system is not efficient

enough [6, 12].

3. The MEtaGile Environment

The environment we have developed to support the DSM

approach provides assistance for creating a new textual DSL

or meta-model, adapted to a specific domain (Section 4),

and also supports the developers that use the defined DSL

to instantiate systems (DSL instance or model).

In comparison with others solutions, such as OAW [14],

Microsoft DSL tools [6], GME [11], or MetaEdit+ [19],

MEtaGile handles pragmatic development aspects, such as

the unique textual model for input, the hierarchical and

graphical views for documentation and navigation, the re-

definition in real-time of the DSLs and of the templates, or

the efficient management of the generated files.

3.1. Extended Textual Modeling

MEtaGile is exclusively based on centralized textual

models for editing concerns, which are heavily supported

by an evolved generic editor. This editor provides for any

DSL models the syntactic highlighting, an editing assist fea-

ture, the displaying of the validation messages. It also inte-

grates read-only views, which allow the developers to visu-

alize abstractions of the system, and to navigate efficiently

in the textual model. An outline view presents the hierar-

chical tree of a given model, and diagram views provides

graphical representations of the model. MEtaGile enables

the presentation of several diagrams that are related with

one source model, and thus supports the separation of con-

cerns for documentation and navigation. However, we are

convinced that the editing of a complex model is more effi-

cient using a centralized and textual model that fully defines

the target system; a precise diagram usually requires the

insertion of hidden textual constraints or action language,

which are not easily representable using a graphical nota-

tion. This centralization enables the simplification of the

model-to-text operation, because only one model source is

used as input. The use of simple text files also allows the

developers to work with the models, and to use efficient and

largely adopted textual functionalities, such as the univer-

sal copy/paste or the CVS sharing; a textual model is also

naturally and efficiently editable with the keyboard.

Only the Xtext OAW component also enables the defini-

tion of text-to-model transformations, but using MEtaGile

the definition of the parser and of the structural concerns of

the meta-model are centralized in a unique language. More-

over, our extended BNF syntax is based on JavaCC [7], and

allows the handling of more complex expressions, which

can also be defined with the Java language.

3.2. Redefinition Capabilities

MEtaGile integrates some features that address specif-

ically the code-generation phase (model-to-text), and of-

765

fers to the developers a way to support efficiently the suc-

cessive generations of the target system files, and certain

de-synchronization between the model and the produced

files. Our code-generation feature uses the template tech-

nology JET [8], which is close to the JSP implementation

of Apache Tomcat.

3.2.1. Engine Pluggability. MEtaGile is composed of

Eclipse plugins that handle the generic features, such as the

editor and the views, and of DSL engines, which contain

all domain-specific properties. Contrary to the plugins, the

modifications applied to the engine are effective in real-time

without having to restart the Eclipse platform. This loosely

coupled architecture enables the developers to switch easily

between different versions of engines, to develop and test

in parallel DSL engines and instantiated models, and there-

fore to increase the development productivity. The other

DSM tools are heavier to deploy, and usually require restart-

ing the entire system after a modification. This feature is

implemented using a redefined Classloader that addresses

the original static classes of the Eclipse plugins and the dy-

namic classes of the active engine; this dynamic Classloader

is used to execute the parsing operation defined in the DSL

engine. The generic environment accesses domain-specific

information of a model, using the Java reflection and the

meta-model defined in the relative DSL engine.

3.2.2. De-Synchronization. When the development ad-

dresses the target system details, many manual modifica-

tions of the generated system files are often required, and

must be preserved. For addressing this purpose MEtaGile

enables the developer to visualize and select the replace-

ment mode of the produced files; a report window displays

the responsible source model element, the local output path,

and the replacement mode. The available modes are cre-
ateonly, overwrite, deactivated and merge; the latter is cur-

rently available for the Java files using the JMerge JET tech-

nology, and a 3-way merging method is already included

for the XML files. This merging technique is simple and

flexible enough to support a limited de-synchronization be-

tween the model and the output files. The generation mode

is stored permanently for each file and can be shared using

a CVS server; this feature enables the developers that are

not involved in some specific modifications to regenerate

the whole system without overwriting some important files

or file parts.

3.2.3. Specific Template Redefinition. For addressing the

specificities of an application instance, our environment is

capable of handling local redefinitions of the templates.

This feature offers a flexible way to include application spe-

cific properties rapidly and efficiently, in keeping the model

and the generated application synchronized. This redefini-

tion is activated by using a specific annotation in front of a

model element or globally at the beginning of a model file.

The annotation statement is @templatedir = package,

where package represents the path where the redefined tem-

plate class will be emitted. A template file is always rel-

ative to a specific node type, and by using similar pack-

age identifiers, two instances of the same type can share the

same redefined template. MEtaGile provides an operation

that loads and prepares the redefined templates into the user

project. The application developer can freely modify the

content of the templates; the whole model data is accessible

using getter functions.

Only OAW currently provides a similar feature, but the

redefinition of templates using MEtaGile is in our opinion

easier and more flexible. Our templates are modifiable with-

out having an important knowledge about the environment

as expected with the OAW approach, and the latter doesn’t

allow different model elements to use different redefined

templates.

4. DSL Engine Modeling

Our solution supports the DSM approach, including the

development of the DSL engines using a meta-DSL engine

that includes a meta-meta-model. This meta engine allows

the domain experts to define and produce a valid DSL en-

gine, which can be used by other developers to define sys-

tems in a specific domain. In comparison with other en-

vironments, our approach attempts to propose a minimal

but simple and centralized way to define and generate the

meta-model, the main transformation from text-to-model,

and the foundation for the model-to-text transformation, as

expected in most cases.

Other approaches usually require defining separately the

structural model, the transformations and validation rules,

and how these processes are linked together. The defini-

tion of a similar DSL tool will require much more effort

and knowledge using OAW than using MEtaGile for most

cases. Indeed, OAW or other approaches use advanced but

heavy languages for specifying transformation and the vali-

dation rules, such as QVT, ATL and OCL [13, 10]. Master-

ing these languages and defining evolved model-to-model

transformation and validation rules can improve the quality

and the abstraction of the process, but it requires an impor-

tant investment, and is not adapted with all transformation

forms. For instance, when a transformation intends to create

output model elements that are not directly related with eas-

ily identifiable input model elements, or depends on many

different elements, a transformation specified with a Java-

like language can be more suitable.

Our meta-DSL, which represents the meta-meta-

language of a concrete system, supports bootstrapping [1].

This language is also able to define a full engine component

that contains the structure of the meta-model, the basic vali-

dation and transformation rules including the parser proper-

766

ties, which represents the text-to-model process. The struc-

tural entities of an engine are specified using a meta-model

that includes the principal object-oriented aspects, such as

encapsulation, modularity, polymorphism, and inheritance,

but it provides specific terms and concept relative to the en-

gine specification. The defined structure is designed for

supporting a high modularity; the definition of the check-

ing, processing and producing functions are located in the

relative node elements; these entities are qualified as mod-

ule for main entities and submodule for children elements.

Modules and submodules include fields that are intended to

specify referenced entities or values. Each node component

is susceptible to produce output files, dynamically from a

template or by copying a resource file.

MEtaGile also supports the definition of extended graph-

ical views of the model for documentation and navigation

concerns; the meta-language includes concepts for creat-

ing a view with a selection of modules and sub-fields, and

also allows the creation of new elements or sub-element that

are not directly related to source model elements (model-

to-model transformation). Other DSM environments that

support model transformations could also define equivalent

views, but the advantage of our approach is to integrate and

synchronize the extended views naturally and efficiently in

the DSM tool.

4.1. Example of Engine Modeling

This Section presents a realistic example of the definition

of a DSL-engine that describes a simple DSL. The target

domain of the DSL, presented in the following model, rep-

resents a hierarchical web site composed of pages that con-

tain articles and links to other pages. This model defines the

various DSL engine properties: the structural elements, the

parser syntax and the producing templates. The page entity

is defined as a main module that includes fields for hosting

the relative properties, as the name, the description and the

header. The articles field list references the articles that are

defined locally; an article is defined as a local submodule of

the page, and includes simple typed fields, filled by the local

parser. The page element includes the list links that con-

tains the referenced page names, and the list pageLinks
that contains the referenced page modules. This last list

enables the navigation in the page hierarchy more easily,

but it is not automatically filled by the parser and must be

populated by the developer in the processing method of the

page; this population logic is quite trivial: an iteration of

all page links is included in another iteration of all defined

page instances, the page is added to pageLinks when its

name equals the link identifier. Two templates are defined

in the page element declaration; the first one is responsible

to create an output html file for each page instance, and the

second static template attempts to create a unique read-me

file that includes a reference on each available page.

module Page {
mainkeyword = "page" ;

t empla te = (page . html , name + ".html") ;

t e m p l a t e s t a t i c =(readme . htm ,"doc.html" ,"doc") ;

S t r i n g name , head , d e s c r ;

l i s t <A r t i c l e > a r t i c l e s ;

l i s t <Str ing> l i n k s ;

l i s t <Page> pageL inks ;

parser {
name "{"
"heading" head = STRING ";"
["description" d e s c r = STRING ";"]

["links" "=" l i n k s ("," l i n k s)∗ ";"]

(a r t i c l e s)∗
"}"

}
submodule A r t i c l e {

S t r i n g t i t l e , c o n t e n t , a u t h o r I d ;

boolean i s F i n i s h e d = f a l s e ;

i n t nbWord ;

parser {
"article" ["finished" i s F i n i s h e d := t rue] "{"

"title" "=" t i t l e = STRING ";"
"content" "=" c o n t e n t = STRING ";"
["words" "=" nbWord ";"]

"}"
} } }

After having generated this specific DSL engine, using

the meta-DSL engine, the developer must edit the prepared

JET templates and introduce the domain implementation

details, here the html code with the dynamic accesses to

the page and article properties. Then, system instances can

be defined and generated in using the newly generated DSL

engine, such as the simple Web-site example specified by

the following model.

page Index {
heading "My Watch Company" ;

d e s c r i p t i o n "Since 1872" ;

l i n k s = C o l l e c t i o n s , S p o n s o r i n g ;

a r t i c l e f i n i s h e d {
t i t l e = "Happy New Year 2008" ;

c o n t e n t = "Our company is happy to..." ;

words = 200 ;

} }
page C o l l e c t i o n s {

heading "Collections 2008" ;

d e s c r i p t i o n "The new Collection is..." ;

l i n k s = Spor t , C l a s s i c ;

a r t i c l e {
t i t l e = "A specific Watch for..." ;

c o n t e n t = "..." ;

} }
page S p o r t { . . . } page C l a s s i c { . . . }

Figure 2 presents the graphical view output of the given

model; each element is displayed as a box, the inner sub-

modules are by default folded and displayed in a list, but

the user can change these view properties, as the presented

Classic page, where the articles are presented in a 2D lay-

out. Each element or sub-element that includes a reference

on another element is displayed by default in a 2D layout,

767

and the reference as a link; a link between folded elements

is reported to the respective parent and visible element.

Figure 2. Generic Graphical View

4.1.1. Practical Tests. The previous example is deliber-

ately simple, but the presented meta-DSL is able to spec-

ify evolved DSLs as the meta-DSL itself or WebLang [2],

which attempts to design the architecture of J2EE Web-

applications in a concise and efficient way. It enables the

definition of elaborated application models by assembling

different component instances, and then producing exe-

cutable applications, in abstracting the implementation de-

tails (see Figure 1). It has been successfully used for three

years by hundreds of students of the EPFL for supporting

the software engineering course.

Others DSLs have been developed: a Java3D DSL that is

able to define evolved 3D scenes in abstracting the frame-

work details, and a PHP DSL able to create evolved sites

composed of dynamic pages connected to a database. A

DSL, able to define and generate .Net Web sites that in-

cludes structural and behavioral concerns, has been de-

veloped using the Microsoft DSL tools (2005), and using

MEtaGile. This exercise has shown that the Microsoft DSL

tools are currently not well adapted to the generation of final

applications; the use of MEtaGile and of our textual model-

ing approach allows the developers to save time in the de-

velopment of the DSL. The definition of graphical elements

requires developing advanced wizards for conducing the de-

velopers to set the mandatory properties correctly, but the

DSL tools don’t offer an efficient support for this task.

5. CONCLUSION
This paper has first discussed abstraction and specificity

concerns of some existing languages, and has shown how

the combination of these notions influence positively the

development productivity. The use of a DSL as a mod-

eling language allows the designers to efficiently manip-

ulate domain-specific concepts; the automation process is

also optimized by a precise model and by the specializa-

tion of the target domain. The current paper has also pre-

sented MEtaGile, a DSM environment, that provides facili-

ties for creating and supporting evolved textual DSLs. This

environment is mainly designed for supporting pragmatic

programming, and implements practical features for sup-

porting the code-generation phase; it integrates a loosely

coupled architecture that supports rapid DSL evolutions,

and a template redefinition functionality, which enables the

DSL users to easily adapt some templates for a specific

use. The use of a simple but efficient meta-language allows

the domain-specific developers to efficiently define textual

DSLs; they are not expected to be expert in modeling, and

to master transformation and validation languages. Further

development will address the definition of DSLs that ad-

dress more specific business, such as the management of

projects, stock, or customers.

References

[1] C. Atkinson and T. Kuehne. Model-driven development: a

metamodeling foundation. IEEE Software, Volume 20, Issue
5, Sept.-Oct. 2003 Page(s):36 - 41, 2003.

[2] O. Buchwalder and C. Petitpierre. WebLang: A Language

for Modeling and Implementing Web Applications. In

SEKE06, 2006.
[3] M. Fowler. UML distilled: A brief Guide to the Standard

Object Modelling Language. Object Technology series. Ad-

dison Wesley, 3rd edition, 2004.
[4] M. Fowler. Language workbenches: The killer-app for do-

main specific languages? www.martinfowler.com, 2005.
[5] E. Gorshkova and B. Novikov. Exploiting uml

extensibility in the design of web applications.

http://citeseer.ist.psu.edu/530237.html, 2003.
[6] J. Greenfield and K. Short. Software factories: assembling

applications with patterns, models, frameworks and tools. In

OOPSLA ’03, pages 16–27. ACM Press, 2003.
[7] JavaCC. https://javacc.dev.java.net/.
[8] JET. http://www.eclipse.org/modeling/m2t/?project=jet.
[9] A. Kleppe, J. Warmer, and W. Bast. The Model Driven

Architecture-Practice and Promise. Addison-Wesley, 2003.
[10] I. Kurtev, K. van den Berg, and F. Jouault. Evaluation

of rule-based modularization in model transformation lan-

guages illustrated with atl. In SAC ’06. ACM, 2006.
[11] A. Ledeczi, M. Maroti, A. Bakay, and G. Karsai. The

Generic Modeling Environment. In Workshop on Intelligent
Signal Processing, Budapest, Hungary, May 2001.

[12] M. Mernik, J. Heering, and A. M. Sloane. When and how to

develop domain-specific languages. ACM, 2005.
[13] OMG. MOF QVT Final Adopted Specification. Object Mod-

eling Group, June 2005.
[14] openArchitectureWare. http://www.eclipse.org/gmt/oaw.
[15] B. Rumpe. Executable modeling with uml. a vision or a

nightmare? Issues and Trends of IT Management, 2002.
[16] J.-P. T. Steven Kelly. Domain-Specific Modeling: Enabling

Full Code Generation. Wiley-IEEE, 2008.
[17] D. Thomas. Uml - unified or universal modeling language?

Object Technology, vol. 2, no. 1, January-February, 2003.
[18] D. Thomas. Mda: Revenge of the modelers or uml utopia?

IEEE Software, vol. 21, no. 3, pp. 15-17, 2004.
[19] J.-P. Tolvanen and M. Rossi. Metaedit+: defining and using

domain-specific modeling languages and code generators. In

OOPSLA ’03. ACM, 2003.

768

Obtaining Well-Founded Practices about Elicitation Techniques by Means of
an Update of a Previous Systematic Review

Oscar Dieste Marta López Felicidad Ramos
Facultad de Informática

Universidad Politécnica de
Madrid

28660 Boadilla del Monte, Spain

Fraunhofer IESE
Fraunhofer Platz 1

67663, Kaiserslautern, Germany

Facultad de Informática
Universidad Complutense de

Madrid
C/Jose García Santesmases S/N

28040 Madrid, Spain

INDRA Systems
Carretera Loeches 9

28850. Torrejón de Ardoz, Spain

odieste@fi.upm.es
oscar.dieste@iese.fraunhofer.de mlf@fdi.ucm.es framos@indra.es

Abstract

Several studies point out that elicitation
techniques achieve different results when applied in
different contexts. This paper presents some
recommendations about the situations in which
elicitation techniques are useful. Recommendations
are based on a previous systematic review, which was
updated and expanded with 13 new empirical studies
and more than 60 new empirical results. The
aggregation process generated 5 new evidences and
modified 4 existing ones. In the previous review, it
was found that interviews were one of the most
adequate techniques in most situations. The new
evidence supports the same conclusion.[1-9]

1. Introduction
Nowadays it is widely acknowledged within the

software engineering community that requirements
definition has a big impact on final product
quality[10-12]. Requirements Engineering (RE) is
concerned with the elicitation, analysis, specification,
validation and management of software requirements
[13]. This paper focuses on the elicitation task and,
more concretely, on the techniques applied to extract
knowledge from the requirements stakeholders.

Although requirements elicitation appears to be a
simple process in fact it is a really difficult one. Quite
often, users do not know how to describe their tasks,
may leave important information unstated, or may be
unwilling or unable to cooperate [13]. Elicitation
techniques aim to improve this communication
process.

Despite the critical need for eliciting the right
requirements, little research had been focused on
identifying the most adequate elicitation techniques.
Only ACRE[14] and recently the Unified Model of
Requirements Elicitation[15,16] provide general
frameworks. However, these works are by and large
rooted on quite general theoretical foundations or
expert opinion, leaving aside an increasingly large
body of empirically-based knowledge.

Systematic Review (SR) is a technique employed
in Evidence-Based Software Engineering
(EBSE)[17], whose aim is to pool together the results
obtained in different empirical studies and propose
recommendations based on the best available
evidence. In a previous work[18-20], the authors
shown that SRs are a useful way to identify good
practices regarding requirements elicitation. 30
different empirical studies were identified, reviewed
and aggregated, generating 18 evidences about
interviews, protocol analysis, sorting and laddering
techniques.

A critical fact in any SR is the amount of evidence
available. SR’s conclusions are always based on the
existing evidence when the SR is done, but as new
empirical studies are discovered (because they were
not identified before) or carried out, the conclusions
of earlier SRs should be updated, either confirming or
refuting the previous findings. This present paper
updates the previous SR adding 14 new empirical
studies and more than 60 empirical results. The
subsequent aggregation process generated 5 new
evidences and modified 4 existing ones. The new and
modified evidences are in line with those in [20].
Generally speaking, they point out that interviews are

769

the most effective elicitation technique in most
situations, although its efficiency may be lower than
some specialized techniques like laddering or card
sorting in some cases.

This paper reports how the update of the previous
SR was carried out and which evidences were
obtained. It is structured as follows: Section 2 briefly
describes the research methodology. The main
findings are shown in section 3. Finally, in section 4
we discuss the findings and enumerate the main
conclusions.

2. Methodology
This work is an update of the SR described in [20].

That SR was carried out following the
recommendations proposed in [21]. In this first SR,
53 publications containing potential empirical studies
were identified. An initial search in online
repositories and local library resources made possible
to obtain 26 of those publications. These 26
publications contained 30 empirical studies which
were reviewed and aggregated as already mentioned.

However, 27 potentially interesting publications
were disregarded. As the conclusions of the SRs are
contingent upon the available evidence, it was clear
that a more thorough search (e.g. in international
library services) was desirable. It made possible to
obtain 13 out of those 27 publications. The other 14
publications (e.g. [22,23]) were considered
impossible to locate, as they are quite old, grey
literature. The overall literature flow is shown in
Figure 1.

27 unavailable publications
(initial search)

26 selected publications
(previous SR review)

53 publications concerning
individual elicitation techniques

14 unavailable publications
(grey literature)

9 useful publications
(updated SR review)

4 useless publications
(no empirical studies)

Figure 1. SR literature flowchart

Not all those 13 publications were useful. Four of
them did not contain empirical studies at all or were
papers published twice, so that they were discarded.
The other nine[1-9] were useful and gave 13
empirical studies ([4] contained 2 different studies
while [6] contained 3). The current updating work
focused on those 13 empirical studies.

The tasks performed so far correspond to the
initial stages of Kitchenham’s procedure[24]. In a
typical SR, both the review objective and the
identification of studies would have been part of the

SR itself. However, in this concrete case, we are
making an update of a existing SR (that is, the
reference [20]) and therefore these tasks are
obviously skipped.

The subsequent steps carried out during the
updating work resemble closely Kitchenham’s
procedure[24], along with some modifications
introduced in [20]. However, the process was more
difficult to perform than expected, because the update
of a SR introduces problems unknown during the first
execution. The most relevant problem was to relate
the newly obtained empirical results and the previous
ones.

Since we had no a glossary of terms from [20], the
identification of the treatments (elicitation techniques)
and response variables in the 13 new studies and the
merge with the first SR’s treatments and response
variables was a complex task. We realized that the
same technique could be named differently in diverse
studies, although being the same, because the names
are a subjective feature, depending on each author.
Likewise, response variables suffered the same
problem, aggravated by the fact that not only the
name, but also the measurement procedure could
vary.

If treatments and response variables of the present
and past SR could not be merged, the updating work
would be doomed to fail, because the combination of
current and past empirical results would be
unfeasible. Both SRs would be isolated efforts
impossible to relate and, therefore, the number of
potential evidences to obtain would be much lower.
To solve this problem, it was necessary to catalogue
the techniques and response variables tested in the
empirical studies analyzed in [20], which implied to
read the 26 initial publications besides the other 9
specific of this work. It represented a lot of effort
which could be saved if such a glossary would have
been constructed during the initial SR.

Apart of this drawback, it was possible to perform
the SR with only minor difficulties. The updating
process is described elsewhere[25].

3. Main findings
After performing the SR, we obtained more than

60 new empirical results. For reasons of space, those
results cannot be shown here but they will be
published in [26]. Anyhow, that raw material does not
have primary interest for the practitioner. The real
interest lies in the combination of those empirical
results among themselves, as well as with the results
of previous SR. This combination or, more precisely,
aggregation process, produces the evidences which
can be later used to identify in which situations a

770

given elicitation technique is useful. For details about
how this aggregation process is performed, see [20]
as well as [27].

Table 1 shows the evidences obtained after the
aggregation process. The evidences shown in the
table are only those obtained during the updating
work or those obtained in the previous SR but
modified by the empirical results newly identified. A
comprehensive table can be obtained from [26].

The first column of Table 1 contains the
evidence’s ID (both for the previous and current SR).
This ID is only used to ease the reference to
evidences. The second column contains one of the
following codes: REFUTES (the newly gathered
results refutes a previous evidence), REDUCES (the
new results cannot refute a previous evidence, but
reduces our confidence in it), REINFORCES (a
previous evidence is supported with new compatible
results) and NEW (a new evidence, not present in the

existing set, has been identified). Finally, the third,
fourth and fifth columns are used to specify which
studies support the evidence, which are neutral and
which ones opposes to it (notice that references 1-9
were the ones analyzed in the present work; the others
were analyzed in the first SR).

In some cases this type of table is not adequate to
represent all types of evidences and its interpretation
may be somehow difficult. For example, evidence 21
does not state a positive fact, such as “transcription
time is longer for…”, but they say “transcription time
CANNOT BE ESTABLISHED AS being longer
for…”. In experimental terms, it means that no effect
has been identified between techniques. In those cases
“neutral” studies are really supporting the evidence,
and “support” and “opposes” studies deny it. This
exception should be considered when reading
evidences 12, 16 and 21.

Table 1. Results of the aggregation
ID KEY Result of the aggregation Support Neutral Opposes

12 REFUTES

There do not appear to be any differences in terms of session
duration between unstructured interviews and laddering
(this evidence is not longer valid) [28] [29,30] [5]

16 REDUCES

Transcription time cannot be established as being longer for
introspective techniques, like protocol analysis, than for
unstructured interviews or vice versa [1] [28,29]

21 REINFORCES
Transcription time cannot be established as being longer for sorting
techniques than for laddering or vice versa [1,28,29]

33 REINFORCES Laddering gathers fuller information than sorting techniques [1,28] [29]

36 NEW
The efficiency of unstructured interviews is greater than scaling
techniques [5,9]

37 NEW Laddering and scaling techniques have the same efficiency [5,9,28]

38 NEW
Scaling techniques are more difficult to apply than unstructured
interviews [5,9]

39 NEW Laddering is more difficult to apply than unstructured interviews [5,9]
40 NEW Laddering and scaling techniques have the same difficulty [5,9]

4. Discussion
The limit of space makes impossible an extensive

discussion, so that we will only draw attention to issues
related to interviews. The reason is that, in the previous
SR, it was found that interviews were overall the most
effective elicitation technique, although some contrived
techniques like laddering or card sorting were equally
effective in some cases[19]. The current work
strengthens this conclusion. No empirical result
contesting such effectiveness has been identified. Quite
the contrary, a competing technique like laddering is
found to be more difficult to apply (evidence 39) and
therefore can be regarded as less effective than
interviews. Concerning efficiency, the same
conclusions that in [19] hold. Interviews may be more
time-consuming than other more-focused techniques

like sorting or protocol analysis. Evidence 16 supports
that fact (study [1] suggest that interviews take more
time than protocol analysis). Therefore, interviews
should be planned carefully to save elicitation time.

5. Conclusions
This paper presents the update of a previous

systematic review. This update has the aim of
identifying well-founded practices when selecting an
elicitation requirements technique. The achieved results
show that interviews are in average the most effective
elicitation technique. In near future, we want to
combine these findings with those from theoretical
works and expect opinion to develop a comprehensive
theory concerning the application of elicitation
techniques.

771

6. References
References used in the updating work
[1] Burton, A. M., Shadbolt, N. R., Rugg, G., and
Hedgecock, A. P., "Knowledge elicitation techniques in
classification domains," Proceedings of the 8th Conference in
Artificial Intelligence ECAI-88, 1988.
[2] Chao, C.-J. and Salvendy, G., "Impact of cognitive
abilities of experts on the effectiveness of elicited
knowledge," Behaviour & Information Technology , vol. 14,
pp. 174-182, 1995.
[3] Holsapple, C. W. and Raj, V. S., "An exploratory
study of two KA methods," Expert Systems, vol. 11, pp. 77-
87, 1994.
[4] Wood, L. E., Davis, T. C., Clay, S. L., Ford, J. M., and
Lammersen, S., "Evaluation of interviewing methods and
mediating representations for knowledge acquisition,"
International Journal of Expert Systems, vol. 8, pp. 1-23,
1995.
[5] Brandt, J. P. and Shook, S. R., "Attribute elicitation:
Implications in the research context," Wood and Fiber
Science, vol. 37, pp. 127-146, 2005.
[6] Bradburn, B. , "A comparison of knowledge elicitation
methods," International Conference on Engineering Design
(ICED'91), pp. 298-305, 1991.
[7] Maiden, N. A. M. and Rugg, G., "Knowledge
acquisition techniques for requirements engineering,"
Proceedings of the Workshop on Requirements Elicitation
for System Specification, Keele, UK, 1994.
[8] Grabowski, M., "Knowledge acquisition
methodologies: Survey and empirical assessment,"
Proceedings of the Ninth International Conference on
Information Systems, Minneapolis, MN, USA, pp. 47-54,
1988.
[9] Steenkamp, J.-B. E. M. and Van Trijp, H. C. M.,
"Attribute elicitation in marketing research: A comparison of
three procedures," Marketing Letters, vol. 8, pp. 153-165,
1997.

Other references
[10] Boehm, B. W., McClean, R. K., and Urfrig, D. B.,
"Some experience with automated aids to the design of large-
scale reliable software," IEEE Transactions on Software
Engineering, vol. 1, pp. 125-133, Mar, 1975.
[11] Tavolato, P. and Vincena, K. A Prototyping
Methodology and Its Tool. In: Approaches to Prototyping,
ed. Budde, R. Berlin: Springer Verlag, 1984.
[12] Standish Group, "The CHAOS Report,"
http://www.standishgroup.com/sample_research/PDFpages/
chaos1994.pdf, vol. Oct 18, 2005.
[13] SWEBOK. Software Engineering Body of Knowledge,
http://www.swebok.org, 2005.
[14] Maiden, N. A. M. and Rugg, G., "ACRE: selecting
methods for requirements acquisition," Software Engineering
Journal, vol. 11, pp. 183-192, 1996.
[15] Hickey, A. M. and Davis, A. M., "A unified model of
requirements elicitation," Journal of Management
Information Systems, vol. 20, pp. 65-85, 2004.
[16] Hickey, A. M. and Davis, A. M., "Elicitation technique
selection: How do experts do it?," Proceedings of the

Requirements Engineering Conference (RE'03), pp. 169-178,
2003.
[17] Dyba, T., Kitchenham, B. A., and Jorgensen, M.,
"Evidence-based software engineering for practitioners,"
IEEE Software, vol. 22, no. 1, pp. 58-65, 2005.
./methods/6.pdf.
[18] Davis, A., Dieste, O., Hickey, A., Juristo, N., and
Moreno, A. M., "Effectiveness of Requirements Elicitation
Techniques: Empirical Results derived from a Systematic
Review," Proceedings of the IEEE International Conference
on Requirements Engineering, Minneapolis, Minessota,
2006.
[19] Dieste, O., Juristo, J., and Shull, F., "Understanding
the Customer: What Do We Know about Requirements
Elicitation Techniques?," IEEE Software, vol. 25, pp. 11-13,
2008.
[20] Dieste, O. and Juristo, N., "Systematic Review and
Aggregation of Empirical Studies on Elicitation Techniques,"
IEEE Transactions on Software Engineering, vol. 2008.
[21] B.A. Kitchenham. Procedures for performing
systematic reviews, Keele University TR/SE-0401, 2004.
[22] de Bont, C. J. P. M., Consumer Evaluation of Early
Product-Concepts 1992. Delft University.
[23] Geiwitz, J. , Kornell, J., and McCloskey, B. P., "An
Expert System for the Selection of Knowledge Acquisition
Techniques," Anacapa Sciences, Santa Barbara, CA, USA,
Technical Report 785-2, 1990.
[24] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M.,
Jones, P. W., Hoaglin, D. C., El Emam, K., and Rosenberg,
J., "Preliminary guidelines for empirical research in software
engineering," IEEE Transactions on Software Engineering,
vol. 28, pp. 721-734, 2002.
[25] Dieste, O., López, M., and Ramos, F., "Formalizing a
systematic review updating process," Proceedings of
SERA'08, Prague, Czech.
[26] Dieste, O., López, M., and Ramos, F., "Formalizing a
systematic review updating process," Universidad
Complutense de Madrid, Technical Report, to appear.
[27] Dieste, O."TR5. Agregación de las evidencias
obtenidas de los estudios empíricos relevantes,"
http://grise.upm.es/research_documents.php, 2006.
[28] Burton, A. M., Shadbolt, N. R., Rugg, G., and
Hedgecock, A. P., "The efficacy of knowledge acquisition
techniques: A comparison across domains and levels of
expertise," Knowledge Acquisition, vol. 2, pp. 167-178,
1990.
[29] Burton, A. M., Shadbolt, N. R., Hedgecock, A. P., and
Rugg, G. A formal evaluation of knowledge elicittion
techniques for expert systems: Domain 1. In: Research and
development in expert systems IV: proceedings of Expert
Systems '87, the seventh annual Technical Conference of the
British Computer Society Specialist Group on Expert
Systems, ed. Moralee, D. S. Cambridge, UK: Cambridge
University Press, 1987.
[30] Corbridge, B., Rugg, G., Major, N. P., Shadbolt, N. R. ,
and Burton, A. M., "Laddering - technique and tool use in
knowledge acquisition," Knowledge Acquisition, vol. 6, pp.
315-341, 1994.

772

Automatic Discovery of Interactions Between Software Requirements

Edgar S. Calisaya, Marcos R. S. Borges, Maria Luiza M. Campos
Graduate Program in Informatics, Federal University of Rio de Janeiro, Brazil

edgarsc@posgrad.nce.ufrj.br, mborges@nce.ufrj.br, mluiza@nce.ufrj.br

Abstract

The Requirement Engineering is the first and one of

the most critical phases of any software development
methodology. This phase is very complex because of the
imprecision of the process, the communication problems
and the different viewpoints of the stakeholders.
Requirements defined with imprecision or ambiguity
hide and/or make difficult the discovery of the different
interactions that could exist between requirements.
These requirements are considered interdependent, as
one requirement depends on or affect others. The
identification of the interactions between the
requirements allows understanding and acting on the
impact of these interactions in the subsequent stages of
the software development process. There are several
methods for requirements specification. However, most
of them don't show explicitly these interactions. In this
paper, we present an approach that allows the
specification, identification and revealing the different
interactions between requirements, using a semi-formal
method based on events. The events are considered
because the flows of events describe the behavior of the
system, through a set of interactions between objects.

1. Introduction

Research in requirement engineering has

demonstrated that often the set of requirements of a
system are not independent. On the contrary, there
are different types of interactions among them [1, 2,
3, 4, 5]. This happens because the different elements
that compose a system are not isolated entities. On
the contrary, the relationships and interactions among
these entities make possible the functioning of the
system.

The identification of the requirement interactions
in an important phase of requirements analysis,
supporting the evaluation of the impact of these
interactions in the subsequent stages of the process.
The knowledge of these interactions allows: to
resolve eventual conflicts that could exist, to better
plan the implementation of requirements, to manage

the impact of a change on other requirements, to trace
requirements, and to plan the tests considering the
interactions. Several researches show these benefits
[1, 7], but most of them don’t explicitly show how
these interactions influence the subsequent stages of
the development process.

Among the approaches for identifying interactions
between requirements, we can mention those
described by Robinson at al. [4]. However, the main
problem of this approach is that it considers a general
domain and not only the software domain. Besides,
they don’t present clearly the type of interaction and
why and when they happen.

In the software engineering domain, some
approaches for identification of interactions between
requirements based in features were proposed [6, 7].
The problem of features interaction is generally
understood as a situation where the integration of
several features in a system can interfere or affect one
another. Shehata [5] and Zhang [7] showed that
requirements and features can be matched, as a high
level requirement consists of several features, and a
feature can be defined as a set of cohesive
requirements. The main drawback of these
approaches is their limited scope. They fail to
consider conflicting interactions, for example. They
also depend on detailed information about the domain
and implementation-specific knowledge. Besides, if a
feature is a collection of cohesive requirements, then
it becomes necessary to know and to identify the
existent relationships among these requirements.

Among the approaches for detecting requirements
interactions described in the literature [4, 5, 6, 7],
some are based on informal methods, depending
mainly on the designer’s experience on the system
domain. When formal methods are used, supported
by a formal specification language, they are often
considered hard to adopt and expensive.

This paper proposes an approach for specifying,
detecting and identifying the different interactions
between requirements, using a semi-formal method
based on events. It brings together most advantages
of existent approaches, supporting the identification

773

of interactions with less effort and complexity: (i) it
significantly reduces the user intervention; (ii), it
doesn’t strongly depend on formal specification
languages; (iii) it uses heuristics for interactions
detection; (iv) it supports visualization of interactions
as graphs and tables; and (v) it allows the discovery
of implicit interactions.

The method is based on events: the flows of events
describe the behavior of the system through a set of
interactions between objects, differently from
traditional approaches that do not show explicitly
these interactions.

This paper is structured as follows. In Section 2
we define and present the types of interactions
between requirements considered in our method.
Section 3 describes the concepts used in the
specification and in subsequent identification of
interactions between requirements. In Section 4 we
present the proposed method for interactions
identification. In Section 5 we show the modules of
our framework. Section 6 presents an example of an
application of the method. Finally, in Section 7 we
give our conclusions so far and the directions for
future work.

2. Requirements Interaction

One of the key topics to obtain a set of clearly and
precisely defined and specified requirements is how
the interactions among them are managed, specially
the conflicting or inconsistent relationships.

There is an interaction when two or more
requirements have effect on each other. These
interactions can be caused by the following reasons:
different view points of several stakeholders, change
or re-use of requirements, component-based
development, etc. Some definitions of interactions
and the reasons for which these happen can be found
in [1, 4].

Among these interactions it is possible to clearly
identify two types of general interactions, positive
and negative ones. Those of positive type are
relationships of intrinsic dependence (Requirement
R1 for his realization requires R2), and those of
negative type that mainly include conflicting
interactions.

2.1. Requirements Interaction Taxonomy

Numerous classifications were generated to
represent the types of interactions among
requirements, but there isn’t a general consensus yet
about the best one [1, 3, 5, 6, 7]. The classification
presented in the Figure 1 was prepared considering
all these classifications. We considered only those

types of interactions that are basic and have a
significant effect in the remainder of the software
development process, especially in the software
design.

Negative Interaction

Conflict

Cancel

Negative Impact

Resource Conflict

System Failure

Positive Interaction

Require

Inform

Configure

Flow

Collateral

Similarity

Interaction Type

Figure 1. Requirements Interaction
Taxonomy

3. Events and Actions Based
Requirements Specification

The dynamic models of the Object Oriented
Analysis represent the behavior of the system, i.e.,
the interactions among the different objects of the
system and their environment. This interaction
among the different objects is caused principally by
the presence of some event produced by another
object or some external entity. Based on this
assumption, it is possible to say that the events are
the entities that stimulate and control the functioning
or behavior of the system.

The identification of the events is the first stage of
the software development process cycle. Particularly
in RE it allows to know the different interactions that
exist among the set of requirements, and
subsequently, to know the set of interactions among
the different objects or entities of the system.

Some of the reasons why it is important to relate
requirements to events and actions they control are:
� The execution of a requirement produces a

result (event);
� The events cause the execution of

functionalities or the creation of an object;
� The objects interact through the events.
The knowledge about the events and the actions

involved in each one of the software requirements, in
the initial stages of the software development
process, also allows having a better traceability of the
requirements implementation in subsequent stages.
El-Ansary [9] presents some reasons why the
modeling or development of systems should be
directed by Events.

774

3.1. Basic Attributes of Requirements

After all requirements are described and listed
textually, they should be decomposed and
represented in the form of a sequence of attributes
that consists of events, actions, states and resources.
See Table 1.

Some of the concepts presented in this section
were extracted of the Object Oriented Dynamic
Modeling: A Comparative Analysis of Techniques
[8], the Business Process Modeling Notation
Specification adopted by the OMG [10] and [5, 9].

Table 1. Attributes of Requirements

Attribute Description
IDR The identifier of the requirement.
Description The description of the requirement
Event They are the incidents or facts happened

inside or out of an object.
Action They are the activities carried out during

the execution of the requirement, such as
calculations, generation of events, etc.

Object The objects involved in the execution of
the requirement.

Resource Instruments or tools used by the
requirement to complete his execution.

Figure 2. The Role of the Events

3.2. Basic Attributes of Events

To investigate the possible roles of the events in
the set of interactions among requirements, it is
necessary to understand the definition and the
description of each one of them. Based on this
observation, we identify the need for specifying an
event. For this, each requirement has a set of
associate events, and it is necessary to specify each
one of them. See Table 2.

Figure 2 illustrates the role of the events and
actions in the interaction among the requirements.
The Requirement R1 executes two actions: R1A1 and
R1A2; R1A1 produces (output) the event R1E1 and
R1A2 produces the event R1E2. In another side the

Requirement R2 executes the action R2A1, R2A1 is
stimulated by R1E1 (input).

Table 2. Attributes of Events

Attribute Description
IDE The identifier of the event.
Description The description of the event.
IDR The identifier of the requirement.
Type Message, Time, Rule, Link, Multiple and

Cancel [10].
Category � Input: it stimulate some action.

� Output: it’s generated by some action.
Action The Action that produces it or is

stimulated by the event.
Object The event causes changes of state of

objects.
� Pre-state.
� Next-state.

Resource Resources stimulated by the event.

4. Discovering Requirements Interactions

For each one of the interactions types shown in
Figure 1, a set of rules for interaction detection was
defined and created. These rules involve each of the
attributes defined in Tables 1 and 2. All the rules
identified were built based on the template:

WHEN <Event>
[IF <Pre-condition >]; it matches the object states,

events, actions and resources of two
requirements.

THEN <Interaction Type>
In the Tables 3 and 4, we present some of the rules

identified for some of the types of interactions.
To facilitate and to reduce significantly the

number of comparisons to match each one of the
requirements, it can be necessary to identify the
common events to each one of them. See Table 5.

Table 3. Cancel Interaction.

Interaction
Type

Cancel.

Description When the execution of Rx overrides or
cancels the execution of Ry.
� The event produced in Rx cancel the

action executed en Ry.
� Requirements: Rx and Ry; Rx != Ry.

Rule WHEN Event
IF Rx.Event = Event
 AND Rx.Event != Ry.Event
 AND Rx.Event.Type = Cancel
 AND Rx.Event.Category = Input
 AND Rx.Event.Action = Ry.Event.Action
 AND Rx.Event.Object = Ry.Event.Object
THEN Rx Cancel Ry

R1
R1A1

R1A2

R1E1

R1E2

R2

R2A1

: Output
: Input

: Action

: Event

775

� Results: This module allows display and
validates the graphs and tables of interaction.

Table 4. Conflict Interaction

� Requirements Specification: This module
stores the set of specified requirements based
on the attributes listed in the Tables 1 and 2.

Interaction
Type

Conflict.

Description Set Rx and Ry, there is a condition B that
can cause a conflict.
� Rx and Ry are stimulated by the same

Event and share the same Object
(different next-state) and Action.

� Requirements: Rx and Ry; Rx != Ry.
Rule WHEN Event

IF Rx.Event = Event
 AND Rx.Event = Ry.Event
 AND Rx.Event.Object = Ry.Event.Object
 AND Rx.Event. Action = Ry.Event. Action
 AND Rx.Event.Object.Pre-State =

Ry.Event.Object.Pre-State
 AND Rx.Event.Object.Next-State !=

Ry.Event.Object.Next-State
THEN Rx Conflict Ry

 Table 5. Listing Events

Figure 3. Architecture IDE Description Common
Requirements

The identifier
of the event.

The description
of the event.

The requirements
related to this event.

6. Case Study

 We have been evaluating the effectiveness of our
method in several domains. To illustrate the method
we show a case study using the Lift Control System.
In this case study, a set of 14 requirements (Table 6)
describes the basic operation of a simple Lift. A
detailed and complete description of this case study
can be found in [5].

5. Architecture

In this section we describe the functioning of the
method, the architecture of our framework (Figure 3)
and each one of its components. Our framework
consists of several modules that store and process
different types of information to determine and to
detect the existent interactions among the set of
requirements presented to the framework. In what
follows, each one of these modules are briefly
described:

The Lift is composed of:
� Call Button in each floor.
� Open-Door Button inside the Lift.
� Buttons for each floor inside the lift.

Table 6. The Lift Control System

Requirements
IDR Description
R1 The lift is called by pressing a call button, either

at a floor or inside the lift.
R2 Pressing a call button is possible at any time.
R3 When the lift passes by floor K, and there is a call

for this floor, then the lift will stop at floor K.
R4 When the lift has stopped, it will open the doors.
R5 When the lift doors have been opened, they will

close automatically after d time-units.
… …
R12 The closing of a door may be prevented by

pressing the open-door button.
R13 When something blocks the door, the lift

interrupts the process of closing the door and
reopens the doors.

R14 When the lift is overloaded, the door will not
close.

Requirements
Specification

Interaction
Taxonomy

Discovering
Interactions

Requirements
Repository

Results

R3

R5

R1
R6

R7
R4

R2

Graphs and Tables of
Interaction

Requirements

� Requirements: Initially the requirements are
listed and described textually.

� Requirements Repository: After the
requirements are listed and decomposed in
more simple, are stored in the repository.

� Discovering Interaction: After the
requirements are stored, a requirements
analyst begins the process of identification of
attributes for each one of them. Then it should
identify the attributes of the events associated
with them. After that, the detection of the
interactions process (automatically) is carried
out using the set of detection rules stored in
the Interaction Taxonomy module.

� Interaction Taxonomy: This module stores the
taxonomy of the types of interactions (Figure
1) and the rules of detection of interaction.
Such as depicted in Tables 3 and 4.

776

Table 7. Identifying Attributes for the
Requirements

IDR Event Action Object Resource
R1 Pressing

the call
button.

Call the
lift.

The lift.
The Call
Button
(in/out).

R2 Pressing
the call
button.

 The Call
Button
(in/out).

… … … … …
R5 The doors

are
opened.
The doors
are
closed.

Close the
Doors
automati
cally
after d
time
units.

The
doors.
The time
counter.

… … … … …
R13 Somethin

g blocks
the doors.
The doors
are
opened.

Close the
Doors
automati
cally
after d
time
units.

The lift.
The
doors.

The
block
sensor.

R14 The lift is
overloade
d.
The doors
are
opened.

Close the
Doors
automati
cally
after d
time
units.

The lift.
The
doors.

The
Overload
sensor.

After the requirements are listed, it proceeds to the

identification of the attributes (See the Tables 7). The
Table 8 presents the common events to the
requirements.

Table 8. Identifying Events

IDE Description Common

Requirements
E1 Pressing the call button. R1,R2
E2 The lift is called from the

floor K.
R1, R3, R9, R10

E3 The lift passing through
the floor K.

R3

E4 The lift is stopped. R3, R4, R7, R9,
R10

E5 The doors are opened. R4, R5, R9, R10,
R12, R13, R14

… … ...
E12 Something blocks the

doors.
R13

E13 The lift is overloaded. R14

The Tables 9 and 10 show the detailed attributes
of the events E5 and E13 listed in the Table 8.

Table 9. Identifying Attributes for the Event

E5 and the Requirement R5

Attribute Description
IDE E5
IDR R5
Type Link
Category Input
Action Close the Doors automatically after d time

units.
Object � Pre-state: The Doors are opened.

� Next-state: The Doors are closed.

Table 10. Identifying Attributes for the Event
E13 and the Requirement R14

Attribute Description
IDE E13
IDR R14
Type Cancel
Category Input
Action Close the Doors automatically after d time

units.
Object � Pre-state: The Doors are opened.

� Next-state: The Doors are opened.

When after the previous activities were carried
out, it proceeds Identifying the Interactions between
the Requirements.
� Interaction Type: Cancel.
� Requirements: R14 -> R5.
� Event: E13 -> The Lift is overloaded.
� Action: Close the Doors automatically after

d time units.
� Object: The Doors.

When applying the rule of the Table 3, it is
possible to infer that the event of the Requirement
R14 (E13: The Lift is overloaded.) cancels the
execution of the action implemented in R5 (Close the
Doors automatically after d time units).

Table 11. The Identified Interactions

Requirement Interacting
Requirements

Interaction
Type

R9 R1 cancel
R12 R5 cancel
R13 R5 cancel
R14 R5 cancel
R3 R1 require
R4 R3 require
R10 R1 require

777

Figure 4. Interactions Graph

The Table 11 and the Figure 4 show all the
identified interactions applying the method.

Figure 5. Initial Class Diagram

7. Conclusions

In this paper, we have presented our approach to
specify, detect, and automatically discover the
interaction types among the software requirements.
The approach is based on events and actions and uses
a semi-formal method. The method requires neither
the user intervention nor any external knowledge for
the identification of interactions. The method reduces
the user intervention, because the identification of
interactions is done using the defined rules of
interaction detection, such as Table 3 and 4. The
method is able to identify most interaction types
described in the literature (negative and positive
interactions).

The method proposed in this paper works well if a
requirements analyst can properly identify
requirements attributes like in

Table 7; however this work is less complex than
specify the requirements using a formal specification
language.

R13

R14

R12

R4

R5

R3

R9

R1

: Requirement
: Cancel

: Require

R10

In the future, we will expand the method to cover
additional interaction types, which were not
considered in this paper. Moreover, we intend to
work on the improvement of the method by
identifying and improving the rules of interaction
detection. This will enable us to make the algorithms
more efficient and precise.

We are also working on a software prototype to
support the user to validate, improve or reject the
interactions identified by our method.

References

[1] Å.G. Dahlstedt, and A. Persson, Requirements
Interdependencies - Moulding the State of Research into a
Reseach Agenda, In Proceeding of the Ninth International
Workshop on Requirements Engineering: Foundation for
Software Quality, Austria, 2003, pp. 71-80.

Control

Generate Generate Generate

Inform

Request

Inform

Inform

Lift Control
System

Floor Button
(In)

Floor Button
(Out)

Door Time
Counter

Call to Lift

Overload
Sensor

Block
Sensor

The Doors

Open Door
Button (In)

[2] J. Giesen, and A. Volker, Requirements
Interdependencies and Stakeholders Preferences, In
Proceedings of IEEE Joint International Conference on
Requirements Engineering, 2002, pp. 206-209.
[3] X. F. Liu, and J. Yen, An Analytic Framework for
Specifying and Analyzing Imprecise Requirements, In
Proceedings of International Conference of Software
Engineering, 1996.
[4] W. N. Robinson, S. D. Pawlowski, and V. Volkov,
Requirements interaction management, In ACM Computing
Surveys 35 (2), 2003, pp. 132-190.
[5] M. Shehata, Detecting Requirements Interactions using
Semi-Formal Methods. PhD. Thesis (Doctor of
Philosophy), Department of Electrical and Computer
Engineering, Calgary University, Alberta, Canada, 2005.
[6] L. Yuqin, Y. Chuanyao, Z. Chongxiang, and Z.
Wenyun, An Approach to Managing Feature Dependencies
for Product Releasing in Software Product Lines, In
Proceedings of the International Conference on Software
Reuse – ICSR, LNCS 4039, 2006, pp. 127-141.
[7] W. Zhang, H. Mei, and H. Zhao, Feature-driven
Requirement Dependency Analysis and High-level
Software Design, Requirements Engineering Journal,
volume 11, number 3, 2006, pp. 205-220.
[8] G. Bustos, and C.A. Heuser, Object Oriented Dynamic
Modeling: A Comparative Analysis of Techniques, In
Brazilian Symposium of Software Engineering, Recife,
Brazil, 1995.
[9] A. El-Ansary, Behavioral Pattern Analysis: towards a
new representation of systems requirements based on
actions and events, In The ACM Symposium on Applied
Computing, Madrid, Spain. 2002.
[10] BPMN, Business Process Modeling Notation, OMG,
2006.

778

A Model-Driven Approach for Software
Product Lines Requirements Engineering

Mauricio Alférez, Uirá Kulesza, André Sousa, João Santos,
Ana Moreira, João Araújo, Vasco Amaral

Dept. Informática, FCT, Universidade Nova de Lisboa, Portugal
{mauricio.alferez, uira, als, jps, amm, ja, vasco.amaral}@di.fct.unl.pt

Abstract

UML and feature models complement each other
well and can be the base techniques for a systematic
method to identify and model software product line
(SPL) requirements. In this paper, we present a model-
driven approach to trace both features and UML
requirements analysis model elements, and to
automatically derive valuable models for domain and
application engineering. The resulting contribution is
a synergetic approach for SPL requirements. We
illustrate it by using a home automation system
product line.

1. Introduction

Software product line (SPL) approaches [1-3] aim
at improving the productivity and quality of software
development by enabling the management of common
and variable features of a system family. A system
family is defined as a set of programs that shares
common functionalities and maintains specific
functionalities that vary according to specific family
product members. A SPL can be seen as a system
family that addresses a specific market segment [1].

Over the past few years, several SPL development
approaches have been proposed [1-4]. Most of them
motivate the identification of common and variable
features of the SPL by means of domain analysis
activities. A feature [4] can be seen as a system
property or functionality that is relevant to some
stakeholder and is used to capture commonalities or
discriminate among products in a SPL. SPL features
are typically represented in domain analysis using
feature models [5]. Other requirements models (e.g.,
use case and activity models) can be used to better
describe and detail the SPL requirements. The feature
and requirements models are then used as a reference

along all the process to guide the development of the
SPL.

Some research works have addressed the use of
feature models in combination with other models.
Approaches like [6] and [7] propose to create
relationships between features and UML models by
means of intrusive graphical elements such as,
presence conditions or notes to indicate variability.
The main disadvantage of these approaches is the
creation of convoluted and polluted models, which
bring difficulties to understand, maintain and scale the
models and trace links between features and UML
elements.

Other approaches [3, 8, 9] give some directions on
how to model and trace variability information.
However, and similarly to what happens with the
previous approaches, they do not provide specific
activities and tool support for modeling, tracing and
generating requirements models for specific products
based on the tracing information.

This paper presents a model-driven approach for
variability management in product lines that addresses
traceability between features and UML requirements
models (like use cases and activity models). The main
contribution is to show how model-driven techniques
can be used to automatically derive, from the
information provided by the trace links, requirements
models for specific products of a SPL, and views that
explicitly illustrate the relationships between features
and UML requirements model elements. These views
are useful in both domain and application engineering
stages. The general idea of our approach is to apply
bindings between metamodels, create a simple tracing
metamodel strategy, generate specific product
requirements models automatically, and use
composition rules to specify compositions between use
cases by means of their respective activity diagrams.

This paper starts with an overview of our
metamodelling strategy and approach main activities in

779

Section 2. These activities are illustrated using a home
automation system, in Section 3. Section 4 explores
and presents lessons learned from the application of
our approach. Finally, Section 5 concludes the paper
and points out directions to some future work.

2. A Model-Driven Approach for SPL
Requirements Engineering

Traceability between feature and requirements
models is supported in our approach by a
metamodelling strategy. Figure 1(a) introduces the
adopted metamodelling strategy and Figure 1(b) makes
that strategy concrete through feature, use case and
activity metamodels.

A variability model is used to represent the
common and variable SPL features. One or more
requirements models detail the SPL requirements. A
traceability metamodel is used to link abstractions
from the variability and the requirements models. This
enables the navigation across abstractions of the
different types of models using model-driven
techniques and tools. The traceability model also
supports backward and forward traceability between a
feature model (or any of its configurations) and
requirements models. Each configuration defines the
features of a specific product from the SPL.

Variability
Metamodel

Traceability
Metamodel

Requirement
MetamodelsTracesTraces

(a) General Strategy Adopted

(b) Our Approach

Id: String
name: String

Feature

minCardinality : int
maxCardinality : int
type : String

AttributesubFeatures
attributes*

minCardinality : int
maxCardinality : int

SubFeature

Constraint
*

FeatureModel

Node
rootFeatures1..*

*

1..*
childs

UseCaseModel

ActivityModel

TraceLink

TracingModel

Id : String
name : String

UCElement

Id : String
name : String

ADNode

*
*

*

1..*

1..*

1..*

Figure 1. Traceability support strategy

Our approach adopts a feature metamodel based on
[7] as the variability model. UML use case and activity
models specify the SPL requirements. Due to the large
dimension of the their metamodels, we only show the
use case model element “UCElement” and activity
diagram node “ADNode” from which all the traceable
elements of each model can be inherited. Activity
diagrams model the behavior of use cases. Use cases

and activity models are related to each other by means
of the feature to which they are connected.

Our metamodel (Figure 1(b)) supports the set of
models that we create in domain and application
engineering. The metamodel enables the creation of
models in conformance to their respective metamodels
[10], and helps to understand the relationships between
the models elements. Besides the metamodelling
strategy, our approach also defines a set of systematic
activities in the domain and application engineering
stages. The SPL requirements models are created and
manipulated during these stages using model-driven
techniques and tools.

At the domain analysis level, we perform the
activities described next. Although they are organized
sequentially, they are typically executed iteratively and
incrementally.

1. Identify requirements. The SPL requirements can
be elicited using traditional requirements engineering
techniques such as inspection of existing documents
that describe the problem domain, existing catalogues
[11], stakeholders interview transcripts or by using
mining techniques [12]. Other approaches such as [9]
and [3] already address this activity in detail.
2. Group requirements into features. During this
activity, we organize the SPL requirements into
clusters according to the specific SPL features they are
related to. There are semi-automatic clustering
techniques such as [13] that could help to support this
activity. However, the specific steps followed in the
clustering sub-process are out of the scope of this
paper and are not included due to lack of space.
3. Refactor requirements and features. During the
previous activity, requirements could result to be
linked to more than one feature. We propose to
refactor those requirements to be ideally related to only
one feature, whenever possible. It contributes to
achieve a better modularization of the SPL
requirements through the separation of the variable
parts of each requirement [14] as well as facilitate
establishing tracing links between requirements and
features.
4. Model SPL features and use cases. This activity
structures and represents the SPL requirements using
use case and feature models. Use case models specify
the functional requirements and feature models specify
the SPL features and variability-commonality
information.
5. Relate features to use cases. The relationships
between features and use cases are specified visually in
a table of trace links. The table allows defining and
maintaining the trace relationships between features
and UML elements.

780

6. Generate SPL use cases annotated with features.
A model-driven tool developed for our approach uses
the relationships between use cases and features to
generate specific use case models annotated with
features [15]. In the annotated model, each use case is
shown with the respective(s) feature(s) related to it.
Therefore, it is also possible to obtain the set of use
cases related to a specific feature. This allows the
domain analysis engineers and SPL architects to
reason about how each use case is related to the SPL
features and to analyze the impact of change of
specific features in SPL requirements.
7. Model use cases as activity diagrams. The
detailed behavior of each use case is modeled using
activity diagrams, similarly to what happens in several
UML-based methods, such as RUP [16]. Use cases
specified as activity diagrams, in contrast with textual-
based specifications, allows us to enable the use of
model-driven generation tools by providing models
that conform to a metamodel (i.e., UML activity
diagram metamodel) and to help to avoid ambiguity in
the specifications [3]. The detailed specification of use
cases as activity models also enables us to customize
the behavior of use cases according to the features
selected to a specific SPL configuration.
8. Specify composition rules between use cases.
Each composition rule defines how a variable use case
(i.e., linked to a variable feature) can interfere or
modify the normal execution of a mandatory use case
(i.e., linked to a common feature). Composition rules
are defined in terms of the elements of the activity
diagrams (e.g., activities, initial state or final state).

The models produced during domain engineering
are used in application engineering to generate use
case and activity models for specific SPL
configurations. We define three activities in
application engineering:

1. Define a SPL configuration. The application
engineer specifies a SPL configuration, where s/he
chooses which optional and alternative features are
going to be part of the final application.
2. Generate a use case model from a SPL
configuration. Our tool [15] generates the use case
model related to the SPL configuration defined in the
previous activity. The input for the generation is the
SPL use case model, the SPL configuration and the
table that maintains the trace links between features
and use cases.
3. Generate activity diagrams from a SPL
configuration. Our tool is also used to generate
activity diagrams related to a specific SPL
configuration. In this process, the original activity
diagrams can be composed using the composition rules

defined in the domain engineering stage. The choice of
which composition rules will be used is based on the
features included in the SPL configuration. The
activity diagram of each extension use case, for
example, can be composed with mandatory use cases if
the variable feature related to it was selected by the
application engineer (step 1 of application
engineering).

3. Applying the Approach to a Case Study

To illustrate the activities described in the previous
section, we have chosen a home automation system,
called Smart Home (see also [3]). This system is one of
the SPL case studies proposed by the industrial
partners of the European project AMPLE [17]; due to
its complexity, we will focus only on a subset of the
Security module.

The requirements and feature identification, and
refactoring activities, are described in [18]. They
provided the features and requirements of our case
study. By inspecting those requirements and features,
we modeled the SPL feature and use case models.
Figure 2 shows the most relevant artifacts produced by
the activities of our approach. It shows how each
artifact produced in the domain engineering
perspective is used to create or derive other artifacts
for a specific product in the application engineering
perspective. Next we describe the domain engineering
activities from our approach.

Model SPL features and use cases. Figure 2(a) shows
the feature model of our Security module. It has three
main features: Room Surveillance, Admittance Control
and Intrusion Detection. Room Surveillance is an
optional feature that includes Indoor Camera
Surveillance and, optionally, Indoor Motion Detection.
The inhabitant can be admitted to enter the house after
passing either a Biometrical Analysis, Smart Card, or
entering a PIN. In case of selecting intrusion detection,
the Glass Break Detection must be included and
optionally, motion detection sensors and cameras for
outdoor security. The notation used in Figure 2(a) is
described in Figure 2(j).

We can obtain the SPL use cases from the
requirements and features previously identified. Use
case modeling is used to better structure the SPL
requirements and add more semantics to the features
[6]. Figure 2(b) shows the use case model of the case
study. The initial SPL features and use cases can be
refined and incremented to consider new variabilities
or products that need to be included in the family. Both
use case and feature models must be updated when

781

new features are considered or existing ones need to be
modified or removed.
Relate features to use cases and generate SPL use
case models annotated with features. So that
traceability can be maintained between use cases and
features, we define an activity to specify the trace
relationships between those artifacts. By inspecting the
requirements and features of the case study, we related,
for example, the Open Front Door use case with
Admittance Control, refined into Biometrical Analysis,
Smart Card, and PIN features because to open the
front door, the system requires Admittance Control.
Figure 2(c) shows one of the views that can be
generated using the trace links relationships between
use cases and features. The open branch in the tree-like
structure shows that the Smart Card feature is related
with the use cases Identify User by Smart Card, Open
Front Door and Configure Security Management.

The traceability views of the relationships between
features and other artifacts allow the domain analysis
engineers and SPL architects to reason about the
domain analysis artifacts interdependencies. Currently,
there are two kinds of traceability views that our
approach can generate in this activity: (i) A use case
model annotated with the respective related features;
and (ii) a tree structure that shows the list of use cases
with the related features and, optionally, the list of
features with the related use cases (as in Figure 2(c)).
Create activity diagrams. The behavior of each use
case can be specified in our approach using activity
diagrams. These diagrams were created by inspecting
the requirements. Figure 2(e) and Figure 2(f) shows,
for example, the activity diagrams of the Identify User
by Smart Card and Identify User use cases.
Specify composition rules between use cases. Use
cases composition is addressed in our approach by
means of a set of composition rules. Each composition
rule defines how a use case can interfere, modify, or
replace the execution of another use case. The
composition rules are defined in terms of activity
diagrams elements (i.e., activities, initial and final
nodes). Composition rules are used during the
application engineering phase to derive the specific
behavior of use cases for a SPL configuration or
product. Figure 2(d) presents the composition rule
between the use cases Identify User and Identify User
by Smart Card. It shows how the Identify User by
SmartCard use case can modify the Identify User use
case to include additional steps related to the Smart
Card variable feature. The application of the
composition rule is shown in the following subsection
where specific activity diagrams can be generated for
each product of the SPL.

Next, we describe the execution of the application
engineering activities of our approach in the context of
the Smart Home case study.

Define a SPL configuration and generate the
related use cases and activity diagrams. The first
activity in application engineering is to specify a SPL
configuration to decide which features will be part of
the final application. Figure 2(g) shows a configuration
of the case study feature model shown in Figure 2(a)
(see the notation used in Figure 2(j)).

Based on the feature model configuration, the
relationships between use cases and features, and the
SPL use case model (Figure 2(b)), a use case model
can be automatically derived using the tool from our
approach [15]. Figure 2(h) shows the use case model
of the product specified in Figure 2(g).

The final activity of application engineering in our
approach involves the automatic customization of the
activity diagrams related to each of the SPL use cases
using the composition rules specified in domain
engineering. Only the activity diagrams of the use
cases that are part of the SPL configuration are
customized. Figure 2(i) shows the composition
between the activity diagrams that describe the Identify
User and Identify User by Smart Card use cases
depicted in Figure 2(f) and Figure 2(e), using a
Replace with composition rule depicted in Figure
2(d). It is not the aim of this paper to present a full-
fledged composition language; we just show how it
would look like. A complete composition language is
one of our aims for future work. For additional details
about the current version of our composition language,
please refer to [17].

4. Benefits and Lessons Learned

In the context of the European project AMPLE,
experiments with our approach have shown that the
information of the relationships among the SPL
requirements models can be used to support: (i)
forward and backward traceability between features
and requirements models like use case and activity
models; and (ii) reasoning about the impact of feature
interactions in the SPL requirements (expressed by the
use cases and activity diagrams). Forward and
backward traceability enables the creation of tracing
queries over all the requirements artifacts and the
derivation of specific requirements models for a
determined product in the SPL using an model-driven
derivation tool, as the one that we have developed
[15]. In addition, it enables to the developers to
visualize the features changes effects in the SPL
requirements through the automatic modification of the

782

Read the user identification
 from

 the Sm
art Card

Detect installed devices

Show
 m

essage of
succeful identification

Show
 error m

essage
Request to the user

 to pass the card

Search for m
atches

Show
 m

essage of
not autorization

N
um

ber of installed devices

User autorized to enter?
 [No]

 [=0]
 [>0]

 [yes]

D
etect installed devices

Show
 m

essage of
succeful identification

Show
 error m

essage

Search for m
atches

Show
 m

essage of
not autorization

R
ecognize user

U
ser autorized to enter?

N
um

ber of installed devices [N
o]

 [=0]

 [>0] [yes]

f

Read the user identification
 from

 the Sm
art Card

Request to the user
 to pass the card

Configure Security
 Managem

ent

Activate Outdoor
 Security

Activate Cam
era

 Surveillance

Activate Glass
 Break Detection

Activate Motion
 Detection

Indentify User
by Sm

art Card

Open Front Door

Identify User

House Owner

Inhabitant

<<extend>>

<<extend>>

<<include>>

<<include>>

Identify User by
Biom

etrical Analysis

Configure Security
 M

anagem
ent

Activate O
utdoor

 Security

Activate G
lass

 Break Detection

Activate Cam
era

 Surveillance

Activate M
otion

 Detection
Activate Indoor

 Security

Indentify User
by Sm

art Card

O
pen Front Door

Identify User
 by PIN

Identify User

House O
w

ner

Inhabitant
<<include>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

a
b

g
h

Com
pose Identify User with

Identify User by Smart Card
1. Replace Recognize user
with

Identify User by Smart
Card

d

c

Automaticaly Deselected Feature

User Deselected Feature

Selected Feature

Feature Model Configuration

Xor-Feature Group

Optional Grouped Feature

Mandatory Grouped Feature

Optional Feature

Mandatory Feature

Root Feature

Or-Feature Group

Feature Model Notation

e

j

U
sed to D

erive C
om

posed
A

ctivity M
odels for the S

P
L C

onfiguration

U
sed to D

erive the U
se C

ase
M

odel for the S
P

L C
onfiguration

U
sed to C

reate the S
P

L
C

onfiguration

i

Figure 2. Some of the artifacts produced in the Smart Home Security module case study.
(a) SPL feature model; (b) SPL use case model; (c) Use cases related to features; (d) Composition rule

between “Identify User” and “Identify User by Smart Card”; (e) Activity diagram of the “Identify
User by Smart Card” use case; (f) Activity diagram of the “Identify User” use case; (g) Configuration
of the SPL feature model; (h) Use case model for a specific product; (i) Composing “Identify User”

with “Identify User by Smart Card”; (j) Feature model notation.

783

models. On the other hand, the information about
feature interactions offered by our approach is useful
during the design of SPL architectures to allow an
adequate modularization and implementation of their
respective features. However, in this paper we have
only concentrated on describing the traceability
functionalities.

Our metamodelling strategy (Section 2) brings the
following benefits to the definition of our approach: (i)
simplicity – the integration between the metamodels of
the feature and requirements models is very easy to
understand and evolve; and (ii) flexibility – the strategy
can be applied to any requirements notation that has a
well-defined metamodel.

Our approach also enables composition of
crosscutting use cases by representing their steps in
activity diagrams. Composition rules are used to
specify how the behavior of a use case can affect the
behavior of another one. We believe this is an effective
way to represent how the SPL variabilities occur along
the use cases behavior. The integrated use of these
activity diagrams, composition rules and a SPL
configuration allows generating the specific behavior
of a SPL product. The resulting activity diagram
representing the use cases of a product can then be
used with different purposes, such as, for example, to
document the final requirements of the product or to
generate specific test cases for the product.

5. Conclusions and Future Work

This paper presented a model-driven approach to
model, specify and trace SPL features and
requirements supported by an automated tool. We
adopted a simple but useful metamodel integration
strategy to allow tracing between features and other
requirements models. The approach includes domain
and application engineering activities, both illustrated
using the Smart Home SPL case study.

Our work is currently being extended to address
additional perspectives, such as: (i) to provide more
explicit guidance for non-functional requirements and
feature interactions modeling and to create special
trace views for these concerns; (ii) to deal with
uncertainty or volatile requirements in SPLs; (iii) to
continue exploiting the activity diagrams to model
scenarios [19]; and (iv) define a more complete
approach in the context of the AMPLE project to
provide tracing support from features and requirements
models to artifacts of later software development
stages, such as, architecture models and source code.
Finally, a full-fledged composition language will be
defined.

Acknowledgements. The authors are partially
supported by EU Grant IST-33710: Aspect-Oriented,
Model-Driven Product Line Engineering (AMPLE).

References

[1] P. Clements and L. M. Northrop, Software Product Lines:
Practices and Patterns. Boston, USA: Addison-Wesley, 2002.
[2] D. M. Weiss and C. T. R. Lai, Software Product-line
Engineering: a Family-based Software Development Process.
Boston, USA: Addison-Wesley, 1999.
[3] K. Pohl, et al, Software Product Line Engineering:
Foundations, Principles and Techniques. Berlin, Germany:
Springer, 2005.
[4] K. Czarnecki and U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications: ACM
Press/Addison-Wesley, 2000.
[5] K. Kang, et al, "Feature-Oriented Domain Analysis
(FODA) Feasibility Study", SEI, CMU/SEI-90-TR-021, 1990.
[6] K. Czarnecki and M. Antkiewicz, "Mapping Features to
Models: A Template Approach Based on Superimposed
Variants", presented at GPCE, Tallinn, Estonia, 2005.
[7] A. Bragança and R. J. Machado, "Automating Mappings
between Use Case Diagrams and Feature Models for Software
Product Lines", presented at SPLC, Kyoto, Japan, 2007.
[8] H. Gomaa, Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures:
Addison-Wesley, 2004.
[9] M. L. Griss, et al, "Integrating Feature Modeling with the
RSEB", presented at ICSR, 1998.
[10] J. Bézivin, "On the Unification Power of Models",
Software and Systems Modeling, vol. 4(2), pp. 171-188, 2005.
[11] L. Chung, et al, Non-Functional Requirements in Software
Engineering, 1 ed: Kluwer Academic Publishers, 1999.
[12] A. Sampaio, et al "EA-Miner: A Tool for Automating
Aspect-Oriented Requirements Identification", in Proceedings of
ASE, Long Beach, CA, USA, ACM Press, 2005, pp. 352-355.
[13] K. Chen, et al, "An Approach to Constructing Feature
Models Based on Requirements Clustering", in Proceedings of
RE, Paris, France, IEEE Computer Society, 2005, pp. 31-40.
[14] A. Moreira, J. Araújo, and J. Whittle, "Modeling Volatile
Concerns as Aspects", presented at CAiSE, Luxemburg,
Luxemburg, 2006.
[15] "AMPLE Project Research Group at FCT/UNL",
http://ample.di.fct.unl.pt/.
[16] P. Kruchten, The Rational Unified Process: An
Introduction: Addison-Wesley, 2003.
[17] AMPLE, "Ample Project", http://www.ample-project.net/.
[18] M. Alférez, et al, "Traceability between Features and
UML-Based Requirements Models: A Model-Driven Approach
for Product Lines Engineering",
http://ample.di.fct.unl.pt/tool/Alferez-etal-TR-1-2008.pdf
[19] N. Maiden and I. Alexander, Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle: John Wiley &
Sons, 2004.

784

Model Interpretation for Executable Observation Specifications

Mathias Funk, Piet van der Putten, Henk Corporaal
Dept. of Electrical Engineering, Electronic Systems Group

Eindhoven University of Technology, The Netherlands

E-mail: {m.funk, p.h.a.v.d.putten, h.corporaal}@tue.nl

Abstract

Observation functionality integrated into interactive
products can help companies identifying current consumer
requirements and expectations. As these needs can change
rapidly, detailed information about product usage that
comes from habitual interaction is crucial to evaluate prod-
uct acceptance and relevance. We explore how products
can be extended with observation functionality that satis-
fies the information needs of multi-disciplinary experts in
the development team. In the process of product evalua-
tion, information requirements are bound to change, and
so is the observation behavior. Our approach addresses
this by integrating observation functionality into products
which can be adapted to current information needs. This
paper presents a novel way to remotely configure products
in the field by using high-level models, graphical observa-
tion specifications, that are interpreted by a runtime envi-
ronment built into the products in the field. An industrial
case-study shows the applicability of the approach. This
work is part of ongoing development aiming at a generic
observation integration methodology.

1. Introduction

Complex consumer electronics products as well as other

innovative product categories nowadays integrate many dif-

ferent features in order to serve a large group of customers.

The mass of functions has to be accessed through a user

interface which in turn gets more and more complicated.

Users have problems to find their ways. Increasing numbers

of returned products without any detectable failures suggest

this [3].

Furthermore nowadays product creation processes are

characterized by high complexity of products and they are

influenced by rapidly changing customer demands. Hence,

an up-front specification of the product becomes hard if

not impossible. In the past, products could be improved in

the next version, but today the markets often demand com-

pletely new products. Technologies have to reach a level of

maturity in a shorter time. The lack of information about the

customers’ needs leads to a situation where companies press

functionality into products, thus entering a vicious cycle of

complexity [1]. This blurs the customer’s understanding of

the product and a match between customer expectations and

the actual capabilities of the product becomes even more

unlikely.

An approach to address this industry-wide problem is to

get representative user feedback on try-out products or pro-

totypes [2]. Traditionally this is done by collecting cus-

tomer opinions in questionnaires and video-taping user in-

teractions with the product in usability labs. Nowadays,

with almost ubiquitous internet access, other methods can

be used which are expected to provide much richer data on

the actual used product features and user preferences. The

integration of observation modules into products can enable

data collection according to the actual and ever changing in-

formation needs of the product development team.

Our research aims at the introduction of observation in-

tegration or design for observation as a first class develop-

ment task, because the delivery of relevant information of

use and possibly user expecations will become more impor-

tant in the future of product development.

In this work we address a problem that occurs when the

development processes are not yet tuned to observation inte-

gration in an efficient way: observation is brought into prod-

ucts late in the development process. Due to changing re-

quirements for observed information, the implemented ob-

servation functions have to be adapted regularly. This holds

especially for the use phase, when products are given to

testers. Then, highly adaptable and remote observation is

crucial. This causes a substancial effort not only for de-

velopers but also for observation specification and certainly

for the alignment of both. If the adaptation mechanisms are

not automated, product evaluation becomes difficult if not

impossible. Therefore automation of observation specifica-

tion deployment is a primary precondition for such product

evaluation methods.

785

More precisely, we address the technical transition pro-

cess between observation specification and the dynamic ex-

ecution of a translated specification, possibly to be con-

structed during runtime. As a result, observation facilities

support this scenario of remotely adapted observation via a

communication channel like the internet. Figure 1 shows

an overview on such a system, consisting of an authoring

environment, a server instance, several products in use and

further services dealing with the analysis and visualization

of collected product usage information. We refer to [8] for

an explanation of system and its use to model users and their

interaction with a consumer electronics product.

In the following sections, after pointing at related work,

the approach of observation modeling is explained together

with a description of visual specification and observation

modules. This is followed by the core section about model

interpretation. The paper ends by presenting a case study

which shows the applicability of the approach in the context

of new product development.

2. Related work

The research on observable products as described in this

paper is on the one hand strongly connected to the field of

user modeling. The framework we developed stands in the

tradition of generic user modeling systems (for an exten-

sive overview see [12]). On the other hand, it is in the

area of remote runtime monitoring where there have been

efforts to monitor deployed software [4] and to use logging

inside products [13]. The use of a client-server architecture

for information distribution across a network of products

is straight-forward in this domain and has been described

before [10]. However, our approach of remotely change-

able observation behavior differs from traditional monitor-

ing as we do not assume a pre-defined set of information

sources, but deal with constantly changing information re-

quirements. In this sense, the research stands also in relation

to adaptive software [11]. This paper tackles the problem

of flexible instrumentation of observation modules. Our ap-

proach is based on the specification of observation by use of

a domain-specific language [6]. The specified observation

is executed on products, which is an application of model

interpretation [5]. Compared to well-known model-driven

approaches like MDA and MDE [14, 7] this technique of-

fers a dynamic transformation shortcut from model to exe-

cutable.

3. Observation

The observation of remote systems potentially covers a

wide range of complex electronic products. It is seldomly

done in an engineering approach aiming at reuse and a long-

term application. Especially for product families observa-

tion gains importance: it is one of the few system parts

which are easiest to generalize. Moreover, the collected in-

formation has a large influence on the specification and the

targeting of future products within the product family.

Figure 1. Framework overview

Observation is done in several subsequent steps: Infor-

mation is sensed by so called hooks which might imply

that an information source is either triggered periodically

for data or raises an event itself. Resulting low-level data

is processed in the next step and can herewith be aggre-

gated, normalized or temporarily cached. This preprocess-

ing stage yields complex events which result from the com-

bination of multiple low-level sources. Depending on the

extent of aggregation and event correlation those events

can carry enough semantic information to be relevant for

analysis by information stakeholders. Finally, the data has

to be collected centrally which allows for real-time visu-

alization and post-processing using external tools. Obvi-

ously, information capturing and preprocessing which are

performed on the individual product instances have a huge

impact on the quality of the information that is presented to

post-processing and analysis.

3.1. Observation system

An observation system (cf. fig. 2) consists of three main

layers, (i) the authoring and analysis layer where specifica-

tion of observation and the captured information is worked

with, (ii) the repository layer which accomplishes the task

of configuration and data aggregation, and (iii) the observa-
tion layer with local product instances. Observation specifi-

ations have to transmitted to product instances and observed

information has to be captured in a central instance for fur-

ther analysis. In the optimal case, a knowledge engineer

can define an observation specification and the infrastruc-

ture provides all services necessary to configure product in-

stances and transport the data back for analysis.

In this and following sections, we will concentrate both

on a part of the authoring and analysis layer and the ob-

servation layer. The aforementioned specification of ob-

servation consisting of (i) hooks, (ii) processing, and (iii)

export, can be modeled by a visual language using few

786

Figure 2. Observation system overview

graphical building blocks (see section 3.2). On the observa-

tion layer a runtime structure called observation component
(OC) is constructed from a visual observation specification

by means of model interpretation. An OC is a pluggable

part of the observation module that is connected to a spe-

cialized runtime environment inside the observation module

(cf. fig. 2).

The development effort for a working observation sys-

tem as a whole can be split up into two main tasks: (i) in-

tegration of observation into systems including a middle-

ware capable of information delivery between the observa-

tion layer and the repository layer, and (ii) the definition

of observation via the visual language. This separation of

concerns supports the roles involved in the process: prod-
uct developers handle the first task and information stake-
holders define what should be observed. Ideally, a third role

comes in, the observation developer, who shoulders the bur-

den of observation-specific programming which includes,

for instance, the infrastructure, editor customizations and

platform-specific adaptations of the observation module.

3.2. Visual language

Observation specification should be performed by ex-

perts in the domain of user-related information or other

product information stakeholders. Often those people do

not have the necessary system engineering and program-

ming skills to instruct a distributed system of product in-

stances. Therefore we propose a visual specification lan-

guage that hides low-level programming matter and enables

domain experts to take advantage of their special knowl-

edge about product information. It is a domain-specific lan-

guage that focusses on observation only. Likewise, concepts

of general purpose programming languages which are inap-

propriate for the specification can be left out. The essential

language elements shall be described in the following.

Hooks are places for information retrieval and they are

basically the only information inlets of the observation sys-

tem. There are two types of hooks, the ones that have to

be triggered to yield data, and the ones which trigger them-

selves and can be seen as manifestations of events in the

over-all system. As event generators, hooks are also the

sole platform-specific parts of the system and represent an

interface between the product’s internals and the observa-

tion module. The hooks that are not self-triggering can be

linked to timers which simply realize periodic signals that

cause those hooks to fire. This sampling technique is used

especially for information like performance measurements

or resource load that has a continuous nature.

Hooks generate low-level system data that is mainly not

immediately useful for analysis. It is a mass of atomic sys-

tem events, that has no inherent structure and does not gain

any comprehensive results - let alone answering specific

questions. Therefore this data has to be preprocessed to be-

come meaningful. The next stage of the observation spec-

ification tackles this aspect. Hook data is routed through

processing blocks. Processing can involve calculations to

normalize incoming numbers or the correlation of multiple

events to gain derivative complex events. Closely related

are caching blocks that enable data snapshots and can, for

instance, be used as a sliding window over an event stream

to compute a floating average.

After finishing those early computations the information

shall be exported. This means to transfer it from the prod-

uct instance to the repository layer that gathers all product

usage data in a central data storage. For this purpose the vi-

sual language contains an outlet symbol, which can be used

to route outgoing information and to label the information

according to the semantics it represents.

All aforementioned visual blocks can be linked by routes
which connect the outlet of a block with inlets of other

blocks, thus forming a directed graph (cf. fig. 4 for an

example). An observation specification denotes an event-

driven system that reacts on the occurence of events and

may also trigger hooks by the use of timers. Still, from the

user perspective the flow of information in such a descrip-

tion can be seen relatively easily and the language abstracts

from concurrency issues as well as from potential data con-

version problems. Its visual form allows to concentrate on

the matter of specification on the information level.

787

Figure 3. From observation specification to
observation component

3.3. Observation module

The visual language’s counterpart on the observation

layer (cf. figure 2) is a module integrated into the system

to be observed. The degree of integration into the host sys-

tem depends on the required access on information sources.

An observation module can be realized in multiple fashions,

e.g. as a plugin for existing software, as separate software

or even as a dedicated hardware subsystem - as long as the

basic requirements (i) access to information sources and (ii)

communication capabilities with a repository layer are ful-

filled. For less strict requirements, observation modules can

accompany a system as long as its services are needed and

should be easy to remove after use. Also the impact on sys-

tem performance and of course privacy as well as security

issues have to be considered carefully, but are out of scope

here.

As mentioned before, the module provides internal exe-

cution capabilities: it receives an observation specification,

constructs and runs an OC, and delivers the collected infor-

mation towards the repository layer. Therefore it consists

of several parts that play a role in communication, configu-

ration and the observation itself. The communication sub-

system jointly realizes the data transmission infrastructure

depicted in figure 2 together with a server on the repository

layer. The configuration subsystem essentially contains the

parts shown in figure 3 which parse and construct an OC

from a specification (further discussed in 4.1). The building

blocks of an OC are particularly interesting in the context

of the next section and shall be described there.

4. Model interpretation

Model-driven engineering being one of the most influ-

encal achievements in recent system development is also at

the core of technical observation development. Especially

the agile nature of observation development and iterative

characteristics of the process require an automated flow so

that changes in observation requirements can be propagated

quickly towards actual execution [11]. Furthermore, it is

crucial to protect the client machines from potentially harm-

ful virtual machine bytecode or, potentially worse, binary

code. Still, the highly dynamic nature of the product eval-

uation settings demand an special engineering approach:

runtime structures are constructed directly from the spec-

ification. This technique replaces the transformation and

code generation steps of traditional MDE with a single in-

terpretation step. Code generation in principle transforms a

model into a textual representation which is processable by,

e.g. a compiler. In contrast, model interpretation directly

processes the model and generates executable structures in

memory. This has the main advantage that the model can

be embedded into the runtime system. This emphasizes the

safety of the system and allows for a change of the observa-

tion behavior at runtime, simply by replacing the interpreted

model with a newer version.

4.1. Observation specification

For the specification of observation we developed an ed-

itor based on the Eclipse platform. That editor allows for

an easy composition of an observation specification suitable

for domain experts. Also, it offers the possibility to send the

finished specification directly to a server on the repository

layer which is part of the distribution infrastructure for up-

dating product instances. Figure 4 shows an example of

a graphical observation specification. It denotes the timed

triggering of a hook requesting information about the CPU

performance every ten seconds. This information is aver-

aged (avg symbol) by a processing node and exported via

an export node.

Figure 4. Visual editor screenshot with an ex-
ample specification

Models expressed in the visual language are serialized in

plain XML. This can be parsed by the observation module.

Corresponding to the example specification shown in figure

4, its structure also appears in the XML file that is sent to

the observation module for execution (cf. figure 5).

788

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
< i f s l : M o d e l x m i : v e r s i o n =” 2 . 0 ”>

<e l e m e n t s t y p e =” i f s l : T i m e r ” p e r i o d =” 10 ”

u n i t =” s e c o n d s ” />
<e l e m e n t s t y p e =” i f s l : P l a t f o r m H o o k ” name=”

CpuPerformanceHook ” />
<e l e m e n t s t y p e =” i f s l : R o u t e ” end1=” / /

@elements . 0 ” end2=” / / @elements . 1 ” />
<e l e m e n t s t y p e =” i f s l : P r o c e s s i n g N o d e ” name

=” avg ” />
<e l e m e n t s t y p e =” i f s l : R o u t e ” end1=” / /

@elements . 1 ” end2=” / / @elements . 3 ” />
<e l e m e n t s t y p e =” i f s l :XMLExpor tNode ” name=

” E x p o r t ” />
<e l e m e n t s t y p e =” i f s l : R o u t e ” end1=” / /

@elements . 3 ” end2=” / / @elements . 5 ” />
< / i f s l : M o d e l>

Figure 5. XML version of observation specifi-
cation

4.2. Observation runtime

The observation module contains a runtime environment

that can execute an OC as specified by the visual model.

Figure 3 shows the configuration process. An observation

specification is parsed and checked for validity. After that,

a set of building blocks is constructed dynamically using a

NodeFactory. The routing unit takes this set of blocks as

input and creates routes according to the specification. Im-

plicitly the export nodes of the network are connected to

the respective communication facility. Finally, the sched-

uler subsystem starts all timers, the only active parts in an

otherwise reactive event-based architecture.

To construct such a network, the event-driven executable

system makes use of the base class FlowNode which real-

izes the basic routing functionality together with the Route
class. As the UML diagram (see figure 6) shows, dynamic

linking of nodes is accomplished by using the FlowNode-
Route-Inlet-Outlet pattern: FlowNodes offer inlet function-

ality by means of a provided interface and a Route can con-

nect to those nodes with a usage relationship with the inter-

face Inlet. For the interface Outlet the reversed relationships

hold. Objects are linked together by means of the inlets and

outRoutes associations.

The UML class diagram in figure 6 depicts also the

classes that represent hooks, processing nodes, collection

nodes, exports and timers. Obviously there is a 1:1 rela-

tionship between elements of the visual language and the

instanciated objects that are linked together by means of the

inherent routing functionality of all objects derived from the

base class. What the picture also shows is the application of

Figure 6. UML class diagram of observation
component building blocks

the strategy pattern [9]. It helps to realize different kinds of

behaviour of ProcessingNodes and CollectionNodes. De-

pending on the type of processing or collection specified,

different strategies can be chosen. This especially reduces

the effort for observation development as only necessary

computations have to be implemented in the observation

module.

Yet, the implementation of hooks proved to be the most

demanding task of observation development as it means to

interface the product at various levels, a task that strongly

depends on documentation and openness of the platform.

There are basically two types of hooks: Platform hooks

which access the host system and are characterized by

mainly platform-specific behaviour, thus the name, and sys-

tem hooks that access the observation module. While the

use of platform hooks for information collection is straight-

forward, system hooks capture events concerning the obser-

vation itself. In the future, this can be used to adapt the ob-

servation to context changes or to establish semantic links

between observed items on multiple levels.

5. Case study

Together with a large Dutch electronics company we

carried out a case-study to test the observation of a con-

sumer electronics prototype. This showed the applicability

of the approach in a world-wide observation scenario that

connected 20 machines spread over 8 countries to a cen-

tral server which collected about 800.000 data items. The

product instances were pre-configured before roll-out. As

expected, changes in the observation requirements of infor-

mation stakeholders demanded for remote changes of the

observation specification which were performed success-

fully several times. The machines continued to capture data

according to a new observation specification.

789

The data collected during the case-study supported

mostly the assumptions of the development team about

product usage, but also gave new insight on country-specific

usage problems and customer expectations. Regarding the

successful application of the proposed technology and new

insight into product usage it has been decided to continue

with successive experiments on a later version of the ob-

served product prototype.

6. Conclusion & Future work

Regarding the fact that the majority of products are cur-

rently not designed for observation, we are working in the

direction of a design method for self-observing systems. To

provide an intermediate solution for observation integration

we chose model interpretation for maximum flexibility and

agility. Our approach is to specify visually and to execute

the finished specification directly on the product. This em-

phasizes the separation of concerns between domain experts

who are interested in the collection of usage information

and developers who are concerned with the system engi-

neering.

We developed an experimental framework for specifica-

tion and implementation of observation functionality. A

new visual specification language has been introduced to

support domain experts specifying observation behavior. It

proved to greatly simplify the task of product usage data

collection. The language is generic enough to be reused in

different observation contexts. Only minor changes have to

be made to the observation specification runtime environ-

ment in case a new product software implementation plat-

form has to be entered.

The case-study showed that as soon as observation mod-

ules are in place and the specification supports basic mea-

surements of users’ interactions with a product the need for

better semantic linking between observed data arises. So

far, a lot of effort still has to be spent on the post-processing

of captured data. The next step is an annotation of events

with semantic information that tells e.g. about the origin,

conditions and context of such an event. Also this is done

in a structured way, such that the information can be easily

exploited during post-processing using automatic analysis

tools. Another future direction is the collection and incor-

poration of subjective user feedback data into the set of ob-

jective product data. In addition, subjective data can help

to understand the why in user-product interaction. It will

be possible to bind subjective feedback measures to the oc-

curence of certain events which enables a dynamic insight

into the usage process together with background informa-

tion coming directly from the user at the same time.

Acknowledgments

This work is being carried out as part of the “Man-

aging Soft-Reliability in Strongly Innovative Product Cre-

ation Processes” project, sponsored by the Dutch Ministry

of Economic Affairs under the IOP-IPCR program.

References

[1] S. Bly, B. Schilit, D. W. McDonald, B. Rosario, and Y. Saint-

Hilaire. Broken expectations in the digital home. In CHI
’06: CHI ’06 extended abstracts on Human factors in com-
puting systems, pages 568–573, New York, NY, USA, 2006.

ACM Press.
[2] R. Cooper and E. Kleinschmidt. New products: What sep-

arates winners from losers? Journal of Product Innovation
Management, 4, September 1987.

[3] E. den Ouden, L. Yuan, P. J. M. Sonnemans, and A. C.

Brombacher. Quality and reliability problems from a con-

sumer’s perspective: an increasing problem overlooked by

businesses? Quality and Reliability Engineering Interna-
tional, 22(7):821–838, 2006.

[4] M. Diep. Profiling deployed software: Assessing strate-

gies and testing opportunities. IEEE Trans. Softw. Eng.,
31(4):312–327, 2005.

[5] J. Estublier and G. Vega. Reuse and variability in large soft-

ware applications. In ESEC/FSE-13: Proceedings of the
10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 316–325, New York,

NY, USA, 2005. ACM.
[6] E. Evans. Domain Driven Design. Addison-Wesley, 2004.
[7] D. Frankel. Model Driven Architecture: Applying MDA to

Enterprise Computing. John Wiley & Sons, Inc., New York,

NY, USA, 2002.
[8] M. Funk, P. van der Putten, and H. Corporaal. Specification

for user modeling with self-observing systems. In Proceed-
ings of the First International Conference on Advances in
Computer-Human Interaction, 2008.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1994.

[10] K. Kabitzsch and V. Vasyutynskyy. Architecture and data

model for monitoring of distributed automation systems. In

1st IFAC Symposium on Telematics Applications In Automa-
tion and Robotics, Helsinki, 2004.

[11] J. Karsai, G.; Sztipanovits. A model-based approach to self-

adaptive software. Intelligent Systems and Their Applica-
tions, IEEE [see also IEEE Intelligent Systems], 14(3):46–

53, May/Jun 1999.
[12] A. Kobsa. Generic user modeling systems. User Modeling

and User-Adapted Interaction, 11(1):49–63, Mar. 2001.
[13] J. Kort and H. de Poot. Usage analysis: combining log-

ging and qualitative methods. In CHI ’05: CHI ’05 ex-
tended abstracts on Human factors in computing systems,

pages 2121–2122, New York, NY, USA, 2005. ACM Press.
[14] B. Selic. The pragmatics of model-driven development.

Software, IEEE, 20(5):19–25, 2003.

790

Network Intrusion Detection Based on Bayesian Networks
Alma Cemerlic, Li Yang, Joseph M. Kizza

Department of Computer Science and Engineering
University of Tennessee at Chattanooga

Chattanooga, TN 37403
Alma-Cemerlic@utc.edu, Li-Yang@utc.edu, Joseph-Kizza@utc.edu

Abstract
Intrusion detection has drawn much attention in the past two
decades. Signature analysis and statistical anomaly detection
are two typical methods to identify network security
breaches. Signature analysis requires access to a large
database of known intrusion signatures and a way to match
current behavior against the signatures to detect intrusions in
progress. The limitation of this approach lies in its
dependence on frequent updates of the signature database
and its inability to generalize and detect novel intrusions.
Anomaly detection methods can detect attacks based on
statistical probability, which allows for generalization and
helps in detection of novel attacks. However, statistical
anomaly detection is not based on an adaptive intelligent
model and cannot learn from normal and malicious traffic
patterns. We propose an adaptive network intrusion
detection using a Bayesian network, trained with a mixed
dataset containing real-world and DARPA dataset traffic.
Our Intrusion Detection System (IDS) model is designed to
detect novel attacks. We use features of network connections
to parameterize the system. The DARPA dataset and real-
world traffic are used to measure the feasibility and
effectiveness of our system. The network connections that
are confirmed to be novel intrusions are added to the training
dataset to re-train our IDS, thus enhancing our system’s
ability to detect future intrusions.
Keywords: Intrusion detection, Bayesian network

1. INTRODUCTION
 Today, a large amount of sensitive information is

processed through computer networks, thus it is increasingly
important to make information systems, especially those
used for critical functions in the military and commercial
sectors, resistant and tolerant to network intrusions. An
intrusion can be defined [9] as an attempt to gain
unauthorized access to network resources. As the number of
newly discovered vulnerabilities per year increases and as
hacker tools become more advanced and automated,
intrusion prevention techniques alone are not sufficient.
Today, Intrusion Detection Systems (IDSs) are necessary for
effective computer system protection. An intrusion can be
detected using either signature-based detection or anomaly-
based detection. Signature-based analysis [8] as an intrusion
detection technique requires a database of signatures of
known intrusions in order to be able to detect attacks. The
key advantage of signature detection techniques is in their
high degree of accuracy in detecting known attacks and their
variations. The main drawbacks are the need to frequently

update the database of intrusion signatures and the inability
to generalize and detect novel intrusions. In addition to
these drawbacks, even if a new attack is discovered and its
signature determined, there is often a substantial latency in
the update of the signature databases for IDSs across
networks.

 Anomaly detection techniques based on statistics, such
as IDES [7], send an alarm when they detect an event that
deviates from the behavior defined as normal. The observed
network traffic is compared to profiles of normal network
use. Statistical anomaly detection has no intelligent learning
model which may lead to a high rate of false alarms. This
happens primarily because previously unseen (yet legitimate)
system behaviors may also be recognized as anomalies and
hence flagged as potential intrusions. All these limitations
have led to an increasing interest in intrusion detection
systems based on data mining.

Several researchers have been interested in developing
IDSs using a generalization learning model. Axelsson et al.
[12] employ Bayesian inference steps with transition models
between inferences to assess whether a particular burst of
traffic contains an attack. Kruegel et al. [10] proposed a
model which simulates an intelligent attacker using Bayesian
techniques to create a plan of goal-directed actions. This
study also proposes an event classification scheme based on
Bayesian networks. The advantage of Bayesian networks is
in that they improve the aggregation of different model
outputs and allow one to seamlessly incorporate additional
information into an already existing model. Johansen et al.
[11] believe that a Bayesian system provides a solid
mathematics foundation to simplify a seemingly difficult and
monstrous problem that today’s IDS implementations fail to
solve. They added that Bayesian network IDS should
differentiate between attacks and the normal network
activity by comparing metrics of each network traffic sample.

We propose to develop an adaptive network intrusion
detection system using a Bayesian network (BN), trained
with a mixed dataset containing real-world and DARPA
dataset traffic, aiming to detect novel intrusions with low
number of false alarms. Our proposed IDS model is able to
parse real-world traffic and identify network attacks
including novel attacks that the system has not previously
encountered. A BN is used to build an automatic intrusion
detection model and signal an intrusion when a suspicious
activity is noticed.

791

2. FRAMEWORK OF AN ADAPTIVE IDS
The architecture of our proposed intrusion detection

system consists of six modules (Fig. 1). The Data gathering
(sensors) and parsing module is responsible for collecting
data from the monitored network and parsing them into
connections. A connection is equivalent to a session between
two hosts on a network, and it is composed of all the
observed packets that the hosts exchanged. The Bayesian
Network Inference module is the analysis engine of the IDS
responsible for processing the data collected from the
sensors. The Knowledge base contains an intelligent model
(Bayesian network) which learns from observed traffic and
has the ability to predict whether a network connection is an
attack. The System configuration provides information about
the current state of the IDS. The Response component
initiates actions when an intrusion is detected. The
responses can either be automated (active) or involve human
interaction (inactive). The Bayesian Network Learning
module is used to build up knowledge from the offline
training dataset.

Fig. 1 Bayesian Network-based IDS architecture
Overall, our proposed framework consists of a training

component and a detection component. We use a training
dataset to parameterize the IDS. The DARPA dataset and
real-world traffic are used to measure the feasibility and
effectiveness of our system. Given the training dataset, the
training component estimates the parameters of the Bayesian
model in Step 0 in Fig. 1. The network traffic is gathered
and parsed into application layer network connections in
Step 1. The Bayesian model then considers both the network
connections and the system configuration to infer the
probability that the network is under attack. The Bayesian
model is built based on a learning algorithm using training
data as the knowledge base, shown in Step 2. A network
connection recognized as an intrusion will trigger an IDS
response. A never-before-seen network connection is
marked as suspicious if it is classified as intrusive by our
IDS system. If the suspicious connection is confirmed to be
an intrusion by a network administrator, it is added to the
training dataset to re-train our adaptive IDS, as shown in
Step 4. This process enhances our system’s ability to detect
future intrusions.

3 BAYESIAN NETWORK
A Bayesian network is a graphic representation of the

joint probability distribution function over a set of variables.
The network structure is represented as a Directed Acyclic
Graph (DAG) in which each node corresponds to a random
variable and each edge indicates a dependent relationship
between connected variables. Each variable (node) in a BN
is associated with a Conditional Probability Table (CPT),
which enumerates the conditional probabilities for this
variable given all the combinations of its parents’ values [2].
Therefore, for a BN, the DAG captures causal relationships
among random variables, and CPTs quantify these
relationships. Since individual events in an attack can be
represented as nodes and the causal relations between events
can be modeled as edges in Bayesian networks, we use a BN
as our inference model. A BN model is capable of learning
causal relationships from an existing dataset and predicting
the consequences of an intervention in the problem domain.
A BN is an ideal model for combining prior knowledge with
new data and inferring posterior knowledge.

In order to learn the structure and test our proposed BN
with datasets, we use Netica and Genie, the tools for
modeling BNs.
3.1 Learning Algorithm
In our model, we use the K2 learning algorithm. The
algorithm defines a set of variables of interest to build a
directed acyclic graph (DAG) based on the calculation of a
local score [6]. K2 is initialized with a single node, and it
continues to incrementally add connections with other nodes
as long as they increase the whole probability of the network
structure. We use the following network connection features
ordered according to the relevance analysis in [4]:
protocol_type, sevice, num_wrong_fragments, land,
logged_in, num_failed_login, root_shell, is_guest_login, and
type.
3.2 Inference Algorithm

For the inference in our model, we use the Junction Tree
Algorithm [5]. The idea behind this procedure is to
construct a data structure called a junction tree which can be
used to calculate any query through message passing on the
tree. To build a junction tree, we first choose an ordering of
the nodes and use node elimination to obtain a set of
elimination cliques. A complete cluster graph is then built
over the maximal elimination cliques. Each edge {B, C} is
weighted by |B8C| to compute a maximum-weight spanning
tree. This spanning tree is a junction tree.

4. INTRUSION DETECTION TESTING DATASET
We use two different datasets to test our proposed IDS
model, namely the DARPA dataset and the real network
traffic collected in our security lab.
4.1 DARPA Dataset

The DARPA intrusion detection evaluation dataset [1]
from MIT Lincoln Lab is used to train and test our IDS. The
dataset was collected from a simulation of a fictitious
military network over the period of seven weeks.

792

Before feeding the data to the Bayesian network, for
either learning or testing, raw network traffic has to be pre-
processed and summarized into connections or high-level
events. Each connection is described with a set of features.
The DARPA KDD 99 dataset summarized DARPA 98
Lincoln Lab network traffic into connections with 41-
features per connection. We define a connection as a
sequence of TCP packets starting and ending at some well
defined points in time, between which data flows from a
source IP address to a target IP address under some well
defined protocol. In our model, we use 9 of the 41 features,
namely protocol_type, service, num_of_wrong_fragments,
num_of_failed_logins, land ,login_success, is_guest_login,
root_shell_obtained, and type (intrusion or normal
connection).

Netwotk intrusions are classified into four categories [1]:
user-to-root (u2r), remote-to-local (r2l), denial-of-service
(DoS), and probe. The u2r attack occurs when attackers
who have local access to the victim machines try to gain
superuser privileges. The r2l attack happens when attackers
who have no account on the victim machine try to gain
access. The DoS attack occurs when attackers try to prevent
legitimate users from using a service available on the
network. The goal of a probe attack is to gain information
about the target host.

In the case of signature-based IDSs, the recency of the
data in the signature database is crucial. In our case, the
recency of the dataset is not significant because our model is
an anomaly detector that needs no specific knowledge about
attacks. Thus, the DARPA dataset is still viable for testing
our model [13].

We used the labeled training dataset to train our
Bayesian model, and the testing dataset to test for the correct
discovery of intrusions. The Bayesian network used in our
IDS model is shown in Fig. 2.
4.2 Customized Dataset with Novel Intrusions

After learning the BN model and testing it using the
DARPA dataset, we created a custom dataset to measure the
capability of BN model in detection of never-before-seen
attacks. The custom dataset contains both attacks and normal
traffic. The attacks are collected through repeating the
vulnerability exploits available in the Metasploit 3
framework [3]. The traffic containing these attacks is
recorded in the form of tcpdump files. We chose exploits in
a way that they represent all four general categories of
attacks: DoS, r2l, u2r, and probe [1].

A type of attacks known as buffer overflow (BoF)
attacks can be used to gain the root access on the victim
system. Depending on the targeted platform, a buffer
overflow attack can be executed as u2r or r2l. For instance,
the Microsoft Plug and Play Service Overflow, which
exploits the plug and play service used by the operating
system to detect new hardware, is an example of a buffer
overflow attack that on certain platforms requires local
access to be successfully completed, while on others can be
executed remotely. Additionally, under certain
circumstances, buffer overflow attacks can result in a DoS

attack. For example, NetpwPathCanonicalize Overflow in
Microsoft Server Service exploits a stack overflow in the
NetApi32 CanonicalizePathName function using a Remote
Procedure Call (RPC) call in the Server Service. On certain
Windows platforms, even if unsuccessful, this attack can
cause termination of all SMB-related services or a system
reboot, and thus is classified as a DoS attack. As an addition
to the set of probe attacks, we collected a footprint of a UDP
service sweeper, a tool designed to detect common UDP
services available on the target host.

Fig. 2 Learned Bayesian Network for IDS

5. EXPERIMENT SETUP
Our experiment consists of two phases. In the first

phase, we use the DARPA training and testing datasets to
train and test our Bayesian model respectively. In the
second phase, we capture the real network traffic to further
test the system.

The traffic features relevant to our IDS are associated
with each network connection rather than with each
individual packet. This results in a faster Bayesian network
training and a faster classification of incoming connections
as either normal or intrusion. We monitor nine features for
each connection. They are: protocol_type, sevice,
num_wrong_fragments, land, logged_in, num_failed_login,
root_shell, is_guest_login, and type. The last listed feature
is used to label a specific connection as either normal or an
attack for the purpose of training and testing.

The initial learning and testing data sets are composed
of labeled DARPA 98 dataset records.

The real-world network traffic serves to test the
system’s ability to recognize never-before-seen attacks. The
traffic collected in the tcpdump format is preprocessed by a
custom parser which first groups the packets into
connections, then extracts connection-specific features we
use in our model. Eight of the features are extracted from
packet headers and payload, while the nineth feature, type, is
added by hand.

793

Once the structure is learned and our Bayesian network
is trained, the network is able to examine any input given in
the correct format and label each connection as either normal
or an intrusion. Those connections that do not fall in either
class are labeled as intrusions, since they may be novel
attacks.They are included in the learning dataset and used to
retrain and improve the network. However, prior to adding
the potential novel intrusions to the learning dataset, their
classification needs to be inspected for correctness before
they are able to affect the BN structure.

6. EXPERIMENT EVALUATION
In order to have a good prediction performance, an IDS

should be able to correctly differentiate between intrusions
and legitimate actions in a system environment. Typical
features for evaluating predictive performance of IDSs
include true positive (TP) rate (detection rate) and false
positive (FP) rate shown in Table 1. True positive rate is the
ratio of the number of correctly detected attacks and the total
number of attacks, and false positive rate is the ratio of the
number of normal connections that are incorrectly classified
as attacks and the total number of normal connections.

The performance analysis of our IDS given in Table 1 is
reported on the 50% cutoff line, which means the Bayesian
network classified an event as an intrusion only if its belief
was higher than 50%. If we choose to lower this boundary,
the percent of TP will rise, but also will the percent of FP.

Our experimental results for the DARPA datasets are as
follows: True negative rate correctly recognizing the normal
connection is 93.89%. True positive rate correctly
determining intrusions is 97.88%.The error rate is 2.881%,
which means that in 2.881% of cases the network predicted a
wrong value, where the predicted value is the one that had a
higher belief value.

Predicted Normal Predicted Intrusions
Actual Normal
Connection

True Negative
93.89%

False Positive
6.11%

Actual Intrusions
(Attacks)

False Negative
1.45%

True Positive
97.88%

Table 1. Evaluation of Intrusion Detection
When trained only by the DARPA training dataset, our

IDS model indicated the presence of new intrusions in real-
world testing dataset by conflicting evidences. Only the
CAN-2003-0003 exploit and the UDP sweep were correctly
detected. The reason is that the DARPA training dataset is
much simpler than real-world traffic. The model trained by
the DARPA dataset has limited capability to detect real-
world normal traffic and attacks. Our solution is to mix the
real-world training dataset with the DARPA dataset to train
our IDS model again. After re-training, the model is able to
correctly recognize the malicious connections it earlier was
not able to.

7. CONCLUSION AND FUTURE WORKS
We developed an adaptive anomaly-based IDS to detect

unknown attacks. This IDS has been tested with both the
DARPA dataset and a real network traffic containing novel

attacks. The detection rate was increased after the IDS
model was retrained by a dataset that included the correctly
labeled real-world traffic.

Since the optimal node ordering with respect to the
topology of Bayesian network is NP-hard, and the Bayesian
network trained in the standard way does not perform to a
satisfactory level, we plan to locally optimize the Bayesian
network to improve the effectiveness of our IDS system. We
will also add events from the system architecture level (such
as CPU utilization) to the application level connection
features that we currently use.
Acknowledgements: supported in part by Tennessee Higher
Education Commission's Center of Excellence in Applied
Computational Science and Engineering under R04-1330-023.
8. REFERENCES
[1] DARPA. Knowledge Discovery in Databases, 1999.
DARPA archive.
http://www.kdd.ics.uci.edu/databases/kddcup99/task.htm
[2] F. Jesen. Bayesian Networks and Decision Graphs.
Springer, New York, USA, 2001.
[3] The Metasploit framework: http://www.metasploit.com
[4] H. G. Kayacik, A. N. Zincir-Heywood, M. I. Heywood.
Selecting Features for Intrusion Detection: A Feature
Relevance Analysis on KDD 99. Proceeding of third annual
conference on privacy, security and trust (PST), New
Brunswick, Canada. Oct. 2005.
[5] F. Jemili, M. Zaghdoud, M. Ben Ahmed. A Framework
for an Adaptive Intrusion Detection System using Bayesian
Network. ISI IEEE, 2007.
[6] D. Barber. Machine Learning: A Probabilistic Approach,
pg.107, 2007.
[7] T. Lunt, A.Tamaru, F. Gilhan, R.Jaganathan, P.
Neumann, H. Javitz, A. Valdes, and T. Garvey. A real-time
intrustion detection expert system (IDES). Technical report,
Computer Science Laboratory, SRI International, Menlo,
Park, California, Feb. 1992.
[8] K. Ilgun, R. A. Kemmerer, P.A. Porras. State transition
analysis: A rule-based intrusion detection approach. IEEE
Transaction on Software Engineering, 21(3): pg. 181-199,
Mar. 1995.
[9] R. Heady, G. Luger, A. Maccabe, M. Servilla. The
architecture of a network level intrusion detection system.
Technical report, Computer Science Department, University
of New Mexico, Aug. 1990.
[10] C. Kruegel, D. Mutz, W. Robertson, F. Valeur.
Bayesian event classification for intrusion detection.
Proceedings of the 19th Annual Computer Security
Applications Conference, Las Vegas, NE, Dec. 2003.
[11] K. Johansen, S. Lee. Network Security: Bayesian
Network Intrusion Detection (BINDS) May, 2003.
[12] S. Axelsson. The base-rate fallacy and the difficulty of
intrusion detection. ACM Transaction of Information
System Security 3, 3 (Aug. 2000), pg. 186-205.
[13] M. Mahoney, P.K. Chan. An analysis of the 1999
DARPA/Lincoln laboratory evaluation data for network
anomaly detection. Recent advances in intrusion detection:
6th international symposium. RAID, pg. 220-237.

794

Supremum of Agent Number Needed in Analyzing
Security Protocols Based on Horn Logic

Feng Liu
School of Computer Science

National University
of Defence Technology

Email: baichengmeizi@163.com

Zhoujun Li
School of Computer
BeiHang University

Ti Zhou
and Mengjun Li

School of Computer Science
National University

of Defence Technology

Abstract
To study the supremum of the number of agents needed

in analyzing security protocols for properties such as
secrecy and authentication, an extended trace model for
security protocols and properties based on Horn logic
program is introduced. Strategy vectors are added to
Horn logic programs for protocols, which ensure that the
intruder can have nondeterministic choices, and help to
correctly and completely describe the reception of mes-
sages and consequently cover more attacks. The supremum
of the number of honest agents needed to express an attack
on a protocol P for secrecy property and authentication
property is given as NP (the number of roles except servers
in P), which is fixed for each protocol. The supremum of
the number of dishonest agents needed to express an attack
on a protocol P is proved to be dependent on whether the
security property being analyzed is considered as strong
or weak.

Keywords
security protocol; security property; Horn logic; role; agent

I. INTRODUCTION

Security protocols are designed for distributing secret data
items, authenticating users, and even accomplishing electronic
transactions[3]. Security protocols, however, are not always
competent enough. Many protocols have been shown having
flaws[3][10]. Utilizing these flaws, intruders can get secret data
items shared by honest agents, or impersonate some honest
agents to cheat others. Accordingly, several properties of
security protocols have been defined: secrecy, authentication,
fairness, accountability, etc[3].

The analysis and verification of security protocols has
gained many researchers’ attention during past years. There
have been lots of work concerning protocol flaws. Many
techniques are adopted, including both informal and formal
ones.

Security protocols can be described informally as transfer
of messages between roles. A protocol contains fixed roles
and steps. The number of roles except servers of a protocol

Supported by the National Natural Science Foundation of China under
Grant No. 60473057, 90604007.

P is denoted as NP . Each step involves a message transfer
between two roles. For example, SPLICE/AS authentication
protocol is described informally in Fig 1, here NP = 2 (AS
is considered as an authentication server).

Fig. 1. The informal description of SPLICE/AS authentication protocol
(1)C → AS : C, S, N1

(2)AS → C : AS,E(K−1

AS : AS,C, N1,KS)
(3) C → S : C, S, E(K−1

C : C, T, L, E(KS : N2))
(4)S → AS : S,C, N3

(5)AS → S : AS,E(K−1

AS : AS, S, N3,KC)
(6) S → C : S,C, E(KC : S,N2 + 1)

In analyzing security protocols, there are several important
parameters that determine the complexity of the models of
protocols:

-The number of runs (i.e., sessions).
-The number of agents taking parts in the environment.
-The nonces and other fresh values that are produced by

agents at run-time.
-The length and depth of messages.
At run-time, roles are instantiated by different agents. A pro-

tocol can be run for many times(sessions) by different agents
randomly. Each session is identified with a session number.
Different sessions may be concurrent or even interleaving.
Nonces can be considered as parameterized by agent IDs and
session numbers.

Until now, the supremum of the number of sessions is
still open, and Blanchet has adopted some approximation in
deduction to deal with infinite sessions[5][6].

There are infinite agents in the run-time environment of
protocols, including both honest agents and dishonest agents.
Each agent has his own ID and keys. Furthermore, dishonest
agents are controlled by an intruder. So here comes one
decision-making problem: how many dishonest agents is re-
quired for analyzing a protocol? On the other hand, how
many honest agents should be required? This leads to another
decision-making problem. The two decision-making problems
are what we want to work on in this study.

There have been some work on the supremum of the
number of agents in analyzing protocols. Even has given a
definite supremum of the number of dishonest agents to find

795

attacks in Ping-Pong protocols[8][9]. Comon has studied the
supremum of agents needed in analyzing security properties
on a restricted model for protocols and intruders, and proven
that any attack can be converted into an attack involving some
k agents[4], whose supremum is not given clear.

We have improved the trace model in [4] to allow non-
deterministic choices for the intruder, and the reception of
messages is expressed more completely by strategy vectors for
the intruder. Without this improvement, there would be attacks
not able to be covered in the original model. The improvement
works well with the original model, since strategy vectors can
be conveniently applied into preconditions of Horn clauses. By
regulating the number of roles of protocols and agent variables
in property clauses and modifying the projection, we determine
that the supremum for the number of honest agents required
in analyzing a protocol P is NP , which is fixed for each
protocol. The supremum for the number of dishonest agents
is proven to be 1 or open depending on whether a dishonest
agent can participate in a protocol session as more than 2 roles.
We strictly and systematically concentrated on semantical rela-
tionship between protocol programs and property clauses. Our
proof is based on a projection on not only Herbrand universes
but also Herbrand bases which reduces the number of agents
while preserving the semantics of attacks. The definition and
proof of semantical preservation of projections make it easy
to apply the result to other security properties besides secrecy
and authentication by only adjusting the property clauses.

The paper is organized as follows: Section II describes the
model for protocols and properties. Section III describes the
semantical relationship between protocols and properties in
this model. Section IV describes the projection on Herbrand
base and the semantics of attacks under this projection. Section
V is the conclusion and plan of future work.

II. REPRESENTATION OF SECURITY PROTOCOLS AND
PROPERTIES

In this section, we introduce a model for security protocols.
We adopt Comon’s trace model based on logic program[4],
but some improvements and rectifications have been done
in order to represent run-time protocols more accurately and
cover protocol properties more extensively.

In this model, a security protocol is formalized as a Horn
logic program, i.e., a set of Horn clauses. Properties of the
protocol are also formalized as Horn clauses. The reason for
basing the model on logic program is that it’s convenient
to deal with the semantics of the protocol. Logic programs
have Herbrand models, on which we can make projection and
induction on agents.

This model is a trace model. A sequence of actions per-
formed by the agents, maybe in different sessions, compose a
trace.

A. Terms: Message, Event and Trace

A protocol contains several messages transferred between
agents. Sending or receiving of a message in a session is

considered as an event. A trace is a sequence of events
accompanied by a session identifier.

Message, event and trace are represented by terms. The
basic sorts are: Num, Agent, Message, Event, Trace.

• Num is an infinite set of numbers . 0∈Num is a constant,
S() is a function on Num. If n∈Num, then S(n)∈Num.

• Agent=Ha∪Da∪Server. Ha is the set of honest agents,
Da is the set of dishonest agents, Server is the set of
constant servers. h∈Ha, d∈Da are constants. Sh(), Sd()
are function symbols on Ha, Da. If x ∈Ha, y ∈Da,
then Sh(x) ∈Ha, Sd(y) ∈Da. Sh(), Sd() are useful in
Herbrand interpretations for providing infinite agents in
Herbrand universe.

• Most protocols involve nonces (fresh values and time
stamps). Nonces in different sessions must be different,
hence they are parameterized by agents and session
numbers, e.g., m(a1, .., aNP , s), s is the session number,
a1, .., aNP are the roles, NP is the number of roles
involved in the protocol P . The roles are instantiated with
agents in a session of P .

• There are several basic and cryptographic function sym-
bols on Message, which also construct keys and compos-
ite messages: {< , >, pub(), prv() , shr()}. The
keys are used for encryption and decryption. The term
{x}pub(y) means that x is encrypted by the public key of
the agent y.

• Agent⊂Message⊂Event, Num⊂Message⊂Event.
Event contains Message, and there is a function
symbol ST (, , ,) to construct events. For example,
let a ∈Agent, i ∈Num, j ∈Num, m ∈Message, then
ST (a, i, j, m)∈ Event. This term denotes that the agent
a is at the jth step, taking the role i, and having the
message m in his memory.

• A trace is a sequence of events accompanied by a session
identifier. ⊥ is the empty trace. If t∈Trace, e is an event,
s is a session number, then [e, s]−t ∈ Trace. For example,
[e5, s2]−[e3, s1]−[e2, s]−[e1, s]−⊥ ∈ Trace.

B. Predicate & Clause
In this section, we consider clauses which compose a

protocol. Horn clause involves literals, which are predicates
or their negative forms.

1) Predicate.: For every sort, there is an unary predicate
to claim that a variable or a constant belongs to this sort. For
example, Ha(x) and T(t) denote that x is a variable of sort
Ha and t is a Trace variable.

The main predicates are as follows:
• �=(x,y) denotes the number or agent x is different from

y.
• =(x, y) denotes the number x is equal to y.
• In([e, s], t) denotes [e, s] occurs in the trace t.
• Fresh(t, s) denotes the session number s is fresh in the

trace t, that is, s is different with any s′ in t.
• Notplayed(a, i, s, t) denotes the agent a hasn’t perform

its ith action in the session s in the trace t.

796

• I(x, t) denotes the intruder can learn information x from
the trace t.

• Accept(a,m, s, t) denotes the agent a has checked the
message m and decides to accept it in the session s in
the trace t.

We extend the domain of the predicate �= (x, y) so that it
can be parameterized by agent variables, and the resulting
semantics is that Si

h(h) differs from Sj
h(h) if �= (i, j) and

Si
d(d) differs from Sj

d(d) if �=(i, j). This extension is useful in
Horn clauses to keep the agents pairwise different in a session.

2) Protocol Independent Clause.: The clauses for a pro-
tocol are divided into two subsets: the protocol independent
clauses and the protocol dependent clauses.

Note that in most of the following clauses, the universal
quantifiers are omitted for space limitation, that is, there are
indeed universal quantifiers at the head of the clauses for each
restricted variables.

Protocol independent clauses describe the environment of
protocols and the ability of the intruder. These clauses are
universal for all protocols.

The clauses that describe the environment involve the asser-
tion of the constants’ sort and the deductive relation of some
predicates:
→ Ha(Si

h(h)), i ≥ 0;
→ Da(Si

d(d)), i ≥ 0;
Num(x) → �= (S(x), 0);
�= (i, j) → �= (Si(x), Sj(x)), i, j ≥ 0;
→ In([e, s], [e, s]−t);
In([e, s], t) → In([e, s], [e′, s′]−t);
→ Fresh(⊥, s);
Fresh(t, s), �= (s, s′) → Fresh([e, s′]−t, s);
→ Notplayed(a, i, s,⊥);
Notplayed(a, i, s,⊥), �=(s, s′)→ Notplayed(a, i, s, [e, s′]−t) ;
Notplayed(a,i,s,⊥),�=(i, i′)→ Notplayed(a,i,s, [ST(a,j,i′,m),s]−t);

The intruder’s ability and cryptographic assumption in this
model comply with Dolev-Yao model[2]. The ability of the
intruder includes intercepting, detaining, memorizing, analyz-
ing and synthesizing messages. The clauses that describe the
ability of the intruder involve the following initial knowledge
and computation:

Agent(x) → I(x, t);

Agent(x) → I(pub(x), t);
Da(x) → I(prv(x), t);

Da(x) → I(shr(x), t);
I(<x, y>, t) → I(x, t);

I(<x, y>, t) → I(y, t);
I(x, t), I(y, t) → I(<x, y>, t);
I({x}pub(y), t), I(prv(y), t) → I(x, t);
I({x}prv(y), t), I(pub(y), t) → I(x, t);
I({x}y, t), I(y, t) → I(x, t);

→ I(x, [x, s]−t);

I(x, t) → I(x, [y, s]−t);

For the ability of the intruder, one of the most important is
the discrimination between intercepting and detaining, which
is not successfully considered in [4]. Intercepting and detaining
have the same precondition but different effects. Intercepting
means the intruder just learns information from the message
or rewrites it, and then let it go on towards the destined
receiver. Detaining means that the intruder not only learns
information from the message, but also detains it from the
destined receiver.

In [3], there are many examples of attacks which rely on de-
taining, otherwise they couldn’t become attacks since the orig-
inal messages will eventually come to the destined receiver.
For example, the Otway-Rees protocol(so does SPLICE/AS
authentication protocol) has type flaw attacks which require
the intruder to detain some messages[3]. One attack can be
partly shown as:

(1) A → Z(B) : M, A,B, E(Kas : Na, M, A, B)
(4) Z(B) → A : M, E(Kas : Na, M, A, B)
Z is a dishonest agent controlled by the intruder. In this

attack, message (1) from A must be detained from the destined
receiver B so that Z can successfully disguise B to send
message (4) and complete this session of the protocol. Other-
wise, if message (1) wasn’t detained, then it would eventually
achieve B, and B’s answer would also achieve A, which means
that the above attack couldn’t success.

In [4], detaining is not successfully considered, original
messages are not detained, and will successfully achieve
destined received, as well as faked messages. Our model
involves both intercepting and detaining successfully. The
intruder has nondeterministic choice of actions on messages:
intercept or detain. Technically, we introduce strategy vectors
for the intruder which help him make decisions.

Definition 1. SVP(s)[1..n] is a strategy vector for the
intruder, where P is a protocol, s is a session number, and n
is the number of the steps in P . SVP(s)[i] assumes values in
{0, 1}. SVP(s)[i]=1 means that the intruder intercepts the ith

message in session s, and 0 means that the intruder detains it.

Thus strategy vectors can be used in the preconditions of
Horn clauses, directing the traces, which will be expatiated
in the following subsection.

3) Protocol Dependent Clause.: The content of protocol
dependent clauses depends on the concrete protocol. As an
example, we choose SPLICE/AS authentication protocol[3].

In any trace t, a new session of a protocol can be started
with a fresh session number s. We use an agent variable to
correspond each role, except the constant servers such as AS
in SPLICE/AS authentication protocol. When a new session
begins, the agent variables come to a starting state: ready
for message sending and receiving. We use the following

797

clause to represent the starting of a session of SPLICE/AS
authentication protocol, which means that all the participants
get ready for sending and receiving messages:

Fresh(t, s) → T ([ST (C, 1, 1, <C, S, AS >), s]−[ST (S, 2, 1,
<C, S,AS >), s]−[ST (AS, 3, 1, <C, S, AS >), s]−t)

Then C can send the first message, while the constant
server AS is ready to receive it. The clause for C sending the
first message is as follows:

In([ST (C, 1, 1, <C, S, AS >), s], t), Notplayed(C, 2, s, t) →
T ([<C,S, N1(C, S, AS, s>), s]−[ST (C, 1, 2, <C, S, AS,
N1(C, S, AS, s)>), s]−t)

Now we discuss how to represent AS receiving the first
message and then to send the second message. There is a
predicate Accept(a,m, s, t) to help the receiver a check if the
message m is admissible and decide whether to admit it in
the session s in the trace t or not. If Accept(a,m, s, t) holds,
then the agent a receive m, else a reject it.

The intruder in the environment, who has a strategy vec-
tor SVP(s)[], can interfere with the receiving of mes-
sages. SVP(s)[] is instantiated when each session begins.
The instantiated value of SVP(s)[i] determines whether the
intruder detains the ith message mi(x1, .., xNP , s) of the
protocol from the receiver or not. Since any message can
be received if and only if it can be known by the in-
truder and the value of corresponding element of the strat-
egy vector equal to 1, we use I(mi(x1, .., xNP , s))∧ =
(SVP(s)[i], 1) ∧ Accept(xk,mi(x1, .., xNP , s), s, t) to repre-
sent the reception of the message mi(x1, .., xNP , s), where i
denotes mi(x1, .., xNP , s) is the ith message in the protocol.

Note that the intruder can also fake messages relying on
its knowledge and computing ability. Hence for each of
the reception there is another accompanying clause, with
SVP(s)[i]=0. for simplicity, We denote the faked message of
mi(x1, .., xNP , s) as mi(x1, .., xNP , s)′.

Hence each following step of the rest of the session has two
clauses, one is for SVP(s)[i]=0, the other for SVP(s)[i]=1.
As for SPLICE/AS authentication protocol, the reception of
the first message which leads to the sending of the second
message, is as follows:
I(N1(C, S, AS, s), t), = (SVP(s)[1], 1), In([ST (AS, 3, 1, <
C, S, AS >), s], t), Notplayed(AS, 2, s, t), v → T ([u, s] −
[ST (AS, 3, 2, <C, S, AS, N1(C, S, AS, s), u>), s]−t)

and
I(N1(C, S, AS, s), t), = (SVP(s)[1], 0), In([ST (AS, 3, 1, <
C, S, AS >), s], t), Notplayed(AS, 2, s, t), v′ → T ([u′, s]−
[ST (AS, 3, 2, <C, S, AS, N1(C, S, AS, s)′, u′>), s]−t)

where
u=<AS, {AS,C, N1(C, S, AS, s),Ks}prv(AS)>
u′=<AS, {AS,C, N1(C, S, AS, s)′,Ks}prv(AS)>
v=Accept(AS,N1(C, S, AS, s), s, t)
v′=Accept(AS,N1(C, S, AS, s)′, s, t)

For space limitation, we don’t give all the clauses repre-
senting the protocol.

C. Representation of Security Properties

This section focuses on security properties of protocols. We
consider secrecy property and authentication property, which
can be expressed as trace properties. If a property can also
be formalized as a Horn clause, then we can put the clause
with the Horn logic program for the protocol together and
work on their common semantics. For clarity, we name the
clauses representing protocols as protocol clause, and the
clauses representing properties as property clause.

In each property clause, there are certainly definite number
of honest agent variables who are pairwise different, which
we will expatiate in Section IV-B. Let the number of these
variables be nϕ.

We can see that there is no dishonest agent variables
in property clauses because dishonest agents are already
modelled in protocol clauses and property clauses only assert
relations between honest agents.

Definition 2. Secrecy property: In any trace t and any
session s, if x1, .., xnϕ

are pairwise different honest agents,
then the secrecy m(x1, .., xnϕ , s) shared by x1, .., xnϕ can’t
be known by the intruder.

In Horn clause form, it will be the following clause(1 ≤
i, j,≤ nϕ and i �= j):
(∀x1, .., xnϕ

, t, s)..., �=(xi, xj), .., Ha(x1), .., Ha(xnϕ
), T (t),

I(m(x1, .., xnϕ , s), t) →

Definition 3. Authentication property: In any trace t and
any session s, whenever the honest authenticator xa receives
the final authenticating message mk(x1, .., xnϕ , s), the honest
authenticatee xb has already sent it in this session and this
trace. 1 ≤a,b ≤nϕ.

In Horn clause form, it will be the following clause(1 ≤
i, j,≤ nϕ and i �= j):
(∀x1, .., xnϕ , t, s)... �=(xi, xj), .., Ha(x1), .., Ha(xnϕ), T (t),
I(mk(x1, .., xnϕ

, s), t), (SVP(s)[k], 1), Accept(xa,mk(x1,
.., xnϕ

, s), s, t) → In([ST (xb, r, k,< .., mk(x1, .., xnϕ
, s) >

), s], t)

As we have done in Section II-B, we will also use
I(mk(x1, .., xnϕ

, s))∧ =(SVP(s)[k], 1)∧Accept (xi,mk(x1,
.., xnϕ , s), s, t) to represent the reception of mk(x1,.., xnϕ ,s)
in the above clause. The authenticating message mk(x1,..,
xnϕ

,s) is parameterized by the session number s, so this
description complies with Lowe’s definition of injective agree-
ment as authentication property[7].

Let ϕ be a security property. If ϕ is a secrecy property, then
nϕ is the number of agents in a session who share the secrecy
m(x1, .., xnϕ

, s). If ϕ is an authentication property, then nϕ

is the number of agents as parameters in the authenticating

798

message mk(x1, .., xnϕ
, s) which the authenticator and the

authenticatee agree on in a session. In both cases, nϕ ≤ NP .
We can see that there needn’t be any agent variables other

than the honest agent variables x1, .., xnϕ in property clauses.
It’s obvious that other security properties can be easily

considered if they can also be expressed in horn clauses as
trace properties.

III. SEMANTICAL RELATIONSHIP: PROTOCOL &
PROPERTY

Now that the protocols and properties have been formalized,
the subsequent problem comes: Does a protocol P satisfy a
property ϕ? I.e., do their semantics agree with each other?

For convenience, we denote the Horn logic program for
protocol P as CP , the set of protocol independent clauses
as CI , and the set of protocol dependent clauses as CD, the
clause for property ϕ as Cϕ. Then CP=CI ∪ CD.

It would be very complicated to deal with random semantics
of logic programs directly. Since a logic program has a
model if and only if it has a Herbrand model[1], we consider
Herbrand models of CP .

All the symbols in Cϕ also occur in CP , which implies
that Cϕ is actually expressed in the underlying first order
language for CP , So Cϕ has a definite truth value under
any interpretation and any assignment for CP . According
to the truth value relationship between CP and Cϕ under
interpretations, we can judge whether a protocol P satisfies a
property ϕ.

Definition 4. A protocol P satisfies a property ϕ, if Cϕ is
true under any Herbrand model H of CP , i.e., CP � Cϕ.

Definition 5. A protocol P dissatisfies a property ϕ, if Cϕ

is false under any Herbrand model H of CP , i.e., CP �H Cϕ.

Definition 6. Let θ be an assignment under a Herbrand
model H of CP , and GCP be the set of all ground instances
of the clauses in CP , gc ∈ GCP ,if there is an element b
in the Herbrand base of CPsuch that θ(x)=b and b is an
instance of x in gc, then θ takes place in gc.

If CP �H Cϕ, then there exists an assignment θϕ under
H , and a subset of ground instances of the clauses in CP ,
denoted as GCP,θϕ

, which contains exactly all the ground
clause instances in which the assignment θϕ takes place, such
that the truth value of θϕ(Cϕ) is false, while the truth value
of each ground clause in GCP,θϕ

is true.
We denote CP ’s least Herbrand model as HP , the set of

logical consequences of GCP,θϕ
as HP,θϕ

.

Lemma 1. HP,θϕ ⊆HP .
Proof: It’s well known that the set of logical conse-

quences of a logic program is equal to its least Herbrand
model[1]. Since GCP,θϕ

is a subset of all the ground instances
of the clauses in CP , then the logical consequences of GCP,θϕ

is also a subset of logical consequences of CP , that is,
HP,θϕ

⊆HP .

Now let’s extend the meaning of the symbol � in order that
it can be applied between not only closed clauses but also
ground clauses.

Lemma 2. If HP,θϕ � θϕ(Cϕ) then HP � θϕ(Cϕ).
Proof: By Lemma 1, HP,θϕ⊆HP , let H ′

P=HP−HP,θϕ .
HP,θϕ is the set of logical consequences of GCP,θϕ who
contains exactly all the ground clause instances in which the
assignment θϕ takes place. So θϕ doesn’t occur in H ′

P , that
is, H ′

P has no impact on the truth value of θϕ(Cϕ), hence
HP �θϕ(Cϕ).

Lemma 3. If a protocol P dissatisfies a property ϕ, then
� Cϕ .

Proof:

CP �H Cϕ

⇒ CP �H θϕ(Cϕ)

⇒ GCP,θϕ
�H θϕ(Cϕ)

⇒ HP,θϕ �H θϕ(Cϕ)

⇒ HP �H θϕ(Cϕ), by Lemma 2

⇒ HP �HP θϕ(Cϕ), since HP ⊆ H

⇒ HP �HP Cϕ

⇒ �HP Cϕ.

Definition 7. If GCP,θϕ
�Hθϕ(Cϕ), then GCP,θϕ

is called an
attack on P for ϕ.

Lemma 4. There is an attack on a protocol P for a property
ϕ if �HPCϕ.

Proof: �HPCϕ, HP is the least Herbrand mode of CP , so
CP �HCϕ, then P dissatisfies ϕ, so there exist an assignment
θϕ under HP such that GCP,θϕ �Hθϕ(Cϕ). By Definition 7,
there is an attack on P for ϕ.

Theorem 1. There is an attack on a protocol P for a property
ϕ iff �HP Cϕ.

Proof: It is proved by Lemma 3 and Lemma 4.

IV. USING PROJECTION TO LIMIT AGENT NUMBER IN
ATTACKS

With the semantical relationship discussed, the problem that
how to automatically check whether a protocol satisfies proper-
ties follows naturally, as done by Blanchet[5][6]. We consider
another important problem: when analyzing a protocol for
some property, how many agents should we consider?

A. The Infinity of Agent Numbers
When there is an attack GCP,θϕ

on P for ϕ, we can’t be
sure about how many agents are assigned to the roles(i.e.,

799

agent variables) in CP to get this attack. GCP,θϕ
contains

exactly all the ground clause instances in which the assignment
θϕ takes place, but these ground clause instances may also
contain other assignments. Hence there seems to be infinite
agents to express an attack, and maybe we have to consider
infinite agents in analyzing protocols. Fortunately, Comon has
introduced a technique of projection over agents[4]. We have
improved this technique and clarified the supremum of the
number of agent needed.

B. Roles vs Agents

At run-time, roles(agent variables) are instantiated by
agents. It’s very important whether two different roles in a
protocol P can be instantiated by a same agent, that is, whether
an agent can participate in a protocol session as 2 roles. We
are in accordance with Even’s viewpoint that if a protocol is
designed for 3 parties it should be played by 3 distinct users
and not by 2 users[9]!

As to dishonest agents, it depends on whether the security
property being analyzed is a strong or weak[9]. A security
property is strong means that in a protocol session agents are
mutually different when this property is being analyzed, while
weak means that only honest agent are mutually different.

C. The Projection

We make a projection on the Herbrand universe and Her-
brand base of CP . Let GCP,θϕ

be the attack on P for ϕ. There
is definite number of distinct agents in θϕ(Cϕ), which is nϕ

according to Section II-C. Let the honest agents in θϕ(Cϕ) be
Sm1

h (h),.., S
mnϕ

h (h), 0 ≤mi <mj if i < j.
In GCP,θϕ , except for Sm1

h (h),.., S
mnϕ

h (h), there are still
other honest agents and dishonest agents. Let’s build a
projection function f over the Herbrand base:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(Smi
h (h))=Si−1

h (h),
for i=1, .., nϕ

f(Sk
h(h))=S

kf

d (d),

for k �= mi, i=1, .., nϕ, S
kf

d (d) doesn′t occur in GCP,θϕ

f(u(t1, .., tn))=u(f(t1), .., f(tn)),
if term u()∈ Server∪Da, or u() /∈Agent

f(A(t1, .., tn))=A(f(t1), .., f(tn)),
if the predicate A(t1, .., tn) �= Ha(Sk

h(h))

f(Ha(Sk
h(h)))=Da(S

kf

d (d))

The purpose of f(Ha(Sk
h(h)))=Da(S

kf

d (d)) is to keep
the truth value of sort assertion predicates under f. Under
this projection, dishonest agents and servers are projected to
themselves, honest agents in θϕ(Cϕ) are projected to the fixed
agents: S0

h(h),..,Snϕ−1

h (h), honest agents not in θϕ(Cϕ) are
projected to some new dishonest agents. Let f (GCP,θϕ) be
the set resulted from applying f on each ground clause of
GCP,θϕ

. There are only nϕ honest agents in f (GCP,θϕ
). If

we can prove that f (GCP,θϕ
) is also an attack, then we can

assert that we have determined the number of honest agents
in attacks on P for ϕ.

D. Semantical Preservation
Definition 8. A ground predicate c is positively preserved
by a projection p: if the truth value of c is true, then the truth
value of p(c) is also true. Additionally, a ground predicate
set is positively preserved by p if all ground predicates in it
are positively preserved by p.

Lemma 5. If L∈HP is a ground instance of the postcondition
of an unit clause (a clause that has no precondition) in CP ,
then L is positively preserved by f.

Proof: L ∈ HP is a ground predicate, then there is an
unit clause cL ∈ CP such that L is a ground instance of cL’s
postcondition.

If cL is universally quantified, then f (L) is also a ground
instance of cL as L, hence the truth value of is also true.

If cL is itself a ground unit clause, then cL =→L. The
postconditions of ground unit clauses in CP are sort assertions,
�=() and =(). According to the definition of f, the truth value
of f(cL) agree with that of cL.

Hence by Definition 8, cL is positively preserved by f.

Lemma 6. The least Herbrand model HP of CP is positively
preserved by f.

Proof: The least Herbrand model HP of CP is equal
to the set of logical consequences of the corresponding logic
program CP . For each predicate L in HP , there is a minimal
deducting sequence to get L from CP . Let the length of
the minimal deducting sequence be nL, then we can make
induction on nL to prove that L is positively preserved by f.

First, if nL=1, then L is a ground instance of the postcon-
dition of an unit clause in CP , by Lemma 5, L is positively
preserved by f.

Assume k ≥ 1 and that L is positively preserved by f for
nL ≤ k.

If nL = k+1, then there must be a ground clause cL =
∀(..).A1, A2, ..Am → B and an assignment σ such that L =
σ(B), and σ(Ai) ∈ HP . Since nσ(Ai)

≤ k, by the induction,
σ(Ai) are all positively preserved by f. From the definition
of f, we can infer that f(σ(Ai)) = σf (f(Ai)). According to
Section II-C, Ha() only occurs in cL that is an unit clause,
so Ai and B are not of the form of Ha(). Thus f(σ(Ai)) =
σf (Ai) and σf (Ai)∈HP . Now that σf (Ai)∈HP and cL ∈
CP , then σf (f(B)) = σf (B)∈HP , so the truth value of f (L)
agrees with that of L. Then L is positively preserved by f.

Moreover, HP is positively preserved by f.

We extend f a little more such that it can be applied to not
only Herbrand base but also ground clauses. If a ground clause
c=A1, .., Am→B, then f(c) = f(A1), .., f(Am) → f(B).

Definition 9. A ground predicate c is negatively preserved
by a projection p: if the truth value of c is false, then the
truth value of p(c) is also false.

In Section II-C we have introduced the secrecy property and
authentication property and the Horn clauses for them. Now

800

we concern the truth value of the ground Horn clause for these
properties under the projection f.
Lemma 7. If θϕ(Cϕ) is a ground Horn clause for a secrecy
property ϕ, then θϕ(Cϕ) is negatively preserved by f.

Proof: Since ϕ is a secrecy property, θϕ(Cϕ) must
be of the form ¬A1∨, ..,∨¬Am, which is equivalent to
¬(A1∧, ..,∧Am).

If the truth value of θϕ(Cϕ) is false, then the truth value
of A1, .., Am are all true, so A1, .., Am are all logical con-
sequences of CP , which means A1, .., Am∈ HP . By Lemma
6, A1, .., Am are all positively preserved by f, then the truth
value of f(A1), .., f(Am) are all true, andf(¬A1∨, ..,∨¬Am)
is false. Hence according to definition 9, θϕ(Cϕ) is negatively
preserved by f.

Lemma 8. If e is a ground term of sort Event, s is a
session number, and t is a ground term of sort Trace, then the
ground predicate In([e,s], t) is both positively and negatively
preserved by f.

Proof: If the truth value of In([e,s], t) is true, then t =
t1−[e,s]−t2, and f (In([e,s], t))=In([f (e),f (s)], f (t))=In([f (e),s],
f (t1)−[f (e),s]−f (t2)). Hence the truth value of f (In([e,s], t)) is
also true, that is, In([e,s], t) is positively preserved by f.

On the other hand, If the truth value of In([e,s], t) is false,
then [e,s] doesn’t occur in t. By the reduction to absurdity,
assume the truth value of f (In([e,s], t)) is true, then f (In([e,s],
t)) = In([f(e),s], f(t1)−[f (e′),s]−f (t2)) and f (e)=f (e′). By the
definition, f is an injective projection. So e=e′. Thus [e,s]
occurs in t, which leads to a contradiction.

So In([e,s], t) is both positively and negatively preserved
by f.

Lemma 9. If θϕ(Cϕ) is a ground Horn clause for authen-
tication property ϕ, then θϕ(Cϕ) is negatively preserved by
f.

Proof: Since ϕ is an authentication property, θϕ(Cϕ) must
be of the form A1, .., Am → B, and B is of the form In([e,s],
t), where eand t are both ground terms. By Lemma 8, In([e,s],
t)is both positively and negatively preserved by f. Following
the ways in Lemma 7, we can infer that A1, .., Am are all
positively preserved by f. So if the truth value of A1, .., Am →
B is false, then the truth value of f(A1, .., Am → B) is also
false. Hence θϕ(Cϕ) is negatively preserved by f.

Theorem 2. If there is an attack involving arbitrary number
of honest agents on a protocol P for ϕ, then there is an attack
on P for ϕ involving at most NP honest agents. That is,
the supremum of the number of necessary honest agents in
analysis of security properties is NP .

when ϕ is considered as a strong security property,
the number of dishonest agents is open, we can’t give a
supremum. But by compactness theorem, we can point out that
for any attack f (GCP,θϕ

), there is a finite ground predicate
set f (GCP,θϕ

)′ ⊆f (GCP,θϕ
) such that f (GCP,θϕ

)′ � θϕ(Cϕ),
that is, any attack can be expressed using finite number of

dishonest agents, while not definite.

E. Supremum of Dishonest Number of Agents when ϕ is Weak
when ϕ is a weak security property, we can project all

agents in GCP,θϕ not in θϕ(Cϕ) to a single dishonest agent,
such as d. Following the above ways, it’s easy to prove
that f(GCP,θϕ

) is still an attack. Thus in this case, only 1
dishonest is needed. Associating with Theorem 2, we can get
the following corollary:

Corollary 1. If ϕ is a weak property, then any attack can be
expressed with only 1 dishonest agent. That is, the supremum
of the number of necessary agents in analysis of security
properties is NP + 1.

V. CONCLUSION AND FUTURE WORK

We describe a trace model for protocols and properties
based on Horn logic, which adequately covers the ability of
the intruder and more attacks.

Strategy vectors ensure that the intruder can have nonde-
terministic choices, which help to correctly and completely
describe the reception of messages. Without this extension,
detaining of messages can be successfully modelled, and many
attacks would be missed. This model is universal for any
protocols that can be described by logic program.

The supremum of the number of honest agents needed to
express an attack is given as NP . Our proof is based on
a projection that reduces the number of honest agents in
an attack to less than or equal to NP while preserving the
semantics of the attack. The supremum of the number of
dishonest agents needed to express an attack on a protocol
P is proved to be dependent on whether the security property
being analyzed is considered as a strong one or a weak one.
For strong security properties, the supremum of the number
of dishonest agents is 1, otherwise, the supremum is open.

REFERENCES

[1] Loyd J.W.: Foundations of logic programming. Springer-Verlag, 1987.
[2] Dolev D., Yao A.C.: On the security of public key protocols. IEEE

Transactions on Information Theory, 2(29):198–208, 1983.
[3] Clark J., Jacob J.: A survey of authentication protocol literature: Version

1.0. 1997.
[4] Comon H., Cortier V.: Security Properties: Two Agents are Sufficient.

Science of Computer Programming 50(1-3), pages 51-71, 2004.
[5] Blanchet, B.: From secrecy to authenticity in security protocols. In 9th

International Static Analysis Symposium (SAS’02), pages 242-259, 2002.
[6] Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog

rules. In 14th IEEE Computer Security Foundations Workshop (CSFW
’01), pages 82-96. IEEE, 2001.

[7] Lowe, G.: A hierarchy of authentication specifications. In Proceedings of
the 11th. IEEE Computer Security Foundations Workshop, pages 31-43.
IEEE Computer. Society Press, 1997.

[8] Even S., Goldreich O.: On the security of multi-party Ping-Pong pro-
tocols, Technical Report 285, Technion - Israel Institute of Technology,
Computer Science Department, 1983.

[9] http://www.wisdom.weizmann.ac.il/∼oded/PS/eg83rev.ps.
[10] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key

protocol using FDR. Proc. TACAS, no.1055 in LNCS, Springer-Verlag,
1996.

801

Towards the Detection of Emulated Environments
via Analysis of the Stochastic Nature of System Calls

Tauhida Parveen William Allen Scott Tilley
Dept. of Computer Sciences Dept. of Computer Sciences Dept. of Computer Sciences

Florida Institute of Technology Florida Institute of Technology Florida Institute of Technology
tparveen@fit.edu wallen@cs.fit.edu stilley@cs.fit.edu

Gerald Marin Richard Ford
Dept. of Computer Sciences Dept. of Computer Sciences

Florida Institute of Technology Florida Institute of Technology
gmarin@cs.fit.edu rford@cs.fit.edu

Abstract
One of the most powerful tools in the hacker’s reverse
engineering arsenal is the virtual machine. These
systems provide a simple mechanism for executing code
in an environment in which the program can be carefully
monitored and controlled, allowing attackers to subvert
copy protection and access trade secrets. One of the
challenges for anti-reverse engineering tools is how to
protect software within such an untrustworthy
environment. From the perspective of a running
program, detection of the emulated environment is not
trivial, as the attacker can emulate the result of different
operations with arbitrarily high fidelity. Thus, an
emulated environment may be - prima facie -
indistinguishable from a “real” environment. However,
this conclusion may well be false: this paper
demonstrates a mechanism that is able to detect even
carefully constructed virtual environments by focusing
on the stochastic variation of system call timings. A
statistical technique for detecting emulated environments
is presented, which uses a model of “normal” system
call behavior to successfully identify two commonly used
virtual environments under realistic conditions.

Keywords: reverse engineering, security, digital rights
management, emulation, virtual machine

1. Introduction

Virtual or emulated execution environments are
being applied to a variety of new applications, such as
software testing [7], distributing pre-configured software
[11], and enhancing computer science education [3].

While such an environment may be used for purely
legitimate purposes, the unauthorized or malicious use of
these technologies is also increasing. One such use is the
reverse engineering of binaries that contain protected or
proprietary information. This motivates the need for
techniques that can determine programmatically whether
an application or operating system is executing in an
emulated or virtual environment.

This paper presents a technique that has shown
promise in detecting when a program is executing in a
virtual environment, without prior knowledge of the
specific environment in use. This technique relies on
changes in the distribution of system call timing that
result from the additional processing time required to
provide a non-native execution environment. A model of
“normal” system call timing is derived for a range of
hosts and that model is used to successfully detect
program execution in two common virtual environments.

The next section of this paper briefly describes
native and emulated execution environments. Section 3
details the development of the detection methodology
and describes a proof-of-concept implementation of the
approach. Section 4 outlines experiments that were
conducted to test the methodology and provides an
evaluation of the results. Section 5 summarizes the paper
and discusses possible avenues for future work.

2. Background

Chikofsky & Cross define reverse engineering as
“analyzing a subject system to identify its current
components and their dependencies, and to extract and
create system abstractions and design information” [5].
Applications of reverse engineering include construction

802

of a new software product or maintenance of legacy
applications, deconstructing software for the purpose of
teaching, repairing malfunctioning systems, porting
software to run on a different operating system, or
developing new applications that run in conjunction with
the legacy software [2].

Reverse engineering can also be used to reveal and
circumvent protection mechanisms, possibly leading to
unauthorized access to protected intellectual property or
digital content. Because binary reverse engineering
frequently requires monitoring instruction execution,
tools such as debuggers and emulators are necessary. A
debugger modifies the object code so that it can track
program state or control program execution. However,
anti-debugging techniques have been developed that can
detect those modifications and prevent further
monitoring of program execution [6].

 Most emulators (or a dynamic debugger that
provides emulated environments) use a compatibility
layer that translates system calls to the native execution
environment1 into system calls for the emulated
execution environment2. Because of this compatibility
layer, the access restrictions present in a program may be
by-passed in the emulated environment, thus exposing
information that would otherwise be protected.
Therefore, individuals wishing to circumvent protection
mechanisms often use an emulated environment.

Several suggestions have been made to change the
technology used to produce software so that it is more
resistant to attempts to circumvent copyright protection
schemes [4]. These techniques focus on building
preventive measures into the application. They assume
that the application is executing where it is expected to
run, in a native environment. It is possible that these
methods can be by-passed or security measures can be
removed when the application is being executed in an
emulated execution environment.

In this research, virtual machines were used to
create emulated environments. Virtual machines are
optimized; they generally execute code faster than
emulators. The emulated environments created by virtual
machines are usually better in performance than

1 In this research, the term native execution environment
describes a configuration in which an operating system is
installed on a physical machine and interacts directly with the
hardware of that machine to support program execution.
2 An emulated execution environment provides an imitation of
a native environment where the operating system actually
interacts with the physical machine only through a layer of
software (a virtual machine or other emulation program) that is
itself running in a native execution environment.

traditional emulators [13]. Two commercial virtual
machine products VMware Workstation [12] and Virtual
PC 2004 [8] were used in this research to provide
consistent emulation of x86-based applications.
Although these products can support a range of operating
systems, the experiments described here were performed
using the Windows XP system.

3. Detecting an Emulated Environment

The timing of a process’ execution is affected by
small fluctuations and variations by the execution
environment’s behavior. These microscopic fluctuations
in performance provide the key behavior used in this
research to gain a better understanding of the nature of
an execution environment.

To improve security and reliability, application
software is restricted from gaining direct access to most
system resources. System calls are used to request the
operating system for restricted actions such as accessing
I/O devices or system memory. During the execution of
a system call, interrupts and other unpredictable events
can cause timing delays. Thus, if one were to measure
the duration of individual system calls executed in a
native environment, the timing of those individual calls
could be expected to show artifacts that represent the
interaction of physical and software processes.

This behavior is different in an emulated execution
environment and should show variability in timing that is
distinct from the durations measured when executing the
same system calls in a native environment. This is due to
the addition of the compatibility layer and the presence
of other applications running in the same native
environment as the emulation. Therefore, the detection
methodology developed in this research is based on a
statistical analysis of the timing properties of system
calls in both environments.

The Windows XP environment provides a number
of different methods for measuring the passage of time.
While the default low-level timer is the GetTickCount()
function, Windows XP also provides a high resolution
counter that can produce more accurate timing
measurements. The QueryPerformanceCounter()
function [9] can be used to retrieve the current values of
a high resolution counter. In this research, timing data
from system calls executed in both native and emulated
environments was gathered by calling the
QueryPerformanceCounter() function at the beginning
and at the end of a section of a code.

It should be noted that the emulation environment
might intentionally alter any internal source of timing
information in an attempt to hide its presence. However,

803

the goal of this research is to determine if an emulated
environment impacts the system call timing significantly
enough for that characteristic to be used for detection,
not to present a foolproof detection mechanism.

Figure 1 (a): System Calls in Windows XP (log scale)

Figure 1 (b): System Calls in VMWare (log scale)

Figure 1 (c): System Calls in Virtual PC (log scale)
The hypothesis that timing artifacts can be used to

distinguish between a native and emulated execution
environments came from observing the timing variations
of system calls from both environments, as shown in
Figure 1 (a-c). These plots show the durations (on a log
scale) of the same set of system calls executed in each of
the three environments (native XP, VMWare and Virtual
PC) running on the same platform.

Based on the analysis of this variations in system
call timing shown in Figure 1, a methodology was
developed that could be used in real-time to determine
whether the underlying execution environment was
native or emulated. The detection methodology follows
three steps which are described in more detail below:

3.1 Gathering System Call Timing Data

The model of normal behavior was created by the
execution of system calls in native environments on
several different platforms. This information was
gathered by a program written in the C language which
executes a series of system calls, logging the start and
end timestamps for each call. Fifteen non-I/O system
calls were chosen from the Win32 API. Table 1 lists the
system calls that were used in the experiments. Specific
information on individual calls is available from the
MSDN Library [10]. System calls that are associated
with input/output (I/O) activities were purposely avoided
since their timing measurements can be affected by
unpredictable hardware or software-related events. Note
that this set of system calls is not intended to represent
the calls most commonly used in current applications;
they were chosen randomly from the non-I/O calls
provided by the Win32 API. Further work is needed to
determine the best mix of calls to use for reliable
detection.

Table 1: The set of Win32 system calls used to
create the model of ‘normal’ behavior

GetVersion GetTickCount
MutiByteToWideChar GetComputerName
IsCharAlpha GetSystemTime
CharLower GetTimeZoneInformation
GetTimeFormat CharUpper
GetSystemInfo GetSysColor
GetSystemDirectory GetNumberFormat
GetLocaleInfo

Each system call was executed a total of 10,000
times, but the calls were made in a random order so that
interactions between calls were not a factor. Each run of
the experiment resulted in a total of 150,000 individual
calls. The QueryPerformanceCounter() function was
used to record the start and end timestamps for each
system call as they executed in the native execution
environment. From the start and end timestamps, the
durations of each call were calculated (Duration = end
timestamp – start timestamp). The mean and standard
deviation of the durations were also calculated.

804

The durations of the system calls gathered from the
native execution environment did not fit any well-known
statistical distribution. Therefore, a threshold was
determined such that the threshold would, with high
probability, contain the system call durations from the
native environment but would not contain many of the
durations of the system calls executed in non-native
execution environments.

3.2 Selecting a Detection Threshold

A number of trials were conducted to determine an
optimum threshold that would separate the system call
durations gathered from a native execution environment
from those gathered from a non-native environment. The
range of trial thresholds varied from 1 to 4 standard
deviations above the mean of the durations from the
native environment. The following steps show how the
optimum threshold level was reached.

1. Let Ti be the random variable that is considered to be
the duration of the system calls.

2. The sample mean and standard deviation for Ti is
calculated.

3. Let C be a constant value from 1 to 4 with an
increment of .01

4. Let XC be the thresholds -
XC = Sample Mean of durations + (1+C * .01)*
sample standard deviation

From the set of thresholds generated by this method,
an optimum threshold was chosen such that it contains a
significant percentage of the native system call durations
with low probability of false alarm. To determine this
optimum threshold, the probability that the durations of
system calls in the native environment would exceed that
threshold level was calculated for each increment in the
range of potential threshold values:

1. let P� be the probability of system call duration
greater than the threshold, �

2. P� =

It was found that the probability of durations
exceeding 4 standard deviations above the mean was less
than 0.05. Therefore, the threshold of four standard
deviations above the mean was chosen to distinguish
between the native execution environment and the
emulated execution environment. (It was determined that
this threshold produced an acceptably low false alarm
rate, so no calculations were performed above the range

of 1 to 4 standard deviations, however it is possible that
higher threshold values may produce acceptable results
as well.)

However, because the system call durations do not
follow a particular distribution there is no guarantee that
the probability of durations exceeding the threshold
would always be below 0.05. Therefore, Chebyshev’s
inequality [1] was used to determine the probability of
durations that would be allowed to exceed the threshold
without generating a false alarm.

Chebyshev's inequality states that in any data
sample or probability distribution, nearly all the values
are close to the mean value, and provides a quantitative
description of terms like nearly all and close to. For
example, no more than 1/4 of the values are more than 2
standard deviations away from the mean, no more than
1/9 are more than 3 standard deviations away and no
more than 1/16 are more than 4 standard deviations.
Although Chebyshev’s theorem states that no more than
1/16 of the data should be away from the mean, in this
research only the value above the mean was considered.
Therefore, in a native environment, no more than 1/16
(or 0.0625) of the system call durations will be more
than 4 standard deviations above the mean. If
measurements determine that the fraction of system calls
above this threshold is greater than 0.0625, then a
significant environmental change (such as the
introduction of an emulator) is likely.

3.3 Measuring System Call Timing Data

The last step for the detection of emulated
environments is to compare probabilities of the timing
being above the set threshold from the native and the
emulated environments.

4. Experiments and Results

Several experiments were carried out to determine if
the model created from the system call timing data
gathered from native execution environments could be
used to reliably determine whether a new execution
environment was native or non-native. The model was
also tested in a variety of native execution environments
to determine if false alarms would occur.

For these experiments, the native environment under
study was Windows XP (SP2), installed on a range of
machines, each with a different processor speed and mix
of installed software. Virtual machine environments,
VMware and Virtual PC 2004, were used for these
experiments and the operating system used within both
of these emulated environments was also Windows XP.

805

The set of test machines included six PCs, each with
a Pentium 4 processor, which were chosen because they
provide a representative sample of contemporary
hardware. Two of the machines were equipped with a
comparatively slow processor (1.5 GHz and 1.8 GHz),
two were mid-range machines (2.26 and 2.53 GHz), and
the other two are higher performance machines (Hyper-
Threaded processors running at 3.0 and 3.4 GHz,
respectively). Features such as RAM, disk space,
software version, the mix of applications installed on the
system, and processor type were evaluated to determine
if they would have any impact on the detection
methodology, but no evidence was found to support this.

When conducting the experiments to validate the
model, the same C program described in Section 3.1 was
used to gather timing data from all six sample machines
in all three environments (native Windows XP, VMware
and Virtual PC). Once the data was gathered from each
machine, the technique described in Section 3.2 was
used to calculate a threshold for each machine.

Table 2 shows the threshold from each of the six
sample machines. The values shown in the second and
third columns are calculated from the system call
durations measured using QueryPerformanceCounter().
The thresholds presented in the fourth column are based
on the calculation described in Section 3.2.

In the next step, system call durations gathered from
the native and emulated execution environments on each
machine were checked against these thresholds. The

hypothesis was that most of the system call durations
gathered from the native environment (Windows XP)
would fall within the threshold. Using Chebyshev’s
inequality, durations measured in native execution
environments should not exceed the threshold by more
than 0.0625 (based on the calculations in Section 3.2).

If the proportion of measured durations exceeded
the threshold by more than 0.0625, the environment
would not fit the model for a native environment and
would be classified as an emulated environment.

For each of the execution environments, Table 3
shows the proportion of system call durations that
exceeded the corresponding threshold (from Table 2).
Figure 2 graphically depicts the information shown in
columns three, four and five of Table 3, clearly showing
that the proportion is well below 0.0625 (established
with Chebyshev's rule) for the native environments and
above that value (in many cases significantly above) for
each of the emulated environments.

From this observation, it can be deduced that all six
native execution environments fit the model and the data
from the emulated execution environments do not fit the
model. However, some of the emulated environments
that were running on high performance processors
approach the threshold. To the casual observer, it may
appear that a threshold might be found that more evenly
separates the native and emulated environments.
However, lowering the threshold without knowing the

Table 2: Threshold calculated for each processor by the method described in Section 3.2
 (columns 2, 3 are based on system call durations measured by QueryPerformanceCounter())

Processor
(GHz)

Native
Mean

Native
Standard deviation

Threshold
(Mean + 4*standard deviation)

1.5 24.51 55.79 247.67
1.8 21.71 46.38 207.23

2.26 14.32 29.73 133.24
2.5 14.21 29.16 130.85
3.0 13.58 40.69 176.34
3.4 11.99 35.85 155.39

Table 3: Proportion of system calls exceeding the thresholds shown in Table 2

Processor
(GHz)

Threshold from
Table 2

Native environment
proportion

VMware
proportion

Virtual PC
proportion

1.5 247.67 0.011133 0.159933 0.304373
1.8 207.23 0.014260 0.167987 0.305567

2.26 133.24 0.008559 0.101880 0.342140
2.5 130.85 0.007613 0.131040 0.113933
3.0 176.34 0.007307 0.176887 0.074800
3.4 155.39 0.009547 0.098053 0.117660

806

true distribution of the system call durations risks
increasing false alarms.

Figure 2: Graphical depiction of the results in Table 3

One solution to this problem would be to use a
decision rule for determining when a false alarm occurs.
A decision rule could be set such that, if the probability
of the durations exceeding the threshold was checked n
times, then so long as the probability did not exceed the
threshold more than k out of n times, it could still be
considered as a native environment.

5. Summary and Future Work

One of the most powerful tools in the hacker's
reverse engineering arsenal is the virtual machine. These
systems provide a simple mechanism for executing code
in an environment in which the program can be carefully
monitored and controlled, allowing attackers to subvert
copy protection and access trade secrets. Detection of the
emulated environment is not trivial, as the attacker can
emulate the result of different operations with arbitrarily
high fidelity.

This paper presented an approach to countering this
threat by providing a means of automatically detecting
the attempted reverse engineering. If it can be
determined that the execution environment is monitoring
the behavior of an application for the purpose of
revealing or circumventing protection mechanisms,
preventive measures may be taken to protect the
application from such threats. The paper also described a
proof-of-concept implementation of the approach. An
evaluation of the results from experiments conducted to
test the methodology suggested that the methodology is
sound, and that the approach can successfully detect
execution in an emulated environment.

The preliminary research described in this paper
also shows that additional work is needed to produce an
approach that is refined enough to be of general use. For
example, it was mentioned that this approach was
developed using non-I/O system calls that were chosen
at random. The research could be expanded to include
other non-I/O system calls, to determine if some system
calls are more useful for building the model than others.

There is also an obvious need to evaluate the
approach on non-Windows XP operating systems (and
with emulated environments other than VMware and
Virtual PC). It would be interesting to try the approach
on other platforms, such as Linux, Mac OS X, or even
gaming platforms such as the Xbox 360 and with other
emulation environments, such as Bochs, Xen or WINE.

References
[1] Arnold A. Probability, Statistics and Queuing Theory with
Computer Science Applications. Academic Press, 1990.
[2] Bennet, K. and Rajlich, V. “Software Maintenance and
Evolution: A Roadmap.” In Proceedings of the 22nd
International Conference on Software Engineering (ICSE
2000). Future of Software Engineering Track, pp 73–87. New
York, NY: ACM Press, 2000.
[3] Bullers, W. I.; Burd, S.; and Seazzu, A. “Virtual machines
- an idea whose time has returned: application to network,
security, and database courses”, Proceedings of the 37th

SIGCSE Symposium on Computer Science Education, 2006
[4] Collberg C. and Thomborson, C. “Watermarking,
TamperProofing, and Obfuscation - Tools for Software
Protection.” IEEE TSE, Vol. 28, No. 8, August 2002.
[5] Chikofsy, E.; and Cross, J. “Reverse Engineering and
Design Recovery: A Taxonomy.” IEEE Software 7(1):13-17,
January 1990.
[6] Eilam, E. Reversing: Secrets of Reverse Engineering,
Wiley, 2005
[7] Magnusson, P.S, “The Virtual Test Lab”, IEEE Computer,
Vol. 38, No. 5, pp. 95–97, May 2005
[8] Microsoft Corp. Virtual PC. URL:
www.microsoft.com/windows/virtualpc/default.mspx
[9] Microsoft Corp. “How to use QueryPerformanceCounter
to Time Code.” URL: support.microsoft.com/kb/q172338
[10] Microsoft Corp. MSDN. URL: msdn.microsoft.com
[11] Sapuntzakis, C.; Brumley, D.; Chandra, R.; Zeldovich, N.;
et al., “Virtual Appliances for Deploying and Maintaining
Software”, Proceedings of the 17th Large Installation Systems
Administration Conference (LISA), October 2003
[12] VMware Inc., URL: www.vmware.com
[13] Efrem G. Mallach, “On the relationship between virtual
machines and emulators”, Workshop on Virtual Computer
Systems, March 1973.

807

Self-Managed Deployment in a Distributed Environment via Utility Functions

Debzani Deb
Montana State University,

Bozeman, MT, USA
debzani@cs.montana.edu

Michael J. Oudshoorn
The University of Texas at

Brownsville, TX, USA
michael.oudshoorn@utb.edu

John Paxton
Montana State University,

Bozeman, MT, USA
paxton@cs.montana.edu

Abstract
This paper proposes algorithms and mechanisms for
achieving self-managed deployment of computationally
intensive scientific and engineering applications in highly
dynamic and large-scale distributed environment. The
primary focus is on the modeling of the application and
underlying architecture into a common abstraction and
on the incorporations of autonomic features to those
abstractions to achieve self-managed deployment. To
represent the underlying heterogeneous infrastructure, a
hierarchical (tree) model of distributed resources has
been adopted that organizes distributed nodes in a utility-
aware way. To accomplish the self-adaptive deployment,
a utility-function has been formulated that governs both
the initial deployment of an application and its dynamic
reconfiguration. In our approach, the deployment
decisions are made solely based on locally available
information and without costly global communication or
synchronization. The self-management is therefore
decentralized to provide better adaptability, scalability
and robustness.

1. Introduction

Many scientific fields, such as genomics,
astrophysics, geophysics, computational neuroscience or
bioinformatics which require massive computational
power and resources, can benefit from a large-scale
integrated infrastructure, formed by harnessing the spare
compute cycles of distributed computation and
communication resources. Typically these applications
are composed of a large number of distributed
components and it is important to deploy them in the
underlying network in a way that meets the computational
power and network bandwidth requirements of those
components and their interactions. However satisfying
these requirements in a large-scale, non-dedicated,
heterogeneous, and highly dynamic distributed
environment is a significant challenge. As the operating
environment and applications grow in scale and
complexity, attaining the desired level of performance in
this dynamic environment becomes infeasible using
current approaches that are based on global knowledge,
centralized scheduling and manual reallocation.
Therefore, self-managed deployment is paramount to
lower operation costs, to manage system complexities and
to maximize overall utilization of the system.

This paper proposes algorithms and mechanisms for
achieving self-managed deployment of computationally
intensive scientific and engineering applications within a
highly dynamic distributed environment. The main focus
of this paper is to model the application and the
underlying architecture into a common abstraction and to
incorporate autonomic features [1] to those abstractions
to achieve self-managed deployment. To model the
underlying heterogeneous infrastructure, we developed
techniques that allow the distributed resources to organize
in a utility-aware way while assuming minimal
knowledge about the system. To achieve self-managed
deployment of application components across the
network nodes, we designed a scalable and adaptive
deployment algorithm that is governed by a utility
function [2]. The utility function, which returns the
system’s overall utility based on different application and
system level attributes, governs the initial deployment of
the application components and maintains the optimality
during their executions despite the dynamism and
uncertainty associated with the networked environment.
The self-management techniques described in this paper
are decentralized and assume minimal knowledge about
the environment to provide better adaptability, scalability
and robustness.

Fully automating the organization and optimization of
a large distributed system is a staggering challenge and
there are numerous research groups working toward this
goal. Some approaches [3,4] target the development of
new autonomic applications to realize the desired benefits
of self-management in a distributed environment. In their
prototype implementation, Unity [5] achieves self-
management via interconnections amongst a number of
autonomous agents, however assumes global knowledge
in order to optimally allocate the resources in the system.
Astrolabe [6] operates by creating a virtual system-wide
hierarchical database of the state of a collection of
distributed resources, which evolves as the underlying
information changes. The AutoFlow [7] project aims to
develop a self-adaptive middleware and utilizes a
hierarchical organization of underlying resources
clustered according to various system attributes for
deployment.

The rest of the paper is organized as follows. Section
2 details the design and implementation of different
aspects of the proposed application deployment process.

808

Section 3 presents the experimental evaluation of the
proposed deployment and Section 4 concludes the paper.

2. Self-Managed Deployment

As the application components within an application
execute with different constraints and requirements, they
should be mapped to appropriate hardware resources in
the distributed environment so that their constraints are
satisfied and they provide the desired level of
performance. Mapping between these resource
requirements and the specific resources that are used to
host the application is not straightforward.

In this paper, a three step process is designed to
perform this mapping as shown in Figure 1. In the first
step, an application model is extracted that represent an
application in terms of its components and their internal
dependencies along with the estimated resource
requirements of the components and their links. The next
step involves constructing a model of the underlying
network by obtaining knowledge about available
resources such as their computational capabilities,
connectivities and workloads and then organizing them
according to network proximity. The third and final step
allocates a specific set of resources to each application
with respect to the resources required by the application
components and the resources available in the system.
The goal of the mapping is to maximize the system’s
overall utility based on certain policies, priorities, user-
defined constraints and environmental conditions. The
important aspects of this deployment process are detailed
in the following few sections.

2.1. The Application Model

In this paper, an application is modeled as a graph
consisting of application components and the interactions
among them. Analyzing and representing software in
terms of its components and their internal dependencies is
important in order to provide the self-managing
capabilities because this is actually the system’s view of
the run-time structure of a program. Well structured
graph-based modeling of an application also makes it
easier to incorporate autonomic features into each of the
application components.

Figure 1. Application deployment process

 An application is represented as a node-weighted,
edge-weighted directed graph G = (V,E,wg,cg), where
each vertex v�V represents an application component and
the edge (u,v)�E resembles the communication from
component u to component v. The computational weight
of a vertex v is wg(v) and represents the amount of
computation that takes place at component v. The
communication weight cg(u,v) captures the amount of
communication (volume of data transferred) between
components u and v. The detailed process of the
extraction of the graph form of an application is out of
the scope of this paper. However, Reference [8] provides
a detailed description of our static analysis based
application graph construction approach.

2.2. The Network Model
 In this research, the target environment for the
deployment of the application is a distributed
environment consisting of a non-dedicated heterogeneous
and distributed collection of nodes connected by a
network. To organize the computation around this
heterogeneous and distributed pool of resources,
traditional approaches rely on the assumption that
sufficiently detailed and up-to-date knowledge of the
underlying resources is available to a central entity.
While this approach results in the optimized utilization of
the resources, it does not scale to a large numbers of
nodes. Maintaining a global view of a large-scale
distributed environment becomes prohibitively expensive,
even impossible at a certain stage, considering the
unprecedented number of nodes and the unpredictability
associated with a large-scale computing system due to
various dynamic factors.

We propose a different approach that addresses the
above problems and allows the heterogeneous pool of
resources to be organized in a structure that facilitates
their effective use. The aim is to organize the distributed
resources in a structure such that nodes that are closer to
each other in the structure are also closer to each other
considering network distance (latency, bandwidth, etc.).
Once structured in this way, it is possible to detect higher
utility paths locally that correspond to low latency and
high bandwidth between network nodes. As a result of
that, the deployment of the application graph can be
performed in a utility-aware way, without having full
knowledge about the underlying resources and without
calculating the utility between all pairs of network nodes.

The proposed organization is obtained by modeling
the target distributed environment as a tree in which the
nodes correspond to compute resources, edges
correspond to network connections and execution starts at
the root. More specifically, a tree structured overlay
network [9,10] is used to model the underlying resources,
which is built on the fly on top of the existing network
topology.

Application Application
Model

Distributed
Environment

Network
Model

Deployment

Constraints
and policies

809

The important aspect of our design is the emergence
of the tree topology, which structures the distributed
nodes, in a utility-aware way while assuming minimal
knowledge about the environment. Each parent monitors
only a limited number of nodes and the deployment
decision is made based on this locally available
monitored data. The design is therefore suitable for
dynamic and large-scale computing environment. Also
this model allows us to limit the utility evaluation within
a subtree performed by the parent of that subtree, instead
of performing the costly utility evaluation globally to
determine the highest utility node. Figure 2(a) shows a
small computing environment distributed in three
domains and Figure 2(b) illustrates a tree overlay network
that is built on top of this physical topology.

Formally, the entire network is represented as a
weighted tree T = (N,L,wt,ct), where N represents the set
of computational nodes and L represents network links
among them. The computational weight wt(n) indicates
the cost associated with each unit of computation at node
n. The communication weight ct(m,n) models the cost
associated with each unit of communication of the link
between parent m and child n. When two nodes are not
connected directly, their communication weight is the
sum of the link weights on the path via their predecessors
or successors. Therefore, larger values of node and edge
weights translate to slower nodes and slower
communication respectively.

To construct an overlay tree, each node is assumed to
have a children list signifying the URLs of its neighbors
that have direct connection with it. The problem of how
to generate this list is out of the scope of this research,
however it can be addressed by using several tools
[11,12]. Once a user starts an application in his/her
machine, the graph representation is extracted from the
application code. The initiator node then decides which
components to execute and which ones to delegate to its
best utility child nodes considering all the nodes listed in
its children list. The delegated nodes again spread the
computation in this manner. The topology of the resulting
overlay network thus becomes a tree with the originating
machine at the root node.

2.3. The Utility Function
In this research, both the initial placement of the

application components and their reconfigurations are
governed by utilizing utility functions. Several
applications and environment specific attributes are
combined in a single utility function. This multi-attribute
function returns a scalar value signifying system’s overall
utility for each possible state of a system and the goal
becomes to select a state that maximizes the overall
utility. During execution, resource allocation and other
operating conditions may change; the corresponding
change in the overall utility can be calculated by this

utility function and reconfiguration decisions can be
taken toward maximizing this value. As computing
environments are becoming increasingly large,
distributed, complex and dynamic in nature, the optimal
actions are likely to evolve over time and a utility
function that continuously computes the most desired
state is expected to be more suitable in such cases.

In this paper, the utility function is designed to respect
the following application, environment and user specific
high-level policies:

1. While mapping partitions containing a large
number of application components in the tree
network, nodes that lead to a wider subtree
(higher degree of connectivity) are preferred as
higher degree allows more directions for partition
growth.

1. Faster and less busy nodes are favored over
slower and overloaded nodes when assigning
components to resources.

2. Nodes with faster communication links are
preferred over nodes with slower communication
links.

3. High priority applications are preferred over low
priority jobs.

n9

n10

n11

n13

n12

n2 n3

n1

Domain 2

Domain 3

Figure 2(a). Sample distributed environment.

Figure 2(b). Overlay Tree.

n4

n5

n6

n8

n7

n1

n2 n3n4

n5
n8

n6 n7

n11

n9 n12 n13

n10

Domain 1

810

2.4. Initial Deployment
Once the application and underlying resources have

both been modeled, the deployment problem reduces to
the mapping of different application components and
their interconnections to different nodes in the target
environment and network links among them so that all
requirements and constraints are satisfied and system’s
overall utility is maximized. The assumption is that the
application can be submitted to any node, which acts as
the root or starting point of the application. Furthermore
the application may end its execution either at the root
node or at one or more clients at different destination
nodes.

When the application graph G is submitted to the root
node of the tree network, the root then decides which
application components to execute itself and which
components to forward to its child’s sub-tree. The child,
who has been delegated a set of components again
deploys them in the same way to its subtrees. For
effective delegation of components at a particular node
having |P| children, graph coarsening techniques [13] are
exploited to collapse several application components into
a single partition, so that � |P| partitions are generated at
that stage. The coarsened graph is projected back to the
original or to a more refined graph once it is delegated to
a child node.

In the above approach, each parent selects the highest
utility child to delegate a particular partition (set of
components). Finding the highest utility child to delegate
a partition to means finding the highest utility mapping M
of the edges (vj,vk) where vj�Vr (represents the set of
components that the parent decided to execute itself) and
vk�Vs (represents the set of components that belong to a
partition that a parent decided to delegate). More
formally, a mapping needs to be produced, which assigns
each vk�Vs to a nq�N in a way such that the network
node nq is capable of satisfying the requirements and
constraints of application node vk and the edge (vj,vk) is
mapped to the highest utility link considering all children
available at that stage for delegation. The utility of an
edge (vj,vk) is represented as U(vj,vk), and returns the
utility achieved due to the mapping of the edge (vj,vk) on
certain network link. More specifically, the utility of an
edge (vj,vk), while mapped to the network link (np,nq),
where np represents the parent in the tree-shaped
network where vj is already mapped and nq represents a
potential child for delegating application component vk, is
calculated by using the following utility function:

� � � �
� � � �� � � � � �� �qptkjgqtkg

q
kj nnwvvwfnwvwf

nd
vvU

,,
,

21 ���

where d(nq) represents the number of children of the node
nq, function f1 models the cost of processing vertex vk in

node nq and f2 models the communication cost resulting
from mapping edge (vj,vk) to link (np,nq).

The utility model in the above scenario is the
"highest-degree child with the fastest computation
capability and fastest communication link". To ensure
that the partitions with the largest number of application
components are delegated to the highest degree child,
candidate partitions are sorted according to their sizes and
then deployed according to that order. In the case of
simultaneous scheduling of multiple applications with
different priorities, the system needs to guarantee that
higher priority applications execute before applications
with lower priority. To achieve this, applications are
ordered according to their priorities and then mapped
following that order. The overall utility of an application
graph G with priority p is then calculated as:

� �
�

Evv kj
kj

vvUpGU
),(

),()(

Therefore, at the level of an individual application the
problem of self-configuration becomes the problem of
finding highest utility mapping between edges E in the
application graph and the Links L of the network graph.

2.5. Self-Optimization

After initial placement, the environment may change
and as a result the utility may drop. Thus, it is necessary
to monitor the utility and trigger reconfiguration as
required. Reconfiguration is triggered in response to a
variety of events such as changes in network delays and
in bandwidths, changes in available processing capability,
etc. Some user specific events may also trigger
reconfiguration such as the arrival of a higher priority
job, etc. In our design, reconfiguration is performed only
within a subtree and therefore is expected to be a less
expensive process because of the way the underlying
network is modeled. Each parent node periodically
measures the workload at each child and its bandwidth to
the child and consequently changes the computational
and communication weights of that child. By
incorporating this monitored information into the utility
function, the parent observes the change in utility due to
the changes in the network and the compute nodes. As a
result reconfiguration is initiated autonomously.
Reconfiguration is costly and disruptive, therefore, it is
not feasible to initiate reconfiguration unless it is
productive. We intend to trigger reconfiguration
whenever the utility drops more than a certain threshold
(user specified or system generated by comparing the
utility during initial deployment).

3. Experimental Evaluation

We evaluated the performance of the self-managed
deployment using a simulation study. Our experiments

811

were performed in a dual, quad-core Xeon processor with
16GB of RAM.

3.1 Simulation Setup
 We used GT-ITM internetwork topology generator
[14] to generate a sample large-scale, heterogeneous
computing environment for evaluating our self-
deployment algorithm. We chose their Transit-Stub
model that correlates well with the structure of the
Internet, including hierarchy and locality. Table 1 lists the
relevant parameters of the network topology used in this
study. To generate traffic that simulates real world
workload and bandwidth consumption in a shared
environment, we used the traffic generator available in
the ns-2 simulation package [15]. The traffic generator
script cbrgen.tcl was used to create 1000 CBR traffic
connections between network nodes. The simulation was
then carried out for 2000 seconds, we measured link
delays (the amount of time required for a packet to
traverse a link considering both bandwidth and
propagation delay) between the directly connected nodes
in the presence of the random traffic over a 10 second
period. Based on these snapshots, we then determined the
communication weights of the network links in the
presence of dynamic traffic.

We ran our tree construction algorithm to create a tree
overlay on top of the abovementioned network topology
with the application originating machine at the root node.
To create the children list, at first we went through all
network links and make a list for each node n�N, that has
direct connections with n. Our tree construction algorithm
then finalized the children list for each network node n,
starting from the root node, ensuring that adding a node
to n’s children list did not create a cycle.

3.2 Experiments and Results

We designed experiments that compared the utility
and cost of a deployed application graph using optimal
schemes based on the original network topology and
global knowledge as opposed to our autonomic approach
that uses the tree network and decentralized deployment
decisions based on minimal amount of locally available
knowledge. In the optimal scheme, the assumption is that
a central node monitors every computational and
communication resources in the system and, based on this
global knowledge makes optimal deployment decision.

Table 1: Network model parameters

The number of Transit Nodes 4
The number of stub nodes/transit node 32
Number of total network nodes 132
Number of total network links 1986
Stub-stub bandwidth 100 Mbps
Transit-transit and transit-stub bandwidth 500 Mbps
Node’s processing weight (range) [20…80]

However, in this approach the central node becomes a
bottleneck with a large number of communications
arising from constantly monitoring all the resources in the
system. Even if it is possible to gather up-to-date
information about all the resources at a central node,
finding optimal deployment means enumerating every
possible mapping of the application components to the
network resources and selecting the one that produces
optimal results. It also grows exponentially with the
number of nodes in the network and the number of
vertices in the application graph.

Because of its exponential growth, the above
mentioned optimal scheme becomes intractable even for
applications with a few components in it. So we
developed another semi-optimal scheme that assumed
global knowledge but instead of trying every possible
mapping it used a greedy approach to limit the number of
cases to evaluate. For both schemes, we applied
Dijkstra’s All Pair Shortest Path algorithm at the central
node to calculate the communication weights between
every pair of network nodes. We also assumed one-to-
one mapping of the graph vertices to the network nodes
in all three cases.

The results are presented in Figures 3 and Table 2.
Figure 3 compares the utility achieved by all three
approaches in case of 4-, 6- and 8-node application
graphs and Table 2 reveals the cost associated with them.
We do not have any data beyond 8-node in this
comparison, as after that, the optimal approach becomes
too costly to measure. The results show that the utility
achieved by our autonomic approach is on average 30%
lower than that of the optimal approach. However, the
cost associated with finding the optimal mapping is huge
and completely supersedes the benefits of obtaining
additional utility by this approach. Figure 3 also
illustrates that, in some cases the semi-optimal approach
produces lower utility than the autonomic approach. The
reason for that is that the greedy heuristics applied in the
case of semi-optimal deployment does not yield a global
optimum. More specifically, it takes a greedy approach to
select the best node at each step, considering all the nodes
in the network, and there is a possibility that the best
utility node found for delegation at a certain stage may
already have been delegated in some former stage.

To evaluate the scalability of our approach, we
observed the time taken by our approach to calculate the
initial deployment for an increasing number of
application vertices and compared them with the time
needed by the semi-optimal approach. The results are
presented in Figure 4. On average, compared to semi-
optimal approach, we observe 90% reduction in the initial
deployment calculation time in the autonomic approach.
As the application size increases, the cost incurred by our
approach is minimal therefore the approach is well suited
for larger applications.

812

Figure 3. Utility Comparison

Table 2. Execution Time Comparison

of vertices Optimal Semi-optimal Autonomic
4 8712 �s 15 �s 2 �s
6 15.68 sec 25 �s 3 �s
8 1 hour and 39

minute
34 �s 3.5 �s

Figure 4. Scalability

4. Conclusion

In this paper, we have developed techniques that
enable scalable and efficient deployment of user
applications in a highly dynamic and large-scale
distributed environment. The approach is to construct an
application model, represented as a graph of application
components and their interactions and then deploy that
graph across the underlying distributed resources
organized as a utility-aware tree. A suitable utility
function is derived that controls both initial deployment
and reconfiguration ensuring that system’s overall utility
is maximized while certain policies and constraints are
satisfied. The main goal of our experimental study was to
analyze the tradeoff between optimality and the execution
time of our autonomic deployment. The results of our
experiments show that considering the tradeoff between
the optimal utility and the cost, our deployment algorithm
achieves a decent utility with an enormous reduction in
the optimization time. Also as the application size
increases the cost incurred by our autonomic approach is
minimal. Our approach for self-configuration is therefore

scalable, robust and more suitable for larger networks and
applications. In future, we like to conduct experiments to
evaluate our self-optimization approach that dynamically
reconfigure the application graph based on the changes in
the network.

References
[1] IBM Research. Autonomic Computing.

http://www.research.ibm.com/autonomic.
[2] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, "Utility

functions in autonomic systems", 1st International
Conference on Autonomic Computing (ICAC), 2004.

[3] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G.
Zhang and S. Hariri, "AutoMate: Enabling Autonomic
Grid Applications", Cluster Computing: The Journal of
Networks, Software Tools, and Applications, Special Issue
on Autonomic Computing, Kluwer Academic Publishers,
Vol. 9, No. 1, 2006.

[4] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S.
Pavuluri, and S. Rao, "AUTONOMIA: An Autonomic
Computing Environment", Proc. of the 2003 IEEE
International Performance, Computing, and
Communication Conference, 2003.

[5] D. M. Chess, A. Segal, I. Whalley and S. R. White, "Unity:
Experiences with a Prototype Autonomic Computing
System", 1st International. Conference. on Autonomic
Computing (ICAC), 2004.

[6] R. V. Renesse , K. P. Birman , W. Vogels. "Astrolabe: A
robust and scalable technology for distributed system
monitoring, management, and data mining", ACM
Transactions on Computer Systems, Vol.21 No.2, 2003.

[7] K. Schwan et al. "Autoflow: Autonomic information flows
for critical information systems", Autonomic Computing:
Concepts, Infrastructure, and Applications, CRC Press,
2006.

[8] D. Deb, M.M. Fuad, M.J. Oudshoorn, "Towards
Autonomic Distribution of Existing Object Oriented
Programs", International Conference on Autonomic and
Autonomous Systems (ICAS), 2006.

[9] O. Beaumont, A. Legrand, Y. Robert, L. Carter, J.
Ferrante, "Bandwidth-Centric Allocation of Independent
Tasks on Heterogeneous Platforms", International Parallel
and Distributed Processing Symposium (IPDPS), 2002.

[10] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante,
"Autonomous protocols for bandwidth-centric scheduling
of independent-task applications", International Parallel
and Distributed Processing Symposium (IPDPS), 2003.

[11] M. Ripeanu; I. Foster and A. Iamnitchi, "Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design", IEEE
Internet Computing, Vol. 6, No. 1, 2002.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network", In
Proceedings of ACM SIGCOMM 2001.

[13] G. Karypis and V. Kumar, "Multilevel k-way Partitioning
Scheme for Irregular Graphs", Journal of Parallel and
Distributed Computing, vol. 48, 1998, pp. 86-129.

[14] GT-ITM: Georgia Tech Internetwork Topology Models.
http://www.cc.gatech.edu/projects/gtitm.

[15] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns.

0
10
20
30
40
50
60
70
80

4 6 8 10 12 16

Number of Vertices in the Application Graph

Ti
m

e
(m

ic
ro

se
co

nd
)

Autonomic

semi-optimal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 6 8

Number of Vertices

U
til

ity

Autonomic
Semi-optimal
Optimal

813

Design of a Fault-Tolerant Job-Flow Manager for Grid Environments Using
Standard Technologies, Job-Flow Patterns, and a Transparent Proxy

Gargi Dasgupta1, Onyeka Ezenwoye2, Liana Fong3, Selim Kalayci4,

S. Masoud Sadjadi4, and Balaji Viswanathan1

1 IBM India Research Lab, New Delhi, India, {gdasgupt, bviswana}@in.ibm.com
2 South Dakota State University, Brookings, SD, USA, onyeka.ezenwoye@sdstate.edu

3 IBM Watson Research Center, Hawthorne, NY, USA, llfong@us.ibm.com
4 Florida International University (FIU), Miami, FL, USA, {skala001, sadjadi}@cs.fiu.edu

Abstract

The execution of job flow applications is a reality today
in academic and industrial domains. Current approaches
to execution of job flows often follow proprietary
solutions on expressing the job flows and do not leverage
recurrent job-flow patterns to address faults in Grid
computing environments. In this paper, we provide a
design solution to development of job-flow managers that
uses standard technologies such as BPEL and JSDL to
express job flows and employs a two-layer peer-to-peer
architecture with interoperable protocols for cross-
domain interactions among job-flow mangers. In
addition, we identify a number of recurring job-flow
patterns and introduce their corresponding fault-tolerant
patterns to address runtime faults and exceptions. Finally,
to keep the business logic of job flows separate from their
fault-tolerant behavior, we use a transparent proxy that
intercepts job-flow execution at runtime to handle
potential faults using a growing knowledge base that
contains the most recently identified job-flow patterns and
their corresponding fault-tolerant patterns.

Keywords: Software Design, Job-Flow Patterns, Fault
Tolerant, BPEL, JSDL, Grid Computing, Peer-to-Peer.

1. Introduction

In Grid and Cluster computing environments, unlike
traditional batch environments, individual jobs are
typically part of higher-level functional units, generally
known as job flows, which are represented by directed
graphs. Today, numerous complex academic and
commercial high-performance computing applications are
being developed as job flows that are composed of several
lower-function jobs. Due to the typical long running
nature of these jobs, the support for fault tolerance and
recovery strategy is especially important.

Very often failure of a job within a flow cannot be
treated in isolation and recovery actions may need to be
applied to preceding and dependent jobs as well. Thus

specifying flow-level recovery mechanisms become
important in such scenarios. A prevalent way to handle
flow-level compensation is to include failure management
logic at modeling time. Wei et al. [1] investigate how to
incorporate fault handling and recovery strategy for long
running jobs at development time. However, their work
requires modification of the original flow to incorporate
additional fault-handling logic. The approach also
assumes pre-knowledge of all different failure scenarios
that can arise. An alternate approach is to handle these job
failures at runtime, without explicit changes to job flow
process logic. The TRAP/BPEL [2] framework employs
this approach for stateless Web service orchestration. In
TRAP/BPEL, an intermediate proxy traps calls from the
flow engine, and on behalf of it, deploys runtime failure
handling. The advantage of this technique is that no direct
(or manual) changes need to be made to the flow at
development time.

We leverage this approach to enable runtime job failure

handling in Grid environments, with dynamic selection of
recovery policies. A big challenge in defining recovery
policies for Grid jobs is that different jobs may fail at
different stages of execution and may require different
type of recovery actions. In addition, these long-running
jobs often have non-transactional behavior and may
require elaborate cleanup phases on account of failure.
This is different from the stateless Web service model,
where service invocations are of request/response types
and recovery plans can mostly be limited to retries of the
Web service invocation. Currently, recovery mechanism
for long-running jobs requires a high degree of domain
expertise. In our work, we explore identification of
common, recurrent job flow patterns, and some common
fault-tolerance patterns that could be applied to them.

In this paper, we provide a design solution to

development of job-flow managers that uses standard
technologies to express job flows and employs
interoperable protocols for cross-domain interactions
among job-flow mangers (Section 2). We enumerate a
number of recurring job-flow patterns (Section 3) and

814

introduce their corresponding fault-tolerant patterns
(Section 4) to address runtime faults and exceptions. To
promote separation of concerns, we use a transparent
proxy that intercepts job-flow execution at runtime to
handle potential faults using a growing knowledge base
that contains the most recently identified job-flow patterns
and their corresponding fault-tolerant patterns (Section 5).
Finally, we compare our work to a number of related
works (Section 6), provide a short summary and a list of
future work (Section 7).

2. Design Using Standard Technologies

It is of primary importance that the design of job-flow
managers follows standard and interoperable technologies,
such that both the academic and industrial Grid
communities benefit from its flexible and open distributed
architecture. As part of the Latin American Grid [3], we
have developed a two-level distributed architecture that is
comprised of two main middleware components: the job
flow manager, responsible for maintaining concurrency
and sequencing among jobs in the flow, and the meta-
scheduler, responsible for resource selection and job
execution control. In the rest of this paper, we will focus
only on the design of the job flow manager. Details about
the meta-scheduler can be found in [4].

Figure 1 illustrates two resource domains, namely, FIU

and IBM and each are managed by their representative
job-flow manager along with a meta-scheduler. The
assumption is that within each domain, an application or a
Web-based portal sends a job flow to the job-flow
manager of its respective domain to be executed. The job-
flow manager on its turn submits individual jobs to the
meta-scheduler on its respective domain; or it sends
partial workflows (sub-flows) to a peer job-flow manager
in another domain. .

Peering relationships between job-flow managers and
between meta-schedulers is established through a set of
protocols that exchange dynamic resource capacity and
capability information. This enables them to route sub-
flows for remote execution at partner domains. The
current protocol includes three phases: connection
establishment, job-flow submission, and disconnection.

To express the job flows themselves, we chose the
Business Process Execution Language (BPEL or WS-
BPEL) [5], which has emerged as the standard workflow
language for orchestrating service-based applications.
Several production-level software from Oracle, Sun and
IBM provide core WS-BPEL engines. These engines are
virtual machines that interpret and execute WS-BPEL
grammar. The grammar models the business logic of the
workflow as a directed-graph, where the nodes represent
tasks and the edges represent inter-task dependencies, data
flow or flow control.

IBM FIU

Job-Flow
Manager

Job-Flow
Manager

Peer-to-peer
Protocols

Application
or Portal

Application
or Portal

����

Local
Resources

Local
Resources

Local
Resources

Local
Resources

Meta-
Scheduler

Meta-
Scheduler

Local
scheduler

Local
scheduler

Local
scheduler

Local
scheduler

�

� � �

� �

�

�

�

�

�

� �

�

�

����� � � �

������	�

���	��

������	�

���	��

����

Figure 1: A distributed architecture for flow manager and
meta-scheduler spanning multiple domains.

Currently, the BPEL specification does not contain the
necessary semantics or support for defining long-running
jobs. Grid jobs require the richness and flexibility for
specifying varied resource requirements and system
environments. The Open Grid Forum job scheduling
working group recommends the use of Job Submission
Definition Language (JSDL) [6], for capturing a job’s
resource and environment requirements as well as data
dependencies. Ideally, we would like to use uniform
modeling and processing semantics at the flow manager
and at the meta-scheduler. However, in absence of such
unified modeling support, we explore using WS-BPEL
and JSDL to provide the combined modeling semantics
for job flow. This way individual flow tasks are
represented as JSDL jobs, woven together using a WS-
BPEL workflow. This provides us with the necessary
environment based on standardized technologies to
explore the coordination of the flow managers and meta-
scheduler for fault-handling purposes.

3. Job Flow Patterns

Figure 2 illustrates a basic set of workflow patterns [7]
that are supported by BPEL. In the sequence pattern
(Figure 2(i)), an activity in a process is enabled after the
completion of another activity in the same process.
Parallelism (Figure 2(ii)) allows activities to be executed
simultaneously. Loops (Figure 2(iii)) allow for one or
more activities to be executed repeatedly. In the choice
pattern (Figure 2(iv)), a number of branches are chosen
and executed as parallel threads. Based on these basic
patterns, more sophisticated constructs can be built [6].

Figure 2: Basic workflow patterns supported by BPEL:
(i) Sequence, (ii) Parallelism, (iii) Loop, and (iv) Choice.

815

In the rest of this section, we present some prevalent
patterns arising in job flows. These patterns are stored in
the flow patterns repository at the proxy and matched at
runtime. Based on the underlying functions, they are
categorized into the following:

A. Job Submission and Monitoring

A job submission by the flow manager involves
invoking the corresponding meta-scheduler interfaces to
perform the functions of submission of the job to the
resource management layer, and monitoring for any state
changes. The different submission patterns observed in
job flows include
1. Synchronous job submission: A job flow submits job

and waits for completion. In this case the submission
call does not return until job completes.

2. Asynchronous submission with polling: A job
submission call returns immediately with a job ID.
Using the job ID., the job flow polls for the job status.

3. Asynchronous submission with notification: A job flow
submits job and gets a job ID. The job flow registers for
notification by providing a callback (notification) EPR
(End-Point-Reference). The job flow waits for a
notification message, before proceeding to the next
activity.

4. Asynchronous Fire and Forget: A job flow submits
jobs and does not wait for job ID or job status (e.g., a
batch submission or a cleanup activity). In case of
failures, job IDs and job status are sent to the admin or
logged instead of invoking job flow. The difference
between this and above is:
• Job flow does not wait for completion of job and

thus might complete before such job(s) completes
• Job failure or success does not affect the job flow

business logic

B. Data Staging

Many Grid jobs require input data, and in the absence
of a shared file system, these datasets need to be staged in
at the site of execution. Usually the data staging needs to
be completed before the job can begin execution. In case
of job-flows, the data requirement could be an input to the
system or produced by the execution of a preceding job.
In the latter case, a data-dependency is created in the flow
between the producer and the consumer jobs of the data.
Thus a typical data staging pattern in job flows comprises
of staging in data from either producer jobs or from
defined inputs, followed by a job submission pattern.
There maybe several such data-staging activities, which
could occur sequentially or in parallel. Once the data
staging of all dependencies are satisfied, a job can be
submitted for execution.

C. Job Execution

Job execution completion status is captured in the job
state and in the job state transitions. Some job execution
failures are best handled by looking inside the job
definition. For example, if a job failed at 'Data Stage In'
state and status message gives which file and its reason it

failed to be staged-in (e.g., source not available or no
space on target), a possible failure handling might involve
locating a redundant copy of the file or reserving/freeing
space on target resource/filesystem before retrying the job.
We generalize this as a job flow pattern where the job
execution state helps identify failures and the JSDL job
description is used for handling such failures.

4. Fault Tolerant Patterns

In this section, we introduce a classification for
exception handling in the job-flows based on patterns
introduced in the previous section. The patterns constitute
abstract reusable concepts that can be configured for a
range of situations. By identifying these patterns, a
domain expert can develop a program generator that
captures such reusable patterns and can specify which
reusable patterns are to be used [8]. The use of a generator
in this case would facilitate separation of concerns, that is,
the separate addition of fault tolerant concerns to the job-
flow. Selected fault-tolerance patterns are then associated
with behavioral policies which define the actions to be
taken for a failed monitored task. Below, we briefly
describe each of these patterns.

Figure 3 shows a state transition diagram that models

the patterns identified in Section 3. Explicit data staging
activities may precede a job submission. Failure in any
one or more of these staging activities entails a transition
to the Failed state. A successful job submission assumes
that the job is ready to be executed. Thus, this state is
followed by either polling for job status or waits on job
status notifications. On arrival of a job completion
notification or change in job state information from the
polled job status information, transition is made to the
completed stage. At any of the submission or execution
stages, a failure would cause a transition to the failed
state. In the next few paragraphs, we describe how fault-
tolerance patterns can be applied to offer recovery from
failures at any of these stages.

Figure 3: Normal job-flow patterns.

Re-stage data: Data is re-staged upon the occurrence of
an exception either at the data staging state or during job
execution. A job execution failure may explicitly require

816

the data to be re-staged at the target. Data restaging can
be done (a) between the same source and target endpoints
of the original staging operation using the same
parameters; or (b) by changing the parameters (e.g., data
transport protocol, buffer size, timers, etc.) of the transfer;
or (c) by specifying a different source in case of multiple
copies of the data is present; or (d) by specifying a
different target resource when the dependent job is being
executed at a new site. Figure 4 illustrates the Re-stage
data pattern.

Figure 4: Re-stage data pattern.

Re-submit job: A job is re-submitted for execution upon
the occurrence of an exception during job submission or
execution. Jobs may be submitted to the same or a
different domain and may require modifications in job
specifications and resource requirements. Submission
failures that arise from unavailability of the meta-
scheduler can be recovered by submitting to a new domain
meta-scheduler. Execution errors require more detailed
analysis of job state, status and exit codes and a fair
amount of domain expertise for their fault-handling. For
example, a domain expert can realize from experience that
a job fails due to lack of disk space, and can update the
job definition to reflect to request additional disk space.
The failed job can be re-submitted with this new
requirement. .Figure 5 illustrates this re-submit job
pattern. The possible states to transit from here are the
Data Staging, Poll Job Status, Job Status Notification and
Failed states. .

Figure 5: Re-submit job pattern.

Re-poll status: Polling for job status is resumed upon job
re-submission. The proxy in this case, uses its co-relation
capability to transparently re-poll for the new job re-
submission. This involves translating and modifying the
original polling messages from the flow to map to the re-
polling of the newly re-submitted job. Figure 6 illustrates
the re-poll status pattern. The possible states to transit

from here are the Data Staging, Job Submission,
Completed, and Failed states.

Figure 6: Re-poll status pattern.

Re-register pattern: Proxy registers for callback job
status notification after job re-submission. As in case of
the Re-Poll status pattern, this re-registration is
transparent to the job-flow. Figure 7 illustrates the re-
register for notifications pattern. The possible states to
transit from here are the Data Staging, Job Submission,
Completed, and Failed states.

Figure 7: Re-register for notifications pattern.

Force-fail pattern: Upon job failure, no further progress
is possible and its state is changed to failed [9].

Force-complete pattern: Upon successful job
completion, its state is changed to Completed. All
subsequent activities may now be triggered [9].

5. Fault-Handling Using a Transparent Proxy

As illustrated in the left side of Figure 8, first, the
workflow is passed through a Flow Adapter that adapts
the BPEL workflow by adding fault-tolerance concerns
for specific tasks. The adaptation incorporates some
generic interceptors at sensitive join-points in the original
BPEL workflow. These join-points are certain points in
the execution path of the program at which adaptive code
can be introduced at run time. The most appropriate place
to insert interception hooks in a BPEL workflow is at the
interaction join-points (i.e., the invoke instructions). The
inserted code is in the form of standard BPEL constructs
to ensure the portability of the modified process. This
adaptation permits for the BPEL workflow behavior to be
modified at runtime [2].

Next, the BPEL based flow manager (FM) executes the
adapted workflow. Its main responsibility includes

817

submission of jobs to the meta-scheduler (MS) and
monitoring their progress. Additionally, the notification
interface can be used for sending back job state change
notifications to the flow manager. Based on resource
information at the meta-scheduler, it can decide to execute
a job or sub-flow locally or dispatch it to the remote
domain for execution. When a sub-flow is dispatched, its
execution is handled by the flow manager of the target
domain. Jobs dispatched from the flow manager to the
meta-scheduler can fail due to several reasons. We
broadly classify job failures at the meta-scheduler into the
following categories:

1. Job submission failure: In this case, job submission

from the flow manager to the meta-scheduler fails for
one of several reasons. For instance, the network
connection is down, the meta-scheduler is not
operational, the meta-scheduler is operational but not
accepting new submissions, etc.

2. Job execution failure: In this case the meta-scheduler

queues the job for submission, but the job fails during
execution for reasons that may include resource
unavailability, data unavailability, incorrect input
specification, internal job exceptions, output data
staging, and exceptions during cleanup.

As illustrated in the right side of Figure 8, for runtime

failure management at the level of individual jobs, we use
a transparent proxy, introduced in TRAP/BPEL [2]. In
this case, the proxy sits between the flow manager and the
meta-scheduler, and intercepts calls in both directions.
For all monitored invocations, the meta-scheduler
interface calls are replaced with calls to the proxy

interface. However, the proxy is transparent to the flow
manager and to the meta-scheduler; therefore, it imposes
no changes in either component. The proxy exposes a
generic interface to the flow manager which accepts
messages containing original invocation parameters,
marshaled by the adapter.

A transparent proxy comprises three distinct

components: (1) A monitoring component that monitors
each adapted invocation; (2) A message correlator
component, which correlates individual messages flowing
through the proxy to construct conversational state; and
(3) A recovery component that kicks in when failure is
detected for any adapted component.

An extensible repository of job-flow as well as fault-

tolerant patterns is maintained at the proxy. Job flow
patterns comprise of common artifacts that are prevalent
in job flows represented using the combination of a flow
language and a job definition language (e.g., a job
submission activity is typically followed by a monitor job
state activity). The proxy by virtue of maintaining
conversational state for each job is well equipped to detect
and handle failures. Fault-tolerant patterns comprise
common reusable recovery actions that can be specified
for job flow failures. The mapping between job-flow
patterns and fault-tolerant patterns can be manually
defined at modeling time by the application developer or
using pre-defined rule trees. Depending on the rules
specified in the tree, a choice can be made on which fault-
tolerance pattern to use depending on the job flow pattern.
Rules could also be based upon runtime information and
domain knowledge.

PatternsPatternsPatternsPatterns

PoliciesPolicies

LogsLogsLogsLogsLogs

Proxy: : Generic InvokeFM: : Notification

MS:: Job Submission
and MonitoringMS:: Notification

Input job flow

Adapted job flow

Monitor

Recovery

Correlater

Job
Flow

Manager
(FM)

Meta-
Scheduler

(MS)

Transparent Proxy

Rule
Editor

Deployment Time Run Time

Flow
Adapter

After adaptation:

Operation:

submitJob

PartnerLink :

Proxy_JobSubmissionService

After adaptation:
Operation:

genericInvoke

PartnerLink:
Proxy_GenericInvoke

Sample Adapted job flow:

After adaptation:

Operation:

submitJob

PartnerLink :

Proxy_JobSubmissionService

Sample Adapted job flow:

After adaptation:

Operation:

submitJob

PartnerLink :

Proxy_JobSubmissionService

After adaptation:
Operation:

genericInvoke

PartnerLink:
Proxy_GenericInvoke

Sample Adapted job flow:

Input

Sample Job flow

(WS - BPEL + JSDL):

Sample Job flow

(WS - BPEL + JSDL):

Operation:

submitJob

PartnerLink :

MS_JobSubmissionService

To adapt:

Input

Sample Job flow

(WS - BPEL + JSDL):

Sample Job flow

(WS - BPEL + JSDL):

Operation:

submitJob

PartnerLink :

MS_JobSubmissionService

To adapt:

Sample Job flow

(WS - BPEL + JSDL):

Sample Job flow
(WS- BPEL + JSDL):

Operation:
submitJob

PartnerLink:
MS_JobSubmissionService

To adapt:

Start

Figure 8: The fault-tolerant architecture using a transparent proxy

818

6. Related Work

BPELJ [10] is an extended version of BPEL. Java

snippets can be included in BPEL processes for business
logic or fault-tolerance concerns. This approach has
portability problem, since it needs a specific BPEL
engine. AdaptiveBPEL [11] follows an aspect-oriented
approach for dynamically adapting a Web service to
provide both functional and QoS customization.
Adaptation process is policy-driven similar to ours, but
this approach also needs a specially built BPEL engine.
Pegasus project [12] provides a framework for
constructing workflows and mapping these workflows
onto Grid resources. Even though Pegasus has advanced
capabilities for a better performance of workflow
execution, less is provided in fault-tolerance aspect. It
provides only remapping of an entire sub-flow in case of a
failure whatever the reason may be. The prototype
BPEL4JOB [1] also investigate how to incorporate fault
handling and recovery strategy in WS-BPEL for long
running jobs at modeling time. An alternate approach is to
handle these failures at runtime. Authors in [13] study the
impact of runtime optimizations made at the scheduler for
handling workload surges, while minimizing the
reconfiguration overhead.

7. Conclusion and Future Work

In this paper, we presented a design for a fault-tolerant

job-flow manager that can handle failures at runtime using
standard protocols, job-flow patterns and a transparent
proxy. We identified common job-flow patterns and some
reusable fault-tolerant patterns that can be used for their
recovery. We discussed the processes required at
development time for a successful runtime fault-tolerant
behavior in job flows. In future work, we plan to evaluate
our work using a comprehensive set of failure scenarios,
explore automatic generation of mapping between job-
flow patterns and fault-tolerant patterns, and study the
performance impacts of some of these fault-tolerant
patterns.

Acknowledgements

This work was supported in part by IBM, the National

Science Foundation (grants OISE-0730065, OCI-
0636031, REU-0552555, and HRD-0317692).

References

[1] W. Tan, L. Fong, and N. Bobroff. Bpel4job: a fault-

handling design for job flow management. In
Proceedings of Fifth International Conference on
Service Oriented Computing (ICSOC), 2007

[2] Onyeka Ezenwoye and S. Masoud Sadjadi.

TRAP/BPEL: A framework for dynamic adaptation
of composite services. In Proceedings of the
International Conference on Web Information
Systems and Technologies (WEBIST 2007),
Barcelona, Spain, March 2007.

[3] Rosa Badia, Gargi Dasgupta, Onyeka Ezenwoye,
Liana Fong, Howard Ho, Sawsan Khuri, Yanbin Liu,
Steve Luis, Anthony Praino, Jean-Pierre Prost,
Ahmed Radwan, Seyed Masoud Sadjadi, Shivkumar
Shivaji, Balaji Viswanathan, Patrick Welsh, and
Akmal Younis. High Performance Computing and
Grids in Action, chapter Innovative Grid
Technologies Applied to Bioinformatics and
Hurricane Mitigation. IOS Press, Amsterdam, 2007.

[4] Norman Bobroff, Liana Fong, Selim Kalayci, Yanbin
Liu, Juan Carlos Martinez, Ivan Rodero, S. Masoud
Sadjadi, and David Villegas. Enabling
interoperability among meta-schedulers. In
Proceedings of 8th IEEE International Symposium
on Cluster Computing and the Grid (CCGrid-2008),
Lyon, France, 2008.

[5] Ezenwoye, O., Sadjadi, S.M.: Composing aggregate
Web services in BPEL. In Proceedings of The 44th
ACM Southeast Conference, Melbourne, Florida
(2006).

[6] A. Anjomshoaa, M. Drescher, D. Fellows, A. Ly, S.
McGough, D. Pulsipher, and A. Savva. Job
Submission Description Language (JSDL)
Specification, Version 1.0. Global Grid Forum, 2005.

[7] Dieter Cybok. A Grid workflow infrastructure:
Research articles. Concurrency and Computation:
Practice and Experience, 18(10):1243–1254, 2006.

[8] Ian Sommerville. Software Engineering, 8th Edition;
Chapter 18: Software Reuse. Addison Wesley, May
2006.

[9] N. Russell, W.M.P. van der Aalst, and A.H.M. ter
Hofstede. Exception Handling Patterns in Process-
Aware Information Systems. BPM Center Report
BPM-06-04 , BPMcenter.org, 2006.

[10] Michael Blow et al, BPELJ: BPEL for Java, A Joint
White Paper by BEA and IBM, March 2004.

[11] Erradi, A.; Maheshwari, P.; Padmanabhuni, S.
Towards a policy-driven framework for adaptive Web
services composition, Next Generation Web Services
Practices, 2005.

[12] Ewa Deelman et al. Pegasus: a Framework for
Mapping Complex Scientific Workflows onto
Distributed Systems, Scientific Programming Journal,
Vol 13(3), 2005, Pages 219-237.

[13] G. Dasgupta, K. Dasgupta and B. Viswanathan.
Data-WISE: Efficient management of data-intensive
workloads in scheduled Grid environments. To
appaer in Proceedings of IEEE/IFIP Network
Operations and Management Symposium (NOMS),
2008.

819

Supporting Context-Awareness in Web-Based Groupware Development

José Maria N. David1, Marcos R. S. Borges2, José A. Pino3
1Faculdade Ruy Barbosa, Salvador, BA, Brazil

josemaria@frb.br
2Federal University of Rio de Janeiro, PO Box 2324, 20001-970, Rio de Janeiro, RJ, Brazil

mborges@nce.ufrj.br
3University of Chile, Department of Computer Science, Chile

jpino@dcc.uchile.cl

Abstract

Context in groupware development has been
evaluated in some standalone applications in an ad-hoc
manner. Although one of the main goals of groupware
infrastructures deployment is to provide the necessary
flexibility to build groupware applications, most of
them do not supply enough mechanisms in order to
consider the context in which group participants
interact. Consequently, a large amount of not relevant
information could be presented to the user. This paper
presents a brief discussion about the importance of
context elements support in groupware. Some context
features already available in a groupware
infrastructure are discussed, in order for them to be
deployed in a web-based groupware development. As
part of this infrastructure, a context-awareness service
which considers group context is also described.

Keywords: Awareness, Context, Context-Awareness,
groupware, CSCW.

1. Introduction

Groupware infrastructures have been considered as
one of the ways to design and develop suitable
groupware applications. Toolkits have been developed
and used in order to supply the basic components for the
development of such applications. However, one of the
challenges to this approach is that CSCW literature
reports few cases of success and possible flaws in large-
scale groupware toolkits use [6]. They do not consider
challenges related to significant group awareness
information, nor contextual features.

Most toolkits provide support only to collaborative
actives and are not flexible enough to address the social
aspects related to the interaction of geographically
dispersed groups. Usually, they do not consider the need
to change awareness elements accordingly. This means
that they lack mechanisms capable of considering the
dynamic context in which collaborative activities are
accomplished. According to Dourish [5] context is not
stable along with group interaction, and depends on the

circumstances within which it occurs.
For example, consider meeting support systems and

their awareness mechanisms, such as, event log, user
list, contribution graphic chart, and so on. Although
these mechanisms presumed by the designer are
important, only coordinators are interested in graphic
chart visualization. However, at a latter moment, they
could be interested in another chart aimed to focus on
different contribution categories (for example, only
issues and positions). This means that, previous
contribution graphic chart is no longer relevant as
activities proceed. Therefore, it is difficult for
groupware designers to presume a set of awareness
requirements good enough to fulfill group requirements
and, consequently, to promote an adequate level of
group interaction. At the same time, they need to supply
all context information according to each activity
without overloading the workspace.

The goal of this paper is to describe a work aimed to
provide a context-based awareness service to be
coupled in a web-based groupware infrastructure [3].
This service provides some features which are available
as an integrated tool framework, supplying conceptual
tools and guidelines to account for context-awareness
when developing web-based groupware applications.
Through this service we hope to provide the necessary
support for the complex dynamic task considering: the
contextual knowledge of each participant, and its
persistence in group memory, as well as its evolution
according to each integrated groupware application in
different contexts.

Our research interest lies at context issues that
emerge along group interactions. Particularly, we are
not aimed at discussing context elements which
surrounds user physical environment [4].

This paper is organized as follows. Section 2
presents related works both to awareness filtering and
context in groupware activities. Section 3 presents an
infrastructure aiming to support web-based groupware
applications design. In Section 4, the proposed context-
awareness model is discussed. In Section 5,
implementation issues as well as an example of the
possible profiles which could be established through the

820

context-awareness service are addressed. Conclusions
are presented in Section 6.

2. Related Work

Most groupware applications proposed in the
literature discuss awareness mechanisms deployment
based on event notification to provide the user with
information about important cooperative activities [7, 8,
10]. These platforms deal with specific features to
support awareness in shared workspace by using pre-
established components. They hardly ever present
features capable of ensuring that a specific support is
generic and flexible enough, so that the user can modify
his/her workspace according to his/her activities and
interests in the target context.

Groupkit [9] was constructed in order to provide
support for synchronous groupware applications.
However, unlike our approach, this toolkit provides
neither generic components for cooperative applications
capable of being reused in the web, nor dynamic support
to context-awareness.

In the Atmosphere framework [8], pre-defined
context (spheres) allows participants to configure group
contexts, as well as to select suitable context while
performing an activity. However, as far as we are
concerned, Atmosphere does not consider integration
issues between collaborative applications, dealing
especially with asynchronous groupware use.

3. COPSE-Web Infrastructure

Aiming at supporting the development of web-based
groupware application, COPSE-Web was designed. A
tool framework provides facilities for groupware
development considering integration and
interoperability issues. However, its infrastructure is not
prepared for a web-based application development
support and lacks many important features, which will
be required when developing the complex asynchronous
applications.

COPSE1-Web infrastructure was designed in order
to fulfill the requirements of both synchronous and
asynchronous cooperative activities, which are
accomplished in the web-based environment [3]. Being
a comprehensive framework, COPSE-Web provides
facilities for the development of fully integrated web-
based groupware applications with fundamental
services, such as communication, coordination,
awareness and group memory.

COPSE-Web awareness components can be
launched in the environment or instantiated from its
framework in any groupware application. When
instantiated in the environment, awareness components
can be used by any participant who is logged on, but

1 COPSE – COllaborative Project Support Environment

he/she does not necessarily start any application. To
illustrate the point, we can mention the bulletin board
and event log components. They gather data related to
the interactions, which are accomplished in the
environment.

However, these components were not capable to
support dynamic context issues in work group. These
challenges make us notice a need for an infrastructure
capable of offering an architectural support for
groupware designers, using adequate mechanisms which
could represent relevant information about context in
any way. Hence, we need alternative forms to select and
represent context according with interaction evolution.

4. The Proposed Context-Awareness Model

Aiming to fulfill awareness requirements that should

be provided by groupware, we suggest that a context-
based model be observed. We claim that
representational challenge related to the adequate set of
awareness mechanisms in the shared workspace can be
supported. At the same time, we aimed to consider
context as a dynamic issue supplying awareness
components filters to be established along with group
interaction.

Figure 2 illustrates the process where User 1
generates information (I1 and I2) which is represented
by several awareness components in some way. For
instance, considering a collaborative discussion forum,
I1 and I2 could be related to the contributions
accomplished by User 1. By the selection of an
adequate set of awareness components User 2 and User
3 could understand and interpret the work situation
accordingly. At the same time, both of them could focus
their attention on the key workspace area. Otherwise,
User 2 realizes I1 selecting the awareness component
“contribution report” (C1), which presents the average
value of each contribution categories (i.e., question,
position or argument) of User 1. Subsequently, User 3
realizes the same information (I1) with the awareness
component “contribution meter” [1], but in a less
detailed presentation way (C2).

This action is possible because awareness
components are selected according to their role and
responsibilities. So, as a coordinator, User 1 can
identify those participants that contributed as expected.
For example, if the percentage of questions is high, the
coordinator could analyze the awareness profiles
generated by each user selection before any motivated
actions, eventual conflicts resolution, or before
supplying additional contextual information [3].

821

I1 I2

Selected
Awareness
Components
(User 2)

Contextual
Knowledge

Explains

User 1

User 2 User 3

Generates

Selected
Awareness
Components
(User 3)

C1 C3 C2

< >

< >

< >
Profiles

Figure 2. Profiles, awareness and context in
collaborative activities.

In addition, both users realize the information by the
selection of the same awareness component (C3); for
example, the “events report” or the “bulletin board”.
Consequently, both of them can realize the information
I2 with the same focus and point of view (related to C3).
As a result, they can interact easily, and can explain the
work situation arising from the interaction to each other,
because they realize the same context. This means that
they invoke part of the contextual knowledge to
anticipate some actions and decisions [2]. As a result,
they reduce the information overload in the workspace
disregarding useless information.

This model can be deployed both on application
design and configuration along with group interaction.
In other words, filters could be deployed – and
combined –, from application to users’ direction and
vice-versa. From application towards users, filters are
usually established in order to fulfill users’ requirements
and presumed context. On the opposite direction, filters
are defined aiming at selecting which information needs
to persist on the database. On the users’ side, filters are
initially deployed according to the group and each needs
of the role. In the course of the interaction, they are
actively changed according to the context. This may
change over time as users become skilled, requiring a
different set of information when performing their
activities. When combined, these filters (user, group and
role) produce profiles (user, group and role) aiming at
supporting reciprocal awareness. Using such a dynamics
we attempt to support work group context not only as a
representational challenge, but rather, as Dourish [5]
says, as an “interactional problem”.

5. Implementation Issues

In order to provide an infrastructure capable of
supplying the necessary functionality as discussed
previously, we have designed an architecture aiming to
fulfill context requirements. As a part of this
infrastructure, a context-based awareness service was
designed aiming to provide adequate awareness
information related to the tool context as well as the

users’ and group’s contexts. This service was added to
the COPSE-Web tool framework, based on the
previously discussed model.

Our claim here is that in order to solve the awareness
problem that was stated previously, two points should
be addressed: (i) the selection; and (ii) the awareness
artifacts presentation in workspace. Information
presentation is related to the context in which
collaborative activities are accomplished. On the one
hand, awareness mechanisms could be adequately
designed from the knowledge of this context. On the
other hand, however, appropriate data visualization for
the application and for the participant’s role could make
each participant aware of the necessary context to
accomplish his/her activities. As a result, information
overload could also be reduced and, at the same time,
modifications in the group interface could reflect
preferences, behaviors and context of the group.

Besides the fact that some servers have already
coupled to the environment, in COPE-Web architecture
we propose the development of an additional server: the
Profiles and Awareness Server. This server is directly
associated to the profile mechanisms which offer
generic awareness components for the environment, or
specific awareness components for groupware
applications. Profile mechanisms module supplies the
necessary functionality for the construction, storage and
queries of awareness profiles. Through the profile
analysis we intend to supply suitable awareness
components for an activity to be accomplished. The
awareness components are directly related to the group
participants’ preferences and individual interests
(personal profile), to the role carried out by him/her
(role profile) or to the goals and expected results for the
group (group profile).

Profiles are built as activities are accomplished. They
are represented as XML files. If updated frequently,
according with filters composition (application, users
and role filters), their analyses are sources of
information to guide coordination actions.

5.1. Example of Profiles and Context in
COPSE-Web Infrastructure

Several groupware applications have been
implemented using the COPSE-Web framework. They
have been developed under the context-awareness
service concept. For example, a pre-meeting support
system was developed considering the contextual
elements available in the COPSE-Web framework.
Developers were capable of reusing components from
Awareness package. Among these components we can
mention the event log component in which events
related to the carried out activities are shown according
to the user’s interest.

822

Figure 3 - Example of Awareness Service
Interface (participant profile generation)

Other awareness mechanisms were deployed at the

design time, for instance; graphical charts representing
not only the participation and contribution rates, but the
impact of an item. Suppose that only coordinators are
interested on information concerned with each of these
mechanisms. According to the presented model, they are
filtered by every participant. However, if two
coordinators (User 2 and User 3, for example) do not
filter the bar chart which presents the percent of issues
raised by each participant, both of them visualize the
same information with the same focus. In addition,
through the profile analysis each of them knows that the
other knows that information allowing, as a
consequence, that their contexts could be aligned.

The profile package aims to extend the context
support in COPSE-Web. Part of the profile package is
the mechanism of selection of awareness components
generating profiles. As Figure 3 illustrates, by selecting
one of the four types of profile items (participant, group,
role and role in group), each participant can view all the
awareness and data grouping components which were
filtered by the chosen application, in advance.

6. Conclusions

Context in groupware development has been
considered in stand-alone – non-integrated –
applications. Using COPSE-Web framework,
developers may benefit from some tools, models and
guidelines already available, leading them to the context
representation. At the same time, we aimed at
preserving the inherent dynamic behavior of web-based
groupware application providing awareness elements to
each associated work group context, namely: individual
and role context, as well as group context. This issue
has been possible not only using the designed
architecture but also using the available selection
mechanisms, which filters awareness elements and
generates different profiles. Furthermore, the analysis of

these profiles supply context information for both the
participants and the coordinators.

We have evaluated the awareness service in a
meeting context. Case studies have frequently been
carried out in pre-meeting systems. The main issue
observed is related to the work burden for each
participant when analyzing awareness profiles.
Coordinators have generally reported the work overload
during collaborative activities to decide the most
appropriate action. This fact becomes intensive when
the number of participants increases. So, we have to
evaluate the proposed solution taking into account small
groups.

References

[1] M. R. S. Borges, J. A. Pino, “Awareness Mechanisms for

Coordination in Asynchronous CSCW”. WITS’99,
Charlotte, N.C., 1999, 69-74.

[2] M. R. S. Borges, P. Brézillon, J. A. Pino, J. Ch. Pomerol,
“Dealing with the effects of context mismatch in
groupwork”. Decision Support Systems, 43(4): 1692-
1706, 2007.

[3] J. M. N. David, M. R. S. Borges, “Designing
collaboration through a web-based groupware
infrastructure”. International Journal of Computer
Applications in Technology, v. 19, n. 3/4, 2004, 175-183,
Inderscience.

[4] A. K. Dey, G. D. Abowd, D. Salber, “A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications”. Human-
Computer Interaction (HCI) Journal, 16(2-4), 2001, 97-
166.

[5] P. Dourish, “What We Talk About When We Talk About
Context”. Personal and Ubiquitous Computing, 8(1),
2004, 19-30.

[6] S. Greenberg, “Toolkits and interface creativity”. Journal
Multimedia Tools and Applications, 32(2), 2007, 137-
234.

[7] W. Prinz, “NESSIE: An Awareness Environment for
Cooperative Settings”. Proc. of the 1999 Sixth European
Conference on Computer-Supported Cooperative Work
(ECSCW), Copenhagen, Denmark, Kluwer, Sept., 1999,
391-410.

[8] M. Rittenbruch, “ATMOSPHERE: A Framework for
Contextual Awareness”. International Journal of Human-
Computer Interaction, 14(2), 2002, 159-180.

[9] M. Roseman, S. Greenberg, “Building Real Time
Groupware with Groupkit, a Groupware Toolkit”. ACM
Trans. on Computer-Human Interaction, 3(1), 1996, 66-
106.

[10] M. Sohlenkamp, W. Prinz, L. Fuchs, “POLIAwaC:
Design and Evaluation of an Awareness Enhanced
Groupware Client”. AI & Society, Vol. 14, 2000, 31-47.

823

__
* Currently working at Hewlett Packard, 8000 Foothills Blvd, Roseville, CA 95747

“Object-Z to Java/OO-Perl”: A Conversion from Object-Z to Executable Skeletal
Code with Dynamically Checkable Design Contracts

Sherri M. Sanders* and Cui Zhang
Department of Computer Science

California State University, Sacramento, CA 95819-6021
sherri.sanders@hp.com* zhangc@ecs.csus.edu

Abstract
 Designing reliable, correct, and robust programs
is a challenge today. By using formal specifications
for requirements and design-by-contract at the
program design level, software developers can define
systems using unambiguous syntax and semantics.
This leads to software that can be rigorously verified
and analyzed, ensuring that the reliability, correctness,
and robustness of the systems can be significantly
improved. This paper presents a tool called “Object-Z
to Java/OO-Perl”, which provides an automated
conversion from Object-Z specifications to executable
Java and object oriented Practical Extraction and
Report Language (OO Perl) skeletal code with
dynamically checkable design contracts. This
conversion extends Java and OO Perl with the design-
by-contract mechanism and bridges the semantic gap
between formal specifications in Object-Z and design
contracts at the programming language level.

1 Introduction
 Software program designers are challenged to
produce software that, over time, across platforms and
through modifications and upgrades, will remain
reusable and reliable. Reliable software touts two
major features: correctness and robustness.
 Unfortunately, requirement specifications that
use natural language can be ambiguous and lead to
numerous errors when developing large, complex
software programs. By using formal specifications for
requirements and design-by-contract [9,10,14] at
programming language level, software developers can
define systems using unambiguous syntax and
semantics, which can be rigorously verified and
analyzed, therefore; the correctness and robustness of
the systems can be significantly improved. This paper
presents a tool called “Object-Z to Java/OO-Perl”. It
utilizes the advantages of a formal framework by
extracting the exact specification in Object-Z [15] and
generating Java and OO Perl skeletal code. It captures
the formally specified requirements and translates them
into skeletal code with dynamically checkable design
contracts [9,10,14]. Originally, design-by-contract is
not a built-in mechanism of either Java or OO Perl.

 The tool “Object-Z to Java/OO-Perl” is an
enhancement to the previous tool Object-Z-to-Java
[13], which is limited by its use of only a small subset
of Object-Z data-types, i.e., primitive data-types. The
development of both tools was inspired by the research
of several available works on structural mappings from
Object-Z to C++ [3,6,12] to Eiffel and to Java [4], as
well as from CSP to Java [1].
 The tool presented by this paper incorporates
additional Object-Z data structures, which includes sets
and set operations. It provides a conversion from
Object-Z specifications to executable Java and OO Perl
skeletal code with dynamically checkable design
contracts. It also improves the Graphical User
Interface (GUI) to facilitate usability. Java and OO Perl
are chosen for this conversion because of their
extensive use in development.
 The Object-Z framework is divided into units or
blocks for basic type definitions, global constants
and/or variable definitions, and schemas. Schemas
define the system’s state and its operations. Each class
schema has a class name, the possible generic
parameters, and their properties. The Z schemas are
extended to define classes, thereby, providing a clear
visual representation of the scope of the definition.
 “Object-Z to Java/OO-Perl” can extract the
design contracts from formal specifications in Object-Z
and map them directly to the implementation skeletal
code with dynamically checkable design contracts.
This approach blends the benefits of formal methods
with the strength of design-by-contract and it provides
the ability to test and directly relate assertion error
messages of the executable code to the formal
specification. By providing a connection between
formal specification and implementation code, this tool
is effective in helping the programmers bridge the
semantic gap between distinct formal specification and
dynamically executable design contracts at the code
level.
 Tools supporting formal methods range from
“heavy weight” model checkers and theorem provers to
“light weight” type checkers/type setters such as ZML
document markers (XML for Z) and easy-access
browsers for formal specifications [16]. The
development of more “light weight” tools, such as
“Object-Z to Java/OO-Perl” can help gain a broader

824

user base for the application of formal methods in
software development practice.

2 The “Object-Z to Java/OO-Perl” System

2.1 Overview of the System
The “Object-Z to Java/OO-Perl” system provides

the following:
� A direct mapping of design contracts from formal

specification level to programming language level,
giving developers the opportunity to focus on the
system’s functional requirements specification

� A graphical representation of the Object-Z
specification to aid in defining the system
functional requirements

� A mapping from Object-Z to either Java or OO Perl
to assist the understanding of the relationships
between formal specifications in Object-Z and
design contracts in OO programming languages

� An extension to Java and OO Perl with the design-
by-contact mechanism to aid in dynamic program
analysis

 A graphical user interface (GUI) interacts with
system developers to capture Object-Z specifications.
The GUI can help developers become proficient in the
Object-Z notation and provide a level of abstraction
between the analysis and design of the contracts and
their implementation.
 The raw input data for the Object-Z specification
collected from the GUI is converted to “tagged” data
elements in an XML (eXtensible Markup Language)
document. W3C [17] developed XML and the
methods for defining the XML-based data models.
The XML DTD (Document Type Definition) is the
model used in this system. The simple text-based
solution provides an easy to learn implementation
model, which is made up of a set of fundamental units
or building blocks [17] used for data validation.
 The “Object-Z to Java/OO-Perl” system uses a
rule-based approach for mapping the Object-Z data
structures to Java and OO-Perl. The XML DTD
captures the characteristics, such as visibility, type,
structure, and name, of each Object-Z element. The
“Object-Z to Java/OO-Perl” system then determines
the mapping structure from Object-Z to executable
skeletal code based on the specified characteristics.

“Object-Z to Java/OO-Perl” provides a direct
mapping of design contracts from the formal
specification to the OO programming. As an extension
to [13], Table 1 shows the mapping from Object-Z to
both Java and OO Perl. As defined by A. Harry [5],
the following data types and structures make up the
Object-Z domain: 1). User-defined identifiers, 2.) Data
types, 3.) Basic types such as predefined types and sets,
given types, free types, 4.) Compound types such as
sets, bags, and sequences, and 5.) Schemas. The
“Object-Z to Java/OO-Perl” system handles data-types

including sets, sequences, bags, and operations on
these data-types.

Table 1: Mapping between Object-Z and Java/OO-Perl

2.2 Software System Architecture

Figure 1: Software System Architecture

The software system architecture for “Object-Z to
Java/OO-Perl” is illustrated in Figure 1. The
functionality of the components is listed below.
� Main Control System (MCS) – The MCS is the

primary control system that creates and presents a
series of successive GUI panels that capture the input
for the Object-Z specification. The input passed to
the MCS is piped to the XML manager. When the
user has completed entering data for the Object-Z
class schema, a well-formed XML document,
(“CLASSNAME”.xml) is created. That XML
document is used by the “Skeletal Code Generator”.

825

� Graphical User Interface (GUI) – The GUI is
composed of a series of successive Java Swing
Applets with a menu structure. The initial applet
displays buttons that provide the user the option of
creating a new Object-Z schema or generating a
skeletal class from a previously created XML
document. It also presents a menu where the user
can create a new Object-Z schema and traverse that
path, exit to the main page or exit the system.
� XML Manager – The XML manager is responsible

for creating the XML document for the system. Each
time it is called by the MCS, new raw data is passed
to it and the manager then recreates the XML
document with the existing data and the new input.
Any changes to previously entered data will be
queued as new data. This subsystem is made up of
an XML DTD file, the class.dtd file, which defines
the XML tag structure by listing all permissible
elements. This document is essential to ensuring that
data is validated and the “CLASSNAME”.XML
document is well formed.
� Generic Code Manager – This generic code manager

creates a new SAX parser object, which accesses and
processes the “CLASSNAME”.XML file. The data is
then tokenized by the SAX parser and passed on to
the Skeletal Code Generator.
� Skeletal Code Generator – The skeletal code

generator uses a set of rules to convert the Object-Z
data types to either Java or OO Perl data types. It
then converts the Object-Z specification to design
constructs in either Java or OO Perl (language
determined by user).

2.3 Conversion Rules
The conversion from Object-Z data structures to

Java and OO Perl data structures is accomplished by a
set of conversion rules. The rules originate from the
tagged elements of the XML document. These rules
are individually based on the target programming
language. The conversion of basic types, numeric
operations and Boolean operations from Object-Z to
Java, requires only the use of Java’s predefined,
primitive types as well as Java’s arithmetic and
Boolean operations.

Perl is very similar, with regard to converting
basic types; however, it is unnecessary to declare a
variable type or size. Although specific symbols are
used to characterize variables, they do not need to be
typed or type cast. $VAR represents a scalar or
variable, @VAR represents a list or array, and %VAR
represents an associative array or hash.

One advantage of using Perl is the use of the
hash abstract data structure. Perl’s hash data structure
is composed of a collection of key/value pairs, where
each key is associated with exactly one value. This
allows a one to one mapping of the Object-Z set

operations “dom” and “ran”, where the Perl hash key
maps to the return value of the “dom” function and the
Perl hash value maps to the return value of the “ran”
function. Java also provides a one to one mapping
when using an ArrayList of lists, similar to a
multidimensional array.

Mapping compound structures to Java requires a
different process. In the “Object-Z to Java/OO-Perl”
system, state and formal elements can take any basic or
compound structure. If an element type is
characterized as anything other than a variable, it is
converted to an ArrayList in Java and either an array or
a hash in Perl. The ArrayList is used instead of the
array data structure because the ArrayList can contain
an element of any type without being predefined.

Table 2 shows two mapping examples for both
basic and compound types from Object-Z to Java and
OO Perl.

Table 2: Mapping Example from Object-Z to Java and
OO Perl

 There is a mapping for set operations from
Object-Z to Java and OO Perl. Table 3 illustrates the
mapping from Object-Z for representative set
operations to Java and OO Perl. In this table,
“enrolled” is a set of User-Defined Type (UDT)
STUDENT, “s?” is a method input parameter of UDT
STUDENT, “#enrolled” is the number of elements in
the set “enrolled”, “maxSize” is a constant with some
defined integer value, and “enrolled” along with
“enrolled_New´” (enrolled prime) represent the
“enrolled” set with a change in state.
 In the Pre-condition case in Table 3, the
ArrayList class is used for implementing an Object-Z
set structure in Java. This allows an element of any
type to be inserted or removed from the list.
“Contains”, which is a method provided by ArrayList,
returns true if the list contains the specified element.
When mapping a list structure, to either Java or OO
Perl, an Assertions class is created for processing a
subset of Object-Z compound set operators. The
Assertions class implements a set of Boolean methods,
two of which are, “memberOf” and “bagUnion”.

826

These Assertions class methods are called from within
the class invariant, pre-condition or post-condition.

Table 3: Mapping from Object-Z Set Operations to
Java and OO Perl

 When mapping a set structure to Java, a number
of additional elements are defined, such as
“ArrayName”, “ArrayName_New, “ArrayName”_Size,
“ArrayName”_New_Size. The Perl language provides
the same functionality by referencing the array and
array size as, %“ArrayName”, %“ArrayName_New,
$#“ArrayName”_Size, $#“ArrayName”_New_Size”.
In the Class Invariant case in Table 3, for mappings to
both Java and OO Perl skeletal code, the number of
elements is compared to maxSize and returns true as
long as the value is less than or equal to maxSize.
 In the final Post-condition case in Table 3, the
method “bagUnion”, requires three input elements, the
old list, the new list, and the element that was added to
the old list. It performs a comparison between, the
“enrolled_New´” list and the union of the old
“enrolled” list with the input element “s”.

2.4 Implementation
The programming language used to develop the

“Object-Z to Java/OO-Perl” system tool was Java,
version 1.4.2_14. BlueJ 2.2.0 was used to edit and
compile the source code [7,8]. BlueJ is a free,
interactive Java environment developed and
maintained by a joint group from Deakin University,
and the University of Kent. The implementation code
was completed in December 2007.

3 Example
Because of the page limitations of the paper, this

section only presents the system converting an Object-
Z specification to OO Perl; however, the system is
fully capable of converting to both OO Perl and Java.
The Object-Z class schema “text representation” in
Figure 2 is not created until all data has been acquired

through the GUI, however; it is presented first in order
to give the reader a clearer picture of what will be
defined. The class Object-Z schema example is called
the Library class and within it, there are five elements
in the visibility list, one Free Type, one UDT, one
constant, one state variable, one initial state, and one
public operation schema. Figure 2 illustrates the
Library Object-Z Schema.

Figure 2: A Library Object-Z Class Schema

The user is able to select from a number of
“Object-Z Class Schema” menu options; however, if a
“CLASSNAME”.XML document does not yet exist and
the user does NOT choose to create a new Object-Z
schema, valid data cannot be guaranteed. Figure 3 is
the screen shot of the panel “Object-Z Class Invariant
Schema” that assigns value to the class constants and
specifies the class invariant for the system.

Figure 3: Object-Z Class Invariant Schema

827

Figure 4 illustrate a section of OO Perl skeletal
code generated from the systems conversion of the
Library class schema. The checkClassInvariant()
subroutine (sub) is called at the beginning and end of
every sub, including the constructor. The figure
illustrates the variables, constants, constructor, the
checkClassInvariant() and add_Book() subs. The
checkClassInvariant() sub calls the boolean subs of the
Assertions Class. The specific conditions are checked
and the sub returns a value of true or false for each
condition. The return values of all checked conditions
are evaluated using logical ands, resulting in the final
checkClassInvariant() result.

The add_Book() sub takes one parameter
oneBook of type BOOK, and returns an int value. The
returned value is -1 by default if either the pre- or the
post- condition fails. The return values can also be
modified by the programmer in the body of the method
to make the values more meaningful.

Figure 4: Perl Library Class, Variables and
Constructor, Class Invariant and add_Book Method

Figure 5 depicts the Perl Assertions Class. This
class is created for each new skeletal class that is
generated. It contains subs that allow processing,
within the generated skeletal classes by
checkClassInvariant(), of set, sequence and bag
operations. The Assertions class currently holds

methods that process only a subset of all Object-Z
operations. The methods “bagUnion” and
“memberOf” are displayed in Figure 5.

Figure 5: PerlAssertions Class, Skeletal Code

4 Comparison and Future Work

This work is inspired by previous efforts in
converting Object-Z specifications to object-oriented
programming languages [1,2,13,14]. However, this
work is aimed at adding design-by-contract written in
logic assertions into Java and OO Perl and at bridging
the semantic gap between formal specifications in
Object-Z and design contracts in Java and OO Perl.
The automatically generated skeletal code in Java and
OO Perl provides programmers with flexibility in
implementation details including the selection of
algorithms. By building assertions of design contracts
into programs and by guaranteeing the semantic
consistence of design contracts between formal
specification and implementation, more reliable and
correct systems can be developed; thereby decreasing
testing time and development cost while increasing
system reliability and robustness.

As a significant extension to [13], the current
“Object-Z to Java/OO-Perl” system moves forward in
this direction to translate formal specifications into
implementation skeletal code by delivering a system
with improved functionality. Compared with [13],
which is limited to the provision of Object-Z primitive
data types only, this project has succeeded in
supporting a much larger subset of Object-Z basic
types, compound types and their operations for
conversion from specification to implementation.
These specific types provided now consist of UDTs,
free types, sets, bags, and sequences necessary for the

828

specification of realistic problems. The conversion
rule set, which incorporates basic operations and a
subset of compound operations, was made possible by
enhancing the detail of the tags, represented in the
XML DTD, and the data, collected by in the XML
Manager. The XML DTD continues as the structure by
which the specification’s syntactic errors are caught
and transferred to the user.

A second OO programming language, Per, was
added for conversion in order to provide the user with
additional options. The GUI offers improved menu
options; file navigation directly to the directory
containing the XML documents; and more detailed
labeling. The system now provides a graphical
representation of the Object-Z class schema, the user is
given the option of opening, and editing any of the
newly created documents, which include the new
implementation skeletal class, any UDT skeletal class
documents that may have been created, and the Object-
Z class schema. The system also provides users with
the opportunity to experiment with and gain a better
understanding of formal methods and their usefulness.

There are still a number of ways to extend this
system further. Currently, a statement is printed when
an assertion fails that provides the user with
information about what and where the assertion failed.
By adding exception handling for the failed assertions,
the program could require less user interaction and
move more towards program automation.

Offering additional basic and compound
operations like, existential and universal quantifiers,
domain and range subtraction and restriction will help
to improve the system. Creating a more generic
framework that provide multiple language support such
that the system is able to convert from a set of formal
specifications to a set of implementation programming
languages would produce wider acceptance and
enhance the system further. A very useful addition
would be a help menu along with meaningful
comments to display detailed information and
instructions about elements of the GUI panels.

This system uses the XML DTD as a means of
modeling the XML document data. However, XML
schema definitions (XSDs) provide greater
functionality and flexibility when modeling the XML
document data. The XSD supports a variety of data
types, as well as uses more familiar XML elements and
attributes, whereas XML DTD only supports strings or
string lists and is stricter and less intuitive [11]. In
future versions, using XSD can improve the
expressiveness of the XML representation for this type
of conversion.

References
[1] C. Fischer. (2000). “Combination and
implementation of processes and data: from CSP-OZ
to Java”. PhD thesis. University of Oldenburg.
[2] C. Fischer. (1999).“Software development with
Object-Z, CSP and Java: A pragmatic link from formal
specifications to programs”. Formal Techniques for
Java Programs. Technical Report 251. Fernuniversität
Hagen.
[3] M. Fukagawa, T. Hikita, and H. Yamazaki.
(1994). “A Mapping System from Object-Z to C++”.1st

Asia-Pacific Software Engineering Conference
(APSEC94). IEEE Computer Society Press.
[4] Griffiths. (1995). “From Object-Z to Eiffel: a
rigorous development method”. Technology of Object-
Oriented Languages and Systems: TOOLS 18. Prentice
Hall.
[5] Harry. (1996). “Formal Methods Fact File VDM
and Z”. John Wiley & Sons. Baffin Lane, Chichester.
pg. 1-22, 173-292.
[6] W. Johnston and G. Rose. (1993). “Guidelines for
the Manual Conversion of Object-Z to C++”. SVRC
Technical Report 93-14.
[7] M. Kölling and D. J. Barnes. (2006). “Objects
First with Java: A Practical Introduction using BlueJ”.
3rd Edition, Prentice Hall.
[8] M. Kölling . (2007). “BlueJ – The Interactive Java
Environment”. Teaching Java – Leaning Java.
http://www.bluej.org/index.html
[9] Meyer. (1992). Eiffel: The Language. Prentice
Hall.
[10] Meyer. (1997). Object-Oriented Software
Construction. Prentice-Hall.
[11] M. Morrison. (2006). “Sams Teach Yourself XML
in 24 Hours”. 3rd edition. Sams Publishing.
[12] G.-H.B. Rafsanjani and S.J. Colwill. (1992).
“From Object-Z to C++: A Structural Mapping”. Z
User Meeting (ZUM'92). Springer-Verlag.
[13] S. Ramkarthik, C. Zhang. (2006).“Generating
Java Skeletal Code with Design Contracts from
Specifications in a Subset of Object Z”. 5th IEEE/ACIS
International Conference on Computer and Information
Science (ICIS 2006). pp. 405-411.
[14] K. Rangarajan. (2000). “Design by Contract for
Java using JMSAssert”. A white paper document.
[15] G. Smith, (1999). “The Object-Z Specification
Language”. Kluwer Academic Publishers.
[16] J. Sun, J. S. Dong, J. Liu and H. Wang. (May
2001). “Object-Z Web Environment and Projections to
UML”. 10th International World Wide Web
Conference (WWW-10). ACM Press. pages 725-734.
Hong Kong.
[17] R. Wagner and R. Mansfield. (2003). “XML All-
In-One Desk Reference for Dummies”. Wiley
Publishing. Inc., New York, NY

829

An Empirical Study on Modularization of Object Oriented Software ∗

Jing Liu‡#, Bin Liu†, Chi K. Tse‡ and Keqing He#

#State Key Laboratory of Software Engineering, Wuhan Univ., Hubei, China
†Computer Science Dept. Wuhan Univ., Hubei, China

‡Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic Univ., Hong Kong

Abstract

Object-oriented programming is supposed to produce
better modularized structure than structural programming
in that it encourages related state and behavior to be or-
ganized together in the form of classes, thus facilitating
reuse and maintenance. To test whether classes in object-
oriented software are well modularized, we conduct empir-
ical studies on real world object-oriented software. By em-
ploying method from network analysis, object-oriented soft-
ware structures are characterized as networks of methods.
Metric and methods from community discovery research
are applied to the analysis of modularization. From the
empirical results, we conclude that not all object-oriented
software classes are well modularized and there is a need
for research on modularization improvement for classes of
objected-oriented software.

1 Introduction

In 1972 Parnas first introduced information hiding as an

approach to devising modular structures for software de-

sign. This approach had a tremendous impact on software

industry. It contributed to the development of abstract data

type programming languages, object-oriented design and

programming, and the discipline of software architecture.

A fundamental approach to improving software devel-

opment has been to modularize the design by splitting the

implementation of the solution into parts [1]. Program parts

can sometimes be termed modules. Modules often consist

of data structures and one or more procedures/functions. In

object-oriented programming paradigm in particular, mod-

ularization is realized by encapsulation, in which classes are

∗This work was supported by the Ph.D. Programs Foundation of Min-

istry of Education of China under grant No. 20070486065; the Natural Sci-

ence Foundation of China under grant No. 90718005 and No.90604005;

the National Basic Research Program of China (973) under grant No.

2007CB310800. and No. 2006CB708302.

used to encapsulate related variables and functions.

Object-oriented software is supposed to be better than

structural programming in that it encourages organizing re-

lated state and behavior together in the form of classes,

facilitating reuse and maintenance. Although much re-

search has been devoted to automatic system reorganiza-

tion in structural programming paradigm [2]–[4], and some

research on grouping classes into subsystem in object-

oriented software [5]–[6], there is very little done on im-

proving the modularization of classes in object-oriented

software. This might result from the presumption that

classes in object-oriented software have well modularized

structures.

In this paper, we test this presumption by conducting an

empirical study on some object-oriented software. Soft-

ware structures are characterized as networks, in which

nodes represent methods, and edges represent interactions

between methods. The modularizations of these networks

are evaluated by a metric from the community discovery re-

search, namely modularity.

Similar work was done by Lisa K. Ferrett etc. [19] who

did an empirical comparison of modularity of procedural

and object-oriented Software. Instead of comparing the in-

herent structure, however, their work focused on statistical

values such as number of lines per module and number of

parameters per module.

The organization of the paper is as follows: Section 2

lays the foundation of this paper by first giving a defini-

tion of method network, then illustrating the relationship

between class and community. A concept from the commu-

nity discovery community, modularity, is introduced and re-

lated with the software modularization. Section 3 presents

the results from the empirical studies on real world soft-

ware. Limitations of this work are discussed in Section 4.

Finally, Section 5 concludes the paper and presents the pos-

sible work for future study.

830

2 Method Network, Class and Community

2.1 Definition of Method Network

Real-world software systems can be regarded as net-

works, in which software components, such as objects,

classes, packages, subsystems or modules, are abstract

nodes and the relationships (or interactions) between com-

ponents are abstract edges [9]–[10].

In this paper, to study the modularization of classes, we

use network structure to characterize software structure at

method level, namely method network. In a method net-

work, each node represents a method, and an edge repre-

sents the interactions between two methods.

Here we consider two kinds of interaction between meth-

ods. One is the method calling interaction. In this case, an

edge is drawn between the ”callee” and the ”caller”. The

other kind of interaction happens between methods within

the same class when the two methods refer to the same in-

stance variable. For example, if both method A and method

B refer to an instance variable c, then an edge is drawn be-

tween nodes A and B. Presently, no distinctions are made

between these two kinds of interactions in the method net-

work.

Definition The method network of an object-oriented

software system is an undirected graph represented by MN
= (M , E). The set of nodes M corresponds to the methods

of the software system, and the set of edges E represents

the interactions between methods.

Parent(x) is an operator returning the parent class of

method x.

InstanceV ar(x) is an operator which returns the set of

all the instance variables referred by method x.

Call(x) is an operator returning the set of all the meth-

ods that method x calls.

Given two methods p, q, there are two corresponding ver-

tices in the network p, q ∈ M .

If Parent(p) = Parent(q) and

InstanceV ar(p)
⋂

InstanceV ar(q) �= φ, then (p, q) ∈
E;

If q ∈ Call(p), then (p, q) ∈ E.

Figure 1 gives a simple example of a method network.

2.2 Class and Community

Over the last decade, complex networks have been exten-

sively studied within the mathematics, physics, biological

science, nonlinear science, information science, and engi-

neering communities [7]–[8]. Networks are used to char-

acterize the structures of various systems. Methods from

statistics, graph theory, etc. are applied in network analy-

sis. As a result, many interesting phenomena are discov-

ered, such as the scale-free and small-world characteristics

of most real world network.

In the investigation of complex networks, identifying

highly interconnected parts, namely communities (function-

ally related proteins, industrial sectors, groups of people,

etc.), is crucial to the understanding of the structural and

functional properties of various networks [11].

Community structure refers to the division of network

nodes into groups within which the network connections

are dense, but between which connections are sparser [12].

Community discovery techniques have been successfully

applied to the discovery of interest groups in social network

[13] and functionally related proteins in biological networks

[14].

In object-oriented programming, classes are used to en-

capsulate variables and methods. It has the advantage

of grouping together data and their operations. Methods

within a well designed class should be closely related by the

variables they work on. As required by the software design

principle of low coupling and high cohesion, inherent inter-

actions should be as intense as possible, while interactions

between methods from different classes should be kept at a

low level if not evitable. Therefore, when characterized by

a network, methods within the same class could be regarded

as a natural community.

The basic idea of our approach is to apply the community

discovery algorithm to the method network extracted from

the source code of the studied software. Methods divided

by the classes they belong to formed a natural division of

the network. If an object-oriented software has a well mod-

ularized structure, the natural division by classes should be

similar to those obtained from the community discovery al-

gorithm. Otherwise, we might want to reconsider the struc-

ture of the software under study.

2.3 Modularity

In the research of community discovery algorithms, it is

often difficult to decide how many communities a network

should be split into. Researchers found it necessary to set

up a general criterion of how good a community division is.

Newman and Girvan [15] proposed that the divisions be

evaluated using a measure known as modularity, which is a

numerical index reflecting on how good a particular division

is. For a division with g groups, we define a g × g matrix e

whose component eij is the fraction of edges in the original

network that connect vertices in group i to those in group j.

Then the modularity is defined to be

Q =
∑

i

eij −
∑
ijk

eijeki = Tre − ‖e2‖ (1)

‖x‖ indicates the sum of all elements of x. Physically,

Q is the fraction of all edges that lie within communities

831

Figure 1. A simple example of Method network.

minus the expected value of the same quantity in a graph

in which the vertices have the same degrees but edges are

placed at random without regard for the communities.

If the network has no community structure, Q equals to

0. On the other hand, if the given network does have a com-

munity structure, the larger the values of Q are, the more

accurate a partition is. If Q=1, which is the maximum, it in-

dicates a strong community structure. In general, for typical

real networks the value of Q falls between 0.3 and 0.7.

A good division should be one whose inner connection

is intense while the external connection is sparse. It is the

same feature we want for the software structure. Therefore,

we can use modularity as an indication of the modulariza-

tion of object-oriented software.

Similar quantitative measures, Modularization Quality

(MQ) [20] and its many variants [21]–[23], were also pro-

posed in automatic procedural program restructuring re-

search. All based on the idea of measuring the extent of

cohesion and coupling by comparing the number of the de-

pendencies within and between subsystems.

3 Empirical Results

In this section, we will demonstrate how our approach is

applied to real world object-oriented software analysis. We

have chosen two open source software as the objects of our

study. One is COLT which is an infrastructure for scalable

scientific and technical computing in Java. It provides a set

of Open Source Libraries for high performance scientific

and technical computing in Java. The other one is JMet-

ric, which is an object-oriented metrics analysis tool which

supports metrics calculation for java programs.

They are deliberately chosen to represent two different

categories of software. COLT is a library providing high

performance computation utilities, therefore it emphasizes

performance as well as reusability. JMetric represents the

more general class of object-oriented applications.

Table 1 summarizes the general information of the two

software.

Figure 2 demonstrates the size distribution of all the con-

nected subgraphs that have at least 5 nodes. As can be seen

from the Figure 2, there is only one connected subgraph of

832

Table 1. General information of the studied
software.

COLT JMetric

Class Number 297 87

Method Number 3,141 1,738

Method Connections 20,413 212,936

Largest Connected Subgraph Size 1438 1411

Connected Subgraph Number(size¿5) 40 12

Avg. CBO 6.23 8.91

Avg. LCOM 0.47 0.51

size larger than 1000 in both COLT and JMetric. In JMetric,

all the connected subgraphs are of size less than 25 except

for the largest one. In COLT, however, there are 7 subgraphs

of size around 100.

The JMetric has more than two hundred thousand edges

at the level of method, which is more than ten times that

of COLT. This suggests that the interactions in JMetric are

very intense.

We calculate the CBO and LCOM metrics from the CK

metrics suite [16]. CBO for a class is a count of the num-

ber of other classes to which it is coupled. The coupling

between classes includes the inheritance, collaboration, and

dependency relationships. LCOM value provides a mea-

sure of the relative disparate nature of methods in the class.

Original definition of LCOM is the number of pairs of mem-

ber functions without shared instance variables, minus the

number of pairs of member functions with shared instance

variables. And it arouses many critics. Here, LCOM is

calculated according to the definition in [17]. It equals the

percentage of methods that do not access a specific attribute

averaged over all attributes in the class. A low value of

LCOM indicates high cohesion and a well-designed class.

These two values can give an overall idea of the coupling

and cohesion degree of software

As suggested by the results, the two software show little

difference in the average LCOM over classes. The average

CBO of JMetric is larger than that of COLT, suggesting that

JMetric has a higher degree of coupling. On the whole,

they show little difference as far as the average CBO and

the average LCOM values are concerned.

We compute the modularity of the natural community

structure, namely the natural division of methods by the

class they belong to. The modularity of the original par-

tition of COLT is 0.759 compared with 0.113 of JMetric.

As modularity is indication of modularization degree, the

result suggests COLT and JMetric are very different from

the view of modularization.

The high modularity value of 0.759 in COLT, indicates

that the software is highly modularized and easy to be

reused, which is in accordance with its specific aim of pro-

Table 2. Result of Community Discovery on
the largest connected subgraphs.

Node Edge Original Generated
Modularity Modularity

COLT 1438 7437 0.759 0.789

JMetric 1411 109125 0.113 0.181

Azureus 7560 44926 0.434 0.679

Tomcat 7621 56803 0.447 0.594

viding high performance computation library. Then we ap-

ply the community discovery algorithm1 on its method net-

work, and the modularity values of the generated partitions

are computed. The modularity value of the generated par-

tition of COLT rises from 0.759 to 0.789. The minor in-

crease suggests that it would be difficult to make further

improvements on the modular structure of COLT, and the

software developers should consider the cost accompanied

if they want to make any alterations.

The rather low value in modularity in JMetric, on the

contrary, indicates the software is not well modularized,

which is against the common belief that classes in object-

oriented software have a well modularized structure. Again

we apply community discovery algorithm and compute the

modularity value of the generated communities. The value

rises from 0.113 to 0.181, which is no great improvement

either.

The minor improvement in JMetric, however, tells a dif-

ferent story. There should be something about the structure

of JMetric which makes the division of the software dif-

ficult. Since the network is densely connected, we try to

remove some of the inter community edges from the net-

work. The inter-class method interactions can be resulted

from three kinds of invocations according to the type of par-

ent variable: local variable, method parameter or instance

variable. We removed those method invocations whose par-

ents are instance variables and computed modularity value.

This time, the resulted modularity value is 0.808(compared

with 0.0335 of COLT when the same process is carried).

The great change in modularity value suggests that both the

inner and the outer connections of JMetric classes are very

dense. The software is very compact and it would be diffi-

cult if we just want to reuse part of it.

Further experiments on other object-oriented software,

such as Azureus and Tomcat, demonstrate medium level of

modularity values. Large increases of the modularity val-

1Community Discovery algorithm used here is Local Community De-

tecting Algorithm (LCDA)[18]. Since community structure tends to in-

teriorly densely connected while sparsely connected externally, the main

idea of LCDA is to use clustering coefficient as a criterion to determine the

community structure., Only when its clustering coefficient is more than

a predetermined threshold value, can the community be a member of the

community structure.

833

(a) COLT (b) JMetric

Figure 2. Subgraph size of COLT and JMetric.

ues are witnessed in the generated communities, suggesting

further improvement on the structure modularization is pos-

sible.

4 Threats to Validity

Threat to validity of this experiment can result from the

following three aspects:

• Only regular methods are considered, inherited meth-

ods are not taken into account.

• Not all sorts of coupling and cohesion are consid-

ered. Only two kinds of interactions between meth-

ods are considered: method call and sharing of vari-

ables. These interactions can cover communicational

cohesion,functional cohesion within classes, and only

some of the dependency and collaboration couplings

between classes. However, there are certain coupling

and cohesion left out, for example, sequential cohe-

sion, data coupling or stamp coupling.

• The definition of good modular structure in Object

Oriented software can be controversial. For example,

it is viable, cohesive way to group related methods

without data. However, it is not cohesive in the “con-

nected via data” sense.

However, this research should be seen as exploratory,

and while these threats exist, it does not prevent us from

using the research as a basis for future studies.

5 Conclusion and Future Work

In this paper, we perform empirical study on some

object-oriented software to test whether they are well mod-

ularized at the level of Class.

By employing method for network analysis, we charac-

terize an object-oriented software structure as a method net-

work. And Classes are regarded as natural division on the

methods, or natural communities. The modularity value,

a metric for measuring the quality of a given partition of

communities, is used to measure the modularization extent

of software.

Several object-oriented software are studied. Two are

specifically discussed, COLT and JMetric. Based on the

results from the empirical studies, we make the following

observations:

• Not all object-oriented software classes are well mod-

ularized.

• Modularity value can be used as an indication of the

modularization level, providing software developers

with a guideline for software reusability and struc-

tural improvements.

• Research should be directed towards improving mod-

ularization of classes in some objected-oriented soft-

ware.

• The community discovery algorithm might be useful

in providing software structural improvement.

In the future, we plan to apply the community discovery

algorithms to method networks to improve modularization

of the classes in object-oriented software.

References

[1] Darcy, D.P., et al., “The Structural Complexity of Soft-

ware: An Experimental Test,” IEEE Transactions on
Software Engineering 2005. 31(11): p. 982-995.

834

[2] Hutchens, D.H. and V.R. Basili, “System structure

analysis: clustering with data bindings,” IEEE Trans-
actions on Software Engineering, 1985. 11(8): p. 749-

757.

[3] Schwanke, R.W., “An intelligent tool for re-

engineering software modularity,” Proc. of 13th Inter-
national Conference on Software Engineering. 1991.

p. 83-92.

[4] Muller, H.A., et al., “A Reverse Engineering Ap-

proach To Subsystem Structure Identification,” Prac-
tice, 1993. 5(4): p. 181-204.

[5] Seng, O., et al.,“Search-based improvement of subsys-

tem decompositions”, Proc. of the 2005 conference on
Genetic and evolutionary computation, 2005. p. 1045-

1051.

[6] Wen, Z. and V. Tzerpos, “Software clustering based on

omnipresent object detection,” Proc. of 13th Interna-
tional Workshop on Program Comprehension, 2005.

p. 269-278.

[7] Barabási, A.L. and R. Albert, “Emergence of Scaling

in Random Networks,” Science, 1999. 286(5439): p.

509-512.

[8] Watts, D.J. and S.H. Strogatz, “Collective dynamics

of’small-world’networks,” Nature, 1998. 393(6684):

p. 409-10.

[9] Myers, C.R., “Software systems as complex networks:

Structure, function, and evolvability of software col-

laboration graphs,” Physical Review E, 2003. 68(4):

p. 46116.

[10] Liu Jing, H.K., Ma Yutao, Peng Rong, “Scale Free in

Software Metrics,” Proc. of IEEE Computer Software
and Applications Conference, 2006. p. 229-235.

[11] Palla, G., et al., “Uncovering the overlapping commu-

nity structure of complex networks in nature and soci-

ety,” Nature, 2005. 435(7043): p. 814-818.

[12] Newman, M.E.J., “Detecting community structure in

networks,” Eur. Phys. J. B 38, 321C330 (2004).

[13] Girvan, M. and M.E.J. Newman, “Community struc-

ture in social and biological networks,” Proc. of the
National Academy of Sciences, 2002. 99(12): p. 7821-

7826.

[14] Holme, P., M. Huss, and H. Jeong, “Subnetwork hi-

erarchies of biochemical pathways,” Bioinformatics,

2003. 19(4): p. 532-538.

[15] Newman, M.E.J. and M. Girvan, “Finding and evalu-

ating community structure in networks,” Physical Re-
view E, 2004. 69(2): p. 26113.

[16] Chidamber, S.R., C.F. Kemerer, and C. Mit, “A met-

rics suite for object oriented design,” IEEE Transac-
tions on Software Engineering, 1994. 20(6): p. 476-

493.

[17] B Henderson-Sellers, LL Constantine, IM Graham,

“Coupling and cohesion (towards a valid metrics

suite for object-oriented analysis and design) - Object

Oriented Systems,” Object-Oriented Systems, 3(3),

pp143-158, 1996.

[18] Juan Liu, B.L., Deyi Li, “Discovering Protein Com-

plexes from Protein-Protein Interaction Data by Local

Cluster Detecting Algorithm,” Proc. Fourth Interna-
tional Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), Aug. 2007.Vol. 4, pp. 280-284.

[19] Lisa K. Ferrett, Jeff Offutt. “An Empirical Comparison

of Modularity of Procedural and Object-oriented Soft-

ware,” Proc. of the Eighth IEEE international Con-
ference on Engineering of Complex Computer Sys-
tems,2002. p.173-182

[20] Mancoridis, S., et al., “Using automatic clustering

to produce high-level system organizations of source

code,” Proc. of 6th International Workshop on Pro-
gram Comprehension, 1998. p. 45-52.

[21] Mahdavi, K., M. Harman, and R.M. Hierons, “A mul-

tiple hill climbing approach to software module clus-

tering,” Proc. of International Conference on Software
Maintenance, 2003. p. 315-324.

[22] Shokoufandeh, A., et al.,“ Spectral and meta-heuristic

algorithms for software clustering,” The Journal of
Systems & Software, 2005. 77(3): p. 213-223.

[23] Harman, M., S. Swift, and K. Mahdavi, “An empirical

study of the robustness of two module clustering fit-

ness functions,” Proc. of 2005 Conference on Genetic
and Evolutionary Computation, 2005. p. 1029-1036.

835

Bridging the gap between slicing and model-based diagnosis∗

Franz Wotawa
Technische Universität Graz

Institute for Software Technology
8010 Graz, Inffeldgasse 16b/2, Austria

wotawa@ist.tugraz.at

Abstract

Fault localization is considered an important and diffi-
cult task in the software engineering process. In the last
decades several approaches to fault localization have been
published. Some of them are based on either static or dy-
namic program slicing. In this paper, we present an ap-
proach that combines program slicing with the computation
of hitting sets. Hitting sets are used in model-based diagno-
sis to compute diagnoses from conflicting assumptions. We
introduce the underlying definitions and algorithms of the
approach, and show that the combination of slicing and hit-
ting set computation reduces the number of statement to be
considered. The presented approach does not rely on a spe-
cific slicing methodology and can be used in combination
with static or dynamic slicing.

1. Introduction

Debugging which comprises the activities fault detec-
tion, localization, and repair has been an active research
area for the past decades. Although most of the research
activities can be classified as activities regarding fault de-
tection like formal verification or testing, some effort has
been spent in providing tools for fault localization and even
less for repair. In this paper, we focus on fault localization
and present an approach that combines slicing techniques
with the computation of hitting sets, a technique that origi-
nates from model-based diagnosis.

Program slicing was introduced by Mark Weiser [15,
16]. He argued that programmers use data-flow and control-
flow dependences, and finally slices in order to focus their
attention to the more important statements within the pro-
∗The research herein is partially conducted within the competence net-

work Softnet Austria (www.soft-net.at) and funded by the Austrian Fed-
eral Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsfrderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT).

gram in case of incorrect outputs. Mark Weiser took this
observation and introduced the concept of static program
slices. In [15, 16] a slice is a program where zero or more
statements are removed, and which behaves in the same way
as the original program for the specified variables at a given
location in the program. This definition can hardly be di-
rectly implemented because it requires checking program
equivalence. Hence, Weiser introduced an approximation
algorithm for computing slices in a static way, i.e., only
considering the program source code and no dynamic in-
formation. Because of the static analysis the Weiser-style
slices tend to be larger than necessary for a failure revealing
test case.

In order to make slices as small as possible but without
losing precision, several improvements have been reported.
Some include the use of information about correct program
runs. One example is program dicing where the set differ-
ence between a static slice for a failure-revealing test-case
and the static slice for a program run leading correct out-
puts is computed. Shahmehri et al. [13] pointed out that
dicing is only correct with respect to some very restrictive
assumptions. Other improvements and extensions for static
slicing have been introduced because of the integration of
programming language constructs like procedure calls or
concurrency. Horwitz et al. [6] introduced an algorithm for
computing the system dependence graph that is an exten-
sion of the program dependence graph [2] where procedure
calls can be represented. Static slices can be easily com-
puted from such graphs via graph traversal. Krinke [10]
improved slicing of programs with procedure calls and ex-
tended slicing to handle concurrent programs. Although,
those improvements lead to more precise static slices for
general programming languages, the use of static slices for
debugging is still limited because of their size.

To overcome this problem the concept of dynamic slic-
ing was introduced by Korel et al. [9]. Dynamic slicing
additionally takes care of the program execution and, there-
fore, usually results in smaller slices. But unfortunately
dynamic program slices might not include the faulty state-

836

1. main(int argc, char *argv[])
2. {
3. int red, green, blue, yellow;
4. int sweet, sour, salty, bitter;
5. int i;
6.
7. red = atoi(argv[1]);
8. blue = atoi(argv[2]);
9. green = atoi(argv[3]);
10. yellow = atoi(argv[4]);
11.
12. red = 2*red; //Error:red = 5*red;
13. sweet = red*green;
14. sour = 0;
15. i = 0;
16. while (i < red) {
17. sour = sour + green;
18. i = i + 1;
19. }
20. salty = blue + yellow;
21. yellow = sour + 1;
22. bitter = yellow + green;
23.
24. printf("%d %d %d %d \n",

bitter, sweet, sour, salty);
25. return 0;
26. }

Figure 1. An example program taken from [5]

ments and several extensions like Critical Slicing [1], which
combines program mutations and dynamic slicing, Relevant
Slicing [19], which introduces a potentially depends rela-
tion for the same purpose, and Failure-inducing chops [5],
which combine delta debugging [18] with slicing, have been
reported. Again, precision and improving the size of slices
have been the major driving force of this research. For an
overview on slicing we refer the reader to Kamkar [7] or
Tip [14]. Other applications of slicing to program debug-
ging include work by Kamkar [8]. Most recently Kusumoto
et al. [11] reported on the usefullness of slicing for debug-
ging. In the paper the authors present an empirical study,
which shows that programmers are more effective when us-
ing slices for debugging.

In this paper, we continue research on improving slicing
for debugging. The presented approach potentially leads
to smaller slices and is not restricted to a specific slicing
methodology. Hence, every technique for computing slices
can be used. Before formalizing the approach, we first give
an example. The program we are using is given in Figure 1
and was used by Gupta et al. [5] in their paper. The input
[1,5,8,2] forms a failure-revealing test case. The out-

puts bitter, sweet, and sour at line 24 are incorrect.
For each incorrect output at line 24, we compute a dynamic
slice:

• bitter: {7,9,12,14,15,16,17,18,21,22,24}

• sweet: {7,9,12,13,24}

• sour: {7,9,12,14,15,16,17,18,24}

Informally, the semantics of a slice for a slicing criterion
comprising a variable at a position and a test case can be
stated as the set of statements where each statement con-
tributes to the incorrect computation. In this case we know
that at least one of the statements of the slice is responsible
for the observed behavior. This observation is equivalent to
the following sentence: It is a contradiction to assume that
all statements of a slice are correct. Such contradictions are
also called conflicts in model-based diagnosis [12].

In order to eliminate all conflicts, we have to take one
necessarily not different element from each conflict, i.e.,
slice, and assume that the element, i.e., statement, behaves
not correct. When doing so we eliminate all possible con-
flicting assumptions. The selected elements have an inter-
section with every slice and are called hitting sets. In model-
based diagnosis the hitting sets of conflicts are diagnoses. In
most cases someone is interested in small diagnoses with re-
spect to their size. For our example, we obtain 4 diagnoses
of size 1, i.e., 7, 9, 12, and 24, because these statements
are elements of each slice. If we are only interested in sin-
gle faults, then computing the intersection of all conflicts
would be sufficient. However, in case of multiple faults the
intersection of conflicts can be empty. Therefore, a general
approach cannot rely on intersection.

The paper is organized as follows. In the next section
we start with the basic definitions and give an algorithm
for computing hitting sets. Afterwards, we introduce the
approach and present an algorithm which combines hitting
sets with slices. We further present a small case study and
an extension that handles the closer integration of slicing
and hitting set computation, and finally we conclude the pa-
per.

2. Hitting sets

Model-based diagnosis [12] is a troubleshooting
methodology, which allows computing explanations for a
certainly detected misbehavior directly from the model. Ex-
planations are called diagnoses. Diagnoses are computed
from conflicts, i.e., parts of the model, which lead to an
inconsistency considering the given observations. For this
purpose we use hitting sets, which we define in this section
of the paper in order to be self contained. For the formal
definitions and an algorithm we refer the reader to Reiter’s

837

work [12]. Greiner et al. [4] presented a corrected version
of Reiter’s algorithm.

Hitting sets are defined over a set of sets with the prop-
erty that the intersection of a hitting set with every given set
is not empty.

Definition 1 (Hitting set) A set Δ ⊆
⋃

x∈F x for a set of
sets F is a hitting set iff the intersection of Δ with all ele-
ments of F is not empty, i.e., ∀x ∈ F : Δ ∩ x �= ∅.

A hitting set is minimal if no proper subset of a hitting
set is itself a hitting set. Usually we are only interested
in minimal hitting sets and if not otherwise mentioned we
always refer to minimal hitting sets when using the term
hitting set. Note that the definition of minimal hitting set
is not based on cardinality. For example the set {12} is a
minimal hitting set for {{12,13,15}, {12,14,16}, {12,14}}
but also {13,14}.

Reiter [12] introduced an algorithm for computing hit-
ting sets that has been improved later by Greiner et al. [4].
The algorithm uses the given sets of sets F and constructs
a directed acyclic graph (DAG) in a breadth first manner.
After the construction of the DAG the minimal hitting sets
correspond to some vertices of the DAG which are labeled
with a

√
. The algorithm needs not to compute all possi-

ble hitting sets. Instead the user can specify the maximum
cardinality of the obtained hitting sets. For practical ap-
plications especially in cases where the size of the input is
large, such a boundary value is of great use. The following
algorithm is a variant of the original algorithm where we
eliminated one pruning rule. This elimination is possible
when assuming that F is a sorted collection with respect to
the cardinality of the sets where the left-most element has
the smallest one.

Algorithm Hitting-Set-Computation
Input: A sorted collection F of sets with respect to cardinal-
ity. The smallest set is assumed to be the left-most element
of F . A number MAX > 0 which specifies the maximum
size of the generated hitting sets.
Output: All minimal hitting sets of F .

1. Let H be the growing DAG and L be the empty set.
Generate a new node n, which is the root node of H ,
add it to H , let label(n) and h(n) be the empty set.
Add n to L, let L′ be the empty set and set i = 0.

2. For all nodes n in L do:

(a) From left to right search for a set C ∈ F such
that C ∩h(n) is the empty set. If there is no such
set, a new minimal hitting set has been found and
let label(n) =

√
.

(b) Otherwise, for each x ∈ C do:

i. If there exists a previously handled node m

with h(m) = h(n) ∪ x, then generate a new
arc from n to m.

ii. Otherwise, generate a new node n′ with
h(n′) = h(n) ∪ x, and an arc from n to n′.
If there exists a previously handled node m

with label(m) =
√

, and h(m) ⊂ h(n′),
then close node n′ and let label(n′) = ×.
Otherwise, add n′ to L′.

(c) Let i = i + 1.

3. If L′ is not empty, and i ≤ MAX , let L be L′ and
L′ = ∅, and go to 2.

4. Otherwise, return a set comprising h(n) for all nodes
n with label(n) =

√
.

The hitting set algorithm obviously terminates for every
finite set F and MAX . If F is not empty, then the algorithm
has at least two iterations. All hitting sets can be computed
by setting MAX to the number of elements stored in F ’s
set, i.e., MAX = |

⋃
x∈F x|.

The hitting set DAG for F ={{12,13,15}, {12,14,16},
{12,14}} is given as follows where the values of h for each
node are given under parentheses ({}):

Note that the algorithm has to be called on the sorted col-
lection F ′ = {{12, 14}, {12, 14, 16}, {12, 13, 15}} and not
on the original set F . Hence, we finally obtain 3 minimal
hitting sets.

3. Hitting sets and slices

In this section, we formally introduce our fault localiza-
tion process. We assume a program Π that is written in a
programming language L. We further assume a semantics
of L defined by a function �� : L × Σ → Σ which maps
programs and states to new states. In this definition a state
s ∈ Σ specifies values for variables used in the program.

838

We further assume that the program Π is correct with re-
spect to the grammar of L and halts on every given input.
A test case is a tuple (I, O) where I ∈ Σ is the input and
O ∈ Σ is the expected output. A program Π passes a test
case t = (I, O) iff �Π�I ⊇ O. Otherwise, we say that the
program fails. Because of the use of the ⊇ operator also
partial test-cases are allowed which do not specify values
for all output variables. If a program passes a test case t,
then t is called a positive test case. Otherwise, the test case
is said to be a negative test case. Note that we do not con-
sider inconclusive test cases explicitly. In cases where in-
conclusive test cases exist, we treat them like being positive
test cases. Since we are only considering negative test cases
for fault localization this assumption has no influence on the
final result. A test suite TS for a program Π is a set of test
cases and can be partitioned into two disjoint sets compris-
ing only positive (POS) respectively negative (NEG) test
cases, i.e., TS = POS ∪ NEG∧POS ∩ NEG = ∅.

For a negative test case t = (I, O) ∈ NEG we know
because of the definition that there must be some vari-
ables CVt = {x1, . . . , xk} where for all i ∈ {1, . . . , k}
xi = vi ∈ O and xi = wi ∈ �Π�I follows that
vi �= wi. We call such variables x1, . . . , xk conflict-
ing variables. For each of the variables x1, . . . , xk we
compute a slice S(x1), . . . , S(xk) as follows: S(xi) =
SLICE(Π, 〈t, n, {xi}〉) where SLICE is a function im-
plementing the computation of either static or dynamic
slices, t is a test case, n is the line of the program where
variable xi is known to hold the wrong value. Note that we
have no restrictions on the computation of slices but using
slicing algorithms that are incorrect or produce imprecise
results will cause our approach to compute itself incorrect
or imprecise results. The corresponding conflict set for a
negative test case t is now given as Ct = {S(x)|x ∈ CVt}.
From this conflict set we compute all minimal diagnosis,
e.g., DIAGSt = {Δ|Δ ∈ HS(Ct)} where HS imple-
ments the introduced hitting set algorithms for the given set
Ct.

Before discussing some implications of the above def-
initions we illustrate the approach using our example
program from Fig. 1. Given a test cases that is
described in the introduction we obtain the following
sorted collection of conflicts when using dynamic slic-
ing: F ={{7,9,12,13,24}, {7,9,12,14,15,16,17,18,24},
{7,9,12,14,15,16,17,18,21,22,24}}. From this collection
our implementation of the hitting set algorithms computes 9
diagnoses within a fraction of a second: {7},{9},{12},{24}
are single fault diagnoses and {13,14}, {13,15}, {13,16},
{13,17}, {13,18} are double fault diagnoses.

When having a look at the obtained theory and results
someone might ask why not using the intersection of con-
flicts directly instead of computing minimal diagnoses us-
ing a hitting set algorithm? To answer this question, we

first define the intersection formally as INTERSECTt =
{{n}|n ∈

⋂
x∈Ct

x}. From this definition follows that
for every set {i} ∈ INTERSECTt, i itself has to be
an element of every conflict. Accordingly to the defini-
tion of hitting sets and diagnosis, {i} would also be ele-
ment of DIAGSt. Hence, all elements of INTERSECTt

are single fault diagnosis of DIAGSt. But in cases where
INTERSECTt is empty, DIAGSt still provide usefull
information, e.g., that there are no single fault diagnoses.
The same resutls cannot be obtained when using the inter-
section operator. Therefore, we conclude that the hitting set
computation is more general than computing the intersec-
tion only. The following corollary summarizes these find-
ings.

Corollary 1 Given a program Π and a negative test case
t. The intersection INTERSECTt of all conflict sets for
t given Π is a subset of the set of all diagnosis DIAGSt

for the same conflict set. If INTERSECTt is the empty
set, than all elements of DIAGSt have a size greater than
1, i.e., in this case there are only multiple fault explanations
for a negative test case.

Our diagnosis approach only delivers better results when
there are more different slices. In cases where only one
slice is available because only one output contradicts the
expected output values of a test case, every element of the
slice is a minimal single fault diagnosis. Hence, the ap-
proach does not gain new information in this case.

Corollary 2 Given a program Π and a negative test case
t. If the set of contradicting variables contains only one
element x, then all elements of the corresponding slice
SLICE(Π, 〈ll(Π), {x}〉) are single fault diagnosis.

Note that the above process makes only use of a single
negative test case. It is of course also possible to include
all slices coming from all negative test cases for a particular
program comprising the same input and output variables.
In this case depending on the construction of the test cases
multiple faults becomes more likely.

4. Case study

In order to further evaluate the capabilities of the pre-
sented approach, we started with a case study. This study
includes 5 small programs ranging from 12 to 129 lines of
code. All of the used examples have several inputs and
several outputs. All programs except the first one are im-
plementing digital circuits. The first one is the one from
Fig. 1. Faults were introduced in the program manually.
Test cases were computed randomly using the original pro-
grams as specifications. During random test case generation
a lot of failure-revealing test cases, which make more than

839

1 output incorrect, could be obtained. From the obtained
slices we computed the diagnoses using a Java implementa-
tion of the introduced hitting set algorithm. In all cases the
diagnoses could be obtained within less than a second on a
standard PC.

The statistical information regarding the considered pro-
grams as well as the obtained results are given in Table 1.
example is the program from Fig. 1. alu is a Java im-
plementation of an arithmetic logic unit. 4 bit adder is
a Java implementation of a binary 4 bit adder. c17 is a Java
implementation of a ISCAS85 circuit. The ISCAS85 suite
is used as benchmark suite in the hardware design commu-
nity. Finally, code converter implements a seven seg-
ment code conversion device.

Table 1 gives the lines of code (LOC), the number of
slices, the minimum (Min) and maximum (Max) size of the
slices, the size of the union of all obtained slices (All), the
number of single fault diagnoses (Bugs), where the set of
bugs is the result of the hitting set computation, and the per-
centage of single fault diagnoses with respect to the lines of
code. In all examples the number of single fault diagnoses
is smaller than the smallest slice. If we build the union of
the slices for each incorrect output, the reduction would be
about 50 percent. When using the introduced approach, the
reduction is between 80 to 95 percent. This means that in
the best case only the remaining 5 percent of the source
code has to be considered for further investigation during
debugging.

5. Extensions

It has been shown in various papers, e.g., [15, 16] and
[11], that programmers effectively make use of slices dur-
ing fault localization. Although, the introduced notation of
diagnosis lead to improvements in terms of a reduction of
statements to be considered, it might not work as expected
in all situations. Consider for example the case where only
multiple fault diagnoses are available. A programmer might
gain important information from the diagnoses. But the
listed diagnoses do not allow for providing an overview.
Only diagnosis after diagnosis can be looked at during the
whole debugging process. If considering our example pro-
gram in Fig. 1, we have to analyze the 5 double fault diag-
noses one by one.

In order to overcome this problem, we describe how to
map back diagnoses to some sort of summary slices. For
this purpose, we enhance the information provided by a
slice with a probability value that is assigned to each ele-
ment of the slice. We call such a slice comprising state-
ments and corresponding probabilities a HS-slice.

Let DIAGSt be the set of diagnosis obtained from a set
of slices F for a negativ test case t, and a program Π using
the hitting set algorithm. For each diagnosis Δ ∈ DIAGSt

we compute its probability. This probability is equivalent
to the probability of the state that all elements in Δ are in-
correct and that all other statements are correct. Formally,
this probability is stated as follows (when assuming inde-
pendence of failure):

p(Δ) =
∏

s∈Δ
pF (s) ·

∏
s′∈Π\Δ

(1 − pF (s′))

The fault probability of a statement s, i.e., pF (s), is
usually not given. In such cases the assumption that all
statements fail with equal probability is used. Using this
assumptions the fault probability of statement s becomes
pF (s) = 1/|Π|, where |Π| denotes the number of state-
ments of program Π. Because the same probability applies
for all statements, we drop pF (s) and use pF from here on
instead. We finally obtain the fault probability of a diagno-
sis Δ:

p(Δ) = p
|Δ|

F · (1 − pF)|Π\Δ|

The probability of a statement s can be obtained by com-
puting the sum of the fault probabilities of the diagnoses
where the statement is an element.

p(s) =
∑

Δ∈DIAGSt ∧ s∈Δ
p(Δ)

We now have all necessary pieces to define HS-slices.

Definition 2 (HS-slice) Given a program Π, a test case t.
A HS-slice S is a set of pairs that is obtained from the set of
diagnoses DIAGSt as follows:

S = {(s, p(s))|∃Δ ∈ DIAGSt : s ∈ Δ}

Using this definition we obtain the following HS-slice
for the example program from Fig. 1:

{(7,0.0139), (9,0.0139), (12,0.0139), (13,0.0027),
(14,0.0005), (15,0.0005), (16,0.0005), (17,0.0005),
(18,0.0005), (24,0.0139)}

Note that this slice is also smaller than the union of the
three slices. It specifically indicates the statements with the
highest fault probability. The fact that every double fault
diagnoses has to have statement 13 as an element is also
represented in an appropriate way.

6. Conclusion

The application of model-based diagnosis to software
debugging is not new. Friedrich and colleagues [3] used
model-based diagnosis together with a dependence-based
model to localize bugs in VHDL programs. Wotawa [17]
proved that the strong relationship between static slicing
and model-based debugging using dependence-based mod-
els. In this paper, we present a more general approach for
the integration of model-based debugging and slicing. We
presented a first case study and finally an extension which
allows for an easy integration with existing slicing-based
approaches.

Because the approach is based on existing slicing tech-
niques, the overall outcome depends on those techniques.

840

Table 1. Diagnosis results
Program LOC Inputs Outputs No of Size of Slices Bugs Percentage

Slices Min Max All
example 4 4 26 3 5 11 12 4 15.4
alu 14 8 129 4 32 57 65 25 19.4
4 bit adder 8 5 56 4 6 13 25 3 5.4
c17 5 2 12 2 3 5 6 2 16.7
code converter 6 7 68 5 10 13 30 7 10.3

Limitations of used slicing techniques will also be limita-
tions of the approach. In cases where only one output is in-
correct and, therefore, where only one slice is available, the
approach does not improve the final outcome. This is not a
severe problem because the computational requirements are
not very demanding especially in the case of only one slice.

References

[1] Richard A. DeMillo, Hsin Pan, and Eugene H. Spaf-
ford. Critical slicing for software fault localization.
In International Symposium on Software Testing and
Analysis (ISSTA), pages 121–134, 1996.

[2] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. War-
ren. The program dependence graph and its use in op-
timization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319–349, 1987.

[3] Gerhard Friedrich, Markus Stumptner, and Franz
Wotawa. Model-based diagnosis of hardware designs.
Artificial Intelligence, 111(2):3–39, July 1999.

[4] Russell Greiner, Barbara A. Smith, and Ralph W.
Wilkerson. A correction to the algorithm in Reiter’s
theory of diagnosis. Artificial Intelligence, 41(1):79–
88, 1989.

[5] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Ra-
jiv Gupta. Locating faulty code using failure-inducing
chops. In Automated Software Engineering (ASE),
pages 263–272, November 2005.

[6] Susan Horwitz, Thomas Reps, and David Binkley.
Interprocedural Slicing Using Dependency Graphs.
In Proceedings of the SIGPLAN’88 Conference on
Programming Language Design and Implementation,
pages 35–46, Atlanta, Georgia, 1988.

[7] Mariam Kamkar. An overview and comparative clas-
sification of program slicing techniques. J. Systems
Software, 31:197–214, 1995.

[8] Mariam Kamkar. Application of program slicing in al-
gorithmic debugging. Information and Software Tech-
nology, 40:637–645, 1998.

[9] Bogdan Korel and Janusz Laski. Dynamic Program
Slicing. Information Processing Letters, 29:155–163,
1988.

[10] Jens Krinke. Advanced slicing of sequential and con-
current programs. In 20th International Conference
on Software Maintenance. IEEE, 2004.

[11] Shinji Kusumoto, Akira Nishimatsu, Keisuke Nishie,
and Katsuro Inoue. Experimental evaluation of pro-
gram slicing for fault localization. Empirical Software
Engineering, 7:49–76, 2002.

[12] Raymond Reiter. A theory of diagnosis from first prin-
ciples. Artificial Intelligence, 32(1):57–95, 1987.

[13] Nahid Shahmehri, Mariam Kamkar, and Peter Fritz-
son. Usability criteria for automated debugging sys-
tems. J. Systems Software, 31:55–70, 1995.

[14] Frank Tip. A Survey of Program Slicing Techniques.
Journal of Programming Languages, 3(3):121–189,
September 1995.

[15] Mark Weiser. Programmers use slices when debug-
ging. Communications of the ACM, 25(7):446–452,
July 1982.

[16] Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[17] Franz Wotawa. On the Relationship between Model-
Based Debugging and Program Slicing. Artificial In-
telligence, 135(1–2):124–143, 2002.

[18] Andreas Zeller and Ralf Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2), feb 2002.

[19] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Ra-
jiv Gupta. Experimental evaluation of using dynamic
slices for fault localization. In Sixth International
Symposium on Automated & Analysis-Driven Debug-
ging (AADEBUG), pages 33–42, 2005.

841

Dynamic Analysis and Design Pattern Detection in Java Programs

Lei Hu and Kamran Sartipi
Dept. Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada

{hu14, sartipi}@mcmaster.ca

Abstract

Identifying design patterns within an existing software
system can support understandability and reuse of the sys-
tem’s core functionality. In this context, incorporating be-
havioral features into the design pattern recovery would en-
hance the scalability of the process. The main advantage of
the new approach in this paper over the existing approaches
is incorporating dynamic analysis and feature localization
in source code. This allows us to perform a goal-driven
design pattern detection and focus ourselves on patterns
that implement specific software functionality, as opposed
to conducting a general pattern detection which is suscep-
tible to high complexity problem. Using a new pattern de-
scription language and a matching process we identify the
instances of these patterns within the obtained classes and
interactions. We use a two-phase matching process: i) an
approximate matching of class attributes generates a list of
candidate patterns; and ii) a structural matching of classes
identifies exact matched patterns. One target application
domain can be software product line which emphasizes on
reusing core software artifacts to construct a reference ar-
chitecture for several similar products. Finally, we present
the result of a case study.

KEYWORDS: Dynamic Analysis; Design Pattern De-
tection; Feature-specific Scenario; Pattern Matching; Soft-
ware Family; Data Mining.

1. Introduction

Software companies that satisfy the needs of a specific
market segment develop products that share common sets
of features [8]. These products are usually developed based
on a reference architecture which consists of common parts
and variable parts, where the variable parts can be modified
to satisfy the evolving requirements of the new products.
In this context, the evolutionary development of a software
system starts from identifying the important features con-
tained in similar products as well as identifying the reusable
components based on the reference architecture [7].

In this paper, we propose a new approach based on a hy-
brid dynamic and static analysis to address the problem of
reusing existing system’s design patterns that correspond to
specific software behavior as the goals of the recovery pro-
cess. In this context, design patterns (i.e., common solutions
to recurring design problems [11]) can assist a software en-
gineer in comprehending and reusing design decisions and
solutions adopted by the original software designers. Con-
sequently, these patterns can be used in developing a family
of similar systems that share the same core features.

The proposed framework identifies the existing design
patterns in the key software features through two major
parts: dynamic analysis and pattern detection. In dynamic
analysis, we identify a group of key features of the subject
system and generate a set of relevant task scenarios for each
feature, namely feature-specific scenario set. Through sce-
nario execution, pattern mining, and concept lattice analy-
sis we obtain the classes that contribute in generating those
features without any prior knowledge about the system. The
obtained classes will form a search space to conduct the pat-
tern detection process, where the design patterns are spec-
ified using a new pattern description language (PDL) that
drives the pattern matching process. A pattern repository
holds the specification of a number of design patterns. The
pattern matching process recovers the instances of the de-
sign patterns in the repository in two phases: i) an approx-
imate matching process generates a list of potential pattern
instances for each target pattern, by comparing the number
of class attributes in the search space; and ii) a structural
matching compares the complete class structure of the tar-
get pattern against the structure of the candidate instance
pattern.

In order to extract the core functionality of the existing
systems the software solution providers need a set of diverse
reverse engineering tools to be used for different projects
and at different application domains [6]. The approach pro-
posed in this paper contributes in such problem domain by
the followings:

i) mapping software behavior to source code as a means
to identify core classes that implement the key features
of a software system; hence providing a reduced search

842

G
ro

up
 o

f c
la

ss
es

For each common feature,

scenarios for Subject System
generate a set of feature−specific

Elicit common features
from existing systems

Common
features

Obtain inter−class
relations by parsing

Subject System

Pattern
Repository

Approximate matching using
class relation cardinality

Structural matching
using iner−class relations

Source class
clusters

Generate execution patterns
from the collection of traces

obtained by running scenarios

Collect group of clases that
implement specific features

System n

System 1 System 2

Subject
System

Group of
scenario sets

matrices
Relation

Target
pattern

Pattern instances

pattern
Target

patterns
Execution

Figure 1. The proposed framework for dy-
namic analysis and design pattern recovery.

space for design pattern recovery; and
ii) presenting a novel two-phase search technique and a

pattern definition language to perform design pattern
recovery.

2. Related work
In this section, we discuss relevant approaches in dy-

namic analysis and design pattern detection to our work.
In dynamic analysis of software systems, El-Ramly et

al. [10] applied a sequential pattern mining technique to
identify interaction patterns between graphical user inter-
face components. Zaidman et al. [16] applied a web-mining
technique on program dynamic call graphs, where nodes
represent classes and edges represent method invocation.
Eisenbarth et al. [9] proposed a formal concept lattice anal-
ysis to locate computational units that implement a certain
feature of the software system. In contrast to the above tech-
niques, our approach exploits a novel analysis technique to
handle large sizes of the execution traces, and allows an in-
tuitive and promising process of feature to component allo-
cation.

We classify approaches to design pattern recovery (focus
of this paper) into two major categories, as follows.

Structure-based pattern detection. In this category,
the detection process identifies pattern instances that have

the same pattern class structure as a target pattern. Nija
Shi et al. [14] propose an approach to discover the GoF
patterns from Java source code based on data-flow analy-
sis on abstract syntax tree in terms of basic blocks. Lucia
et al. [12] propose a two-phase approach to recover struc-
tural design patterns, where in the first phase the number
of candidate patterns are reduced through analysis of class
diagram structure, and in the second phase the real patterns
are identified by user inspection.

Matrix-based pattern detection. In this category, the
approaches store the inter-class relations in the software
system as well as the target design patterns into different
matrices. Thus, the pattern matching process is accom-
plished by matrix matching. Nikolaos et al. [15] present
an automatic approach which uses a similarity score algo-
rithm to detect design patterns. The design pattern detection
is accomplished by calculating the similarity score between
the matrices of system and those of target design patterns.

3. Proposed framework

Figure 1 illustrates the proposed approach for design pat-
tern recovery. The framework consist of dynamic analysis
to assign system features onto a set of system classes; and
pattern detection to locate the instances of individual pat-
terns in the software system, by comparing the target pat-
terns in the pattern repository with software’s class struc-
ture.

Dynamic analysis. The proposed dynamic analysis op-
erates on the run-time execution traces of a set of subject
features to locate the corresponding low-level system com-
ponents that implement each feature. This process consists
of the following steps: i) feature-specific scenario set gener-
ation; ii) execution traces generation; iii) execution pattern
extraction from execution traces; and iv) execution pattern
analysis.

Pattern detection. The proposed design pattern detec-
tion process consists of two phases approximate match-
ing and structural matching. In the approximate matching
phase, through identifying the eligible candidates for the
main-seed class of the target design pattern, we reduce the
search space for a target design pattern to a list of source-
class clusters, each of which contains a candidate main-
seed class. In the structural matching phase, we identify
the structurally matched design pattern instances within the
list of source-class clusters. The detail description of these
two phases are discussed in Sections 4 and 5.

4. Dynamic analysis

We propose a dynamic analysis technique to locate
the source code implementation of key features in object-
oriented systems, which is an enhancement of the previous

843

work presented in [13]. In the remaining of this section we
will give a description for the process of dynamic analysis.

4.1. Execution pattern extraction
Scenario selection. According to the knowledge about

the application domain, available documents, and user’s
guide of the subject system, we generate a set of relevant
task scenarios where all scenarios share a specific software
feature. We call this set of scenarios as feature-specific sce-
nario set.

Execution trace generation. In this step, we use Eclipse
Test and Performance Tools Platform (TPTP) [2] to instru-
ment and collect execution information from the software
system. By running scenarios of the feature-specific sce-
nario set on the instrumented software system, we obtain the
execution traces of each scenario in the form of entry/exit
listings of the object invocations.

Execution pattern generation. By applying a sequen-
tial pattern mining algorithm on the execution traces of the
specified feature, we can obtain the execution patterns of
the feature. Here we use a modified version of the sequen-
tial pattern mining algorithm by Agrawal [4].

4.2. Execution pattern analysis
After obtaining the execution patterns of several specific

features, we use concept lattice analysis to cluster the group
of classes in the execution patterns that exclusively corre-
spond to each specific feature; as well as the class clusters
that are common to every scenario set. In this context, the
clusters of common classes appear in the upper region of the
lattice, and the clusters of feature-specific classes appear at
nodes in the lower region of the lattice. Thus, a mapping
between the software feature and its implementation is ob-
tained at the bottom of concept lattice.

5. Design pattern detection

To avoid the combinatorial explosion in pattern detec-
tion process, we present a two-phase and semi-automated
design pattern detection process where each design pattern
is populated around a main-seed class.

5.1. Pattern description

Formally, a design pattern p can be represented as
a tuple < C,R >, where C is a set of pattern-classes
{c1, ..., ck} and R is a set of inter-class relations among
these pattern-classes. For two pattern-classes ci and cj in
C, ShortestPath(ci, cj) returns the minimum number of
inter-class relations traversed from ci to reach cj , regardless
of the type of the inter-class relations [5]. The Degree of a
pattern-class ci in C, denoted as deg(ci), is the number of
the direct inter-class relations between ci and all the other

MainSeedClass

Depth1−SuperClass1

Depth1−AssoClass

Depth2−SubClass1 Depth1−SubClass1 Depth1−SubClass2

1 Begin-PDL
2 Pattern : TargetPattern

3 Main-seed class : MainSeedClass

4 Depth1 :

5 Inherit From :

6 Depth1-SuperClass1
7 Inherited By :

8 Depth1-SubClass1;
9 Depth1-SubClass2
10 in Association :

11 Depth1-AssoClass
12 Depth2 :

13 Seed-Depth1: Depth1-AssoClass
14 Inherited By :

15 Depth2-SubClass1
16 AbstractClasses :

17 Depth1-SuperClass1
18 End-Pattern
19 End-PDL

Figure 2. Class diagram and PDL description
of a target pattern.

pattern-classes in the design pattern p.

Main-seed class. We observe that for each design pat-
tern presented in [11], there exists at least one pattern-class
which can reach any other pattern-classes in the design pat-
tern within a shortest path value 2. We refer to this kind
of pattern-class as potential main-seed class, whose formal
definition is given below.

Potential main-seed class. In a design pattern p = 〈C,R〉,
a potential main-seed class, denoted as cpms, is a
pattern-class cpms ∈ C such that ∀ci ∈ C •
ShortestPath(cpms, ci) ≤ 2. Cpms is referred to the
set of all the potential main-seed classes in the design
pattern p.

We propose a Pattern Description Language (PDL) to de-
scribe a generic pattern. PDL provides a convenient way to
describe a design pattern in a precise way and allows the
user to define any other pattern they desire to discover. Fig-
ure 2 presents the class diagram of a target pattern and its
corresponding PDL description.

844

5.2. Pattern detection

The pattern detection consists of a two-step matching
process, as: approximate matching to generate a ranked
list of eligible candidate instance patterns; and structural
matching to identify the structurally matched instance
patterns within the ranked list of instances.

Approximate matching. In approximate matching, the
main goal is to reduce the search space to a number of in-
stance patterns that are sufficiently close to the target pat-
tern. In this context, we specify a set of attributes for the
main-seed of the patterns (both target pattern and instance
patterns) whose values are used to compare these two pat-
terns. Hence, we can rank eligible instance patterns in the
search space and generate a short list of approximately sim-
ilar instance patterns to the target pattern. The main-seed at-
tributes include the number of Inherit From, Inherited By,
Association and Abstract relations.

As shown in Figure 2, the main-seed class
”MainSeedClass” possesses one Inherit From rela-
tion, one Association relation, and two Inherited By
relations. Considering a search space as a set of classes
SP = {c1, c2, ..., cn}, for each class ci ∈ SP we define
an attribute vector Attr(ci) = [a1, ..., ak] with cardinality
k. Given the main-seeds ct of the target pattern and ci of
the instance pattern, the approximate similarity function
simapx is defined as:

simapx(Attr(ci), Attr(ct)) ={
Δ(Attr(ci), Attr(ct)) Attr(ci) ≥ Attr(ct)

0 Else

Δ(Attr(ci), Attr(ct)) =

1 −
P

k

j=1(Attrj(ci)−Attrj(ct))
P

k

j=1 Attrj(ci)

where Attr(ci) ≥ Attr(ct) means that the value of each
element in the attribute vector Attr(ci) is greater than or
equal to that of attribute vector Attr(ct). In this context,
function simapx computes the approximate similarity value
between the target pattern (represented by the main-seed
class ct) and the candidate instance pattern (represented by
main-seed class ci).

Algorithm “ApproximateMatching” receives the search
space, class relation matrices, target pattern, and a cut-off
threshold similarity value, and returns the list of eligible
candidate instance patterns. The algorithm utilizes the
function “ComputeAttrV alue()” to compute the attribute
values of a main-seed using the class relation matrices; and
function “GeneratePattern()” to compose an instance
pattern with two level classes using every class ci (in
different iterations) from the search space.

Systems Version # Classes #Files #LOC
JHotDraw 5.1 172 144 8419
JHotDraw 6.0b1 405 289 21091
JHotDraw 7.0.7 331 309 32122

Table 1. Statistics for the subject systems.
Structural matching. Structural matching algorithm

deals with the identification of all the instances of the target
pattern within a candidate instance pattern1 obtained from
the aforementioned approximate matching. The algorithm
receives a candidate instance pattern, target pattern, and the
class relation matrices. It returns one or more identified in-
stance patterns within the candidate instance pattern. The
algorithm utilizes the functions GetDepth1Classes() and
GetDept2Classes() to retrieve the corresponding depth1
and depth2 classes from the PDL representation of the tar-
get pattern.

After a pattern instance is detected, a further user-
assisted verification has to be performed to check whether
the detected pattern is actually implemented within the sub-
ject software system or not. This verification is performed
through browsing the source code and consulting with the
existing design documents.

6. Case study

In this section, we discuss the results of applying the pro-
posed approach on a Java open-source project, JHotDraw
[1]. JHotDraw is a Java GUI framework which is used to
draw two-dimensional graphics and it contains many in-
stances of design patterns in its implementation.

Based on discussion in Section 1, we apply our proposed
approach on three versions of JHotDraw, ver5.1, ver6.0b1
and ver7.0.7 to extract reusable software artifacts. The ex-
periments are performed on a Windows XP professional
edition running on a PC with a 1.5GHZ centrino processor,
512M bytes memory and 1G bytes virtual memory.

Table 1 presents several system statistics from three ver-
sions of JHotDraw systems in the case study. Because of
space limitation, the results of execution trace extraction
and execution pattern mining for 10 features of the three
versions of JHotDraw systems are not presented in this pa-
per, however similar experimentation can be found in our
previous work [13]. In a further step, we supply the result-
ing execution patterns obtained from the sequential pattern
mining to a concept lattice generation tool, ConExp [3]. Fi-
nally, we generate a search space by collecting all classes of
the feature-specific concepts and augmenting this space by
adding two levels of immediately related classes.

1Note that a target pattern usually has fewer classes than the candidate
instance pattern, hence it may match with more than one sub-pattern in-
stances within the candidate pattern.

845

Rectangle Round Rectangle Ellipse Polygon Line Move Delete Group LineConnection Text
Adapter 0/0/0 1/1/1 0/0/0 2/1/1 1/1/1 0/0/0 0/1/0 1/0/1 2/2/2 0/1/0
Observer 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 1/1/0 0/0/0 2/2/0 0/0/0 0/0/0
Proxy 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Decorator 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Strategy & State 1/1/1 1/1/1 1/1/1 1/1/0 1/1/0 1/1/1 1/2/0 1/0/1 5/4/3 1/2/1

Legend: A / B / C
A: data of JHotDraw 5.1, B: data of JHotDraw 6.0b1, C: data of JHotDraw 7.0.7

Table 2. Results of mapping between target patterns and 10 features in three versions of JHotDraw.

In the following phase of the experimental study, we ap-
ply pattern detection algorithms “ApproximateMatching()”
and “StructuralMatching()” (discussed in Section 5) on the
search space to detect all the pattern instances of the tar-
get patterns in the pattern repository. We describe structural
information of each pattern using the proposed pattern def-
inition language (PDL) and store it into the pattern reposi-
tory. Currently, our pattern repository contains the follow-
ing patterns: Adapter, Proxy, Observer, Decorator, Bridge
and Strategy & State. To filter out the false-positive pat-
terns in the detected pattern instances, we perform a manual
verification on these resulting pattern instances by inspect-
ing the corresponding source code. To correlate a detected
pattern instance to a software feature, we check the over-
lap between the highly related classes of the feature (ob-
tained from concept lattice) with the participating classes
of the pattern instance. If there is an overlap, it means that
there exists a relation between the feature and the pattern in-
stance. Table 2 presents the correlation of detected pattern
instances to the 10 features of the three versions of JHot-
Draw systems. The value in each entry of the table repre-
sents the number of the pattern instances that are correlated
with the corresponding feature.

7. Conclusions

In this paper, we presented a two-phase approach to iden-
tify individual design patterns within a subject software sys-
tem as a means to assist the construction of a reference ar-
chitecture for a family of software systems, or for different
versions of the same system. The main advantage of our
approach over the existing approaches is incorporating dy-
namic analysis and feature localization in source code. This
allows us to perform a goal-driven design pattern detection
and focus ourselves on design patterns that implement spe-
cific software functionality as opposed to conducting a gen-
eral pattern detection which is susceptible to high complex-
ity problem. We have successfully experimented with JHot-
Draw system which is considered as a benchmark for design
pattern recovery.

References

[1] Jhotdraw start page. http://www.jhotdraw.org, 2006.

[2] The eclipse test and performance tools platform, 2006.
http://www.eclipse.org/tptp.

[3] Formal concept analysis toolkit version 1.0.1.
http://sourceforge.net/projects/conexp.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE
’95: Proceedings of the Eleventh International Conference on Data
Engineering, pages 3–14, 1995. IEEE Computer Society.

[5] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recov-
ery in object-oriented software. In IWPC ’98, pages 153–160. IEEE
Computer Society Press, June 1998.

[6] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud. Pulse: a methodology to develop soft-
ware product lines. In Proceedings of SSR ’99, pages 122–131, New
York, NY, USA, 1999. ACM Press.

[7] J. Bayer, J.-F. Girard, M. Wurthner, J.-M. DeBaud, and M. Apel.
Transitioning legacy assets to a product line architecture. In Proceed-
ings of ESEC/FSE-7, pages 446–463, London, UK, 1999. Springer-
Verlag.

[8] P. Clements and L. Northrop. A framework for
software product line practice. Technical report,
www.sei.cmu.edu/productlines/framework.html, 2004.

[9] T. Eisenbarth, R. Koschke, and D. Simon. Derivation of feature com-
ponent maps by means of concept analysis. In Proceedings of IEEE
CSMR’01, pages 176–179, March 2001.

[10] M. El-Ramly, E. Stroulia, and P. Sorenson. Recovering software re-
quirements from system-user interaction traces. In SEKE ’02: Pro-
ceedings of the 14th international conference on Software engineer-
ing and knowledge engineering, pages 447–454, New York, NY,
USA, 2002. ACM Press.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[12] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi. A two phase
approach to design pattern recovery. In in Proceedings of CSMR07,
pages 297–306, Amsterdam, Netherlands, 2007. IEEE CS Press.

[13] H. Safyallah and K. Sartipi. Dynamic analysis of software sys-
tems using execution pattern mining. In ICPC ’06: Proceedings of
the 14th IEEE International Conference on Program Comprehension
(ICPC’06), pages 84–88, Athens, Greece, 2006. IEEE Computer So-
ciety.

[14] N. Shi and R. A. Olsson. Reverse engineering of design patterns from
java source code. In ASE ’06, pages 123–134, 2006. IEEE Computer
Society.

[15] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis.
Design pattern detection using similarity scoring. In Software Engi-
neering, pages 896–909. IEEE Transactions on, Nov. 2006.

[16] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying
webmining techniques to execution traces to support the program
comprehension process. In CSMR ’05: Proceedings of the Ninth
European Conference on Software Maintenance and Reengineering
(CSMR’05), pages 134–142, 2005. IEEE Computer Society.

846

���+�¢"��
�
���¢5¢��¢�$$�
��,¢�
�¢����¢"��
�
���¢��¢
�������¢6��¢���+���¢;���������¢

,����¢��%���%�¢*�%<���£¤¢*�%���¢L�%���¢*��<����£¤¢(����¢����%¢
��� ��¢)���£¤¢���%�¢��%#¥%��¢*���0¢/�%���£¢

£¢2��"�%������¢��¢/�%����0�¢¦2)+/-.§¢
����������¢���%��¤¢£¨©£¢(ª¨«¢

¬«££ª¨®£¢/�%����0�ª��¯¢�%����¢
°°ª°ª¨®±±¨©¬¢

7�����¯��%<���¯����¤¢��%������<����89�����¯���¤¢7�����������¤¢ �%#�%��89���#�%¯1%¢

¢

��������:¢ +�¢ ����¢ � �%¢ $�¢ ��#���¢ ���¢ ����� �¢ �#¢ !���"�¢
-���������¤¢�¯�¯¢����������¢����¢#�������¢��¢����%#����¢����������¢�¢
���¢�#¢$�1¢��%"����¢����¢����¢1�¢�� ��������¢1�¢���¢������¢����¢
������¢ ��¢ ���¢ ��������¯¢ +�¢ ���¢ � ���#��¢ ����¢ �#¢ ����������¢
�������¢��¢-�*¤¢��¢��¢ %�������¢��¢�� �����������¢�#¢���¢!���"�¢
-���������¢����� �¢������¢!���"�¢-�*¯¢+�¢!���"�¢-�*¤¢�������¢
���¢ %� �%����¢�%�¢���������¢1�¢ ���A���¢ ����¢$���¢#��%¢ �� ��¢�#¢
$�1¢��%"����¢����¢�%�¢������¢1�¢������¢��¢�;������¢��������¯¢,��¢¢
���������¢�#¢ ����¢ �� �¢ �#¢$�1¢ ��%"���¢ ��¢ #�;��¢ �����¢ �¢ J²**¢
 �%#�%����"�¢ �����¤¢ ��¢ $�1¢ ��%"����¢ ���¢ ����¢ 1�¢ � ���#���¢ ��¢
�������¤¢ �������¤¢ ������¢ ���¢ ��������¢ ��������¢ ����"������¢ ���¢
 %� �%����¢ "�����¯¢ ,��¢ �%�������¢ ���¢ %������¢ �#¢ �����¢ $�1¢
��%"����¢ ��%%�� ���¢ ��¢ ���������¢ ���¢ %� �%����¢ "�����¢ �#¢ ���¢
��������¢ ����������¢ $���¢ ����¢ $�1¢ ��%"���¯¢ +�¢ �%��%¢ ��¢ ���¢
����������¢ ��¢ ����%#����¤¢ ����¢ $�%A¢ %� ����¢ ��¢ ���%������¢
���"������¢ ��¢ ��D*¢ #����¢ ����¢ �%����¢ ��¢ ������¢ ����¢ A��$���¢
���¢����¢���¢���¢��������³�����¢����¯¢¢

<¢¢¢;���
����
�¢
!¢��1¢��%"���¢��¢�¢��#�$�%�¢������¢��������¢��¢�� �%�¢

����%� �%�1��¢ �������ª��ª�������¢ ����%������¢ �"�%¢ �¢
���$�%A¢ =£°>¢ ���¢ -�*¢ ¦-�������¢ ��1¢ *�������§¢ =´>¢
 ����¢�¢����%��¢%���¢��¢���¢����%������¢�����%��¢ %� ����¢1�¢
���¢ ��������¢ ��1¯¢ -���������¢ $%�����¢ ��¢ -�*¢ %�"���¢
�������¢ #�%¢ ����¢ ����¢ ���¢ 1�¢ �;�������¢ ��%����¢ ���¢
���$�%A¯¢

!�¢ ��������¢ ��¢ ��¢ �; �����¢ � ���#�������¢ �#¢ �¢
����� �����0�����¢ =¬>¯¢ /����$���¢ ���¢ #�%���¢ %� ����¢ 1�¢
�¨�¤¢ ����������¢ %� %�������¢ ��¢-�*¤¢ %� %�����¢ �������¤¢
���%�1����¤¢ %� �%����¢���¢����"������¢1��¢����¢��¢���¢�����¢
1���"��%¤¢�¯�¯¢�������¯¢��1¢��%"����¤¢��¢���¢����%¢����¤¢��¢
�����¢�������¯¢¢

!���%����¢ ��¢ �¨�¢ =£¬>¤¢ ��1¢ ��%"����¢��"�¢ ����%#����¢
����%�1��¢ ��¢ �¢ �������ª %������1��¢ #�%���¢ ¦� ���#������¢
��D*¢=©«>§¯¢-���%¢�������¢����%���¢$���¢���¢��1¢��%"���¢
��¢ �¢ �����%¢ %���%�1��¢ 1�¢ ���¢ ����%� ����¢ �����¢ �-!�¢
¦��� ��¢ -1����¢ ! ��������¢ �%������§¢ ��������¢ =©£>¤¢
�� ������¢���"����¢�����¢@,,�¢$���¢��¢=**¢��%����0�����¢
��¢�����������¢$���¢����%¢��1ª%������¢������%��¯¢

,��¢ �%�����¢�#¢-1����¢-%������¢�%��%������¢ ¦--�§¢
%������0��¢ ���¢ ���"�������¢ �#¢ ���� ��������¢ �������¤¢
�������¤¢ ���%�1����¢ ��¢ ���¢ ����¢ �1��%������¯¢ ���¤¢ ��������¢
���¢ �����%�����¢ 1��$���¢ ��1¢ ��%"����¢ ���¢ -�*¢ �����¢
����%��¤¢ -�*¢ ���¢ ���¢ ����������¢ ��1¢ ��%"����¢
� ���#��������¤¢�¯�¯¢�-!�¢���¢��D*¤¢�%�¢�%��������¯¢

,��¢����¢%�����¢#�%¢����¢�� �%�����¢$��¢���¢���� ������¢
$��¢ ���¢ �$�¢ ������������¢$�%�¢������"��¯¢��������¢��1¢
$��¢ %� ����¢1�¢�¨�¢$����¢��1¢��%"����¢$�%�¢�%�����¢1�¢
�¢ �����%����¢ �#¢ ��� �����¢ ¦*��%���#�¤¢ +�*¢ ���¢����%�§¯¢
�������¢ ����¤¢$���¢ ���¢��������¢ ��1¢$��¢ %� ����¤¢ ���¢
����¢��1¢��%"����¢� ���#��������¤¢��D*¢���¢�-!�¤¢���¢
���¢�;���¢���¯¢-�¢ ���¢����%¢����¤¢$���¢��D*¢���¢�-!�¢
$�%�¢ %� ����¤¢=**¢$��¢��%����¢�¢�¨�¢%�������������¢
1��¢.D/¢���¢-�*¢$�%�¢���¯¢

��"�%��¢ %� �����¢��"�¢1���¢����¢��¢1%���¢���������¢��¢
��1¢ ��%"����¢ ����¢ ��¢-�*ª�¢ =£«>¤¢���/¢ =£®>¤¢ ��*-¢
=£>¤¢ ��D*ª�¢ =£±>¤¢ ���¢ �!��D*¢ =£¨>¯¢ ��������¢
����%� �����¢ ����$¢ ��1¢ ��%"����¢ ��¢ 1�¢ ����%�����¢ ���¢
��%%�����¢����% %����¢1�¢��������¢=®>¯¢

!¢������¢���%����¢ ����¢�����¢ �����¢ %� �����¢��¢����¢
����¢������¢ ����¢��1¢��%"����¢���¢-���������¢$�%�¢1����¢
�� �%�����¢ ���¢ ����¢ �%�¢ ��¢ %�"���¢ ���������¢ ��¢ ��1¢
��%"����¢1�¢�����������¢ ����¢ ��¢����������¯¢,���¢ ��¢�¢"�%�¢
��� �������¢ � %����¯¢ *�A���¢ ��¢ �������¢ $���¢ -1����¢
-%������¢ �%��%������¤¢ ����¢ � %����¢ ��%%�� ����¢ ��¢
� ���#�¢ �������¢ ���¢ �������¢ �� �%�����¢ ���¢ ����%¢ �%�¢ ��¢
�����¢����¢�����¢����¢A���¢�#¢��������¯¢����¢ �%�����%¢
��¢ �¢ ��1¢ ��%"���¢ �����¢ %�#�%¢ ��¢ �¢ ��##�%���¢ �����¢ ��¢ �¢
��##�%���¢ -�������¯¢ ����¢ -�������¢ ���¢ �¢ ��##�%���¢
���������¤¢��¢��¢����¢� ¢��¢�¢1��¢��0�¢$���¢$�¢���������¢�¢
��1¢ ��%"���¢ ��¢ ��"�%��¢ -���������¢ ��¢ �%��%¢ ��¢ ��"�¢
���������¢��¢���¢��1¢��%"���¯¢

,���¢ �%�����¢ #����$�¢ ���¢ ��%������¢ ����¢ ��¢ --�¢
���������¢���¢ %� ����¢���¢����� �¢�#¢!���"�¢-���������¤¢
$��%�¢����������¢���¢��1¢��%"����¢�%�¢� ���#���¢�������%¯¢
+�¢ ����¢ � %����¤¢ ����������¢ �%�¢ ����¢ ��¢ ����%#����¯¢ +�¢
 %��%������¢ ���������¤¢ ��A�¢ (�"�¤¢ ����%#����¢ �%�¢
��� ����¢�#¢���%�1����¢���¢�1��%���¢�������¯¢!¢�����¢ ����¢

847

�� �������¢ ��¢ ����%#���¢ ����¢ #����$¢ �¢ ����%���¤¢ �¯�¯¢ ���¢
�����¢����¢�� ������¢���¢����%#���µ�¢�1��%���¢�������¯¢

,��%�#�%�¤¢ ��¢ ��¢ ��#����¢ ����¢ ��¢ �����¢ �� �������¢ ��¢
��������¢�#¢��¢���� ��¢���¢�������¢�#¢���¢�������¤¢���%�1����¤¢
����"������¤¢ %� �%����¤¢ ���¢ ����¢ �� �������¢ ���¢ ��1¢
��%"����¢����������¢$���¢����¢��������¯¢

,��¢ $�%�¢ G!���"�H¢ �����¢ ����¢ �%�����¢ ¦����%����¢
���������§¢ �#¢ ����������¢ $���¢ 1�¢ %��%��"��¢ �����������¢
��%����¢ �����¢ ��¢ ��1¢ ��%"����¯¢,��¢ ��1¢ ��%"����¢$���¢1�¢
1����¢#�%¢����¢� ���#��¢#������������¯¢¢

+�¢����¢�%�����¤¢��¢�%��������%�¢�� ���������¢���¢����� �¢
�#¢!���"�¢-���������¢��¢ %� ����¯¢+�¢��¢������¢!���"�¢-�*¤¢
$����¢ ��#����¢ #��%¢ �� ��¢ �#¢ ��1¢ ��%"����¶¢ ���¤¢ ������¤¢
�������¤¢ ���¢ ���¯¢,����¢ ��1¢ ��%"����¢ �%�¢ %�� ����1��¢ #�%¢
��������¢ ���������¢ �#¢ �������¢ ���¢ %� �%����¢ �#¢ ���¢
��������¯¢

+��������¤¢ ��¢ �"���¢ ��������¢ ���¢ -�*¢ �����;¤¢ !���"�¢
-�*¢ %� ����¢ ��¢ ���������¢ ��1¢ ��%"����¢ ���¢����������¢
��%����¢ �����������¢ ��¢ -�*¯¢ ,���¤¢ �������¢ %�"����¢ ��¢
#%��¢ ����% �%�����¢ ���¢ %� ����¢ ��¢ ���¢ -�*¢ �����;¢ ��¢
#���%�¢"�%�����¤¢#�%¢�;�� ��¢1�¢ ���%�������¢�¢� �����¢ �� �¢
�#¢#���������¢ %� �%��¯¢

,���¢ ��%�����¢ �#¢ �����%�����¢ ��1¢ ��%"����¢ ���¢
-���������¢ ���¢ 1�¢ ����¢ ��¢ ��¢ ����%����"�¢ ��¢ �;����¢ ���¢
�; %����"�����¢�#¢����������¢�������¢��¢-�*¯¢¢

!¢ ����%��¢ ����¢ ��¢ ����¢ %� ����¢ ��¢ �¢ ���"������¢ ��¢
���%������¢ 2.*�¢ ����¢ ���%�����¢ ���¢ ��D*¢ #����¯¢ ,��¢
���%���¢�#¢ ����¢ ��D*¢ #���¢ ��¢ ��� ����¢ 1�¢ �$�¢ �%��¶¢ �¢
����¢ �%�¢���¢�¢�����¢ �%�¯¢J��$���¢���¢��������³�����¢���¢
���¢����¢$�¢��������¢$��%�¢��¢���¢��D*¢��¢�������¯¢¢

,��¢%���¢�#¢���¢�%�����¢��¢�%����0��¢��¢#����$�¶¢�������¢©¢
����%�1��¢ ����¢ %� �����¢ ��¢ 1%���¢ ���������¢ ��¢ ��1¢
��%"����¯¢ �������¢ ¨¢ ���%������¢ ���¢ ����� �¢ �#¢ !���"�¢
-���������¯¢�������¢®¢ %������¢!���"�¢-�*¢���¢�������¢°¢
����%�1��¢ ���¢ �%��������%�¢ ����¢ ��¢ ���¢ �� �����������¯¢
�������¢¬¢ %������¢���¢����������¢���¢#���%�¢$�%A¯¢

>¢¢¢�������¢6��¢���+���¢
�������%���¢ ���¢ ��������¢ ��1¢ "�����¤¢ ��¢ $����¢ ����¢

��#�$�%�¢ �����¢ ��1��"����¢ ���¢ ���A�¤¢ ������#���¢ ���¢ �����¢
����%¢������¤¢��1¢��%"����¢���¢1�¢�������%��¢��¢�������¢
#%��¢���¢�����¢����¢��¢1����¢������¯¢

����¢���¢�%���¢��¢��"�¢���������¢��¢�¢��1¢��%"���¤¢���¢
����¢��¢������%¢��¢���%�#�¢$���¢���¢��1¢��%"���¢����¤¢��%¢��¢
#�%�����¢ � ���#�¢ ���¢ ��� �������¢ ����¢ 1�¢ ���¢ ��1¢
��%"���¯¢,��¢����¢��¢��¢���¢����¢1�¢�������������¢������#���¢
���¢�;������¢1�¢������¢����¢����¢����%¢%������¯¢

��������¢��1¢��%"����¢���¢1�¢��#����¢��¢��1¢��%"����¢
$����¢ %� �%����¤¢ �� �1�������¤¢ ����%#����¢ ���¢ �##����¢ �%�¢
�������¢ ��¢ ��¢ ����1������¢ ���¢ �������ª����% %���1��¢
#�%�¢=£©>¯¢

+�¢ ��¢ �� �%����¢ ��¢ �1��%"�¢ ����¢ ������¤¢ ���ª���������¢
��� �������¢�#¢��1¢��%"����¢����¢��"�¢��"�%��¢ %� �����¯¢
���*¢ ��¢���¢���¢$���¢�%����%¢$���� %���¢���� �����¯¢,��¢
���������¢ ��� �������¢ �� ����¢ 1�¢ ��������¢ ��1¢

��%"����¢ ��¢ ���¢ ��� ��¤¢ ���¢ ��¢ ��%������¢ ��¢ �¢ �%���¢ ��� ¢
1�����¢������¢��� �������¯¢

,����¢ ���%�¢ �%�¢ #�"�¢ %� �����¢ ��¢ 1%���¢ ���������¢ ��¢
$�1¢ ��%"����¶¢ -�*ª�¢ =£«>¤¢ ���/¢ =£®>¤¢ ��*-¢ =£±>¤¢
��D*ª�¢=£¬>¢���¢�!��D*¢=£¨>¯¢,�1��¢£¢����%�1��¢����¢
�#¢����%¢���%����%������¯¢

+����¢<:¢¢�,�����������¢
�¢�
��¢$�
$
����¢�
¢����¢
��������¢�
¢6��¢���+���:¢

��
$
����¢ �,�����������¢

-�*ª�¢¢

+�¢��¢��� ����¢�#¢�¢����¢��������¤¢������¢���+��¤¢
���¢ ���¢ ��%��¢ ��1ª����������¢ ����������¢ $���¢ ��¤¢
������¢���+��¢$�
���¤¢���+��¢�
���¢���¢���+��¢
��
�����¯¢¢

���/¢¢
+�¢ ��¢ ��� ����¢ �#¢ ��¢ ��������¤¢ ���-¤¢ ���¢ �¢
��������¢ #�%¢ ���¢ �;������0�����¢�#¢ ���¢��������¤¢
���*¯¢

��*-¢
+��¢����¢��¢��¢����%�1�¢���¢���¢%���"���¢�� ����¢�#¢�¢
����%��¢ ��%"���¢ ����¢ ��¢ ��������¢ ��%����¢ �¢ ��1¢
��%"���¢����%#���¯¢

��D*ª�¢
�%� ����¢ ��¢ � %����¢ ��¢ ���¢ ���������¢ ��¢ ��1¢
��%"����¢ �������¢ $���¢ ������%�¢ ������%��¢ ¦�¯�¯¢
��D*§¯¢

�!��D*¢

.�������¢��¢1�����¢�¢�¨�¢%�������������¯¢+�¢��¢
��¢�"�������¢�#¢���¢��D*ª�¢ %� ����¢���¢��#����¢
����������¢��¢������¢$����¢��������¢�����������¢
���¢1�¢�����¢��¢��D*¢��� ������¯¢+�¢��¢��%����¢
1����¢��¢��D*¢©¯«¯¢

¢
�������%������¢ �1���¢ ���¢ ��##�%�����¢ 1��$���¢ �����¢

 %� �����¢���¢1�¢#����¢��¢=£®>¢=££>¢=°>¢=£´>¯¢
!���"�¢ -�*¢ %� ����¢ ��¢ ���������¢ ��1¢ ��%"����¢ ���¢

����������¢ "��¢ �����������¢ ��¢-�*¯¢,��¢ %� ����¢ ��##�%�¢
#%��¢�!��D*¢ ���¢ ��D*ª�¢ %� �����¢1������¢ ��¢ �����¢
����¢�����¢���¢�����������¢�%�¢����%���¢��¢���¢��D*¯¢

*�%��"�%¤¢ ���¢��##�%�����¢ �%�¢���¢����¢ ��¢ ���¢$��¢ ���¢
�����������¢ �%�¢ ����%���¯¢!��¢ %� �����¢ ������¢ ��¢ ,�1��¢ £¢
������¢ ����¢����������¢���¢��1¢��%"����¢$�%�¢��"��� ��¢
�� �%�����¯¢,��%�#�%�¤¢ �¢��������¢1��$���¢ ���¢����������¢
���¢ ���¢ ��1¢ ��%"����¢ ��¢ �������%�¯¢ ,��¢ �% ���¢ �#¢
�����������¢ ��¢ !���"�¢ -�*¢ ��¢ ��¢ %�"���¢ ����¢ �����¯¢ +�¢
����¢� %����¢���¢��������¢���¢���¢����������¢��1¢��%"����¢
�%�¢� ���#���¢�������%¯¢

+#¢ ����������¢ �%�¢ ����� �����0������¢ $��%�¢ �������¤¢
 %� �%����¤¢���¢����"������¢�%�¢� ���#���¤¢���¢��1¢��%"����¢
��#���¢ �������¢ ����¢ ���¢ 1�¢ ��"�A��¢ %�������¯¢ +�¢ �����¢
����%��¢����¢1���¢���A�¢������¢1�¢� ���#���¢�������%¤¢��¢���¢
 ����¤¢���¢���¢��������¤¢$���¢$����¢������¢�¢��� �������¢
�����¢1��$���¢���¢� ���#��������¢����%¯¢

?¢¢¢���+�¢"��
�
���¢
,���¢ �������¢ ���%��¢ �; �������¢ �$�¢ ����%�����¢

����"������¢ #�%¢ ���¢ %� ����¢�#¢!���"�¢-���������¯¢,����¢
����"������¢�%�¢ %������¢ ��¢ ���¢����¢�#¢�����������¢1��$���¢
������¢���¢�������¢A��$�����¢���¢ ���¢����¢�#¢�����������¢
1��$���¢��������"�¢���¢ �%������%¢A��$�����¯¢

848

L���%����¤¢��¢����"�¢����������¢��1¢��%"����¢�%�¢����¢��¢
%��%��"�¢ ���¢ �������¢ A��$�����¢ ���¢ ���¢ �%������%¢
A��$�����¢�#¢����¢�����¯¢

)�;�¤¢$�¢ ���$¢ ����¢����"�¢����������¢�����¢1�¢����¢��¢
����%#����¢��¢���¢�����¢����¢��¢--�¯¢+#¢��¢�����¢��� ��¢��¢
����"�¢ ��������¤¢ ��¢ ����¢ ���� ��¢ ���¢ %�� ����1�����¢ #�%¢
�� ���������¢���¢�������¢����������¢��¢��¯¢

/������¢ ��¢ %�������¢ ��¢ ���%���¢ ���"������¢ ��¢ ��D*¢
#����¯¢

?:<¢¢�,����¢@�
������¢+�����¢M
�¢�,����¢A���������B¢
@�
������¢¢

-���������¢ �%�¢ ����¢ ��¢ �¢ ���%��¢ ����� �����0�����¢
$����¤¢ ��¢ #���¤¢ ��¢�������%�¢ ��¢���¢�������¢�;������¤¢��¢
�����%¢ �#¢ ��¢ ��¢ 1��$���¢ �� ��¢ �%¢ 1��$���¢ �������¯¢
)�"�%�������¤¢ ��¢ ��¢ �������%�¢ ��¢ �����������¢ 1��$���¢ ����¢
���%��¢ A��$�����¤¢ #�%����0��¢ ��%����¢ ���¢ ����������¤¢
$����¢ $�¢ ����¢ ��������"�¢ J��$�����¤¢ ���¢ ����¢ �����µ�¢
 �%������%¢ A��$�����¯¢ ,���¢ �%������%¢ A��$�����¢
��� %����¢���¢A��$�����¢����¢��¢���¢���%��¢1��$���¢������¢
���¢��¢��¢���¢�������¢�#¢���¢����%���¢�#¢��������¢�;�������¢
1��$���¢����¯¢

/�%¢�;�� ��¤¢�#¢��¢�����¢!¢��A�¢�����¢�¢$���¢��¢���¢���¤¢
1���¢����¢��¢A��$¢ ���¢�������¢�#¢G���H¯¢,��¢ ��%�¢G���H¢
����¢ 1�����¢ ��¢ ��¢ ��������¢ A��$�¢ ��¢ 1���¢ ������¯¢
@�$�"�%¤¢�����¢!¢������¢���¢A��$¢�����¢�µ�¢���¢�����¢�¢
%�"����¢��¯¢,���¢A��$�����¢�1���¢�����¢�µ�¢���¢��¢ �%������%¢
����¢ ��¢ �����¢�¯¢,��¢ �������¢�#¢ ���¢��������¢ �;�������¢
1��$���¢!¢���¢�¢��¢��� ����¢�#¢ �%������%¢A��$�����¢�#¢
����¢�����¯¢-�¢���¢����%¢����¤¢���¢��������"�¢A��$�����¢��¢
A��$�¢1�¢1���¢������¢�¢ %��%�¤¢ ����¢ ���¢������¢���µ�¢����¢
��¢ 1�¢ ��#�%���¢ �1���¢ ��¢ ��%����¢ ��������¢ �;�������¢
��%���¢�������������¯¢

-���%¢�;�� ��¢���¢1�¢��"��¢#%��¢���¢���������¢����¢1�¢
,��¢��%��%�¢*��¢��¢������%���¢�¢�����%��¢�����¢���¢��������¢
��1¢ =¨>¯¢ +�¢ ����¢ ���������¤¢ ���¢ �����¢ �#¢ �¢ ������µ�¢ ���¢
������¢<��%�¢���¢��������¢��1¢#�%¢�"����1��¢� ��������¢
�����¢�#¢��"�%��¢�����%�¯¢����¢�����%¢$����¢����¢��"�¢��¢
�����¢�� �1��¢�#¢ %�"�����¢����¢��#�%������¯¢�����¢��¢����¢
���¢����%¢��#�%������¤¢���¢#�%��¢�����¢������¢������¢�¢�����%¢
��¢1��A¢��¢� ��������¯¢

+�¢ ��¢ %������1��¢ ��¢ �������%¢ ����¢ ���¢�����%�¢����%�����¢
���¢����¢��������¢¦�%¢����¢$�¢�����¢������¢����¢���¢�����%�¢
����¢ ����%�����¢ ��§¢ ���¢ ����¢ ����¢ ����� ��¢ ����¢ ��¢ G)�;�¢
!"����1��¢ ! ��������¢ ,���H¢ ���¢ G*������¢ � �������H¢
������¢1�¢ %�����¢��¢����¢��������¯¢

����¢ �����%¢ ������¢ ����%�����¢ ���¢ �������¢ �#¢ �����¢
����� ��¢¦����¢��¢�¢��������"�¢A��$�����§¢1��¢�#¢<���������¢
�1���¢ ����¤¢ ����¢ ���¢ $����¢ %�1�1��¢ ��"�¢ �¢ ��������¢
���$�%¯¢,��¢G)�;�¢!"����1��¢! ��������¢,���H¢���¢ ���¢
G*������¢ � ��������H¢ �%�¢ �%������%¢ A��$�����¢ ��¢ ����¢
�����%¯¢ +#¢ ����¢$�%�¢ %�����¢ ��¢ ���¢��������¤¢ ���%�¢$����¢
1�¢��¢%������¢��¢<��%�¢�1���¢����¯¢¢

?:>¢�����¢@�
������¢+�����¢C�����¢@�
������¢¢

�������¢ ��������"�¢ ���¢ �%������%¢ A��$�����¤¢ ���%�¢ �%�¢
����¢�$�¢����%¢����%��¢�#¢A��$�����¶¢���¢������¢A��$�����¢
���¢ ���¢ �������¢ A��$�����¯¢ ������¢ A��$�����¢ ���¢ ���¢
��#����¢ 1���"��%¢ �#¢ ���¢ ��������¢ �"�%¢ ����¯¢ D������¢
A��$�����¤¢ ��¢ ���¢ ����%�%�¤¢ ��¢ �; �����¢ ��¢ ������¢
#%�<������¯¢/�%¢�;�� ��¤¢���¢����¢�#¢�¢��� ���¢��¢�¢������¢
A��$�����¢1������¤¢��������¢ ����1��¤¢��¢��¢���¢ %�1�1��¢��¢
������¢ �"�%¢ ����¯¢ ���¢ ���¢ ����A�¢ <�����¢ �#¢ ����¢ ����¢
��� ���¢ ��¢ ���¢ ����A¢��%A��¢ �%�¢ �¢�������¢ A��$�����¤¢
1������¢ ��¢ ��¢����%�����¢1�¢����¢ ����¢ ������¢����¢ �����¢
��%���¢���¢����¢���¯¢

D���¢ ���¢ ���������¤¢$����¢ ���¢1�¢ ����%���¢ ���¢�������¢
#%��¢����1����¤¢�%�¢�������¯¢��� �%���"���¤¢ ���¢����1���¢
������¤¢ ���$���¢ $����¢ ��1���¢ �;���¢ ���¢ ��$¢ ����¢ �%�¢
%������¤¢��¢������¯¢

,��¢ ������%��¢ #�%¢����������¢ %� ����¢��¢ #�%¢ %� %�����¢
������¢A��$�����¤¢1��¢���¢�������¢A��$�����¯¢-���������¢
��"�¢ 1���¢ ����¢ ��%�¢ �#���¢ ��¢ ����%�1�¢ ����� ��¢ ���¢ ���¢
%���������� �¤¢$���¢ �����¢��¢ ��¢ %� %�����¢���¢������¢������¢
A��$�����¯¢!�������¢$�¢�%�¢�1��¢��¢� ���#�¢����"������¢��¢
��¢ ��������¤¢ ���%�¢ ��¢ ��¢ � ���#�������¢ ��¢ ��$¢ ��¢ ����%�¤¢
������¢�%¢� ����¢��$¢����"������¯¢

��¢ ���¢ ����������¢ ��¢ !���"�¢ -�*¢ ��¢ ������¢ ����¢
%� %�����¢ ��������"�¢ ���¢ ������¢ A��$�����¤¢ 1��¢ ����¢ �%�¢
����������¢ $���¢ ��1¢ ��%"����¢ ��¢ %���%�¢ �������¢ ���¢
 �%������%¢A��$�����¢#%��¢����¢�����¯¢

?:?¢"��
�
���¢��¢;���������¢

!���"�¢ -���������¢ ���¢ 1�¢ ����¢ ��¢ ����%#����¢ ��¢ --�¯¢
,���¤¢����¢�����¢����¢%�� ����¢��¢!���"�¢-�������¢����¢���¢
%�� ����1�����¢��¢�� ������¢���¢�������¢����������¢��¢��¯¢

¢

¢
�����¢<:¢���+�¢"��
�
���¢��¢;���������¢

-�¢/���%�¢£¢$�¢���$¢��¢�;�� ��¢��¢$����¢���¢�����¢�#¢
�¢ ������¢<��%���¢�¢���¢�#¢������¢����¢%� %�����¢�����%�¢���¢

849

�������¯¢ ����¢ ���¢ �#¢ ���¢ �����%µ�¢ ������¢ %�� ����¢ ���¢
��������¢G���#�%³©««±³������¯�$�H¯¢+�¢ ����¢��������¢���%�¢
��¢��¢G�"����1��� ������������H¢�����¢$���¢�¢��1¢��%"���¢
������¢G����H¢���A��¢��¢��¢��%����¢��¢����������¯¢

,���¤¢ ����¢ �����%µ�¢ �����¢ $���¢ ��"�¢ �¢ ��D*¢
��%%�� ������¢��¢���¢G�"����1��� ������������H¢�����¢���¢
��¢����¢��D*¢���%�¢����¢1�¢�¢��1¢��%"���¢������¢G����H¯¢

,��¢ ������µ�¢ �����¢$���¢1�¢ �1��¢ ��¢ ����¢ ���¢ G����H¢��1¢
��%"���¢��¢����¢�� �����������¢�1�������¤¢��¢����¢����¤¢���¢
��%%�� ������¢ ����¢�#¢�"����1��¢� ��������¢ �����¢ #�%¢ ����¢
� ���#��¢�����%¯¢

?:D¢6�C�¢���������¢

/�%¢ ����¢ �����¤¢ ���¢ ��D*¢ #���¢ ���%���¢ $���¢ 1�¢
��� ����¢�#¢�¢����¢ �%�¢���¢�¢�����¢ �%�¤¢����%����¢��¢���¢
�%����%¢ ���$�¢ ��¢,�1��¢ ©¯¢,��¢����¢ �%�¢��%%�� ����¢ ��¢
����¢ �����µ�¢2.*¢ N�����¢�%�O¢$��%���¢ ���¢ �����¢ ¢ �%�¢ ��¢
�����%�����¢ #%��¢ ���¢��������µ�¢2.+¢ N��������¢ �%�O¢ ���¢
���¢�����¢����¢N�����¢����O¯¢,��¢�����¢ �%�¢��¢���¢����¢#�%¢
���¢���¢������¢����¢�� ������¢���¢����¢��D*¯¢

+����¢>:¢,������¢�
�¢�,�¢�$������
�¢
�¢�,�¢-4�¢
�¢���,¢
6�C�¢�¢��¢���+�¢"��
�
��:¢fghijklmjk��nkfophqklmjrkfsjthhklmurkkvwghijxkfsjthhklmur��nkfv�pyqpjpzu{h�xkfpyqpjpz|klmurkv�xkfsjthhkyt}{rk
¢

/�%¢ �;�� ��¤¢ ��¢,�1��¢ ¨¢$�¢ ���$¢$���¢$����¢ 1�¢ ���¢
2.*¢�#¢���¢��D*¢�� ��������¢#�%¢���¢����¢�����¢��¢/��¢£¯¢

+����¢?:¢ ���$��¢-4�¢�
�¢�,�¢6�C�¢�$��������¢��¢��¢�����:¢fophqklmjrknkvgggwipsqpm�wsp}xkfpyqpjpz|klmurknkvlyu~pm������tz{yitwpgjxkfsjthhkyt}{rknkvt�tujt�j{t��puyq}{yqqu}{xkfsjthhklmurknkv�pyqpjpzu{h�lyu~pm�������z{yitwpgj�kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkt�tujt�j{t��puyq}{yqqu}{xkfghijklmjrknkxgggwipsqpm�wsp}�pyqpjpzu{h��yu~pm�k�����tz{yitwpgjk�kt�tujt�j{t��puyq}{yqqu}{wghijx�
2����¢���¢�%����%¢����¢���$�¤¢���¢2.*¢#�%¢���¢��D*¢

���¢ 1�¢ ������¢ ��%�"��¢ #%��¢ ���¢ ��������µ�¢ 2.+¢ ���¢ ���¢
2.*¢ �#¢ ����¢ �����¯¢ !���%����"���¤¢ ���¢ ��D*¢ ���%���¢
�����¢ 1�¢ �1������¢ 1�¢ <��%����¢ �¢ 2DD+¢ ��%"�%¢ ¦�%¢ ����%¢
��%"�%¢1����¢� ���#������¢#�%¢����¢ �% ���§¯¢

+�¢ ���¢ ����¢�#¢�;����¢�¢ ���¢�#¢������¢ ����¢������¢ ��¢��¢
��������¤¢ ���¢ %� ����¢ ���"������¢ �%����¢ #���¢ ����¢
�����·�¢ ��D*¢ #���¢ ����¢ ��%%�� ����¢ ��¢ ���¢ ��������¢
�������¯¢!���¢ ��¢ ����1��¢ ��¢ ����¢ �#¢ ��¢ �����¢ ������¢ ��¢ ��¢
��������¢"�%�#����¢ ���¢ %������¢�#¢ ���¢��D*¢ #����¢ ��¢ ���¢
�����·�¢����¯¢

D:¢���+�¢"6�¢
!���"�¢ -�*¢ � ����¢ ��¢ -�*¢ �����¢ %������¢ ��¢ !���"�¢

-���������¯¢,��¢� %����¢����¢ ��¢���������¢��1¢��%"����¢
��¢ ����������¢ ��¢ ��¢ ��������¢ �������¢ ���¢ %� �%����¢
����������¢ ���¢ �;�������¢ �#¢ #��%¢ �� ��¢ �#¢ ��1¢ ��%"����¶¢
L�,¤¢�2,¤¢D�*�,�¢���¢*+�,¯¢

,��¢��������¢�#¢�����������¢�%�¢���������¢ ��¢��������¢
�#¢ J²**¢ �%#�%����"��¢ !�J¤¢ ,�**¢ ���¢ 2),�**¢ 1��¢

$�¢������¢ ��¢���¢ ���¢�����;¢�#¢ ¢@,,�¢"�%1�¶¢L�,¤¢�2,¢
���¢ D�*�,�¯¢,��¢ ����������¢*+�,¢$��¢ ��������¢1�¢ ���¢
���������¢���%����%������¢�#¢$�1¢��%"����¯¢

+����¢ D:¢ C����
�¢
�¢ , +E¢ �;�+E¢ �-+¢ ���¢ C � + ¢
���
���
��¢fpgj��tqtq|�{�mp�{mq|kmi~���n�z{q�rkkkkkkkkkfmi~�q|�{kmi~�m{hplms{n��pgj��yypqtqupy�mp�{mq|��rkkkkkkkkkfmi~h�mtyz{kmi~�m{hplms{n���hi�hqmuyz��rkkf�pgj��tqtq|�{�mp�{mq|rkfpgj��tqtq|�{�mp�{mq|kmi~���n�juhq�rkkkkkkkkkfmi~�q|�{kmi~�m{hplms{n��pgj��yypqtqupy�mp�{mq|��rkkkkkkkkkfmi~h�mtyz{kmi~�m{hplms{n���hi�hqmuyz��rkkf�pgj��tqtq|�{�mp�{mq|rkfpgj��tqtq|�{�mp�{mq|kmi~���n��lq�rkkkkkkkkkfmi~�q|�{kmi~�m{hplms{n��pgj��yypqtqupy�mp�{mq|��rkkkkkkkkkfmi~h�mtyz{kmi~�m{hplms{n���hi�hqmuyz��rkkf�pgj��tqtq|�{�mp�{mq|rkfpgj��tqtq|�{�mp�{mq|kmi~���n�i{j{q{�rkkkkkkkkkfmi~�q|�{kmi~�m{hplms{n��pgj��yypqtqupy�mp�{mq|��rkkkkkkkkkfmi~h�mtyz{kmi~�m{hplms{n���hi�hqmuyz��rkkf�pgj��tqtq|�{�mp�{mq|rk

!����������¢ �%�¢ ��#����¢ ��¢ -�*¢ 1�¢ !���������¢
�%� �%����¯¢ ,�1��¢ ®¢ ���������¢ ���¢ ��#�������¢ �#¢ ���¢
�����������¯¢¢

D�#��������¢ ��¢,�1��¢ ®¢���¢ ���¢-�*¢ £¯«¢ �����;¤¢ �����¢
-�*¢ £¯£¢ ���¢ ���¢ 1���¢ %����������¢ ���¯¢ -��¢ �#¢ ���¢
�������¢ %� ����¢#�%¢-�*¢£¯£¢��¢%������¢��¢�����������¯¢+#¢
����¢ ������¢ ��¢ %�����¢ ���#�%���¤¢ ���¢ ��������¢ %� ����¢1�¢
!���"�¢-�*¢���¢1�¢�������¢$���¢��¢#�%���%¢ %�1����¯¢

/�%¢ ����¢ ����������¢ ��¢ �������¢ ���¢ %� �%����¤¢ ���¢
#����$���¢��1¢��%"����¢����¢1�¢�� ��������¶¢

���
���
��¢�¢�������¢

�$,��¢ ���¢ ����������¢ ���������¢ ���¢ �;�������¢ �#¢ �¢
���.	��F��/¢ ��1¢ ��%"���¢ $����¢ %����"��¢ ���¢
����"�����µ�¢ ������#��%¢ 1�¢ �%�����%¢ ���¢ %���%��¢
���¢%�� ����"�¢����"�����¯¢

�$,��¢ ��¢ ����������¢ ���������¢ ���¢ �;�������¢ �#¢ �¢
&&�.�������&��/¢ ��1¢ ��%"���¢ $����¢ %����"��¢ ���¢
����"�����µ�¢ ��%%�� ������¢ =**¢ 1�¢ �%�����%¢
���¢����¢��¢��¢���¢�����µ¢����"������¢���¯¢

�$,��¢������¢����������¢���������¢���¢�;�������¢�#¢�¢
�������.	��F��/¢ ��1¢ ��%"���¢ $����¢ %����"��¢ ���¢
����"�����µ�¢ ������#��%¢1�¢ �%�����%¢���¢ %���"��¢
��¢#%��¢���¢�����µ¢����"������¢���¯¢

�$,��¢ ��
�¢ ����������¢ ���������¢ ���¢ �;�������¢ �#¢ �¢
��
�./¢ ��1¢ ��%"���¢ $����¢ �����¢ ���¢ ���¢ �����µ¢
����"������¯¢

���
���
��¢�¢$�
$�����¢
/�%¢����¢�����¢��¢�#¢ ���¢���¢D¦�§P7�£¤¢�©¤¢ ¯¯��8¢$����¢

�����������¢���¢������¢�#¢�¢ %� �%��¢�¯¢

�$ +#¢�¢��¢#���������¤¢���¢���¢����������¢���������¢���¢
�;�������¢ �#¢ �¢ ����.	��F��/¢ ��1¢ ��%"���¢ $����¢
%����"��¢ ���¢ ����"�����µ�¢ ������#��%¢ 1�¢ �%�����%¢

850

���¢ %���%��¢ ���¢ "����¢ �#¢ ���¢ ����"�����µ�¢
%�� ����"�¢�¢ %� �%��¯¢

�$,��¢ &&�¢ ����������¢ ���������¢ ���¢ �;�������¢ �#¢ �¢
&&��¢ .	��F��0¢ ���&�/¢ ��1¢ ��%"���¢$����¢ %����"��¢
���¢ ����"�����µ�¢ ������#��%¢ ���¢ ���¢"����¢�#¢ ���¢�¢
 %� �%��¢1�¢ �%�����%¯¢

�$,��¢	��	�
�¢����������¢���������¢���¢�;�������¢�#¢�¢
�������.	��F��0¢���&�/¢��1¢��%"���¢$����¢%����"��¢
���¢ ����"�����µ�¢ ������#��%¢ ���¢ ���¢ ����"�����µ�¢
%�� ����"�¢�¢ %� �%��¢"����¯¢

�$,��¢ ��
�¢ ����������¢ ���������¢ ���¢ �;�������¢ �#¢ �¢
��
��.	��F��/¢��1¢��%"���¢$����¢�����¢���¢���¢"�����¢
�#¢ ¢ ���¢ �¢ %� �%��¢ #�%¢ ���¢ ����"�����¢ $����¢
������#��%¢$��¢ �����¢1�¢ �%�����%¯¢

¢
!���%����¢ ��¢ ���¢ � ���#��������¢ �#¢ ,�1��¢ ®¤¢ ����¢

����������¢���¢�¢"����¢�#¢�� �¢��%���¯¢)�%�����¤¢����¢"����¢
$���¢1�¢��¢�� ��¢��%���¯¢@�$�"�%¤¢����¢"����¢$���¢1�¢����¢
�#¢ ��¢ ��%��¢ ���¢ ��¢ 1�¢ �������%�¢ ��¢ �"�%%���¢ ���¢ "�����¢ �#¢
N�����¢�%�O¤¢$����¢��#����¢"����¢ ��¢%��%��"��¢��¢ ������¢��¢
,�1��¢£¤¢�%¢�#¢��¢��¢�������%�¢��¢��������¢��$¢ �%�����%�¢#�%¢
���¢��1¢��%"����¢����¯¢

,��¢�����;¢�#¢���¢��%���¢$����¢��%%�� ����¢��¢���¢"����¢
�#¢����¢����������¢#����$�¢���¢�%����%¢1���$¶¢

+����¢G:¢,������¢�
�¢�,�¢+�����¢
�¢���
���
��¢ftypqtqupyrk��nkv�jthh�muxknkvkfsjthhklmurkxk�k�tmt}{q{mhknkk�vkf�tmt}{q{mrk�v�xkkf�tmt}{q{mr��kv�xkf�tmt}{q{mrk��nk�qmuyz�
¢

!��¢���������¢ ��1¢ ��%"����¢ %��%��"�¢ ���¢ � ����¢ ����¢
���¢����"������¢����¢��%%�� ���¢��¢���¢ �%������%¢A��$�����¢
�#¢����¢�����¢ ����¢ �� �������¢ ���¢��������¯¢,���¢ ��¤¢ ����¢
���µ�¢%��%��"�¢�%¢� ����¢���¢���%��¢A��$�����¢%� %�������¢
��¢���¢��������¯¢

,��¢ ���¢ ����������¢ ��¢ ��#����¢ ����¢ #�%¢ #���������¢
 %� �%����¯¢ ����¢ ����%���¢ �#¢ ��./¢ � ���#�������¢ =>¤¢
$����¢ ����$�¢ �����¢ ����������¢ 1��$���¢ ��1¢ ��%"���¢
�����¤¢ ��¢$���¢ 1�¢ ����1��¢ ��¢ �;����¢ ���¢���¢ ����������¢ #�%¢
���ª#���������¢ %� �%����¯¢

!����������¢������¢1�¢� ����¢��¢���������¢�������¢�%¢
�������¢ 1����¢ #%��¢ �; %�������¯¢ !����������¢ �%�¢ ���¢
����%����¤¢ ����¢ ��¤¢�¢�����¢�����¢����¢� ���#�¢ ���¢�$�¢��1¢
��%"����¤¢$����¢$���¢���¢1�¢����%����¢#%��¢���¢ �%���¢�����¯¢

-�¢ ���¢ ��%%���¢ � ���#�������¤¢ �;�������¢ �%%�%�¢ ��¢ ��1¢
��%"����¢������¢1�¢�%�����¢1�¢ ���¢� ��������¯¢!�¢�; �����¢
�;�������¢ #�%¢ ���¢ ��%%���¢ � ���#�������¢ $����¢ 1�¢ ���¢
�%�������¢�#¢����¢�%%�%�¯¢

����%���¢ ������¢�%�¢ �%�����¢��¢ ���¢ ��"��¢�#¢����¢��D*¢
��%����¢���¢� %� %����¢� ���#��������¯¢

¢
G:¢;	�� 	 M+�+;"M¢�4�H;+ �+-4 ¢

!���"�¢ -�*¢ $��¢ �� ��������¢ �����¢ �����������¢ ��¢
#���������¢ %� �%����¯¢+�¢���¢�� �����������¤¢(���¢=±>¤¢!;��¢

=£>¤¢ ���¢!� ���(¢ =©>¢$�%�¢ ����¢ ��¢ ������¢ ���¢ ����������¤¢
��1¢��%"����¤¢���¢�� ����¤¢%�� ����"���¯¢

�����¢>:¢��$����¢�����¢�
¢�$������¢���+�¢"6�¢
¢

,��¢ ���¢ �#¢ !-�¢ 1%����¢ ���¢ ��"������¢ �#¢ ���¢ 1����¢
�������%�¢��¢������¢���¢����¢�#¢����¢��¢(�)!¢#%���$�%A¯¢
����¢��$¢�������¢��¢(�)!¢$�%�¢ ���%������¢ ��¢���¢#�%�¢
�#¢ ��"����¢ ��¢ !-�¯¢ ����¢ �����������¢ �%�¢ #����¢ ��¢
#���������¢ %� �%����¤¢���¢��"����¢����¢�����¢���¢%�� ����"�¢
��1¢��%"���¯¢

/���%�¢ ©¢ ���$�¢ ���¢ �%��������%�¢����¯¢,��¢ �� ���¢ ����¢
$�%A�¢��A�¢�¢ %���¢����¢�������¢���¢�����¢��¢���¢����������¯¢
,��¢ ��������¢ ��¢ �����¢ ��¢ !���"�¢ -�*¢ �����;¤¢ 1��¢ ���¢
 %��%��¢����¢����¢���¢��������¢ �%���"��¢��¢��¢��¢��������¢
�����¢��¢-�*¯¢

��¢?:¢6�C�¢����¢����¢�
¢�$������¢�,�¢"<¢���+�¢"��
�
��¢¢

851

¢
+�¢ ���¢/���%�¢ ¨¢ �;�� ��¢$�¢��"�¶¢ ���¢ �������¢�£¤¢�©¤¢

�¨¤¢�®¢���¢�°¸¢,��¢����¢ �� �¢ %� �%��¢D,�£¸¢,��¢�1����¢
 %� �%����¢-�©¤¢-�¨¤¢-�®¤¢-�°¢���¢-�¬¯¢,��¢������¢���¢
���¢%����¢�#¢���¢ %� �%����¢�%�¢���������¢�����¢�%%�$�¯¢¢

,��¢�£�����¢��¢���¢���������¢1��¢���¢����¢�� �¢ %� �%��¢
D,�£¢��¢���������¢$���¢G���H¢���¢���¢�1����¢ %� �%��¢-�¬¢
��¢ ���������¢$���¢ G ��H¯¢,��¢�©¢�����¢ ��¢ ���������¢$���¢
G ��H¢���¢G���H¯¢,��¢�¨¢�����¢��¢���������¢$���¢G���H¢���¢
G����H¤¢ ����¢ ���¢ -1����¢ %� �%��¢ -�°¢ ��¢ ���������¢ $���¢
G���H¯¢ ,��¢ �®¢ ���¢ �°¢ �������¢ �%�¢ ���¢ ���������¯¢
,��%�#�%�¤¢ ��¢ �� ������¢ ���¢ -£¢ !���"�¢ -�������¢ ��%��¢
��D*¢#����¢$���¢1�¢�%�����¤¢��¢���������¢��¢/���%�¢¨¯¢

����¢L���%� �%��K����¢������¢ #%��¢ (���¢ #%���$�%A¢
��¢��"�A��¤¢$����¢��¢%�� ����1��¢#�%¢��� ������¢���¢"����¢�#¢
�¢ %� �%��¤¢���¢�� ���¢����%�� ��%¢$���¢����%�� �¢���¢����¢���¢
��"�A�¢ ���¢��1¢��%"���¢� ���#���¢ ��¢ ���¢����������¢ ¦�¯�¯¢�¢
/���������¢�%� �%��¢ ��1¢ ��%"���§¯¢,��¢ %�����¢�#¢ ���¢��1¢
��%"���¢ ����¢ $���¢ 1�¢ ���$�¢ ��¢ �#¢ ��¢ $��¢ ��A��¢ #%��¢ ���¢
%��������¢-�*¢#���¯¢

,��¢��1¢��%"���¢���¢��� ���¢�¢#�������¢�%¢<��%�¢#�%¢�¢
 %� �%��¢"����¢��"�A���¢������%¢�����¤¢<��%����¢�¢����1���¢
�%¢��"�A���¢��¢��#�%����¢������¢��¢�1����¢���¢"����¯¢

I:¢�"M��-�;"M¢

,���¢ �%�����¢ %������¢ ���¢ ����� �¢�#¢!���"�¢-���������¢
���¢��¢�� �����������¢�#¢���¢����¢����� �¤¢������¢!���"�¢
-�*¢ #�%¢ ���¢ -�*¢ ��������¯¢ !���"�¢ -���������¢ �%�¢
���%����%�0��¢1�¢ ���¢��#�������¢�#¢����������¢���¢ ���¢��1¢
��%"����¢ ����������¢$���¢ ����¯¢ ,��%�#�%�¤¢-���������¢ �%�¢
��$¢ ����¢ ��¢ ����%#����¢ ����¢ #�%��¢ �����¢$��¢ ���¢ ����¢ ��¢
�� ������¢���¢��1¢��%"����¢����¢�%�¢����������¢$���¢����¯¢
����¢��1¢��%"����¢�%�¢%�� ����1��¢#�%¢%��%��"���¢ �%������%¢
���¢�������¢A��$�����¢�#¢����¢�����¯¢

�����¢ ��1¢ ��%"����¢ ���¢ ����������¢ �%�¢ ��$¢ � ���#���¢
�������%¤¢ ���¢��� ��;¢� �%������¢�#¢��������¢��������¢�#¢
�¨�¢ %� �����¢ �%�¢ ���¢ �������%�¯¢ ��1¢ ��%"����¢
��� �������¢ ��¢ ����¢ �� �������¢ ���¢ �%��� �%�����¢ ��¢
<��%���¢�%�¢����¢��¢��������¢����"������¯¢

+�¢!���"�¢-�*¤¢ #��%¢ �� ��¢�#¢ ��1¢ ��%"����¢ ¦���¤¢ ��¤¢
������¤¢ ���¢ ����§¢ �%�¢ ����������¢ $���¢ ����������¢ ��%����¢
�����������¯¢ -�%¢ %� ����¢ $��¢ �� ��������¢ ����¢ #�%¢
#���������¢ %� �%����¤¢�����¢!� ���(¢��¢����%�� �¢�����¢#%��¢
(���¢#%���$�%A¢���¢��¢��"�A�¢����������¢��1¢��%"����¯¢

!�¢ #���%�¢$�%A¤¢ �� ������������¢���¢ ���¢ �����������¢
��¢���ª#���������¢ %� �%����¢���¢�������¯¢

4 � 4 M� �¢
=£>$! ����¢!;��¤¢��� ¶³³$�¯� ����¯�%�³�;��³¢
=©>$!� ����¤¢��� ¶³³$$$¯���� ��¯�%�³�� ����³¢
=¨>$ ��%��%�¢*��¤¢,¯¤¢@�����%¤¢(¯¤*������¤¢-¯¦©««£§¢98�¢��%����
¢

1�4¯¢�������#��¢!��%����¤¢*��¯¢¢

=®>$ ��%����¤¢(�%��¯¢¦©««±§¢��%����
¢1�4¢��	��
�
F¢98��	 0¢
9���
¢���¢*&&��
�����
¢¯¢+�#�%������¢�������¢.�#�%����¤¢
)�$¢¹�%A¯¢

=°>$ /�����¤¢D¯¤¢*����%¤¢@¯¤¢�����%��¤¢!¯¤¢��¢�%����¤¢(¯¤¢�����1�%�¤¢
*¯¤¢.����¤¢D¯¤¢D�������¤¢(¯¢¦©««±§¢$��4����¢��%����
¢
1�4¢��	��
�
¤¢� %����%¢K�%���¯¢

=¬>$ L%�1�%¤¢,¯.¯¢¦£´´¨§¢!¢�%���������¢� %����¢��¢ �%��1��¢
��������¢� ���#��������2¢3��������¢*
J&�
�����
¤¢°¶£´´ª©©«¯¢

=±>$ (���¢��������¢��1¢/%���$�%A¢¦©««±§¤¢
��� ¶³³����¯���%��#�%��¯���³¯¢!�������¢(���³©««±¯¢

=>$ -!�+�¢���������¦©««¬§¤¢��ª.����%��¢/%���$�%A¢
¦��./§¯¢��� ¶³³$$$¯���1��¯�%�³$�%#³¢

=´>$ -�*¢,��������¢���������¯¢¦©««®§¢��1¢-�������¢
�������¢¦-�§¤¢¢��� ¶³³$$$¯$¨¯�%�³©««®³-�*³¯¢
!�������¢(���¢³©««±¯¢

=£«>$-�*ª�¢,��������¢���������¢¦©««®§¢-�*ª�¶¢��������¢
�%A� ¢#�%¢��1¢��%"����¤¢�¨�¢��1�%¢��1�������¯¢
��� ¶³³$$$¯$¨¯�%�³��1�������³©««®³�2�*ª-�*ª�ª
©««®££©©³¯¢!�������¢����¢©««±¯¢

=££>$-�*ª�¢,��������¢���������¢¦©««®1§¢-�*ª�º¢.���������� ¢
��¢��������¢-���%¢,�����������¤¢�¨�¢*��1�%¢��1�������¢
��� ¶³³$$$¯$¨¯�%�³��1�������³©««®³�2�*ª-�*ª�ª
%������ª©««®££©©³¯¢!�������¢(���¢³©««±¯¢

=£©>$�¯¢*�+�%����¤¢,¯�¯¢���¢»¢@¢¼���¯¦©««£§¢��������¢��1¢
��%"����¤¢)$$$¢�����������¢�
��%
0¢�&�
���¢)

&�¢��¢�8�¢
��%����
¢1�4¤¢£¬¦©§¶®¬ª°¨¯¢

=£¨>$�!��D*¢,��������¢���������¯¢¦©««±§¢��������¢
!����������¢#�%¢��D*¢���¢=**¢������¢¦�!��D*§¤¢¢
��� ¶³³$$$¯$¨¯�%�³©««©³$�³��$���³¯¢!�������¢����¢³©««±¯¢

=£®>$���/¢,��������¢���������¯¦©««°§¢��������¢��1¢��%"����¢
/%���$�%A¦���/§¤¢�¨�¢*��1�%¢��1�������¯¢¢
��� ¶³³$$$¯$¨¯�%�³��1�������³���/³¯¢!�������¢(���¢
³©««±¯¢

=£°>$�¨�¢��%A���¢¦©««®§¢L%�� ¤¢��1¢��%"����¢L�����%�¢ª¢)���¢
££¢/�1%��%�¢©««®¢ª��� ¶³³$$$¯$¨¯�%�³,.³$�ª�����³¯¢

=£¬>$��1¢��%"����¢!%��������%�¤¢�¨�¢��%A���¢L%�� ¢)���¢££¢
/�1%��%�¢©««®¯¢��� ¶³³$$$¯$¨¯�%�³,.³©««®³)-,�ª$�ª
�%��ª©««®«©££¯¢!�������¢-��³«±¯¢

=£±>$��D*ª�¢,��������¢���������¯¢¦©««°§¢��1¢��%"���¢
���������¢¦��D*ª�§¤¢¢�¨�¢*��1�%¢��1�������¯¢
!�������¢�����³©««±¢��¢��� ¶³³$$$¯$¨¯�%�³��1�������¢
³��D*ª�³¢

=£>$��*-¢,��������¢���������¢¦©««°§¢��1¢��%"���¢
�������¢-�������¦��-§¤¢�¨�¢*��1�%¢��1�������¯¢
��� ¶³³$$$¯$¨¯�%�³��1�������³��*-³¯¢!�������¢(���¢
³©««±¯¢

=£´>$��*-¢,��������¢���������¯¢¦©««°§¢.���������� ¢�#¢
��*-¢��¢����%¢%���"���¢������������¤¢
��� ¶³³$$$¯$¨¯�%�³��1�������³��*-ª%������³¯¢!�������¢
(���³©««±¯¢

=©«>$��D*¤¢��1¢��%"����¢D���%� ����¢*�������¢£¯£¤¢�¨�¢)���¢
£°¢*�%��¢©««£¤¢��� ¶³³$$$¯$¨¯�%�³,.³$���¯¢!�������¢
!�����³©««±¯¢

=©£>$�-!�¤¢K�%����¢£¯©¢��%�¢£¶¢*��������¢/%���$�%A¢¦������¢
�������§¤¢�¨�¢.�������������¢©±¢! %��¢©««±¤¢
��� ¶³³$$$¯$¨¯�%�³,.³��� £©ª �%�£³¯¢!�������¢
!�����³©««±¯¢

852

Failure Prediction Based Self-Healing Approach for Web Service
Composition

Yu Dai Lei Yang Bin Zhang Kening Gao

College of Information Science and Technology, Northeastern University
NEU_DaiYu@126.com

Abstract

Web services can be composed together in order to
carry out complex transactions or workflows. During
the execution of the composite service, if one
component service fails, a mechanism is needed to
ensure that the failed service can be quickly and
efficiently replaced. In this paper, we propose a self-
healing approach for web service composition. The key
issue of such approach is the failure prediction. Based
on prediction of the failure, service which will be
failed can be detected as soon as possible. Thus, re-
selection process will be started earlier before the
invocation of this service. This will make the re-
selection process minimize the interrupting time
(caused by online re-selection) of the composite
service execution and improve the availability of the
composite service. The experimentations show better
performance of the proposed self-healing approach.

1. Introduction

The QoS of a service may evolve relatively
frequently, either because of internal changes or
because of workload fluctuations. Thus, a composite
service should have self-healing ability. The self-
healing ability means that composite service can repair
itself if any execution problems occur, in order to
successfully complete its execution, while respecting
QoS agreements.

Currently, several works focusing on how to
establish QoS model and how to do the selection have
been studied in Ref. [1, 2]. In these works, the QoS
values of component services rely on estimates of
service execution parameters. However, at execution
time, the actual QoS values will almost surely deviate
from the estimates, for example, because of the
network load. To avoid this, it is necessary to re-select
the composite service. However, as re-selection with
global optimization is a NP hard problem, it will need
a long time to finish and be likely to interrupt

execution of composite service for a long time. Thus, it
is needed to minimize the delay caused by re-selection.

 With this problem in mind, we present a solution
for composite service self-healing. Such approach is
supported by a semi-offline re-selection execution
environment. In this environment, if the failed service
needs not to be invoked, the re-selection process can
be done offline without affecting the execution of the
composite service. Supported by such environment, in
order to enlarge the time of offline re-selection, a
failure prediction is proposed. Then, when the QoS is
predicted a deviation from the expected QoS, a re-
selection process will be triggered before the
invocation of the service. Through doing so, the extra
delay caused by re-selection will be minimized.

2. Related Works

In order to make the composite service recover
from the failure with minimal user intervention and
make the recovered composite service meet the end-to-
end constraint, researchers proposes the QoS-driven
adaptation approach for composite service. Based on
the replacement composite service idea, researchers [3,
4] propose approaches of backing up a composite
service for each component service. Then, when a
component service is incurred a failure, the composite
service can be easily switch to a replacement one. In
Ref. [3, 4], all the replacement composite services are
backed up before the execution of the composite
service. Such two approaches do not consider the QoS
of services during runtime of the composite service.
Thus, the replacement one will not be available
sometimes.

One of the researching works that do the re-
selection process during the composite service
execution is the approach in Ref. [5]. In Ref. [5], the
re-selection process will be triggered as soon as the
actual QoS deviates from the initial estimates. When
the failure is found, the execution of composite service
will be stopped until the re-selection process is

853

finished. Thus, this approach can be only used for
runtime-unaware application.

Compared with above works, we introduce a failure
prediction and a semi-offline re-selection execution
environment. Through doing so, the re-selection
process will make the re-selection process minimize
the interrupting time of composite service execution.

3. Failure Prediction Based Self-Healing

3.1 Preliminaries

In this section, we introduce some basic concepts
that will be used in the remainder of the paper.

Definition 1. QoS of Atomic Service. For an
atomic service s (which only contains one operation),
the QoS of s can be defined as: QoS(s)=<Qt(s), Qp(s)>,
where:
� Qt(s) is the response time of s.

Qt(s)=tp+R/Vtransmission, where tp is the request
processing time; R is the amount of data needed
to transmit between s and the execution engine
and Vtransmission is the transmission speed.

� Qp(s) is the cost of invoking s.
 The aim of selection is to maximize the fitness
function of the available QoS factors; and meet the
constraint specified for some of the factors. Such
problem can be formulated as equation (1).

! " iij
Sj

ij

t
c

N

1i Sj
ij

t
ij

N

1i Sj
ijij

SjN,1,...,ixx

QxQts

xF

i

i

i

�
�

.

�

��

��

�

 �

 �

 1,0 ,1

 .

 max
 (1)

Where, xij is set to 1 if atomic service j is selected for
service class Si in the workflow and 0 otherwise. Qij is
the QoS values of service j in class Si. Fij is a fitness
function which can be computed as (2).

�
�
�

�
�
�
�

	 �
)��

�
�

�
�
�
�

	 �
)

p

p
p

ij
p

t

t
t
ij

tij

uQ
w

uQ
wF

//
(2)

Where wt and wp are the weights (0<=wt, wp<=1,
wt+wp=1). � and μ are the standard deviation and
average of the QoS values for all candidate services in
a service class.
3.2 Approach Overview

Since that in a composite service, the invocation of
one web service will not begin until all the
predecessors of this service are finished. Usually, the
re-selection process is to re-select the failed service
and its successors. Then, the re-selection process will
not affect the process of composite service execution,
when the failed service needs not to be invoked.
Therefore, when it needs not to invoke the failed
service, the re-selection process and the execution

process of composite service can be done
asynchronously. Based on this idea, we introduce a
semi-offline re-selection execution environment. In
this environment, only when the re-selection process is
not finished and the failed service needs to be invoked,
the composite service will stop its execution until the
re-selection is finished.

In this environment, if a service is perceived to
incur a failure earlier before its invocation, there will
have longer time to do the re-selection offline. This
means that the interrupting time of composite service
execution caused by the re-selection will be minimized.

Fig. 1 Framework of The Approach

Based on above basic idea, we propose an
approach (Fig. 1) for composite service healing itself.
The self-healing contains 2 main parts: failure
prediction based re-selection triggering, and getting
solution to optimal re-selection problem. We will
discuss details of such two problems in the following.

4. Details of the Approach

4.1 Failure Prediction

Compared with changes caused by service
providers, changes caused by the network may be
occurred more frequently. Changes caused by the
network may affect the data transmission speed and
thus, affect the response time of composite service.
Therefore, in this paper, we will try to predict the data
transmission speed. The work of this paper is based on
the following assumptions: (a) the failures at different
service and communication links are independent; (b)
during the data transmission process, data transmission
speed is a constant value; (c) price and request
processing time of a service is never changed.

We introduce discrete time semi-Markov model [6]
for the prediction.
 Definition 2. States of Data Transmission Speed. We
use th_VQ to signify the threshold of data transmission
speeds in Qualified state.
� If V(t)>= th_VQ, then ST(t) =Qualified state;
� If 0<V(t)<=th_VQ, then ST(t)=Soft Damage

state;

854

� If V(t)=0, then ST(t)=Hard Damage state.
Definition 5. Semi-Markov Model for Data

Transmission Speed. Let � be the state space of data
transmission speed �={1, 2, 3}. Z={Zt; t>=0} is the
random procedure on �. If the following conditions
are true, we call that Z={Zt; t>=0} is a semi-Markov
process.
� If current state is i, the next state will be entered

is j with probability Pij. Especially, Pii=0;
� Given that the next state entered will be j, the

time it spends at state i until the transition occurs
is a holding time t with distribution Fij(t).

Let Hi(t) be the distribution of holding time in state
i, Hi(t)= � ��)

j
ijij PtF . The average holding time in state

i can be signified as μi. According to lemmas [6] of
semi-Markov model, there exists stationary
distribution �=[�1, �2, �3] and for each �j, it can be
computed as Eq.(3). Also, let Pi the steady-state
occupancy probability of state i, it can be computed as
Eq. (4).

1;
3

1

3

1

 ��

 i
i

i
ijij P +++ (3)

�

j
jj

ii
iP

�+
�+ (4)

In order to predict the future state, it is required to
get the context related to data transmission speed.
 Definition 3. QoS-Related Context. The QoS-related
context observed by observation o can be defined as
QC(o)=<tob, v, stob >, where tob is observing time; v is
the observed data transmission speed at tob; stob is state.
 The aim of prediction can be described as: if the
current state is i, current time is t and the holding time
in current state is d, we need to predict the probability
of the data transmission speed Vf at future time tf above
the expected speed Ve. Let j be the state Ve belongs to.
To solve this problem, we will consider the following
two situations:
� State j is same to i
In this situation, the probability can be a sum of the

probabilities in the situations with no transition from t
to tf and situation with at least one transition. Then, the
probability can be computed as Eq. (5).

� � � �� �
� � � �� �
� � � � � �� �

� �� � � �
� � � �� � � � � �

� �
1

1
1

1
1

dH
dHdttH

PVF
dH

dttH
VF

dDttdDdiZVVP

dDdttDVVP
dDVVP

i

ifi
iei

i

fi
ei

ifite

ifie

ie

f

�

���
))��

�

���
)�

,��((�
�,�

,��,�,

,�, (5)

� State j is different from i.
If state j is different from i, it means that there exist

at least one transition during the duration from t to tf.
Then, the probability can be computed as Eq. (6).

� � � � � �� �
� � � � � �

� �� � � � � �
� �dH

dHdttH
PVF

dDttdDdPjZPVVP

dDttdDdjZVVP

i

ifi
je

ifite

ifite

f

f

�

���
))�

,��(()
),

,��((�
�,

1
1

(6)

Definition 4. QoS Failure of Service. Considering a
service s in composite service CS, if it is predicted that
the probability of the data transmission speed during
its execution time below the predefined threshold is
lower than rd, service s is assumed to incur a QoS
failure.
4.2 Re-Selection Triggering

Through failure prediction, the failure of service
can be perceived much earlier and the re-selection can
begin earlier. Thus, the re-selection will be more likely
to finish before the invocation of the failed service and
the extra cost caused by re-selection will be minimized.
Our approach will trigger the re-selection when a QoS
failure is predicted.
4.4 Algorithm for Re-Selection

The re-selection will be done on the re-selected slice
of the composite service. The re-selected slice can be
generated based on the approach in [5]. Then, the
problem of such re-selection can be described as:

! " 0 , 1,0 ,1

' .

 max

�
�

.

�

��

��

�

 �

 �

vuiij
Sj

ij

t
c

N

1i Sj
ij

t
ij

N

1i Sj
ijij

xSj,FS1,...,ixx

QxQts

xF

i

i

i

 (7)

Where, FS is the set of service classes in re-selected
slice; Qc

t’ is the runtime of original re-selected slice
which can be used as runtime constraint for re-
selection.

Such problem can be solved by integer
programming algorithm [1]. As the limitation of this
paper, we will not discuss it in detail.

5. Experimentations

Experimentation 1 is used to test the effectiveness of

the proposed semi-Markov model based QoS
predicting approach. Simulate test set of data
transmission speed according to the Gaussian
distribution. The threshold of failure probability is 0.9.
The size of QoS-related contexts is 100000. Compare
the relation among predicted result, predicting interval
and the observation interval between two neighboring
contexts. Table 1 gives the result (OQ is the
observation interval between two neighboring QoS-
related contexts in QCS; N is the number of predictions;
R is the average accurate rate of the predictions.

855

Table. 1. Semi-Markov Based Predicted Result
OQ=0.5s OQ=0.1s OQ=0.05s

I=
10

I=
60

I=
180

I=
10

I=
60

I=
180

I=
10

I=
60

I=
180

N 300 300 300 200 200 200 150 150 150
R% 95 86 80 97 93 83 98 95 92
 Table 1 shows that if the observation interval
between two neighboring contexts is smaller and the
predicting interval is shorter, the prediction will be
more accurate. When the observation interval is short
enough, although predicting interval is a little bigger,
the accurate of prediction will be better also. Thus,
through minimizing observation interval, the accuracy
of prediction result can be improved.

Experimentation 2 is to test the interrupting time
caused by the re-selection process. Randomly generate
10 scenarios with IQ=0.1s, I=60, k=20, and the
threshold of failure probability is 0.9. Compare
interrupting time, result of which is shown in Fig 2.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Scenarios

In
te

rru
pt

in
g

Ti
m

e
(m

s)

Proposed Adaptive
Approach

Traditional Pre-
Backing Up Approach
[3]
Online Backing Up
Approach [5]

Fig. 2. Comparison of Interrupting Time

Fig 2 shows that the interrupting time of the
proposed approach is always the least one among the
three approaches. This is because that the when the
replacement one is not available and service is failed,
re-selection process will start as soon as possible
through failure prediction. Thus, the re-selection
process will occupy as few as possible execution time
of composite service.

Experimentation 3 is used to test the availability of
replacement composite service. Randomly generate 10
composite service, for each composite service,
simulate 10 failed situations and set IQ=0.1s, I=60,
k=20, the threshold of failure probability is 0.9.
Compare success rate of substitution before invoking
time of failed service. The result is shown in Fig 3.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Composite Service

Su
cc

es
s R

at
e

(%
)

Proposed Approach

Trandit ional Pre-Backing up
Approach [3]

Fig. 3. Comparison of Success Rate

Fig 3 shows that the success rate of the proposed
approach is always better than that of traditional pre-
backing up approach. This is because that our

approach considers the QoS performance of services
during the composite service execution, the availability
of replacement composite service can be preserved and
thus, the success rate will be high.

6 Conclusions

In order to solve the problem of making composite
service adapt to dynamic property of services, we
propose a self-healing approach for web service
composition. The experimentations show better
performance of the proposed self-healing approach. In
the future work, the prediction approach will be
studied more and the proposed self-healing approach
will be put into practical applications of service
composition.

Acknowledgement

This work is supported by the National Natural
Science Foundation of China under Grant
No.60773218 and Natural Science Foundation of
Liaoning Province under Grant No. 20072031.

References

[1] L. Z. Zeng, B. BENATALLAH, “QoS-Aware
Middleware for Web Services Composition”, IEEE
Transactions on Software Engineering, 2004, 30(5),
pp. 311-327.
[2] T. Yu, Y. Zhang, and K. J. Lin, “Efficient
Algorithms for Web Services Selection with End-to-
End QoS Constraints”, ACM Transactions on the Web,
2007, 1(1), Article 6.
[3] T. Yu, K. J., “Adaptive algorithms for Finding
Replacement Services in Autonomic Distributed
Business Processes”, In: the 7th International
Symposium on Autonomous Decentralized Systems,
Chengdu, China, 2005, pp. 427-434.
[4] C.Girish, D. Koustuv, K. Arun, M. Sumit, and S.
Biplav, “Adaptation in Web Service Composition and
Execution”, In: IEEE International Conference on
Web Services, USA, 2006, pp. 549-557.
[5] G. Canfora, M.D. Penta, R. Esposito, and M. L.
Villani, “QoS-Aware Replanning of Composite Web
Services”, In: IEEE International Conference on Web
Services, USA, 2005, pp.121-129.
[6] M. Malhotra, A. Reibman, “Selecting and
Implementing Phase Approximations for Semi-Markov
Models”, Communication Statistics-Stochastic Models,
1994, 9(4), pp. 473-506.

856

A WEB-BASED DATA MANAGEMENT AND ANALYSIS SYSTEM FOR CO2
CAPTURE

Yuxiang Wu, Christine W. Chan*
Energy Informatics Laboratory, Faculty of Engineering, University of Regina

Regina, Saskatchewan, Canada
Email: Christine.Chan@uregina.ca

Abstract

Carbon dioxide (CO2) capture technologies are important
for helping to cut CO2 emissions into the atmosphere,
which is now an urgent objective in a world faced with
increasing hazards of global warming. Chemical absorption
has become one of the dominant CO2 capture technologies
because of its efficiency and low cost. The chemical
absorption process involves over a hundred components,
which generate a vast amount of data. While it is important
to monitor the generated data in order to ensure normal
process operations, the monitoring task is complex and
automated support is highly desirable. The Data Analysis
Decision Support System presented in [2] supports
automated monitoring of the CO2 capture process but
suffers from a number of limitations. Its weaknesses
include difficulty in data sharing, limited accessibility in a
small LAN environment, and inflexibility in data format.
The objective of this work is to extend the DADSS into a
web-based system that does not have the above limitations.
This paper presents the web-based data management and
analysis system for carbon dioxide capture process called
CO2DMA. The process of developing CO2DMA involves
software engineering technologies such as the technologies
of object-linking and embedding (OLE) for process control
(OPC) and web-application development frameworks.

Keywords – web-based; decision support system; carbon
dioxide capture; data filtering.

1. Introduction

Fossil fuel is presently the world’s most abundant,
economical and reliable fuel for energy production.
However, the industry now faces a major challenge because
the production of fossil fuels, which include coal, crude oil
and gas, and the processes currently used for energy
production from such fuels, can have adverse
environmental consequences. Hence, along with the
positive economic advantages of energy production using
fossil fuels comes to the responsibility of avoiding their

potential misuses and the consequent adverse
environmental and climate-change impacts [2].

Carbon capture and storage (CCS) is an approach for
cutting the carbon dioxide (CO2) emissions to the
environment by capturing and storing the CO2 gas. Among
various CO2 capture technologies, chemical absorption of
CO2 is one of the most mature technologies because of its
efficiency and low cost.

The highly complex CO2 absorption process generates a
vast amount of data, which need to be monitored,
preferably by an automated system. But industry process
control systems do not typically provide intelligent data
preprocessing or data analysis functionalities. Therefore, it
is necessary to construct an intelligent data management
and analysis system. The Data Analysis Decision Support
System (DADSS) for CO2 capture process reported in [2] is
a step towards filling this need. However, the DADSS is a
standalone PC-based system with limited flexibility and
connectivity. In this paper we present a web-based CO2
data management and analysis system (CO2DMA).

The system presented in this paper, as well as the first
prototype discussed in [2], are built based on data acquired
from the Pilot Plant CO2 capture process at the International
Test Centre for CO2 capture (ITC), located at the University
of Regina. The CO2 capture process in the ITC is monitored
and controlled via the DeltaV system (Trademark of
Emerson Process Management, U.S.A), which is based on
the technology of Object-Linking and Embedding (OLE)
for Process Control (OPC). OPC standards are widely used
in industry process control and manufacturing automation
applications [4]. More detailed information about OPC will
be provided later.

The paper is organized as follows: Section 2 briefly
describes the first prototype of DADSS. Section 3 discusses
software engineering techniques used in system
development. Section 4 presents some sample test runs of
the web-based system. Section 5 concludes the paper.

*Author to whom all correspondence should be addressed.

857

2. The DADSS System

Briefly, the system described in [2] is a decision support
system for pre-filtering and analysis of data captured from
the CO2 capture process. It is called the Decision Support
System for analysis of CO2 capture process, or Data
Analysis Decision Support System (DADSS) for CO2
capture process.

The basic structure of the DADSS is shown in Fig. 1. The
controller module of DADSS accepts inputs from the user
and activates the model and view modules to perform
actions based on those inputs. In effect, the controller is
responsible for mapping end-user actions to application
responses. The Data Access Object (DAO) module
provides a common interface between application and the
data storage, such as a database. The DAO module is a way
for separating object persistence and data access logic from
any particular mechanism or API.

Fig. 1. Structure of Data Analysis Decision Support System
for CO2 capture process

Some limitations that exist in the old system due to its pure
client-based features include:

� The system relies on CSV file as its data source. This is
not flexible enough for future data analysis.

� Knowledge and data sharing through specific CSV file
will be difficult.

� Data access is limited to small LAN environment, and
to PC platform.

In order to overcome these limitations, a new web-based
CO2 data management and analysis system is built.

3. CO2DMA System Development

This section presents the structure of the CO2DMA, and
several software engineering technologies that were used
during development.

3.1 System Structure

Briefly, the system consists of four main modules (Fig. 2):
(1) OPC Historical Data Access (HAD) Server module, (2)
OPC Data Transporter module, (3) Database Server module,
and (4) Web Server module. OPC HAD Server usually
resides in the same machine with the process control system,
which refers to the DeltaV system in ITC. It is the
repository where process data are stored, and which can be
only accessed by programs with built in HDA standards.
OPC Data transporter is a C# (Microsoft® software)
program that runs along with the OPC HDA Server in the
background. It continually reads data from OPC HDA
Server and converts the data into appropriate types in order
to transfer them into the Database Server. The Web Server
component of the system is responsible for communicating
with clients through the internet. Clients send request to and
retrieve data from the Web Server. Both communication
and data transfer are based on HyperText Markup
Language (HTML).

Fig. 2. System Structure

3.2 OPC and OPC Transporter

OPC, which stands for Object-Linking and Embedding
(OLE) for Process Control, is basically a series of standard
specifications [8]. The OPC standard specifications support
communication of real-time plant data between control
devices from different manufacturers [9]; the OPC
Foundation maintains the standards. Since the foundation
was created, more standards have been added.

The purpose of using OPC was to bridge Windows
(Microsoft® software) based applications with process
control hardware and software applications because these
open standards support a consistent method of accessing
field data from plant floor devices. OPC servers can
provide a method for many different software packages to
access data from control devices by defining a common
interface.

Despite its advantages, two main drawbacks were found
within the OPC technology during interviews with the
operators of the CO2 capture process:

858

(1) The OPC technology including OPC servers and client
applications, are developed based on the windows
platform. This presents a problem when data and
knowledge sharing needs to be done with an
application that is developed on a non-windows
platform. Hence, interoperability is not supported.

(2) Only applications that support OPC protocols can
access the data in OPC HDA Server, which is where
the DeltaV data are stored. As a result, data
manipulation and analysis relies on OPC client
applications. The data cannot be easily reused by other
mature computational tools that do not have OPC
interfaces built in.

To address these limitations, the decision was made to build
a generic database, which would retrieve data from the real-
time control system and store them. We believe the generic
database can render our system more flexible and the data
reusable. The component called OPC Data Transporter is
constructed for accessing, converting and sending data from
the OPC HDA Server to our generic database. The OPC
Data Transporter is an OPC client application written in C#
(Microsoft® software) by using the Historical Data Access
(HDA) common library. Currently the transporter runs as a
background program within the same machine as the
DeltaV control system. It can also reside on a remote
machine which physically connects to the control system.
In either case, data will be periodically captured from the
OPC HDA Server and converted to the correct data type,
then stored in the generic database. This approach allows us
to protect the control system by isolating it from outside
interference, while enabling sharing of data and other useful
information.

3.3 Web Server Development

The Web Server plays a key role in our system because it
acts as an intermediary between the database component
and the user on the internet. The server was constructed
using the LAMP software bundle, which includes:

� Linux, a Unix-like computer operating system.
� Apache, an open source HTTP Server.
� MySQL (Trademark of MySQL AB), multi-user SQL

database management system (DBMS).
� PHP (Hypertext Preprocessor), a computer scripting

language originally designed for producing dynamic
web pages.

This LAMP bundle has become widely popular since its
inception by Michael Kunze in 1998 because this group of
free software could provide a viable alternative to
commercial packages [10]. Therefore, the LAMP bundle
has been adopted for developing our Web server.

Usually the most time consuming part of building a web
server is to program the entire site including design of the
user interface as well as construction of the background
logical layer. This process was often conducted in ad hoc
manner, based neither on a systematic approach, nor quality
control and assurance procedures. Recently, different types
of web application frameworks supporting different
languages have been built. A web application frame work is
a software framework that is designed for supporting the
development of dynamic websites, web applications and
services; the framework is intended to simplify the
overhead associated with common activity procedures in
web development. The general framework usually provides
libraries for database access, template frameworks, session
management and code reuse.

In our development of the web server, CakePHP (trademark
of Cake Software Foundation) was adopted as the basic
framework because of its detailed documentation and ease
of use. Based on CakePHP, the system structure of the web
server was designed and developed as shown in Fig. 3.

Fig. 3. Web Server Structure

As shown in Fig.3, the structure of our system follows the
Model-View-Controller (MVC) architectural pattern used
in software engineering. Recently the model has become
widely used in web application development.

In the web server system, the model represents a particular
database table, and its relationships to other tables and
records. The Model also consists of data validation rules,
which are applied when the model data are inserted or
updated. The View represents view files, which are regular
HTML files embedded with PHP code. This provides users
with the web page display. The controller handles requests
from the server. It takes user input which includes the URL
and POST data, applies business logic, uses Models to read
and write data to and from databases and other sources, and
finally, sends output data to the appropriate view file [12].
This system structure has the advantages of (1)
modularizing the code and making it more reusable,
maintainable, and generally better; and (2) encapsulating
knowledge structure and translating the knowledge into
procedures and methods using an object-oriented
representation.

859

4. Sample Run of System

Data on operation of the CO2 capture process from
4/3/2006 to 4/13/2006 provided by ITC were used to test
the CO2DMA in this sample run.

The difference between the unfiltered data and the data that
have been filtered using CO2DMA can be revealed by
examining the two sets of data on the sample variables of
‘Heat Duty’ and ‘FI700’, which were selected from the 145
tags. Two trend lines that approximate the data are drawn as
shown in Fig. 4 and Fig. 5. The points in the plot of the
unfiltered data in Fig. 4 are more scattered because of the
high volume of noisy data. After filtering by our system,
more than 60 rows of noisy data were filtered out from the
590 rows, and the data points are more clustered together as
shown in Fig. 5.

Fig. 4. Plot of data before filtering

Fig. 5. Plot of data after filtering

5. Conclusion and Future Works

A web-based data management and analysis system for the
CO2 capture process has been developed to overcome the
limitations of the existing DADSS. Since the system is built
as a web service application, there is no need to install any
software in the user’s computer. By automatically filtering
and processing hundreds of fields of raw data, the
CO2DMA frees users from having to perform data filtering
manually; hence, it improves efficiency of the data filtering
process.

Currently we are working on enhancing system efficiency
by saving the user’s preferred filtering procedures in a
historical configuration file. In the future, we plan to add
curve fitting and graphing functions to the system so that
the filtered data can be processed for visual displays inside

the system instead of being exported to Microsoft Excel for
further charting. Automation of the data filtering step is
only the first step in our research agenda. Future objectives
include utilizing the data for prediction, planning and
control of the CO2 capture process using artificial
intelligence techniques.

Acknowledgement

The authors are grateful for the generous support of grants
from Canada Research Chair Program and Natural Science
and Engineering Research Council of Canada. We would
also like to acknowledge the help and contributions of
Robert Harrison, Chuansan Luo, Dr. Paitoon
Tontiwachwuthikul, Don Gelowitz and Dr. Raphael Idem.

Reference

[1] IPCC special report on Carbon Dioxide Capture and
Storage. Prepared by working group III of the. Metz,
B., O.Davidson, H. C. de Coninck, M. Loos, and L.A.
Meyer (eds.). Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 442 pp.

[2] Robert Harrison, Yuxiang Wu, Hanh Nguyen,
Xiongmin Li, Don Gelowitz, Christine W. Chan,
Paitoon Tontiwachwuthikul, A Decision Support
System for Filtering and Analysis of Carbon Dioxide
Capture Data, CCECE 2007. Canadian Conference on
Volume, Issue, 22-26 April 2007 Page(s):1380 – 1383.

[3] Riemer, P. (1996). Greenhouse gas mitigation
technologies- an overview of the CO2 capture, storage
and future activities of the IEA greenhouse gas R&D
programme. Energy Conversion and Management, 37,
665-670.

[4] OLE for process control,
http://en.wikipedia.org/wiki/OLE_for_process_control
(Mar. 2, 2008).

[5] Knowledge Acquisition,
http://www.centc251.org/Ginfo/Glossary/tcglosk.htm
(15 Dec 2006).

[6] Knowledge Acquisition,
http://www.epistemics.co.uk/Notes/63-0-0.htm (15 Dec
2007).

[7] Durkin, J. Expert system design and development.
Englewood Cliffs, New Jersey: Prentice Hall. 1994.

[8] OPC Foundation, http://www.opcfoundation.org/ (11
Mar 2008).

[9] OPC Introduction,
http://en.wikipedia.org/wiki/OLE_for_process_control
(11 Mar 2008).

[10] Michael Kunze, c't 12/98, page 230 - Freeware Web
Publishing System, 1998.

[11] San Murugesan, Yogesh Deshpande, Web Engineering:
Managing Diversity and Complexity of Web
Application, 2001.

[12] CakePHP Manual,
http://manual.cakephp.org/chapter/basic_concepts (11
Mar 2008).

860

Integrating Random Testing with Constraints
for Improved Efficiency and Diversity

Yoonsik Cheon, Antonio Cortes, Gary T. Leavens
Martine Ceberio School of Electrical Engineering

Department of Computer Science and Computer Science
University of Texas at El Paso University of Central Florida

El Paso, TX 79968 Orlando, FL 32816

Abstract

Random testing can be fully automated, eliminates sub-
jectiveness in constructing test data, and increases the diver-
sity of test data. However, randomly generated tests may not
satisfy program’s assumptions such as method preconditions.
While constraint solving can satisfy such assumptions, it does
not necessarily generate diverse tests and is hard to apply to
large programs.

We blend these techniques by extending random testing
with constraint solving, improving the efficiency of generat-
ing valid test data while preserving diversity. For domains
such as objects, we generate input values randomly; how-
ever, for values of finite domains such as integers, we rep-
resent test data generation as a constraint satisfaction prob-
lem by solving constraints extracted from the precondition
of the method under test. We also increase the diversity of
constraint-based solutions by incorporating randomness into
the solver’s enumeration process. In our experimental evalu-
ation we observed an average improvement of 80 times with-
out decreasing test data diversity, measured in terms of the
time needed to generate a given number of valid test cases.

1 Introduction

A random approach to generating test data has the poten-

tial for finding faults that are difficult to find in other ways,

because it eliminates subjectiveness in constructing test data

and increases the diversity of input values. It also facilitates

test automation. Our recent work explored random test data

generation to unit testing of Java classes annotated with asser-

tions [6]. A test case for a method is constructed dynamically

to ensure that it satisfies the precondition of the method un-

der test. If a test case does not satisfy the precondition, it is

inadequate to test the method because the precondition is the

client’s obligation [5].

However, randomly generated tests may not satisfy the

program’s assumptions. In our case these assumptions are

method preconditions formally written in JML [11], an inter-

face specification language for Java. If the preconditions are

not trivial, the chances are very low that randomly-generated

test data will satisfy them. In our recent experiment we ob-

served that up to 99% of randomly-generated test cases did

not meet the preconditions of the methods under test [6].

In this paper we propose an extension to pure random test-

ing to improve the efficiency of generating a given number

of valid test cases that satisfy the precondition of the method

under test. The key idea of our extension is to integrate con-

straint solving with random test data generation. For method

parameters of continuous or infinite domains such as objects,

we generate test values randomly. However, for parameters

of discrete and finite domains such as integers, we represent

test data generation as a constraint solving problem, where

constraints are the assertions of the method precondition that

involve the parameters. This extension is based on our ob-

servation that about 10% to 50% of methods have formal pa-

rameters of discrete and finite domains and the precondition

assertions on these parameters can be efficiently solved by

finite-domain constraint solvers.

We evaluated the effectiveness of our approach by im-

plementing a prototype tool based on our own random test-

ing tool called JET [6] and an open-source constraint solver

called Cream [14]. In our experiments we observed an aver-

age improvement of 80 times over pure random testing mea-

sured in the time needed to generate a given number of valid

test cases that satisfy a method’s precondition (see Section 5).

2 Background

Our long term goal is to fully automate unit testing of Java

classes, from test data generation to test execution and test

outcome decision. The class under test is assumed to be anno-

tated with a JML specification (see Section 3); formal specifi-

cations such as method postconditions are used as test oracles.

Each method of the class is tested separately, and thus a test
case consists of a receiver object and argument values. We

generate test cases automatically—the subject of this paper—

861

and perform test executions by invoking the method under test

with the generated test data. We use JML’s runtime assertion

checker to recognize invalid test cases as well as to decide test

outcomes; i.e., we interpret certain types of assertion viola-

tions, such as postcondition violations, as test failures [5, 13].

Previous work has either generated test data randomly

(e.g., [6, 7, 8, 12]) or has generated tests purely by solving

constraints (e.g., [1, 3]). In random testing, a random object

of a class C is obtained via a call sequence, consisting of

one constructor and zero or more method invocations, such as

C o=new C0(); o.m1(); o.m2(); . . . ; o.mn(). In such a call

sequence, m1 through mn mutate the state of o. Methods mi

and their arguments are selected randomly from appropriate

methods of C.

In constraint-based testing, test cases are generated by

solving constraint satisfaction problems. A constraint satis-

faction problem consists of a finite set of variables and a set

of constraints on those variables. Each variable is associ-

ated with a set of possible values, known as its domain. A

constraint is simply a relation on some subset of these vari-

ables. A solution to a constraint satisfaction problem is an

assignment of a value to each variable from its domain, such

that all the constraints are satisfied. There are efficient con-

straint solvers for finite domains. For example, Cream [14]

is a Java class library for solving constraints on finite do-

mains. In Cream, the collection of variables, domains, and

constraints are called a constraint network. Cream provides

several built-in strategies, called solvers, that enumerate solu-

tions for constraint networks (see Section 3).

3 Illustration

To illustrate our approach, let us consider the Account

class given in Figure 1. This class is annotated with

JML assertions written as special comments. The keyword

spec_public states that the private field bal is treated as

public for specification purpose; e.g., it can be used in the

specifications of public methods. A method specification pre-

cedes the declaration of the method and specifies its precon-

dition (requires clause), its frame condition (assignable
clause), and its postcondition (ensures clause). The key-

word \old denotes the pre-state value of its expression and

is used in the specification of a mutation method such as the

transfer method that changes the state of an object.

Consider the transfer method and the likelihood of ran-

domly generating a valid test case. To test this method, we

need a test case consisting of two Account objects—one

for the receiver and the other for the argument—and an in-

teger. Let p be the probability of generating an Account

object successfully, i.e., the probability that all the calls in

its call sequence terminate normally. Then, the probability

of generating a valid test case is p2q, where q is the prob-

ability that the test case satisfies the method precondition,

public class Account {
private /*@ spec_public @*/ int bal;
//@ public invariant bal >= 0;

/*@ requires amt >= 0;
@ assignable bal;
@ ensures bal == amt; @*/

public Account(int amt) {
bal = amt;

}

/*@ requires amt > 0 && amt <= acc.bal;
@ assignable bal, acc.bal;
@ ensures bal == \old(bal) + amt
@ && acc.bal == \old(acc.bal - amt); @*/

public void transfer(int amt, Account acc) {
acc.withdraw(amt);
deposit(amt);

}

// The rest of the definition including:
// Account(Account), deposit(int),
// withdraw(int), and int balance().

}

Figure 1. JML-annotated class

amt > 0 && amt <= acc.bal. In a purely random ap-

proach, q is 0.25 if we conservatively estimate the probability

of satisfying each conjunct to be 0.5.

However, we can be clever by selecting an amt value such

that it automatically satisfies the precondition, thus improving

q to 1. To do this, we solve the constraints on amt imposed

by the precondition; i.e. we represent the problem of test case

generation partly as a constraint satisfaction problem. For this

particular case, we need to solve the constraints: x > 0 and

x ≤ B, where B is acc.bal, the balance of the randomly-

generated Account object. These constraints can be easily

translated to the following Cream code.

Network net = new Network();
IntVariable x = new IntVariable(net);
x.gt(0);
x.le(acc.bal);
Solver solver = new DefaultSolver(net);
Solution solution = solver.findFirst();
int valX = solution.getIntValue(x);

In Cream, constraints on variables are expressed using

framework methods such as gt and le. The Cream frame-

work also provides a set of arithmetic methods (e.g., add and

multiply) for writing arithmetic expressions.

Our approach improves the probability of generating valid

test cases dramatically. Recall that an object in a test case is

represented as a call sequence. Thus a test case is set of such

call sequences. We can apply constraint solving to each of the

method invocations in the call sequence. For example, doing

this for the transfer method improves not only q but also

p—the probability of generating a valid Account object—

even more dramatically, which has a greater impact on the

overall probability.

862

4 Our Approach

The problem is to generate test cases that satisfy the pre-

condition of the method under test. The key idea of our ap-

proach is to solve constraints for values of finite domains such

as integer while generating random values for other types

such as objects. There are two main issues. The first is how

to identify and extract constraints from method preconditions

written in JML; not all precondition assertions are constraints

on the parameters of interest. The second issue is how to

translate the extracted constraints to constraint solving code.

We address the first issue by first desugaring the executable

subset of JML precondition assertions to a single boolean ex-

pression and then converting it to a disjunctive normal form.

As in the predicate-based approach to test data generation

[16], we consider each disjunct of the disjunctive normal form

as a constraint to solve. For the second issue, we define a

translation from disjuncts of the normal form to Cream code.

As in [6], the receiver object of a test case is generated

randomly, but the arguments are generated in a combination

of a random approach and a constraint satisfaction problem.

For this, we classify formal parameters of a method into two

categories.

Definition 1 A formal parameter of a method is a constrained

variable if its declared type is an integral type such as int. A
formal parameter that is not a constrained variable is called
an unconstrained variable.

As outlined below, we first prepare the preconditions for

possible constraint solving, and then generate test cases. This

preparation involves the following steps.

1. Desugar the method precondition to a single boolean ex-

pression (see Section 4.2).

2. Convert the boolean expression to a disjunctive normal

form (see Section 4.3).

3. For each disjunct of the normal form that has constraints

on any of the constrained variables, translate it to con-

straint solving code (see Section 4.4).

Test case generation is then done by repeating the follow-

ing until a fixed number of valid tests are generated. We gen-

erate random values for the receiver and all arguments as in

our previous work [6]. If the generated values do not satisfy

the precondition of the method under test, we then find new

values for the constrained variables by solving constraints ex-

tracted from the precondition.

1. Generate random values for the receiver and all argu-

ments (see Section 4.1).

2. If the values do not satisfy the precondition, find new

values for the constrained variables by invoking the con-

straint solving code (from Step 3 above).

If no constraints were identified for the constrained variables

(see Section 4.4) or no solution found, then we repeat the

whole process some fixed number of times.

4.1 Random Value Generation

We use the method of [6] to generate the initial random

values for the receiver and arguments; e.g., a random ob-

ject is constructed as a sequence of mutation method invo-

cations preceded by a constructor invocation. However, one

important difference is that the receiver and arguments of each

method invocation in the object sequence are also generated

by using the new approach, because they also have to satisfy

the precondition of the invoked method.

4.2 Precondition Desugaring

JML features a great deal of syntactic sugar to enhance

Java expression syntax by introducing a rich set of JML-

specific expressions and several specification clauses. We

desugar the executable subset of a method precondition to a

single boolean expression.1 The desugaring process consists

of two steps: desugaring of method specifications and simpli-

fication of boolean connectives.

4.3 Disjunctive Normal Form

We use a disjunctive normal form to identify the set of

constraints that can be solved independently to find values for

the constrained variables that satisfy the precondition of the

method under test. A disjunctive normal form (DNF) is a

standardization or normalization of a logical formula which

is a disjunction of conjunctive clauses, e.g., c1 ∨ . . . ∨ cn,

where each ci is of the form e1 ∧ . . . ∧ em.

4.4 Constraint Identification

From a method precondition converted to a DNF, we iden-

tify constraints on the constrained variables. We assume all

Java/JML boolean connectives are already desugared except

for conjunction, disjunction, and negation.

Definition 2 A constrained variable is executable in an ex-
pression, e, if it has a free occurrence in e other than in a
subexpression of a receiver or an argument to a method or
constructor call. A boolean-valued expression that contains
no logical connectives is an executable constraint if it con-
tains at least one executable constrained variable.

We often use the term “constraint” as shorthand for “exe-

cutable constraint.” The following gives an equivalent char-

acterization of executable constraints.

1The executable subset is JML expressions and assertions that are trans-

lated to runtime assertion checking code by the JML compiler (jmlc) [4].

863

Theorem 1 A boolean-valued expression e that contains no
logical connectives is an executable constraint if and only if it
is of the form e1 � e2, where both e1 and e2 are of an integral
type, � is a relational or equality operator, and either e1 or e2

contains an executable constrained variable.

This follows from our definitions of constrained variables

(being of integral types) and constraints (being boolean ex-

pressions).

Uses of constrained variables are not executable when they

occur as arguments to method calls, because Cream does

not understand arbitrary methods, and hence it cannot solve

for such occurrences. For example, Math.abs(x) > 10

is not an executable constraint because Cream cannot han-

dle the call to abs. (To make it executable, one has to

translate the expression manually to one that can be han-

dled by Cream.) On the other hand, in the expression

Math.abs(x - 10) > y, although x is not executable, y
is, and thus the entire expression is an executable constraint.

Cream can thus try to satisfy this assertion when x has a ran-

dom value, even though it does not control x’s value.

Definition 3 A conjunctive clause of the form, e1 ∧ . . . ∧ en,
where ei’s do not use disjunction, is an executable constraint

if at least one ei is an executable constraint.

A conjunctive clause that is not an executable constraint

may contain a constrained variable, but not one that is exe-

cutable. If each ei of the clause is an executable constraint,

the solutions of the whole constraint are in general valid test

data; otherwise the validity of the test data depends on the ei’s

that are not constraints.

4.5 Constraint Solving Code

Given a DNF c1 ∨ · · · ∨ cn, we consider each conjunct

clause ci independently. If ci is a constraint, we translate it

into Cream constraint solving code. The translated Cream

code has the following general structure, where xi’s are the

constrained variables appearing in the constraint ci and yi’s

are fresh variables to store a solution.

Network net = new Network();
IntVariable x1 = new IntVariable(net);
· · ·
IntVariable xm = new IntVariable(net);
〈Translated constraints of ci〉
Solver solver = new DefaultSolver(net);
Solution solution = solver.findFirst();
int y1 = solution.getIntValue(x1);
· · ·
int ym = solution.getIntValue(xm);

This skeletal Cream code has three parts. It first creates a

new constraint network and adds the constrained variables of

ci to the network. It then specify the constraints of ci using

JML Expression Cream Constraint Code

x ≥ 10

x
IntVariable v1 = null;
v1 = x;

10

int i1 = 0;
i1 = 10;
IntVariable v2 = new IntVariable(net);
v2.equals(i1);

≥ v1.ge(v2);

x + y
<

size()

x + y

IntVariable v3 = null;
IntVariable v5 = null;
v5 = x;
IntVariable v6 = null;
v6 = y;
v3 = v5.add(v6);

size()

int i2 = 0;
i2 = size();
IntVariable v4 = new IntVariable(net);
v4.equals(i2);

< v3.lt(v4);

Figure 2. Sample translation of a conjunct x ≥
10 ∧ x + y < size(), where x and y are con-
strained variables.

the added constrained variables (see Section 4.6 below). It

finally solves the constraints and retrieves a solution.

4.6 Constraint Translation

Given a conjunctive clause of the form e1 ∧ . . . ∧ en, we

translate each ei into Cream if it is a constraint; otherwise, we

ignore it because it does not constrain the parameters of inter-

est or the constraint cannot be handled in Cream. For this,

we defined a set of translation rules and the rules systemati-

cally translate JML expressions to Cream code by converting

Java/JML operators to Cream framework methods and by in-

troducing temporary variables as necessary. As an example,

consider a conjunctive clause x ≥ 10 ∧ x + y < size(),
where x and y are constrained variables. It is translated to the

Cream constraint code shown in Figure 2.

5 Evaluation

We performed several experiments semi-automatically to

evaluate the effectiveness and efficiency of our approach. One

challenge for our experiments was that the constraint solving

code should run in the same environment as that of the method

under test because the constraints are written in terms of the

names available to the method (e.g., formal parameters, fields

of the receiver, and other methods of the class) and it should

handle JML-extensions to Java (e.g., specification-only vari-

ables). Our solution was to manually inject constraint-solving

code to the instrumented source code produced by the JML

compiler.2 We also extended both JET [6] and Cream [14].

JET is an automated unit testing tool that generates test cases

randomly, and our extension was to implement the algorithm

sketched in Section 4 as a new test data generation strategy,

2The JML compiler (jmlc) has an option (--print) to produce the

instrumented source code before compiling it to bytecode.

864

0

10
20

30

40
50

60

0 4 8 12 16 20 24

hour

m
in

ut
e

Random branching

N-th solution

Figure 3. Diversity of solutions found for the
constraint 0 ≤ hour < 24 ∧ 0 ≤ minute < 60.

which essentially calls the injected constraint solving code as

necessary.

The Cream extension was made to increase the diversity of

generated test cases. Our initial experiments produced many

duplicate or redundant test cases, and we shortly learned that

this was caused by Cream’s deterministic algorithm for enu-

merating solutions. If there are multiple solutions, Cream

enumerates them in increasing order by always returning the

smallest solution first. To remedy this problem, we intro-

duced two techniques. The first technique, implemented with-

out modifying the Cream framework, was to find and use the

n-th solution. The second technique called a random branch-
ing introduced randomness in finding a solution by modifying

the Cream framework. This modification explores the search

space by bisecting the domains of variables. The original

Cream explores by, at each step, selecting one variable, then

exploring the rest of the search space by using only the first

half of the domain of this variable; later, it looks for solutions

in the other half. We changed this deterministic behavior by

randomly choosing the half to explore first. This small mod-

ification greatly increased the diversity of the generated test

cases, as shown in Figure 3, and improved the effectiveness

of our approach.

We selected three classes for our experiments. As our ap-

proach offers benefits to methods with integral parameters,

we selected classes of this characteristic.

1. PINChecker: This class stores, resets, and checks the

validity of a personal identification number (PIN). The

method parameters are a combination of objects and

primitive data types.

2. Account: This class represents a bank account and has

methods such as deposit, withdraw, and transfer

(see Figure 1). Most parameters are of integer type

with non-negativeness constraints. Interestingly, using

our approach we discovered an error in the transfer

method—an overflow caused by adding a large number.

3. Clock: This class has a single method with a constraint

like 0 <= hour && hour < 24.

We evaluated the performance of four test generation

strategies: the random strategy presented in [6] and three

variations of our new approach (see Figure 4(a)). The vari-

ations correspond to the ways we used or modified the Cream

framework. We first measured the number of non-duplicate,

valid test cases generated by each strategy for each of the

selected classes (see Figures 4(b)). As expected, constraint

solving improved the effectiveness of random testing though

the exact improvement varied widely depending on the char-

acteristics of the classes. In particular, random branching is

the most effective; for classes with non-trivial preconditions

such as PINChecker and Clock, we noticed huge improve-

ments in the numbers of generated test cases (i.e., 592% and

1331%, respectively). We next measured the time needed

to generate a fixed number of non-duplicate, valid test cases

(see Figure 4(c)). Again the improvements varied widely.

The constraint strategy with random branching, for example,

showed 22140%, 358%, and 1493% improvements for the

three classes over the pure random strategy, giving an aver-

age of 7997% improvement. We ran the experiments on an

AMD TurionTM 64X2 1.80 GHz with 2 GB of main memory.

Strategy Description
S1 Pure random

S2 Constraint with first solution

S3 Constraint with n-th solution

S4 Constraint with random branching
(a) Test data generation strategies

8

25

2

33 35

2

32
44

9

47
58

27

0
10
20
30
40
50
60
70

PINChecker Account ClockN
um

be
r o

f v
al

id
 te

st
 c

as
es

S1 S2 S3 S4

(b) Average numbers of valid test cases generated for 100 at-

tempts per method.

75
94

1

74
4 34

49

31
7

36
4

55
35

37
3

30
4

56
19

34
3

20
8

23
1

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

PINChecker Account Clock

Ti
m

e(
m

se
c)

S1 S2 S3 S4

(c) Average time needed to generate 100 valid test cases per method.

Figure 4. Experimental results

865

6 Related Work

Previous work focused either on random testing (e.g.,

[6, 7, 8, 12]) or constraint solving (e.g., [1, 3]) in isolation,

without taking an advantage of synergistic effects of both ap-

proaches. Some work also used meta-heuristic information to

guide the search for valid test data (e.g., [9]); e.g., in genetic

algorithms, call sequences that are likely to produce valid test

data are selected and then made to evolve by applying genetic

operations such as mutation and crossover [15].

The most closely related work is JML-TT [2], a specifica-

tion animator for JML based on the constraint logic program-

ming. It can execute methods leaving primitive parameters

undefined or with ranges of values specified for them, show-

ing a counter-example upon a specification violation. JML-

TT can also generate test cases with boundary values. For

this, it first extracts boundaries from preconditions and in-

variants. For example, a boundary test case for the transfer

method of class Account could be a1.transfer(1, a2),

where a1 and a2 are objects of class Account, with balances

zero and Integer.MAX_VALUE, respectively. Once a bound-

ary test case is identified, it constructs needed objects (e.g., a1

and a2) using the animator. However, this step is undecidable

and thus may require a human assistance.

The jmle tool [10] is another specification animator for

JML. It translates a JML specification to an executable Java

implementation. The generated code relies on a constraint

solver to simulate the specified behavior; i.e., the tool trans-

forms a JML specification into a constraint satisfaction prob-

lem. For the approach to work, the specification should be

detailed enough so that the constraint solver can reach the

postcondition from the precondition. While jmle does not

generate test cases, it would be possible to use some of its

techniques to interpret a fixed set of method calls.

Jartege [12] is similar to JET in that it generates test data

randomly and uses the runtime assertion checker as a test ora-

cle procedure. There are also assertion-based random testing

tools for other languages such as Eiffel [7].

7 Conclusion

We combined random testing with constraint solving to

generate valid test data—test data that satisfies the precondi-

tion of the method under test. The key idea of our approach is

first to generate random test data and then, if the generated test

data does not satisfy the precondition, to solve constraints ex-

tracted from the precondition for parameters of finite domains

such as integers. Our approach improves both the effective-

ness of random testing from 6 to 13 times measured in the

number of valid test cases generated and the efficiency from 4

to 221 times measured in the time needed to generate a given

number of valid test cases.

Acknowledgment

Cheon’s work was supported in part by NSF grants CNS-

0509299 and CNS-0707874 and by the Department of De-

fense. Leavens’s work was supported in part by NSF grant

CNS-0808913.

References

[1] B. K. Aichernig and P. A. P. Salas. Test case generation by

OCL mutation and constraint solving. In Proc. of QSIC, Mel-
bourne, Australia, September 19-20, 2005, pages 64–71, 2005.

[2] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. Symbolic

animation of JML specifications. In ICFM, volume 3582 of

LNCS, pages 75–90. Springer-Verlag, July 2005.
[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated

testing based on Java predicates. In ACM SIGSOFT ISSTA,
Rome, Italy, pages 123–133, July 2002.

[4] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leav-

ens, K. R. M. Leino, and E. Poll. An overview of JML tools

and applications. International Journal on Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

[5] Y. Cheon and G. T. Leavens. A simple and practical approach

to unit testing: The JML and JUnit way. In ECOOP, volume

2374 of LNCS, pages 231–255. Springer-Verlag, June 2002.
[6] Y. Cheon and C. E. Rubio-Medrano. Random test data gen-

eration for Java classes annotated with JML specifications. In

SERP, Volume II, June 25–28, 2007, Las Vegas, Nevada, pages

385–392, June 2007.
[7] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental

assessment of random testing for object-oriented software. In

ACM SIGSOFT ISSTA, pages 84–94. ACM, 2007.
[8] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-

bustness tester for Java. Software—Practice and Experience,

34(11):1025–1050, Sept. 2004.
[9] M. Harman and B. F. Jones. Search-based software engineer-

ing. Info. & Software Technology, 43(14):833–839, 2001.
[10] B. Krause and T. Wahls. jmle: A tool for executing JML speci-

fications via constraint programming. In FMICS, volume 4346

of LNCS, pages 293–296. Springer-Verlag, 2006.
[11] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design

of JML: A behavioral interface specification language for Java.

ACM SIGSOFT Soft. Eng. Notes, 31(3):1–38, Mar. 2006.
[12] C. Oriat. Jartege: A tool for random generation of unit tests

for Java classes. In ICQSA, volume 3712 of LNCS, pages 242–

256. Springer-Verlag, Sept. 2005.
[13] D. K. Peters and D. L. Parnas. Using test oracles generated

from program documentation. IEEE Transactions on Software
Engineering, 24(3):161–173, Mar. 1998.

[14] N. Tamura. Cream: Class library for constraint programming

in Java. Available from http://bach.istc.kobe-u.
ac.jp/cream/, as of January 2008.

[15] P. Tonella. Evolutionary testing of classes. In Proc. of the ACM
SIGSOFT ISSTA, Boston, MA, pages 119–128, July 2004.

[16] E. Weyuker, T. Goradia, and A. Singh. Automatically generat-

ing test data from a boolean specification. IEEE Transactions
on Software Engineering, 20(5):353–363, May 1994.

866

Properties of Machine Learning Applications for Use in Metamorphic Testing

Christian Murphy, Gail Kaiser, Lifeng Hu, Leon Wu
Department of Computer Science, Columbia University, New York NY 10027

{cmurphy, kaiser, lh2342, leon}@cs.columbia.edu

Abstract

It is challenging to test machine learning (ML) applica-
tions, which are intended to learn properties of data sets
where the correct answers are not already known. In the
absence of a test oracle, one approach to testing these ap-
plications is to use metamorphic testing, in which proper-
ties of the application are exploited to define transforma-
tion functions on the input, such that the new output will be
unchanged or can easily be predicted based on the original
output; if the output is not as expected, then a defect must
exist in the application. Here, we seek to enumerate and
classify the metamorphic properties of some machine learn-
ing algorithms, and demonstrate how these can be applied
to reveal defects in the applications of interest. In addition
to the results of our testing, we present a set of properties
that can be used to define these metamorphic relationships
so that metamorphic testing can be used as a general ap-
proach to testing machine learning applications.

1 Introduction

Making machine learning (ML) applications dependable

presents a particular challenge because conventional soft-

ware testing processes do not always apply: in particular, it

is difficult to detect subtle errors, faults, defects or anoma-

lies in the ML applications of interest because there is no

reliable “test oracle” to indicate what the correct output

should be for arbitrary input. The general class of software

systems with no reliable test oracle available is sometimes

known as “non-testable programs” [20].

One approach to testing such applications is to use a

pseudo-oracle [6], in which multiple implementations of an

algorithm process an input and the results are compared; if

the results are not the same, then one or both of the im-

plementations contains a defect. In the absence of multi-

ple implementations, however, metamorphic testing [2] [8]

[22] can be used to produce a similar effect: input can be

modified in such a manner that it should produce the same

output as the original, and if it does not, then a defect must

exist. Of course, this can only show the existence of defects

and cannot demonstrate their absence, since the correct out-

put cannot be known in advance, but metamorphic testing

provides a powerful technique to testing such “non-testable

programs” by use of a built-in pseudo-oracle.

A challenge of metamorphic testing is to determine the

so-called metamorphic relationships that can be used to

transform an input such that its new output will be pre-

dictable, given the output produced by the original input.

This generally requires domain knowledge and/or familiar-

ity with the algorithm’s implementation, and these relation-

ships may not necessarily apply to other applications.

In this paper, we seek to create a taxonomy of metamor-

phic relationships that are applicable to input data of both

supervised and unsupervised machine learning applications,

including the inclusion and omission of data, permutation,

and modification of numerical values. Our contribution is

a set of properties that can be used to define these relation-

ships so that metamorphic testing can be used as a general

approach to testing machine learning applications.

Previously we have investigated approaches to testing

such applications by considering properties of their data sets

[14] and by using random testing [15]. In this paper, we

first present our analysis of the metamorphic properties of

MartiRank [9], a ranking implementation of the Martingale

Boosting algorithm [12]. The result of this investigation

is then used to guide the creation of metamorphic relation-

ships that can be used in testing. We apply metamorphic

testing to MartiRank, as well as to another machine learn-

ing algorithm, the anomaly-based intrusion detection sys-

tem PAYL [19], and report our findings.

2 Background

2.1 Metamorphic testing

Metamorphic testing [2] [8] [22] is designed as a general

technique for creating follow-up test cases based on existing

ones, particularly those that have not revealed any failure, in

order to try to find uncovered flaws. Instead of being an ap-

proach for test case selection, it is a methodology of reusing

867

input test data to create additional test cases whose outputs

can be predicted. In metamorphic testing, if input x pro-

duces an output f(x), a transformation function T can then

be applied to the input to produce T(x); this transformation

is based on a metamorphic property of the function, such

that the output f(T(x)) can then be predicted, based on the

(already known) value of f(x).
A classic example is the sine function. If we have built

a function to compute sine, and for some selected input x
we have computed sin(x) = y, then we can create the test

input (x + 2π) and expect that sin(x + 2π) will also equal

y, based on the metamorphic property of sine that sin(α) =

sin(α + 2π). Similarly, given sin(x) = y, we can create the

test input -x and expect that sin(-x) should be -y, based on

the metamorphic property of sine that sin(-α) = -sin(α).

It is clear that this approach is very useful in the absence

of an oracle. Regardless of the values of x and y, if sin(-x)

does not equal -sin(x), then there must be a defect in the

implementation of the sine function. Although the use of

these simple identities for testing numerical functions is not

unique to metamorphic testing [5], the approach can be used

on a broader domain of any functions that display metamor-

phic relationships, including machine learning applications.

2.2 Related work

Applying metamorphic testing to situations in which

there is no test oracle has been studied in great detail by

Chen et al. [4]. Our work builds on theirs by apply-

ing metamorphic testing to a specific application domain

(machine learning) and looking for the metamorphic rela-

tionships within those types of applications. Additionally,

whereas their work has primarily focused on functions with

simple numerical input domains [3], we are considering in-

puts that consist of larger (possibly alphanumeric) data sets,

as a result of the types of applications we are investigating.

27,81,88,59,15,16,88,82,41,17,81,98,42, ..., 0
15,70,91,41, 5, 3,65,27,82,64,58,29,19, ..., 0
22,72,11,92,96,24,44,92,55,11,12,44,84, ..., 1
82, 3,51,47,73, 4, 1,99, 1,51,84, 1,41, ..., 0
57,77,33,86,89,77,61,76,96,98,99,21,62, ..., 1
...

Figure 1. Example of part of a data set used
by supervised ML ranking algorithms

Although there has been much work that applies machine

learning techniques to software engineering in general and

software testing in particular (e.g., [1]), there has thus far

been very little published work in the reverse sense: apply-

ing software testing techniques to ML applications that have

no reliable test oracle. Orange [7] and Weka [21] are two

of several frameworks that aid ML developers, but the test-

ing functionality they provide is focused on comparing the

quality of the results, and not evaluating the “correctness” of

the implementations. Similarly, testing of intrusion detec-

tion systems [13] [17] has typically addressed quantitative

measurements like overhead, false alarm rates, or ability to

detect zero-day attacks, but does not seek to ensure that the

implementation is free of defects.

2.3 Machine learning fundamentals

In general, data sets used in machine learning consist of

a collection of examples, each of which has a number of

attribute values and, in some cases, a label. The examples

can be thought of as rows in a table, each of which repre-

sents one item from which to learn, and the attributes are the

columns of the table. The label, if it exists, indicates how

the example is categorized. In some cases a label of 1 is

considered a positive example, and a 0 represents a negative
example; without loss of generality, we only discuss these

cases here. Figure 1 shows a small portion of a data set that

could be used by such applications. The rows represent ex-

amples from which to learn, as comma-separated attribute

values; the last number in each row is the label.

Supervised ML applications execute in two phases. The

first phase (called the training phase) analyzes a set of train-
ing data; the result of this analysis is a model that attempts

to make generalizations about how the attributes relate to

the label. In the second phase (called the testing phase), the

model is applied to another, previously-unseen data set (the

testing data) where the labels are unknown. In a classifica-

tion algorithm, the system attempts to predict the label of

each individual example; in a ranking algorithm, the output

of this phase is a ranking such that, when the labels become

known, it is intended that the highest valued labels are at or

near the top of the ranking.

Unsupervised ML applications also execute in training

and testing phases, but in these cases, the training data sets

necessarily do not have labels. Rather, an unsupervised ML

application seeks to learn properties of the examples on its

own, such as the numerical distribution of attribute values

or how the attributes relate to each other. This model is then

applied to testing data, to determine if the same properties

exist. Data mining and collaborative filtering are two well-

known examples of unsupervised learning.

2.4 Applications investigated

In this work we looked at two ML applications: Marti-

Rank [9] and PAYL [19].

The development of MartiRank was commissioned by a

company for potential future experimental use in predicting

impending electrical device failures, using historic data of

past device failures as well as static and dynamic informa-

tion about the current devices. Classification in the binary

868

sense (“will fail” vs. “will not fail”) is not sufficient be-

cause, after enough time, every device will eventually fail.

Instead, a ranking of the propensity of failure with respect

to all other devices is more appropriate.

In the training phase, MartiRank, which is a supervised

ML algorithm, executes a number of “rounds”. In each

round the set of training data is broken into sub-lists; there

are N sub-lists in the Nth round, each containing 1/Nth of

the total number of positive labels. For each sub-list, Marti-

Rank sorts that segment by each attribute, ascending and de-

scending, and chooses the attribute that gives the best “qual-

ity”. The quality of an attribute is assessed using a variant

of the Area Under the Curve (AUC) [10] that is adapted to

ranking rather than binary classification. The model, then,

describes for each round how to split the data set and on

which attribute and direction to sort each segment for that

round. In the second phase, MartiRank applies the segmen-

tation and sorting rules from the model to the testing data

set to produce the ranking (the final sorted order).

1.0000,61,d
0.4000,32,a;1.0000,12,d
0.2500,18,d;0.5555,55,d;1.0000,41,d

Figure 2. Sample MartiRank model

Figure 2 shows a sample model. In the first “round”,

shown on the first line, all of the examples are sorted by

attribute 61 (indicated by the “61”) in descending order (in-

dicated by the “d”). In the second round, shown on the sec-

ond line, the result of the first round is then segmented. The

first segment contains 40% of the examples in the data set

(indicated by the “0.4000”) and sorts them on attribute 32,

ascending. The rest of the data set is sorted on attribute

12, descending. The two segments are then concatenated

to reform the data set, which is then segmented and sorted

according to the next line of the model, and so on.

We also investigated an intrusion detection system called

PAYL. Many such systems are primarily signature-based

detectors, and while these are effective at detecting known

intrusion attempts and exploits, they fail to recognize new

attacks and variants of old exploits. However, anomaly-

based systems like PAYL are used to model normal or ex-

pected behavior in a system, and detect deviations of in-

terest that may indicate a security breach or an attempted

attack. PAYL was developed at Columbia University and is

currently used in numerous real-world deployments.

As PAYL is an example of unsupervised machine learn-

ing (which is one reason why we chose to test it), its train-

ing data simply consists of a set of TCP/IP network pay-

loads (streams of bytes), without any associated lables or

classificiation. During its training phase, it computes the

mean and variance of the byte value distribution for each

payload length in order to produce a model; Figure 3 shows

an example of such a distribution [19]. During the second

Figure 3. Sample payload byte distribution

(“detection”) phase, each incoming payload is scanned and

its byte value distribution is computed. This new payload

distribution is then compared against the model (for that

length) using the Mahalanobis distance, which is a way of

comparing two sets of data but unlike Euclidean distance

does not depend on the scale of the values; if the distri-

bution of the new payload is above some threshold of dif-

ference from the norm, PAYL flags the packet as anomalous

and generates an alert. PAYL may also raise an alert in other

circumstances, for instance if the payload length had never

been seen before in the training data.

3 Approach

We previously reported on our testing of ML ranking ap-

plications (MartiRank and SVM-Light [11]) in which we

developed test cases by analyzing the problem domain, an-

alyzing the algorithms as defined in pseudo-code, and an-

alyzing the runtime options [14]. This then allowed us to

devise equivalence partitions that served as guidelines for

the creation of datasets using random testing [15].

We then went back to these applications and used our

knowledge of the algorithms to identify metamorphic rela-

tionships (previously unpublished) that would give us an-

other way of testing such applications in the absence of an

oracle. These properties are described in Section 4.

Once we had enumerated and categorized the different

types of metamorphic properties, we used these principles

in our testing. We first tested an implementation of Marti-

Rank, and then sought to also apply these to the anomaly-

based intrusion detection system PAYL, on which we con-

ducted metamorphic testing using the same guidelines. Sec-

tion 5 discusses the results of our testing.

4 Metamorphic properties

We begin by describing our observations of the meta-

morphic properties of MartiRank [9]. We first considered

metamorphic relationships that should not affect the output:

either the model that is created as a result of the training

phase, or the ranking that is produced at the end of the test-

ing phase. For the training phase, if training data set input

D produces model M, then we looked for transformation

869

functions T so that input T(D) would also produce model

M. Additionally, if testing data set input K and model L pro-

duce ranking r(K, L) = R, then we looked for transformation

functions T so that the combinations r(T(K), L), r(K, T(L))
and r(T(K), T(L)) all produce R as well.

Based on our analysis of the MartiRank algorithm, we

noticed that it is not the actual values of the attributes that

are important, but it is the relative values that determine the

model. Adding a constant value to every attribute, or mul-

tiplying each attribute by a positive constant value, should

not affect the model because the model only concerns how

the examples relate to each other, and not the particular val-

ues of the examples’ attributes. The model declares which

attributes to sort to get the best ordering of the labels; in

Figure 1, if the values in any column were all increased by

a constant, or multiplied by a positive constant, then the

sorted order of the examples would still be the same, thus

the model would not change. Additionally, applying a given

model to two data sets, one of which has been created based

on the other but with each attribute value increased by a con-

stant, would generate the same ranking, based on the same

line of reasoning. Thus, MartiRank exhibits metamorphic

properties that we can classify as both additive and multi-
plicative: modifying the input data by addition or multipli-

cation should not affect the output.

It should also be the case that changing the order of the

examples should not affect the model (in the first phase) or

the ranking (in the second). As MartiRank is based on sort-

ing, in the cases where all the values for a given attribute

are distinct, it is clear that the sorted order will still be the

same regardless of the original input order. Thus, Marti-

Rank also has a permutative metamorphic property, albeit

only limited to certain inputs.

We then considered metamorphic relationships that

would affect the output, but in a predictable way. For the

training phase, if training data set input D produces model

M, then we looked for transformation functions T so that

input T(D) would produce model M’, where M’ could be

predicted based on M. Additionally, if testing data set input

K and model L produce ranking r(K, L) = R, then we looked

for transformation functions T so that r(T(K), L), r(K, T(L))
and r(T(K), T(L)) all can be predicted based on R. Keep in

mind that in order to perform testing, we need to be able

to have a predictable output based on R because we cannot

know it in advance otherwise, since there is no test oracle.

We mentioned above that multiplying all attributes by a

positive constant should not affect the model. On the other

hand, mulitplying by a negative constant clearly would have

an effect, because sorting would now result in the oppo-
site ordering. The effect on the MartiRank model, however,

could easily be predicted, because the model not only spec-

ifies which attribute to sort on, but which direction (ascend-

ing or descending) as well. Consider that, if one were to sort

a group of numbers in ascending order, then multiply them

all by a negative constant, and sort in descending order, the

original sorted order would be kept intact. In MartiRank, if

in the original data set a particular attribute is deemed to be

the best one to sort on, and a new data set is created by mul-

tiplying every attribute value by a negative constant, then

that particular attribute will still be the best one to sort on,

but in the opposite direction. The only change to the model

will be the sorting direction. Thus, MartiRank displays an

invertive metamorphic property, wherein it is possible to

predict the output based on taking the “opposite” of the in-

put. Like the permutative property, this property only holds

in the case where all values are distinct, however.

This invertive property can also be seen in the testing

phase. For data set input K, we define K’ as its inverse, i.e.
all attribute values multiplied by a negative constant. For

model L, we define L’ as its inverse, i.e. the sorting direc-

tions all changed. We also define R = r(K, L) as the ranking

produced on data set K and model L, and R’ as the inverse

ranking, where the examples are ranked in “backwards” or-

der. Based on the explanation above, we can expect that if

r(K, L) = R, then r(K’, L’) is also equal to R, because sorting

the positive values ascending will yield the same ordering as

sorting the negative values descending. It follows, then, that

r(K’, L) and r(K, L’) should both be equal to R’, in which

the ranking is the same but in the opposite direction.

Furthermore, once we know the model, it is easy to add

an example to the set of testing data so that we can predict

its final place in the ranking. Take, for example, the model

shown in Figure 2. In the first round, it sorts on attribute 61

in descending order; if we add an example to a testing data

set such that the example has the greatest value in attribute

61, it will end up at the top of the sorted list. In the second

round, the model sorts the top 40% (which would include

our added example) on attribute 32 in ascending order; if

we modify our added example so that it has the smallest

value for attribute 32, it will stay at the top of the list. And

so on. Knowing the model, we can thus construct an ex-

ample, add it to the data set, and expect it to appear first

in the ranking. We can thus say that MartiRank has an in-
clusive metamorphic property, meaning that a new element

can be included in the input and the effect on the output is

predictable. Similarly, MartiRank also shows an exclusive
metamorphic property: if an example is excluded from the

testing data, the resulting ranking should stay the same, but

without that particular example, of course.

5 Case studies

As a result of our investigation of MartiRank, we have

identified six metamorphic properties of supervised ML ap-

plications: additive, multiplicative, permutative, invertive,

inclusive, and exclusive. We have also discovered that these

870

properties exist in another ranking algorithm, SVM [18], as

well; due to space constraints, those findings are not dis-

cussed here but can be found in our tech report [16]. Al-

though we have only considered ranking algorithms thus

far, we believe that classification algorithms would display

the same properties because of the similarity of the algo-

rithms in terms of the ways in which they treat the data; this

is left as future work. Following that analysis, we conducted

metamorphic testing using those properties.

5.1 Metamorphic testing of MartiRank

After identifying the metamorphic properties of Marti-

Rank, we constructed corresponding test cases and were

able to detect a defect in the implementation. Another of

its invertive properties is that if all of the labels in the train-

ing data are negated (multiplied by -1), the final ranking of

the testing data should be the same but in opposite order

from the original, since what was the “worst” would now

be considered “best”. However, as the particular implemen-

tation we were testing was designed specifically to rank the

likelihood of device failures, the developers never consid-

ered the case in which the labels in the training data (which

represented the number of failures over a given period of

time) would be negative. During metamorphic testing, the

implementation produced inconsistent results when a neg-

ative label existed, and we confirmed this bug first with a

simple toy data set and then upon inspection of the code, in

which a logical flaw existed in the way the examples were

being segmented during training.

5.2 Analysis of PAYL

We next sought to determine whether the properties we

used to guide metamorphic testing of MartiRank could also

be applied to another ML application. The application we

chose was PAYL [19], an anomaly-based intrusion detec-

tion system.

Because the model generated by PAYL in the train-

ing phase represents the distribution of byte values in the

TCP/IP payload (see Figure 3), it is clear that it exhibits the

additive and multiplicative properties. Adding a constant

value to each byte would shift the distribution, and multi-

plying by a constant would stretch it. Therefore, it would

be easy to predict the effect on the model. Additionally, the

categorization (as anomalous or not) of a packet in the test-

ing phase would not change if it, too, had its bytes modified

in the same manner.

Much of our analysis of PAYL focused on its permutative

properties, primarily because some attackers may try to hide

a worm or virus by permuting the order of the bytes, so as

to trick a signature-based intrusion detection system. Of

course, the model created by PAYL does not consider the

order of the bytes, only their distribution, so a permutation

should still result in the same model.

PAYL also has an invertive property. An “inverse” of the

distribution can be obtained by subtracting each byte value

from the maximum (255, or 0xFF), so that frequently-seen

values become less frequent, and vice-versa. If the same

treatment is applied to the payloads in the testing data, then

the same alerts should be raised, since these values will still

appear to be anomalous.

Aside from considering the distribution of byte values in

creating its model, PAYL also considers the existence (or

absence) of payloads of certain lengths, and thus certainly

has inclusive metamorphic properties. For instance, con-

sider a model that generates an alert on a new payload be-

cause its length had never before been seen. If the particular

payload were then included in the training data, it should no

longer be considered anomalous. We would similarly ex-

pect PAYL to have exclusive metamorphic properties: if all

payloads of a certain length were removed from the set of

training data, then any messages of that length in the testing

data would thus be considered anomalous because they had

not previously been seen.

5.3 Metamorphic testing of PAYL

We then conducted testing of PAYL by using data sets

generated via these metamorphic relationships. By using

the exclusive metamorphic property, we were able to detect

two defects in PAYL. We started with training data that had

payloads of various sizes, including 274 bytes, and created

a model that was applied to a set of testing data, which also

included a payload of 274 bytes; PAYL raised no alerts. We

then removed all payloads of 274 bytes from the training

data and applied the model to the same (unmodified) testing

data, expecting that the payload of 274 bytes in the test-

ing data would cause PAYL to raise a “length-never-seen-

before” alert. However, PAYL raised an anomaly alert for

the payload of length 274, even though there was no pay-

load of that length in the training data. An alert was cor-

rectly being raised, but it was the wrong type.

Additionally, PAYL unexpectedly raised both anomaly

alerts and “length-never-seen-before” alerts for payloads of

1448 bytes, which theoretically should never happen (since

it can only be anomalous if that length had actually been

seen before). Upon further investigation, we determined

that PAYL actually should have raised the “length-never-

seen-before” alert from the first set of training data, since

there were no payloads of that length. So not only were the

alerts not being raised in the first place, but false positives

were then being raised in the second.

Our key result, though, was that we were able to verify

that PAYL exhibits the same six metamorphic properties as

MartiRank, and then use these properties to drive metamor-

871

phic testing and find important defects in PAYL.

6 Conclusion and future work

We have identified six metamorphic properties that we

believe exist in many machine learning applications: ad-

ditive, multiplicative, permutative, invertive, inclusive, and

exclusive. Although these are likely not the only metamor-

phic properties that can exist in a machine learning algo-

rithm, they provide a foundation for determining the rela-

tionships and transformations that can be used for conduct-

ing metamorphic testing, which we have shown to reveal

defects in the applications of interest.

Further investigation would involve applying these meta-

morphic properties to other, larger ML applications, and

looking to classify other properties. Additionally, as we

have defined our properties independent of the actual nu-

merical values used in the data sets, future work could con-

sider how to initially create new data sets such that further

application-specific metamorphic properties can also be re-

vealed.

We have found metamorphic testing to be an efficient

and effective approach to testing ML applications. We hope

that our findings here and the identification of metamorphic

properties help others who are also concerned with the qual-

ity of non-testable programs.

7 Acknowledgments

The authors would like to thank T.Y. Chen, Marta Arias,

Hila Becker, Gabriela Cretu, Phil Gross, and David Waltz

for their assistance. Murphy, Kaiser, and Wu are mem-

bers of the Programming Systems Lab, funded in part

by NSF CNS-0717544, CNS-0627473, CNS-0426623 and

EIA-0202063, and NIH 1 U54 CA121852-01A1.

References

[1] T. J. Cheatham, J. P. Yoo, and N. J. Wahl. Software testing:

a machine learning experiment. In Proc. of the ACM 23rd
Annual Conference on Computer Science, pages 135–141,

1995.

[2] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic testing:

a new approach for generating next test cases. Technical Re-

port HKUST-CS98-01, Department of Computer Science,

Hong Kong University of Science and Technology, 1998.

[3] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou. Meta-

morphic testing and beyond. In Proc. of the International
Workshop on Software Technology and Engineering Prac-
tice (STEP), pages 94–100, 2004.

[4] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based test-

ing without the need of oracles. Information and Software
Technology, 44(15):923–931, 2002.

[5] W. J. Cody Jr. and W. Waite. Software Manual for the Ele-
mentary Functions. Prentice Hall, 1980.

[6] M. D. Davis and E. J. Weyuker. Pseudo-oracles for non-

testable programs. In Proc. of the ACM ’81 Conference,

pages 254–257, 1981.
[7] J. Demsar, B. Zupan, and G. Leban. Orange: From ex-

perimental machine learning to interactive data mining.

[www.ailab.si/orange], Faculty of Computer and Informa-

tion Science, University of Ljubljana.
[8] A. Gotleib and B. Botella. Automated metamorphic testing.

In Proc. of 27th annual international computer software and
applications conference (COMPSAC), pages 34–40, 2003.

[9] P. Gross et al. Predicting electricity distribution feeder fail-

ures using machine learning susceptibility analysis. In Proc.
of the 18th Conference on Innovative Applications in Artifi-
cial Intelligence, 2006.

[10] J. A. Hanley and B. J. McNeil. The meaning and use of the

area under a receiver operating characteristic (ROC) curve.

Radiology, 143:29–36, 1982.
[11] T. Joachims. Making large-Scale SVM Learning Practi-

cal. Advances in Kernel Methods - Support Vector Learning.

MIT Press, 1999.
[12] P. Long and R. Servedio. Martingale boosting. In Proc.

of the 18th Annual Conference on Computational Learning
Theory (COLT), pages 79–84, 2005.

[13] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman.

An overview of issues in testing intrusion detection systems.

Tech. Report NIST IR 7007, National Institute of Standard

and Technology.
[14] C. Murphy, G. Kaiser, and M. Arias. An approach to soft-

ware testing of machine learning applications. In Proc. of
the 19th international conference on software engineering
and knowledge engineering (SEKE), pages 167–172, 2007.

[15] C. Murphy, G. Kaiser, and M. Arias. Parameterizing random

test data according to equivalence classes. In Proc of the
2nd international workshop on random testing, pages 38–

41, 2007.
[16] C. Murphy, G. Kaiser, and L. Hu. Properties of ma-

chine learning applications for use in metamorphic testing.

Technical Report cucs-011-08, Dept of Computer Science,

Columbia Univ, 2008.
[17] J. P. Nicholas, K. Zhang, M. Chung, B. Mukherjee, and

R. A. Olsson. A methodology for testing intrusion detec-

tion systems. IEEE Transactions on Software Engineering,

22(10):719–729, 1996.
[18] V. N. Vapnik. The Nature of Statistical Learning Theory.

Springer, 1995.
[19] K. Wang and S. Stolfo. Anomalous payload-based network

intrusion detection. In Proc. of Recent Advances in Intrusion
Detection (RAID), Sept. 2004.

[20] E. J. Weyuker. On testing non-testable programs. Computer
Journal, 25(4):465–470, November 1982.

[21] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques, 2nd Edition. Morgan Kauf-

mann, 2005.
[22] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang,

and T. Y. Chen. Metamorphic testing and its applications.

In Proc. of the 8th International Symposium on Future Soft-
ware Technology (ISFST 2004), 2004.

872

Fault Injection Testing of User-space File Systems Using Traditional and
Aspect-based Techniques

Jonathan Hittle, Sudipto Ghosh
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523, USA�

hittlej, ghosh � @cs.colostate.edu

Abstract

File systems are part of larger, complex systems and are
used in large-scale configurations that are built on a large
number of disks. File systems rely on other sub-systems,
such as I/O and memory management that can fail, but they
are often implemented as if the other sub-systems will not
fail. Testing file systems for proper operation in large-scale
configurations is a prime concern for vendors of storage
servers. In this paper, we examine the feasibility of using
fault injection testing on user-space file systems, both with
traditional code insertion techniques and with aspects.

Keywords: Aspect-oriented programming, fault injection
testing, file systems testing, user-space file systems

1. Introduction

File systems are susceptible to failures in the underlying

subsystems, such as disks, I/O bus, and memory manage-

ment. Fault injection testing can be used to make file sys-

tems resilient to sub-system failures. The overall goal of

our research is to evaluate and compare the costs and ben-

efits of performing fault injection testing on user-space and

kernel file systems using both traditional code insertion and

aspect-oriented programming techniques. In this paper, we

report results from fault injection testing using traditional

code insertion and aspects on the ext2 FUSE file system.

We compare the two approaches in terms of the complexity

involved in implementing the fault injection code.

Current approaches (e.g., [3, 4]) to fault injection on file

systems use procedural or object-oriented techniques to in-

sert code in the kernel space where engineering costs can

be high. They insert a specialized layer of code between

the module under test and the underlying subsystems (e.g.,

between the file system and memory management). This

keeps the fault injection modular but it does not allow for

fault injection within the file system module. As an exam-

ple, injecting faults into a file system’s inode caching code

would require changes within the file system, and cannot be

accomplished without adding code to the file system. Using

aspect-oriented programming [2] instead of traditional code

insertion can provide the means to performing testing at all

levels within a file system (intra-function, intra-module, and

inter-module).

Performing fault injection on user-space file systems in-

stead of kernel-space file systems can potentially lower the

time and engineering costs. With the advent of user-space

file systems through frameworks such as FUSE1, we now

have options for fault injection testing without the overhead

of development and testing within the kernel. We can in-

ject faults between the file system and the storage media

through read faults, write faults, and whole-disk faults. We

used the FUSE implementation of the Linux ext2 file sys-

tem and selected the set of faults from Nagaraja et al. [3].

We wrote the corresponding fault routines and inserted them

using both procedural and aspect-oriented techniques.

The remainder of this paper is organized as follows. Sec-

tion 2 provides background and related work. Section 3 de-

scribes the proposed user-space fault injection approach us-

ing both procedural and aspect-oriented methods. Section 4

discusses the feasibility of the approach. Section 5 presents

the conclusions and outlines directions for future work.

2. Background

File systems: File systems provide the structure for or-

ganizing, storing, and retrieving data in a computer sys-

tem. Windows, Linux, and most Unix-like operating sys-

tems provide an infrastructure for allowing multiple types

of file systems. The generic term for the infrastructure is a

Virtual File System (VFS) [5]. It provides a generic inter-

face to the kernel and system calls, such as open, read,

1See http://fuse.sourceforge.net/.

873

and write. It also routes the requests to the correct kernel

module that understands the file system. That module then

interacts with the cache and I/O managers to read and write

data stored in a formatted manner on a disk.

Traditionally, file systems has been kept in kernel-space,

where interactions with the cache manager and the I/O sys-

tem are simple and the execution overhead small. To work

within this model, a user-space file system has a module that

lives in kernel-space that can receive requests from the VFS,

relay them to the user-space process handling the I/O nec-

essary for the mounted file system, and return the responses

back to the VFS. With the FUSE module acting as the in-

termediary, the kernel is oblivious to the fact that the file

system is actually being handled by a user-space process.

This concept of user-space file systems is not widely

seen in practice. User-space file systems have the appeal

of being in an environment with which most programmers

are familiar, including debugging tools which are typically

more feature-rich than their kernel counterparts.

Fault injection testing: The goal of fault injection testing

is to see how a software component reacts to a failure condi-

tion [1]. Fault injection testing on file systems has focused

on disk, I/O bus, and memory failures. Nagaraja et al. [3]

used the SCSI faults in Table 1 in their Mendosa infrastruc-

ture. Column one shows the types of faults that are possible.

This table covers only I/O related faults. Other faults are

possible too, since the file system depends on things other

than I/O, such as the cache manager and the virtual mem-

ory subsystem, and faults can be injected into any of those

interactions. Faults can also be injected within the file sys-

tem, such as inode cache faults and locking faults, but this

is outside the scope of this paper.

Table 1. SCSI Faults from Nagaraja et al. [3].
Fault Characteristic OS Masking of Fault Our fault
Disk Hang Sticky Unmasked Disk loss

Disk offline Sticky Unmasked Disk loss

Power Failure Sticky Unmasked Disk loss

Read Fault Sticky Unmasked in Linux Read failure

Write fault Sticky Unmasked in Linux Write failure

Timeout Transient Unmasked Timeout

Parity errors Transient Masked N/A

Bus busy Transient Masked N/A

Queue full Transient Masked N/A

The “Characteristic” column conveys the idea of the

stickiness of the fault, that is, whether the fault is permanent

or not. In the case of disk or block failures, if the device has

either failed in such a way that it is permanently failed or it

is unreliable, then the failure is treated as permanent.

Column three lists whether the fault is masked or not.

As Nagaraja et al. [3] point out, faults can either be masked

from the file system or unmasked. A masked fault is one

which will not be seen by the module under test (the file

system driver). For example, the I/O subsystem will retry

when a SCSI queue is full or when the bus is busy, and

ECC memory will mask parity errors. Table 1 shows that

most faults are seen by the file system. Issues related to the

SCSI controller and bus are handled by the lower software

layers. The faults used in this research are a subset of those

represented in the table. The implemented faults shown in

column four do not contain the faults that are masked from

the file system. Moreover, the three disk failure faults are

rolled into one fault. The faults are implemented to have the

sticky characteristic.

In their IRON file system work, Prabhakaran et al. [4]

used fault injection to test file systems for their tolerance to

I/O errors. A key idea is that a file system should not fail

an entire disk because of one simple failure. For example, it

should instead handle single-block failures as single-block

failures. Single block failure represents a recoverable situa-

tion, requiring only that the bad block be remapped.

3. Approach

We used Aspect-Oriented C2 to implement the four faults

shown in Table 1. We wrote the actual fault injection rou-

tines in a common file that could be reused for both the

approaches. We modified the libext2fs-based3 FUSE

implementation of the ext2 file system by using traditional

code insertion techniques to call the fault injection routines

within the read and write paths. Next, we wrote aspects

to do the same code insertion within the FUSE ext2 file

system without changing any of the FUSE ext2 code, and

wove those aspects into the code. Finally, we used the io-
zone4 benchmark to generate a load on the file system to

test that the fault injection technique was working as ex-

pected. We demonstrated that all the faults were injected

into the FUSE ext2 file system using both approaches.

At the core of the fault injection testing technique are

the fault injection routines: doBlkFIT() and doDisk-
FIT() are the entry points for the block-based and disk-

based fault injection respectively. Both routines dynami-

cally inject faults based on the number of operations that

have occurred. Pseudo-code is given in Figure 1.

Since fault injection is done based on I/O numbers, we

first increment the count of I/O operations. We check the

sticky faults of a failed block or a failed disk. We also

check the I/O number to see if a new failure needs to oc-

cur. The faults are checked in ascending order by the fre-

quency with which they are planned to be injected. Disk

failures happen once every one thousand I/O operations.

Timeout failures happen once every twenty I/O operations.

Disk block failures happen once every ten I/O operations.

The libext2fs code contains the core code for handling

I/O. For the traditional fault injection, the faulty code was

2See http://research.msrg.utoronto.ca/ACC/.
3See http://e2fsprogs.sourceforge.net/.
4See http://www.iozone.org/.

874

doBlkFIT(blockNo) {
ioCount := ioCount + 1
if (blockNo has been failed)

return I/O error
if (disk has been failed)

return no device failure
if (ioCount = disk failure I/O)

change disk state to failed
return I/O error

if (ioCount = timeout failure)
return timeout error

if (ioCount = block failure)
change block state to failed
return I/O error

return success
}
doDiskFIT() {

ioCount := ioCount + 1
if (disk has been failed)

return no device failure
if (ioCount = disk failure)

change disk state to failed
return I/O error

return success
}

Figure 1. Fault Injection Routines.

inserted into the core code. For the aspect-oriented fault in-

jection, aspects were written that were woven into the entry

points in the core code.

error := read(
ioController,
physical block number,
input buffer);

if (error)
return error

Figure 2. Original Read Path.

Figure 2 shows the original logic of the libext2fs
routine load buffer(), which is at the core of

libext2fs’s read path. The file system’s I/O con-

troller issues the actual read and places the data into

the given buffer. An error causes an immediate exit from

load buffer(); on success load buffer() does

more processing and the data is passed back to the caller

of the read() system call.

Figure 3 illustrates how we modified the libext2fs
routine load buffer() to do the traditional code in-

sertion fault injection. We add a call to the fault in-

jection routine. This alters the code path so that if

a fault injection is to occur, the routine that does the

read into the buffer is not actually called. This is

error := doblkFIT(physical block number);
if (error)

return error;
error := read(ioController,

physical block number,
input buffer);

if (error)
return error;

Figure 3. Modified Read Path.

slightly different from traditional code insertion, which

would place a layer of code between load buffer()
and io channel read blk(), which would encapsu-

late the original direct call to io channel read blk()
without changing any arguments. However, that is an en-

gineering concern, and what we did here is sufficient for

the purposes of this study. We point out this difference to

note that this insertion could be done in a modular fash-

ion which would not require any actual modification to

load buffer(). We understand this difference and do

not consider the chosen implementation to be representative

of modular traditional code insertion.

In the modified code flow, the doBlkFIT() routine

is called before performing the I/O. If a fault is to be in-

jected, then the corresponding error code is returned, and

load buffer() passes the error back to its caller. If

no fault is to be injected, then doBlkFIT() returns suc-

cess, and load buffer() continues with the original

path, passing control to io channel read blk(). The

write block, timeout, and disk faults are all injected using

similar means in the routines ext2fs file write(),

ext2fs file read(), and ext2fs bmap(). Code

for ext2 file flush() is not shown here for lack of

space.

errcode_t around():
execution(errcode_t ext2fs_file_write(...))
|| execution(errcode_t ext2fs_file_read(...))
|| execution(errcode_t ext2fs_bmap(...)) {

errcode_t error;
error := do_dsk_FIT();
if (error)

return error;
return proceed();

}

Figure 4. Disk Fault Injection Aspect.

Figure 4 shows the disk fault injection aspect, which

performs the aspect-oriented code insertion fault injec-

tion testing. It is structured similar to the code used in

the traditional code insertion case. The pointcut specifies

that the advice is to be placed around the execution of

875

ext2fs file write(), ext2fs file read(), and

ext2fs bmap(). The fault injection routine is called, and

any injected error is returned. If no error is returned, then

the original call is completed and the result returned.

Iozone issues reads, writes, and seeks within a file. The

I/O that these activities cause was used to validate that faults

were being injected in both the approaches. Since ext2 is

a file system that is not intended to handle disk faults, all the

failures caused iozone to stop execution. As ext2 failed on

each fault one by one, we removed the faults from our set

until the set was empty. This way we verified that all the

injected faults caused FUSE ext2 to fail.

4. Results

We evaluated the traditional code insertion technique

first. In the case of the timeout and write faults, the file

system ended up in a corrupted state. Essentially, the file

was corrupted such that attempting to delete it would cause

ext2 to attempt to clear a block with an invalid number,

causing the process handling ext2 to crash. Clearly, this

is an example of fault injection testing revealing a failure,

since data corruption is never an acceptable behavior. Both

the read and whole disk faults caused iozone to stop. How-

ever, neither left the disk corrupted. All that was needed to

try iozone again was to unmount and remount the file sys-

tem. FUSE uses a single process for a file system mount and

the fault injection routines and associated state are stored

in that per-mount process. Therefore, unmounting and re-

mounting the file system has the side effect of restarting

the fault injection. This is an example of behavior which

must be considered within the context of the file systems’

intended application to know whether it is acceptable or not.

Overall, this indicates that code insertion fault injection test-

ing can be applied to user-space file systems.

Next, we evaluated the aspect-oriented code insertion

technique. The faults were injected in the same order, with

the same results. This shows that aspects can be used for

fault injection testing of user-space file systems as effec-

tively as traditional code-insertion techniques.

The entire user-space effort took less than 10 hours.

Half of that time was spent studying the ext2 and the

libext2fs code. One hour was spent developing the

fault injection routines. For traditional code insertion, it

took 50 minutes to go from instrumented code injecting all

four faults to having encountered and removed all of them.

Also, the code insertion was done as efficiently using as-

pects if the overhead of learning how to use the ACC lan-

guage and ACC tools is not included. The time needed for

familiarity with ACC was two hours. The time it took to go

from code with all aspects woven into the system to having

hit all of the faults was 40 minutes. It is expected that part

of the decrease in time is due to familiarity with the process.

Therefore, no difference in efficiency was seen.

It is difficult to compare the two approaches from this

study because (1) they rely on common code, (2) the num-

ber of faults used is small, (3) only one file system imple-

mentation was used for this study, and (4) they were both

developed by the same person. The first issue is of low pri-

ority, since it is fair to compare the two approaches using

common code where appropriate. The second issue needs

to be addressed by expanding the library of faults. This will

lead to finding those faults which can be injected into user-

space file systems that cannot be injected into kernel-space

file systems and vice versa. The third issue can be addressed

by using more file systems. This will be difficult to do in

general because there are few file systems that are available

in both user-space and kernel-space versions. This makes

it difficult to generalize the results of the study. The fourth

issue needs to be addressed by having multiple developers

separately using the two approaches.

5. Conclusions and Future Work

We demonstrated that fault injection testing can be used

for user-space file systems using both code-insertion and

aspect based fault techniques. We inserted faults for read

block, write block, whole disk loss, and disk timeout faults.

To explore the generalized application of these results, more

file systems and faults must be included.

We will investigate how well the approach transfers into

kernel-space, and also check if there are faults that can be

injected in kernel-space but not in user-space. We will en-

hance the fault library to include faults such as memory

load/store faults, memory space faults, and buffered I/O

faults. We will carry out studies to see if developers can

use fault-injection testing of a file system in user-space to

more efficiently improve the quality of a file system.

References

[1] M. C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault Injection Tech-

niques and Tools. IEEE Computer, 30(4):75–82, April 1997.
[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingier, and J. Irwin. Aspect Oriented Pro-

gramming. In Proc. of the European Conf. on Object-
Oriented Programming, LNCS 1241, Finland, June 1997.

[3] K. Nagaraja, X. Li, R. Bianchini, R. P. Martin, and T. D.

Nguyen. Using fault injection and modeling to evaluate the

performability of cluster-based services. In USENIX Symp.
on Internet Technologies and Systems, 2003.

[4] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S.

Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.

Iron file systems. In Proc. of the 20th ACM Symp. on Operat-
ing Systems Principles, pages 206–220, UK, October 2005.

[5] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating Sys-
tem Concepts 7th Edition. John Wiley and Sons, USA, 2005.

876

�
Abstract- Thanks to the emergence of the Personalized

Information System (PIS), it becomes possible to supply the user
only with the pertinent information that directly interests
him/her and suits his/her preferences. However, we need
beforehand to evaluate these systems in real situations. In this
paper, we point out the insufficiencies in the evaluation of the
PIS. Then, we propose a new evaluation method for PIS. Finally,
we describe the evaluation results of a demonstrator developed
during a project called MouverPerso. This demonstrator was
tested among a group of subjects in the University of
Valenciennes.

Index Terms- Evaluation, Human-Computer Interaction
(HCI), Intelligent Transport System (ITS), Personalized
Information System (PIS)

I. INTRODUCTION
Nowadays, the information systems, addressed to the users

and mainly in the field of transport, tend to be more and more
personalized. In the midst of a universal project labelled
Intelligent Transport System (ITS), researchers’ primary
preoccupation is to provide personalized information for the
public transport users. In fact, the PIS is a system which has
the capacity to be adapted to the user taking in consideration
his/her preferences [1]–[2]–[3]. For example, in transport
field, the traveler hopes to have at his/her disposal only some
information, just what he/she is directly interested in [4]–[5].
In addition, the traveler may have access to a reliable, multi-
modal and personalized information using various supports
(PC, PDA, mobile phone, etc.) [6]. Though, there are different
methods and approaches to conceive PIS systems, to our
knowledge and at the present point of research, we notice a
lack of methods to evaluate the personalization quality of PIS.
This article is made of three principal parts: at first we focus
on the insufficiencies concerning the evaluation of PIS. The
second part is devoted to describe the basic principles of a
proposed method that permits the evaluation of PIS. The third
and last part is meant to describe the evaluation results of the
demonstrator developed during a project called MouverPerso.

II. INSUFFICIENCY IN THE PIS EVALUATION

The evaluation of the interactive system has been a
recurrent problem since the last three decades. To ameliorate
the quality of human machine interaction many studies were
oriented towards the evaluation of the interactive system from
different angles and view points. Concerning this subject we
should mention that several papers and works had defined the
basic principals of the evaluation as well as the methods used
in this evaluation [7]–[8]–[9]–[10]–[11]–[12]–[13]–[14]. We
notice that the focal point in these works was on the utility and
usability while the dimension of personalization was
neglected. Nowadays, the PIS users are facing many
difficulties to interact with the badly studied or evaluated
personalized systems that do not always answer their needs.
Due to the complexity of personalized system interface, new
criteria and methods are needed to evaluate the human
machine interaction. In this context, we propose a method
which is based on the evaluation criterion of PIS detailed in
[15] and on the explicit intervention of the user who fills up
questionnaires.

III. PROPOSITION OF A METHOD FOR EVALUATING PIS

The process of this evaluation is illustrated in the fig. 1. To
give a clear structure to this proposition we use the SADT
formalism; a well known in software engineering and in
human machine interaction. This method is made up of three
phases. According to the SADT formalism, we find in the box
A0 (the box in top of diagram) the general objective that
consists in the evaluation of PIS. To reach this target we have
decomposed it into three sub-targets presented in the boxes
A1, A2 and A3 (preparation, evaluation and analysis).
- Phase A1: it represents the preparation stage wherein the
evaluator chooses the representative tasks on which the
evaluation will be based. The evaluator also prepares two
types of documents necessary to the evaluation. The first is a
general questionnaire including general information about the
users and the second is an index-card that includes the
definition of every criterion and the parts which the user fills
up during the experimentation. We distinguish seven global
criteria, detailed in [15].

M.Soui1, C.Kolski1, M.Abed1, G. Uster2

1 LAMIH-UMR CNRS 8530, University of Valenciennes and Hainaut-Cambrésis, Le Mont Houy,
59313 Valenciennes cedex 9, France

{Makram.Soui, Christophe.Kolski, Mourad.Abed}@univ-valenciennes.fr

2 The French national institute of research for transport and security, INRETS, Villeneuve d’Ascq, France
guillaume.uster@inrets.fr

Evaluation of Personalized Information Systems:
Application in Intelligent Transport System

877

 Fig. 1. Evaluation phases of the proposed method.

- Phase A2: it represents the stage of testing the model; it is
made of two sub-phases (A21 and A22):
- Sub-phase A21: it represents the pre-experimental stage; the
evaluator presents to the users the tasks already chosen in
addition to the evaluation criteria and their definition. Then
the evaluator asks them to select the most important criteria
according to their needs and/or preferences. The users must
attribute to every selected criterion a weight representing the
importance accorded to this criterion.
- Sub-phase A22: it represents the experimental stage, in fact
the users have to evaluate the system progressively while
executing the tasks in terms of the already defined criteria.
Then he/she allocates to every criterion a mark according to
his/her level of satisfaction and according to a well predefined
scale.
- Phase A3: it represents the analysis phase. In this level, the
evaluator calculates to every user the level of satisfaction Ns
that translates the level of personalisation Np of the system
applying the following formula:

Ns= Np=

�

�

�

��

n

k
KK

n

K
KKK

IW

NIW

1

1

With
n: number of criteria the user is concerned with.
WK: the weight of interest representing the importance the
user gives to this criterion.
IK: the criterion index of activation.
 1 if the user U is concerned with the criterion k
 0 if not
NK: the mark attributed by the user to the criterion k

0 if the user is not satisfied at all
0.25 if the user is a bit satisfied
0.5 if the user is fairly satisfied
0.75 if the user is satisfied

 1 if the user is very satisfied

The result is a value restricted between 0 and 1.0 so that the
more the satisfaction level is close to 1 the more the system is
adapted to the user. To judge the system according to its
degree of personalization, we calculate the average of the
satisfaction level Ns of all the subject participated in the
evaluation.

IV. CASE STUDY: IN ITS DOMAIN
� Context: Our work is a part of the project
« MOUVER.PERSO» achieved with the collaboration of
National Institute of Research on Transport and its Security
(INRETS). This system aims to incite the usage of collective
transport by ensuring the complementarity between different
modes of transport and ameliorating the quality as well as the
availability of the personalized information.

� Protocol test: The objective of this experience was to
evaluate the demonstrator MouverPerso taking as basis the
proposed approach and the criteria we have just defined for
the evaluation of SIP.
- The participants: Twenty three people have participated in
this evaluation, two expert evaluators, twenty subjects (twenty
students in computer science) and a technician.
- The evaluated task: We focused on a representative task of
the application, a research of itinerary after adding an
appointment. This task needs the consultation of at least three
interfaces of the application (an interface which permits to add
an appointment, an interface which permits to consult the
itinerary details and an interface which permits to consult the
appointment list). The dynamic task is represented by
Statechart diagram from UML (see fig. 2).
- Tools and techniques: In this experimentation, several tools
were used namely:
� The general questionnaire: the evaluator invites the user to
fill in this questionnaire which includes some general
information such as last name, first name, email, age, gender.
This questionnaire is distributed among the subjects in the
pre-experimental step.
� The criterion index-card: the user makes use of his/her
index-card to judge the system for example s/he could
attribute weights and marks, mention problems and/or draw

878

the attention to them and may propose ideas to improve the
system during the experience.
� A PDA (Portable Digital Assistant): is a personal assistant
taking the form of a mobile digital appliance. It consists of a
computer equipped with a tactile screen and a stylet (fig. 6).

 Fig. 2. The dynamic task of adding an appointment.

V. RESULTS AND ANALYSIS

 This part represents the principal results issued from the test
and it is concerned with the dimensions related to the content
and container personalization.

A. Content Personalization

Three criteria were considered in the personalization of
content: the preferences, point of focus and user experience as
we see in fig.3.: 47% of the users are very satisfied, 41% are
satisfied, 6% are less satisfied and finally 6% of them are not
satisfied at all (see fig. 3).

Fig. 3. The subjects’ opinion about the personalization related to the content.

In order to give more details about the students’ opinion
concerning the personalization content, we have compared the

average of their level of satisfaction according to the three
criteria related to the quality of content personalization. For
preferences and experiences, the averages of satisfaction in
connection with these criteria exceed 0.6. For the interests the
average is less satisfying (see fig. 4).

 Fig.4. Average of the student’s level of satisfaction per personalized criterion
related to the content.

B. Container Personalization

 The personalization related to the container groups four
criteria: adaptation to interactive platform, adaptation to
environment, adaptation to user’s behaviour and finally
adaptation to users’ physical capacities (accessibility). The
rate of satisfaction is 33% for the very satisfied subject, 17%
for the satisfied and 50% for the bit satisfied ones (see fig. 5).

Fig. 5. The subjects’ opinion about the personalization related to the container.

 In order to give more details about the students’ opinion
concerning the personalization related to the container, we
have compared the average of their level of satisfaction
according to the four criteria related to these dimensions.

 Fig.6. Test with PDA

 After having tested the application in using two different
interactive supports (PC, PDA) (see fig.6.) the subject gives
his/her opinion about the adaptation of the system to the
interactive platform. Concerning the adaptation criterion of
the users behaviour, the students’ opinion are centred on the
neutral response (the average = 5), while as showed in fig.7,

879

the student have a disapproving opinion about the adaptation
to the users’ physical capacity and to the environment (the
average <4).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Platform Accessibility Environment User’s behaviour

Fig.7. Average of the student’s level of satisfaction per personalized
orientation related to the container.

VI. PROBLEMS MENTIONED BY THE SUBJECTS

 The fig. 8 shows that the majority of the subjects have
mentioned some problems related to experience, accessibility
and users behaviour. About accessibility a problem is cited
several times which is the smallness of the characters that
causes a bad legibility. Concerning the behaviour, the subjects
notice the lack of warning signals during the validation task.
The subjects had mentioned few problems related to the
preferences, to interests and the interactive platform. This
could be explained by the importance the designers of this
system had given to the dimensions related to the
personalization of the content and to the adaptation to the
interactive platform when compared with the others criteria.

0

2

4

6

8

10

12

Prefreneces Interests Experience Platform Accessibility Environment User’s
behaviour

Fig.8. Problems repartition according the evaluation criteria evaluation.

VII. CONCLUSION AND PERSPECTIVES

In this article we have mentioned the insufficiencies in the
evaluation of PIS and proposed a method to evaluate such
systems. This method was tested among a group of subjects
using the demonstrator MouverPerso. The information we
have collected allowed us to know the subjects’ level of
satisfaction, the problems they have encountered and the ideas
they proposed to ameliorate this system. This method is based
on the explicit user intervention and on the existence of a real
system (model, prototype or final system). Despite that it
provides concise results, since they are explicitly obtained
from users’ opinions, the evaluator and user spend much time
to achieve PIS evaluation. It also disturbs the user in his/her

main activity. Besides, this evaluation needs several iterations
to find maximum of problems. These reasons make us think
about another evaluation method that does not need the direct
intervention of the user. The principle of this proposed
method which makes the object of our future research will be
based on the usage traces of the system.

ACKNOWLEDGEMENTS

The present research work has been partially supported by the
“Ministère de l'Education Nationale, de la Recherche et de la
Technologie», the «Région Nord Pas-de-Calais» and the
FEDER (projects MIAOU, EUCUE, SART), l’ANR ADEME
(Viatic.Mobilité), la PREDIM (MouverPerso). The authors
gratefully acknowledge the support of these institutions.

REFERENCES
[1] R. Barrett, P. Maglio and D. Kellem, How to personalize the Web, in

Proceedings of CHI’97, 1997.
[2] I. Cingil, A. Dogac and A. Azgin, A broader approach to

personalization, Communications of the ACM 43 (8) 136–141, 2000.
[3] P. Maglio and R. Barrett, Intermediaries personalize information

streams, Communications of the ACM 43(8) 96–101, 2000.
[4] C. Basu, H. Hirsh, and Cohen, W., Recommendation as Classification:

Using Social and Content-Based Information in Recommendation. In C.
Rich and J. Mostow (Eds.), Proceedings of the 15th National Conference
on Artificial Intelligence, pp. 714-720. Madison, USA, AAAI Press/MIT
Press, 1998.

[5] R. Hoyer, and O.Czogolla, Approach to personalised information
services to public transport. In 9th world congress on intelligent
transportation systems, Chicago Illinois, October-14-18, 2002.

[6] G.D Abowd, A.K.Dey, P.J. Brown, M. Smith, and P. Steggles, Towards
a Better Understanding of Context and Context-Awareness. Lecture
Note In Computer Science, Vol. 1707. Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing,
Karlsruhe, Germany, pp. 304-307, September, 1999.

[7] R.Wilson., E.N. Corlett, Evaluation of human work, a practical
ergonomics methodology.Taylor&Francis, 1990.

[8] B. Senach, Evaluation de l'ergonomie des IHM, Actes du Congrès
ERGO-IA'90, ergonomie et informatique avancée, Biarritz, 1990

[9] A. Whitefield and al., A framework for human factors evaluation.
Behaviour & Information Technology, vol 10, n°1, pp. 65-79, 1991.

[10] M. Sweeney and al., Evaluating user-computer interaction: a framework.
Int. J. Man-Machine Studies, 38, 689-711, 1993.

[11] S. Balbo, Evaluation ergonomique des interfaces utilisateur, un pas vers
l'automatisation. Thèse de doctorat, Université de Grenoble I, 1994.

[12] J-C. Tarby, H. Ezzedine, , C-D Tran,., P. Laporte, and C. Kolski, Traces
using aspect oriented programming and interactive agent-based
architecture for early usability evaluation: basic principles and
comparison. J. Jacko (Ed.), Human-Computer Interaction, Part I, HCII
2007, LNCS, Springer-Verlag, pp. 632-641, 2007.

[13] J. Huart, C. Kolski, M. Sagar, Evaluation of multimedia applications
using inspection methods: The Cognitive Walkthrough case. Interacting
With Computers,16 ,pp. 183-215. 2004.

[14] H. Ezzedine, A.Trabelsi, C. Kolski Modelling of an interactive system
with an agent-based architecture using Petri nets, application of the
method to the supervision of a transport system. Mathematics and
Computers in Simulation, 70, pp. 358-376. 2006.

[15] M. Soui, M. Abed, C. Kolski, K. Ghedira, Criteria devoted to evaluate
personalized interactive systems. M. Abid, A. Hadj Kacem, M. Jmaiel,
M. Lahiani (Ed.), Nouvelles tendances technologiques en génie
électrique & informatique, GEI'2007, Edition CPU, Sfax, pp. 119-125,
mars, ISBN 978-9973-61-631-9 , 2007.

880

Dynamis: Dynamic Overlay Service Composition
for Distributed Stream Processing

Farshad A. Samimi and Philip K. McKinley
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48823, USA

farshad@ieee.org, mckinley@cse.msu.edu

Abstract— This paper addresses the problem of mapping
software services onto an overlay network, specifically, the
probing to locate suitable nodes on which to instantiate or
configure data processing operators. We propose a distributed
algorithm, called Dynamis, that can improve existing probing
algorithms. Experimental results on the PlanetLab testbed show
that Dynamis can dramatically reduce probing overhead while
producing high-quality services.

I. INTRODUCTION

Processing data streams as they are delivered across a
network is essential to many applications. In the case of
data gleaned from sensor networks, for example, processing
the data as it is collected supports real-time applications and
facilitates later searching and analysis of data repositories.
While the components of some data processing services are
relatively static, others depend on dynamics in the user pop-
ulation and their queries, in which case the services need
to be dynamically composed and reconfigured as conditions
change. Realizing this functionality has been facilitated by the
advent of overlay networks, in which end hosts form a virtual
network atop a physical network. The presence of hosts along
the paths between endpoints enables intermediate processing
of data streams, without modifying the underlying network
protocols or router software.

In this paper, we focus on the problem of mapping dis-
tributed services onto an overlay network. This functionality
is an integral part of any overlay-based streaming framework
and typically requires a probing mechanism to locate suitable
nodes on which to instantiate new data processing operators
[1], or to reconfigure and possibly share existing operators [2].
The probing protocol should incur minimal traffic overhead
while producing a high-quality mapping of services onto the
overlay infrastructure. The quality can be measured in terms
of metrics such as end-to-end delay, load balance, security,
and cost.

The contributions of this study are threefold. First, we
propose distributed selection, an optimization technique that
supports the design of efficient probing mechanisms. We
demonstrate that applying distributed selection to probing
algorithms can significantly reduce probing overhead. Second,

This work was supported in part by the U.S. Dept. of the Navy, Office of
Naval Research under Grant No. N00014-01-1-0744, and in part by National
Science Foundation grants EIA-0000433, EIA-0130724, and ITR-0313142.

Farshad Samimi is currently with GoldSpot Media, Inc. This research was
conducted while he was at Michigan State University.

we introduce an extensible algorithm based on distributed
selection, called Dynamis, to realize efficient probing for
overlay service composition. Third, we report results of an
experimental study on the PlanetLab Internet testbed, where
we assess the performance of Dynamis and other service
composition algorithms.

The remainder of this paper is organized as follows.
Section II provides background and discusses related work.
Section III formulates the problem of service composition
and probing. Section IV introduces Dynamis, and Section V
describes the experimental investigation. Finally, in Section VI
we conclude the paper and discuss future directions.

II. BACKGROUND AND RELATED WORK

The service composition problem arises in distributed envi-
ronments where the system needs to set up and bind a number
of entities in order to realize services [3]. With the emergence
of overlay networks and adaptive middleware technologies [4],
dynamic composition of overlay services has recently attracted
considerable attention [5]–[7]. Overlay networks provide a
chassis on which to deploy services, and adaptive middleware
enables dynamic instantiation and configuration of distributed
service components. Overlay service composition is particu-
larly useful in distributed processing of data streams [8], [9].

A fundamental issue in overlay service composition is the
probing method to locate and select a set of nodes on which
to execute stream processing operators (service elements). Re-
searchers have investigated two main aspects of this problem:
locating nodes on which to execute the operators [1], [10]–
[12] and sharing of services and processed data [2], [13].
In both cases, most prior research has addressed situations
where services already exist in the network and need to be
connected together to form a suitable service graph. Gu et
al. [10] introduced SpiderNet, a peer-to-peer service compo-
sition framework that performs distributed bounded probing.
A key property of the SpiderNet algorithm is that probes are
distributed only to nodes capable of executing the required
functions. Pietzuch et al. [1] proposed SBON, a protocol that
locates suitable nodes on which to place stream operators. The
SBON design is based on a “cost space,” a multi-dimensional
metric where the distance between nodes is an estimate
of the cost of routing between them (in terms of desired
measurements such as latency and processing power). Liang
and Nahrstedt [11] have addressed the problem where data
streams from multiple sources are processed and aggregated

881

to be delivered to multiple destinations. Finally, Repantis et
al. [2] proposed the Synergy framework as a means to reuse
existing streams and processing components when composing
services. These studies and others have significantly advanced
the areas of service composition and data stream processing.

Dynamis complements the above approaches by realizing a
generic optimization technique based on distributed selection.
As we will show, distributed selection can be applied to
existing probing protocols, such as those in SpiderNet [10] and
SBON [1], in order to reduce probing costs. We implemented
and evaluated Dynamis using Service Clouds [14], an overlay-
based infrastructure to compose autonomic communication
services. A service cloud can be viewed as a collection of
hosts whose resources are available to enhance services (e.g.,
in terms of fault tolerance and quality of service) transparently
to the endpoints. Effectively, overlay nodes provide a “blank
computational canvas” on which services can be instantiated
and reconfigured as needed. Here, we use different probing
algorithms in Service Clouds and evalutate the differences in
the resulting service mappings.

III. PROBLEM FORMULATION

In this section, we provide basic definitions and formally
state the probing problem for distributed service composition.

Service Element (Operator). A service element S =
{F, R, I, O} is a service entity executing on a single node,
where F specifies the set of functions carried out by the
service; R defines the resource requirements of the service,
for example, {memory, processing power, output bandwidth};
I specifies acceptable input, for example, {bit rate, resolution}
in a video stream; and O states the generated output specifi-
cations, for example, {size, fps} in a video stream.

Service Path. A service path P is an alternating directed
sequence P : n0, l0, n1, l1, ..., nn, ln(n > 0) of overlay nodes
and overlay links li, where li = (ni−1, ni), such that each
node executes one or more service elements (Si) each time
it is visited on the sequence. 1 Figure 1 depicts an example
service path S consisting of three service elements distributed
between two endpoints. We note that it is necessary to specify
both nodes and links in the path, since an overlay network
may be multichanneled, with multiple overlay links following
different physical paths between the same two nodes [15].

Service Graph. A service graph λ = ∪{Pi} comprises the
union of one or more connected service paths. Figure 1 shows
a service graph that forms a multicast tree.

Service Graph Quality. The quality of a service graph is
the end-to-end quality observed at the endpoints. The quality
measurement is domain specific and may include overlay
stretch properties such as end-to-end delay and packet loss, or
non-functional aspects such as security, reliability, and cost.

Hosting. We say that a node can host a service element if
that node has available resources to execute a service element
and satisfy domain-specific criteria of the service graph, such
as reliability, security, and end-to-end delay.

1In graph theory, such a traversal is called a walk, and a path is a walk in
which no vertex is repeated. Since in the service composition literature the
term service path is common and used loosely, we also use this term.

c
a

e

g
s
Source

Destination

S1 S2 S3S

S1

S3

h

b

S2

Destination

Destination

fd

i

j

Destination

Fig. 1. Service graph example (highlighting a service path).

Comparable Service Graphs. Two service graphs are com-
parable if they map the same functionality onto the overlay
network. In Figure 2, the service paths at the bottom of the
figure, a− g and c− e−h, both host service elements S1, S2,
and S3, so they are comparable; they are not comparable to
the d − f graph, which hosts only services S2 and S3.

c
a

e

g

S3

h

b

S2
fd

i

j

S1, S2

S3

S2

S1

S3

Fig. 2. Examples of service graphs.

This work focuses on composing service paths; the general
problem of composing service graphs is part of our ongo-
ing work. Figure 3 shows examples of two overlay service
paths. In these figures, the notation {Si, ..., Sj} represents
an unordered set of service elements, that is, functionality of
members is commutative. The notation (Si, ..., Sj) represents
an ordered set of service elements, that is, the functionality
of each member depends on the previous one and is non-
commutative.

Formally, we can state the problem addressed in this paper
as follows: Given an overlay graph G of n nodes and a service
specification S, find a path P in G such that P can host S.

IV. DYNAMIS PROBING ALGORITHM

In a probe-based approach to service composition, multiple
probes are sent to find service path candidates. A probe
contains the requirements of the service path, including the
ordering constraints, resource requirements, and expected end-
to-end quality. The Dynamis algorithm is based on distributed
selection, which applies the principle of optimality, namely,
that in an optimal sequence of decisions or choices, each
subsequence must also be optimal [16]. We observe that
service path composition satisfies the principle of optimality.

882

a

b

d
c

S1

S2

S4 S6
Source

Destination

a

b

c

S2, S3

S4

S1Source

Destination

SB = ((S1, S2), {S3, S4, S5, S6})

SA = {S1, S2, S3, S4}

S3, S5

Fig. 3. Service ordering constraints and corresponding service paths.

That is, for any overlay node on an optimal service path, the
two partial service paths from that node to the endpoints must
also be optimal. We use this observation to design a probing
algorithm in which an overlay node drops or forwards a probe
based on the quality of the partial service paths found earlier.

Figure 4 depicts the basic operation of the Dynamis probing
mechanism, which generalizes an algorithm proposed by Tang
and McKinley [15] to construct multipath connections in
overlay networks. One of the endpoints initiates probing (path-
explore process) by sending the probe for a service path to a
subset of its neighbors in the overlay network, according to a
predefined branching factor. Thereafter, probes attempt to find
their way to the other endpoint. In the algorithm presented
here, the destination endpoint (arbitrarily and without loss of
generality) starts the path-explore process.

nn(destination)n0 (source)

path-explore

Fig. 4. Basic operation of the composition probing algorithm.

To measure quality of a service path λ, denoted ψ(λ), we
extend the load balancing metric from Synergy [2] to include
the round-trip time as a factor. Specifically,

ψ(λ) = ωp

∑ psi

qvi
+ psi

+ωb

∑ bsi

cvi
+ bsi

+ωd

D

Dmax

n (1)

where the terms of the formula are defined in Table I. This
metric quantifies the quality of a service path based on the
processing and bandwidth load of overlay nodes on the service
path, as well as its end-to-end overlay delay. The smaller the
ψ(λ) value, the better the quality of the service path.

The key property of the Dynamis algorithm is that rather
than performing selection only at an endpoint, the selection
is distributed. An overlay node forwards a probe only if it
describes a partial service path of significantly better quality
than the quality of comparable service paths described by

TABLE I

Notation Meaning
λ service path

psi
processing resource required for service element Si

qvi
residual processing capacity on node vi

bsi
uplink bandwidth required for service element Si

cvi
residual uplink bandwidth on node vi

D end-to-end delay of an overlay path
Dmax maximum acceptable end-to-end delay

n number of nodes in the service path
ωp, ωb, ωd experimental cofactors

probes forwarded previously. As we shall demonstrate in
Section V, this approach can dramatically reduce the overhead
of probing while retaining high quality.

Algorithm Sketch. Upon receiving a path-explore probe,
each node ni inspects the probe and performs one of the
following actions (details can be found in [17]):
(i) Node ni drops the probe, in any of the following conditions:

(a) The service path violates the expected quality (e.g., end-
to-end delay) at this point.

(b) Node ni cannot satisfy resource requirements for hosting
at least one of the service elements that can be added to
the partial service path explored to this point (hosting).

(c) The quality of the partial service path explored so
far is not significantly better (e.g., by at least 5%—as
specified in the configuration) than the quality of the best
comparable partial service path described by a probe
already forwarded by node ni.

(d) The quality of the partial service path explored so far
is not better than the quality of a comparable partial
service path described by a probe currently buffered to
be forwarded.

(ii) Otherwise, node ni:
(a) Updates the probe, adding itself to the partial service

path described by the probe.
(b) If the partial service path achieves the requested service

path, node ni announces a candidate service path. If
node ni is the target endpoint of the probe, then this
announcement is local; otherwise, node ni forwards the
probe to the target endpoint.

(c) Otherwise, node ni buffers the probe, replacing any
probe in the buffer that describes a comparable partial
service path. Node ni periodically forwards all probes
in the buffer; this period is called an epoch. Node ni

forwards a probe to a subset of “qualified” neighbors.
Criteria for qualification include trust relationship, cost,
and availability of a particular functionality.

Example. Figure 5 demonstrates a simplified run-time
operation of the Dynamis algorithm, in which the service
path S = (S1, S2, S3) is being mapped to overlay nodes. In
Figure 5(a) two comparable partial service paths have been
found up to node d during a distributed selection epoch. The
algorithm forwards only the probe describing the path of
highest quality, and then only if the quality is significantly
better than the best comparable service path forwarded in

883

c
a

e

g
s
Source

S3

h

b

S2
Destination

fd

i

j

S3

(a) node d selecting the partial service path through f , which has
higher quality than the comparable one through g

c
a

e

g
s
Source

h

b

Destination

fd

i

j

S2 S3

S3

(b) node a selecting the partial service path through g, which has
higher quality than the comparable one through h

c
a

e

g
s
Source S1

S3

h

b

S2
Destination

fd

i

j

S2 S3

(c) node b selecting partial service path through d and f , with
higher quality than the path through a and g

c
a

e

g
s
Source S1

S3

h

b

S2
Destination

fd

i

j

S1

S2

S3

(d) source node s selecting (source, b, d, f, destination), the
candidate service path with highest quality

Fig. 5. Example run of the Dynamis probing algorithm: mapping S = (S1, S2, S3) to the overlay network.

a previous epoch. Let us assume that S2 can be hosted
by node d, so node d forwards (d, f, destination). In a
similar way, in Figure 5(b), (a, g, destination) is selected.
Then, in Figure 5(c) node b receives two comparable partial
service paths from nodes d and a. Again, applying distributed
selection (and assuming S1 can be hosted by node b), only
the partial path with higher quality is selected if both of
the probes are received in the same epoch. If the probes are
received during different epochs, then the one received later
is selected only if it has significantly better quality. Now, let
us assume that only (b, d, f, destination) is selected, which
is forwarded to the source node as a candidate service path.
Eventually, the source node selects the candidate with the
highest quality, (source, b, d, f, destination) in this example,
and maps the service elements onto the corresponding overlay
nodes. In approaches that do not use distributed selection,
nodes typically forward all of the probes which they receive.

Parameters. Table II gives the parameters used in the
algorithm. T is the buffer time-out period, or epoch duration;
when the buffer is empty and a probe is placed in it, a timer
starts that flushes the buffer after T milliseconds. B, H , and
W are branching factor parameters that control the overhead
of the probing in three respective ways: budgeted, limited-hop,
and bounded. In budgeted forwarding, each node forwards a
probe to B qualified neighbors selected at random. In limited-
hop forwarding, a probe is discarded if it has not found a
service path after traversing H overlay nodes. In bounded
forwarding, each node forwards at most W probes for a service
composition session. Finally, Q specifies the minimum service
path quality improvement expected, relative to the quality of
a comparable service path in a probe forwarded previously, in
order to forward a probe in question.

TABLE II

Notation Meaning
T buffer time-out
H upper bound number of hops a probe can traverse
W upper bound number of probes forwarded at each node
B upper bound number of forwards for a probe at each node
Q expected quality improvement

V. EXPERIMENTAL EVALUATION

We assess the performance of Dynamis in composing ser-
vices on PlanetLab [18], an Internet research testbed compris-
ing hundreds of Linux-based nodes distributed throughout the
world. We have used the Service Clouds [14] prototype to
apply Dynamis to different probing strategies. In these exper-
iments we assume all service elements need to be executed in
order (ordered service path). Due to space limitations, many
experimental results are omitted here, but can be found in [17].

Test Setup and Procedure. Considering establishment of
service paths between two nodes on the Internet, we first
show that the proposed approach significantly reduces probing
overhead by incorporating distributed selection (rather than se-
lection at an endpoint), while still finding high-quality service
paths. We use Formula 1 (Section IV) to measure the quality
of a service path. Next, we evaluate the quality of the selected
service paths in different approaches and configurations in
terms of end-to-end delay. In particular, we assess the effect
of Q and T parameters.

We measure the quality of the best service path found
and the corresponding probing overhead. This implementation
realizes a simplified Dynamis algorithm, which assumes two
service elements of the same service path do not execute on the
same overlay node (hence, probes are not forwarded to nodes

884

populated
2.98

canvas
2.61

populated - nopt
2.61

canvas - nopt
2.36

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Ps
i

(a) average quality of selected service paths

populated
128.5

canvas
98.6

populated - nopt
99.9

canvas - nopt
85.1

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

A
ve

ra
ge

 D
el

ay
 (m

se
c)

(b) average end-to-end delay of selected service paths

626841

17495
78400

4985
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

To
ta

l N
um

be
r o

f P
ro

be
s

G
en

er
at

ed

populated - nopt canvas - nopt populated canvas

(c) total number of generated probes

144.1

29.1

1142.6

8.1
0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

To
ta

l S
iz

e
of

 P
ro

be
s

G
en

er
at

ed
 (M

B
)

populated - nopt canvas - nopt populated canvas

(d) total size of generated probes

Fig. 6. The quality and the end-to-end delay of selected services path vs. overhead of probing in the four different strategies.

they have already traversed). The test procedure cycles through
source-destination pairs of nodes, submitting service requests
to the system and allocating resources. We have implemented
a simple protocol to reserve virtual resources. The source node
performs the final service path selection and sends messages
to reserve the required amount of resources on the overlay
nodes along the selected service path.

Table III shows the settings of parameters. In case of
multiple values for a parameter, the one in parentheses is
used by default; unless stated otherwise. In these tests, all
service specifications contain four ordered service elements,
which consume the same amount of resources: 20 units of CPU
processing power and 200Kbps of bandwidth. We conducted
the experiments on 28 PlanetLab nodes, each assumed to
have 100 units of CPU processing power and 1024Kbps
uplink bandwidth. The results presented are the average of five
samples of service composition between each pair of nodes.

TABLE III

Parameter Value
distributed service selection (enabled) , disabled

initial resource loads from (0%) to 60%
(CPU and bandwidth)

T (500) , 1500 , 2000 msec
Q (0%) , 2% , 3% , 5% , 10%

H upper bound N/A
W upper bound (unlimited), 3000
B upper bound unlimited

psi
20 units of normalized CPU time

bsj
200 Kbps

Dmax 300 msec
ωp, ωb, ωd cofactors 1.0

Results of Experiments. These tests compare four major
strategies:

• populated - nopt: composes a service path using nodes
that already host the required services; does not use
distributed selection.

• canvas - nopt: considers the overlay as a blank compu-
tational canvas, so any service can be mapped to any
node with sufficient resources; does not use distributed
selection.

• populated: composes a service path using nodes that
already host required services; uses distributed selection.

• canvas: considers the overlay as a blank computational
canvas and uses distributed selection.

Figures 6(a) and 6(b) show the average quality and end-
to-end delay for each of the strategies (95% confidence inter-
vals included). While the values for the distributed selection
cases (“populated” and “canvas”) are slightly higher (therefore
worse) than those for the first two cases, the differences are not
significant. On the other hand, Figures 6(c) and 6(d) show that
the probing overhead is dramatically reduced by distributed
selection (over 93% in the “ populated” strategy, and over
97% in the “canvas” strategy).

Figure 7 shows the effect of the parameter T in “canvas”
strategy. These plots show no significant change as T is set
to the different values. This observation is expected, since
each node compares the quality of a partial service path both
to all other ones received during the same epoch, and to
those forwarded in previous epochs. Thus, unless the value
of T is so small that few probes are received during an
epoch, increasing the buffer timeout does not change the
behavior of the strategies. Also, results from additional tests
show that increasing Q has little effect on overhead, but does

885

increase end-to-end delay. We can conclude an epoch duration
of 500msec is sufficient to significantly reduce the probing
overhead of composing high-quality service paths, without the
need for Q, at least within the realm of these experiments.

T = 1000 msec
111.3

T = 1500 msec
114.2

T = 2000 msec
115.0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

A
ve

ra
ge

 D
el

ay
 (m

se
c)

(a) average delay of selected service paths

T = 1000 msec
19,256

T = 1500 msec
19,745

T = 2000 msec
19,686

0

5,000

10,000

15,000

20,000

To
ta

l N
um

be
r o

f P
ro

be
s

G
en

er
at

ed

(b) total number of generated probes

Fig. 7. Effect of T on the service path delay and probing overhead (“canvas”
strategy with Q = 5%).

VI. CONCLUSIONS AND FUTURE WORK

We described Dynamis, a probing algorithm to support
composition of distributed overlay services. Dynamis is based
on distributed service selection, which reduces the overhead
of probing to locate suitable nodes on which to instantiate
services. We presented the Dynamis algorithm and used it
to empirically assess performance of different service com-
position strategies on the Internet. The experimental results
show that using distributed selection reduces the probing over-
head in service composition, while still finding high-quality
service paths. Future work can include experiments with
fewer assumptions, such as evaluation within a heterogeneous
assortment of nodes with different capabilities and resources;
as well as addressing quality of service in terms of non-
functional requirements, such as trustworthiness and reliability.
Furthermore, our ongoing research addresses the design of an
autonomic framework to compose adaptive distributed stream
processing services, including real-time data streams generated
by sensor networks that monitor ecosystems.

Further Information. Related publications and software on
the RAPIDware project can be found at the following website:
http://www.cse.msu.edu/rapidware.

REFERENCES

[1] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06), (Washington, DC, USA), pp. 49–60, IEEE
Computer Society, 2006.

[2] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-aware
component composition for distributed stream processing systems,” in
Proceedings of the 7th ACM/IFIP/USENIX International Middleware
Conference (MIDDLEWARE 2006), vol. 4290 of LNCS, (Melbourne,
Australia), Springer-Verlag, November 2006.

[3] S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E. Culler,
N. Borisov, S. E. Czerwinski, R. Gummadi, J. R. Hill, A. D. Joseph,
R. H. Katz, Z. M. Mao, S. Ross, and B. Y. Zhao, “The Ninja architecture
for robust Internet-scale systems and services,” Computer Networks,
vol. 35, no. 4, pp. 473–497, 2001.

[4] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” IEEE Computer, vol. 37, no. 7, pp. 56–
64, 2004.

[5] P. Grace, G. Coulson, G. Blair, L. Mathy, D. Duce, C. Cooper, W. K.
Yeung, and W. Cai, “GRIDKIT: Pluggable overlay networks for Grid
computing,” in Proceedings of International Symposium on Distributed
Objects and Applications (DOA), (Larnaca, Cyprus), pp. 1463–1481,
October 2004.

[6] J. Xiao and R. Boutaba, “QoS-aware service composition and adaptation
in autonomic communication,” IEEE Journal on Selected Areas in
Communications, vol. 23, pp. 2344–2360, December 2005.

[7] X. Fu and V. Karamcheti, “Automatic creation and reconfiguration
of network-aware service access paths.,” Computer Communications,
vol. 28, no. 6, pp. 591–608, 2005.

[8] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan,
“Resource-aware distributed stream management using dynamic over-
lays,” in Proceedings of the 25th International Conference on Distributed
Computing Systems (ICDCS 2005), (Columbus, OH, USA), pp. 783–792,
IEEE Computer Society, June 2005.

[9] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, “The Design of the Borealis Stream Processing
Engine,” in 2nd Biennial Conference on Innovative Data Systems Re-
search (CIDR’05), (Asilomar, CA, USA), pp. 277–289, January 2005.

[10] X. Gu, K. Nahrstedt, and B. Yu, “SpiderNet: An integrated peer-to-peer
service composition framework,” in Proceedings of IEEE International
Symposium on High-Performance Distributed Computing (HPDC-13),
(Honolulu, Hawaii), pp. 110–119, June 2004.

[11] J. Liang and K. Nahrstedt, “Service composition for advanced multime-
dia applications,” in Proceedings of 12th Annual Multimedia Computing
and Networking (MMCN’05), vol. 5680, (San Jose, California), pp. 228–
240, January 2005.

[12] B. J. Bonfils and P. Bonnet, “Adaptive and decentralized operator place-
ment for in-network query processing.,” Telecommunication Systems,
vol. 26, no. 2-4, pp. 389–409, 2004.

[13] S. Seshadri, V. Kumar, and B. F. Cooper, “Optimizing multiple queries
in distributed data stream systems,” in Proceedings of the 22nd Interna-
tional Conference on Data Engineering Workshops (ICDEW), (Atlanta,
GA, USA), pp. 25–30, IEEE Computer Society, April 2006.

[14] F. A. Samimi, P. K. McKinley, S. M. Sadjadi, C. Tang, J. K. Shapiro,
and Z. Zhou, “Service Clouds: Distributed infrastructure for adaptive
communication services,” IEEE Transactions on Network and Service
Management (TNSM), vol. 4, pp. 84–95, September 2007.

[15] C. Tang and P. K. McKinley, “Improving mutipath reliability in
topology-aware overlay networks,” in Proceedings of the Fourth Inter-
national Workshop on Assurance in Distributed Systems and Networks
(ADSN), held in conjunction with the 25th IEEE International Confer-
ence on Distributed Computing Systems, (Columbus, Ohio), June 2005.

[16] G. Brassard and P. Bratley, Fundamentals of Algorithmics. Prentice Hall,
1996.

[17] F. A. Samimi and P. K. McKinley, “Dynamis: Dynamic overlay service
composition for distributed stream processing,” Tech. Rep. MSU-CSE-
06-39, Department of Computer Science and Engineering, Michigan
State University, East Lansing, Michigan, December 2006. Available
at http://www.cse.msu.edu/˜farshad/serviceclouds.

[18] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the Internet,” in Proceedings of
ACM Workshop on Hot Topics in Networks, (Princeton, New Jersey),
pp. 59–64, October 2002. http://www.planet-lab.org/.

886

Wings4Symbian: A Pervasive Computing
Middleware for Symbian OS Mobile Devices

Olympio C. Silva Filho, Danilo F. S. Santos, Angelo Perkusich, Emerson Loureiro and Hyggo Almeida

Abstract— In this paper we present the main architectural
aspects about the implementation of a pervasive middleware
(named Wings4Symbian) used to develop pervasive applica-
tions for smartphones running the Symbian Operating Systems.
Smartphones play an important role on providing users with
access to services dispersed on the environment. In terms of
software infrastructure, the Symbian Operating System is a
reliable platform for the realization of pervasive computing
vision. Key factors such as modularization, multi-tasking, real-
time kernel, robustness, among others, are strongly supported.
The introduced middleware provides mechanisms for service
provision, host discovery, and context awareness. One application
developed on top of the Wings4Symbian middleware is also
discussed, focusing on its reconfiguration features.

Index Terms— Middleware, Symbian Smartphones, Pervasive
Computing

I. INTRODUCTION

Pervasive computing [1] has emerged as a prominent re-
search field in the last years. In the context of pervasive,
computing and communication capabilities will be available
not only in traditional computing appliances, such as personal
computers, personal digital assistants (PDAs), and cellular
phones, but also in everyday objects like televisions, refrig-
erators, cars, air-conditioners, among others [2]. Moreover,
all these computing devices will be transparently integrated
into our lives, with the goal of providing us with relevant
information and services.

Smartphones play an important role in the context of per-
vasive computing [1] mainly due to three reasons [3], [4], [5].
Firstly, applications can be easily deployed on them and can
use their connectivity to communicate with the environment.
Secondly, smartphones are very personal items and, thus,
remain with their owners most of the time. And finally,
they can acquire relevant information about the environment
based on different kinds of devices, like sensors, cameras, and
microphones, as well as they can detect available services that
are around. Altogether, these features make smartphones the
ideal solution for user interaction in pervasive environments.

The Symbian Operating System (Symbian OS) [6], [7],
[8] can be considered a reliable platform for the deployment
and execution of pervasive computing applications, for the
following reasons. Firstly, the Symbian OS is modularized.

The authors are with the Embedded System and Pervasive Computing
Laboratory, Department of Electrical Engineering, Federal University of
Campina Grande, C.P. 10105 - 58109-970 - Campina Grande - PB - Brazil,
emails: (olympio, danilo, perkusic)@ee.ufcg.edu.br, emerson.loureiro@ucd.ie,
hyggo@dsc.ufcg.edu.br

Therefore, the functionalities of the kernel are provided in
building blocks, making the addition of drivers and other
pieces of software easy and without major impacts in the
overall system. Also, in pervasive computing, system recon-
figuration is the norm rather than the exception. Therefore,
the modularization feature enables a seamless upgrade of
the system. Secondly, Symbian supports multi-tasking, and
thus, the kernel is able to switch between different threads.
This is important because it allows the execution of multiple
pervasive applications concurrently. Third, the Symbian OS
has a real-time kernel, which improves the performance of
time-sensitive services, which are very important in pervasive
environments [9]. Fourth, Symbian is robust, in the sense that
it is protected against bad written applications, so that they
cannot harm other applications running at the same time in
the device. All these features, along with an efficient memory
and power management system, allow pervasive computing
applications to be executed securely, seamlessly, and properly
in devices that can go through many hours of operation without
recharging batteries.

Based on the introduced scenario and considering the need
for an infrastructure to help in the development of pervasive
applications for smartphones, the implementation aspects of a
pervasive computing middleware for the Symbian operating
system, named Wings4Symbian, is presented in this paper.
The paper is structured as follows. In Section II, the Wings
middleware architecture is presented. In Section III, the im-
plementation in the Symbian operating system is described.
In order to illustrate the application of Wings4Symbian, an
example scenario and the application development is presented
Section IV. Related works are discussed in Section V. In
Section VI, the conclusions and the future works are presented.

II. THE WINGS PERVASIVE COMPUTING ARCHITECTURE

The Wings architecture is illustrated in Figure 1. It is
targeted for pervasive computing systems and is composed
of the following modules: Dynamic Evolution, Pervasive Net-
working, Context Awareness, and Middleware Facade. The
Wings architecture, and more specifically the Pervasive Net-
working and Context Awareness modules, is a plug-in based
approach [10]. The idea is to decouple the functionalities
of these modules from the applications, by encapsulating
them into plug-ins. Therefore, always when an application is
deployed into a given device, the plug-ins for that device are
deployed as well, thus enabling the application to run in a

887887

wide range of devices but still keeping its code untouchable.
The details of the modules are presented as follows.

Context

Awareness

Dynamic Evolution

Pervasive

Networking

Middleware Facade

Fig. 1. The Wings pervasive computing architecture.

The Dynamic Evolution Module allows Wings middleware
to be updated at runtime. More specifically, it allows the in-
sertion and removal of Wings-based plug-ins, without stopping
and restarting neither the middleware nor the applications
that are being executed. More precisely, new modules can
be deployed or removed whenever the user comes/leaves an
environment, but the device does not need to be restarted due
to this.

The Pervasive Networking Module implements two func-
tionalities: host discovery and service provision. The Wings
architecture defines two types of plug-ins for implementing
these functionalities, namely, Host Discovery Plug-ins (HDPs)
and Service Provision Plug-ins (SPPs). Furthermore, since it
is possible to deploy different implementations of these plug-
ins, at the same time, both, the host discovery and the service
provision, can be performed over heterogeneous protocols. For
example, both operations can be executed over UPnP, JXTA,
and Bluetooth based networks, thus increasing the number of
services and hosts that a device can access.

The Context Awareness Module implements mechanisms for
enabling applications to retrieve context information, which
can be performed either by using key-value pairs or context
events. For the former, each context information is associated
with a key, which is used to retrieve the current information.
Context events, on the other hand, enable applications to be
aware of changes in the context through event notification. In
the Wings pervasive computing architecture, context awareness
is provided by a type of plug-in named Context Awareness
Plug-in, or CAP. Given a specific application domain (e.g.,
smart homes), the basic idea is that each CAP is associated
with the domain, thus providing only the context information
associated with that given domain.

The Middleware Facade Module provides a single interface
to access services provided by the available plug-ins in the
underlying modules, i.e. the Service Discovery and Context
Awareness modules. The need for this module relies on the fact
that, when different plug-ins are installed in the middleware,
it would be too complicated, from the developer point of
view, for applications to access the services provided by these
plug-ins directly. All applications would need to be aware
of each inserted and removed plug-in, for enabling them to

use the services of the recently inserted ones as well as to
avoid using the services of the already removed plug-ins. The
Middleware Facade module, thus, abstracts all these details
from the applications. Besides, this module is also responsible
for loading and unloading the plug-ins.

III. THE Wings4Symbian PERVASIVE COMPUTING
MIDDLEWARE

The Wings4Symbian middleware is implemented in C++
for the Symbian OS and the implementation is divided into
two major parts: the plug-ins and the facade implementation.
The former consists of the implementation of the Pervasive
Networking and Context Awareness plug-ins (i.e. SPPs, HDPs,
and CAPs). Such plug-ins, implemented as polymorphic dy-
namic linked libraries (DLL’s), are responsible for providing
the functionalities of the Wings4Symbian middleware. As
discussed in Section II, the plug-ins can be loaded at runtime
so that the middleware can be dynamically extended to satisfy
specific needs of applications – context information, service
provision, and host discovery. The facade is implemented as
shared DLL.

Two frameworks of the Symbian OS were widely used
throughout the implementation of the Wings4Symbian middle-
ware, namely: the Active Objects Framework and the Plug-in
Framework. The former was used to implement the plug-ins
and the facade and the later was used in the implementation of
the Dynamic Evolution Module. In what follows we present
more specific details about the plug-ins and facade implemen-
tations.

A. Active Objects and Plug-in Framework
The architecture of the Symbian OS is based on a client/

server design [6]. The role of the system servers is to encap-
sulate resources or services to discipline clients access. Also,
considering that Symbian OS enables asynchronous service
calls, clients can register to be notified of certain server events.
Therefore, event-driven coding is extensively applied through
the use of Active Objects (AO). Unlike multi-threading, active
objects are a lightweight mechanism to perform event-driven
multitasking without decreasing responsiveness, while still
saving power and memory resources. An Active Scheduler
for each thread waits for events completion issued by any
AO of the corresponding thread and executes the code of
the appropriate Active Object. The Active Scheduler is non-
preemptive, thus the Active Object Framework is a model for
scheduling tasks non-preemptively inside one thread.

The Symbian OS framework used to support plug-ins is
named ECOM [6], which is an object-factory framework
(or object model). It is a generic and extensible plug-in
framework for registering and discovering abstract interfaces
implementations. They can be loaded and unloaded by the
framework at run-time, thus only the implementations required
by an application need to be presented. The ECOM framework
provides the following elements: an abstract interface, which

888888

defines a plug-in type as well as the service it provides; an
implementation of this interface, that is, the plug-in itself;
and a framework for providing clients with access to specific
plug-ins. The abstract interface has two types of methods: ab-
stract methods and factory methods. Abstract methods define
functionalities that must be implemented by the plug-in. The
factory methods, on the other hand, are used for instantiating
a plug-in, by sending requests to the ECOM server.

B. Service Discovery Plug-in

The Service Provision Plug-in, which is part of the Pervasive
Networking Module, enables devices to find, advertise, and
use services available in a pervasive environment. The most
important classes of this plug-in are illustrated in the the class
diagram shown in Figure 2 and described as follows:

• CSpp: this is the abstract interface of the Service Pro-
vision Plug-in. It has four abstract methods Discov-
erServicesL, AdvertiseServiceL, UnadvertiseService, and
StopDiscovery, which specify the plug-in functionali-
ties, and one factory method, NewL, which requests the
ECOM server to load the needed plug-in implementation
into the middleware. The DiscoverServicesL is used for
searching available services in the environment. It returns
a search identifier so that applications are able to stop the
search. The AdvertiseServiceL method is used for adver-
tising a local service to other devices. Unadivertising a
service is made through the UnadvertiseService method,
which receives the service to be unadvertised. Finally, for
stopping a search for services, the StopDiscovery method
must be used, providing it with a specific search identifier.
This is necessary because one client can make parallel
searches for services, and thus, such an identifier enables
the SPP to stop the correct search.

• MService: this interface represents a Wings service, either
a remote or a local one. It has four methods, Get-
Name, GetDescription, GetParameters, and GetReturn-
Type, which provides basic information about a service
(i.e., name, description, parameters, and return type). At
last, invoking the service is done through the method
Invoke. This method receives some parameters to be
processed by the service provider and a listener, used
to receive the response. The listener is necessary due to
the asynchronous nature of this method.

• MServiceProxy: this abstract class extends the MService
class and represents a remote service, that is, those
discovered by the SPPs. It is worth mentioning that
this class will have to make remote calls to the real
service implementation. Therefore, as such calls will
be performed according to the protocol associated with
the SPP, all methods of this interface are left to be
implemented by the subclasses.

• CLocalService: this abstract class implements the MSer-
vice interface and represents a local service. All methods
of MService are implemented by this class, except Invoke,

because it is specific to each service, and consequently
must be left to be implemented by its subclasses.

• MServiceDiscoveryListener: this interface must be im-
plemented by objects interested in receiving information
about the service discovery process. It has two methods:
ServiceDiscovered, used for notifying the listener that a
service has been discovered, and SearchFinished, which
notifies that the search has been finished, either explicitly
by an application or due to some error.

Fig. 2. UML diagram of the SPPs implementation.

C. Host Discovery Plug-in
The Host Discovery Plug-in, which is also part of the

Pervasive Networking Module, is used to search hosts in
the pervasive environment so that the communication can be
established among them. The most important classes of this
plug-in are illustrated in the class diagram of Figure 3 and
detailed next.

• CHdp: this abstract interface represents a Host Discovery
Plug-in with one factory method, NewL, and two abstract
methods, DiscoverHosts and StopDiscovery, which im-
plements its functionalities. The DiscoverHosts method
enables devices to search for hosts in the pervasive
environment through the protocol associated with the
plug-in. This method also returns a search identifier,
enabling applications to stop the search whenever they
need. The remaining method of the HDP, StopDiscovery,
is used to cancel a search for hosts, and receives a search
identifier as a parameter.

• MHostDiscoveryListener: this interface is used to receive
notifications about the host discovery process. It specifies

889889

two methods, one for receiving a recently discovered
host, HostDiscovered, and another for indicating the
search has ended, SearchFinished. The HostDiscovered
method receives in the parameters the host that has been
discovered, specified by the MRemoteHost interface, and
the identifier of the search associated with the discovery.
The SearchFinished method, on the other hand, receives
a code which identifies if the search has been finished
due to an application request, that is normally, or due to
an error.

• MRemoteHost: this interface represents a remote host,
providing methods for obtaining its name and descrip-
tion, and for opening a connection with it. Also, it is
possible to retrieve the services provided by this remote
host through the GetProvidedServices method. The Ser-
viceDiscovered method of this instance is used by the
remote host to pass the services it provides, each one as
an instance of MServiceProxy.

Fig. 3. UML diagram of the HDP implementation.

D. Context Awareness Plug-in
Context Awareness Plug-ins, CAPs, are used to retrieve

context information from the pervasive environment. This
information can be of any type, for example, the temperature
of a room, the location of a user in the environment, and
so on. This section presents the Context Awareness Plug-ins,
describing its main classes and interfaces, which are illustrated
in the class diagram of Figure 4.

• CCap: this is the abstract interface that represents a Con-
text Awareness Plug-in, providing one factory method,
and three functionalities specified as abstract meth-
ods: RetrieveContextInformation, RegisterContext Lis-
tener, and UnregisterContextListener. The first one en-
ables its users to retrieve context information using the
key-value approach presented in Section II. The Regis-
terContextListener is used for registering a listener that

will receive notifications about certain context events,
which are fired by the CAP. It receives a condition, as an
instance of the MContextCondition interface, which deter-
mines when the event should be fired, and an instance of
the MContextEventListener interface, which receives the
event once the condition is satisfied. Also, this method
returns a registration identifier so that it can be revoked
through the UnregisterContextListener method.

• MContextCondition: this interface represents the condi-
tion that regulates the triggering of a context event. This
condition is passed when registering an context listener to
a condition. The satisfiability of the condition is checked
through the IsSatisfied method.

• CContextEvent: this class represents a context event fired
by a CAP. A context event provides two information, the
key and current value of the context information they
are associated, obtained respectively through the Get-
ContextInformationKey and GetContextInformationValue
methods.

• MContextEventListener: this interface represents the lis-
tener of the context events. When an event is fired, the
listeners are notified through the ReceiveContextEvent
method, which receives a CContextEvent object repre-
senting the context event fired by the CAP.

• CConditionMonitor: this class is responsible for mon-
itoring a context condition registered within a CAP.
It is implemented as an Active Object and creates a
CContextEvent object every time the context condition
is satisfied. This object will then be passed to the listener
associated with the condition (i.e., instance of MContex-
tEventListener).

Fig. 4. UML diagram of the CAP implementation.

E. Middleware Facade
As we mentioned in Section II, the Middleware Facade

Module is the point through which applications can use the
middleware functionalities. Thus, methods specified by each
plug-in interface are also present in the Middleware Facade.
When an application invokes a method of the facade associated

890890

with the plug-ins defined in the Pervasive Networking Module,
it forwards the request to the respective method of all related
plug-ins currently loaded. A search for services, for example,
has to be propagated throughout all the available SPPs. On the
other hand, when invoking a method associated with the plug-
ins defined in the Context Awareness Module, the facade will
search for the plug-in that provides the context information
or context event required. Thus, the request is passed only to
this plug-in. The Middleware Facade also manages the plug-
ins through the use of the ECOM Framework. More precisely,
when a new plug-in is installed, the facade is notified by the
ECOM server, so that the plug-in can be loaded and then used
by the applications.

IV. APPLICATION SCENARIO

In this section we present an application scenario for illus-
trating the applicability of Wings4Symbian middleware. The
basic idea is to define how the Wings4Symbian middleware can
be dynamically reconfigured taking into account the plug-ins
installed, and also how developers can use the Wings4Symbian
API to develop pervasive applications.

A. Book Searcher Application
This application was implemented to provide access to

the Embedded Systems and Pervasive Computing Laboratory
Library, to enable users to search and/or be notified of specific
books that are available, according to they preferences. For
this application the service discovery capability provided by
Wings4Symbian middleware is used. This functionality works
in the following way. The user passes a set of keywords
to the application provided as an instance variable member,
iBookKeywords of CBookSearcher. The application tries to
discover the service that performs the search for books through
a method SearchBooks. This method uses an array of service
keywords specified as a member variable (iServiceKeywords)
containing the words books and search that specify the service
to be searched. The application retrieves the discovered ser-
vices (method ServiceDiscovered), and from then obtains the
one which performs the search for books. If such a service has
been found the search is stopped and the application invoke it,
passing the keywords provided by the user (iBookKeywords).
On the server side, these keywords are checked against each
book title of the library. Those that are relevant are returned
to the application, which shows them to the user.

Besides searching for books, the user can register his interest
on a specific book or a subject. As soon as books that satisfy
his preferences are available and he is in laboratory building,
he is notified about the availability of the books.

B. Reconfiguring the Middleware
Middleware reconfiguration is performed through the addi-

tion and removal of plug-ins. Each of these processes can be
split in two steps: installation and loading, for the addition, and
uninstallation and unloading, for the removal. The installation

consists of downloading the plug-in file to a specific folder of
the Symbian OS. The ECOM framework, thus, detect that a
plug-in has been inserted into such a folder, and then notify
the Middleware Facade, as we explained in Section III-E.
After that, the facade then loads the recently installed plug-
in. This loading process is achieved by sending requests to
the ECOM server. The ECOM server instantiates the plug-
in implementation and loads it in the process of the calling
application. Different applications running simultaneously in
different processes can load the same plug-in, and thus, the
ECOM server makes use of reference counting in order to
unload the plug-in automatically when all applications have
released it. Therefore, when no application is making use of
a plug-in, it can be uninstalled, by removing its file from the
Symbian OS plug-in folder.

Speaking specifically about our application scenario, when
the user enters a new environment for the first time, the
applications available in it will be downloaded to his/her
device along with the plug-ins it depends on. More precisely,
five steps are executed: 1) download the applications available,
2) download the plug-ins required by each application, con-
sidering the device settings where they will run, 3) install the
applications, 4) install the plug-ins, according to the process
described above, and finally 5) execute the applications.

V. RELATED WORKS

On the field of middlewares for pervasive computing, it is
a fact that a reasonable number of works have been proposed.
One of these works is MARKS [11] (Middleware Adapt-
ability for Resource Discovery, Knowledge Usability and
Self-healing), a middleware which aims to incorporate less-
explored areas of pervasive computing, specifically knowledge
usability. However, the first prototypal implementation offers
just Device Discovery, Service Discovery, Context-Awareness,
and Self-healing services. This prototype was implemented
using the Visual Studio .NET compact framework and does
not offer a simple and flexible mechanism to dynamically load
new features to the middleware in a plug-in based way, as in
the Wings4Symbian middleware.

O3MiSCID [12] (Object-Oriented Opensource Middleware
for Services Connection, Inspection and Discovery) is a per-
vasive middleware built in three layers, which are responsible
for network communication, handle of services and doing
semantic description of services (ontology) at high layer.
O3MiSCID handles services (declare and discover) using the
DNS-SD (DNS-Service Discovery) mechanism and it has been
implemented using C++, Java and Tcl. Therefore, O3MiSCID
is a middleware concerned just with connection, inspection and
discovery of services, not worried about context-awareness or
dynamically addition of new features.

Cortex [13] is a middleware for context awareness in perva-
sive and ad hoc environments comprised of a set of component
frameworks, each of them targeted at a specific purpose,
defining the kind of component it accepts. The component
frameworks defined by the Cortex middleware are: service

891891

discovery framework, context framework, publish-subscribe
framework, and resource management framework. In a broad
sense, these frameworks are respectively responsible for the
dissemination of events, discovery of services, acquisition of
context information, and management of local resources like
CPU, memory, and network connections. These component
frameworks are implemented over the OpenCOM component
model, so that components can be inserted and removed from
the middleware on the fly. The Cortex middleware, however,
does not provide host discovery features.

SOCAM [14] is an ontology and service-based middle-
ware for context awareness in pervasive environments. The
architecture of the SOCAM middleware is based on a set of
components responsible for acquiring and representing context
information (Context providers), interpreting them (Context
interpreters), and finally passing them to the so-called Context
awareness services. Context information is provided through
services, so that context information can be acquired by
remote hosts in a decoupled way. The focus of the SOCAM
middleware is too much on context awareness, not dealing
specifically with dynamic reconfiguration aspects.

VI. FINAL REMARKS

In this paper we presented a pervasive computing middle-
ware implementation for smartphones running the Symbian
Operating System, named Wings4Symbian. The infrastructure
is focused on service provision, host discovery, and context
awareness. Also, the dynamic extension of the middleware
was also tackled, through the use of a plug-in-based archi-
tecture and the ECOM framework. Therefore, the middleware
provides the necessary functionalities to build applications
for pervasive environments, with the possibility of being
dynamically reconfigured. We also presented an application
scenario, which showed not only how the middleware can be
adapted according to the environment, but also how its API
can be used to develop pervasive computing applications.

As a future work, our goal is to build a set of plug-ins
so that developers can use them in their own applications
scenarios. So far, we developed four plug-ins that are currently
being used, discussed in Section IV two Service Provision
Plug-ins (SPPs), one Host Discovery Plug-in (HDP), and one
Context Awareness Plug-in (CAP). The SPPs are implemented
using the Bluetooth Service Discovery Protocol (SDP) and
the Universal Plug and Play (UPnP) protocol. For the latter,
the CyberLink 1 API is being used. The HDP is also based
on the Bluetooth. Finally, the CAP is targeted at providing
information related to the Embedded Systems and Pervasive
Computing Laboratory Library, such as people present in the
building, books that are available in the library, among others.

ACKNOWLEDGMENTS

The authors would like to thank Nokia do Brasil and
Instituto Nokia de Tecnologia for the partial support to develop
this work.

1http://www.cybergarage.org

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 94–104, September 1991.

[2] D. Saha and A. Mukherjee, “Pervasive computing: A paradigm for the
21st century,” Computer, vol. 36, no. 3, pp. 25–31, March 2003.

[3] G. Roussos, L. Iftode, and H. Mitchell, “Guest editors’ introduction: The
smart phone–a first platform for pervasive computing,” IEEE Pervasive
Computing, vol. 4, no. 2, pp. 18–19, 2005.

[4] G. D. Abowd, A. J. Marsh, and S. Maglavera, “Enabling pervasive
computing with smart phones,” IEEE Pervasive Computing, vol. 4, no. 2,
pp. 20–25, 2005.

[5] N. Ravi, P. Stern, N. Desai, and L. Iftode, “Accessing ubiquitous services
using smart phones.” in PerCom, 2005, pp. 383–393.

[6] J. Sales, A. Rogers, A. Thoelke, C. Freitas, C. Dive-Reclus, D. May,
D. Feather, H. Morgan, P. Scobie, J. Strong, J. Parker, S. Williams, and
T. Lofthouse, Symbian OS Internals. England: John Wiley and Sons,
2005.

[7] J. Stichbury, Symbian OS Explained. England: Wiley, 2005.
[8] L. Edwards, Developing Series 60 Applications. Addison-Wesley, 2004.
[9] D. Saha, A. Mukherjee, and S. Bandyopadhyay, Networking Infras-

tructure for Pervasive Computing. Boston, USA: Kluwer Academic
Publishers, 2003.

[10] J. Mayer, I. Melzer, and F. Schweiggert, “Lightweight plug-in-based
application development,” in Revised Papers from the International Con-
ference NetObjectDays on Objects, Components, Architectures, Services,
and Applications for a Networked World, M. Aksit, M. Mezini, and
R. Unland, Eds. Erfurt, Alemanha: Springer-Verlag, 2003, pp. 87–102.

[11] M. Sharmin, S. Ahmed, and S. I. Ahamed, “MARKS (Middleware
Adaptability for Resource Discovery, Knowledge Usability and Self-
healing) for mobile devices of pervasive computing environments,”
in Proceedings of the Third International Conference on Information
Technology : New Generations, Las Vegas, Nevada, USA, April 2006,
pp. 306–313.

[12] R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier, “O3miscid:
an object oriented opensource middleware for service connection, intro-
spection and discovery,” in 1st IEEE International Workshop on Services
Integration in Pervasive Environments, June 2006.

[13] C.-F. Srensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday,
and H. Duran-Limon, “A context-aware middleware for applications in
mobile ad hoc environments,” in Proceedings of the 2nd Workshop on
Middleware for Pervasive and Ad-hoc Computing. New York, NY,
USA: ACM Press, 2004, pp. 107–110.

[14] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented middleware
for building context-aware services,” Journal of Network and Computer
Applications, vol. 28, no. 1, pp. 1–18, 2005.

892892

An OWL/SWRL based Diagnosis Approach in a Pervasive Middleware

Weishan Zhang and Klaus Marius Hansen
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{zhangws,klaus.m.hansen}@daimi.au.dk

Abstract

Diagnosis is the most important step for achieving self-
healing of systems, which is a challenge in pervasive com-
puting. In this paper, we present a semantic, state machine-
based diagnosis approach for a web-service based middle-
ware. We use OWL ontologies and SWRL to develop both
diagnosis and monitoring rules, based on state changes and
also invocation relationships. Malfunction information and
its resolution are encoded in an OWL ontology as a part of
a Device ontology, and can be used at run time to check how
to resolve malfunction, and further to fulfill self-healing ac-
tivities. SWRL rules at both device level and system level
are designed and will be executed as needed. The evalua-
tions in terms of extensibility, performance and scalability
show that this approach is effective in pervasive service en-
vironment.

1 Introduction and Motivation

Web services are increasingly needed to be adopted as

service provision mechanisms in pervasive computing en-

vironment. This trend is exemplified during the inaugura-

tion phase of the Hydra project(IST-2005-034891), by some

companies that donate us Zigbee devices and other embed-

ded devices that enabling pervasive computing, and express

their wishes for web service enabled devices.

A concrete agriculture scenario that we are considering

in the Hydra project is as followed:

Bjarne is an agricultural worker at a large pig farm in Den-
mark. As he walks through the pens to check whether the
pigs are provided with correct amount of food, his work is
interrupted by a sound from his PDA, indicating that a high
priority alarm has arrived. Apparently, the ventilation sys-
tem in the pig stable has malfunctioned. After acknowledg-
ing the alarm and the system begins to diagnosis and soon
it decides that the cause of the problem is ’power supply off
because of fuse blown’. Then he can prepare a fuse and re-
pair the ventilator. After repairing it, he signs off the alarm,

and writes a log on what he has done.
As can be seen from the above scenario, it is very impor-

tant that the Hydra middleware can provide diagnosis func-

tionality to the end user, or better to achieve self-healing

when there is malfunction. Such kind of self-healing can

not be always finished automatically, for example device

down because of fuse broken. But providing diagnosis and

then resolution suggestions would be the most important

step towards malfunction recovery.

In this paper, we present an OWL ontology (the Web

Ontology language)1 and SWRL (Semantic Web Rule Lan-

guage)2 based diagnosis using state machine and sniffering

of process invocation in the context of the Hydra middle-

ware. The malfunction information and its resolution are

encoded in an OWL ontology as part of a Device ontology,

and can be used at run time to check appropriate resolution

to the malfunction, and further to fulfill self-healing activ-

ities. We use SWRL to develop monitoring and diagnosis

rules, and these rules, together with OWL ontologies, can

help make intelligent decisions on where malfunction oc-

curs and its resolution.

The rest of the paper is structured as follows: Section

2 presents an overview of the Hydra middleware; We then

show the diagnosis ontologies used in Hydra; In section 4,

design of both rules and the Diagnosis Manager are pre-

sented. Section 5 evaluates our work with the extensibility,

performance and scalability. We compare our work with the

related work in section 6. Conclusions and future work end

the paper.

2 Web service based middleware-Hydra

The Hydra project is developing a service-oriented and

self-managed middleware for pervasive embedded and net-

work systems based on web service. According to the avail-

able resources, the function structure of the Hydra mid-

dleware is divided into two parts, namely Application El-

1OWL Web Ontology Language Guide. http://www.w3.org/TR/owl-

guide/
2SWRL specification homepage. http://www.w3.org/Submission/SWRL/

893

ements(AEs) and Device Elements(DEs). AEs are meant

to be running on powerful machines, DEs describe compo-

nents that are usually deployed inside Hydra-enabled de-

vices where small devices maybe involved. The Layered

architecture of the Hydra middleware is shown in Figure 1.

���������	
����
��
���
��������

�
�
��
��
��
��
�
�

���	�������

����������

��
��
���
	�
�
��
��
��

 �����	��������

!�������������

�������������!����������������

����
����������

"��������������

#���	��������

�����$������������������������

��������
��

���
��������

�
�
��
��
��
��
�
�

���	�������

����������

��
��
���
	�
�
��
��
��

��������������� !�������������

%���������������

"��������������

#���	�������������$���������

�
��
��
��
��
��
�

��

&����������

��������������� ���������������

 ������������ �������

&����������

Figure 1. Hydra middleware Layered architec-
ture

Diagnosis Manager is used to monitor the system condi-

tions and states in order to fulfill error detection and logging

device events. Its functions include system diagnosis and

device diagnosis.

The Event Manager is used to provide publish/subscribe

functionality to the HYDRA middleware. In general, pub-

lish/subscribe communication as provided by the Event

Manager provides an application-level, selective multicast

that decouples senders and receivers in time, space and data.

3 Ontologies used in the Diagnosis Manager

There are several ontologies involved in the diagnosis

process, namely Device ontology, Malfunction ontology,

and StateMachine ontology. The DeviceRule ontology is

used for holding all diagnosis rules as introduced in Section

4.1. The high level structure of the diagnosis ontologies is

shown in Figure 2.

������

����(����������� �����'��%���)���(������������������ '����������

������� '���������� ��� ��'������������������������������

**������++ **������++ **������++ **������++ **������++

��������

'����

������

�������
��������

������"���

**������++

Figure 2. Diagnosis ontologies structure

The Device ontology is used to define some basic infor-

mation of a Hydra device, for example device type classifi-

cation(e.g. mobile phone, sensor), device model and manu-

facturer, and so on. The device type classification is based

mainly on AMIGO project ontologies [7]. To facilitate di-

agnosis, there is a concept called HydraSystem to model a

system composed of devices to provide services. And there

is a corresponding object property hasDevice which has the

domain of HydraSystem and range as HydraDevice. There

are also concepts used for the monitoring of web service

calls, including SocketProcess, SocketMessage and IPAd-
dress. The HydraDevice concept has a data type property

currentMalfunction which is used to store the inferred de-

vice malfunction diagnosis information at run time and will

be exemplified later.

To enable state based diagnosis, a state machine ontol-

ogy is developed based on [5] with many improvements:

firstly, we add a datatype property isCurrent in order to in-

dicate whether a state is current or not; secondly, we add

a doActivity object property to the State in order to specify

the corresponding activity in a state and this makes the state

machine complete; thirdly, we add a datatype property has-
Result to the Action (including activity) concept in order to

check the execution result at run time. Three other datatype

properties are also added to model historial action results.

This facilitates the specification of diagnosis rule based on

state and activity result and its history.

The device Malfunction ontology is used to model mal-

function and recovery resolutions. We separate the mal-

functions into two categories: Error (including device to-

tally down) and Warning (including function scale-down,

and plain warning). There are also two other concepts,

Cause and Remedy, which are used to describe the origin

of malfunction and its resolution.

A more detailed but simplified view of the ontologies

used in the diagnosis is depicted in Figure 3.

4 Design of the Diagnosis Manager

Hydra implements a service-oriented architecture based

on web service interaction among devices. Thus a reason-

able granularity to build a self-management system on is the

level of web service requests and responses. Furthermore,

we are interested in the states of devices per se, i.e., is the

device operational, stopped, not working and if it is oper-

ational what is the value of its sensor readings (if any) or

its actuator state (if any). This leads us initially to focus on

status reporting of the following two forms:

• State change reporting. State machines are used to re-

port their state changes as events through the Hydra

Event Manager.

• Web service request/reply reporting. The requests and

replies (and their associated data) can be used to anal-

yse the runtime structure of the Hydra systems. Here a

tool called IPSniffer is used to report invocations.

894

�

Figure 3. Partial details of the Diagnosis Manager used ontologies

4.1 Design of SWRL rules

Diagnosis is a complex task which need intelligence

to infer what is the reason for error and its consequence.

The OWL-DL ontologies themselves are hardly expressive

enough to specify diagnosis rules. As an alliance to

OWL, SWRL can be used to write rules to reason about

OWL individuals and to infer new knowledge about those

individuals. A SWRL rule means that if all the atoms in

the antecedent (body) are true, then the consequent (head)

must also be true. In the SWRL rules, the symbol ∧ means

conjunction, ?x stands for a variable, → means implica-

tion; and if there is no ? in the variable, then it is an instance.

Device level rules
Device level rules are used for a certain type of devices

which are supposed to be generic for that type of devices.

The followed is an example of mobile phone battery mon-

itoring, if battery level is less than 10%, a warning will be

published.

device : MobilePhone(?device) ∧
device : hasHardware(?device, ?hardware) ∧
Hardware : primaryBattery(?hardware, ?battery) ∧
Hardware : batteryLevel(?battery, ?level) ∧
swrlb : lessThanOrEqual(?level, 0.1)
→ V eryLowBattery(?device)

Another monitoring rule is if the flow measured from

the flowmeter is more than 16 (gallon/minute), then it is too

high and should be repaired as soon as possible:

device : FlowMeter(?device) ∧
device : hasStateMachine(?device, ?sm) ∧
statemachine : hasStates(?sm, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?r) ∧
abox : isNumeric(?r) ∧ swrlb :
greaterThan(?r, 16.0) →
device : currentMalfunction(device :
Flowmeter, ”FlowHigh”)

The rule for IPSniffer is used for both checking process

id, ip address, port etc. and inferring invoking relationships.

device : messageSourceIP (?message1, ?ip1) ∧
device : ipaddr(?ip1, ?ipa1) ∧
device : messageSourcePort(?message1, ?port1) ∧
device : hasMessage(?process1, ?message1) ∧
device : hasProcessID(?process1, ?pid1) ∧
device : messageTargetIP (?message2, ?ip2) ∧
device : messageSourceIP (?message2, ?ip3) ∧
device : ipaddr(?ip3, ?ipa3) ∧
device : messageTargetPort(?message2, ?port2) ∧
device : hasMessage(?process2, ?message2) ∧
device : hasProcessID(?process2, ?pid2) ∧
swrlb : equal(?port1, ?port2) ∧
device : initiatingT ime(?message1, ?time1) ∧
device : initiatingT ime(?message2, ?t2) ∧
temporal : duration(?d, ?time1, ?t2, temporal :
Milliseconds)
∧ swrlb : lessThanOrEqual(?d, 60000)
→ device : inovoke(?message1, ?message2) ∧

895

sqwrl : select(?ipa1, ?port1, ?pid1, ?ipa3, ?port2, ?pid2, ?time1)

System level rules
System level rules are used to specify rules span multiple

devices in a system. In the introduced agriculture scenario,

thermometers are used to measure both indoor and outdoor

temperature, which are named PicoTh03_Outdoor and

PicoTh03_Indoor respectively. In the summer time, when

outdoor temperature is between 12 and 33 degree, the

indoor should follow the same trend as the outdoor temper-

ature. Or else, we can infer that the ventilator is down.

device : hasStateMachine(device :
PicoTh03Outdoor, ?sm)
∧ statemachine : hasStates(?sm, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?r) ∧
statemachine : historicalResult1(?action, ?r1) ∧
statemachine : historicalResult2(?action, ?r2) ∧
statemachine : historicalResult3(?action, ?r3) ∧
swrlb : add(?tempaverage, ?r1, ?r2, ?r3) ∧
swrlb : divide(?average, ?tempaverage, 3) ∧
swrlb : subtract(?temp1, ?r, ?r1) ∧
swrlb : subtract(?temp2, ?r1, ?r2) ∧
swrlb : subtract(?temp3, ?r2, ?r3) ∧
swrlb : add(?temp, ?temp1, ?temp2, ?temp3) ∧
swrlb : greaterThan(?average, 12.0) ∧
swrlb : lessThan(?average, 33.0) ∧
swrlb : lessThan(?temp, 0) ∧
device : hasStateMachine(device :
PicoTh03Indoor, ?smb)
∧ statemachine : hasStates(?smb, ?stateb) ∧
statemachine : doActivity(?stateb, ?actionb) ∧
statemachine : actionResult(?actionb, ?rb) ∧
statemachine : historicalResult1(?actionb, ?r1b) ∧
statemachine : historicalResult2(?actionb, ?r2b) ∧
statemachine : historicalResult3(?actionb, ?r3b) ∧
swrlb : subtract(?temp1b, ?rb, ?r1b) ∧
swrlb : subtract(?temp2b, ?r1b, ?r2b) ∧
swrlb : subtract(?temp3b, ?r2b, ?r3b) ∧
swrlb : add(?tempb, ?temp1b, ?temp2b, ?temp3b) ∧
swrlb : greaterThan(?tempb, 0) → device :
currentMalfunction(device :
V entilatorMY 0193, ”V entilatorDown”)

The processing of this rule will get the trend with

the difference of continuous temperature measuring of

indoor and outdoor temperature, and also an instance of

the property (”VentilatorDown”) currentMalfunction of

concept HydraDevice (which is VentilatorMY0193) will be

inferred. Then the Malfunction ontology will be checked

for the resolution of the problem based on the malfunction

cause. In our case, Malfunction ontology gives us the

solution as the ”power supply off because of fuse blown”.

Usage of Malfunction and Device ontology
For example, Bjarne get a warning of ”Grundfos-

PumpMQ345 failed to start”, which is a high priority

task for him as the pump is used for feeding the pigs. A

diagnosis task is initiated to check what is wrong with

the pump, but as a newly installed pump, there is still no

error resolution to this model of pump in the Malfunction

ontology. As a further step, the diagnosis system will

conduct subsumption reasoning and search for the device

Type in the Device ontology, which is found as FluidPump,

and then its manufacturer is also queried. Now another

query to the Device ontology will get a similar pump

called GrundfosPumpMQ335 as of the same type from the

same manufacturer ”Grundfos”. And based on the name

of the error and pump type, the solution from a query to

Malfunction ontology is suggested ”replace a capacitor”,

which is happily the solution to solve the problem.

4.2 Diagnosis manager architecture

Based on the current diagnosis requirements, and also

the status of OWL/SWRL, we come up with the following

architecture for the Diagnosis Manager as shown in Fig-

ure 4, in which the Component Control and Change Man-
agement are enclosed with dashed line, taken Kramer and

Magee [6] three Layered architecture as a reference model.

The bottom of the architecture is the ontologies/rules,

in which knowledge of devices, and state based diagnosis

are encoded. When there are state change events, the de-

vice state machine instance in the state machine ontology

need to be updated, and also these state changes will be

published with state machine state changes as event topic.

The Diagnosis Manager is an event subscriber to the state

machine state change events, it will then update the corre-

sponding state instances in the ontology. At the same time,

this will trigger the diagnosis of the device status, execut-

ing the SWRL rules to monitor the health status of devices,

and also trigger the reasoning of possible device errors and

their resolutions. The Diagnosis Manager will publish the

diagnosis results as an event publisher.

The Diagnosis Manager mainly runs on powerful PC or a

proxy for an embedded device running on a powerful node.

For those node with limited capabilities, only state will be

reported, which can delegate its own diagnosis to other node

or its proxy.

For the actual implementation, we adopted a mix of the

Blackboard architecture style and the Layered architecture,

and use the observer pattern in both the updating of state

machine ontology and inferred result parsing.

896

���	
���

��	���
��������	���
��
��	

������
��		���

�������������
�����������	����

��
�
����
��		���

���	
�������������
�

���������� ��������	����

 ���������������

����������

��������
%���
��

������%
���������

Figure 4. Diagnosis Manager architecture

5 Evaluation

5.1 Extensibility

At present, the extensibility is evaluated by the applica-

bility to new devices added to a system. We started the de-

velopment of Diagnosis Manager with the rule for temper-

ature monitoring. After finishing the implementation and

testing, we then try to handle the flowmeter diagnosis rules.

The steps involved are:

1. Add the flowmeter device to the HydraSystem concept
instance called ”Pig” in the Device ontology.
2. Add the flowmeter state machine instance to the
StateMachine ontology.
3. Add the flowmeter state machine instance to the has-
StateMachine property of the ”flowmeter” device.
4. Add flowmeter diagnosis rule to the DeviceRule on-
tology.

After this, we test the Diagnosis Manager and it runs

very well. No single line of Diagnosis Manager code needs

to be changed. In summary, the adding of new devices to

a certain system is very straightforward. The adding of

new devices can be at run time, if the rules for the new de-

vices are existing, then the diagnosis process can be directly

working for the new devices.

5.2 Performance

The following software platform is used for measur-

ing performance: Protege 3.4 Build 125, JVM 1.6.02-b06,

Heap memory is 266M, Windows Vista. The hardware plat-

form is: Thinkpad T60 Core2Duo 2G CPU, 7200rpm hard-

disk, 2G DDR2 RAM. The time measurement is in millisec-

ond. The size of DeviceRule ontology is 210,394 bytes, and

contains 22 rules.

We measured the performance as shown in Table 1. An

interesting thing is after some time of running, the Diagno-

sis Manager is running stably with the total time in 260-270

ms for processing an event, a bit faster than the one when it

starts. Here the parsing of the inferred result is running in a

multi-threaded way in the Diagnosis Manager.

Update InferringTime AfterEventTillInferred
383 380 382

322 319 321

282 278 282

272 269 271

265 263 265

270 267 269

268 266 269

Table 1. Diagnosis Manager performance

5.3 Scalability

The scalability is evaluated through clients continuously

publishing their states (thermometers and flowmeters) as

events, in an almost parallel way and each of the client

sends messages as fast as possible in a loop. Then we mea-

sure how long it will be, starting from the publishing till the

end of inferring and publish related inferring result. Time

needed (y-axis) is shown in Figure 5 (x-axis shows the num-

ber of events) . We can see that the time taken is in linear

with the events need to be processed.

�

��������	�
�� 	���	
��������

�

�����

������

������

������

������

� ��� ��� 	�� ��� ��� ���

Figure 5. Diagnosis Manager scalability

6 Related work

Kramer and Magee [6] recently proposed a reference

model for self-managed systems, which is composed of

component control, change management and goal manage-

ment. In this paper, we largely followed this work for the

Layered architecture, but mainly focus the component con-

trol and change management. At the same time, a mix of

Blackboard architecture and Layered architecture are ap-

plied to improve performance and extensibility.

Self-healing is one of the main challenges to autonomic

pervasive computing. Generally speaking, our approach ap-

plied the same idea of ETS [2], in terms of the using of

states for detecting source of failure, and then notification

897

of failure source. And this process is actually universal for

error detections. Our ontology and SWRL rule based ap-

proach provides a way of intelligent detection and resolu-

tion, which is not easily achievable by ETS.

Work in [1] shares some similarity with us on the us-

age of semantic web approach for achieving self-managing.

Our approach is non-intrusive, SWRL rules are automati-

cally executed using state machine instead of explicitly in-

serting sensor code to program, and is more suitable for the

characteristics of pervasive devices.

Various failures in a pervasive system are classified in

[4], and an architecture for fault tolerant pervasive comput-

ing is proposed. We focus not only on device failure moni-

toring using the device state machine, but also system level

detection using the relationships of different state machine

instances. In addition, our approach can be more intelligent

in terms that ontology reasoning can help the diagnosis.

There are many researches from traditional artificial in-

telligence point of view dealing with the diagnosis in var-

ious field, e.g. [3]. These traditional approaches are not

utilizing the context ontologies that are already there in per-

vasive systems and are used for context-awareness and other

purposes. The open world assumption in OWL/SWRL and

hence in our approach makes our proposed approach well

suited for the openness of the pervasive computing envi-

ronment, which automatically rejects the approaches using

Prolog kind of rules which use close world assumption.

7 Conclusions and future work

OWL/SWRL is adopting an open world assumption

which is in nature very suitable for the pervasive computing

systems, where the openness and dynamicity dominate the

interaction and function. OWL is widely used in pervasive

computing, for the purpose of context awareness, service

selection and composition. The potentials of OWL and con-

text awareness could be further extended as we have shown

in this paper.

Diagnosis is the most important step for achieving self-

healing, which is a challenge in pervasive computing. We

present a semantic and state machine based diagnosis ap-

proach using OWL ontology and SWRL, for the Hydra mid-

dleware. The malfunction information and its resolution are

encoded in an OWL ontology, and can be used at run time

to infer the solution to the malfunction, and further to fulfill

self-healing activities. SWRL is used to develop monitoring

and diagnosis rules, which can help make intelligent deci-

sions when there is malfunction occurs. IPSniffer will help

diagnosis on devices that are dead or no response which

provides fault tolerance in our approach.

The evaluations relieved us for the worrying of perfor-

mance of the OWL/SWRL based Diagnosis Manager. In or-

der to improve performance, we followed a mix of both the

Blackboard architecture style and the Layered architecture

style. The evaluations show that the Diagnosis Manager is

usable in terms of extensibility, performance and scalabil-

ity. The proposed approach provides an uniform, coherent

and natural way to fully utilize the existing OWL/SWRL

reasoning power, and extend it for considering the dynamic

aspects of the pervasive system for diagnosis, which is very

suitable for the characteristics of the pervasive computing

environment.

We are improving the IPSniffer based diagnosis that only

reports invocation relationships at present. The integration

with security manager and ontology manager are under way.

Probability in OWL/SWRL is to be added in the future to

make the diagnosis more intelligent. More experiments in

a larger scale will be conducted for testing the resolving of

rule conflicts, accuracy of diagnosis and so on.

Acknowledgements

The research reported in this paper has been supported

by the Hydra EU project (IST-2005-034891).

References

[1] B. J. O. A. R. Haydarlou, M. A. Oey and F. M. T. Bra-

zier. Use-case driven approach to self-monitoring in au-

tonomic systems. The Third International Conference
on Autonomic and Autonomous Systems, 2007.

[2] S. Ahmed, M. Sharmin, and S. Ahamed. ETS (Efficient,

Transparent, and Secured) Self-healing Service for Per-

vasive Computing Applications. International Journal
of Network Security, 4(3):271–281, 2007.

[3] R. Barco, L. Díez, V. Wille, and P. Lázaro. Auto-

matic diagnosis of mobile communication networks un-

der imprecise parameters. Expert Systems With Appli-
cations, 2007.

[4] S. Chetan, A. Ranganathan, and R. Campbell. Towards

fault tolerant pervasive computing. Technology and So-
ciety Magazine, IEEE, 24(1):38–44, 2005.

[5] P. Dolog. Model-driven navigation design for seman-

tic web applications with the uml-guide. Engineering
Advanced Web Applications, In Maristella Matera and
Sara Comai (eds.), Dec. 2004.

[6] J. Kramer and J. Magee. Self-Managed Systems: an

Architectural Challenge. International Conference on
Software Engineering, pages 259–268, 2007.

[7] I. A. Project. Amigo middleware core: Prototype im-

plementation and documentation, deliverable 3.2. In

IST-2004-004182, 2006.

898

A Constraint Model for Automated Deployment of Automotive Control Software

Mihai Nica Bernhard Peischl Franz Wotawa∗

Institute for Software Technology
Graz University of Technology

8010 Graz, Austria
{mnica,bpeischl,wotawa}@ist.tugraz.at

Abstract

In this paper we address automated software deploy-
ment for embedded automotive systems in terms of a con-
straint satisfaction problem (CSP). Our purely model-based
approach allows for fully automatic deployment of soft-
ware functions in a resource-constrained system (exempli-
fied in terms of memory and bus load). Besides of its ap-
plicability in an early stage of development, most notably,
our model incorporates optimization criteria from algorith-
mic approaches proposed recently. Capturing the problem-
relevant aspects in terms of a CSP is straightforward and
thus easily extendable to complex scenarios like, for exam-
ple, temporal requirements or the diverse bus protocols in
the automotive domain.

1 Introduction

Today’s upper class cars contain up to 80 ECUs (Elec-
tronic Control Units), several bus systems, and about 55
percent of all failures are caused by electronics, software,
cables and connectors [1], [2]. More and more functions in
today’s cars involve electronics and software, 80-90 percent
of the new innovative features are realized by distributed
embedded systems. Following this mainstream trend, even
highly safety critical mechanical and hydraulic control sys-
tems will be replaced by electronic components.

In recent years, the focus in engineering embedded au-
tomotive systems has been on rather detailed abstractions
primarily dealing with implementation related issues like
models for code generation. Model-based optimization
techniques typically take a back seat in the overall design

∗Authors are listed in alphabetical order. The research herein
is partially conducted within the competence network Softnet Austria
(www.soft-net.at) and funded by the Austrian Federal Ministry of Eco-
nomics (bm:wa), the province of Styria, the Steirische Wirtschafts-
frderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of
the center for innovation and technology (ZIT) and by the ”Fonds zur
Förderung der wissenschaftlichen Forschung”(FWF). Special thanks to the
reviewers and to our colleague Willibald Krenn for their useful feedback.

process since they lack suitable, standardized notations,
methodologies, and integration into the model-driven tool
chain.

As today’s embedded automotive software is highly dis-
tributed, the automotive industry devotes increasing efforts
to develop tools for automated software deployment [3].
The underlying foundations comprise techniques like ge-
netic algorithms and various other clustering techniques
[3]. However, to our best knowledge, none of the cur-
rent approaches addresses automated software deployment
in terms of a model-based approach. Relying on an algo-
rithmic approach one has to perform measurements to ob-
tain meaningful metrics for certain parameters as, for exam-
ple, a reference value for the bus load. Besides of the (of-
ten) painstaking provision of a prototype to obtain concrete
measurements, this considerably hampers the seamless in-
tegration into the model-based development paradigm.

In this paper we address the prevalent complexity of
automated software deployment in a resource-constrained
setting even catering stakeholders at an early development
stage, where no reference measurements for a concrete
ECU might be available. Our approach relies on model-
ing software deployment in terms of a constraint satisfaction
problem (CSP). Most notably, this model allows for incor-
porating optimization criteria from algorithmic approaches
proposed recently [4]. Moreover, the model-based approach
to automated software deployment directly supports an iter-
ative refinement of the model down to the level of protocols,
gateways, of software drivers.

This article is organized as follows. In Chapter 2 we
present the CSP and its associated parameters, in Chapter 3
we explain how the partitioning problem is solved by means
of a CSP, in Chapter 4 we discuss some constraint solvers
available on the market. Finally Chapter 5 presents our con-
clusions and discusses related work.

2 Constraint Satisfaction Problem

Constraint systems are a natural and straightforward way
of describing specifications and requirements for hardware
and software systems. A Constraint Satisfaction Problem

899

1. { var 1 = (x 0 < y 0);
2. min 1 = x 0;
3. min 2 = y 0; }

Figure 1. Program for computing the minimum between
two numbers

Variables: V = {var 1, x 0, y 0, min 1, min 2}
Domains: D = {D(x) = N|x ∈ V }

Constraints:

CO =

{
var 1 = (x 0 < y 0),

min 1 = x 0, min 2 = y 0

}

Figure 2. The CSP of the program from Fig. 1

(CSP), (V, D, CO), is characterized by a set of variables
V = (v1, ..., vn), each variable having a domain D, and a
set of constraints CO = (c1, ..ck) which defines a relation
R between variables. The variables in a relation R ∈ CO
are called the scope SR of the relation.

Having the program given in Fig. 1 then its correspond-
ing CSP is the given in Fig. 2

There are very effective reasoning algorithms available
for CSP, e.g., for computing solutions. A solution of a CSP
is an assignment of values to the CSP’s variables which
does not contradict any given constraint. State of the art
constraint solvers are available for solving CSPs. More in-
formation about CSPs can be found in Rina Dechter’s book
on constraints [5].

It is possible, due to an incorrect build of the constraints
system, for a CSP to become inconsistent. A CSP is incon-
sistent when there exists no assignment to its variables such
that all constraints are simultaneously satisfied. There are
several methods for testing the consistency of constraints
system. The best known of them are arc consistency, path
consistency and n-consistency check. A description of these
methods is found in [5]. An optimized method for consis-
tency check is the Max-Restricted Path Consistency method
[6].

3 CSP Partitioning

When grouping functions into clusters the partitioning
problem appears. For every cluster, the partitioning al-
gorithm must assure that the quality criteria, e.g., time,
bus load, together with the resource limitations, e.g., CPU,
memory, are fulfilled with respect to the control unit (CU)
where a cluster is executed. The CSP representation assures
a natural way of depicting and combining all these require-
ments. When we build the CSP of the system we take into
account the following types of constraints:

1. Resource Constraints: The resources of the CU, on
which the cluster is executed, give us the resource con-
straints system. The memory of the CU and the pro-
cessing power, are criteria which impose restrictions
on the cluster that can be executed on the given CU.
We cannot execute for example a cluster which needs
500Kb of memory on a CU which only has 300Kb of
memory available.

2. Quality Constraints: Using quality functions we de-
fine the quality constraints. They assure that the sys-
tem will behave within the given quality criteria. For
example, if we want to have the bus load always un-
der 50% then we have to define the quality functions
such that this limit is never exceeded. From the quality
functions we extract the quality constraints.

3. Cost Constraints: The cost constraints are given by
the implementation’s cost of the CUs. There can be
more types of CUs with different properties and differ-
ent implementation costs. It is possible that although
a certain CU is expensive to implement it offers an all
around smaller cost than when using 10 CUs that per-
form the same task. An optimal cost is hard to achieve.
These types of constraints are strongly connected with
an arbitrary parameter which we call desired general
cost (DGC). We define the cost constraints such that
they always assure that the ’all around system’s costs’
is smaller than the DGC. We also try to have the costs
as low as possible without cutting off too much from
the system’s performance.

By combining these constraint systems we successfully
build the CSP of the analyzed system. A solution to this
CSP is a valid cluster partitioning of the system’s function
blocks.

Observation. It is possible, after combining the above
constraints, that the resulted CSP is in an inconsistent state;
that is a solution cannot be successfully computed. For ex-
ample, if through the cost constraints system we specify that
the DGC is k and through the resource constraints system
we specify that we only have components that cost p, where
p < k and p > 1. We know we need at least k CUs so that
the system can function correctly. Then we have the follow-
ing constraints system: (k ∗ p < k) ∧ (p < k) ∧ (p > 1). It
can be seen that these constraints system has no valid solu-
tion. In this situation we have to revise those constraints that
can be adapted such that the inconsistent state is removed.
In our example if we set the DGC level to (p ∗ k + 1) the
constraints system leaves the inconsistent state.

3.1 Resource Parametrization

In order to build the system’s CSP we first define the
parameters that describe the system’s behavior. There are
two types of resources that we parameterize: the CUs and
the functions that have to be executed by the system.

900

Figure 3. An abstract representation of the functions’s
network

We want to define the function blocks distribution for an
automotive system over a set of available electronic control
units (ECUs).

Within an automotive system there are different func-
tions that have to be implemented. These functions have
different safety levels. Some of the functions are safety
critical, the ABS function, torque vectoring, or control of
the attitude angle, and other have a lower importance de-
gree, e.g., entertainment functions like DVD playing. All
these function blocks are connected to each other by means
of messages and data exchange mechanisms like bus pro-
tocols. Due to this, an automotive system can function
correctly. Let’s presume that we have t function blocks,
F = {f1...ft}, that have to be executed on a minimal num-
ber of ECUs. We build the network functions as follows:
the nodes of the network are the function blocks that have
to be executed. Between functions that communicate there
exists a connection in the network. Each connection has a
label which denotes the communication frequency between
the connected function blocks.

Let CF = {CF1...CFt} be the set that denotes the com-
munication frequency sets of the system’s functions; e.g.,
CFi = {cfi1, ...cfit} is the set that describes the commu-
nication frequency of function f i with respect to all other
functions from the system. If there exists cfij in the set CFi

of a function fi such that cfij = 0 then it means that there
exist no network connection between function f i and func-
tion fj . A graphical depiction of such a network is given in
Fig. 3.

The CF set helps us build the quality functions. The
quality function receives as input-parameter the CF i set of
every function fi, where 1 ≤ i ≤ t. After we have built
the network of functions we start the parameterizing pro-
cess for the ECU’s. They help us construct the Resource
Constraints System. Let ECU = {ECU1...ECUk} be the
set of the available ECUs, then for each ECUi ∈ ECU
such that 1 ≤ i ≤ k. We define memi as being the avail-
able memory of module ECUi and proci as being the pro-
cessing power of module ECUi. Let the set MEM =
{mem1...memk} be the set of ECU’s memories and let
PROC = {proc1...prock} be the set that describes the
processing performances of the available ECUs. The sets
MEM and PROC represent the most simplified descrip-
tion of the available resources of an ECU. They suffice to
describe how the resource constraints building process takes
place. Each distributed system can have supplementary re-

sources that have to be parameterized, but these basic re-
sources are characteristics of every CU found on the mar-
ket.

3.2 Building the CSP

In order to build the CSP of the system we have to build
the three constraint systems: the resource constraints sys-
tem, the quality constraints system and the cost constraints
system. For this purpose we use the parameters introduced
earlier: the memory and the computational power available
on a given ECU, the memory and the computational power
that a function block requires and the communication fre-
quency that exists between functions.
We give the following formal definitions:

Definition 1 (Function Block) Any function block (of t
function blocks) is associated with a unique identifier f i and
its processing requirements pow(fi).

Definition 2 (ECU) Every Electronic Control Unit ECUi

is associated with a processing capacity maxECUpowi .

We start building the resource constraints system. The
following equations define the constraints system.

1. The overall memory consumption of the function
blocks is smaller or equal to the available memory.
Usually not all function blocks are executed at the
same time, but in the worst case scenario, this trivial
safety constraint assures us that no jamming occurs in
the function execution process.∑

i mem(fi) ≤
∑

j maxECUmemj

2. An adjacent memory constraint is the maximal func-
tion block memory constraint. That is, let fmax be
a function block such that the memory requirement
of fmax, memfmax , is the maximum from all func-
tion’s memory requirements. There exist an ECU,
ECUk ∈ ECU , with the available memory memk,
such that memk ≥ memfmax .

3. After we decide to deploy a cluster of functions,
Cj = {fi...fi+n},i ≥ 1, on an ECU, ECUj , then
ECUj must provide enough memory and processing
power to host the deployed functional blocks. The
function deploy(ECUj) returns the indices of the
function blocks deployed on ECUj .∑

i∈deploy(ECUj)
(mem(fi) ≤ maxECUmemj

) ∧∑
i∈deploy(ECUj)

(pow(fi) ≤ maxECUpowj
)

4. A function block is deployed on a single ECU only.
∀i, j ∈ {1..n}, i 	= j · deploy(ECUj) ∩
deploy(ECUi) = ∅

5. Any function deploy that distributes all functional
blocks fi on max ECUs is a solution.
{1..n} =

⋃max
j=1

deploy(ECUj)

901

By unifying the above constraints system we derive the
resource constraints system (RCS):

RCS :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.
∑

i mem(fi) ≤
∑

j maxECUmemj ;

2.∃fi|fi ∈ F, i ∈ [1, t] , ∀j ∈ [1, t] ,
i �= j, memfi ≥ memfj

⇒ ∃ECUl ∈ ECU, l ∈ [1, k] :
mem(ECUl) ≥ memfi ;

3.
∑

i∈deploy(ECUj)
(mem(fi) ≤ maxECUmemj)∧∑

i∈deploy(ECUj)
(pow(fi) ≤ maxECUpowj

);

4.∀i, j ∈ {1..n}, i �= j, deploy(ECUj)
∩deploy(ECUi) = ∅;

5.{1..n} =
⋃max

j=1
deploy(ECUj);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The quality constraints system are the most important
factor when we partition the function blocks into clusters.
In order to build these constraints system we use a set of
functions, named quality functions. The quality functions
offer us a metric for computing the optimal partitioning of
the function blocks. The constraints are created by impos-
ing output values that these functions should not exceed for
a given cluster. The constraint solver tries to find a set of
function blocks such that all the quality constraints are ful-
filled. When it finds such a set it creates the cluster.

Besides, as an extra quality constraint, we try to keep the
output values of the quality functions to a level close to op-
timal (such that the cost is minimal). Each quality function
receives as input parameter the CF set. How this set is built
depends on the user and on the described system. There are
more solutions proposed for building this set; one, given in
[4], proposes a representation of the CF set by means of
a geometrical matrix. It is beyond the scope of this paper
to discuss how the CF is created. We presume that the set
is already given and use it directly as input for the quality
functions.

We build the quality constraints system based on the
quality functions set. We use the quality functions presented
in [4].

We define the following:

Definition 3 (Cluster’s external cost) It represents the
frequency with which the function blocks within a cluster
Ci, i ∈ [1, c], communicate with the rest of the function
blocks from the network. We denote this metric through Ei

and we compute it as the average CF between the function
blocks within the cluster and the external function blocks.

Definition 4 (Cluster’s internal costs) It represents the
frequency with which the function blocks communicate with
each other within a given cluster Ci, i ∈ [1, c]. We denote
this metric by Ii and it represents the average of all CF
within the cluster Ci.

Definition 5 (Cluster’s diameter) It represents, based on
the CF of the function blocks, the average distance between
the function within a given cluster Ci, i ∈ [1, c]. We denote
this metric through diamCi.

Definition 6 (Distance between Clusters) It represents,
based on the CF of the function blocks, the average
distance between a cluster Ci and a cluster Cj , i, j ∈ [1, c],
i 	= j. We denote this metric by d(Ci, Cj).

Definition 7 (External costs between clusters) It repre-
sents, based on the CF of the function blocks, the exter-
nal cost between a cluster Ci and the function blocks of a
cluster Cj , i, j ∈ [1, c], i 	= j. We denote this metric by
E(Ci, Cj).

Definition 8 (Cluster’s Nodes) It represents the number of
function blocks within a cluster Ci, i ∈ [1, c]. We denote this
metric by Ni.

The quality functions are defined below. Detailed infor-
mations about these functions can be found in [4].

1. The External-Internal Ratio is a ratio between the ex-
ternal and the internal costs must be as low as possible.
That is, a good cluster is a cluster which communicates
as little as possible with the other function blocks from
the network and that has the internal communication
frequency as high as possible. We define for every
cluster a communication ratio limit, CRLmax, which
represents the qualitative limit that every cluster must
respect.
∀Ci, i ∈ [1, c] Ei

Ii
≤ CRLmax

2. The Davies Bouldin Criteria shows a good partition-
ing when the factor is as low as possible. The Davies
Bouldin (DB) factor is computed only after all the clus-
ter are formed. We set a limit, DBmax that should
never be surpass by the final cluster partitioning. After
computing all the clusters c, we compute the DB fac-
tor. If it is greater than DBmax then the constraint is
violated and a new partitioning of the function blocks
is performed. If the constraint holds a valid configura-
tion with respect to the DB factor was found.

DB = 1

c

c∑
i=1

maxj �=i

[
diam(Ci) + diam(Cj)

d(Ci, Cj)

]

3. The Modularization Factor (MF) is an indicator of a
compact clustering of the function’s blocks. The value
of this factor should be as high as possible. For our
constraints system we settle a minimal value, MFmin,
below which the optimality criteria is violated. If, after
computing all the clusters, we observe that the value
of MF is smaller than MFmin, then the constraint is
violated and we discard the partitioning. If the value
of MF is greater than MFmin then we found a valid
solution.

MF =

∑
i

Ii

∑
i

Ni(Ni − 1)

2

−

∑
i<j

E(Ci, Cj)∑
i<j

NiNj

902

4. The SILHOUETTE factor (Sh) verifies the correctness
of the distribution of a function f i within a cluster Ci

with respect to a neighbor node Cj . The domain of the
Sh value of the function fi is [−1, 1]. A good distri-
bution of the functions fi within a cluster Ci, has the
Sh value in the vicinity of 1. For every function f i, we
compute Sh(fi). If this value diverges with more than
δmax from 1 then the constraint is violated, the func-
tion is not distributed within cluster Ci and we start the
search for a new cluster.
Sh(fi) =

d(fi,Cj)−d(fi,Ci)

max(d(fi,Cj),d(fi,Ci))

5. The Cluster Load Deviation (CLD) is computed after
all the clusters c are created. Small values of this func-
tion denote a good partitioning of the function blocks.
In a good case scenario all the clusters have a simi-
lar number of function blocks within them. We have
the following constraint: the final CLD value of the
network must not be greater than an optimal criteria
CLDmax. If the CLD of the network is greater than
CLDmax the partitioning of the function blocks is dis-
carded and we restart the partitioning process. If the
value of CLD is smaller than CLDmax then we have
found a valid partitioning.

CLD =

√√√√ 1

c−1

c∑
i=1

(Ni − N̄)2 , N̄ = 1

c

c∑
i=1

Ni

By combining the above criteria we build the Qual-
ity Constraints System (QCS). The CRLmax, DBmax,
MFmin, δmax and the CLDmax must be given by the user
with respect to the desired system performances.

QCS :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.∀Ci, i ∈ [1, c] Ei
Ii

≤ CRLmax;

2.DB = 1

c

c∑
i=1

maxj �=i

[
diam(Ci) + diam(Cj)

d(Ci, Cj)

]
∧

(DB ≤ DBmax)

3.MF =

∑
i

Ii

∑
i

Ni(Ni − 1)

2

−

∑
i<j

E(Ci, Cj)

∑
i<j

NiNj

∧

(MF ≥ MFmin);

4.Sh(fi) =
d(fi,Cj)−d(fi,Ci)

max(d(fi,Cj),d(fi,Ci))
∧

((1 − Sh(fi)) ≤ δmax);

5.CLD =

√√√√ 1

c−1

c∑
i=1

(Ni − N̄)2∧

(CLD ≤ CLDmax);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The Cost Constraints System (CCS) is built based on the
system’s cost criteria. Each ECU has a price and a perfor-
mance description associated to it. We use the following
constraints in order to build the CCS.

1. The Price Constraint. Given a network of function
blocks F , a set of ECUs and a desired general cost
DGC, then we have to distribute all the function set F

over a number NE of ECUs such that the total cost of
these ECUs, PNE is smaller than DGC

2. The Bus Load Constraint (BLD) of the system must be
lower than an imposed value, BLDmax. That is, we
have to choose the ECUs on which we distribute the
function blocks, such that the bus load of the system is
never greater as the imposed value BLDmax.

By combining the RCS with the QCS and the CCS we de-
rive the CSP associated to the system:
CSP = RCS ∪ QCS ∪ CCS

4 Constraint Solvers

A solution to a CSP is a valid assignment to all CSP’s
variables that does not violate any of the constraints from
the CSP. For solving a CSP we use CSP solvers.A CSP
solver is a software tool that, by means of different algo-
rithms, tries to detect and remove the inconsistencies from
a constraints system and to offer a valid solution to a given
CSP. There are more state of the art CSP solvers which can
offer good performance when solving a CSP. In this chapter
we present four constraint solvers, CHOCO, JaCoP, MIN-
ION and TREE*. Each CSP solver has its weak points and
its strong points and it depends on the size and type of the
CSP which of the constraint solver is best fit for a given
task. Because of that a comparison between the CSP solvers
is not always possible.

We find a comparison and a description of JaCoP and
CHOCO in [7]. The authors say that the all around per-
formance of the JaCoP solver is better (54% faster) than
of the CHOCO solver. However when talking about small
CSPs the CHOCO solver is consireably faster than JaCoP.
The two CSP solvers have similar specifications with re-
gard to the type of variables and constraints that they can
handle. Both constraint solvers offer a wide range of op-
erations for describing constraints. Both tools are free of
charge for academic porpuses. We find a description of the
CHOCO solver in [10] and of JaCoP in [11].

The Minion CSP solver is fully presented in [8]. It
allows four type of variable’s domains and the input lan-
guage supports definition of up to three dimensional matri-
ces of decision variables. The set of primitive constraints
is smaller than by CHOCO and JaCoP. However it in-
cludes the basic constraints like equalities, inequalities,
sum, product and so on. The MINION project is an open
source project and is still under development. A particular-
ity of this CSP solver is the fact that variables representation
is optimized at hardware level with respect to the solving al-
gorithm (backtracking).

The TREE* CSP solver is presented in [9]. The TREE*
solver is best suited for binary constraint systems. It can
also work on integer variables but it takes a long time to
compute a solution. That makes it not a valid choice for
big CSPs. It implements the basic operations needed for

903

creating constraints. A particularity of this CSP solver is
that it does not use backtracking in order to get a solution,
but simulates instead, by means of tables, all the possible
solutions of the constraints from the CSP. It then joins all
the constraints and the result is a valid CSP-solution. The
TREE* solver is an open source product and still under de-
velopment.

As our model contains arithmetic as well as logical oper-
ators and we are required to provide a rather detailed model,
JaCoP and Minion CSP solvers appear to be a reasonable
choice for our specific task.

5 Conclusions and related work

Constraints are a natural way of representing complex
problems and are often used in the area of configuration
and reconfiguration of diverse systems. Constraint Satisfac-
tion Problem (CSP) representations are successfully used in
diverse areas from software engineering like configuration
and reconfiguration of large systems [13], recommender
systems like CAWICOMS which is presented in [15], and
software task planning [7].

In this article we outline a novel modeling approach
that allows for deployment of embedded automotive soft-
ware. Our purely model-based approach allows for fully
automatic deployment of software functions in a resource-
constrained software system. For ease of discussion, we ex-
emplify this for general constraints like memory consump-
tion and bus load, however, our approach can be extended
in a natural vein.

Besides of its applicability in an early stage of devel-
opment, most notably, our model incorporates well-known
quality criteria from algorithmic software deployment ap-
proaches.

In addition to the straightforward and natural problem
representation our model allows for computation of a valid
solution satisfying the outlined criteria (resource contraints,
quality constraints, cost constraints ...) by relying on stan-
dard CSP solvers. Moreover we do not have to generate all
the cluster combinations but rely on the the first n, n ≥ 1,
solutions that the CSP solver comes up with.

References

[1] Henrich Druck & Medien GmbH, Challenges for the
automotive supply chain, Association of German Car
Manufacturers (VDA) HAWK2015, Frankfurt am Main,
2003.

[2] E. Schoitsch, Design for Safety AND Security of Com-
plex Embedded Systems: A Unified Approach, NATO
Advanced Research Workshops, Cyberspace Security
and Defense: Research Issues, p. 161-174, Springer
Dordrecht, Berlin, Heidelberg, New York, 2004.

[3] R. Henia, A. Hamann, M. Jersak, Razvan Racu, Kai
Richter, Rolf Ernst, System Level Performance Analy-
sis - the SymTA/S Approach, IEEE Proceedings Com-
puters and Digital Techniques, 152(2):148–166, March
2005.

[4] S. Brummund, N. Kehl, P. Nenninger and U. Kiencke,
ISODATA Clustering for Optimized Software Allo-
cation in Distributed Automotive Electronic Systems,
SAE World Congress & Exhibition, Detroit, MI, USA,
Session: In-Vehicle Networks, 2006.

[5] Rina Dechter. Constraint Processing. Morgan Kauf-
mann, 2003.

[6] R. Debruyne and C. Bessiere, From Restricted
Path Consistency to Max-Restricted Path Consistency,
Principles and Practice of Constraint Programming,
Berlin/Heidelberg, pp. 312-326, 1997.

[7] D.Benavides, S. Segura, P. Trinidad and A. Ruiz-
Cortes, Using Java CSP Solvers in the Automated Anal-
ysis of the Feature Models GTTSE, Braga, Portugal, pp.
399-408, 2006.

[8] I. P. Gent, C. Jefferson and I. Miguel, Minion: A Fast,
Scalable, Constraints Solver, ECAIRiva del Garda,
Italy, 2006.

[9] M. Stumptner and F. Wotawa, Coupling CSP decom-
position methods and diagnosis algorithms for tree-
structured systems, In Proc. 18th International Joint
Conf. on Artificial Intelligence, pages 388–393, Aca-
pulco, Mexico, 2003.

[10] F. Laburthe and N. Jussien, CHOCO constraint pro-
gramming system, http://choco.sourceforge.net, 2003-
2006.

[11] K. Kuchcinski, Constraints-driven scheduling and re-
source assignment, ACM Transaction on Desgin Atu-
mation of Electronic Systems (TODAES) , 8(3):355-
383, July 2003.

[12] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach,
R. Schafer, M. Zanker, A Framework for Rapid Devel-
opment of Advanced Web-based Configurator Applica-
tions, AI Magazine , 24(3), 93-110, 2003.

[13] G. Fleischanderl, G. E. Friedrich, A. Haselbck,H.
Schreiner, M. Stumptner, Configuring Large Systems
Using Generative Constraint Satisfaction IEEE Intelli-
gent Systems, Volume 13, Issue 4, pp. 59 - 68, 1998.

904

Applying Critical Pair Analysis in Graph Transformation Systems to Detect
Syntactic Aspect Interaction in UML State Diagrams

Abstract
Aspect Oriented Modeling (AOM) separates

crosscutting concerns by defining Aspects and
composition mechanisms at the model level.
Composition of multiple Aspects will most likely
result in more than one Aspect matching the same
join points. This will create interaction among
Aspects, in the sense that one Aspect will enable or
disable another Aspect. Aspect Interaction is similar
to a phenomenon that exists in graph transformation
systems where multiple Graph Transformation (GT)
rules share some conflicting elements, it is referred
to as Critical Pair Analysis (CPA) and it provides an
algebraic-based mechanism to detect and analyze the
interaction of the rules. In our proposed framework
the same mechanism is used to analyze and detect
Aspect Interaction in UML State Diagrams. It
achieves that by performing a model-transformation
of the Aspects to the graph transformation rules. This
will enable developers to specify only the order
precedence for interacting Aspects rather than for
the combinations of every Aspect to every other
Aspect in the system. The interaction detection is
modular, independent of the base model; this adds
the advantage of not having to re-evaluate the
interaction each time the base model changes.

Keywords
Aspect Oriented Software Development; Aspect

Oriented Modeling; Aspect Interaction; Critical Pair
Analysis.

1. Introduction
Software modules are added to other software

modules and other components in an incremental
way to build software products. This process will
most probably result in interaction among the
software modules. Most software modules have
several complex interactions with other software
module through their life cycle. This interaction was

studied earlier in the telephony systems and referred
to as Feature Interaction (FI) [3, 6, 10, 13]. Different
mechanisms [6, 10, 13, 34] were proposed to handle
the FI problem. Aspect Oriented Software
Development (AOSD) [35] builds software systems
by composing crosscutting concerns in a similar
approach to the features in the telephony systems.
This leads to the Aspect Interaction (AI) problem that
is very similar to the FI problem. The AI is not
necessarily harmful [25]. But the term AI usually
refers to the unintended interaction. If the interaction
is planned, order precedence needs to be defined
[20]. If a dependency between two Aspects is not
planned, then unless an AI detection mechanism is
used, the dependency might slip undetected with
potential harm to the system. The Motorola WEAVR
[17] has reported the AI problem in the Telecomm
industry, where precedence is defined for interacting
Aspects [20]. Graph Transformation (GT) systems
have developed a mechanism to detect conflicts
among GT rules [38].

GT rules are used to apply changes to a host
graph. Two GT rules that overlap are said to be
critical pair. Critical Pair Analysis (CPA) is used to
detect conflicts and dependencies in GT Systems.
Two rules are in conflict if one rule disables another
rule. On the other hand, two rules are dependent if
one rule enables the other.

Since applying Aspects to a base model involves
matching and modifying elements in the base model
similar to those of the GT systems, CPA is used to
detect syntactic interaction among aspects in the
UML State Diagrams. UML State Diagrams are
increasingly used in modeling wide range of
embedded devices, from small gadgets to Telecom
Systems [17], where Specification and Description
Language (SDL) [39] is used as an Action Language
to generate code from models.

We are proposing a graph-based framework for
the detection of the unintended interaction among
Aspects. Using the proposed approach, users will be

Zaid Altahat1,2 , Tzilla Elrad1, and Luay Tahat1

1 Illinois Institute of Technology (IIT)
Chicago, IL. USA

{altazai, elrad, tahaway}@iit.edu
2 GE Healthcare

zaid.altahat@ge.com

905

able to identify interacting Aspects independently of
the base model. This way users need to define only
order precedence for identified Aspects once, when
they are defined, not each time the model changes.

This paper is organized as follows; Section 2
explains the different types of AI. Section 3 relates
the GT systems and CPA to the Aspects and AI.
Section 4 presents a case study by applying the
framework to an example of an ATM modeled as
State Diagram. In the case study multiple Aspects are
defined and their interactions are analyzed and
classified using the generated CPA report. Related
work is discussed in section 5. Conclusion and future
work are discussed in section 6.

2. Aspect Interaction

With the use of AOSD to manage separation of
concerns, AI is an inevitable issue. AI takes place
when multiple Aspects share conflicting elements in
their pointcuts or advices. Multiple aspects are said to
be independent if the order of applying aspects result
in the same model. Two models are considered
syntactically the same if there is a bijective mapping
between the two models. That is given two models
M1 and M2, for each element in M1 there is one
element in M2 with the same properties. There is also
the same reverse mapping from M2 to M1.

Interaction among Aspects exists in the form of
either dependency or conflict. This kind of AI is
referred to as Aspect-to-Aspect interaction [20]. Even
non-conflicting and independent Aspects might have
unintended impact on the structure of the base model;
this kind of interaction is referred to as Aspect-Base
interaction. Aspects may also have unintended
impact on the behavior of the base model, this kind
of interaction is referred to as semantical interaction
[5]. Currently the proposed framework studies the
Aspect-to-Aspect interaction, the other types of
interactions are planned for future work.

Without the AI analysis, Aspects designers would
have to specify order precedence for all Aspects in
the system. This requires large efforts part of which
are useless and wasted. Aspects’ designers may still
be interested in specifying order for certain Aspects,
but they do not have to specify it for all Aspects.
Using CPA in the analysis also adds the advantage of
having AI analysis independent of the base model. So
changes to the base model will not affect the AI, only
changing Aspects will require a re-run of the
analysis.
The next 4 definitions will shed light on the different
types of interactions. Let:

M1 = The result of applying Aspect A1 to the Base
Model (BM).
M2 = The result of applying Aspect A2 to the BM.
M12 = The result of applying A1 then A2 to the BM.
M21 = The result of applying A2 then A1 to the BM.
Definition 1: Two Aspects do not have interaction
between them iff M12 = M21.
Definition 2: A dependency exists between two
Aspects if (M12 = M2) or (M21=M1)
Definition 3: A conflict exists between two aspects if
(M12 = M1) or (M21 = M2)

Definition 1 states that, regardless of the order of
applying Aspects, the output model is the same. This
is only possible if the application of one Aspect does
not alter the applicability of the other Aspect. If M12
� M21, then AI exists between A1 and A2 in the form
of either dependency (definition 2) or conflict
(definition 3). If (M12 � M21 And M12=M2) then A1
depends on A2, or if (M12 � M21 And M21=M1) then
A2 depends on A1. A conflict is defined as either
(M12 � M21 And M12=M1) or (M12 � M21 And
M21=M2), which means A1 disables A2, or A2
disables A1, respectively.

The proposed framework will detect potential
conflicts and dependencies among Aspects without
the need to check the base model for the pointcuts
applicability. It achieves this by inspecting all
combinations of the pointcuts and advices of all
Aspects in a pair-wise manner. This approach will
report potential interaction among all Aspects, even
if some Aspects might not have a match. The
advantage of this approach is to avoid regenerating
the AI report each time the base model changes. The
second approach is to eliminate some Aspects from
the analysis if they do not have a match. This will
result in fewer Aspects to analyze but the report will
need to be regenerated each time the base model
changes. Also in the second approach the base model
needs to be entirely transformed to a graph, which
will add a considerable overhead to the analysis.

3. Critical Pair Analysis and Aspects

This section describes CPA, graph transformation,
and their relation to Aspects defined in UML State
Diagrams. A graph transformation applies a GT rule
(P = L, R) to a host graph G; where P is a
production, L is the left hand side (LHS) graph, and
R is the right hand side (RHS) graph. P may also
have a set of Negative Application Conditions
(NAC), which are elements that may not exist for a
rule to apply. A GT rule replaces graph L with R in
host graph G.

906

Critical Pair Analysis (CPA) [23] is “a pair of
transformations both starting at a common graph G
such that both transformations are in conflict, and
graph G is minimal according to the rules applied.“
[32]. That is the GT rules P1 and P2 form a critical
pair if both, P1 and P2, can be applied to the same
minimal graph G. But applying P1 will prohibits the
application of P2 and/or vice versa. Certain tools,
such as Attributed Graph Grammar (AGG) [1],
provide graph transformations and CPA. An
attributed graph allows the definition of attributes on
graph elements. CPA and NAC [38] are combined to
detect conflicts in GT systems, similar approach is
used in the proposed framework for Aspects.

Figure 1 shows a simple graph, referred to as host
graph, (left), a GT rule (middle) with its LHS (L) and
its RHS (R) components, and the generated graph
(right). Host graph is searched for a graph morphism
of L, referred to as a match. A graph morphism
between two graphs, G and H, is a bijective mapping
(D) between the vertices of G and the vertices of H,
such that two vertices u and v are adjacent in G iff
their mapping vertices D(u) and D(v) are adjacent in
H. If a match is found, the graph R is applied to the
host graph. GT works as follows:

�� Elements in L and in R are preserved in the
generated graph.

�� Elements in L but not in R are deleted from
the generated graph.

�� Elements in R but not in L are created in the
generated graph.

Figure 1-(middle) shows a NAC edge between the
states ‘b’ and ‘c’ in the LHS, marked with ‘X’. The
NAC will be used in transforming some of the
pointcut constructs, such as ‘XOR’. With out the
NAC edge in Figure 1, the matching mechanism will
only check for the existence of vertices ‘b’ and ‘c’
without checking the absence, or presence, of an
edge between ‘b’ and ‘c’. These requirements for
morphism come from L. According to R edge ‘e4’ is
created and vertex ‘d’ is removed. Generated graph is
presented in Figure 1 (right).

Figure 1 A graph transformation rule on a
directed labeled host graph.

Aspect Oriented Modeling (AOM) [19] follows

an approach similar to the GT systems by querying
and adapting base model elements. If a mapping is

created between GT rules and Aspects in AOM, then
the CPA technique can be used to analyze AI to
detect any conflicts and dependencies among
Aspects. The proposed framework model-transforms
Aspects into some GT rules and run AGG on the
generated rules to produce a CPA report.

4. An ATM Case Study
In this section we present an example that will

demonstrate how Aspects with pointcuts consist of
composite state and compound transitions are
transformed to some GT rules. The example consists
of an ATM machine described by the UML State
Diagram presented in Figure 2. The ATM lacks the
behavior to diagnose and early terminate the ATM
machine. The behavior is added to the base ATM
model by the ‘diagnostic’ concern, presented in
section 4.2, that has 4 Aspects.

4.1. The ATM State Diagram
Figure 2 presents the UML State Diagram for a

bank ATM. Since the Active state is composite non-
orthogonal, only state ‘validating’ will have the
incoming transition ‘card_in’. The Maintenance state
is orthogonal, so both states ‘testing’ and ‘waiting’
will receive the incoming transitions ‘maintain’.

In order to make it easier on the reader to follow,
we numbered each state in Figure 2 and used the
numbers in the generated GT rules. Vertices whose
names are separated by a ‘|’, for instance the vertex
‘1|4’, represent substates in the composite orthogonal
state Maintenance. Digits to the left of ‘|’ come from
the top region, and digits to the right come from the
bottom region. When the state ‘Maintenance’
becomes active, states ‘testing’ (1) and ‘waiting’ (4)
become active.

4.2. Transformation of Pointcuts to Graph

Transformation Rules
The following 4 Figures, 3 through 6, present the

4 Aspects which are part of the concern ‘diagnostic’
that will add the behavior to diagnose and early-
terminate the ATM. Figure 3-(a) presents the first
Aspect A1. Elements marked with ‘E’ are exposed
and passed to the weaver to adapt. Also to simplify
presentation of the GT rules, if an element is
presented in the LHS but not in the RHS, it does not
mean that the element is deleted, they are just not
shown for simplicity.

907

Figure 2 A UML State Diagram of an ATM

The Aspect in Figure 3-a is transformed to three

different GT rules shown in Figure 3-b. The three
vertices (2|6), (2|5), and (2|4) represent the different
states the composite state ‘Maintenance’ might be in
while in state ‘self_diagnostic’ (2). The RHS of the
GT rules in Figure 3-b represent the creation of the
edge ‘diagnostic’ between the states ‘validating’ (9)
and ‘self_diagnostic’ (2).

Figure 3-a(top) Aspect 1, b-(bottom) GT rules

Figure 4 presents the second Aspect A2. The
advice of the Aspect creates the edge ‘eject’ to the
sequential state ‘Active’. Every substate in the state
‘Active’ will have an incoming edge labeled ‘eject’
from the state ‘idle’. The vertices 9,10,11, and 12 of
the generated GT rules in Figure 4-b represent the
substates of state ‘Active’. Note, to simplify the
presentation of the GT rules, the RHSs do not show
the edge ‘diagnostic’ and the vertices (2|6), (2|5), and
(2|4) which are preserved in the host graph.

Figure 4 a-(top) Aspect 2, b-(bottom) GT rules

Figure 5 a-(top) Aspect 3, b-(bottom) GT rules

Figure 5 presents the third Aspect A3. The
Aspects creates the fork transition ‘diagnostic’ which
forks to the two substates, ‘self_diagnostic’ and the
final state of the bottom region in the composite state
‘Maintenance’. This results in one GT rule shown in
Figure 5-b.

Figure 6 a-(top) Aspect 4, b-(bottom) 4GT rules

Figure 6 presents the fourth Aspect A4. The

pointcut will match the edge ‘diagnostic’ from the
state ‘idle’ to the state ‘self_diagnostic’, or from the
state ‘idle’ to the state final state of the bottom
region, but not from both. The NAC is used to
transform the ‘XOR’ element. First two of the 4 GT
rules in Figure 6-b present the GT rules that match
the transition ‘diagnostic’, and the states ‘idle’ and
‘self_diagnostic’. At the same time it does not allow
the same transition between the states ‘idle’ and the
final substate. The bottom 2 GT rules show the
opposite.

908

The GT rules of the four Aspects presented in
Figures 3-b, 4-b, 5-b, and 6-b are fed to the AGG to
generate the CPA report. There are a total of 11 GT
rules. To trace the GT rules back to the Aspects, each
of the GT rule’s name consist of two parts separated
by a hyphen. For example the GT rule “A1-R1”
represents the first GT rule (R1) of the Aspect A1,
presented in Figure 3. The GT set “A1-*” refers to all
the GT rules in A1. Any pair of rules in the GT set
“A1-*” that is in conflict or dependency with any GT
rule in other GT sets, will cause the Aspect A1 to be
in the same conflict or dependency as its rule. For
instance there is a conflict, Figure 7 (top), between
the rules A3-R1 and A4-R1, which causes the
Aspects A3, and A4 to be in conflict. This is because
the pointcut of A4 doesn’t allow for the transitions
created by A3 for its pointcut to have a match. Also
by inspecting Figure 7 bottom, we can see that A2
depends on A1 for its pointcut to find a match. One
thing to mention is that any conflict or dependency
within the same GT set is irrelevant and ignored.
Note, due to space, Figure 7 shows only part of the
report for the interacting Aspects.

 Figure 7 The CPA report of the ATM
statemachine.

5. Related Work
Several approaches are proposed to deal with

Aspect Interaction at different phases of software
design. First workshop on AI [26] was dedicated to
this issue. For instance [27, 28, 29] study
requirement interactions, [30] studies interaction in
design models, and [31] gives good summary of
negative impacts of Aspects on base program.

In [8] Aspect interaction is studied for Aspect-
Oriented Programming (AOP) environment such as
AspectJ. Aspects are classified based on their
interaction to orthogonal (independent),
unidirectional (an Aspect depends on another), or
circular dependency between two Aspects. The AI in
AOP is also classified into different types in [36, 37].

When AOSD was first introduced, [14] studied
the interaction problem and proposed a framework
for detecting aspect interactions at the language level
for AOP. They are considered among the first to look
at this problem. Order Precedence for the Aspect-to-
Aspect interference of models in the Motorola
WEAVR [17] was proposed by [20]. They define 3
precedence relations as follows, hidden_by, and
depdendent_on. The authors’ intent is not to detect
interaction, but rather to define precedence relations
for interacting Aspects. In [5] semantic conflicts
between aspects and base model are studied. Authors
translate models to Alloy [2] to be formally verified.
Their approach is for semantic verification of aspects
and base model interaction. For each aspect they
define constrains, pre and post conditions, that will
be verified using Alloy at the weaving time. Live
Sequence Charts are used by [33] to detect AI at the
Joinpoint in the form of use-case scenarios.

A graph-based approach [18] is used to detect
composition conflicts due to weaving multiple
aspects in AspectJ [22]. GROOVE [21] is used as the
graph-rewriting tool. In their approach they detect
pre-defined language violations, such as multiple
conflicting method definitions, and cyclic
inheritance. The essence of their work is to verify
predefined rules in AspectJ, contrary to our
approach, which is to detect conflicts among aspects.

An analysis of aspect interaction in AOP is
provided in [7] that was applied to AspectJ. They
provide a solution that is constraint-based and
declarative for interacting aspects. Nevertheless, their
work doesn’t discuss mechanisms for detecting
interaction among aspects. Our work concentrates on
detecting interaction, dependency and conflicts, of
aspects. A mechanism for semantic aspect interaction
in Composition Filters for AOP is studied in [11].
Authors provide a mechanism similar to the
mechanisms for detecting deadlock in a computer
system. Based on the semantics of the added advices,
their approach tries to order aspects in a harmless
way.
The next two references [9, 12] are for UML models
and are graph-based. CPA is used in [9] to analyze
aspect interaction in UML class diagrams. Model
transformations are expressed as pre and post
conditions that are used in defining graph
transformations rules. Pre and post conditions are
derived from activity diagrams. In their approach
classes and associations among classes are tracked
using AGG to analyze their interaction. Creation and
deletion of classes and their associations are mapped
to graph transformation and further analyzed using
AGG. CPA is used in [12] to detect feature

909

interaction in Software Production Lines (SPL). The
paper presents a graph-based Modeling Aspects
using a Transformation Approach (MATA) to
specify how features, modeled in UML, relate to
each other. Our framework is also graph based but
for UML State Diagrams, in particular composite
states and compound transitions and their
transformation to GT rules. Our framework uses
CPA technique to detect Aspect-to-Aspect
Interaction.

6. Conclusion and Future work
We demonstrated how to detect AI in UML State

Diagrams. The proposed framework uses Critical
Pair Analysis in the GT Systems to detect the
interaction, CPA is provided by AGG. The
framework has a complexity of O(n2), where “n” is
number of Aspects; but the AI detection for a pair of
Aspects needs to be done only once in the system’s
lifetime. Hence the introduction of a new Aspect to
the system will result in (n) pairs between the new
and existing Aspects, AI among existing Aspects
doesn’t need to be reevaluated. Consequently, only a
O(n) is needed for the introduction of a new Aspect.
The proposed approach is modular (independent of
the base model). This adds a huge advantage in large
industrial system.

To be able to use CPA, Aspects are transformed to
GT rules. KerMeta was used to execute all the model
transformations. As seen in section 4, users do not
have to define order precedence for all possible
combinations of Aspects. Instead user is required
only to define order between the Aspect A1 and A2
and precedence between A3 and A4.

However, the proposed framework does not
support pattern matching in defining pointcuts,
similar to those supported by AspectJ. This is due to
the limitation enforced by AGG. There are also other
mechanisms that are more expressive, such as Join
Point Designation Diagram (JPDD) [4, 15] and the
State Machine Joinpoint Model [16] used in the
WEAVR [17]. Such mechanisms will result in
different GT rules when integrated into our
framework. In future work we plan on adding
support for JPDD in our framework.

As seen in section 4 traceability between the GT
rules and Aspects was done manually by using the
Aspect#-Rule# naming convention. In large-scale
production an automatic traceability is needed which
will automatically decide which Aspects are in
conflict or dependency without having to report the
triggering GT rules.

7. References
1. AGG Homepage. http://tfs.cs.tu-berlin.de/agg/
2. Alloy Homepage. http://alloy.mit.edu.
3. D. Cansell, D. Méry. Abstraction And Refinement Of
Features. Language Constructs for Designing Features.
Springer Verlag, 2000.
4. D. Stein, S. Hanenberg, and R. Unland. “Expressing
Different Conceptual Models Join Point Selections in
Aspect-Oriented Design. Proceedings of the 5th int’l
conference on AOSD. Bonn, Germany. ACM. 2006.
5. F. Mostefaoui, J. Vachon. “Design-Level Detection of
Interactions in Aspect-UML Models Using Alloy”. JOT.
Aspect-Oriented Modeling Vol.6, No. 7. August 2007.
6. F. Beltagui. “Features and Aspects: Exploring feature-
oriented and aspect-oriented programming interactions”.
Lancaster University. 2003.
7. I. Nagy, L. Bergmans and M. Aksit, “Composing
Aspects at Shared Joinpoints”, In Proceedings of
International Conference NetObjectDays (NODe), Erfurt,
Germany, pp. 19-38. September 2005.
8. J. Kienzle, Y. Yu, J. Xiong, “On Composition and Reuse
of Aspects”. In Proceedings of the 2nd Workshop on
Foundations of Aspect-Oriented Languages (FOAL),
Boston, MA, March 2003.
9. K. Mehner, M. Monga, G. Taentzer. “Interaction
Analysis in Aspect-Oriented Models”. 14th IEEE Int’l
Req’ Engineering Conference (RE'06) pp. 69-78. IEEE.
2006.
10. P. Zave. “Feature Interactions and Formal
Specifications in Telecommunications”. Vol 26, Issue 8.
IEEE Comp Society Press Los Alamitos, CA, USA. 1993.
11. P. Durr, T. Staijen, L. Bergmans, and M. Aksit,
“Reasoning About Semantic Conflicts Between Aspects.”
2nd European Interactive Workshop on Aspects in
Software (EIWAS), Brussels, Belgium, September 2005.
12. P. Jayaraman, J. Whittle, A. M. Elkhodary, and H.
Gomaa. Model Composition in Product Lines and Feature
Interaction Detection Using Critical Pair Analysis. Springer
Berlin, Volume 4735/2007. 2007.
13. R. J. Hall. “Feature Combination and Interaction
Detection via Foreground/Background Models”. Computer
Networks: The Int’l Journal of Computer and Telecom
Networking. Volume 32, Issue 4. Elsevier North-Holland,
Inc. New York, NY, USA. April 2000.
14. R. Douence, P. Fradet, M. Südholt. ”A Framework for
the Detection and Resolution of Aspect Interactions.”
Vol2487/2002. Springer Berlin/ Hedelberg. 2002.
15. S. Hanenberg, D. Stein, R. Unland. “From Aspect-
Oriented Design to Aspect-Oriented Programs: tool-
supported translation of JPDDs into Code.” Sixth Int’l
Conference on AOSD. Vancouver, British Columbia. 2007.
16. T. Cottenier, A. van den Berg, T. Elrad. Joinpoint
Inference from Behavioral Specification to
Implementation. ECOOP. 2007.
17. T. Cottenier, A. van den Berg, T. Elrad. “The Motorola
WEAVR: Model Weaving in a Large Industrial Context.”
Sixth Int’l Conference on Aspect-Oriented Software
Development. Vancouver, British Columbia. 2007.

910

18. W. Havinga, I. Nagy, L. Bergmans, M. Aksit. “A
graph-based approach to modeling and detecting
composition conflicts related to introductions.” AOSD;
Vol. 208. Proceedings of the 6th in’l conference on
AOSD. Vancouver, British Columbia, Canada 2007.
19. www.aspect-modeling.org/
20. J. Zhang. T. Cottenier, , A. van den Berg, J. Gray.
“Aspect Composition in the Motorola Aspect-Oriented
Modeling Weaver”. JOT. Special Issue: Aspect-Oriented
Modeling Vol.6, No. 7. August 2007.
21. http://groove.sourceforge.net/groove-index.html
22. http://www.eclipse.org/aspectj/
23. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
“Fundamentals of Algebraic Graph Transformation.”
EATCS Monographs in TCS. Springer, 2005.
24. KerMeta Homepage: http://www.kermeta.org/
25. F. Sanen, E. Truyen, W. Joosen, A. Jackson, A. Nedos,
S. Clarke, N. Loughran, A. Rashid. “Classifying and
Documenting Aspect Interactions”. Workshop on Early
Aspects at AOSD 2006
26. R. Chitchyan, J. Fabry, L. Bergmans, "Aspects,
Dependencies, and Interactions", in Aspect, Dependencies,
and Interactions Workshop (held at ECOOP). 2006.
27. S. Khan and A. Rashid, "Analyzing Requirements
Dependencies and Change Impact Using Concern Slicing",
in Aspects, Dependencies, and Interactions Workshop (held
at ECOOP), Lancaster University Computing Department
Technical Report Series, ISSN 1477447X. Lancaster, 2006.
28. J. Magno and A. Moreira, "Concern Interactions and
Tradeoffs: Preparing Requirements to Architecture", in
Aspects, Dependencies, and Interactions Workshop (held at
ECOOP), Lancaster University Computing Department
Technical Report Series, ISSN 1477447X. Lancaster, 2006.
29. D. Bar-On, and S. Tyszberowicz, "Derived
Requirements Generation" in Aspects, Dependencies, and
Interactions Workshop (held at ECOOP), Germany, 2007.
30. P. Shaker and D. K. Peters, "Design-level Detection of
Interactions in Aspect-Oriented Systems", in Aspects,
Dependencies, and Interactions Workshop (held at
ECOOP), Lancaster University Computing Department
Technical Report Series, ISSN 1477447X. Lancaster, 2006.
31. F. Munoz, O. Barais, and B. Baudry, "Vigilant Usage
Of Aspects" in Aspects, Dependencies, and Interactions
Workshop (held at ECOOP), Germany, 2007.
32. G. Taentzer, “AGG: A Graph Transformation
Environment for Modeling and Validation of Software”,
AGTIVE, US 2003.
33. S. Bakre, T. Elrad. ”Scenario Based Resolution of
Aspect Interactions With Aspect Interaction Charts” in the
10th Int’l workshop on AOM (held at AOSD), Vancouver,
Canada, 2007.
34. L. Tahat, B. Vaysburg, and B. Korel.
“Requirement Based Automating Black-Box Test
Generation.” Proc’s of the 25th Annual IEEE Int’l
Computer Software and Applications Conference,
2001.
35. http://aosd.net/

36. M. Rinard, A. Salcianu, and S. Bugrara, “A
Classification System and Analysis for AOP”. In Proc.
12th Int. FSE-12, Newport Beach, USA, Nov. 2004.
37. F. Tessier, M. Badri, and L. Badri, “A Model-Based
Detection of Conflicts Between Crosscutting Concerns:
Towards a Formal Approach”. Int. WAOSD, China, 2004.
38. L. Lambers, H. Ehrig, F. Orejas. “Conflict Detection
for Graph Transformation with Negative Application
Conditions”. Lecture Notes In Computer Science.
Germany, 2006.
39. T. Cottenier, A. van den Berg., T. Elrad. Model
Weaving: Bridging the Divide between Translationists and
Elaborationists. Workshop on Aspect-Oriented Modeling at
the 9th International Conference on Model Driven
Engineering Languages and Systems, Milan, Italy, 2006.

911

Model Comparison: A Strategy-Based Approach

Kleinner Oliveira, Toacy Oliveira
Informatics Faculty

Pontifical Catholic University of Rio Grande do Sul

Ipiranga Avenue 6681 - Building 32 - ZIP 90619-900

Porto Alegre - Brazil

{ksoliveira,toacy}@inf.pucrs.br

Abstract— With the emergence of Model Driven Archi-
tecture (MDA), the role of model composition has become
very important. One challenge of model composition is
specifically to merge models expressed in the Unified Model
Language (UML) and its profiles. However, for merging it
is necessary to perform an essential task: model comparison.
In this paper, we present a model comparison technique
that relies on match strategies so that input models can
be merged if they are considered equivalent according to a
specific match strategy. To put this in practice we defined
a match operator that makes use of match rules, synonym
dictionary and typographic similarity. Moreover, a guidance
for model comparison was elaborated to specify the activities
that go along with model comparison.

I. INTRODUCTION

A significant factor behind the difficulty of developing

complex software is the wide conceptual gap between

the problem and the domains of discourse [3], [4]. The

model-driven approaches move development focus from

third generation programming language code (e.g. Java

code) to models, specifically models expressed in the

Unified Model Language (UML) and its profiles [14],

[16]. The goal is to manage the software at the level of its

concepts in order to reduce the gap, quickly attain code

and become the software development less difficult and

costly. One reference to these approaches is the Model

Driven Architecture (MDA) [10], an approach to Model

Driven Development (MDD) from Object Management

Group (OMG).

A typical MDA process involves a number of UML

models to graphically represent a system’s structure and

behavior often defined in different platforms (such as

J2EE or .NET) or domains (such as real-time or business

process modeling) from a specific viewpoint and at a

certain abstraction level that can be ultimately converted

into the actual code by a model transformation engine. It

can use models not only horizontally to describe different

system aspects but also vertically, in order to be refined

from higher to lower abstraction levels. Thus, the model-

driven approaches make use of model transformation and

model composition techniques to manipulate and manage

UML models at the same and different abstraction levels.

Models can represent concepts related to the system

domain such as Telecom and Insurance, and also exposes

the underlying execution infra-structure such as .NET or

Java, which means a typical system can be represented

by several models that must be somehow assembled

(composed) into a cohesive unit.

The model composition can be viewed as an operation

where a set of activities should be performed to merge

two input models, MA (receiving) and MB (merged), in

order to produce an output model, MAB . In short, we can

represent it by the equation: MA+MB→MAB . However,

an important step to achieve model composition lays in

the ability to compare input model elements, thus before

merging MA and MB , it is necessary to compare to verify

semantic and syntactic overlap in such models. The need

to avoid such overlaps stands for the fact that the ultimate

system’s model should represent each concept uniquely to

avoid conflicts, misinterpretation and mistransformation.

For example, according to UML metamodel specification

should not exist two (or more) models (e.g., two UML

classes) with equal names in a same namespace, then

a model composition mechanism should take in account

such conditions to produce the output model, otherwise

it can have conflicting names and elements with same

semantic value.

In this paper we demonstrate the role and the im-

portance of model comparison in model composition,

describe the challenges that should be tackled to compare

models and propose a match operator that is responsible

for putting in practice a strategy-based model comparison
approach. Moreover, a brief guidance for model compar-

ison is exposed in order to specify the activities that go

along with model comparison.

A. Motivating Example

We motivate our work with a composition example of

two UML profiles, Tree and Topology [2] (see Figure 1)

each representing a Domain-Specific Modeling Language

(DSML). We have chosen UML profiles because they play

a central role in the OMG’s MDA approach. The Tree

profile represents a common hierarchical data structure

used for many computer science applications, while the

Topology profile represents the connections between the

elements of an Information System with a star network

topology.

In the Topology profile, we have nodes (represented

by stereotype Node) connected by links that can be local

(LocalEdge) if they connect nodes from the same star with

its central node, or remote (Edge) if they connect central

nodes (MainNode) between each other [2]. Each node

is identified by its position (location) and each central

node has a state kind (state) that defines their availability

(its values are defined by enumeration StateKind). An

912

end node (EndNode) is also identified by its position

(position). The Tree profile has nodes (represented by

stereotype Node) connected by links (Edge) to node, end

node (Leaf) or root node (root) that has a state kind (state)

which defines their availability (its values are defined by

enumeration StateKind). Each node is determined by its

name (name) and value (value). Moreover, it is possible

to perform search operation (Search).

Before merging Tree and Topology, we should neces-

sarily compare the input profiles in order to merge such

profiles efficiently. To do this, we need to be able to

identify correspondences among UML profile elements

in a coherent manner. For example, despite the Tree.Leaf
and Topology.EndNode stereotypes have different names,

could they be considered domain concepts of equal se-

mantic values?

B. Contributions of this Paper

To put model comparison in practice involves an-

swering several model comparison questions. As stated

in [9], what criteria should we use for identifying corre-

spondences between different models? And how can we

quantify these criteria? Considering two input models,

should the model comparison techniques produce only

one possible result that representing the correspondence

among their elements? What properties of the input mod-

els should be considered in their match? What should be

used so that we can compare models?

The answers for such questions are the contributions of

this paper that consist in the definition of a flexible model

comparison technique based on match strategies. The

strategies are implemented by a match operator that uses

of a range of heuristics including typographic similarities,

equivalence among the semantic values of the input

model elements and model signature. We propose a brief

guidance to specify as conduct the model comparison

process. Our approach is constituent of a UML profiles

composition mechanism [12] that was shown to be an

effective and flexible way for specifying correspondences

among UML profiles. Moreover, we specify the approach

using the formal specification language Alloy [5] and its

tool (the Alloy Analyzer) in order to realize an automatic

analysis of the approach.

The remainder of the paper is organized as follows.

Section 2 briefly describes the background and the ma-

jor challenges that researchers face when attempting to

realize model comparison. Section 3 presents the our

approach based on match strategies and the definition of

the match operator. Section 4 presents a brief guidance

for model comparison. Section 5 describes the related

work. Finally, Section 6 shows some early conclusions

and future works.

II. BACKGROUND AND CHALLENGES

Model comparison arises as an essential activity to put

the composition in practice and it can be viewed as a

generic operation that varies from application to applica-

tion, in which elements from MA and MB are compared

in different forms depending of the kind of application.

For example, the matching of statechart specifications [9]

and of different versions of UML diagrams [11] presents

particularity because the artifacts, that are being com-

pared, have different properties, so the model comparison

technique is tailored in agreement to them.

The UML specification [14] defines and presents the

modelers with the Profile mechanism has been specifically

specified for providing a lightweight extension mecha-

nism to the UML standard. For instance, we can add

semantics that is left unspecified in the metamodel, give

a terminology that is adapted to a particular platform

or domain and add information that can be used when

transforming a model to another model or code.

However, the UML built-in composition mechanism,

package merge, is not able to merge profiles or compare

the input models correctly. So some research questions

arise: how can we compare two profile elements? What

activities should we perform to match two input models?

Once we have added semantics that does not exist to a

UML metamodel element, how can we compare it in a

flexible manner?

To the best of our knowledge, the need for comparing

models in a flexible manner neither have been pointed

out nor even proposed by current model comparison

techniques in the model composition mechanisms. This

fact shows the pioneer side of this work.

Based on previous works [13], [12] and relevant ap-

proach studied (described in Section V), we observed

and concluded that the major challenges that researches

face when attempting to put into practice the model

comparison in the context of MDD can be grouped into

the following categories:

• The domain-specific model comparison challenge:

Such challenge arises from concerns associated with

providing DSMLs for creating and using domain-

specific models in the MDD vision. For example,

the UML supports two forms of extensions: (1) using

profiles to define UML variants and (2) associating

particular semantics to specified semantic variation

points [14], [4]. Hence, a challenge would be how

to develop support for tailoring the model compari-

son techniques to the semantics plugged into UML

semantic variation points and the specializations of

the UML metamodel specified by the profiles

• The abstraction level challenge: Once the MDD

vision manipulates models in different abstraction

levels, how should the model comparison techniques

provide support for matching models expressed in

different abstraction-level? This challenge poses its

problems with respect to understanding and evolving

the model comparison techniques across different

modeling languages, where each one has its partic-

ularity.

• The semantic and properties challenge: As the mod-

els have a semantic value associated with it, a pair of

them with the same name under matching packages

could be assumed to form a match. However, what

should be done if they have different semantic values

or different properties? For example, two input UML

913

Fig. 1. Example of UML profiles comparison

classes with same name, however one is abstract and

the other is concrete. While the pair of classes may

still be considered a match, there is a conformance

mismatch between them.

III. STRATEGY-BASED MODEL COMPARISON

Having explained a motivation example and defined

the challenges of model comparison we present, in this

section, a flexible model comparison approach based

on match strategies. We specified three strategies (i) de-
fault, (ii) partial and (iii) complete match strategy; how-

ever, new strategies may be created and inserted in our

approach as well. We also define a match operator that is

responsible for putting the strategies in practice together.

From input models and the match strategy specification,

the match operator verifies the equivalence degree among

the input model elements and according to a threshold
specifies the match models.

A. The Match Operator

The match operator is a heuristic and its goal is to find

correspondences among model elements founded in static

matching and to implement the match strategies. The

static matching uses synonym dictionary, model signature
and typographic similarity among input model elements

in order to define the equivalence degree (S).

With a synonym dictionary it is possible to make a

mapping among the domain concepts that have the same

semantic values. The synonym dictionary paves the way

to the domain specialists to apply their domain expertise

in the matching process, once they have defined what

concepts are synonyms. Hence, this fact improves the

result of the comparison. We denote by D(r,m) →[0,1]

the degree of similarity between receiving (r) and merged

(m) model elements, it returns 0 whether r and m are

synonym, otherwise it returns 1. D is calculated for

every possible pair of (r,m). Initially, every pair (r,m)

of input model elements are assumed to be not a syn-

onym, then D(r,m) = 0 for every pair of (r,m). For in-

stance, according to synonym dictionary (see Table I) the

stereotypes Tree.Leaf and Topology.EndNode, depicted

in Figure 1(a), represent the same concepts, therefore

D(Leaf,EndNode) = 1.

The goal of typographic similarity is to determi-

nate T (r,m)→ [0..1] to every possible pairs of receiving

(r) and merged (m) model elements. The N-gram algo-

rithm [8] is applied to assign a similarity value in [0..1]

to every possible pairs of (r,m). These pairs are defined

by cartesian product of (R×M), where R and M are the

set of receiving and merged model elements, respectively.

The result of this is the matrix shown in Figure 2. This

algorithm yields a similarity degree to a pair of strings

based on counting the number of their identical substrings

of length N (we use N = 2).

The signature is defined in terms of model element

syntactic properties, where a syntactic property of a model

element defines its structure. The signature is a collection

of values for a subset of syntactic properties in a model

element’s metamodel class. For example, isAbstract is

a syntactic property defined in the metamodel class

called Class. If an instance of a Class is an abstract class

then isAbstract = true for the class, otherwise the instance

is a concrete class, isAbstract = false. The set of syntactic

properties used to determine a profile element’s signature

is called signature type, as defined in [15]. A signature

that consists of all syntactic properties associated with a

model element is called complete signature type, based on

a range of syntactic properties is called partial signature
type and the signature only based on name is called de-
fault signature type.

The signature is structured in comparison levels orga-

nized hierarchically. For instance, in Figure 1, a possible

definition of levels for the stereotype Tree.Node would

be: Tree.Node (name) (level 2), with Tree.Node.name
and Tree.Node.value (tagged values) (level 1). Every

profile element type has one signature which is defined

for it.

TABLE I

EXAMPLE OF SYNONYM DICTIONARY

Name Synonym
Leaf EndNode, FinalNode
Edge Border, Limit, Margin
Search Research, Searching, Query

The similarity degree based on signature M between

receiving (r) and merged (m) model element M(r,m) is

defined by computing the weighted average between the

arithmetic average of the levels (see Equation 1):

914

M =

n∑
i=1

pi ·

⎡
⎣ k∑

j=1

ϕi,j

k

⎤
⎦

n∑
i=1

pi

→ [0..1] (1)

• n is the number of levels employed to compare the

elements, where n ≥ 1 and n ∈ N∗
+.

• pi represents the weight, being pi = i, where i ≥ 1

and i ∈ N∗
+; k expresses the number of elements in

each level, where k ≥ 1 and k ∈ N∗
+ (i.e. Tree.Node

has two properties, as these properties represent a

level, so k = 2);

• ϕi,j (i and j represent the level and item of model

elements that are being compared, respectively) is

used to denote if an item of receiving model element

(i.g., name:Strig in Tree.Node) is equivalent to an-

other item of merged model element. It is a boolean

variable and we use the match rules (described as

follows) in order to assign value to it. The match

rules compare items of model elements, so it returns

1 if the rule is satisfied, otherwise it returns 0. For

instance, when we compare the Tree.Root and Topol-
ogy.MainNode stereotypes, ϕ2,1 = 0, applying the

match rule MR1, and ϕ1,1 = 1, applying the match

rule MR3.

We denote by S the degree of similarity between

receiving (r) and merged (m) model elements. To define

the similarity degree it is necessary to combine the partial

similarity degrees. To do this, it is calculated the average

of D, T , and M, as showed in Equation 2. If D = 1, then

T also assumes value 1 and contrariwise.

S =
(D + T + M)

D + 2
→ [0..1] (2)

Based on the Equation 2, we compute the similarity

degree of every Tree elements in related to Topology ele-

ments. The Figure 2 shows the match results. To produce

a correspondence relation between the two models, we set

a threshold (t = 0.7). So, pairs of model elements with

similarity degree above threshold are considered equiva-

lent. In short, if S(r,m)> t, then r and m are equivalent.
In Figure 2, we point out the similarity degree above

threshold and define the profile elements are equiva-

lent, as follows: (Tree.Node, Topology.Node), (Tree.Edge,

Topology.Edge), (Tree.Leaf, Topology.EndNode) and

(Tree.StateKind, Topology.StateKind)

Fig. 2. Similarity degree between profile elements

B. Match rules

In order to check if two input model element are

equivalent, we defined match rules. The match operator

is responsible to execute these match rules and, according

to the resulting of this execution, it defines consequently

the value of ϕi,j , which was specified earlier. For every

model element and item of model element are necessary a

match rule to check if they are equivalent. This checking

is based on their signature. If a match rule fails, then the

models are not equivalent (ϕi,j = 0). Otherwise, models

are equivalent (ϕi,j = 1). The match rules verify whether

the input model element properties have the same values,

and for each match strategy is defined a set of match rule

according to respective signature type of the strategy.

There are three kinds of match rules: (i) default match
rules are a set of rules that compare models based on only

their name, using the default signature type; (ii) partial
match rules are also a set of rules that compare models

based on a number of syntactic properties of the models,

using the partial signature type; (iii) complete match rules
are also a set of rules that compare models based on

their syntactic properties, using the complete signature

type. Thus, the match operator makes use of these rules

to implement the default, partial and complete match

strategies. For example, the match operator makes use

of the default match strategy (hence using default match

rules) to produce the similarity table depicted in Figure 2.

Now, we present a short description of the default

match rules used in the motivation example, as follows:

MR1. Stereotype match rule:
MatchStereotype(Stereotype rcv, Stereotype mrgd) →
rcv.name = mrgd.name AND

MatchAttribute(rcv, mrgd) AND

MatchOperation(rcv, mrgd)

MR2. Association match rule:
MatchAssociation(Association rcv, Association mrgd) →
(rcv.name = mrgd.name) AND (rcv.memberEnds =

mrgd.memberEnds)

MR3. Attribute match rule:
MatchAttribute(Stereotype rcv, Stereotype mrgd) →
(rcv.ownedAttribute.name = mrgd.ownedAttribute.name)

AND (rcv.ownedAttribute.TypedElement = mrgd.

ownedAttribute.TypedElement)

MR4. Operation match rule:
MatchOperation(Stereotype rcv, Stereotype mrgd) →
(rcv.

ownedOperation.name = mrgd.ownedOperation.name)

AND (rcv.ownedOperation.ownedParameter.length =

mrgd.ownedOperation.ownedParameter.length) AND

(∀x(rcv.ownedOperation.ownedParameter[x] =

mrgd.ownedOperation.ownedParameter[x])

MR5. Enumeration match rule:
MatchEnumeration(Enumeration rcv,

Enumeration mrgd) → rcv.name = mrgd.name AND

MatchEnumerationLiteral(Enumeration rcv,

Enumeration mrgd)

915

MR6. Enumeration Literal match rule:
MatchEnumerationLiteral(Enumeration rcv,

Enumeration mrgd) → ∀x(rcv.ownedLiteral.name[x] =

mrgd.ownedOperation.name[x])

IV. A GUIDANCE FOR MODEL COMPARISON

There is little agreement on requirements, activities and

steps that should be followed in order to accomplish the

model comparison, and even less on good practices to

avoid errors during matching. Several works (e.g., see [7],

[11]) have been proposed to tackle the problems found

in model comparison, but none of them, as yet, was

defined as standard. In [14], the UML built-in model

comparison technique does not present a task flow to help

the comparison specification of UML models, does not

present a good documentation, and does not define how

model comparison should be performed.

We previously identified and delegated activities to the

match operator. We aim to successfully order and provide

a flow of how such activities are accomplished. Such

flow can be used as a guidance to compare models,

and it aims to represent good practices and become as

comprehensive as possible the match operator role in the

model comparison process.

The guidance is organized in two phases: (1) initial
and (2) comparison phase. The initial phase is started up

when the matching operator receives the input models.

The match operator analyzes the models in order to

know each type (i.e. Stereotype, Class, Association, etc).

Such models are separated and grouped according to

their types. For example, Stereotypes (Tree.Node and

Topology.Node) and Association (Tree.Edge and Topol-

ogy.Edge) are identified and grouped according to their

types.

The goal of the comparison phase is to define what

input model elements are equivalent. It is initially realized

as an analysis of the input models and a signature is

defined for every model element type. The next step is

to specify the match strategy that determines how the

comparison will be accomplished. The match operator

defines the similarity degree (S) for every receiving and

merged model element, and based on a threshold (t)
finally it determines model elements are equivalent. The

phase is finished as soon as the matching models, no-

matching models and matching description are specified.

The next step is to merge the models, however this activity

is not the focus of this paper.

V. RELATED WORK

The model comparison is applied in different domains

and contexts, and plays a central role in numerous appli-

cations, such as model composition, schema integration,

schema evolution and migration, merging of source code,

application evolution, database integration, differences be-

tween XML documents, and differences between versions

of UML diagrams. Thus, previous research works have

proposed many techniques to tackle the inherent problems

related to matching, and achieved an automation degree of

the match operation for specific application domains. We

Fig. 3. A guidance for model comparison

give an overview on other relevant approaches related to

our goals of putting flexibility into the model comparison

process and analyze others that make use of model

comparison to merge models. To do this, the main focus of

each approach is summarized briefly, followed by pointing

out similarities and differences to our own approach (see

Figure 4).

Model Composition Semantics. S. Clarke [1] intro-

duces composition semantics for UML class diagrams.

The approach defines a new design construct, called com-
position relationship that supports the specification of how

design models should be composed. With this composition
relationship it is possible to: (i) identify and specify

overlapping and non-overlapping concepts; (ii) specify

how models should be integrated, and how conflicts in

equivalent elements are reconciled. The identification of

the overlapping parts is based on the name of the input

models; it is a weakness of the approach.

Model Composition Directives. Reddy et al. [15]

present a model composition technique relies on signature

matching, in which model elements are merged if their

signatures are correspondent. However, the match opera-

tor, in our work, makes use of a static matching approach

based on synonym dictionary, typographic similarity and

model signature in order to define the degree of similarity

between two models elements.

Package Merge. It is the composition mechanism of

the UML [14] and is defined by match rules, constraints
and transformation (the merge rules). The major appli-

cation is in the implementation of the UML compliance

levels. In principle, their match rules are similar to match
used by our match operator. However, its match rules

916

are expressed in natural language and the match process

consider only the name of the models. Moreover, the

definition of Package Merge is incomplete, ambiguous

and inconsistent.

Epsilon Merging Language. EML [6] is a metamodel

agnostic language for expressing model composition. It

includes a model comparison and model transformation

language as subsets. The model comparison is only based

on syntactic criterion. However, the match, in our ap-

proach, is founded in synonym dictionary, typographic

similarity, syntactic properties and match strategy.

Difference between Models. It presents an approach

of the how to detect and visualize differences between

versions of UML documents such as class or object

diagrams. It produces a unified document which contains

the common and specific parts of two base documents,

where the specific parts are highlighted [11]. While our

approach tackles a range of very difficult problems related

to dealing with comparison of semantics values in a flexi-

ble manner, it is primarily concerned with the comparison

and manipulation of models from the same domain and

with equal semantic values; without any flexibility during

the comparison.

Fig. 4. Comparison of related approaches

VI. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the importance of model

comparison for the task of model composition, its prob-

lems and challenges involved in its implementation. Our

approach provides a flexible form of realizing the model

comparison founded on match strategies by defining the

match operator and by specifying its responsibility. More-

over, we consider that the range of different forms for

matching models improves and assures a better perfor-

mance to the comparison process and the use of guidance

in order to provide a clear and easy manner to perform

the comparison helps its improvement and evolution.

The problems and challenges outlined throughout the

paper should encourage researchers to cope with the

ever-present problem of matching models so that new

generation of the application can enjoy the use of better

techniques. Our approach has some limitations that should

be investigated further. When models are defined, it is

possible to associate them semantics constraints. These

constraints should be considered and respected when it is

necessary to perform the composition so that the specified

semantic is not disrespected. Thus, our approach is not

able, as yet, to compare these constraints. We claim

to enhance the functionality of the match operator by

creating new match strategies and improving the match

rules. Another extension of our approach would be the

use of ontology to improve the handle of the models’

semantic values.

Even through our approach has been implemented and

integrated to a profile composition mechanism demon-

strating feasibility [12], empirical studies are necessary

to validate the approach in real world design settings

of model comparison and verify its performance and

applicability in different application domains. Finally, we

observed improvement in model comparison is absolutely

necessary to the model engineering evolution and to allow

model engineering to become an industrial reality.

REFERENCES

[1] S. Clarke, “Composition of Object-Oriented Software Design
Models,” Ph.D. dissertation, School of Computer Applications,
Dublin City University, Dublin, Irland, January 2001.

[2] L. Fernndez and A. Moreno, “An Introduction to UML Profiles,”
in The European Journal for the Informatics Professional, vol. 5,
no. 2, April 2004, pp. 6–13.

[3] R. France, S. Ghosh, and T. Dinh Trong, “Model Driven Devel-
opment Using UML 2.0: Promises and Pitfalls,” IEEE Computer
Society, vol. 39, no. 2, pp. 59–66, February 2006.

[4] R. France and B. Rumpe, “Model-Driven Development of Com-
plex Software: A Research Roadmap,” in Future of Software En-
gineering (FOSE’07) co-located with ICSE’07, Minnesota, EUA,
May 2007, pp. 37–54.

[5] D. Jackson, “Alloy: a Lightweight Object Modelling Notation,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 2, pp. 256–290, 2002.

[6] D. Kolovos, “Epsilon Merging Language Project Page,”
http://www.eclipse.org/gmt/epsilon/.

[7] D. Kolovos, R. Paige, and F. Polack, “Model Comparison: a
Foundation for Model Composition and Model Transformation
Testing,” in International Workshop on Global Integrated Model
Management. New York, NY, USA: ACM Press, 2006, pp. 13–20.

[8] C. Manning and H. Shütze, Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[9] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and Merging of Statecharts Specifications,” in ICSE’07,
Minnesota, EUA, May 2007, pp. 54–64.

[10] Object Management Group, MDA Guide Version 1.0.1, 2003,
http://www.omg.org/docs/omg/ 03-06-01.pdf.

[11] D. Ohst, M. Welle, and U. Kelter, “Differences between Versions
of UML Diagrams,” in 9th European Software Engineering Con-
ference. ACM Press, 2003, pp. 227–236.

[12] K. Oliveira, “Composition of UML Profiles,” Master’s thesis,
Informatics Faculty, Pontifical Catholic University of Rio Grande
do Sul, Porto Alegre, Brazil, February 2008.

[13] K. Oliveira and T. Oliveira, “A Guidance for Model Composition,”
in International Conference on Software Engineering Advances
(ICSEA’07), 2007, pp. 27–32, IEEE Computer Society.

[14] OMG, Unified Modeling Language: Infrastructure version 2.1,
Object Management Group, February 2007.

[15] Y. Reddy, R. France, G. Straw, N. M. J. Bieman, E. Song, and
G. Georg, “Directives for Composing Aspect-Oriented Design
Class Models,” Transactions of Aspect-Oriented Software Devel-
opment, vol. 1, no. 1, pp. 75–105, 2006.

[16] S. Sendall and W. Kozaczynski, “Model Transformation: The
Heart and Soul of Model-Driven Software Development,” IEEE
Software, vol. 20, no. 5, pp. 42–45, 2003.

917

�
Abstract— Nowadays, measurement and assessment of

artifacts within the area of software development are of high
concern for industrial organizations as well as for scientific
institutions. Ontologies are a fundamental concept of the
Semantic Web as envisioned by Tim Berners-Lee. Together with
an explicit representation of the semantics of data for machine-
accessibility such domain theories are the basis for intelligent
next generation applications for the web and other areas of
interest.

The balance of ontology’s is on higher interest because the
usability and convertibility of ontologies is strongly related to the
manner how the elements are arranged. This paper takes into
account existing metrics and tries to present new ideas, as well.

At first this paper contains a brief description and
categorization of existing ontology metrics with a focus on
applicability regarding the balance of ontology’s taking into
account structure and knowledge related aspects. Therefore a
Goal-Question-Metric-based procedure was used. In a second
step initial ideas for additional metrics are identified and
enriched with certain presented formulas. A third step expresses
different approaches for further research work: gravity-related
and weighted-graphs-based approaches towards metrics for
ontology balance. The paper’s conclusion presents certain use
cases for the application of balanced ontologies in the area of e-
learning systems.

Index Terms—Balance, Classification, Metric, Ontology

I. INTRODUCTION

HE importance of measuring artifacts emerging during the
software development process is beyond controversy not

only for economic purposes.
Ontologies are a fundamental concept of the Semantic Web

envisioned by Tim Berners-Lee [1]. Together with explicit
representation of the semantics of data for machine-
accessibility, such domain theories are the basis for intelligent
next generation applications for the web and other areas of
interest [2] with a special focus on knowledge sharing and
reuse. Ontologies are also basis for interaction and work of
different agents or applications [3]. Top-level application

Manuscript received March 1, 2008.
S. Mencke is with the Otto-von-Guericke University of Magdeburg, 39106

Magdeburg, Germany (corresponding author to provide phone: +49-(0)391-
67-12705; fax: +49-(0)391-67-12810; e-mail: mencke@ ivs.cs.uni-
magdeburg.de).

M. Kunz is with the Otto-von-Guericke University of Magdeburg, 39106
Magdeburg, Germany (e-mail: makunz@ ivs.cs.uni-magdeburg.de).

R. R. Dumke is with the Otto-von-Guericke University of Magdeburg,
39106 Magdeburg, Germany (e-mail: dumke@ ivs.cs.uni-magdeburg.de).

areas identified by [4] are collaboration, interoperation,
education and modeling.

Ontologies can be defined as a specification of a
conceptualization [5], or in other words as the formal
representation of an abstract view of the world. They include a
vocabulary, instances, taxonomy, relations and axioms about a
certain domain.

A vocabulary defines terms with unambiguous meanings.
Furthermore, logical statements for the description of terms
and rules for their combination and relation are provided. A
taxonomy is part of the ontology concept for a hierarchical
classification in a machine-processable form.
Individuals/instances represent the objects of the ontology and
thereby the available knowledge, while classes/concepts
describe abstract sets of individuals. Attributes can be
assigned to instances for description. They have a name and
value. The last key concept of ontologies is the relation. It can
be described by using attributes and assigning another
individual as a value. Common relation types are the is-a
relation (subsumption relation) and the part-of relation
(meronymy relation). The possibility to define special domain
specific relations is a considerable additional value of the
concept of an ontology. Axioms are always true and represent
knowledge that is not inferable from other individuals.

It is possible to distinguish ontologies in two broad
categories: lightweight and heavyweight ontologies. A
lightweight ontology is described by individuals, classes,
attributes, relations and axioms, meanwhile heavyweight
ontologies are an extension of lightweight ones by the
additional usage of axioms for a more detailed domain
description.

There already exist many ontologies. Some are available via
libraries like the DAML ontology library [6] and the
SchemaWeb library [7].

After this short introduction in the field of ontologies, the
authors analyze the structure of ontologies to map existing
software metrics for their applicability in this field of research
in section II following a GQM approach. Furthermore,
existing metrics are classified. Section III dedicated to a
special field of ontology metrics which the authors found
rarely researched so far – the balance of ontologies. This
paper ends with some conclusions and remarks about future
work in section 4.

II. CLASSIFICATION OF EXISTING ONTOLOGY METRICS

For the purpose of measuring the Goal Question Metric
(GQM) approach [8] helps in discovering adequate

Towards Metrics for Ontology Balance
Steffen Mencke, Martin Kunz, and Reiner R. Dumke

T

918

measurement attempts and goals. Initially, it requires the
definition of precise goals to form the foundation for the
nomination of questions suitable for discussing issues from
different viewpoints. Finally, metrics qualified for answering
these questions become apparent. Afterwards a tailored
measurement as well as its evaluation concerning goal
attainment is possible.

The quantification of metrics attributes is separated into two
different areas being divided into four major scopes. These
areas are scheme-related and content-related, respectively.

At first it is analyzed which metrics are used to measure the
content of ontologies. One can identify two major goals in this
area: the granularity of the enclosed content and the coverage
of the content (see figure 1).

To achieve these goals the mentioned GQM approach is
used to identified the content granularity and content coverage
metrics as shown in table I and table II. In the second area (the
structures of ontologies) two goals were identified as well.

An aspect which is well described by existing metrics is the
structure of ontology and identified major scopes are the level
of detail and cohesion. Especially a scheme-based level of
detail is important to evaluate ontology because it is

fundamental to achieve content granularity (see table III).
Having introduced this concept as an indicator for information
distribution, another one is needed to describe coherence of
distinct classes. It quantifies relation-based information in
ontology. Chosen metrics are presented in table IV.

It is possible to evaluate the structure of ontologies taking
into account these two goals. Other approaches like scheme
completeness and scheme granularity are not useful because
of different reasons. So scheme completeness, when creating a
completely new ontology, is a semantic question which can
not be answered by using metrics. One can target this question
by empirical analyses in ontology usage by taking into
account other domain related ontologies. The question
whether an ontology is complete or not can not be finally
 answered by using the ontology itself. The analysis in this
direction depends very much on a subjective point of view.

TABLE I
CHOSEN CONTENT GRANULARITY RELATED METRICS

Name of Metric Formula Description

Average
Population
(Pop) [9]

CIPop � , with I as

the number of instances in
the knowledge base and
C as the number of

classes defined in the
ontology.

This metric may serve
as an indication of the
number of instances
compared to the number
of classes.

Cohesion
(COH) [9]

|| SCCCOH � as the
number of separate
connected components

This indicates what
areas need more
instances in order to
enable instances to be
more closely connected.

Connectivity
(Cn) [9]

� � � �ICIIIPICn ijjij ��� ,,

as the number of instances
of other classes that are
connected to instances of
that class � �jI .

It is an indication of the
number of relationships
instances of each class
to other instances.

TABLE II
CHOSEN CONTENT COVERAGE RELATED METRICS

Name of
Metric Formula Description

Class
Richness
(CR) [9]

CCCR '� , with 'C as the number of

classes used in the base and C as the

number of classes defined in the ontology.

Describes how
instances are
distributed
across classes.

Density
measure
(DEM)
[10]

PwIwCw

CwCw
n

DEM

iiSi

SupiSub

n

i
i

		

		�

�1

1
,

with SubC as the number of a class’

subclasses, SupC as the number of its

superclasses, SC as the number of its
siblings, I as the number of its instances,
P as the number of its relations, and iw

as a weight factor.

This metric
indicates how
well a given
concept is
defined in the
ontology.

Relation-
ship
Richness
(RRC)
[9]

� � � � � �jiiijiC CCPICIIIPRR ,,, �� ,
with � �� �ji IIP , as the number of

relationships that are being used by
instances iI that belong to iC , and

� �� �ji CCP , as the number of relationships

that are defined for iC at the schema level.

Identifies how
well the
extraction
process per-
formed in the
utilization of
information is
defined at the
schema level.

Impor-
tance
(IMP) [9]

� � IICIMP i� , with � �ICi as the

number of instances that belong to the
subtree rooted at iC in the knowledge

base, and I as the number of instances in

the knowledge base.

It is not an
exact measure,
but it can give
a clear idea on
what parts of
the ontology
are considered
focal and what
parts are on the
edges.

Fullness
(F) [9]

� � � �ICICF ii
'� , with � �ICi as the

actual number of instances that belong to
the subtree rooted at iC , and � �ICi

' as the
expected number of instances that belong
to the subtree rooted at iC .

Describes how
well was the
data extracted
with respect to
the expected
number of
instances of
each class.

Ontology Metrics

Schema Related Knowledge Related

Balance

Level of Detail Granularity CoverageCohesion

Fig. 1. Genealogy of ontology metrics

919

III. METRICS FOR THE BALANCE OF ONTOLOGIES

Having presented four starting points for the evaluation of
ontologies in the following another general aspect concerning
the structure and the content of ontologies is introduced: the
balance of a distinct ontology (cp. figure 1). Existing
measures in this area (for example Average Depth, Average
Breadth) can not completely quantify ontology aspects
concerning the balance. The balance of ontology is important
because it is to be used as an indicator how good the ontology
is built up and one can identify anomalies by analyzing the
balance.

However research efforts in this area are very rare and a
complete framework for balancing ontologies is missing. In
the following initial instruments for quantifying ontologies
concerning the balance are presented.

Concerning the balance of ontologies there exist different
general aspects that can be helpful to quantify an ontology’s
balance.

� Classes:
o Equal number of subclass in equal level of

abstraction
ji C

LSub
C
LSub CC � with jinji ��� ,...,1,

o Equal number of subclass in different subtrees
i

l
i C

Sub
C

kSub CC � with nlki ,...,1,, �

� Relations:
o Equal number of relations in equal level of

abstraction
ji C

L

C

L
PP � with jinji ��� ,...,1,

o Equal number of relations in different subtrees
i

lSub

i

kSub

C
C

C
C PP � with nlki ,...,1,, �

� Attributes:
o Equal number of attributes in different concepts

in equal level of abstraction
ji C

L

C

L
AA � with jinji ��� ,...,1,

o Equal number of attributes in different subtrees
i

lSub

i

kSub

C
C

C
C AA � with nlki ,...,1,, �

� Instances:
o Equal number of instances of different concepts

in equal level of abstraction
ji C

L

C

L
II � with jinji ��� ,...,1,

o Equal number of instances in different subtrees
i

lSub

i

kSub

C
C

C
C II � with nlki ,...,1,, �

� Subtrees:
o Equal depth of each subtree

i

lSub

i

kSub

C
C

C
C DITDIT � with nlki ,...,1,, �

TABLE III
CHOSEN SCHEME-BASED LEVEL OF DETAIL RELATED METRICS

Name of Metric Formula Description

Attribute
Richness (AR)
[9][11]

CAAR � , with A as

the number of attributes of
all classes and C as the

number of classes.

This metric can indicate
the quality of ontology
design.

Centrality
Measure (CEM)
[10]

 � �

 �

�

�
��

n

i CH

CHCD

n
CEM

1

2

211

with �CH as the longest
path that contains the class
C from root of the branch
to its bottom node, and
 �CD as the length of the

path to C from the root.

For this metric it is
assumed that mid-
leveled classes tend to
be more representative
for an ontology due to
more details and
prototypical character.

Number of Leaf
Nodes (NoL)
[12]

jCNoL � , with

nj ��1 and jC leaf

class of the ontology.

A leaf class has no
semantic subclass
explicitly defined in the
ontology.

Number of Root
Classes (NoR)
[12]

jCNoR � , with

nj ��1 and jC root

class of the ontology.

A root class in an
ontology means the
class has no semantic
super class explicitly
defined in the ontology.

Average Depth
of Inheritance
Tree of Leaf
Nodes (ADIT-
LN) [12]

nDLNADIT j�� , with

nj ��1 and jD as total

number of nodes on jth

path.

This metric describes
the sum of depths of all
paths divided by the
total number of paths.

TABLE IV
CHOSEN SCHEME COHESION RELATED METRICS

Name of
Metric Formula Description

Relation-
ship
Strength
(RSSO) [13]

� �
� �

� �� �vuRSSQPRSS
QclvPclu

O ,max,
),(��

�

with: P and Q as the classes of interest

and)(Pcl ,)(Qcl as the
sets of all concepts assigned to the
classes P and Q , and

��
�

� 		
� *

maxDepth
maxDepth),(21 CCRSS .

Describes
strength of
relationship
between two
classes.

Relation-
ship
Richness
(RR) [9]

PSCPRR 	� , with P as the

number of relationships, and SC as the
number of sub-classes (= inheritance
relationships).

Describes the
diversity of
relations and
placement of
relations in the
ontology.

Inheritance
Richness
(IRC) [9]

'

1
'

),(

C

CCH

IR CC
i

C

C
i

�

� , with

),(1 i
C CCH as the number of

subclasses)(1C of a class iC , and 'C

as the number of nodes in the subtree.

Describes the
distribution of
information in
the current
class sub-tree
per class.

920

Besides these tree-based approaches a second set of
formulas is presented in the following to analyze balance
aspects of ontologies. For this purpose previous published
work about the specification of distance-based semantic
windows is used [14].
An ontology is defined as),,,(IDRCO � , where C is the set of
ontological concepts following a taxonomic structure,

ntaxtax RRR �� is the set of object properties/relations
taxonomically and non-taxonomically relating two concepts

),(jiij CCR and D is the set of datatype properties/attributes of
the ontology. I is the set of instances. An ontological
component of each of these types can be the enrichment point
for the semantic window. From this four different aspects the
dimensions of the semantic window can be derived.

� Concept view
� Datatype property view
� Object property view
� Instance view

For each of the four views, distance measures are defined
for the existing dimensions. A help function is)(i

niv Cf

describing the level of the concept according to its taxonomic
level with 0)(�root

niv Cf . Function),(ji
parent CCf delivers back

the first more abstract concept shared by iC and jC , if it

exists and is connected to them only via taxRR� .),(ji
tax CCf

and),(ji
ntax CCf determine the length of the taxonomic or

non-taxonomic path of concepts from iC to jC (the result is -
1, if there does not exist such a path).

The dimensions of the distance related to the ontology’s
concepts having a concept as the focusing point are defined in
(1) to (4). The single distance measures relate to the
abstraction dimension distance absc , to the specialization
dimension distance specc , to the sibling dimension distance

sibc and to the non-taxonomic dimension distance ntaxc . They
measure the distance between the focusing point concept

FC and another concept jC of the ontology.

)()(),(j
niv

F
niv

jF
abs CfCfCCc �� (1)

)()(),(F
niv

j
niv

jF
spec CfCfCCc �� (2)

))(()(),(, jF
parentniv

F
niv

jF
sib CCffCfCCc �� (3)

),(),(jF
ntax

jF
ntax CCfCCc � (4)

The equations above are restricted by: CCCC jiF �,, .

Equation (1) is restricted by:)()(j
niv

F
niv CfCf � and

1),(��jF
ntax CCf . Equation (2) is restricted by:

)()(j
niv

F
niv CfCf � and 1),(��jF

ntax CCf . Equation (3) is

restricted by:)()(j
niv

F
niv CfCf � and

)()),((F
niv

jF
parentniv CfCCff � .

With this set of described formulas we are able to define
first knock-out criterions for balanced ontologies:

� An ontology which contains not a single pair of leaf
nodes with no sibling distance can not be balanced

� If every subtree of the root node has a different maximal
abstraction dimension the root can not be balanced

� Two concepts having a sibling distance must have the
same specialization distance to their leafs

The presented approach is a first analysis of the targeted
problem of missing balance metrics for ontologies. The
mentioned numerous aspects need to be integrated in a set of
formulas. Due to manifold characteristics of the described
starting points, one has to do fundamental research about the
mathematical base to map the existing complexity of the
problem to certain metrics formulas. Knock-out criteria can be
a first starting point but it is not sufficient and quality models
with distinct measures are desirable.

Related research should follow e.g. the following ideas:

� Gravity-related approach:
o Identification of a center of gravity
o Measuring absC , specC , sibC and ntaxC to the

border concepts of the ontology (roots, leafs, …)
o Ontology is balanced, if ntaxsibspecabs cccc ���

o Extension towards multiple centers of gravity

� Weighted graphs approach:
o Determine a weight

iCW for every node of the
ontology’s graph representation based on
instances’ size, instances’ number, concept’s
relations and attributes, etc.

o Ontology is balanced if (a) every node iC has a
similar weight or (b) all nodes on the same
abstraction level have a similar weight.

IV. SUMMARY, CONCLUSION AND FUTURE WORK

In this paper an overview of existing metric ontology
measurement following a structured approached based on the
concept of GQM was presented. During research a lack of
metrics for balance-measuring for ontologies was observed.
To close this gap, different criteria for a balance measuring
framework were identified and future steps towards a balance-
metrics set were outlined.

A. Conclusions
Measuring just because it is possible can not be an

intention. The following ideas present some initial ideas for
ontology metrics in certain applications.

921

The area of knowledge discovery can be a major building-
block for e-learning. The creation of courses or the
measurement of learning efforts can be revised with
ontologies.

 Measurement approaches in this direction can be for
example:

(L1) The determination of the semantic similarity between
an ontology describing the domain to be learned and
an ontology created by the learner(s) during the
learning process is an approach to measure the
standard of knowledge at a discrete point in time. By
repetition the learning progress of the
person/community that built up the second ontology
can be analyzed for multipurpose reasons.

(L2) Measuring the complexity of evolving ontologies
during a learning effort or an examination can help to
identify concepts that were learned very well or were
not yet learned.

(L3) The creation of tests and exercises based on ontologies
will lead to automatic determination of the level of
difficulty, respectively of the complexity of the
question and the expected answer based on the
ontology complexity.

(L4) Identifying matching concepts in ontologies to
automatically generate courses described by
ontologies is another option.

(L5) Another usage for a similarity measure can be the
description of course content depending on a domain
ontology.

Agent technology is another very interesting application
area. The authors expect ontology metrics to be extremely
useful for several aspects, e.g.:

(A1) An agent’s functionality can be characterized by
analyzing the used communication ontology.

(A2) It becomes also possible to identify a useful
separation of functionalities and evolving
communication based on an ontology containing a
service description. Such an approach is useful to
automatically identify the mapping of functionalities to
agents as postulated in [15] and [16].

(A3) The balancing of workload becomes possible when
the work is effort-driven distributed based on an
ontology.

Another mentionable aspect is the usage of appropriate
metrics in measurement infrastructures.

(I1) Implementation of measurement services for the
presented metrics to integrate ontology measurement
into our service oriented measurement infrastructure is
interesting as previously presented in [17] and [18].

B. Future work
There are many open questions regarding ontology metrics

as for example maturity (how ready is it to use?), robustness
(how it can handle unexpected concepts), language flexibility
(how stable is language?) and domain friendliness (how easy
is to develop domain ontologies based on an upper ontology?)

[19]. In the future the authors will focus on the development
of the sketched balance metrics and their application to certain
areas.

REFERENCES

[1] T.B. Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific
American, 284, pp. 34-44, 2001.

[2] V. Devedzic, “Semantik Web and Education”, Springer, 2006.
[3] S. Kernchen, D. Rud, F. Zbrog, and R. Dumke, “Processing Remote

Measurement Databases by the Means of Mobile Agents”, In
Proceedings of the 3rd International Conference on Web Information
Systems and Technologies, Barcelona, Spain, March 2007.

[4] R. Fikes, “Multi-Use Ontologies”, Stanford University (February 07,
2007), http://www.ksl.stanford.edu/people/fikes/cs222/1998/Ontologies/
sld001.htm.

[5] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications”, Knowledge Acquisition, 5, pp. 199-220, 1993.

[6] DAML, “DAML Ontology Library”, http://www.daml.org/ontologies/.
[7] SchemaWeb, “SchemaWeb”, http://www.schemaweb.info/.
[8] V. Basili, and D. Weiss, “A Methodology for Collecting Valid Software

Engineering Data”, IEEE Transaction on Software Engineering, 10, pp.
728-738, 1984.

[9] S. Tartir, I.B. Arpinar, M. Moore, A.P. Sheth, and B.A. Meza, “OntoQA:
Metric-Based Ontology Quality Analysis”, In Proceedings of IEEE
ICDM 2005 Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge
Sources, 2005.

[10] H. Alani, and C. Brewster, “Ontology Ranking Based on the Analysis of
Concept Structures”, Proceedings of the 3rd International Conference on
Knowledge Capture, ACM Press, 51-58, 2005.

[11] P. Buitelaar, T. Eigner, and T. Declerck, “OntoSelect: A Dynamic
Ontology Library with Support for Ontology Selection”, Proceedings of
the Demo Session at the International Semantic Web Conference, 2004.

[12] H. Yao, A.M. Orme, and L. Etzkorn, “Cohesion Metrics for Ontology
Design and Application”, Journal of Computer Science, 1, pp. 107-113,
2005.

[13] X. Wu, L. Zhu, J. Guo, D. Zhang, and K. Lin, “Prediction of Yeast
Protein-Protein Interaction Network: Insights from the Gene Ontology
and Annotations”, Nucleic Acids Research, 34, 2137-2150, 2006.

[14] S. Mencke, Andreas Schmietendorf and R. Dumke, “Distance-Based
Semantic Windows”, submitted to 6th e-Learning Fachtagung
Informatik der Gesellschaft für Informatik (DeLFI 2008), Lübeck,
Germany, September 7-10, 2008.

[15] S. Kernchen, F. Zbrog, and R. Dumke, “ABEL-GUI: An Agent-Based
Graphical User Interface for E-Learning”, In Proceedings of the 3rd
International Conference on Web Information Systems and
Technologies, Barcelona, Spain, March 2007.

[16] S. Kernchen, and R. Dumke, “Developing Adaptive and Self-Managed
Graphical User Interfaces”, In Proceedings of the Second International
Conference on Interactive Mobile and Computer Aided Learning,
Amman, Jordan, April 2007.

[17] M. Kunz, A. Schmietendorf, R. Dumke, and C. Wille, “Towards a
Service-Oriented Measurement Infrastructure”. Proceedings of the 3rd
Software Measurement European Forum (Smef 2006), May, 10-12,
Rome, Italy, pp. 197-207, 2006.

[18] M. Kunz, A. Schmietendorf, R. Braungarten, and R. Dumke, “Service-
Oriented Adjustment of Test and Measurement Tools” (In german). In:
A. Schmietendorf and R. Dumke: Proceedings of 1. Workshop
Bewertungsaspekte serviceorientierter Architekturen (BSOA06), 24.
November, FHW Berlin, private publishing venture: Otto-von-Guericke-
University of Magdeburg, pp. 11-20, 2006.

[19] A. Terry, “SUO: Thoughts on the Ontology Evaluation Questions”,
http://grouper.ieee.org/groups/suo/email/msg12408.html.

922

Techniques for De-fragmenting Mobile Applications: A Taxonomy

Damith C. Rajapakse
School of Computing, National University of Singapore

damith@comp.nus.edu.sg

Abstract

 Fragmentation, in the context of mobile
applications, is the inability to "write once and run
anywhere". Fragmentation increases the effort
required in all aspects of application development.
This paper analyzes various aspects of fragmentation,
and presents a taxonomy of techniques used to combat
it. Our aim is to establish a set of useful terminology
for the benefit of researchers and practitioners
working in this area.

1. Introduction
Fragmentation is the term used in the industry to

describe the inability to "write once and run
anywhere", often resulting in multiple versions of an
application. More formally, we define fragmentation
as the “inability to develop an application against a
reference operating context and to achieve the intended
behavior in all operating contexts suitable for the
application”. Further, we define the operating context
(OC) for an application as the “external environment
that influences its operation”. Therefore, an OC is
defined by the hardware/software environment in the
device, the user, and the environmental constraints
introduced by various stakeholders such as the network
operator. While fragmentation can affect any type of
application, this paper focuses on the fragmentation of
mobile applications. Note that by "mobile applications"
we mean installed applications on the mobile device
and not the server-side applications such as SMS-based
applications1 or mobile web applications2.

Fragmentation is caused by the diversity of OCs
(see Figure 1 for an illustration). In Section 2, we
describe how one OC could differ from another,
resulting in fragmentation. While users, developers,
distributors, carriers and device manufacturers are all
affected by fragmentation, this paper looks at
fragmentation from the point of view of an
organization developing mobile applications. In section

1 A server-side application accessed by a mobile device,

using SMS as the mode of communication
2 An application accessed over the Internet, using a web

browser on a mobile device.

3, we describe how fragmentation affects various
aspects of mobile application development. As
fragmentation is a big problem in the industry today, a
number of techniques have emerged to combat it. We
call them de-fragmentation techniques. Section 4
presents a taxonomy of existing de-fragmentation
techniques, based on the basic approach each one uses
to tackle the problem. This taxonomy was inspired by
the work of practitioners [3] and later refined based on
further feedback from practitioners (as acknowledged
in Section 7). Where appropriate, we refer to industry
tools to illustrate each approach. Comments about
related work, conclusions, and future directions are
given at the end of the paper.

A1A1 O
C1

Diversity�in�
hardware,�software

Diversity�
in�users

Diversity�introduced�
by��other�stakeholders

Ta
rg

et
�

m
ar

ke
t

O
C2

O
Cn

Po
te

nt
ia

l�m
ar

ke
t

A2A2

AnAn

Fragmented�
application

Targeted�operating�
contexts

.........

Figure 1. Fragmentation overview

2. Causes of fragmentation
By definition, fragmentation is caused by the

diversity of operating contexts (OCs). One operating
context may differ from another for the following
reasons:
� Hardware diversity of the device, such as
differences in screen parameters (size, color depth,
orientation, aspect ratio), memory size, processing
power, input modes (keyboard, touch screen, etc.),
additional hardware (camera, voice recorder etc.),
and connectivity options (bluetooth, IR, GPRS, etc.).

923

� Software diversity, which may be a result of
platform diversity or implementation diversity:
o Platform diversity is caused by factors such
as differences in platforms/OS (Symbian, Nokia
OS, RIM OS, Android, BREW, etc.), API
standards (MIDP 1.0, MIDP 2.0, etc.),
optional/proprietary APIs, variations in accessing
hardware (e.g., full screen support), maximum
binary size allowed, etc.
o Implementation diversity is caused by
factors such as quirks/bugs in implementing
standards.

� Feature variations, such as light version vs full
version

� User-preference diversity, in aspects such as the
language, style, etc., or accessibility requirements

� Environmental diversity, such as diversity in the
deployment infrastructure (e.g., branding by carrier,
compatibility requirements of the carrier’s back-end
APIs, etc.), locale, local standards.
As we can see from the above, one OC can differ

from another due to many factors. Let us call these
factors fragmentors. i.e., a fragmentor is a factor,
diversity of which causes fragmentation. The
fragmentation of mobile applications is often referred
to as device fragmentation, because most of the
fragmentors can be traced to a particular device model.
This is a misnomer however, as factors outside the
device (e.g., branding by carrier) too can cause
fragmentation.

Since it is the diversity that drives fragmentation, a
closer look at diversity may provide us with clues as to
how to deal with fragmentation. It is our opinion that
diversity can be either essential or accidental.3

� Essential diversity is the diversity that
differentiates a product/service in some useful
manner. Such diversity is intentional and often
unavoidable. For example, users will continue to
differ in their preferred size for a device, and the
device manufacturers will continue to differentiate
the devices in terms of size.

� Accidental diversity is the diversity that - does not
serve any useful purpose, is often introduced
unintentionally, and is often avoidable. For example,
diversity due to API implementation bugs/quirks is
unintentional, avoidable, and does not serve any
useful purpose
Fragmentation is often associated with JavaME

(Java Mobile Edition) applications, but it is also
applicable to non-JavaME applications. Theoretically,
a JavaME application is able to run on any Java-
enabled mobile device. This means a JavaME

3 This classification is borrowed from Fred Brooks' seminal
book The Mythical Man-Month, which discusses “essential
difficulties” and “accidental difficulties” of software
development

application can target a much wider range of OCs as
compared to non-Java applications, exposing it to more
diversity. As non-JavaME applications (e.g., native
applications for Symbian platform) are created for a
smaller range of devices, they are exposed to less
diversity. While a JavaME application has to run on
platforms developed by many vendors, a typical non-
JavaME application will run on a platform
implemented by a single vendor or a small number of
vendors (e.g., Symbian). This means JavaME
applications have to face more implementation
diversity, as compared to non-JavaME applications.
However, developers may still have to develop a
JavaME equivalent as well, if a wider range of OCs is
to be targeted.

3. Effects of fragmentation
Fragmentation, and the subsequent de-

fragmentation, complicates all disciplines4 of a mobile
application project. Some examples are given next.
� Business modeling: Business analysts have to
determine the optimum set of OCs for the application
to target. Questions to be answered include “Is
operating context OC1 suitable for application A1?”
and “Is it worth porting A1 to OC1?”.
� Requirements management: If the interaction
between the actor and the application is OC-dependent,
it complicates the use-case specification by introducing
a vast number of exceptional/alternate flows.
� Analysis and design: The system architecture, and
the detailed design, should be able to accommodate the
OCs targeted at the time, but also any future OCs the
application will be exposed to during its lifetime.
� Implementation: Implementers need to optimize
the application to all the targeted OCs. Questions to
answer include “What do I have to do to fit application
A1 to fit operating context OC1?”, “How does OC1
differ from OC2?”, and “Which OCs can be served by
a single version of the application?”
� Testing: The application need to be tested for all
targeted OCs. It is usually not enough to test on device
emulators, as real devices on a real network sometimes
behave differently from the emulators.
� Project management: Having to accommodate
new (and unexpected) OCs in the middle of a project
complicates project scheduling.
� Configuration and change management: Having
multiple versions of an application (to suit multiple
OCs) clearly impacts this discipline. New devices
entering the market will increase the version count,
while evolution of the platform software may require
substantial changes to the existing versions.
� Environment: The software process has to be
augmented to cater for additional complications

4 disciplines as defined in the IBM Rational Unified Process

924

introduced by fragmentation. For example, additional
tools will be required to tackle various fragmentation
issues.

Aforementioned complications increase the required
effort in almost all aspects of the software life cycle,
driving up the cost, and lengthening the time-to-
market. Other side-effects are:
� It could reduce the quality of the product - The
additional complexity of maintaining a large number of
versions could increase the probability of bugs. Cost
considerations may tempt developers to release
applications that behave in sub-optimal ways for
certain OCs (E.g., an application may work well for
certain screen sizes, but may appear distorted in certain
other screen sizes).
� It could narrow the target market - Cost
considerations may force the application vendors to
target a smaller market than the actual potential market
it could target otherwise (see Figure 1).
� It hinders the growth of the mobile application
market, by acting as a barrier-to-entry for new entrants
- This is because creating a mobile application to fit a
wide variety of OCs requires a much higher effort and
a better expertise, when compared to a desktop/web
application.

4. A taxonomy of de-fragmentation techniques
One way to reduce fragmentation is by eliminating

diversity. However, only accidental diversity, which
does not serve any useful purpose, should be targeted
for elimination. Measures such as better
standardization (e.g., less optional APIs, more detailed
specifications), stricter enforcing of the standards (e.g.,
using API verification initiatives, Technology
Compatibility Kits) can help in this regard. Major
players in the mobile application industry such as
platform vendors, device manufacturers, and carriers
have a critical role to play in this front of the war
against fragmentation. One such effort in the JavaME
arena is the Mobile Service Architecture [7].

D
e

�
fr

a
g

m
e

n
t
a

t
io

n
�

t
e

c
h

n
iq

u
e

s

MANUAL�MULTI

DERIVE�MULTI

SINGLE�

ADAPT

SELECTIVE

META

GENERATE

ALL�IN�ONE

FITS�ALL

ABSTRACTION

�LAYER

AIM�LOW

DEVICE�ADAPT

SELF�ADAPT

EMBED

INJECT

Figure 2. The complete taxonomy

On the other hand, essential diversity will be much
harder, if not impossible, to avoid. The pragmatic
response here is to find ways to reverse the resulting
fragmentation. This is called de-fragmentation [3].
Note that de-fragmentation is NOT eliminating

diversity. Rather, it is the process of making the
application behave as intended on a set of diverse OCs.

In this section, we present a taxonomy of de-
fragmentation techniques, based on the basic approach
each technique uses. Figure 2 illustrates this taxonomy
in its current state. Each approach will be explained in
detail in the subsequent subsections. Note that a single
application can use a combination of de-fragmentation
techniques, using a different technique to manage each
OC-specific variation.

4.1 Th NUAL-MULTI approach e MA

A1A1

O
C1

O
C2A2A2

O
CnAnAn

	�
�� ��D�
����������
�������D��������D�����
��

Developers

Figure 3. The MANUAL-MULTI approach

The most primitive way of de-fragmenting is to
manually develop distinct versions of the application to
suit different OCs. We call this approach MANUAL-
MULTI. Figure 3 illustrates this approach, where A1,
A2, … An are different versions of the application A,
customized to fit operating contexts OC1, OC2, …
OCn respectively. These distinct versions will be
largely similar, but also different in subtle ways, as a
result of subtle variations in the OCs. Copy-paste-
modify techniques are commonly used to “port” the
application to various OCs. MANUAL-MULTI
approach results in duplication of work in many
aspects of software development (e.g., fixing the same
bug in hundreds of different versions). The following
two alternative approaches try to minimize such
duplication of efforts:

1. Derive OC-specific versions from a single code
base (we call this approach DERIVE-MULTI)

2. Use a single version to serve multiple OCs (we
call this approach SINGLE-ADAPT)

4.2 The DERIVE-MULTI approach
In the DERIVE-MULTI approach, we derive OC-

specific versions of the application from a single code
base. While this still results in multiple versions of the
application, there is only one code base to work on and
therefore, the effort required may be less than in the
MANUAL-MULTI approach. In particular, we no
longer need to manually maintain duplicate copies of
the same source.

An example tool that supports the DERIVE-MULTI
approach is the NetBeans Mobility Pack [8] (a JavaME
mobile application development environment that
comes as an extension to the popular NetBeans Java
IDE). It uses a concept called project configurations,
where a single application can have multiple project

925

configurations, one for each different versions we want
to derive.

The DERIVE-MULT approach can be further sub-
divided into three approaches: SELECTIVE, META,
and GENERATE.

A1A1

O
C1

O
C2

O
Cn

�D������D��������D���D�
�����D�
��
�����D���
D��������������
��DD

Developer

A2A2

AnAn

AA

aa bb cc

�����
����D
��D
�D�D������D�
��D����DD aa

bb

cc

OC�specific�files

common�files

OC�specific�versions

Single codebase

Build�
script

Figure 4. The SELECTIVE approach

The SELECTIVE approach (Figure 4) localizes
variations into interchangeable components (e.g.,
classes, files, etc.) and uses a build script (or a linker)
to create one version for each OC, picking out only the
components required for that particular OC. This
approach is frequently used when including images of
different resolutions to fit different screen sizes. An
example of this approach can be seen in the J2ME
Polish tool [6]. For instance, we can put an image file
in the resources/ScreenSize.240+x320+ folder, and
J2ME Polish will include this image for devices with a
screen size of at least 240x320 pixels.
The META approach uses meta-programming (and
similar code manipulation techniques) to specify how
to derive OC-specific versions of the application.
There are two ways of achieving this: the EMBED
approach and the INJECT approach.

A1A1

O
C1

O
C2

O
Cn

�D�����
����
�D�������D��������D�����
��D��D���������D������
��DD

Developer

A2A2

AnAn

AA

@A1{ xxx }
@A2{ yyy }

@An{ zzz }

Pr
ep

ro
ce

ss
or

xxx

zzz

yyy

Figure 5. The EMBED approach

The EMBED approach embeds OC-specific
variations in the source files using meta-programming
directives/tags. A preprocessor derives multiple
versions by processing these directives/tags. An
example of this approach can be seen in NetBeans
Mobility pack, which uses a concept called
preprocessor blocks to specify OC-specific code
segments. The example preprocessor block given in
Figure 6 (adapted from [8]) is used to derive two
different versions of the application, one for devices
having 128x128 screens, and one for devices having
176x182 screens.

Figure 6. A NetBeans Mobility Pack preprocessor block

//#if screen == "128x128"
 //# ballWidth = 10;
 //#elif screen == "176x182"
 //# ballWidth = 16;
//#endif

A1A1

O
C1

O
C2

O
Cn

�D�����
����
�D�������D��������D�����
��D��D�
�������D���������
�D�
��D ���DF����������D���������
��DD

Developer

A2A2

AnAn

AA

A1{ xxx }
A2{ yyy }

An{ zzz }

Pr
ep

ro
ce

ss
or

xxx

zzz

yyy

Generic�application�code

OC�specific�instructions

Figure 7. The INJECT approach

The INJECT approach requires the developer to
write the OC-specific instructions separated from the
application code. For example, Tira Jump [9] (a tool
for developing mobile applications) uses aspect-
oriented programming techniques to achieve such an
effect. It lets developers write the application code
against a reference OC and derives OC-specific
versions by “weaving” OC-specific variations into it.

A1A1

O
C1

O
C2

O
Cn

Developer

A2A2

AnAn

AA

{ }

�������
�Dautomatically ������D���D���������
�D�
�D��
 �DF�� xxx

zzz

yyy
G

en
ra

to
r/

A
ut

o�
ad

ap
te

r

Figure 8. The GENERATE approach

The GENERATE approach automatically generates
multiple versions using an intelligent generator that
knows how to adapt a generic application to suit a
specific OC. Instead of merely following instructions
supplied by the programmer (as in the META
approach), the generator uses its in-built knowledge in
the generation process, requiring less manual coding.
The feasibility of such fully automatic generation is
rather limited, and we expect such generators to be
limited to a narrow mobile application domain or a
narrow range of OCs. For example, alcheMo tool [1]
promises to automatically generate BREW format
applications from JavaME applications.

4.3 The SINGLE-ADAPT approach
The SINGLE-ADAPT approach builds a single

version of the application that can work on multiple
OCs. This approach can be further sub-divided into
two: FITS-ALL and ALL-IN-ONE.

926

The FITS-ALL approach develops a one-size-fits-all
application that sidesteps all variations between OCs.
There are two ways to accomplish this: AIM-LOW and
ABSTRACTION-LAYER.

A1A1

O
C1

O
C2

O
Cn

aa

A2A2

AnAn

AA

�����D�
��D���������D���D����D���DF��DD

Developer

bb

cc

Figure 9. The AIM-LOW approach

The AIM-LOW approach (Figure 9) uses only what
is common to all targeted OCs. For example, the UI
will be designed to fit the smallest screen size of the
targeted device range. This approach is sometimes
referred to as the “lowest common denominator”
approach.

O
C1

O
C2

O
Cn

Developer

AA

{ }

LibraryLibrary

xxxxxx yyyyyy zzzzzz

AA

{ }

Library�API����������������Library�API����������������

xxxxxx yyyyyy zzzzzz

OC2�APIOC2�API

���������
�D��D ������D�����D��DF���������D���D!��
�����D��D�D�������"D
xxxxxx yyyyyy zzzzzz

OC1�APIOC1�API

Figure 10. The ABSTRACTION-LAYER approach

The ABSTRACTION-LAYER approach (Figure
10), hides variations in the OCs behind an abstraction
layer. This abstraction layer is usually a library (third-
party or built in-house), and the application will be
developed using the API of the library. Both the library
and the application will be deployed on the mobile
device, and it is the responsibility of the library to
execute generic method calls from the application in an
OC-specific manner. TWUIK [10] (a UI library for
mobile applications) is one example tool that uses the
ABSTRACTION-LAYER approach to write a single
UIs that can adapt for multiple OCs.
The ALL-IN-ONE approach makes the software
adapt at run-time to a given OC, using either the SELF-
ADAPT approach or the DEVICE-ADAPT approach.

The SELF-ADAPT approach (Figure 11) makes the
application programmatically discover information
about the OC and adapt itself to the OC at run-time.

Developer

AA

if(A1){xxx}
if(A2){yyy}

if(An){zzz}

O
C1

O
C2

O
Cn

���D���������
�D��
 �D�
 D�
D�����D�
D���DF�DD

Figure 11. The SELF-ADAPT approach

In Figure 12 we see an example code snippet written in
SELF-ADAPT fashion. This single piece of code will
work for both screen sizes 128x128 and 176x182. The
difference between this and the EMBED example in
Figure 6 is that EMBED will include either
ballWidth=10; or ballWidth=16; (but not
both) in each OC-specific version, while SELF-
ADAPT will include all code in Figure 12, resulting in
a bigger application.

Figure 12. An example of the SELF-ADPT approach

Canvas c = new Canvas();
w = c.getWidth (); h = c.getHeight();
if(w==128 && h==128)
 ballWidth=10;
 else if(w==176 && h==182)
 ballWidth=16;

The DEVICE-ADAPT approach (Figure 13) requires
the application to be written in an abstract way, and the
device decides how to adapt it to the prevailing OC, at
run-time. This approach is commonly used when
dealing with fragmentation in the UI part of an
application, often with unsatisfactory results. In Figure
14, we see how the same calculator application appears
differently on two different phone emulators, after it
has b vice. een adapted by the de

Developer

AA

{ }

A1A1

O
C1

O
C2

A2A2

AnAn

O
Cn

������D��
 �D�
 D�
D�����D���D���������
�D�
D����D������D
xxx

zzz

yyy

Figure 13. The DEVICE-ADAPT approach

927

7. Acknowledgements
Input from the following persons helped towards
refining the material in this paper: Bhojan Anand,
Naveed Shaikh and Nguyen Thi Tuyet Nhung
(National Uni. of Singapore), Chris Abbott
(DetectRight), Himath Dissanayake (OrangeHRM Inc),
Kutila Gunasekera (Monash University), Jason Delport
(Paxmodept), Luca Passani (WURLF) Mihai Fonoage
(Florida Atlantic Uni.), Reto Senn (Bitforge), Ruchith
Gunaratne (hSenid Software Intl) and Tom Hume
(FuturePlatforms).

Figure 14. An example result from DEVICE-ADAPT

5. Related work
8. References Fragmentation is one of the most talked about topics

among practitioners (e.g., [3][4]). In academic
research, fragmentation in the Mobile-Web has
received frequent attention (e.g., [5]). Another related
area is adaptable user interfaces. For example Gojas et
al [2] describes a GENERATE type technique used to
automatically generate UIs to fit different screens. The
use of meta-programming to generate product lines is a
well known technique, which could be adapted to de-
fragment mobile applications. For example, Zhang and
Jarzabek [11] shows how to use the XVCL meta-
programming language (XVCL uses a combination of
EMBED and INJECT approaches) to de-fragment a
mobile game product line.

[1] alChemo home http://www.innaworks.com/alchemo
[2] Gajos, K, Christianson, D., Hoffmann, R., Shaked, T.,
Henning, K., Long, J. J., and Weld, D.S., “Fast And Robust
Interface Generation for Ubiquitous Applications,”.
Proceedings of the Seventh International Conference on
Ubiquitous Computing (UBICOMP'05), 2005
[3] JavaME: De-fragmentation Technical Overview and
Design Guidelines Index, available at
http://developers.sun.com/mobility/reference/techart/design_
guidelines/overview.html
[4] Lau, A., " Fragmentation effect,"
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-
fragment.html
[5] Liang, A., Guo, S., and Li, C., "Dynamic Mobile
Content Adaptation Abstracting in Device Independent Web
Engineering," Global Telecommunications Conference,
2006. (GLOBECOM '06), pp. 1 - 4

6. Conclusions and future work
In this paper, we analyzed the fragmentation

problem faced by developers of mobile applications
today. We defined the terms “operating context”- a
concept central to the way we define fragmentation.
We also explained our opinion of what it means to “de-
fragment” an application, and contrasted it with
eliminating diversity. As the major contribution of the
paper, we presented a taxonomy of de-fragmentation
techniques currently used in the industry, and used
existing industry tools to illustrate each type of
technique. Our future plans include a comprehensive
evaluation of the techniques included in the taxonomy,
to discover their strengths/weaknesses, to find
synergies among them, and look for more effective
alternatives. We shall continue to refine this taxonomy,
based on interactions with the practitioners and our
own experimentation.

[6] J2ME Polish homepage http://www.j2mepolish.org
[7] JavaME mobile Service Architecture,
http://java.sun.com/javame/technology/msa/
[8] Resolving JavaME Device Fragmentation Issues Using
NetBeans 6.0 Mobility
http://www.netbeans.org/kb/60/mobility/javame-
devicefragmentation.html
[9] Tira Jump home page http://www.tirawireless.com
[10] TWUIK homepage http://www.tricastmedia.com/twuik/
[11] Zhang, W. and Jarzabek, S. “Reuse without
Compromising Performance: Experience from RPG Software
Product Line for Mobile Devices,” 9th Int. Software Product
Line Conference, SPLC’05, September 2005, Rennes,
France, pp. 57-69

928

Identifying NFRs Conflicts Using Quality Ontologies

Abstract
Conflict identification and resolution is a key phase of

requirements engineering. It is crucial to identify conflicts at
early stages of the requirements engineering which in turns
helps in establishing a cohesive set of requirements to guide the
overall requirements engineering process. Conflicts especially
arise due to the self reinforcing or contradictory nature of some
NFRs (e.g. efficiency and usability). This paper describes how
quality ontologies can be used to support the identification of
NFR conflicts and facilitate discussion towards requirements
prioritization tasks in requirements engineering. Our approach
is based on using the ISO/IEC 9126 quality ontology to
underpin the NFR description and reasoning mechanisms to
pinpoint potential NFR conflicts that need to be further
discussed by stakeholders. The work is implemented in the
ElicitO requirements elicitation tool. We also report results of
applying the approach and the tool to identify conflicts in
requirements elicitation activities at the student intranet project
of the University of Manchester (Manchester Unity Web
Project).

Keywords: Non-functional requirements, requirements
engineering, conflict identification, ontologies.

1. Introduction
Addressing Non-Functional Requirements (NFRs) or

Quality Requirements are vital to the success of software
systems [1], playing a crucial role during systems development
and serving as quality criteria for assessing software
effectiveness [2]. Errors related to identification of NFRs are
generally acknowledged to be the most expensive and difficult
to correct once the information system has been completed [2,
3]. Without a well defined set of NFRs and their proper
fulfillment, software projects are vulnerable to failure [4].

Thus, finding the right configuration of NFRs is an
important step towards achieving a successful software
deliverable. NFRs, on the other hand, have numerous complex
and nontrivial interdependencies. NFRs conflict with each other
when they make contradicting statements about a software
attribute, and they cooperate when they mutually enforce such
attributes [5]. As requirements are being elicited and modeled,

the challenging task is to maintain an agreement between all the
stakeholders. This is because it is common for conflicts to arise
in connection to NFRs which often take place especially in a
situation where there is a large number of stakeholders with
different backgrounds and perceptions of the problem [6].

This paper describes how quality ontologies can be used
to support the identification of NFR conflicts and facilitate
discussion towards requirements prioritization tasks in
requirements engineering. Our approach is based on using the
ISO/IEC 9126 quality ontology to underpin the NFR description
and reasoning mechanisms to pinpoint potential NFR conflicts
that need to be further discussed by stakeholders. The work is
implemented in the ElicitO requirements elicitation tool. We
also report results of applying the approach and the tool to
identify conflicts in requirements elicitation activities at the
student intranet project of the University of Manchester
(Manchester Unity Web Project).

The remainder of this paper is divided as follows: Section
2 discusses issues related to conflict identification. Section 3
provides examples of conflicts in quality requirements. Section
4 discusses how quality ontologies are used to support
requirements elicitation and conflict identification. Section 5
describes the design of the ontology for conflict identification.
Section 6, provides an example using ElicitO tool to identify
conflicts and section 7 presents some related work in conflict
identification. Section 8, summarizes the paper, discusses the
key contribution, and future work.

2. Conflict Identification
The term conflict can be taken to mean interference in one’s
party’s activities, needs or goals, caused by the activities of
another party [7]. Literature concerned about conflicts originates
from different fields such as social psychology, cognitive
science, and sociology [8]. However and for the purpose of this
paper we will focus on conflicts in the requirements engineering
literature which is defined by Lamsweerde [9] as “conflict is a
divergence between goals – there are feasible boundary
conditions that makes the goals inconsistent”. Robinson [10]
also argued that many inconsistencies originate from conflicting
goals; inconsistency management should, therefore, proceed at
the goal level.

Taiseera Al Balushi

Information Systems
Department, College of

Commerce and Economics,
Sultan Qaboos University,

P.O. Box 20, PC 123 Al
Khod, Oman

+968 24142970

taisira@squ.edu.om

Pedro R. Falcone Sampaio, Mitul Patel

Business Systems Division, Manchester
Business School, The University of

Manchester, Booth Street West,
Manchester M15 6PB, UK

+44 (0)161 306 3349

P.Sampaio@manchester.ac.uk

Mitul.Patel@student.manchester.ac.uk

Oscar Corcho

School of Computer Science,
University of Manchester, Oxford
Road, Manchester M13 9PL, UK

 +44 (0) 161 275 6821

Oscar.Corcho@manchester.ac.uk

Pericles Loucopoulos

Business School,
Loughborough University,
Loughborough LE11 3TU,

UK
+44 (0)1509 22 8273

P.Loucopoulos@lboro.ac.uk

929

Easterbrook [7] identified two sources of conflicts in
requirements engineering: conflicts between the participants
perceptions of the problems, and conflicts between the many
goals of design. Conflicts can also arise in connection to NFRs,
thus NFRs can make conflicts and cooperation instances more
obvious, because changes in quality attributes often cause
certain functional changes that in turn affect other NFRs [5].

Many methods exist to deal with conflict resolution in
requirements but for the purpose of this paper we will
investigate the approaches that deal with NFR conflict
resolution. McCall [11] provided a checklist of attribute
capabilities to be considered in requirements specifications
without an automated conflict analysis. The NFR-goal
framework [12] views NFRs as goals that might conflict with
each other and they must be represented as softgoals to be
satisfied, this is achieved by propagating such information along
positive/negative support links in the goal graph. Boehm and In
[4] propose a knowledge base where NFRs are prioritized
through the stakeholders’ perspective, dealing with NFRs high
level of abstraction. Easterbrook [7] provides a framework for
conflict resolution between domain specifications. Egyed [5]
identifies requirements conflicts and cooperation using
software attributes and eliminates false conflicts and
cooperation automatically with the help of a trace analysis
technique.

Although these approaches analyzed the identification,
communication, and conflict resolution, they do not
comprehensively address the following issues:

• Define a terminology for standardizing the non-functional
requirements definitions and meanings.

• Examine the nature and correlations between NFRs that
potentially may result in a conflict.

• Automate the process of conflict identification using
knowledge management techniques.

This paper describes how quality ontologies can be used to
support the identification of NFR conflicts and facilitate
discussion towards requirements prioritization tasks in
requirements engineering. Our approach is based on using the
ISO/IEC 9126 quality ontology to underpin the NFR description
and reasoning mechanisms to pinpoint potential NFR conflicts
that need to be further discussed by stakeholders.

3. Examples Of Conflicts In Quality
Requirements

NFRs, as investigated by [5], conflict with each other
when they make contradicting statements about some software
attribute, and they cooperate when they mutually enforce such
attributes. Thus it is important to understand how NFRs relate
to each other in order to identify the key conflicts early in the
requirements elicitation process and before the project evolves
to a situation where it is hard to manage the set of NFRs
developed by the stakeholders.

In this section we study the relationship among NFRs. We
adopted the ISO/IEC 9126 [13] as a standard quality model and
terminology for describing NFRs. Table 1 shows some
relationships between quality requirements at the quality sub-

characteristics level. The quality requirements may cooperate
(+), conflict (-), or have no effect with each other (0). This
model was adopted from a range of contributions specialized in
analyzing the quality requirements relationships [5, 14, 15]. The
table does not cover all the quality sub-characteristics listed in
the ISO/IEC 9126 limiting it to the common ones used in
software projects; usability [16-19], security [20] and efficiency
[21].

Table 1 Correlations between ISO/IEC 9126 Quality
Requirements

Effect

A
cc

u
ra

cy

In
te

ro
p

er
a

b
lit

y

S
e

cu
ri

ty

R
e

co
ve

ra
b

ili
ty

F
au

lt
To

le
ra

nc
e

L
ea

rn
a

b
ili

ty

U
n

d
e

rs
ta

n
da

b
ili

ty

A
ttr

ac
tiv

e
n

es
s

O
p

e
ra

bi
lit

y

T
im

e
 B

eh
a

vi
o

u
r

R
e

so
u

rc
e

U
til

iz
a

tio
n

Accuracy + 0 0 0 0 + + + + - -
Interoperablity 0 + 0 0 0 0 0 0 + 0 -
Security + 0 + 0 0 0 0 - - - -
Recoverability 0 0 0 + + 0 0 0 + - -
Fault Tolerance 0 0 0 + + 0 0 0 + - -
Learnability + 0 0 0 0 + + 0 + 0 0
Understandability + 0 0 0 0 + + 0 + 0 0
Attractiveness 0 + - 0 0 + + + + 0 0
Operability + + - + + + + + + + +
Time Behaviour - 0 - - - 0 0 0 + + -
Resource Utilizatio - - 0 - - 0 0 0 0 - +

Quality
Requirement

(+) represents a positive effect, (-) represent negative effect, (0) represents no effect

In an ideal universe, every system would exhibit the
maximum possible value for all its quality requirements but this
is often unattainable. Thus it is important to learn which quality
requirements are most important to the success of a project.
From Table 1, design approaches that require higher accuracy
also enforce other quality requirement such as learnability,
understandability, attractiveness, and operability. However,
higher accuracy may also increase response time and resource
consumption which are often undesirable by stakeholders.
Therefore, to reach the optimum balance of quality
requirements, we must identify, specify, and prioritize the
pertinent quality attributes during requirements elicitation.

4. Using Quality Ontologies To Support
Elicitation And Conflict Identification

Quality ontologies were used with requirements elicitation
by providing the requirements analysts with the knowledge
repository to support elicitation activities [22, 23] by defining
quality sub-characteristics and metrics that need to be specified
towards describing the requirements with appropriate levels of
precision. Quality ontologies can also be used to support
conflict identification in connection to NFRs by offering the
following benefits:

• Provide a shared domain vocabulary for the NFRs to avoid
ambiguities among stakeholders.

• Analyze the relationships between quality requirements in
order to avoid combining conflicting requirements by
stakeholders.

930

• Encode specialized knowledge to support the formulation
of competency questions with regard to quality
requirements meanings and relationships among each other.
Thus facilitating the elicitation of a complete set of conflict
free quality requirements.

In order to achieve these goals, our motivation is to
develop an ontology driven requirements elicitation and
negotiation/prioritization method, guided by a standard quality
model. The quality model is encoded as a quality ontology, and
automated by a requirements elicitation tool ElicitO[23],
helping to address quality factors during elicitation interviews as
well as dealing with NFRs trade-offs. Figure 1 illustrates the
proposed approach. There are two main ontologies important to
guide the elicitation and conflict identification: Quality
ontology, which is based on software quality models
representing reusable knowledge about different quality
characteristics, sub-characteristics, and metrics. Domain
ontology, which provides a conceptual structure of the domain
(e.g. university helpdesk, in this paper) including functions,
activities, relationships, etc.

The implementation of the ElicitO tool [23] was carried out
using Protégé. It only addresses requirements elicitation by
empowering requirements analysts with expert domain
knowledge about the functional aspects via a domain ontology
and non-functional requirements via a quality ontology relevant
to a given domain. For the purpose of this paper we continue
working with the quality ontologies to help with requirements
negotiation and conflict identification once the requirements are
elicited.

Figure 1 Ontology Guided Requirements Elicitation and
Conflict Identification Framework

As the requirements are being elicited [22] the
requirements analyst can also assist the stakeholders in
analyzing and validating these sets of requirements for
identifying conflicts. The ElicitO tool facilitates this process by
highlighting potential conflicts to allow further communication
and negotiation until the stakeholders’ reach an agreement and
quality attributes are prioritized.

5. The Design Of The Ontology For Conflict
Identification

The ontologies for conflict identification are developed in
OWL and they describe the domain classes, properties and
restrictions of the functional and quality requirements
knowledge, as illustrated Figure 2. There are two ontologies
underpinning the conflict identification process:

• Quality Ontology: represent the quality taxonomy which is
decomposed into four main components as shown in Figure
2 (1) and corresponds to the relationships between quality
characteristics (Conflict or influence each other), (2)
corresponds to the ISO/9126 quality model (quality
characteristics and quality sub-characteristics), and (3)
represents the quality metrics. The quantitative measures
for the metrics are borrowed from SUMO [24]
(information, time, length, and mass measures).

• Domain Ontology, and in our case is the helpdesk ontology
for which we used text books, standards, and interviewed
domain experts (helpdesk operators with more than 5 years
of experience each). We have also borrowed some classes
and properties defined in other ontologies such as SUMO
[24]. For examples SUMO Entity (page, center, helpdesk,
student), SUMO processes (borrowing, search, register)
etc.
The restrictions are then defined for classes in the previous

ontologies to determine what metrics are representing the quality
characteristics and sub-characteristics as shown in Figure 2. In
addition, it represents the metrics related to the domain
activities.

The restrictions specified above were used to restrict an
individual that belongs to a class (e.g. helpdesk has-metric
page_downloads_speed). The quality ontology, however,
doesn’t provide a mean of performing specific actions on the
ontologies (i.e. conflict identification). In order to conduct
conflict identification actions we incorporated conflict
identification reasoning to the system by applying the rule
reasoning framework supported by JessTab [25]. Although the
rules are expressed in Jess, other languages such as SWRL
(Semantic Web Rule Language) could be used; however we
have selected Jess due to its configurability and usability in
protégé via Jesstab.

There is a rule for each pair of quality attributes as
indicated in Table 1. These rules are to be fired when the
stakeholders combine two conflicting requirements in order to
alert the stakeholders and allow further discussion. Examples of
Jess Rule that will be fired when the stakeholders combine two
conflicting requirements are shown in Figure 3.

The ElicitO tool also offers additional features using Jess
Rules such as:

• Separation between the knowledge base model (quality and
domain ontologies) and the model where the actions are
performed. This is because the first model is standardized
and shared with regards to quality attributes related to a
particular domain, however, the second model reuses the
first model but with extra actions depending on the
objectives of the ontology based applications, in our case
it’s used for requirements elicitation and conflicts
identification.

931

• Help with identifying conflicts early as requirements are
elicited to facilitate further discussion among stakeholders
until they reach an agreement and prioritize requirements.

Domain Ontology

1

2

3

Restriction

Quality Ontology

Figure 2 Quality Ontologies in Protégé

By extending the features of ElicitO with conflict
identification capabilities, the requirements analysts are
empowered with a knowledge repository to help with
requirements elicitation and conflict identification. The
automation of conflicts identification tasks is especially useful in
projects involving multiple stakeholders and that can scale up to
thousands of requirements.

6. Running Example Using ElicitO
To assess the effectiveness of the approach, the authors

attended a focus group session which was one of the ongoing
sessions in connection with University of Manchester Unity
Web Project for the purpose of enhancing the current helpdesk
website of the university. The participants were from different
departments with different views, assumptions, and as a result,
different requirements. The participants were asked for what
they want to see in the new system and what sort of problems
they have encountered with the old system. A two hour session
was conducted jointly with stakeholders, the first hour was
dedicated to requirements elicitation and the second hour was
dedicated to requirements prioritization. The requirements
elicited during the elicitation phase are as presented in Table 2.
As indicated from the table, the types of requirements are
limited, very general, and vary from functional and non-
functional requirements with very little attention to quality
requirements (R2, R3, and R5).

The second stage of the session was the requirements
prioritization on which the requirements engineer asked the
participants to rank the above requirements with either essential
or nice to have as illustrated in Table 3. This had the potential
to trigger conflicts as every participant would vote high for what
they want disregarding how their requirements might conflict
with others. For example, R5 and R6 are considered essential by
the majority of the participants but they might conflict with the

issue of security which wasn’t taken into account by the
requirements analysts.

 (defrule time-security (Req_Time_Behaviour TRUE)

 (Req_Security TRUE) => (printout t "Time Behaviour and

 Security are Conflicting requirements" crlf))

 (defrule attractivness-security (Req_Attractiveness TRUE)

 (Req_Security TRUE) => (printout t "Attractiveness and

 Security are Conflicting requirements" crlf))

Figure 3 Jess Rules Example

In contrast to the unstructured and ad-hoc approach
conducted during the focus group sessions, another session was
conducted using the ElicitO tool for the requirements elicitation
and prioritization activities which provided the relevant domain
and quality knowledge to the requirements analysts to be more
effective in conducting the elicitation/prioritization interviews.
The tool highlights all the functional activities of the domain
and their attached quality characteristics. The analyze
requirements button will examine the requirements for potential
conflict anytime during the requirements elicitation Figure 4(a).
The analyze requirements button will fire the Jess Rule that will
check the requirements for potential conflicts and a list of
conflicting requirements are as highlighted in Figure 4 (b). The
analyst then selects a set of conflicting requirements to allow
further discussion/negotiation and prioritization Figure 4 (c).

Table 2 Requirements Captured without the tool support

Update the staff directory frequently R11

Highlight important events or alertsR10

Provide links to the outside worldR9

Provide information about exam timetables and venuesR8

Provide information on how to report a problem and to whomR7

Make students user names accessible to faculty when using WebCT
(e-learning) to register students

R6

Make the university regulations and policies easy to accessR5

Provide campus map when requiredR4

Make the websites among different schools consistentR3

FAQ should be clear and simple in answering users technical
problems

R2

Provide information/pathway onto how to access web services (i.e.
web mail, network drive, etc.)

R1

User Requirements

For the discussion and prioritization activity, all the

participants assess the perceived return on value of the quality
requirement by each participant using a scale from (1-5): 1-no
value, 2-little value, 3-some value, 4-high value, 5-very high
value [26]. For each requirement the mean value of all
participants’ assessment is calculated and a priority is specified.
The participants can also write a short justification for choosing
a certain quality requirement over the other. The same process
is applied for each conflicting requirements. Figure 4 (b)
presents the prioritized requirement of one quality requirement

932

over the other requirement in addition to the detailed
requirements specifications (using the same amount of time as of
the first session).

Table 3 Requirements Prioritized without the tool support

EssentialUpdate the staff directory frequently R11

Nice to haveHighlight important events or alertsR10

Nice to haveProvide links to the outside worldR9

EssentialProvide information about exam timetables and
venues

R8

Nice to haveProvide information on how to report a problem and
to whom

R7

EssentialMake students user names accessible to faculty when
using WebCT (e-learning) to register students

R6

EssentialMake the university regulations and policies easy to
access

R5

EssentialProvide campus map when requiredR4

Nice to haveMake the websites among different schools consistentR3

EssentialFAQ should be clear and simple in answering users
technical problems

R2

Nice to haveProvide information/pathway onto how to access web
services (i.e. web mail, network drive, etc.)

R1

PriorityUser Requirements

The findings obtained from the focus group sessions with
ElicitO support can be listed up as follows:

• The knowledge encoded in the ontology formalizes the
quality requirements and makes them explicit throughout
the requirements elicitation process which reduces the
problem of understanding caused by different
interpretations of quality requirements.

• The knowledge encoded in the ontology is based on the
ISO/IEC 9126. Quality model extended by adding metrics
and defined relationships among the quality factors to
enable analysts in capturing a rich set of non-functional
requirements.

• The numbers of functional and quality requirements
captured were far more than the initial number of
requirements elicited without the tool support. The quality
requirements were associated with the functional
requirements which have added value to the functional
requirements.

• The non-functional requirements were not only extensively
identified by the stakeholders but they were also precisely
specified via metrics.

• The tool identifies the conflicting requirements early in the
process so the stakeholders can negotiate and rank the
requirements. Thus facilitating and speeding up the
software engineering process.

Overall the ElicitO tool facilitated the requirements
elicitation activities by providing the required functional
requirements, quality requirements and precise metrics to the
requirements analysts about a specific application domain via
the knowledge encoded in the ontology. ElicitO also helped
with the identification of potential conflicts among desired
quality attributes and facilitated agreement on a balance of
attribute satisfaction via communication and quality
requirements prioritization.

Figure 4 (a): requirements document; (b): list of conflicting
requirements; (c): conflicting requirements

negotiation/prioritization

7. Related Work
In general, our approach complements the other work

related to quality requirements conflicts identification. Boehm
and In [4] proposed Quality Attribute Risk and Conflict

(a)

(b)

(c)

933

Consultant knowledge-base tool (QARCC) an exploratory
knowledge-based tool for identifying potential conflicts and
risks among quality requirements early in the software life cycle.
QARCC uses a knowledge base to identify software architecture
and process strategies to achieve this quality attribute. Another
approach is the requirements negotiation tool (Oz) [27] which
effectively support an automated conflict detection,
characterization, and resolution generation, and resolution
decision-making support. In the NFR framework [12] quality
requirements are identified, decomposed, and prioritized so an
effective design solution is found. Our proposed method
ElicitO, improved on the other approaches by supporting the
quality requirements elicitation and conflict identification for
both functional and non-functional requirements via quality
ontology knowledge based domain independent tool.

8. Conclusions And Future Work
This paper proposes an elicitation and conflict

identification approach for non-functional requirements and
associated tool ElicitO aimed at supporting requirements
analysts with a knowledge repository that helps in eliciting a
comprehensive and conflict free set of requirements. The
approach is based on the application of functional and non-
functional domain ontologies (quality ontologies) to underpin
the elicitation and conflict identification activities.

The ISO/IEC 9126 quality model was adopted as a
baseline for addressing quality concerns and the NFRs
relationships are analyzed and codified using rules to help with
reasoning about conflict identification. The approach and the
tool were evaluated using a web project at the University of
Manchester, where it proved to help in identifying potential
conflicts and allowing participants to further discuss the
requirements to effectively and efficiently reach an agreement.

9. References
[1] L. Chung and B. A. Nixon, "Dealing with non-functional

requirements: three experimental studies of a process-oriented
approach," presented at Proceedings of the 17th international
conference on Software engineering, Seattle, Washington, United
States, 1995.

[2] J. Mylopoulos, L. Chung, and B. Nixon, "Representing and Using
Non-Functional Requirements: A Process Oriented Approach,"
IEEE Transactions on Software Engineering, vol. 18, pp. 483-497,
1992.

[3] L. M. Cysneiros and J. C. S. d. P. Leite, "Integrating Non-Functional
Requirements into Data Modeling," presented at Proceedings of
IEEE International Symposium on Requirements Engineering,
Ireland, 1999.

[4] B. Boehm and H. In, "Identifying quality-requirement conflicts,"
Software, IEEE, vol. 13, pp. 25-35, 1996.

[5] A. Egyed and P. Grunbacher, "Identifying requirements conflicts
and cooperation: how quality attributes and automated traceability
can help," Software, IEEE, vol. 21, pp. 50-58, 2004.

[6] B. Nuseibeh and S. Easterbrook, "Requirements Engineering: A
Roadmap," presented at Proceedings of the conference on The
future of Software engineering, Limerick, Ireland, 2000.

[7] S. Easterbrook, "Resolving Requirements Conflicts with Computer-
Supported Negotiation," in Social and Technological Issues in
Requirements Engineering, M. Bickerton and M. Jirotka, Eds.:
Academic Press, 1993.

[8] S. Easterbrook, E. Beck, S. Goodlet, L. Plowman, M. Sharples, and
C. Wood, "A survey of empirical studies of conflict," in CSCW:
Cooperation or conflict?: Springer-Verlag, 1993, pp. 1-68.

[9] A. Lamsweerde, E. Letier, and R. Darimont, "Managing Conflicts
in Goal-Driven Requirements Engineering," IEEE Transactions
on Software Engineering, vol. 24, pp. 908 - 926, 1998.

[10] W. N. Robinson, "Integrating Multiple Specifications Using
Domain Goals," presented at Proc. IWSSD-5—Fifth Int’l
Workshop Software Specification and Design, Pittsburgh, United
States, 1989.

[11] J. A. McCall, P. K. Richards, and W. G.F, "Factors in Software
Quality," Technical Report, AD/A-049-014/015/055, National
Technical Information Service 1977.

[12] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering. Norwell,
Massachusetts: Kluwer Academic Publishing, 2000.

[13] "ISO/IEC 9126-1:2001 Software engineering --Product quality --
Part 1: Quality model."

[14] X. Franch and J. P. Carvallo, "Using quality models in software
package selection," IEEE Software, vol. 20, pp. 34-41, 2003.

[15] K. Wiegers, Software Requirements: Practical Technologies for
Gathering and Managing Requirements Throughout the Product
Development Cycle: Redmond, Wash- Microsoft Corp, 2003.

[16] J. Nielsen, Designing Web Usability: the practice of simplicity:
New Riders Publishing, 1999.

[17] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, "Usability
Meanings and Interpretations in ISO Standards," Software Quality
Journal, vol. 11, pp. 325–338, 2003.

[18] L. M. Cysneiros, V. M. Werneck, and A. Kushniruk, "Reusable
Knowledge for Satisficing Usability Requirements," presented at
Proceedings of the13th IEEE International Conference on
Requirements Engineering, 2005., 2005.

[19] M. Moraga, C. Calero, I. Paz, O. D�az, and M. Piattini, " A
Reusability Model for Portlets," presented at International
Workshops on Web Information Systems Engineering, WISE
2005, New York, USA, 2005.

[20] D. Firesmith, "Engineering Security Requirements," Journal of
Object Technology, vol. 2, pp. 53-68, 2003.

[21] Y. Yuan, "Efficiency metrics model for component-based
embedded application software," presented at Second
International Conference on Embedded Software and Systems,
2005., 2005.

[22] T. AlBalushi, P. Sampaio, D. Dabhi, and P. Loucopoulos,
"Performing Requirements Elicitation Activities Supported by
Quality Ontologies," presented at Proceedings of the Eighteenth
International Conference on Software Engineering and
Knowledge Engineering, San Francisco, 2006.

[23] T. AlBalushi, P. Sampaio, D. Dabhi, and P. Loucopoulos, "ElicitO:
A Quality Ontology-Guided NFR Elicitation Tool," presented at
Proceedings of the 13th Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ'07),
Trondheim, 2007.

[24] SUMO, "Standard Upper Merged Ontology," vol. April, 2007,
2003.

[25] H. Eriksson, "Using JessTab to integrate Protege and Jess," IEEE
Intelligent Systems, vol. 18, pp. 43-50, 2003.

[26] S. Ziemer, P. R. F. Sampaio, and T. St�lhane, "A decision
modelling approach for analysing requirements configuration
trade-offs in time-constrained Web Application Development,"
presented at Proc. Eighteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE 2006),
San Fransisco, 2006.

[27] W. N. Robinson and S. Fickas, "Automated Support for
Requirements Negotiation," presented at AAAI-94 Workshop on
Models of Conflict Management in Cooperative Problem Solving,
1994.

934

Ontology-Based Process Modeling and Execution using STEP/EXPRESS∗

Arndt Mühlenfeld, Wolfgang Mayer, Franz Maier, Markus Stumptner

Advanced Computing Research Centre
University of South Australia

5095 Mawson Lakes, SA, Australia

E-mail: {muehlenfeld|wolfgang.mayer|franz.maier|mst}@cs.unisa.edu.au

Abstract

A common data format as provided by the STEP/EX-
PRESS initiative is an important step toward interoper-
ability in heterogeneous design and manufacturing envi-
ronments. Ontologies further support integration by pro-
viding an explicit formalism of process and design knowl-
edge, thereby enabling semantic integration and re-use of
process-information. By formalizing the process-model in
EXPRESS, we gain access to the domain knowledge in the
STEP application protocols. We present an approach to
process modeling using different models for abstract pro-
cess knowledge and implementation details. The abstract
process model supports re-use and is independent of the im-
plementation. As a result, we translate the process model
in combination with the implementation model to an exe-
cutable workflow.

1. Introduction

Modern industrial design manufacturing processes allow

for collaboration among organizations and organizational

units within large companies. Design knowledge that is

spread over several design teams and systems is difficult to

integrate. The lack of interoperability in heterogeneous in-

formation systems results from incompatible data formats

and differences between domain models. Data exchange

between design stages requires definition of mappings be-

tween data representations or the use of a common for-

mat. STEP/EXPRESS is an established standard for prod-

uct data representation and solves the problem of incom-

patible data formats. Differences in domain models are ad-

dressed by modeling semantic knowledge in ontologies. Se-

mantic interoperability between design disciplines is usu-

ally achieved by using a common upper ontology [12] or

∗This work was funded by the CRC for Advanced Automotive Technol-

ogy under project C4-801 Process Modelling in the Automotive Industry.

mappings between domain ontologies [16]. N.Guarino [4]

proposes a model for information integration that uses sepa-

rate ontologies for task and domain knowledge with a com-

mon upper ontology.

In this paper we present a meta-model for task ontologies

of industrial processes that integrates process knowledge

with artifact representation. The meta-model provides us

with the means to express knowledge over artifacts and re-

construct provenance. We utilize established workflow ex-

ecution engines for enacting the process model by building

a meta-model for the execution environment and defining

a mapping between the process and the enactment meta-

models. The process meta-model has two parts, an abstract

process model and an implementation model. Keeping the

implementation details separate from the process model

makes the conceptual model clearer and better suited for

re-use. We use EXPRESS to specify our ontological model,

which gives us direct access to the information models of

the STEP Standard. Furthermore, we can use the same lan-

guage for (a) process models and (b) artifacts represented in

STEP. In order to close the gap between specification and

implementation we present a mapping of process specifica-

tions to a specific workflow engine. Most workflow engines

provide an execution trace of the enacted workflow and sup-

port data provenance. We present an example mapping for

a specific workflow execution engine to demonstrate that

our process model contains the necessary information. The

process model is independent of the actual workflow en-

gine and can be mapped to several different engines. Spec-

ification of mappings between our process meta-model and

the meta-model of a specific workflow engine enables auto-

matic translation of process models. Hence, we are free to

use the workflow execution engine that best suits the target

environment.

In Section 2 we introduce our meta-model and the bene-

fits arising from formalizing it using STEP/EXPRESS. Sec-

tion 3 is dedicated to the enactment of the process model.

We use an implementation model and transformations to

create a specific workflow that can be fed to a workflow

935

execution engine. An example of a process-model transfor-

mation is given in Section 4. In Section 5 we present related

work. Our contribution and future work is summarized in

Section 6.

2. Process Modeling with EXPRESS

2.1. The EXPRESS Language

The STEP standard (ISO 10303) defines a collection of

application protocols representing data models for differ-

ent domains. EXPRESS is the modeling language used for

the data models and is specified in Part 11 of the standard

[6]. The language is able to represent entity-relationship

concepts in an object-oriented way. Its powerful represen-

tation of constraints on data has shown to be suitable for

formal specifications and meta programming [1]. An appli-

cation model in EXPRESS comprises types, functions and

data objects called Entities. Entities consist of attributes and

constraints related to the attributes. Entities are the central

elements of the language and represent classes of objects.

As in object-oriented languages, classes are structured hi-

erarchically by inheritance. The elements of a model are

grouped into a Schema. Schemata are like name spaces and

can be referenced by other schemata.

The language is powerful enough to express the struc-

ture of any meta-model within an EXPRESS Schema and

the standardized access interface in several languages bind-

ings allows for the generation of a meta-data management

systems suited to the target systems [14].

2.2. The Process Model

Figure 1. An overview of the meta-model in
UML.

In the meta-model depicted in Figure 1 an abstract Pro-
cess is either a CompoundProcess comprising one or more

processes or an indivisible SimpleProcess. A Process has

input and output Ports for input and output data. The data

expected on a port is specified by a ParameterDescription
which in turn includes ModelVariables, if it represents a

complex structure like a parametric model. Constraints
specify the behavior of the process in the role of precon-

ditions and postconditions. A DataFlow connects output

ports with input ports and is the basic building block for

data flow in the process model. Control flow is modeled in-

dependently of the data flow by Transitions. A process can

have many ingoing and outgoing transitions.

ENTITY P a r a m e t e r D e s c r i p t i o n ;

d e s c r i p t i o n : STRING ;

v a r i a b l e : SET [0 : ?] OF Mode lVar i ab l e ;

i s s i m i l a r t o : SET [0 : ?] OF P a r a m e t e r D e s c r i p t i o n ;

END ENTITY ;

ENTITY P o r t

SUBTYPE OF (NamedEnt i ty) ;

d e s c r : P a r a m e t e r D e s c r i p t i o n ;

END ENTITY ;

ENTITY DataFlow ;

s o u r c e : P o r t ;

t a r g e t : P o r t ;

WHERE
d a t a i s c o m p a t i b l e :

(s o u r c e . d e s c r = t a r g e t . d e s c r) OR
(s o u r c e . d e s c r IN t a r g e t . d e s c r . i s s i m i l a r t o) OR
(t a r g e t . d e s c r IN s o u r c e . d e s c r . i s s i m i l a r t o) ;

END ENTITY ;

Listing 1. Specification of entities Parameter-
Description and DataFlow in EXPRESS

The process model presented above does not specify the

properties of the data exchanged between processes. The

data model makes use of the application protocols of the

STEP Standard and is domain dependent. We use AP 214

to model the data of the design optimization process, be-

cause it contains the domain knowledge for automotive de-

sign processes. The full data model is beyond the scope of

this document. However, as an example for the expressive-

ness of EXPRESS, we have formulated a rule that ensures

that Dataflows connect only Ports with ”related” parameter

descriptions. Therefore, we define the attribute is similar to
in ParameterDescription, which represents the association

to related objects (see Listing 1). Entity DataFlow has a

rule stating that only ports that have the same parameter de-

scription, or parameter descriptions that are similar to each

other, are allowed as source and target objects.

2.3. The Implementation Model

The process meta-model describes abstract properties,

process components and their relationships, but not how

a process can be executed or where the data for its ports

are stored. This information is part of the implementation

model. The implementation meta-model in Figure 2 defines

two types of process instances, WebService and Executable.

For the sake of brevity, details on Web Services are omitted.

An Executable has at least two possibilities for its input. In

936

Figure 2. An overview of the implementation
model in UML.

our model, it can receive input from physical storage (Phys-
icalStorage), e.g., a File, or as a command-line parameter

(CommandLineArg). Physical processes are part of a Pro-
cessInstance or a GuardedTransitionInstance. The former

is the realization of a Process in the process-model; the lat-

ter is a process that evaluates the guards of a Transition in

the process-model. Realizing the evaluation of guards for

conditional execution as a physical process keeps the model

independent of the constraint language. Not visible in the

UML-diagram, but specified in EXPRESS is the constraint

has result. It expresses the invariant that an entity of class

GuardedTransitionInstance has to provide a port named ’re-

sult’ for the evaluation result (see Listing 2). This is possi-

ble, because AbstractInstance provides an attribute contain-

ing a set of instantiated ports which is overridden by its de-

rived concrete entities. For example, in Executable the port

list is extracted from the list of ExecutablePortData.

3. Workflow Execution

Figure 3. Process execution.

Our process model in combination with the implemen-

tation model contains all necessary data for enactment. A

couple of workflow engines exist that have already reached

the required maturity for production environment (e.g. Ke-

pler [9], MyGrid/Taverna [13]). We do not want to tie our

model to a specific workflow system but prefer to have the

choice to use the best system for particular requirements.

FUNCTION g e t p o r t s p e c s f r o m p o r t d a t a (p o r t l i s t : AGGREGATE OF P o r t D a t a)

: SET OF Ent i tyName ;

LOCAL
r e s u l t : SET OF Ent i tyName ;

END LOCAL ;

REPEAT i := LOINDEX (p o r t l i s t) TO HIINDEX (p o r t l i s t) ;

r e s u l t [i] := p o r t l i s t . p o r t s p e c ;

END REPEAT ;

RETURN (r e s u l t) ;

END FUNCTION ;

ENTITY A b s t r a c t I n s t a n c e ;

d e s c r i p t i o n : STRING ;

spec : Ent i tyName ;

DERIVE
p o r t l i s t : SET OF Ent i tyName := [] ;

END ENTITY ;

ENTITY E x e c u t a b l e SUBTYPE OF (A b s t r a c t I n s t a n c e) ;

commandline : STRING ;

d a t a l o c a t i o n s : LIST OF E x e c u t a b l e P o r t D a t a ;

DERIVE
SELF\A b s t r a c t I n s t a n c e . p o r t l i s t : SET OF Ent i tyName :=

g e t p o r t s p e c s f r o m p o r t d a t a (d a t a l o c a t i o n s) ;

END ENTITY ;

ENTITY G u a r d e d T r a n s i t i o n I n s t a n c e ;

i n s t a n c e : A b s t r a c t I n s t a n c e ;

DERIVE
g u a r d e d t r a n s i t i o n s p e c : Ent i tyName := i n s t a n c e . s p e c ;

WHERE
h a s r e s u l t :

SIZEOF (QUERY (p <∗ i n s t a n c e . p o r t l i s t | p = ’ r e s u l t ’)) = 1 ;

END ENTITY ;

Listing 2. Specification of process implemen-
tations in EXPRESS

We keep the model independent of the workflow system

by defining transformations that generate the workflow de-

scription for the target system from the model. We chose the

workflow engine Taverna to demonstrate the approach, be-

cause it is intuitive and simple to use, but powerful enough

to support sophisticated workflows.

3.1. The Workflow Execution Engine Taverna

A workflow in Taverna [13] consists of inputs, outputs,

one or more processors and the data flows between them

(see Figure 4). Processors have an interface for inputs and

outputs. The outputs of processors can be connected to

other inputs or the workflow outputs. The whole workflow

is data flow oriented and the order of execution is defined

by the data dependencies between processors. A processor

is executed as soon as it has got all of its inputs and proces-

sors may execute concurrently. The data flow can lead from

one output to inputs of more than one processor. If an input

is connected to more than one output, the first output to de-

liver the data ”wins”. In addition to the data dependencies

it is possible to restrict the execution order of processors

by defining temporal constraints called ”Coordinate from”.

By defining a ”Coordinate from” association between pro-

cessors A and B, A will only execute when B has com-

pleted. The usual method of creating a workflow in Taverna

is by using its graphical user interface (GUI). However, all

workflows created by using the GUI are passed to the ex-

ecution engine in the workflow description language Scufl

937

Figure 4. Meta-model of workflows in Taverna.

(Simple Conceptual Unified Flow Language). It is a simple

XML-based format representing the elements and links of

the workflow and can be used to execute the workflow with-

out the GUI. It contains the workflow description, a couple

of processors connected by data flow (link) and control flow

edges (coordination) and the inputs (source) and outputs

(sink) of the workflow. For our current project, only two

types of processors are of interest: the local process FailIf-

False for conditional transitions and the Beanshell Scripting

Host for program execution.

3.2. Mapping the Model to a Workflow

The data provided in the process model is sufficient to

define the nodes and links in the workflow. The only miss-

ing information is the definition of the implementation of

the processor nodes. This definition is provided by the im-

plementation model. The four main elements of our pro-

cess that need to be represented in the workflow description

are Process, DataFlow, Transition and GuardedTransition.

A process maps to a processor, where the interface of the

processor is defined by the ports of the process. Data flow

objects have a straight-forward equivalent in the workflow

description; they are represented by links between proces-

sor interfaces. A transition has no direct equivalent in Scufl.

The closest representation is a coordinating link, but coor-

dination is more restrictive than a transition. Consider a

process A with two transitions coming from process B and

C. In our model, the precondition of process A specifies, if

the process waits until both or only one of the processes B

and C have finished execution. In Scufl, both processes have

to finish execution successfully if A is coordinated from B

Figure 5. Implementation of a guarded transi-
tion in the target workflow.

and C. We keep it simple and stick to the behavior of Scufl’s

coordination element and define that a process has to be

reached by all transitions in order to start its execution. The

most sophisticated part of the workflow generation is the

implementation of a transition with guards, i.e., a Guard-

edTransition. We implement it in the workflow description

by using a processor for the evaluation of the constraint fol-

lowed by a conditional node (FailIfFalse) and a ”coordinate

from”-edge to the conditional node (see Figure 5). This

rough sketch of how to implement the workflow in Scufl

gives a first impression on how to achieve our goal. In order

to formalize the transformation we first start by defining the

source and target models.

Definition 1
Let X(PX , IX , OX , DX , CX) represent a workflow, where

PX ... set of processors {pi(ii,1 . . . ii,M , oi,1 . . . oi,N)|0 <
i ≤ NX}, ii,j .. input j of processor i, 0 < j ≤ Mi,
oi,j .. output j of processor i, 0 < j ≤ Ni,

IX ... set of inputs of the workflow, represented as proces-
sor outputs {o0,j |0 < j ≤ N0},

OX ... set of outputs of the workflow, represented as pro-
cessor inputs {i0,j |0 < j ≤ M0},

DX ... data flow between processors represented by a set
of links {dν = oi,j → ik,l}.

CX ... set of coordinations c(pi, pj), coordinate processor
pi from pj .

938

Definition 2
Let M(ΠM , RM , DM , TM , GM) denote a process model,
where

ΠM ... set of processes {πi|1 ≤ i ≤ NΠ},

RM ... set of ports {ri|1 ≤ i ≤ NR}, Ri ∈ RM ... set of
ports of process πi,

DM ... set of data flow links {lν(ri → rj)},

TM ... set of transitions {tν(πi → πj)},

GM ... set of guarded transition {gν(γν , πi → πj)}, γν ...
guard

Using the two definitions we can write the algorithm to

obtain a workflow X from the process model M as follows:

1. ∀π ∈ ΠM : create processor pi with inputs Ii and out-

puts Oi corresponding to the ports in Rπ .

2. ∀t(πi → πj) ∈ TM : create ”coordinate from”

c(pi, pj).

3. ∀g(γ, πi → πj) ∈ GM :

(a) create processor pk with inputs Iγ and output oγ .

(b) create processor ”FailIfFalse” (pf) with input if .

(c) create data flow dγ = oγ → if .

(d) create coordinations cγ,1(pi, pk) and

cγ,2(pf , pj).

4. ∀lν(ri → rj) ∈ DM : create data flow dν = (o(ri) →
i(rj)).

4. Example workflow

We tested the workflow generation on a process model

for multi-disciplinary design optimization in the automo-

tive industry [15]. Part of the process is the generation of an

instance mesh from a geometric model, which is later used

by the finite element analysis. The process model of the in-

stance mesh generation contains conditional transitions that

select between two possible paths in the process. Depend-

ing on the value of a flag (run geometry flag), either a new

mesh is generated or the resulting mesh of a previous run is

fetched.

The implementation model contains four executables for

the two sub-processes and the evaluation of the constraints

on the two guarded transitions, respectively. After applying

the transformations presented in the previous section, we

get a workflow that can be visualized in the Taverna GUI

(see Figure 6) and executed inside the GUI or with the stan-

dalone workflow execution engine.

Figure 6. The example workflow in Taverna.

5. Related Work

A number of other process ontologies exist [2, 3, 8]. But

to our knowledge, no other work uses EXPRESS to formal-

ize a process model with workflow enactment. An extensive

evaluation of other ontologies in the context of industrial

design processes can be found in [10].

Our approach consolidates process and artifact ontolo-

gies under a common STEP/EXPRESS meta-model. We

chose EXPRESS because it comes with huge artifact on-

tologies and is well-suited for meta-modeling. It can be ar-

gued that other standard languages like the process specifi-
cation language PSL are better suited for process modeling.

PSL offers a rigorous basis for verifiable semantic defini-

tions, but lacks support for context relationships and needs

better definitions of process artifacts [5]. STEP and its ap-

plication protocols provide in contrast sophisticated domain

models for artifact and process modeling.

Mimoune et al. [11] exchange data between heteroge-

neous database systems using a generic meta-schema for-

malized in the EXPRESS language to overcome the difficul-

ties arising from different conceptual models for the same

implementation and structural differences between imple-

mentations of the same conceptual model. Their approach

focuses on the definition of mappings between data base

schemata.

Work has been done to map from business processes to

workflows including ontological mapping between the out-

put of one process and the input of another process. How-

939

ever, a general mapping from control flow oriented meta-

models to data flow oriented systems is hard to achieve [7].

6. Conclusion

Data exchange between different stages of an indus-

trial process is difficult because of the heterogeneity of

the involved systems. The common data format standard

STEP/EXPRESS helps to overcome the structural differ-

ences. The standard defines different encodings and lan-

guage bindings for its specification language EXPRESS.

These “implementation methods” comprise a clear-text and

an XML representation and bindings to the programming

languages C,C++ and Java. STEP is not intended to pro-

vide a common conceptual model, but provides specialized

models for domain knowledge. We use process modeling to

capture process knowledge explicitly. In addition to allow-

ing easier re-use of process components, explicit process

knowledge supports execution tracking so that the prove-

nance of the results is retained.

We propose EXPRESS as the specification language for

the ontologies, because thereby we can directly use the do-

main knowledge specified in the application protocols of

the STEP standard. STEP is already used as a common data

format for many of the process artifacts in the automotive

industry and the data is accessible by our process model

without additional structural conversion overhead. Further-

more, writing our models in STEP/EXPRESS allows us to

use the same tools as already used for data modeling.

Enactment is another important aspect of process model-

ing. We have shown that it is possible to use an abstract pro-

cess model, which is independent of the target platform and

build a workflow description for a specific workflow execu-

tion engine from this model. We have successfully demon-

strated the necessary transformations for the workflow en-

gine Taverna. However, because the process model is inde-

pendent of the workflow engine, we can use any other work-

flow execution engine that provides the necessary function-

ality. In the future, we plan to define transformations for

other workflow execution environments and to investigate

the integration of domain-specific data models and ontolo-

gies.

References

[1] Y. Ait-Ameur, F. Besnard, P. Girard, G. Pierra, and J. C.

Potier. Formal specification and metaprogramming in the

EXPRESS language. In Intl.Conf. on Software Engineering
and Knowledge Engineering (SEKE), pages 181–188, 1995.

[2] B. Chandrasekaran, J. Josephson, and R. Benjamins. The

ontology of tasks and methods. In Proceedings of the 11th
Knowledge Acquisition Modeling and Management Work-
shop, KAW’98, Banff, Canada, Apr. 1998.

[3] J. Gero and U. Kannengiesser. A function-behavior-

structure ontology of processes. Artificial Intelligence
for Engineering, Design, Analysis and Manufacturing (AI
EDAM), 21:379–391, 2007.

[4] N. Guarino. Formal ontology and information systems.

In N. Guarino, editor, Proceedings of the 1st International
Conference on Formal Ontologies in Information Systems,
FOIS’98, pages 3–15, Trento, Italy, 1998. IOS Press.

[5] A. Gunendran, R. Young, A. Cutting-Decelle, and J. Bourey.

Organising manufacturing information for engineering in-

teroperability. In R. Goncalves, J. Muller, K. Mertins, and

M. Zelm, editors, Proceedings of IESA 2007: Enterprise
Interoperability II New challenges and Approaches, pages

587–598. Springer-Verlag London, 2007.
[6] International Organization for Standardization. ISO 10303-

11:1994: Industrial automation systems and integration —
Product data representation and exchange — Part 11: De-
scription methods: The EXPRESS language reference man-
ual. International Organization for Standardization, Geneva,

Switzerland, 1994.
[7] S. Jablonski. On the complementarity of workflow man-

agement and business process modeling. SIGOIS Bull.,
16(1):33–38, 1995.

[8] Y. Kitamura, Y. Koji, and R. Mizoguchi. An ontological

model of device function: industrial deployment and lessons

learned. Applied Ontology, 1(3–4):237–262, 2006.
[9] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow

management and the Kepler system, 2005.
[10] F. Maier, W. Mayer, M. Stumptner, and A. Mühlenfeld.

Ontology-based process modelling for design optimisation

support. In Third International Conference on Design Com-
puting and Cognition (DCC’08), Atlanta, USA, June 2008.

To appear.
[11] M. E.-H. Mimoune, G. Pierra, and Y. A. Ameur. An

ontology-based approach for exchanging data between het-

erogeneous database systems. In ICEIS (1), pages 512–524,

2003.
[12] P. H. P. Nguyen and D. Corbett. Building corporate knowl-

edge through ontology integration. Advances in Knowledge
Acquisition and Management, 4303/2006:223–229, 2006.

[13] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Fer-

ris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Mar-

vin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens,

A. Wipat, and C. Wroe. Taverna: lessons in creating a

workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience, 18:1067–1100,

2006.
[14] P. Saliou, A. Plantec, and V. Ribaud. Metaprogramming

with EXPRESS and SQL. In International Workshop
Declarative Meta Programming, DMP02. University of Ed-
inburgh, Dec 2002.

[15] C. Seeling. User manual for the crash-box MDO reference

problem. Internal publication, VPAC Ltd, Melbourne, 2007.
[16] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt,

G. Schuster, H. Neumann, and S. Hübner. Ontology-

based integration of information — a survey of existing ap-

proaches. In H. Stuckenschmidt, editor, IJCAI–01 Work-
shop: Ontologies and Information Sharing, pages 108–117,

2001.

940

Reviewers’ Index

A
Alain Abran

Silvia Teresita Acuna
Edward B. Allen

Mikhail Auguston

B
Doo-Hwan Bae
Xiaoying Bai

Maria Teresa Baldassarre
Purushotham Bangalore
Muhammad Ali Barbar

Luciano Barezi
Emese Bari

Saida Benlarbi
Sami Beydeda

Swapan Bhattacharya
Alessandro Bianchi

Jim Bieman
Gary D. Boetticher
Jean-Michel Bruel

Barrett Bryant

C
Kai-Yuan Cai

Danilo Caivano
Gerardo Canfora

Joao W. Cangussu
Giovanni Cantone
Jeffrey C. Carver

Christine W. Chan
Keith C.C. Chan

W.K. Chan
Kuang-Nan Chang

Ned Chapin
I-Chin Chen

Shu-Ching Chen
Yinong Chen
Harry Cheng

Yoonsik Cheon

Peter J. Clarke
Panos Constantopoulos

Kendra Cooper
Maria Francesca Costabile

Karl Cox
Juan J. Cuadrado-Gallego

Alfredo Cuzzocrea

D
Scott Dick

Jin Song Dong
Jing Dong

Philippe Dugerdil
Reiner Dumke

Schahram Dustdar

E
Christof Ebert
Faezeh Ensan

Onyeka Ezenwoye

F
Behrouz Homayoun Far

Martin S. Feather
Robert Feldt

Norman Fenton
Eduardo B. Fernandez

Todd Fitch
Andres Folleco

Jose Fortes
Renata Fortes

G
Kehan Gao

Alessandro Garcia
Felix Garcia
Carlo Ghezzi
Holger Giese
Itana Gimenes

941

Sebastien Goasguen
Swapna Gokhale

Jeff Gray
Des Greer

Eric Gregoire
Paul Grunbacher

H
Mark Harman
Alan Hartman

Ahmed E. Hassan
Xudong He

Rattikorn Hewett
Mei Hsing

Shihong Huang
Byung-Yeon Hwang

I
Ali Idri
Peter In

J
Clinton Jeffery
Frederic Jouault
Natalia Juristo

K
Audris Kalnins
Sascha Konrad

Gunes Koru
Vinay Kulkarni

L
Mark Last

Jeff Lei
Tao Li

Jennifer Liang
Yingdar Lin
Shih-Hsi Liu

Xiaodong Liu
Yan (Jenny) Liu

Yi Liu
Hakim Lounis

Jian Lu
Zhongyu (Joan) Lu

Heiko Ludwig
Michael R. Lyu

M.
Jose Carlos Maldonado

Antonio Mana
Emilia Mendes
Harald Meyer

Rym Mili
James Miller

Henry Muccini

N
Nachi Nagappan

Martin Neil
Allen Nikora

Elisabetta Di Nitto

O
Mehmet Orgun

P
Manish Parashar

Joontae Park
Witold Pedrycz

Jun Peng
Massimiliano Di Penta

Hoang Pham
Alfonso Pierantonio

R
Rajeev Raje

Sanjay Ranka
Marek Reformat
Robert Reynolds

942

Daniel Rodriguez
George Roussos
Guenther Ruhe

S
Masoud Sadjadi
Ramon Sagarna
Ahmed Salem

Farshad Samimi
Douglas Schmidt

Naeem Seliya
Tony Shan

Yidong Shen
Martin Shepperd

Simon Shim
Michael Shin

George Spanoudakis
Arndt von Staa

Mark Stamp
Nenad Stankovic

Xiao Su
Rajesh Subramanyan

T
Jeff Tian

Juha-Pekka Tolvanen
Genny Tortora

Mark Trakhtenbrot
Laurence Tratt
Peter Troger

T.H. Tse
Bhekisipho Twala

V
Antonio Vallecillo
Michael VanHilst

Silvia Regina Vergilio
Marlon Vieira

W
Qianxiang Wang

Yingxu Wang
Christiane Gresse von Wangenheim

Tim Weitzel
Laurie Williams
Victor Winter

Eric Wong
Franz Wotawa

Ye Wu

X
Baowen Xu
Zhiwei Xu

Y
Hongji Yang
Huiqun Yu

Z
Cui Zhang
Jing Zhang

Zhi-Hua Zhou
Zhinan Zhou

Hong Zhu
Xingquan Zhu
Eugenio Zimeo
Andrea Zisman

943

Authors’ Index

A
M. Abed, 877

Benjamin Aeschliman, 422
Mohsen Afsharchi, 123

Wasif Afzal, 488
Shir Aharon, 448

Fernanda Alencar, 472
Mauricio Alferez, 779

William Allen, 802
Eduardo Santana de Almeida, 655

Hyggo Almeida, 887
Hyggo O. de Almeida, 599

Zaid Altahat, 905
Alexandre Alvaro, 655

Vasco Amaral, 779
Raquel Anaya, 399

Alain April, 60
Fernando Arango, 399

Joao Araujo, 399, 472, 779
Gonzalo Argote-Garcia, 440
Namfon Assawamekin, 460

B
Linda Badri, 103

Mourad Badri, 103
Rami Bahsoon, 375

Xiaoying Bai, 203, 723
Taiseera Al Balushi, 929

Souvik Barat, 625
Ellen Francine Barbosa, 685, 697

Marcio de O. Barros, 149
Ricardo M. Bastos, 185
Javier Belmonte, 129

Ayse Bener, 143
Tejaswitha Bhavsar, 367
Debmalya Biswas, 531

Keith Bock, 422
Harold Boley, 478

Brandon W. Bonds, 54
Marcos R. S. Borges, 773, 820

Harald Brandl, 393

Jens Bruhn, 48
Olivier Buchwalder, 764

Lofton A. Bullard, 73
Michael Burton, 422

C
Edgar S. Calisaya, 773

Maria Luiza M. Campos, 773
Jaelson Castro, 472

Uiratan Cavalcante, 735
A. P. Cavalcanti, 309

M. Cenk Cavusoglu, 333
Martine Ceberio, 861

Victor Rafael Rezende Celestino, 417
Alma Cemerlic, 791

Christine W. Chan, 857
Shi-Kuo Chang, 4

Yeim-Kuan Chang, 351
Ching-Ming Chao, 603

Ned Chapin, 506
Lorena Chavarria-Baez, 363

Shu-Ling Chen, 33
Tsong Yueh Chen, 16

Zhenyu Chen, 494
Harry H. Cheng, 565
Yoonsik Cheon, 861

Radhika Chhabra, 715
Chih-Ping Chu, 351

Peter J. Clarke, 440, 500
Cecilia Claudio, 1

Nelly Condori-Fernandez, 22
Oscar Corcho, 929

Henk Corporaal, 785
Chessman Correa, 67
Antonio Cortes, 861
Evandro Costa, 599

R. Costa, 309
Arnaud Counet, 60

Antonio Marcio Ferreira Crespo, 417
Jesus Cristobal, 667
Xiaofeng Cui, 321

944

D
Jian Dai, 223, 561
Yu Dai, 215, 853

Gargi Dasgupta, 814
Jose Maria N. David, 820

Debzani Deb, 808
Yi Deng, 3

Nima Dezhkam, 26
Oscar Dieste, 769

Oguz Dikenelli, 741
Qin Ding, 381

Yulin Ding, 752
Donna Djordjevich, 565

Jing Dong, 454
Dennis J. Drown, 279
Lucas Drumond, 638
Gengshen Du, 137

Edward B. Duffy, 303
Philippe Dugerdil, 129
Reiner R. Dumke, 918

E
Nina Edelweiss, 525
Raimund Ege, 411

Tzilla Elrad, 581, 905
Maria Claudia F. P. Emer, 357

Wolfgang Emmerich, 375
E. Zeynep Erson, 333

Onyeka Ezenwoye, 649, 814

F
Li Fan, 613

Behrouz H. Far, 123, 466
Pedro Porfirio Muniz Farias, 847

Ali Fatolahi, 619
Robert Feldt, 488

Chenhua Feng, 155
Paula Fernandes, 758

Alfredo Fernandez-Valmayor, 667
Adriana M. C. M. Figueiredo, 173

Olympio C. Silva Filho, 887

Paulo N. Cruz Filho, 197
Todd Fitch, 631

Andres A. Folleco, 73
Liana Fong, 814

Lisandra M. Fontoura, 179
Richard Ford, 802

Renata Pontin de Mattos Fortes, 655
Gordon Fraser, 393, 709

Yujian Fu, 440
M. Muztaba Fuad, 315

Mathias Funk, 785
F. Furtado, 309

G
Suyog Gaidhani, 555

Renata de Matos Galante, 525
Irbis Gallegos, 273
Jerry Gao, 631, 715

Kening Gao, 853
Luis Garcia, 261

Rogerio Eduardo Garcia, 685
Vinicius Cardoso Garcia, 655

Ann Gates, 273
Tom Gelhausen, 691
Blaise Genest, 531

C. Ghezzi, 255
Sudipto Ghosh, 873

Tomas San Feliu Gilabert, 42
Rosario Girardi, 638, 735

Olivier Le Goaer, 387
Seyed Koosha Golmohammadi, 643

Jin-gang Guo, 38

H
Laura Haas, 2
Naji Habra, 60

Jason O. Hallstrom, 303
Klaus Marius Hansen, 345, 893

Lasse Harjumaa, 91
Keqing He, 830

Xiao-yang He, 38
Xudong He, 440

945

Peter Henderson, 327
Yanelis Hernandez, 500

S. Herr, 339
Rattikorn Hewett, 703
Jonathan Hittle, 873

Erika Nina Hohn, 685
Jason Honda, 565

Seongsoo Hong, 573
Lei Hu, 842

Lifeng Hu, 867
Songlin Hu, 209

Wen Shen Huang, 381
Yu-Chun Huang, 33

Sebastian Hudert, 587
Oliver Hummel, 232

Byung-Yeon Hwang, 219

I
Colin J. Ihrig, 4

Magda G. Ilieva, 478
Jin Woo Im, 219

J
Vijayananda Jagannatha, 555

Andrea Janes, 191
Dietmar Jannach, 405

Wenpin Jiao, 250
Ying Jin, 367

Mario Jino, 357

K
Gail Kaiser, 867

Selim Kalayci, 814
Taghi M. Khoshgoftaar, 73, 279, 519

Amir A. Khwaja, 97
Phongphun Kijsanayothin, 703

Beomjin Kim, 422
Tariq M. King, 500

Joseph M. Kizza, 791
Christos Kloukinas, 117

C. Kolski, 877
Sven J. Korner, 691

Nicholas A. Kraft, 54, 85
Uira Kulesza, 745, 779
Vinay Kulkarni, 625

Martin Kunz, 918
Karen Kwok, 631

Gihwon Kwon, 537, 543

L
Jouni Lappalainen, 91

K. Laufer, 339
Jaqueline I. Lavandera, 428

Gary T. Leavens, 861
Bum-Suk Lee, 219
Adriana Leite, 735
Hanna Leskinen, 91

Timothy C. Lethbridge, 619
Huaizhang Li, 561

Juanzi Li, 203
Mengjun Li, 795
Mingshu Li, 561
Weigang Li, 417
Xiaoou Li, 363
Yang Li, 238

Zhoujun Li, 795
Wrihang Roberto Liang, 715

Ying Liang, 209
Huimin Lin, 16

Bin Liu, 830
Chien-Hung Liu, 33

Dapeng Liu, 161
Feng Liu, 795

Guoliang Liu, 238
Jiakun Liu, 573
Jing Liu, 830
Tao Liu, 723

Marta Lopez, 769
Pericles Loucopoulos, 929

Emerson Loureiro, 599, 887
Joel Pinho Lucas, 607

Carlos J. P. de Lucena, 745
Daniel Lucredio, 655

946

Heiko Ludwig, 587

M
Khaled Mahbub, 117
Mark Mahoney, 581

Franz Maier, 935
Jose Carlos Maldonado, 685, 697

Brian A. Malloy, 303
Paolo Maresca, 4
Gerald Marin, 802

Tiago Cordeiro Marques, 847
Santiago Matalonga, 42
Wolfgang Mayer, 935

Philip K. McKinley, 881
D.A. Meedeniya, 371

Hong Mei, 321
S. R. L. Meira, 309

Silvio Romero de Lemos Meira, 655
Steffen Mencke, 918
Jorge Merino, 667
Robert Merkel, 16

Marcio Gurjao Mesquita, 847
Boleslaw Mikolajczak, 267

Ali Mili, 448
Sameer Mohammed, 291

Heidi Moisanen, 91
Alberto L. Moran, 428
Sandro Morasca, 297

Ana Moreira, 399, 472, 779
María N. Moreno, 607

V. Moura, 309
Abdolmajid Mousavi, 466

Arndt Muhlenfeld, 935
Jurgen Munch, 167

Christian Murphy, 867
Leonardo Murta, 67, 758

N
Chaitanya Nadkarni, 448
Elisa Y. Nakagawa, 697

Haruka Nakaoa, 167
Antonio Navarro, 667
Roman Neruda, 569

Julio Cesar Campos Neto, 847
Mihai Nica, 899

Changhai Nie, 484
Camila Nunes, 745
Ingrid Nunes, 745

O
Omar Ochoa, 273

Kleinner Oliveira, 912
Toacy Oliveira, 912

Toacy C. Oliveira, 185
Flavio Oquendo, 244

Michael J. Oudshoorn, 808
Mourad-Chabane Oussalah, 387

P
Fernando Paniagua, 577

Jiyong Park, 573
Sachoun Park, 537, 543

Tauhida Parveen, 111, 802
Oscar Pastor, 22
Mitul Patel, 929

Dennis S. Patrone, 227
Jairo Pava, 500

John Paxton, 808
Witold Pedrycz, 643

Bernhard Peischl, 899
Tu Peng, 454

Eliana B. Pereira, 185
Marcos F. Pereira, 599

A.S.Perera, 371
Angelo Perkusich, 599, 887

Claude Petitpierre, 764
Jose A. Pino, 820

Charnyote Pluempitiwiriyawej, 460
Tytti Pokka, 91

947

Roberto Tom Price, 179
Piet van der Putten, 785

Q
Zawar Qayyum, 244

Bo Qu, 484

R
Damith C. Rajapakse, 923

Bina Ramamurthy, 227
Felicidad Ramos, 769

Bonnie Ray, 155
Abhinay Reddyreddy, 512

Marek Reformat, 643
Marcio de M. Ribeiro, 599

Ana C. Riekstin, 697
Steve Roach, 261, 273

Oscar M. Rodriguez-Elias, 428
Guenther Ruhe, 137

Vasile Rus, 291

S
Deise de Brum Saccol, 525

S. Masoud Sadjadi, 649, 814
Salamah Salamah, 261, 273

Clenio F. Salviano, 173
Farshad A. Samimi, 881

Pedro R. Falcone Sampaio, 929
Sherri M. Sanders, 824
Danilo F. S. Santos, 887

Joao Santos, 779
Kamran Sartipi, 26, 842

Gregor Scheithauer, 12, 549
Andreas Schönberger, 593

Stefan Seedorf, 232
Saddys Segrera, 607

Naeem Seliya, 79, 279
Abdelhak-Djamel Seriai, 387

J. Shafaee, 339
Alan B. Shaffer, 673

Leyuan Shi, 440
Michael E. Shin, 577

Sajjan Shiva, 291
Alberto Sillitti, 191

Carla Silva, 472
Fabio Silva, 638

Nishadi De Silva, 327
Jukka Sirvio, 91
Harvey Siy, 613

John C. Sloan, 519
Darunee Smavatkul, 703

Randy K. Smith, 54
Goncalo Soares, 345

Stephane S. Some, 619
Hui Song, 250

Yicheng Song, 209
M. Soui, 877

Andre Sousa, 779
Bueno Borges de Souza, 417

George Spanoudakis, 117, 661
Mark Stamp, 223

Nenad Stankovic, 434
Rod Strong, 422

Markus Stumptner, 935
Daniel St-Yves, 103
Giancarlo Succi, 191

Yanchun Sun, 250, 321
Thanwadee Sunetnanta, 460
Ramyashree Swamyo, 715

T
Marta S. Tabares, 399

Luca Vetti Tagliati, 679
Luay Tahat, 905

G. Tamburrelli, 255
Dalila Tamzalit, 387
Fatih Tekbacak, 741

Yu-xin Teng, 38
Valentina Ternelli, 4

G. K. Thiruvathukal, 339
Jiuming Tian, 209

Scott Tilley, 111, 802
Andy Tinkham, 111

948

Candemir Toklu, 549
Richard Torkar, 488

Adam Trendowicz, 167
Chi K. Tse, 830

Theocharis Tsigritis, 661
Tugkan Tuglular, 741

Burak Turhan, 143

U
Joseph E. Urban, 97

G. Uster, 877

V
Corina Vela, 273

Silvia Regina Vergilio, 197, 357
Balaji Viswanathan, 814

Aurora Vizcaino, 428
Thomas Vogel, 48

W
Daoming Wang, 16

Qing Wang, 161, 561
Xinghua Wang, 250

Ya-sha Wang, 38
Kevin S. Webb, 85

Jun Wei, 238
Martin Weiglhofer, 709
Claudia Werner, 67, 758

Guido Wirtz, 12, 48, 339, 549, 587, 593
Franz Wotawa, 393, 709, 836, 899

Leon Wu, 867
Weibiao Wu, 79

Yan Wu, 613
Yuxiang Wu, 857

X
Xiaolin Xi, 573
Ma Xiang, 715

Junchao Xiao, 161, 561
Sai Xiao, 321
Lizi Xie, 161

Baowen Xu, 484, 494
Haiping Xu, 512
Zhiwei Xu, 79

Y
Chi-Lu Yang, 351
Lei Yang, 215, 853
Li Yang, 411, 791

Zilan (Nancy) Yang, 123
Xinyu You, 203

Z
Bin Zhang, 215, 853

Cui Zhang, 824
Du Zhang, 219, 285

Weishan Zhang, 345, 893
Xiaofang Zhang, 484, 494

Yan Zhang, 752
Zhoulan Zhang, 4
Yajing Zhao, 454
Cheng Zhong, 123

Bin Zhou, 729
Ti Zhou, 795

Xin Zhou, 155
Hong Zhu, 729

Thomas Zimmermann, 137

949

�

SEKE 2009 Call For Papers
The Twenty-First International Conference on Software Engineering and Knowledge

Engineering

Hyatt Harborside at Logan Int'l Airport, Boston, USA
July 1 - July 3, 2009

Organized by
Knowledge Systems Institute Graduate School

The Twenty-First International Conference on Software Engineering and
Knowledge Engineering (SEKE'09) will be held at the Hyatt Harborside at
Boston's Logan Int'l Airport, Boston, USA, July 1-3, 2009.

The conference aims at bringing together experts in software engineering and
knowledge engineering to discuss on relevant results in either software
engineering or knowledge engineering or both. Special emphasis will be put
on the transference of methods between both domains.

TOPICS
Solicited topics include, but are not limited to:
Agent architectures, ontologies, languages and protocols
Agent-based learning and knowledge discovery
Agent-based software engineering
Autonomic computing
Agent-based auctions and marketplaces
Adaptive Systems
Artificial Intelligence Approaches to Software Engineering
Artificial life and societies
Automated Reasoning
Automated Software Design and Synthesis
Automated Software Specification
Component-Based Software Engineering
Computer-Supported Cooperative Work
Data cleansing and noise reduction
Data streams and incremental mining
Data visualization
E-Commerce Solutions and Applications
Embedded and Ubiquitous Software Engineering
Electronic Commerce
Enterprise Software, Middleware, and Tools
Formal Methods
Human-Computer Interaction
Industry System Experience and Report
Integrity, Security, and Fault Tolerance
Interface agents
Knowledge Acquisition
Knowledge-Based and Expert Systems
Knowledge Representation and Retrieval
Knowledge Engineering Tools and Techniques
Knowledge Visualization
Learning Software Organization
Measurement and Empirical Software Engineering
Middleware for service based systems
Mobile agents
Mobile Commerce Technology and Application Systems
Mobile Systems
Multi-agent systems
Multimedia Applications, Frameworks, and Systems
Multimedia and Hypermedia Software Engineering
Ontologies and Methodologies
Patterns and Frameworks
Pervasive Computing
Process and Workflow Management
Programming Languages and Software Engineering
Program Understanding
Quality of services
Reflection and Metadata Approaches
Reliability
Requirements Engineering
Reverse Engineering
Runtime service management
Secure mobile and multi-agent systems
Semantic web
Service-centric software engineering
Service oriented requirements engineering

Service oriented architectures
Service discovery and composition
Service level agreements (drafting, negotiation, monitoring and management)
Smart Spaces
Soft Computing
Software Architecture
Software Assurance
Software Domain Modeling and Meta-Modeling
Software dependability
Software economics
Software Engineering Case Study and Experience Reports
Software Engineering Decision Support
Software Engineering Tools and Environments
Software Maintenance and Evolution
Software Process Modeling
Software product lines
Software Quality
Software Reuse
Software Safety
Software Security
Swarm intelligence
System Applications and Experience
Time and Knowledge Management Tools
Tutoring, Documentation Systems
Uncertainty Knowledge Management
Validation and Verification
Web and text mining
Web-Based Tools, Applications and Environment
Web-Based Knowledge Management
Web-Based Tools, Systems, and Environments
Web and Data Mining

CONFERENCE SITE (HOTEL INFORMATION)
The SEKE 2009 Conference will be held at the Hyatt Harborside at Boston's
Logan Int'l Airport, Boston, USA. The hotel has made available for these
limited dates (6/30 - 7/4/2009) to SEKE 2009 attendees a discount rate of
$149 US dollars for single/double, not including sales tax.

INFORMATION FOR AUTHORS
Papers must be written in English. An electronic version (Postscript, PDF, or
MS Word format) of the full paper should be submitted using the following
URL: http://conf.ksi.edu/seke09/submit/SubmitPaper.php. Please use Internet
Explorer as the browser. Manuscript must include a 200-word abstract and no
more than 6 pages of IEEE double column text (include figures and
references). Workshop papers should be submitted to the workshops directly.

INFORMATION FOR REVIEWERS
Papers submitted to SEKE'09 will be reviewed electronically. The users
(webmaster, program chair, reviewers...) can login using the following URL:
http://conf.ksi.edu/seke09/review/pass.php.

If you have any questions or run into problems, please send e-mail to:
seke@ksi.edu.

SEKE 2009 Conference Secretariat
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076 USA
Tel: 847-679-3135
Fax: 847-679-3166
E-mail: seke@ksi.edu

IMPORTANT DATES
March 1, 2009 Paper submission due
April 1, 2009 Notification of acceptance
May 1, 2009 Camera-Ready Copy

